initial check-in, version 0.5.0
[musl] / src / math / s_log1p.c
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 /* double log1p(double x)
14  *
15  * Method :
16  *   1. Argument Reduction: find k and f such that
17  *                      1+x = 2^k * (1+f),
18  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
19  *
20  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
21  *      may not be representable exactly. In that case, a correction
22  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24  *      and add back the correction term c/u.
25  *      (Note: when x > 2**53, one can simply return log(x))
26  *
27  *   2. Approximation of log1p(f).
28  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
29  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30  *               = 2s + s*R
31  *      We use a special Reme algorithm on [0,0.1716] to generate
32  *      a polynomial of degree 14 to approximate R The maximum error
33  *      of this polynomial approximation is bounded by 2**-58.45. In
34  *      other words,
35  *                      2      4      6      8      10      12      14
36  *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
37  *      (the values of Lp1 to Lp7 are listed in the program)
38  *      and
39  *          |      2          14          |     -58.45
40  *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
41  *          |                             |
42  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
43  *      In order to guarantee error in log below 1ulp, we compute log
44  *      by
45  *              log1p(f) = f - (hfsq - s*(hfsq+R)).
46  *
47  *      3. Finally, log1p(x) = k*ln2 + log1p(f).
48  *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49  *         Here ln2 is split into two floating point number:
50  *                      ln2_hi + ln2_lo,
51  *         where n*ln2_hi is always exact for |n| < 2000.
52  *
53  * Special cases:
54  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
55  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
56  *      log1p(NaN) is that NaN with no signal.
57  *
58  * Accuracy:
59  *      according to an error analysis, the error is always less than
60  *      1 ulp (unit in the last place).
61  *
62  * Constants:
63  * The hexadecimal values are the intended ones for the following
64  * constants. The decimal values may be used, provided that the
65  * compiler will convert from decimal to binary accurately enough
66  * to produce the hexadecimal values shown.
67  *
68  * Note: Assuming log() return accurate answer, the following
69  *       algorithm can be used to compute log1p(x) to within a few ULP:
70  *
71  *              u = 1+x;
72  *              if(u==1.0) return x ; else
73  *                         return log(u)*(x/(u-1.0));
74  *
75  *       See HP-15C Advanced Functions Handbook, p.193.
76  */
77
78 #include <math.h>
79 #include "math_private.h"
80
81 static const double
82 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
83 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
84 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
85 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
86 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
87 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
88 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
89 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
90 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
91 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
92
93 static const double zero = 0.0;
94
95 double
96 log1p(double x)
97 {
98         double hfsq,f=0,c=0,s,z,R,u;
99         int32_t k,hx,hu=0,ax;
100
101         GET_HIGH_WORD(hx,x);
102         ax = hx&0x7fffffff;
103
104         k = 1;
105         if (hx < 0x3FDA827A) {                  /* x < 0.41422  */
106             if(ax>=0x3ff00000) {                /* x <= -1.0 */
107                 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
108                 else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
109             }
110             if(ax<0x3e200000) {                 /* |x| < 2**-29 */
111                 if(two54+x>zero                 /* raise inexact */
112                     &&ax<0x3c900000)            /* |x| < 2**-54 */
113                     return x;
114                 else
115                     return x - x*x*0.5;
116             }
117             if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
118                 k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */
119         }
120         if (hx >= 0x7ff00000) return x+x;
121         if(k!=0) {
122             if(hx<0x43400000) {
123                 u  = 1.0+x;
124                 GET_HIGH_WORD(hu,u);
125                 k  = (hu>>20)-1023;
126                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
127                 c /= u;
128             } else {
129                 u  = x;
130                 GET_HIGH_WORD(hu,u);
131                 k  = (hu>>20)-1023;
132                 c  = 0;
133             }
134             hu &= 0x000fffff;
135             if(hu<0x6a09e) {
136                 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
137             } else {
138                 k += 1;
139                 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
140                 hu = (0x00100000-hu)>>2;
141             }
142             f = u-1.0;
143         }
144         hfsq=0.5*f*f;
145         if(hu==0) {     /* |f| < 2**-20 */
146             if(f==zero) { if(k==0) return zero;
147                           else {c += k*ln2_lo; return k*ln2_hi+c;} }
148             R = hfsq*(1.0-0.66666666666666666*f);
149             if(k==0) return f-R; else
150                      return k*ln2_hi-((R-(k*ln2_lo+c))-f);
151         }
152         s = f/(2.0+f);
153         z = s*s;
154         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
155         if(k==0) return f-(hfsq-s*(hfsq+R)); else
156                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
157 }