initial commit
[libm] / src / math / jn.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called,
22  *      for n=1, j1(x) is called,
23  *      for n<x, forward recursion us used starting
24  *      from values of j0(x) and j1(x).
25  *      for n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting value of j(0,x) is
29  *      compared with the actual value to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  *
36  */
37
38 #include "libm.h"
39
40 static const double
41 invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
42 two       = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
43 one       = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
44
45 static const double zero = 0.00000000000000000000e+00;
46
47 double jn(int n, double x)
48 {
49         int32_t i,hx,ix,lx,sgn;
50         double a, b, temp, di;
51         double z, w;
52
53         /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
54          * Thus, J(-n,x) = J(n,-x)
55          */
56         EXTRACT_WORDS(hx, lx, x);
57         ix = 0x7fffffff & hx;
58         /* if J(n,NaN) is NaN */
59         if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000)
60                 return x+x;
61         if (n < 0) {
62                 n = -n;
63                 x = -x;
64                 hx ^= 0x80000000;
65         }
66         if (n == 0) return j0(x);
67         if (n == 1) return j1(x);
68
69         sgn = (n&1)&(hx>>31);  /* even n -- 0, odd n -- sign(x) */
70         x = fabs(x);
71         if ((ix|lx) == 0 || ix >= 0x7ff00000)  /* if x is 0 or inf */
72                 b = zero;
73         else if ((double)n <= x) {
74                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
75                 if (ix >= 0x52D00000) { /* x > 2**302 */
76                         /* (x >> n**2)
77                          *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
78                          *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
79                          *      Let s=sin(x), c=cos(x),
80                          *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
81                          *
82                          *             n    sin(xn)*sqt2    cos(xn)*sqt2
83                          *          ----------------------------------
84                          *             0     s-c             c+s
85                          *             1    -s-c            -c+s
86                          *             2    -s+c            -c-s
87                          *             3     s+c             c-s
88                          */
89                         switch(n&3) {
90                         case 0: temp =  cos(x)+sin(x); break;
91                         case 1: temp = -cos(x)+sin(x); break;
92                         case 2: temp = -cos(x)-sin(x); break;
93                         case 3: temp =  cos(x)-sin(x); break;
94                         }
95                         b = invsqrtpi*temp/sqrt(x);
96                 } else {
97                         a = j0(x);
98                         b = j1(x);
99                         for (i=1; i<n; i++){
100                                 temp = b;
101                                 b = b*((double)(i+i)/x) - a; /* avoid underflow */
102                                 a = temp;
103                         }
104                 }
105         } else {
106                 if (ix < 0x3e100000) { /* x < 2**-29 */
107                         /* x is tiny, return the first Taylor expansion of J(n,x)
108                          * J(n,x) = 1/n!*(x/2)^n  - ...
109                          */
110                         if (n > 33)  /* underflow */
111                                 b = zero;
112                         else {
113                                 temp = x*0.5;
114                                 b = temp;
115                                 for (a=one,i=2; i<=n; i++) {
116                                         a *= (double)i; /* a = n! */
117                                         b *= temp;      /* b = (x/2)^n */
118                                 }
119                                 b = b/a;
120                         }
121                 } else {
122                         /* use backward recurrence */
123                         /*                      x      x^2      x^2
124                          *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
125                          *                      2n  - 2(n+1) - 2(n+2)
126                          *
127                          *                      1      1        1
128                          *  (for large x)   =  ----  ------   ------   .....
129                          *                      2n   2(n+1)   2(n+2)
130                          *                      -- - ------ - ------ -
131                          *                       x     x         x
132                          *
133                          * Let w = 2n/x and h=2/x, then the above quotient
134                          * is equal to the continued fraction:
135                          *                  1
136                          *      = -----------------------
137                          *                     1
138                          *         w - -----------------
139                          *                        1
140                          *              w+h - ---------
141                          *                     w+2h - ...
142                          *
143                          * To determine how many terms needed, let
144                          * Q(0) = w, Q(1) = w(w+h) - 1,
145                          * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
146                          * When Q(k) > 1e4      good for single
147                          * When Q(k) > 1e9      good for double
148                          * When Q(k) > 1e17     good for quadruple
149                          */
150                         /* determine k */
151                         double t,v;
152                         double q0,q1,h,tmp;
153                         int32_t k,m;
154
155                         w  = (n+n)/(double)x; h = 2.0/(double)x;
156                         q0 = w;
157                         z = w+h;
158                         q1 = w*z - 1.0;
159                         k = 1;
160                         while (q1 < 1.0e9) {
161                                 k += 1;
162                                 z += h;
163                                 tmp = z*q1 - q0;
164                                 q0 = q1;
165                                 q1 = tmp;
166                         }
167                         m = n+n;
168                         for (t=zero, i = 2*(n+k); i>=m; i -= 2)
169                                 t = one/(i/x-t);
170                         a = t;
171                         b = one;
172                         /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
173                          *  Hence, if n*(log(2n/x)) > ...
174                          *  single 8.8722839355e+01
175                          *  double 7.09782712893383973096e+02
176                          *  long double 1.1356523406294143949491931077970765006170e+04
177                          *  then recurrent value may overflow and the result is
178                          *  likely underflow to zero
179                          */
180                         tmp = n;
181                         v = two/x;
182                         tmp = tmp*log(fabs(v*tmp));
183                         if (tmp < 7.09782712893383973096e+02) {
184                                 for (i=n-1,di=(double)(i+i); i>0; i--) {
185                                         temp = b;
186                                         b *= di;
187                                         b = b/x - a;
188                                         a = temp;
189                                         di -= two;
190                                 }
191                         } else {
192                                 for (i=n-1,di=(double)(i+i); i>0; i--) {
193                                         temp = b;
194                                         b *= di;
195                                         b = b/x - a;
196                                         a = temp;
197                                         di -= two;
198                                         /* scale b to avoid spurious overflow */
199                                         if (b > 1e100) {
200                                                 a /= b;
201                                                 t /= b;
202                                                 b  = one;
203                                         }
204                                 }
205                         }
206                         z = j0(x);
207                         w = j1(x);
208                         if (fabs(z) >= fabs(w))
209                                 b = t*z/b;
210                         else
211                                 b = t*w/a;
212                 }
213         }
214         if (sgn==1) return -b;
215         return b;
216 }
217
218
219
220 double yn(int n, double x)
221 {
222         int32_t i,hx,ix,lx;
223         int32_t sign;
224         double a, b, temp;
225
226         EXTRACT_WORDS(hx, lx, x);
227         ix = 0x7fffffff & hx;
228         /* if Y(n,NaN) is NaN */
229         if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000)
230                 return x+x;
231         if ((ix|lx) == 0)
232                 return -one/zero;
233         if (hx < 0)
234                 return zero/zero;
235         sign = 1;
236         if (n < 0) {
237                 n = -n;
238                 sign = 1 - ((n&1)<<1);
239         }
240         if (n == 0)
241                 return y0(x);
242         if (n == 1)
243                 return sign*y1(x);
244         if (ix == 0x7ff00000)
245                 return zero;
246         if (ix >= 0x52D00000) { /* x > 2**302 */
247                 /* (x >> n**2)
248                  *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
249                  *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250                  *      Let s=sin(x), c=cos(x),
251                  *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
252                  *
253                  *             n    sin(xn)*sqt2    cos(xn)*sqt2
254                  *          ----------------------------------
255                  *             0     s-c             c+s
256                  *             1    -s-c            -c+s
257                  *             2    -s+c            -c-s
258                  *             3     s+c             c-s
259                  */
260                 switch(n&3) {
261                 case 0: temp =  sin(x)-cos(x); break;
262                 case 1: temp = -sin(x)-cos(x); break;
263                 case 2: temp = -sin(x)+cos(x); break;
264                 case 3: temp =  sin(x)+cos(x); break;
265                 }
266                 b = invsqrtpi*temp/sqrt(x);
267         } else {
268                 uint32_t high;
269                 a = y0(x);
270                 b = y1(x);
271                 /* quit if b is -inf */
272                 GET_HIGH_WORD(high, b);
273                 for (i=1; i<n && high!=0xfff00000; i++){
274                         temp = b;
275                         b = ((double)(i+i)/x)*b - a;
276                         GET_HIGH_WORD(high, b);
277                         a = temp;
278                 }
279         }
280         if (sign > 0) return b;
281         return -b;
282 }