initial check-in, version 0.5.0
[musl] / src / math / s_expm1.c
1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 /* expm1(x)
14  * Returns exp(x)-1, the exponential of x minus 1.
15  *
16  * Method
17  *   1. Argument reduction:
18  *      Given x, find r and integer k such that
19  *
20  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
21  *
22  *      Here a correction term c will be computed to compensate
23  *      the error in r when rounded to a floating-point number.
24  *
25  *   2. Approximating expm1(r) by a special rational function on
26  *      the interval [0,0.34658]:
27  *      Since
28  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29  *      we define R1(r*r) by
30  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31  *      That is,
32  *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33  *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
34  *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35  *      We use a special Reme algorithm on [0,0.347] to generate
36  *      a polynomial of degree 5 in r*r to approximate R1. The
37  *      maximum error of this polynomial approximation is bounded
38  *      by 2**-61. In other words,
39  *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40  *      where   Q1  =  -1.6666666666666567384E-2,
41  *              Q2  =   3.9682539681370365873E-4,
42  *              Q3  =  -9.9206344733435987357E-6,
43  *              Q4  =   2.5051361420808517002E-7,
44  *              Q5  =  -6.2843505682382617102E-9;
45  *      (where z=r*r, and the values of Q1 to Q5 are listed below)
46  *      with error bounded by
47  *          |                  5           |     -61
48  *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
49  *          |                              |
50  *
51  *      expm1(r) = exp(r)-1 is then computed by the following
52  *      specific way which minimize the accumulation rounding error:
53  *                             2     3
54  *                            r     r    [ 3 - (R1 + R1*r/2)  ]
55  *            expm1(r) = r + --- + --- * [--------------------]
56  *                            2     2    [ 6 - r*(3 - R1*r/2) ]
57  *
58  *      To compensate the error in the argument reduction, we use
59  *              expm1(r+c) = expm1(r) + c + expm1(r)*c
60  *                         ~ expm1(r) + c + r*c
61  *      Thus c+r*c will be added in as the correction terms for
62  *      expm1(r+c). Now rearrange the term to avoid optimization
63  *      screw up:
64  *                      (      2                                    2 )
65  *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
66  *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67  *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
68  *                      (                                             )
69  *
70  *                 = r - E
71  *   3. Scale back to obtain expm1(x):
72  *      From step 1, we have
73  *         expm1(x) = either 2^k*[expm1(r)+1] - 1
74  *                  = or     2^k*[expm1(r) + (1-2^-k)]
75  *   4. Implementation notes:
76  *      (A). To save one multiplication, we scale the coefficient Qi
77  *           to Qi*2^i, and replace z by (x^2)/2.
78  *      (B). To achieve maximum accuracy, we compute expm1(x) by
79  *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80  *        (ii)  if k=0, return r-E
81  *        (iii) if k=-1, return 0.5*(r-E)-0.5
82  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
83  *                     else          return  1.0+2.0*(r-E);
84  *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
85  *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86  *        (vii) return 2^k(1-((E+2^-k)-r))
87  *
88  * Special cases:
89  *      expm1(INF) is INF, expm1(NaN) is NaN;
90  *      expm1(-INF) is -1, and
91  *      for finite argument, only expm1(0)=0 is exact.
92  *
93  * Accuracy:
94  *      according to an error analysis, the error is always less than
95  *      1 ulp (unit in the last place).
96  *
97  * Misc. info.
98  *      For IEEE double
99  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
100  *
101  * Constants:
102  * The hexadecimal values are the intended ones for the following
103  * constants. The decimal values may be used, provided that the
104  * compiler will convert from decimal to binary accurately enough
105  * to produce the hexadecimal values shown.
106  */
107
108 #include <math.h>
109 #include "math_private.h"
110
111 static const double
112 one             = 1.0,
113 huge            = 1.0e+300,
114 tiny            = 1.0e-300,
115 o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
116 ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
117 ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
118 invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
119         /* scaled coefficients related to expm1 */
120 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
121 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
122 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
123 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
124 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
125
126 double
127 expm1(double x)
128 {
129         double y,hi,lo,c=0.0,t,e,hxs,hfx,r1;
130         int32_t k,xsb;
131         uint32_t hx;
132
133         GET_HIGH_WORD(hx,x);
134         xsb = hx&0x80000000;            /* sign bit of x */
135         if(xsb==0) y=x; else y= -x;     /* y = |x| */
136         hx &= 0x7fffffff;               /* high word of |x| */
137
138     /* filter out huge and non-finite argument */
139         if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
140             if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
141                 if(hx>=0x7ff00000) {
142                     uint32_t low;
143                     GET_LOW_WORD(low,x);
144                     if(((hx&0xfffff)|low)!=0)
145                          return x+x;     /* NaN */
146                     else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
147                 }
148                 if(x > o_threshold) return huge*huge; /* overflow */
149             }
150             if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
151                 if(x+tiny<0.0)          /* raise inexact */
152                 return tiny-one;        /* return -1 */
153             }
154         }
155
156     /* argument reduction */
157         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
158             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
159                 if(xsb==0)
160                     {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
161                 else
162                     {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
163             } else {
164                 k  = invln2*x+((xsb==0)?0.5:-0.5);
165                 t  = k;
166                 hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
167                 lo = t*ln2_lo;
168             }
169             x  = hi - lo;
170             c  = (hi-x)-lo;
171         }
172         else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
173             t = huge+x; /* return x with inexact flags when x!=0 */
174             return x - (t-(huge+x));
175         }
176         else k = 0;
177
178     /* x is now in primary range */
179         hfx = 0.5*x;
180         hxs = x*hfx;
181         r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
182         t  = 3.0-r1*hfx;
183         e  = hxs*((r1-t)/(6.0 - x*t));
184         if(k==0) return x - (x*e-hxs);          /* c is 0 */
185         else {
186             e  = (x*(e-c)-c);
187             e -= hxs;
188             if(k== -1) return 0.5*(x-e)-0.5;
189             if(k==1) {
190                 if(x < -0.25) return -2.0*(e-(x+0.5));
191                 else          return  one+2.0*(x-e);
192             }
193             if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
194                 uint32_t high;
195                 y = one-(e-x);
196                 GET_HIGH_WORD(high,y);
197                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
198                 return y-one;
199             }
200             t = one;
201             if(k<20) {
202                 uint32_t high;
203                 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
204                 y = t-(e-x);
205                 GET_HIGH_WORD(high,y);
206                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
207            } else {
208                 uint32_t high;
209                 SET_HIGH_WORD(t,((0x3ff-k)<<20));       /* 2^-k */
210                 y = x-(e+t);
211                 y += one;
212                 GET_HIGH_WORD(high,y);
213                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
214             }
215         }
216         return y;
217 }