822efeafb046fcd4c6c95ff5d43e79d969b5688d
[libm] / src / math / __exp.c
1 /* origin: FreeBSD /usr/src/lib/msun/src/k_exp.c */
2 /*-
3  * Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include "libm.h"
29
30 static const uint32_t k = 1799; /* constant for reduction */
31 static const double kln2 = 1246.97177782734161156; /* k * ln2 */
32
33 /*
34  * Compute exp(x), scaled to avoid spurious overflow.  An exponent is
35  * returned separately in 'expt'.
36  *
37  * Input:  ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
38  * Output: 2**1023 <= y < 2**1024
39  */
40 static double __frexp_exp(double x, int *expt)
41 {
42         double exp_x;
43         uint32_t hx;
44
45         /*
46          * We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
47          * minimize |exp(kln2) - 2**k|.  We also scale the exponent of
48          * exp_x to MAX_EXP so that the result can be multiplied by
49          * a tiny number without losing accuracy due to denormalization.
50          */
51         exp_x = exp(x - kln2);
52         GET_HIGH_WORD(hx, exp_x);
53         *expt = (hx >> 20) - (0x3ff + 1023) + k;
54         SET_HIGH_WORD(exp_x, (hx & 0xfffff) | ((0x3ff + 1023) << 20));
55         return exp_x;
56 }
57
58 /*
59  * __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
60  * They are intended for large arguments (real part >= ln(DBL_MAX))
61  * where care is needed to avoid overflow.
62  *
63  * The present implementation is narrowly tailored for our hyperbolic and
64  * exponential functions.  We assume expt is small (0 or -1), and the caller
65  * has filtered out very large x, for which overflow would be inevitable.
66  */
67 double __ldexp_exp(double x, int expt)
68 {
69         double exp_x, scale;
70         int ex_expt;
71
72         exp_x = __frexp_exp(x, &ex_expt);
73         expt += ex_expt;
74         INSERT_WORDS(scale, (0x3ff + expt) << 20, 0);
75         return exp_x * scale;
76 }
77
78 // FIXME
79 #if 0
80 double complex __ldexp_cexp(double complex z, int expt)
81 {
82         double x, y, exp_x, scale1, scale2;
83         int ex_expt, half_expt;
84
85         x = creal(z);
86         y = cimag(z);
87         exp_x = __frexp_exp(x, &ex_expt);
88         expt += ex_expt;
89
90         /*
91          * Arrange so that scale1 * scale2 == 2**expt.  We use this to
92          * compensate for scalbn being horrendously slow.
93          */
94         half_expt = expt / 2;
95         INSERT_WORDS(scale1, (0x3ff + half_expt) << 20, 0);
96         half_expt = expt - half_expt;
97         INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
98
99         return (cpack(cos(y) * exp_x * scale1 * scale2,
100                 sin(y) * exp_x * scale1 * scale2));
101 }
102 #endif