code cleanup of named constants
[musl] / src / math / jn.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called,
22  *      for n=1, j1(x) is called,
23  *      for n<x, forward recursion us used starting
24  *      from values of j0(x) and j1(x).
25  *      for n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting value of j(0,x) is
29  *      compared with the actual value to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  *
36  */
37
38 #include "libm.h"
39
40 static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
41
42 double jn(int n, double x)
43 {
44         int32_t i,hx,ix,lx,sgn;
45         double a, b, temp, di;
46         double z, w;
47
48         /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
49          * Thus, J(-n,x) = J(n,-x)
50          */
51         EXTRACT_WORDS(hx, lx, x);
52         ix = 0x7fffffff & hx;
53         /* if J(n,NaN) is NaN */
54         if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000)
55                 return x+x;
56         if (n < 0) {
57                 n = -n;
58                 x = -x;
59                 hx ^= 0x80000000;
60         }
61         if (n == 0) return j0(x);
62         if (n == 1) return j1(x);
63
64         sgn = (n&1)&(hx>>31);  /* even n -- 0, odd n -- sign(x) */
65         x = fabs(x);
66         if ((ix|lx) == 0 || ix >= 0x7ff00000)  /* if x is 0 or inf */
67                 b = 0.0;
68         else if ((double)n <= x) {
69                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
70                 if (ix >= 0x52D00000) { /* x > 2**302 */
71                         /* (x >> n**2)
72                          *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
73                          *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
74                          *      Let s=sin(x), c=cos(x),
75                          *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
76                          *
77                          *             n    sin(xn)*sqt2    cos(xn)*sqt2
78                          *          ----------------------------------
79                          *             0     s-c             c+s
80                          *             1    -s-c            -c+s
81                          *             2    -s+c            -c-s
82                          *             3     s+c             c-s
83                          */
84                         switch(n&3) {
85                         case 0: temp =  cos(x)+sin(x); break;
86                         case 1: temp = -cos(x)+sin(x); break;
87                         case 2: temp = -cos(x)-sin(x); break;
88                         case 3: temp =  cos(x)-sin(x); break;
89                         }
90                         b = invsqrtpi*temp/sqrt(x);
91                 } else {
92                         a = j0(x);
93                         b = j1(x);
94                         for (i=1; i<n; i++){
95                                 temp = b;
96                                 b = b*((double)(i+i)/x) - a; /* avoid underflow */
97                                 a = temp;
98                         }
99                 }
100         } else {
101                 if (ix < 0x3e100000) { /* x < 2**-29 */
102                         /* x is tiny, return the first Taylor expansion of J(n,x)
103                          * J(n,x) = 1/n!*(x/2)^n  - ...
104                          */
105                         if (n > 33)  /* underflow */
106                                 b = 0.0;
107                         else {
108                                 temp = x*0.5;
109                                 b = temp;
110                                 for (a=1.0,i=2; i<=n; i++) {
111                                         a *= (double)i; /* a = n! */
112                                         b *= temp;      /* b = (x/2)^n */
113                                 }
114                                 b = b/a;
115                         }
116                 } else {
117                         /* use backward recurrence */
118                         /*                      x      x^2      x^2
119                          *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
120                          *                      2n  - 2(n+1) - 2(n+2)
121                          *
122                          *                      1      1        1
123                          *  (for large x)   =  ----  ------   ------   .....
124                          *                      2n   2(n+1)   2(n+2)
125                          *                      -- - ------ - ------ -
126                          *                       x     x         x
127                          *
128                          * Let w = 2n/x and h=2/x, then the above quotient
129                          * is equal to the continued fraction:
130                          *                  1
131                          *      = -----------------------
132                          *                     1
133                          *         w - -----------------
134                          *                        1
135                          *              w+h - ---------
136                          *                     w+2h - ...
137                          *
138                          * To determine how many terms needed, let
139                          * Q(0) = w, Q(1) = w(w+h) - 1,
140                          * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
141                          * When Q(k) > 1e4      good for single
142                          * When Q(k) > 1e9      good for double
143                          * When Q(k) > 1e17     good for quadruple
144                          */
145                         /* determine k */
146                         double t,v;
147                         double q0,q1,h,tmp;
148                         int32_t k,m;
149
150                         w  = (n+n)/(double)x; h = 2.0/(double)x;
151                         q0 = w;
152                         z = w+h;
153                         q1 = w*z - 1.0;
154                         k = 1;
155                         while (q1 < 1.0e9) {
156                                 k += 1;
157                                 z += h;
158                                 tmp = z*q1 - q0;
159                                 q0 = q1;
160                                 q1 = tmp;
161                         }
162                         m = n+n;
163                         for (t=0.0, i = 2*(n+k); i>=m; i -= 2)
164                                 t = 1.0/(i/x-t);
165                         a = t;
166                         b = 1.0;
167                         /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
168                          *  Hence, if n*(log(2n/x)) > ...
169                          *  single 8.8722839355e+01
170                          *  double 7.09782712893383973096e+02
171                          *  long double 1.1356523406294143949491931077970765006170e+04
172                          *  then recurrent value may overflow and the result is
173                          *  likely underflow to zero
174                          */
175                         tmp = n;
176                         v = 2.0/x;
177                         tmp = tmp*log(fabs(v*tmp));
178                         if (tmp < 7.09782712893383973096e+02) {
179                                 for (i=n-1,di=(double)(i+i); i>0; i--) {
180                                         temp = b;
181                                         b *= di;
182                                         b = b/x - a;
183                                         a = temp;
184                                         di -= 2.0;
185                                 }
186                         } else {
187                                 for (i=n-1,di=(double)(i+i); i>0; i--) {
188                                         temp = b;
189                                         b *= di;
190                                         b = b/x - a;
191                                         a = temp;
192                                         di -= 2.0;
193                                         /* scale b to avoid spurious overflow */
194                                         if (b > 1e100) {
195                                                 a /= b;
196                                                 t /= b;
197                                                 b  = 1.0;
198                                         }
199                                 }
200                         }
201                         z = j0(x);
202                         w = j1(x);
203                         if (fabs(z) >= fabs(w))
204                                 b = t*z/b;
205                         else
206                                 b = t*w/a;
207                 }
208         }
209         if (sgn==1) return -b;
210         return b;
211 }
212
213
214
215 double yn(int n, double x)
216 {
217         int32_t i,hx,ix,lx;
218         int32_t sign;
219         double a, b, temp;
220
221         EXTRACT_WORDS(hx, lx, x);
222         ix = 0x7fffffff & hx;
223         /* if Y(n,NaN) is NaN */
224         if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000)
225                 return x+x;
226         if ((ix|lx) == 0)
227                 return -1.0/0.0;
228         if (hx < 0)
229                 return 0.0/0.0;
230         sign = 1;
231         if (n < 0) {
232                 n = -n;
233                 sign = 1 - ((n&1)<<1);
234         }
235         if (n == 0)
236                 return y0(x);
237         if (n == 1)
238                 return sign*y1(x);
239         if (ix == 0x7ff00000)
240                 return 0.0;
241         if (ix >= 0x52D00000) { /* x > 2**302 */
242                 /* (x >> n**2)
243                  *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
244                  *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
245                  *      Let s=sin(x), c=cos(x),
246                  *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
247                  *
248                  *             n    sin(xn)*sqt2    cos(xn)*sqt2
249                  *          ----------------------------------
250                  *             0     s-c             c+s
251                  *             1    -s-c            -c+s
252                  *             2    -s+c            -c-s
253                  *             3     s+c             c-s
254                  */
255                 switch(n&3) {
256                 case 0: temp =  sin(x)-cos(x); break;
257                 case 1: temp = -sin(x)-cos(x); break;
258                 case 2: temp = -sin(x)+cos(x); break;
259                 case 3: temp =  sin(x)+cos(x); break;
260                 }
261                 b = invsqrtpi*temp/sqrt(x);
262         } else {
263                 uint32_t high;
264                 a = y0(x);
265                 b = y1(x);
266                 /* quit if b is -inf */
267                 GET_HIGH_WORD(high, b);
268                 for (i=1; i<n && high!=0xfff00000; i++){
269                         temp = b;
270                         b = ((double)(i+i)/x)*b - a;
271                         GET_HIGH_WORD(high, b);
272                         a = temp;
273                 }
274         }
275         if (sign > 0) return b;
276         return -b;
277 }