rename straight alloc to pref alloc to match the name of the paper
authorMatthias Braun <matze@braunis.de>
Fri, 18 Dec 2009 09:14:16 +0000 (09:14 +0000)
committerMatthias Braun <matze@braunis.de>
Fri, 18 Dec 2009 09:14:16 +0000 (09:14 +0000)
[r26802]

ir/be/bemodule.c
ir/be/benewalloc.c [deleted file]
ir/be/beprefalloc.c [new file with mode: 0644]

index 899be19..deba924 100644 (file)
@@ -69,7 +69,7 @@ void be_init_spillbelady2(void);
 void be_init_spillbelady3(void);
 void be_init_ssaconstr(void);
 void be_init_stabs(void);
-void be_init_straight_alloc(void);
+void be_init_pref_alloc(void);
 void be_init_ifg(void);
 void be_init_irgmod(void);
 void be_init_loopana(void);
@@ -128,7 +128,7 @@ void be_init_modules(void)
        be_init_spillbelady3();
        be_init_daemelspill();
        be_init_ssaconstr();
-       be_init_straight_alloc();
+       be_init_pref_alloc();
        be_init_state();
        be_init_ifg();
        be_init_stabs();
diff --git a/ir/be/benewalloc.c b/ir/be/benewalloc.c
deleted file mode 100644 (file)
index 8b8e340..0000000
+++ /dev/null
@@ -1,2051 +0,0 @@
-/*
- * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
- *
- * This file is part of libFirm.
- *
- * This file may be distributed and/or modified under the terms of the
- * GNU General Public License version 2 as published by the Free Software
- * Foundation and appearing in the file LICENSE.GPL included in the
- * packaging of this file.
- *
- * Licensees holding valid libFirm Professional Edition licenses may use
- * this file in accordance with the libFirm Commercial License.
- * Agreement provided with the Software.
- *
- * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
- * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE.
- */
-
-/**
- * @file
- * @brief       New approach to allocation and copy coalescing
- * @author      Matthias Braun
- * @date        14.2.2009
- * @version     $Id$
- *
- * ... WE NEED A NAME FOR THIS ...
- *
- * Only a proof of concept at this moment...
- *
- * The idea is to allocate registers in 2 passes:
- * 1. A first pass to determine "preferred" registers for live-ranges. This
- *    calculates for each register and each live-range a value indicating
- *    the usefulness. (You can roughly think of the value as the negative
- *    costs needed for copies when the value is in the specific registers...)
- *
- * 2. Walk blocks and assigns registers in a greedy fashion. Preferring
- *    registers with high preferences. When register constraints are not met,
- *    add copies and split live-ranges.
- *
- * TODO:
- *  - make use of free registers in the permute_values code
- *  - think about a smarter sequence of visiting the blocks. Sorted by
- *    execfreq might be good, or looptree from inner to outermost loops going
- *    over blocks in a reverse postorder
- *  - propagate preferences through Phis
- */
-#include "config.h"
-
-#include <float.h>
-#include <stdbool.h>
-#include <math.h>
-
-#include "error.h"
-#include "execfreq.h"
-#include "ircons.h"
-#include "irdom.h"
-#include "iredges_t.h"
-#include "irgraph_t.h"
-#include "irgwalk.h"
-#include "irnode_t.h"
-#include "irprintf.h"
-#include "obst.h"
-#include "raw_bitset.h"
-#include "unionfind.h"
-#include "pdeq.h"
-#include "hungarian.h"
-
-#include "beabi.h"
-#include "bechordal_t.h"
-#include "be.h"
-#include "beirg.h"
-#include "belive_t.h"
-#include "bemodule.h"
-#include "benode.h"
-#include "bera.h"
-#include "besched.h"
-#include "bespill.h"
-#include "bespillutil.h"
-#include "beverify.h"
-#include "beutil.h"
-
-#define USE_FACTOR                     1.0f
-#define DEF_FACTOR                     1.0f
-#define NEIGHBOR_FACTOR                0.2f
-#define AFF_SHOULD_BE_SAME             0.5f
-#define AFF_PHI                        1.0f
-#define SPLIT_DELTA                    1.0f
-#define MAX_OPTIMISTIC_SPLIT_RECURSION 0
-
-DEBUG_ONLY(static firm_dbg_module_t *dbg = NULL;)
-
-static struct obstack               obst;
-static be_irg_t                    *birg;
-static ir_graph                    *irg;
-static const arch_register_class_t *cls;
-static const arch_register_req_t   *default_cls_req;
-static be_lv_t                     *lv;
-static const ir_exec_freq          *execfreqs;
-static unsigned                     n_regs;
-static unsigned                    *normal_regs;
-static int                         *congruence_classes;
-static ir_node                    **block_order;
-static int                          n_block_order;
-static int                          create_preferences        = true;
-static int                          create_congruence_classes = true;
-static int                          propagate_phi_registers   = true;
-
-static const lc_opt_table_entry_t options[] = {
-       LC_OPT_ENT_BOOL("prefs", "use preference based coloring", &create_preferences),
-       LC_OPT_ENT_BOOL("congruences", "create congruence classes", &create_congruence_classes),
-       LC_OPT_ENT_BOOL("prop_phi", "propagate phi registers", &propagate_phi_registers),
-       LC_OPT_LAST
-};
-
-/** currently active assignments (while processing a basic block)
- * maps registers to values(their current copies) */
-static ir_node **assignments;
-
-/**
- * allocation information: last_uses, register preferences
- * the information is per firm-node.
- */
-struct allocation_info_t {
-       unsigned  last_uses;      /**< bitset indicating last uses (input pos) */
-       ir_node  *current_value;  /**< copy of the value that should be used */
-       ir_node  *original_value; /**< for copies point to original value */
-       float     prefs[0];       /**< register preferences */
-};
-typedef struct allocation_info_t allocation_info_t;
-
-/** helper datastructure used when sorting register preferences */
-struct reg_pref_t {
-       unsigned num;
-       float    pref;
-};
-typedef struct reg_pref_t reg_pref_t;
-
-/** per basic-block information */
-struct block_info_t {
-       bool     processed;       /**< indicate whether block is processed */
-       ir_node *assignments[0];  /**< register assignments at end of block */
-};
-typedef struct block_info_t block_info_t;
-
-/**
- * Get the allocation info for a node.
- * The info is allocated on the first visit of a node.
- */
-static allocation_info_t *get_allocation_info(ir_node *node)
-{
-       allocation_info_t *info = get_irn_link(node);
-       if (info == NULL) {
-               info = OALLOCFZ(&obst, allocation_info_t, prefs, n_regs);
-               info->current_value  = node;
-               info->original_value = node;
-               set_irn_link(node, info);
-       }
-
-       return info;
-}
-
-static allocation_info_t *try_get_allocation_info(const ir_node *node)
-{
-       return (allocation_info_t*) get_irn_link(node);
-}
-
-/**
- * Get allocation information for a basic block
- */
-static block_info_t *get_block_info(ir_node *block)
-{
-       block_info_t *info = get_irn_link(block);
-
-       assert(is_Block(block));
-       if (info == NULL) {
-               info = OALLOCFZ(&obst, block_info_t, assignments, n_regs);
-               set_irn_link(block, info);
-       }
-
-       return info;
-}
-
-/**
- * Get default register requirement for the current register class
- */
-static const arch_register_req_t *get_default_req_current_cls(void)
-{
-       if (default_cls_req == NULL) {
-               struct obstack      *obst = get_irg_obstack(irg);
-               arch_register_req_t *req  = OALLOCZ(obst, arch_register_req_t);
-
-               req->type = arch_register_req_type_normal;
-               req->cls  = cls;
-
-               default_cls_req = req;
-       }
-       return default_cls_req;
-}
-
-/**
- * Link the allocation info of a node to a copy.
- * Afterwards, both nodes uses the same allocation info.
- * Copy must not have an allocation info assigned yet.
- *
- * @param copy   the node that gets the allocation info assigned
- * @param value  the original node
- */
-static void mark_as_copy_of(ir_node *copy, ir_node *value)
-{
-       ir_node           *original;
-       allocation_info_t *info      = get_allocation_info(value);
-       allocation_info_t *copy_info = get_allocation_info(copy);
-
-       /* find original value */
-       original = info->original_value;
-       if (original != value) {
-               info = get_allocation_info(original);
-       }
-
-       assert(info->original_value == original);
-       info->current_value = copy;
-
-       /* the copy should not be linked to something else yet */
-       assert(copy_info->original_value == copy);
-       copy_info->original_value = original;
-
-       /* copy over allocation preferences */
-       memcpy(copy_info->prefs, info->prefs, n_regs * sizeof(copy_info->prefs[0]));
-}
-
-/**
- * Calculate the penalties for every register on a node and its live neighbors.
- *
- * @param live_nodes  the set of live nodes at the current position, may be NULL
- * @param penalty     the penalty to subtract from
- * @param limited     a raw bitset containing the limited set for the node
- * @param node        the node
- */
-static void give_penalties_for_limits(const ir_nodeset_t *live_nodes,
-                                      float penalty, const unsigned* limited,
-                                      ir_node *node)
-{
-       ir_nodeset_iterator_t iter;
-       unsigned              r;
-       unsigned              n_allowed;
-       allocation_info_t     *info = get_allocation_info(node);
-       ir_node               *neighbor;
-
-       /* give penalty for all forbidden regs */
-       for (r = 0; r < n_regs; ++r) {
-               if (rbitset_is_set(limited, r))
-                       continue;
-
-               info->prefs[r] -= penalty;
-       }
-
-       /* all other live values should get a penalty for allowed regs */
-       if (live_nodes == NULL)
-               return;
-
-       penalty   *= NEIGHBOR_FACTOR;
-       n_allowed  = rbitset_popcnt(limited, n_regs);
-       if (n_allowed > 1) {
-               /* only create a very weak penalty if multiple regs are allowed */
-               penalty = (penalty * 0.8f) / n_allowed;
-       }
-       foreach_ir_nodeset(live_nodes, neighbor, iter) {
-               allocation_info_t *neighbor_info;
-
-               /* TODO: if op is used on multiple inputs we might not do a
-                * continue here */
-               if (neighbor == node)
-                       continue;
-
-               neighbor_info = get_allocation_info(neighbor);
-               for (r = 0; r < n_regs; ++r) {
-                       if (!rbitset_is_set(limited, r))
-                               continue;
-
-                       neighbor_info->prefs[r] -= penalty;
-               }
-       }
-}
-
-/**
- * Calculate the preferences of a definition for the current register class.
- * If the definition uses a limited set of registers, reduce the preferences
- * for the limited register on the node and its neighbors.
- *
- * @param live_nodes  the set of live nodes at the current node
- * @param weight      the weight
- * @param node        the current node
- */
-static void check_defs(const ir_nodeset_t *live_nodes, float weight,
-                       ir_node *node)
-{
-       const arch_register_req_t *req;
-
-       if (get_irn_mode(node) == mode_T) {
-               const ir_edge_t *edge;
-               foreach_out_edge(node, edge) {
-                       ir_node *proj = get_edge_src_irn(edge);
-                       check_defs(live_nodes, weight, proj);
-               }
-               return;
-       }
-
-       if (!arch_irn_consider_in_reg_alloc(cls, node))
-               return;
-
-       req = arch_get_register_req_out(node);
-       if (req->type & arch_register_req_type_limited) {
-               const unsigned *limited = req->limited;
-               float           penalty = weight * DEF_FACTOR;
-               give_penalties_for_limits(live_nodes, penalty, limited, node);
-       }
-
-       if (req->type & arch_register_req_type_should_be_same) {
-               ir_node           *insn  = skip_Proj(node);
-               allocation_info_t *info  = get_allocation_info(node);
-               int                arity = get_irn_arity(insn);
-               int                i;
-
-               float factor = 1.0f / rbitset_popcnt(&req->other_same, arity);
-               for (i = 0; i < arity; ++i) {
-                       ir_node           *op;
-                       unsigned           r;
-                       allocation_info_t *op_info;
-
-                       if (!rbitset_is_set(&req->other_same, i))
-                               continue;
-
-                       op = get_irn_n(insn, i);
-
-                       /* if we the value at the should_be_same input doesn't die at the
-                        * node, then it is no use to propagate the constraints (since a
-                        * copy will emerge anyway) */
-                       if (ir_nodeset_contains(live_nodes, op))
-                               continue;
-
-                       op_info = get_allocation_info(op);
-                       for (r = 0; r < n_regs; ++r) {
-                               op_info->prefs[r] += info->prefs[r] * factor;
-                       }
-               }
-       }
-}
-
-/**
- * Walker: Runs an a block calculates the preferences for any
- * node and every register from the considered register class.
- */
-static void analyze_block(ir_node *block, void *data)
-{
-       float         weight = get_block_execfreq(execfreqs, block);
-       ir_nodeset_t  live_nodes;
-       ir_node      *node;
-       (void) data;
-
-       ir_nodeset_init(&live_nodes);
-       be_liveness_end_of_block(lv, cls, block, &live_nodes);
-
-       sched_foreach_reverse(block, node) {
-               allocation_info_t *info;
-               int                i;
-               int                arity;
-
-               if (is_Phi(node))
-                       break;
-
-               if (create_preferences)
-                       check_defs(&live_nodes, weight, node);
-
-               /* mark last uses */
-               arity = get_irn_arity(node);
-
-               /* the allocation info node currently only uses 1 unsigned value
-                  to mark last used inputs. So we will fail for a node with more than
-                  32 inputs. */
-               if (arity >= (int) sizeof(unsigned) * 8) {
-                       panic("Node with more than %d inputs not supported yet",
-                                       (int) sizeof(unsigned) * 8);
-               }
-
-               info = get_allocation_info(node);
-               for (i = 0; i < arity; ++i) {
-                       ir_node *op = get_irn_n(node, i);
-                       if (!arch_irn_consider_in_reg_alloc(cls, op))
-                               continue;
-
-                       /* last usage of a value? */
-                       if (!ir_nodeset_contains(&live_nodes, op)) {
-                               rbitset_set(&info->last_uses, i);
-                       }
-               }
-
-               be_liveness_transfer(cls, node, &live_nodes);
-
-               if (create_preferences) {
-                       /* update weights based on usage constraints */
-                       for (i = 0; i < arity; ++i) {
-                               const arch_register_req_t *req;
-                               const unsigned            *limited;
-                               ir_node                   *op = get_irn_n(node, i);
-
-                               if (!arch_irn_consider_in_reg_alloc(cls, op))
-                                       continue;
-
-                               req = arch_get_register_req(node, i);
-                               if (!(req->type & arch_register_req_type_limited))
-                                       continue;
-
-                               limited = req->limited;
-                               give_penalties_for_limits(&live_nodes, weight * USE_FACTOR, limited,
-                                                                                 op);
-                       }
-               }
-       }
-
-       ir_nodeset_destroy(&live_nodes);
-}
-
-static void congruence_def(ir_nodeset_t *live_nodes, ir_node *node)
-{
-       const arch_register_req_t *req;
-
-       if (get_irn_mode(node) == mode_T) {
-               const ir_edge_t *edge;
-               foreach_out_edge(node, edge) {
-                       ir_node *def = get_edge_src_irn(edge);
-                       congruence_def(live_nodes, def);
-               }
-               return;
-       }
-
-       if (!arch_irn_consider_in_reg_alloc(cls, node))
-               return;
-
-       /* should be same constraint? */
-       req = arch_get_register_req_out(node);
-       if (req->type & arch_register_req_type_should_be_same) {
-               ir_node *insn  = skip_Proj(node);
-               int      arity = get_irn_arity(insn);
-               int      i;
-               unsigned node_idx = get_irn_idx(node);
-               node_idx          = uf_find(congruence_classes, node_idx);
-
-               for (i = 0; i < arity; ++i) {
-                       ir_node               *live;
-                       ir_node               *op;
-                       int                    op_idx;
-                       ir_nodeset_iterator_t  iter;
-                       bool                   interferes = false;
-
-                       if (!rbitset_is_set(&req->other_same, i))
-                               continue;
-
-                       op     = get_irn_n(insn, i);
-                       op_idx = get_irn_idx(op);
-                       op_idx = uf_find(congruence_classes, op_idx);
-
-                       /* do we interfere with the value */
-                       foreach_ir_nodeset(live_nodes, live, iter) {
-                               int lv_idx = get_irn_idx(live);
-                               lv_idx     = uf_find(congruence_classes, lv_idx);
-                               if (lv_idx == op_idx) {
-                                       interferes = true;
-                                       break;
-                               }
-                       }
-                       /* don't put in same affinity class if we interfere */
-                       if (interferes)
-                               continue;
-
-                       node_idx = uf_union(congruence_classes, node_idx, op_idx);
-                       DB((dbg, LEVEL_3, "Merge %+F and %+F congruence classes\n",
-                           node, op));
-                       /* one should_be_same is enough... */
-                       break;
-               }
-       }
-}
-
-static void create_congruence_class(ir_node *block, void *data)
-{
-       ir_nodeset_t  live_nodes;
-       ir_node      *node;
-
-       (void) data;
-       ir_nodeset_init(&live_nodes);
-       be_liveness_end_of_block(lv, cls, block, &live_nodes);
-
-       /* check should be same constraints */
-       sched_foreach_reverse(block, node) {
-               if (is_Phi(node))
-                       break;
-
-               congruence_def(&live_nodes, node);
-               be_liveness_transfer(cls, node, &live_nodes);
-       }
-
-       /* check phi congruence classes */
-       sched_foreach_reverse_from(node, node) {
-               int i;
-               int arity;
-               int node_idx;
-               assert(is_Phi(node));
-
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-
-               node_idx = get_irn_idx(node);
-               node_idx = uf_find(congruence_classes, node_idx);
-
-               arity = get_irn_arity(node);
-               for (i = 0; i < arity; ++i) {
-                       bool                  interferes = false;
-                       ir_nodeset_iterator_t iter;
-                       unsigned              r;
-                       int                   old_node_idx;
-                       ir_node              *live;
-                       ir_node              *phi;
-                       allocation_info_t    *head_info;
-                       allocation_info_t    *other_info;
-                       ir_node              *op     = get_Phi_pred(node, i);
-                       int                   op_idx = get_irn_idx(op);
-                       op_idx = uf_find(congruence_classes, op_idx);
-
-                       /* do we interfere with the value */
-                       foreach_ir_nodeset(&live_nodes, live, iter) {
-                               int lv_idx = get_irn_idx(live);
-                               lv_idx     = uf_find(congruence_classes, lv_idx);
-                               if (lv_idx == op_idx) {
-                                       interferes = true;
-                                       break;
-                               }
-                       }
-                       /* don't put in same affinity class if we interfere */
-                       if (interferes)
-                               continue;
-                       /* any other phi has the same input? */
-                       sched_foreach(block, phi) {
-                               ir_node *oop;
-                               int      oop_idx;
-                               if (!is_Phi(phi))
-                                       break;
-                               if (!arch_irn_consider_in_reg_alloc(cls, phi))
-                                       continue;
-                               oop = get_Phi_pred(phi, i);
-                               if (oop == op)
-                                       continue;
-                               oop_idx = get_irn_idx(oop);
-                               oop_idx = uf_find(congruence_classes, oop_idx);
-                               if (oop_idx == op_idx) {
-                                       interferes = true;
-                                       break;
-                               }
-                       }
-                       if (interferes)
-                               continue;
-
-                       /* merge the 2 congruence classes and sum up their preferences */
-                       old_node_idx = node_idx;
-                       node_idx = uf_union(congruence_classes, node_idx, op_idx);
-                       DB((dbg, LEVEL_3, "Merge %+F and %+F congruence classes\n",
-                           node, op));
-
-                       old_node_idx = node_idx == old_node_idx ? op_idx : old_node_idx;
-                       head_info  = get_allocation_info(get_idx_irn(irg, node_idx));
-                       other_info = get_allocation_info(get_idx_irn(irg, old_node_idx));
-                       for (r = 0; r < n_regs; ++r) {
-                               head_info->prefs[r] += other_info->prefs[r];
-                       }
-               }
-       }
-}
-
-static void set_congruence_prefs(ir_node *node, void *data)
-{
-       allocation_info_t *info;
-       allocation_info_t *head_info;
-       unsigned node_idx = get_irn_idx(node);
-       unsigned node_set = uf_find(congruence_classes, node_idx);
-
-       (void) data;
-
-       /* head of congruence class or not in any class */
-       if (node_set == node_idx)
-               return;
-
-       if (!arch_irn_consider_in_reg_alloc(cls, node))
-               return;
-
-       head_info = get_allocation_info(get_idx_irn(irg, node_set));
-       info      = get_allocation_info(node);
-
-       memcpy(info->prefs, head_info->prefs, n_regs * sizeof(info->prefs[0]));
-}
-
-static void combine_congruence_classes(void)
-{
-       size_t n = get_irg_last_idx(irg);
-       congruence_classes = XMALLOCN(int, n);
-       uf_init(congruence_classes, n);
-
-       /* create congruence classes */
-       irg_block_walk_graph(irg, create_congruence_class, NULL, NULL);
-       /* merge preferences */
-       irg_walk_graph(irg, set_congruence_prefs, NULL, NULL);
-       free(congruence_classes);
-}
-
-
-
-
-
-/**
- * Assign register reg to the given node.
- *
- * @param node  the node
- * @param reg   the register
- */
-static void use_reg(ir_node *node, const arch_register_t *reg)
-{
-       unsigned r = arch_register_get_index(reg);
-       assignments[r] = node;
-       arch_set_irn_register(node, reg);
-}
-
-static void free_reg_of_value(ir_node *node)
-{
-       const arch_register_t *reg;
-       unsigned               r;
-
-       if (!arch_irn_consider_in_reg_alloc(cls, node))
-               return;
-
-       reg        = arch_get_irn_register(node);
-       r          = arch_register_get_index(reg);
-       /* assignment->value may be NULL if a value is used at 2 inputs
-          so it gets freed twice. */
-       assert(assignments[r] == node || assignments[r] == NULL);
-       assignments[r] = NULL;
-}
-
-/**
- * Compare two register preferences in decreasing order.
- */
-static int compare_reg_pref(const void *e1, const void *e2)
-{
-       const reg_pref_t *rp1 = (const reg_pref_t*) e1;
-       const reg_pref_t *rp2 = (const reg_pref_t*) e2;
-       if (rp1->pref < rp2->pref)
-               return 1;
-       if (rp1->pref > rp2->pref)
-               return -1;
-       return 0;
-}
-
-static void fill_sort_candidates(reg_pref_t *regprefs,
-                                 const allocation_info_t *info)
-{
-       unsigned r;
-
-       for (r = 0; r < n_regs; ++r) {
-               float pref = info->prefs[r];
-               regprefs[r].num  = r;
-               regprefs[r].pref = pref;
-       }
-       /* TODO: use a stable sort here to avoid unnecessary register jumping */
-       qsort(regprefs, n_regs, sizeof(regprefs[0]), compare_reg_pref);
-}
-
-static bool try_optimistic_split(ir_node *to_split, ir_node *before,
-                                 float pref, float pref_delta,
-                                 unsigned *forbidden_regs, int recursion)
-{
-       const arch_register_t *from_reg;
-       const arch_register_t *reg;
-       ir_node               *original_insn;
-       ir_node               *block;
-       ir_node               *copy;
-       unsigned               r;
-       unsigned               from_r;
-       unsigned               i;
-       allocation_info_t     *info = get_allocation_info(to_split);
-       reg_pref_t            *prefs;
-       float                  delta;
-       float                  split_threshold;
-
-       (void) pref;
-
-       /* stupid hack: don't optimisticallt split don't spill nodes...
-        * (so we don't split away the values produced because of
-        *  must_be_different constraints) */
-       original_insn = skip_Proj(info->original_value);
-       if (arch_irn_get_flags(original_insn) & arch_irn_flags_dont_spill)
-               return false;
-
-       from_reg        = arch_get_irn_register(to_split);
-       from_r          = arch_register_get_index(from_reg);
-       block           = get_nodes_block(before);
-       split_threshold = get_block_execfreq(execfreqs, block) * SPLIT_DELTA;
-
-       if (pref_delta < split_threshold*0.5)
-               return false;
-
-       /* find the best free position where we could move to */
-       prefs = ALLOCAN(reg_pref_t, n_regs);
-       fill_sort_candidates(prefs, info);
-       for (i = 0; i < n_regs; ++i) {
-               float apref;
-               float apref_delta;
-               bool  res;
-               bool  old_source_state;
-
-               /* we need a normal register which is not an output register
-                  an different from the current register of to_split */
-               r = prefs[i].num;
-               if (!rbitset_is_set(normal_regs, r))
-                       continue;
-               if (rbitset_is_set(forbidden_regs, r))
-                       continue;
-               if (r == from_r)
-                       continue;
-
-               /* is the split worth it? */
-               delta = pref_delta + prefs[i].pref;
-               if (delta < split_threshold) {
-                       DB((dbg, LEVEL_3, "Not doing optimistical split of %+F (depth %d), win %f too low\n",
-                               to_split, recursion, delta));
-                       return false;
-               }
-
-               /* if the register is free then we can do the split */
-               if (assignments[r] == NULL)
-                       break;
-
-               /* otherwise we might try recursively calling optimistic_split */
-               if (recursion+1 > MAX_OPTIMISTIC_SPLIT_RECURSION)
-                       continue;
-
-               apref        = prefs[i].pref;
-               apref_delta  = i+1 < n_regs ? apref - prefs[i+1].pref : 0;
-               apref_delta += pref_delta - split_threshold;
-
-               /* our source register isn't a usefull destination for recursive
-                  splits */
-               old_source_state = rbitset_is_set(forbidden_regs, from_r);
-               rbitset_set(forbidden_regs, from_r);
-               /* try recursive split */
-               res = try_optimistic_split(assignments[r], before, apref,
-                                          apref_delta, forbidden_regs, recursion+1);
-               /* restore our destination */
-               if (old_source_state) {
-                       rbitset_set(forbidden_regs, from_r);
-               } else {
-                       rbitset_clear(forbidden_regs, from_r);
-               }
-
-               if (res)
-                       break;
-       }
-       if (i >= n_regs)
-               return false;
-
-       reg  = arch_register_for_index(cls, r);
-       copy = be_new_Copy(cls, block, to_split);
-       mark_as_copy_of(copy, to_split);
-       /* hacky, but correct here */
-       if (assignments[arch_register_get_index(from_reg)] == to_split)
-               free_reg_of_value(to_split);
-       use_reg(copy, reg);
-       sched_add_before(before, copy);
-
-       DB((dbg, LEVEL_3,
-           "Optimistic live-range split %+F move %+F(%s) -> %s before %+F (win %f, depth %d)\n",
-           copy, to_split, from_reg->name, reg->name, before, delta, recursion));
-       return true;
-}
-
-/**
- * Determine and assign a register for node @p node
- */
-static void assign_reg(const ir_node *block, ir_node *node,
-                       unsigned *forbidden_regs)
-{
-       const arch_register_t     *reg;
-       allocation_info_t         *info;
-       const arch_register_req_t *req;
-       reg_pref_t                *reg_prefs;
-       ir_node                   *in_node;
-       unsigned                   i;
-       const unsigned            *allowed_regs;
-       unsigned                   r;
-
-       assert(!is_Phi(node));
-       assert(arch_irn_consider_in_reg_alloc(cls, node));
-
-       /* preassigned register? */
-       reg = arch_get_irn_register(node);
-       if (reg != NULL) {
-               DB((dbg, LEVEL_2, "Preassignment %+F -> %s\n", node, reg->name));
-               use_reg(node, reg);
-               return;
-       }
-
-       /* give should_be_same boni */
-       info = get_allocation_info(node);
-       req  = arch_get_register_req_out(node);
-
-       in_node = skip_Proj(node);
-       if (req->type & arch_register_req_type_should_be_same) {
-               float weight = get_block_execfreq(execfreqs, block);
-               int   arity  = get_irn_arity(in_node);
-               int   i;
-
-               assert(arity <= (int) sizeof(req->other_same) * 8);
-               for (i = 0; i < arity; ++i) {
-                       ir_node               *in;
-                       const arch_register_t *reg;
-                       unsigned               r;
-                       if (!rbitset_is_set(&req->other_same, i))
-                               continue;
-
-                       in  = get_irn_n(in_node, i);
-                       reg = arch_get_irn_register(in);
-                       assert(reg != NULL);
-                       r = arch_register_get_index(reg);
-
-                       /* if the value didn't die here then we should not propagate the
-                        * should_be_same info */
-                       if (assignments[r] == in)
-                               continue;
-
-                       info->prefs[r] += weight * AFF_SHOULD_BE_SAME;
-               }
-       }
-
-       /* create list of register candidates and sort by their preference */
-       DB((dbg, LEVEL_2, "Candidates for %+F:", node));
-       reg_prefs = alloca(n_regs * sizeof(reg_prefs[0]));
-       fill_sort_candidates(reg_prefs, info);
-       for (i = 0; i < n_regs; ++i) {
-               unsigned num = reg_prefs[i].num;
-               const arch_register_t *reg;
-
-               if (!rbitset_is_set(normal_regs, num))
-                       continue;
-
-               reg = arch_register_for_index(cls, num);
-               DB((dbg, LEVEL_2, " %s(%f)", reg->name, reg_prefs[i].pref));
-       }
-       DB((dbg, LEVEL_2, "\n"));
-
-       allowed_regs = normal_regs;
-       if (req->type & arch_register_req_type_limited) {
-               allowed_regs = req->limited;
-       }
-
-       for (i = 0; i < n_regs; ++i) {
-               float   pref, delta;
-               ir_node *before;
-               bool    res;
-
-               r = reg_prefs[i].num;
-               if (!rbitset_is_set(allowed_regs, r))
-                       continue;
-               if (assignments[r] == NULL)
-                       break;
-               pref   = reg_prefs[i].pref;
-               delta  = i+1 < n_regs ? pref - reg_prefs[i+1].pref : 0;
-               before = skip_Proj(node);
-               res    = try_optimistic_split(assignments[r], before,
-                                             pref, delta, forbidden_regs, 0);
-               if (res)
-                       break;
-       }
-       if (i >= n_regs) {
-               panic("No register left for %+F\n", node);
-       }
-
-       reg = arch_register_for_index(cls, r);
-       DB((dbg, LEVEL_2, "Assign %+F -> %s\n", node, reg->name));
-       use_reg(node, reg);
-}
-
-/**
- * Add an permutation in front of a node and change the assignments
- * due to this permutation.
- *
- * To understand this imagine a permutation like this:
- *
- * 1 -> 2
- * 2 -> 3
- * 3 -> 1, 5
- * 4 -> 6
- * 5
- * 6
- * 7 -> 7
- *
- * First we count how many destinations a single value has. At the same time
- * we can be sure that each destination register has at most 1 source register
- * (it can have 0 which means we don't care what value is in it).
- * We ignore all fullfilled permuations (like 7->7)
- * In a first pass we create as much copy instructions as possible as they
- * are generally cheaper than exchanges. We do this by counting into how many
- * destinations a register has to be copied (in the example it's 2 for register
- * 3, or 1 for the registers 1,2,4 and 7).
- * We can then create a copy into every destination register when the usecount
- * of that register is 0 (= noone else needs the value in the register).
- *
- * After this step we should have cycles left. We implement a cyclic permutation
- * of n registers with n-1 transpositions.
- *
- * @param live_nodes   the set of live nodes, updated due to live range split
- * @param before       the node before we add the permutation
- * @param permutation  the permutation array indices are the destination
- *                     registers, the values in the array are the source
- *                     registers.
- */
-static void permute_values(ir_nodeset_t *live_nodes, ir_node *before,
-                             unsigned *permutation)
-{
-       unsigned  *n_used = ALLOCANZ(unsigned, n_regs);
-       ir_node   *block;
-       unsigned   r;
-
-       /* determine how often each source register needs to be read */
-       for (r = 0; r < n_regs; ++r) {
-               unsigned  old_reg = permutation[r];
-               ir_node  *value;
-
-               value = assignments[old_reg];
-               if (value == NULL) {
-                       /* nothing to do here, reg is not live. Mark it as fixpoint
-                        * so we ignore it in the next steps */
-                       permutation[r] = r;
-                       continue;
-               }
-
-               ++n_used[old_reg];
-       }
-
-       block = get_nodes_block(before);
-
-       /* step1: create copies where immediately possible */
-       for (r = 0; r < n_regs; /* empty */) {
-               ir_node *copy;
-               ir_node *src;
-               const arch_register_t *reg;
-               unsigned               old_r = permutation[r];
-
-               /* - no need to do anything for fixed points.
-                  - we can't copy if the value in the dest reg is still needed */
-               if (old_r == r || n_used[r] > 0) {
-                       ++r;
-                       continue;
-               }
-
-               /* create a copy */
-               src  = assignments[old_r];
-               copy = be_new_Copy(cls, block, src);
-               sched_add_before(before, copy);
-               reg = arch_register_for_index(cls, r);
-               DB((dbg, LEVEL_2, "Copy %+F (from %+F, before %+F) -> %s\n",
-                   copy, src, before, reg->name));
-               mark_as_copy_of(copy, src);
-               use_reg(copy, reg);
-
-               if (live_nodes != NULL) {
-                       ir_nodeset_insert(live_nodes, copy);
-               }
-
-               /* old register has 1 user less, permutation is resolved */
-               assert(arch_register_get_index(arch_get_irn_register(src)) == old_r);
-               permutation[r] = r;
-
-               assert(n_used[old_r] > 0);
-               --n_used[old_r];
-               if (n_used[old_r] == 0) {
-                       if (live_nodes != NULL) {
-                               ir_nodeset_remove(live_nodes, src);
-                       }
-                       free_reg_of_value(src);
-               }
-
-               /* advance or jump back (if this copy enabled another copy) */
-               if (old_r < r && n_used[old_r] == 0) {
-                       r = old_r;
-               } else {
-                       ++r;
-               }
-       }
-
-       /* at this point we only have "cycles" left which we have to resolve with
-        * perm instructions
-        * TODO: if we have free registers left, then we should really use copy
-        * instructions for any cycle longer than 2 registers...
-        * (this is probably architecture dependent, there might be archs where
-        *  copies are preferable even for 2-cycles) */
-
-       /* create perms with the rest */
-       for (r = 0; r < n_regs; /* empty */) {
-               const arch_register_t *reg;
-               unsigned  old_r = permutation[r];
-               unsigned  r2;
-               ir_node  *in[2];
-               ir_node  *perm;
-               ir_node  *proj0;
-               ir_node  *proj1;
-
-               if (old_r == r) {
-                       ++r;
-                       continue;
-               }
-
-               /* we shouldn't have copies from 1 value to multiple destinations left*/
-               assert(n_used[old_r] == 1);
-
-               /* exchange old_r and r2; after that old_r is a fixed point */
-               r2 = permutation[old_r];
-
-               in[0] = assignments[r2];
-               in[1] = assignments[old_r];
-               perm = be_new_Perm(cls, block, 2, in);
-               sched_add_before(before, perm);
-               DB((dbg, LEVEL_2, "Perm %+F (perm %+F,%+F, before %+F)\n",
-                   perm, in[0], in[1], before));
-
-               proj0 = new_r_Proj(block, perm, get_irn_mode(in[0]), 0);
-               mark_as_copy_of(proj0, in[0]);
-               reg = arch_register_for_index(cls, old_r);
-               use_reg(proj0, reg);
-
-               proj1 = new_r_Proj(block, perm, get_irn_mode(in[1]), 1);
-               mark_as_copy_of(proj1, in[1]);
-               reg = arch_register_for_index(cls, r2);
-               use_reg(proj1, reg);
-
-               /* 1 value is now in the correct register */
-               permutation[old_r] = old_r;
-               /* the source of r changed to r2 */
-               permutation[r] = r2;
-
-               /* if we have reached a fixpoint update data structures */
-               if (live_nodes != NULL) {
-                       ir_nodeset_remove(live_nodes, in[0]);
-                       ir_nodeset_remove(live_nodes, in[1]);
-                       ir_nodeset_remove(live_nodes, proj0);
-                       ir_nodeset_insert(live_nodes, proj1);
-               }
-       }
-
-#ifdef DEBUG_libfirm
-       /* now we should only have fixpoints left */
-       for (r = 0; r < n_regs; ++r) {
-               assert(permutation[r] == r);
-       }
-#endif
-}
-
-/**
- * Free regs for values last used.
- *
- * @param live_nodes   set of live nodes, will be updated
- * @param node         the node to consider
- */
-static void free_last_uses(ir_nodeset_t *live_nodes, ir_node *node)
-{
-       allocation_info_t     *info      = get_allocation_info(node);
-       const unsigned        *last_uses = &info->last_uses;
-       int                    arity     = get_irn_arity(node);
-       int                    i;
-
-       for (i = 0; i < arity; ++i) {
-               ir_node *op;
-
-               /* check if one operand is the last use */
-               if (!rbitset_is_set(last_uses, i))
-                       continue;
-
-               op = get_irn_n(node, i);
-               free_reg_of_value(op);
-               ir_nodeset_remove(live_nodes, op);
-       }
-}
-
-/**
- * change inputs of a node to the current value (copies/perms)
- */
-static void rewire_inputs(ir_node *node)
-{
-       int i;
-       int arity = get_irn_arity(node);
-
-       for (i = 0; i < arity; ++i) {
-               ir_node           *op = get_irn_n(node, i);
-               allocation_info_t *info = try_get_allocation_info(op);
-
-               if (info == NULL)
-                       continue;
-
-               info = get_allocation_info(info->original_value);
-               if (info->current_value != op) {
-                       set_irn_n(node, i, info->current_value);
-               }
-       }
-}
-
-/**
- * Create a bitset of registers occupied with value living through an
- * instruction
- */
-static void determine_live_through_regs(unsigned *bitset, ir_node *node)
-{
-       const allocation_info_t *info = get_allocation_info(node);
-       unsigned r;
-       int i;
-       int arity;
-
-       /* mark all used registers as potentially live-through */
-       for (r = 0; r < n_regs; ++r) {
-               if (assignments[r] == NULL)
-                       continue;
-               if (!rbitset_is_set(normal_regs, r))
-                       continue;
-
-               rbitset_set(bitset, r);
-       }
-
-       /* remove registers of value dying at the instruction */
-       arity = get_irn_arity(node);
-       for (i = 0; i < arity; ++i) {
-               ir_node               *op;
-               const arch_register_t *reg;
-
-               if (!rbitset_is_set(&info->last_uses, i))
-                       continue;
-
-               op  = get_irn_n(node, i);
-               reg = arch_get_irn_register(op);
-               rbitset_clear(bitset, arch_register_get_index(reg));
-       }
-}
-
-/**
- * Enforce constraints at a node by live range splits.
- *
- * @param  live_nodes  the set of live nodes, might be changed
- * @param  node        the current node
- */
-static void enforce_constraints(ir_nodeset_t *live_nodes, ir_node *node,
-                                unsigned *forbidden_regs)
-{
-       int arity = get_irn_arity(node);
-       int i, res;
-       hungarian_problem_t *bp;
-       unsigned l, r;
-       unsigned *assignment;
-
-       /* construct a list of register occupied by live-through values */
-       unsigned *live_through_regs = NULL;
-
-       /* see if any use constraints are not met */
-       bool good = true;
-       for (i = 0; i < arity; ++i) {
-               ir_node                   *op = get_irn_n(node, i);
-               const arch_register_t     *reg;
-               const arch_register_req_t *req;
-               const unsigned            *limited;
-               unsigned                  r;
-
-               if (!arch_irn_consider_in_reg_alloc(cls, op))
-                       continue;
-
-               /* are there any limitations for the i'th operand? */
-               req = arch_get_register_req(node, i);
-               if (!(req->type & arch_register_req_type_limited))
-                       continue;
-
-               limited = req->limited;
-               reg     = arch_get_irn_register(op);
-               r       = arch_register_get_index(reg);
-               if (!rbitset_is_set(limited, r)) {
-                       /* found an assignment outside the limited set */
-                       good = false;
-                       break;
-               }
-       }
-
-       /* is any of the live-throughs using a constrained output register? */
-       if (get_irn_mode(node) == mode_T) {
-               const ir_edge_t *edge;
-
-               foreach_out_edge(node, edge) {
-                       ir_node *proj = get_edge_src_irn(edge);
-                       const arch_register_req_t *req;
-
-                       if (!arch_irn_consider_in_reg_alloc(cls, proj))
-                               continue;
-
-                       req = arch_get_register_req_out(proj);
-                       if (!(req->type & arch_register_req_type_limited))
-                               continue;
-
-                       if (live_through_regs == NULL) {
-                               rbitset_alloca(live_through_regs, n_regs);
-                               determine_live_through_regs(live_through_regs, node);
-                       }
-
-                       rbitset_or(forbidden_regs, req->limited, n_regs);
-                       if (rbitsets_have_common(req->limited, live_through_regs, n_regs)) {
-                               good = false;
-                       }
-               }
-       } else {
-               if (arch_irn_consider_in_reg_alloc(cls, node)) {
-                       const arch_register_req_t *req = arch_get_register_req_out(node);
-                       if (req->type & arch_register_req_type_limited) {
-                               rbitset_alloca(live_through_regs, n_regs);
-                               determine_live_through_regs(live_through_regs, node);
-                               if (rbitsets_have_common(req->limited, live_through_regs, n_regs)) {
-                                       good = false;
-                                       rbitset_or(forbidden_regs, req->limited, n_regs);
-                               }
-                       }
-               }
-       }
-
-       if (good)
-               return;
-
-       /* create these arrays if we haven't yet */
-       if (live_through_regs == NULL) {
-               rbitset_alloca(live_through_regs, n_regs);
-       }
-
-       /* at this point we have to construct a bipartite matching problem to see
-        * which values should go to which registers
-        * Note: We're building the matrix in "reverse" - source registers are
-        *       right, destinations left because this will produce the solution
-        *       in the format required for permute_values.
-        */
-       bp = hungarian_new(n_regs, n_regs, HUNGARIAN_MATCH_PERFECT);
-
-       /* add all combinations, then remove not allowed ones */
-       for (l = 0; l < n_regs; ++l) {
-               if (!rbitset_is_set(normal_regs, l)) {
-                       hungarian_add(bp, l, l, 1);
-                       continue;
-               }
-
-               for (r = 0; r < n_regs; ++r) {
-                       if (!rbitset_is_set(normal_regs, r))
-                               continue;
-                       /* livethrough values may not use constrainted output registers */
-                       if (rbitset_is_set(live_through_regs, l)
-                                       && rbitset_is_set(forbidden_regs, r))
-                               continue;
-
-                       hungarian_add(bp, r, l, l == r ? 9 : 8);
-               }
-       }
-
-       for (i = 0; i < arity; ++i) {
-               ir_node                   *op = get_irn_n(node, i);
-               const arch_register_t     *reg;
-               const arch_register_req_t *req;
-               const unsigned            *limited;
-               unsigned                   current_reg;
-
-               if (!arch_irn_consider_in_reg_alloc(cls, op))
-                       continue;
-
-               req = arch_get_register_req(node, i);
-               if (!(req->type & arch_register_req_type_limited))
-                       continue;
-
-               limited     = req->limited;
-               reg         = arch_get_irn_register(op);
-               current_reg = arch_register_get_index(reg);
-               for (r = 0; r < n_regs; ++r) {
-                       if (rbitset_is_set(limited, r))
-                               continue;
-                       hungarian_remv(bp, r, current_reg);
-               }
-       }
-
-       //hungarian_print_cost_matrix(bp, 1);
-       hungarian_prepare_cost_matrix(bp, HUNGARIAN_MODE_MAXIMIZE_UTIL);
-
-       assignment = ALLOCAN(unsigned, n_regs);
-       res = hungarian_solve(bp, (int*) assignment, NULL, 0);
-       assert(res == 0);
-
-#if 0
-       fprintf(stderr, "Swap result:");
-       for (i = 0; i < (int) n_regs; ++i) {
-               fprintf(stderr, " %d", assignment[i]);
-       }
-       fprintf(stderr, "\n");
-#endif
-
-       hungarian_free(bp);
-
-       permute_values(live_nodes, node, assignment);
-}
-
-/** test wether a node @p n is a copy of the value of node @p of */
-static bool is_copy_of(ir_node *value, ir_node *test_value)
-{
-       allocation_info_t *test_info;
-       allocation_info_t *info;
-
-       if (value == test_value)
-               return true;
-
-       info      = get_allocation_info(value);
-       test_info = get_allocation_info(test_value);
-       return test_info->original_value == info->original_value;
-}
-
-/**
- * find a value in the end-assignment of a basic block
- * @returns the index into the assignment array if found
- *          -1 if not found
- */
-static int find_value_in_block_info(block_info_t *info, ir_node *value)
-{
-       unsigned   r;
-       ir_node  **assignments = info->assignments;
-       for (r = 0; r < n_regs; ++r) {
-               ir_node *a_value = assignments[r];
-
-               if (a_value == NULL)
-                       continue;
-               if (is_copy_of(a_value, value))
-                       return (int) r;
-       }
-
-       return -1;
-}
-
-/**
- * Create the necessary permutations at the end of a basic block to fullfill
- * the register assignment for phi-nodes in the next block
- */
-static void add_phi_permutations(ir_node *block, int p)
-{
-       unsigned   r;
-       unsigned  *permutation;
-       ir_node  **old_assignments;
-       bool       need_permutation;
-       ir_node   *node;
-       ir_node   *pred = get_Block_cfgpred_block(block, p);
-
-       block_info_t *pred_info = get_block_info(pred);
-
-       /* predecessor not processed yet? nothing to do */
-       if (!pred_info->processed)
-               return;
-
-       permutation = ALLOCAN(unsigned, n_regs);
-       for (r = 0; r < n_regs; ++r) {
-               permutation[r] = r;
-       }
-
-       /* check phi nodes */
-       need_permutation = false;
-       node = sched_first(block);
-       for ( ; is_Phi(node); node = sched_next(node)) {
-               const arch_register_t *reg;
-               int                    regn;
-               int                    a;
-               ir_node               *op;
-
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-
-               op = get_Phi_pred(node, p);
-               if (!arch_irn_consider_in_reg_alloc(cls, op))
-                       continue;
-
-               a = find_value_in_block_info(pred_info, op);
-               assert(a >= 0);
-
-               reg  = arch_get_irn_register(node);
-               regn = arch_register_get_index(reg);
-               if (regn != a) {
-                       permutation[regn] = a;
-                       need_permutation  = true;
-               }
-       }
-
-       if (need_permutation) {
-               /* permute values at end of predecessor */
-               old_assignments = assignments;
-               assignments     = pred_info->assignments;
-               permute_values(NULL, be_get_end_of_block_insertion_point(pred),
-                                                permutation);
-               assignments = old_assignments;
-       }
-
-       /* change phi nodes to use the copied values */
-       node = sched_first(block);
-       for ( ; is_Phi(node); node = sched_next(node)) {
-               int      a;
-               ir_node *op;
-
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-
-               op = get_Phi_pred(node, p);
-               /* no need to do anything for Unknown inputs */
-               if (!arch_irn_consider_in_reg_alloc(cls, op))
-                       continue;
-
-               /* we have permuted all values into the correct registers so we can
-                  simply query which value occupies the phis register in the
-                  predecessor */
-               a  = arch_register_get_index(arch_get_irn_register(node));
-               op = pred_info->assignments[a];
-               set_Phi_pred(node, p, op);
-       }
-}
-
-/**
- * Set preferences for a phis register based on the registers used on the
- * phi inputs.
- */
-static void adapt_phi_prefs(ir_node *phi)
-{
-       int i;
-       int arity = get_irn_arity(phi);
-       ir_node           *block = get_nodes_block(phi);
-       allocation_info_t *info  = get_allocation_info(phi);
-
-       for (i = 0; i < arity; ++i) {
-               ir_node               *op  = get_irn_n(phi, i);
-               const arch_register_t *reg = arch_get_irn_register(op);
-               ir_node               *pred_block;
-               block_info_t          *pred_block_info;
-               float                  weight;
-               unsigned               r;
-
-               if (reg == NULL)
-                       continue;
-               /* we only give the bonus if the predecessor already has registers
-                * assigned, otherwise we only see a dummy value
-                * and any conclusions about its register are useless */
-               pred_block = get_Block_cfgpred_block(block, i);
-               pred_block_info = get_block_info(pred_block);
-               if (!pred_block_info->processed)
-                       continue;
-
-               /* give bonus for already assigned register */
-               weight = get_block_execfreq(execfreqs, pred_block);
-               r      = arch_register_get_index(reg);
-               info->prefs[r] += weight * AFF_PHI;
-       }
-}
-
-/**
- * After a phi has been assigned a register propagate preference inputs
- * to the phi inputs.
- */
-static void propagate_phi_register(ir_node *phi, unsigned assigned_r)
-{
-       int      i;
-       ir_node *block = get_nodes_block(phi);
-       int      arity = get_irn_arity(phi);
-
-       for (i = 0; i < arity; ++i) {
-               ir_node           *op         = get_Phi_pred(phi, i);
-               allocation_info_t *info       = get_allocation_info(op);
-               ir_node           *pred_block = get_Block_cfgpred_block(block, i);
-               unsigned           r;
-               float              weight
-                       = get_block_execfreq(execfreqs, pred_block) * AFF_PHI;
-
-               if (info->prefs[assigned_r] >= weight)
-                       continue;
-
-               /* promote the prefered register */
-               for (r = 0; r < n_regs; ++r) {
-                       if (info->prefs[r] > -weight) {
-                               info->prefs[r] = -weight;
-                       }
-               }
-               info->prefs[assigned_r] = weight;
-
-               if (is_Phi(op))
-                       propagate_phi_register(op, assigned_r);
-       }
-}
-
-static void assign_phi_registers(ir_node *block)
-{
-       int                  n_phis = 0;
-       int                  n;
-       int                  res;
-       int                 *assignment;
-       ir_node             *node;
-       hungarian_problem_t *bp;
-
-       /* count phi nodes */
-       sched_foreach(block, node) {
-               if (!is_Phi(node))
-                       break;
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-               ++n_phis;
-       }
-
-       if (n_phis == 0)
-               return;
-
-       /* build a bipartite matching problem for all phi nodes */
-       bp = hungarian_new(n_phis, n_regs, HUNGARIAN_MATCH_PERFECT);
-       n  = 0;
-       sched_foreach(block, node) {
-               unsigned r;
-
-               allocation_info_t *info;
-               if (!is_Phi(node))
-                       break;
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-
-               /* give boni for predecessor colorings */
-               adapt_phi_prefs(node);
-               /* add stuff to bipartite problem */
-               info = get_allocation_info(node);
-               DB((dbg, LEVEL_3, "Prefs for %+F: ", node));
-               for (r = 0; r < n_regs; ++r) {
-                       float costs;
-
-                       if (!rbitset_is_set(normal_regs, r))
-                               continue;
-
-                       costs = info->prefs[r];
-                       costs = costs < 0 ? -logf(-costs+1) : logf(costs+1);
-                       costs *= 100;
-                       costs += 10000;
-                       hungarian_add(bp, n, r, costs);
-                       DB((dbg, LEVEL_3, " %s(%f)", arch_register_for_index(cls, r)->name,
-                                               info->prefs[r]));
-               }
-               DB((dbg, LEVEL_3, "\n"));
-               ++n;
-       }
-
-       //hungarian_print_cost_matrix(bp, 7);
-       hungarian_prepare_cost_matrix(bp, HUNGARIAN_MODE_MAXIMIZE_UTIL);
-
-       assignment = ALLOCAN(int, n_regs);
-       res        = hungarian_solve(bp, assignment, NULL, 0);
-       assert(res == 0);
-
-       /* apply results */
-       n = 0;
-       sched_foreach(block, node) {
-               unsigned               r;
-               const arch_register_t *reg;
-
-               if (!is_Phi(node))
-                       break;
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-
-               r   = assignment[n++];
-               assert(rbitset_is_set(normal_regs, r));
-               reg = arch_register_for_index(cls, r);
-               DB((dbg, LEVEL_2, "Assign %+F -> %s\n", node, reg->name));
-               use_reg(node, reg);
-
-               /* adapt preferences for phi inputs */
-               if (propagate_phi_registers)
-                       propagate_phi_register(node, r);
-       }
-}
-
-/**
- * Walker: assign registers to all nodes of a block that
- * need registers from the currently considered register class.
- */
-static void allocate_coalesce_block(ir_node *block, void *data)
-{
-       int                    i;
-       ir_nodeset_t           live_nodes;
-       ir_node               *node;
-       int                    n_preds;
-       block_info_t          *block_info;
-       block_info_t         **pred_block_infos;
-       ir_node              **phi_ins;
-       unsigned              *forbidden_regs; /**< collects registers which must
-                                               not be used for optimistic splits */
-
-       (void) data;
-       DB((dbg, LEVEL_2, "* Block %+F\n", block));
-
-       /* clear assignments */
-       block_info  = get_block_info(block);
-       assignments = block_info->assignments;
-
-       ir_nodeset_init(&live_nodes);
-
-       /* gather regalloc infos of predecessor blocks */
-       n_preds             = get_Block_n_cfgpreds(block);
-       pred_block_infos    = ALLOCAN(block_info_t*, n_preds);
-       for (i = 0; i < n_preds; ++i) {
-               ir_node      *pred      = get_Block_cfgpred_block(block, i);
-               block_info_t *pred_info = get_block_info(pred);
-               pred_block_infos[i]     = pred_info;
-       }
-
-       phi_ins = ALLOCAN(ir_node*, n_preds);
-
-       /* collect live-in nodes and preassigned values */
-       be_lv_foreach(lv, block, be_lv_state_in, i) {
-               const arch_register_t *reg;
-               int                    p;
-               bool                   need_phi = false;
-
-               node = be_lv_get_irn(lv, block, i);
-               if (!arch_irn_consider_in_reg_alloc(cls, node))
-                       continue;
-
-               /* check all predecessors for this value, if it is not everywhere the
-                  same or unknown then we have to construct a phi
-                  (we collect the potential phi inputs here) */
-               for (p = 0; p < n_preds; ++p) {
-                       block_info_t *pred_info = pred_block_infos[p];
-
-                       if (!pred_info->processed) {
-                               /* use node for now, it will get fixed later */
-                               phi_ins[p] = node;
-                               need_phi   = true;
-                       } else {
-                               int a = find_value_in_block_info(pred_info, node);
-
-                               /* must live out of predecessor */
-                               assert(a >= 0);
-                               phi_ins[p] = pred_info->assignments[a];
-                               /* different value from last time? then we need a phi */
-                               if (p > 0 && phi_ins[p-1] != phi_ins[p]) {
-                                       need_phi = true;
-                               }
-                       }
-               }
-
-               if (need_phi) {
-                       ir_mode                   *mode = get_irn_mode(node);
-                       const arch_register_req_t *req  = get_default_req_current_cls();
-                       ir_node                   *phi;
-
-                       phi = new_r_Phi(block, n_preds, phi_ins, mode);
-                       be_set_phi_reg_req(phi, req);
-
-                       DB((dbg, LEVEL_3, "Create Phi %+F (for %+F) -", phi, node));
-#ifdef DEBUG_libfirm
-                       {
-                               int i;
-                               for (i = 0; i < n_preds; ++i) {
-                                       DB((dbg, LEVEL_3, " %+F", phi_ins[i]));
-                               }
-                               DB((dbg, LEVEL_3, "\n"));
-                       }
-#endif
-                       mark_as_copy_of(phi, node);
-                       sched_add_after(block, phi);
-
-                       node = phi;
-               } else {
-                       allocation_info_t *info = get_allocation_info(node);
-                       info->current_value = phi_ins[0];
-
-                       /* Grab 1 of the inputs we constructed (might not be the same as
-                        * "node" as we could see the same copy of the value in all
-                        * predecessors */
-                       node = phi_ins[0];
-               }
-
-               /* if the node already has a register assigned use it */
-               reg = arch_get_irn_register(node);
-               if (reg != NULL) {
-                       use_reg(node, reg);
-               }
-
-               /* remember that this node is live at the beginning of the block */
-               ir_nodeset_insert(&live_nodes, node);
-       }
-
-       rbitset_alloca(forbidden_regs, n_regs);
-
-       /* handle phis... */
-       assign_phi_registers(block);
-
-       /* all live-ins must have a register */
-#ifdef DEBUG_libfirm
-       {
-               ir_nodeset_iterator_t  iter;
-               foreach_ir_nodeset(&live_nodes, node, iter) {
-                       const arch_register_t *reg = arch_get_irn_register(node);
-                       assert(reg != NULL);
-               }
-       }
-#endif
-
-       /* assign instructions in the block */
-       sched_foreach(block, node) {
-               int i;
-               int arity;
-
-               /* phis are already assigned */
-               if (is_Phi(node))
-                       continue;
-
-               rewire_inputs(node);
-
-               /* enforce use constraints */
-               rbitset_clear_all(forbidden_regs, n_regs);
-               enforce_constraints(&live_nodes, node, forbidden_regs);
-
-               rewire_inputs(node);
-
-               /* we may not use registers used for inputs for optimistic splits */
-               arity = get_irn_arity(node);
-               for (i = 0; i < arity; ++i) {
-                       ir_node *op = get_irn_n(node, i);
-                       const arch_register_t *reg;
-                       if (!arch_irn_consider_in_reg_alloc(cls, op))
-                               continue;
-
-                       reg = arch_get_irn_register(op);
-                       rbitset_set(forbidden_regs, arch_register_get_index(reg));
-               }
-
-               /* free registers of values last used at this instruction */
-               free_last_uses(&live_nodes, node);
-
-               /* assign output registers */
-               /* TODO: 2 phases: first: pre-assigned ones, 2nd real regs */
-               if (get_irn_mode(node) == mode_T) {
-                       const ir_edge_t *edge;
-                       foreach_out_edge(node, edge) {
-                               ir_node *proj = get_edge_src_irn(edge);
-                               if (!arch_irn_consider_in_reg_alloc(cls, proj))
-                                       continue;
-                               assign_reg(block, proj, forbidden_regs);
-                       }
-               } else if (arch_irn_consider_in_reg_alloc(cls, node)) {
-                       assign_reg(block, node, forbidden_regs);
-               }
-       }
-
-       ir_nodeset_destroy(&live_nodes);
-       assignments = NULL;
-
-       block_info->processed = true;
-
-       /* permute values at end of predecessor blocks in case of phi-nodes */
-       if (n_preds > 1) {
-               int p;
-               for (p = 0; p < n_preds; ++p) {
-                       add_phi_permutations(block, p);
-               }
-       }
-
-       /* if we have exactly 1 successor then we might be able to produce phi
-          copies now */
-       if (get_irn_n_edges_kind(block, EDGE_KIND_BLOCK) == 1) {
-               const ir_edge_t *edge
-                       = get_irn_out_edge_first_kind(block, EDGE_KIND_BLOCK);
-               ir_node      *succ      = get_edge_src_irn(edge);
-               int           p         = get_edge_src_pos(edge);
-               block_info_t *succ_info = get_block_info(succ);
-
-               if (succ_info->processed) {
-                       add_phi_permutations(succ, p);
-               }
-       }
-}
-
-typedef struct block_costs_t block_costs_t;
-struct block_costs_t {
-       float costs;   /**< costs of the block */
-       int   dfs_num; /**< depth first search number (to detect backedges) */
-};
-
-static int cmp_block_costs(const void *d1, const void *d2)
-{
-       const ir_node       * const *block1 = d1;
-       const ir_node       * const *block2 = d2;
-       const block_costs_t *info1  = get_irn_link(*block1);
-       const block_costs_t *info2  = get_irn_link(*block2);
-       return QSORT_CMP(info2->costs, info1->costs);
-}
-
-static void determine_block_order(void)
-{
-       int i;
-       ir_node **blocklist = be_get_cfgpostorder(irg);
-       int       n_blocks  = ARR_LEN(blocklist);
-       int       dfs_num   = 0;
-       pdeq     *worklist  = new_pdeq();
-       ir_node **order     = XMALLOCN(ir_node*, n_blocks);
-       int       order_p   = 0;
-
-       /* clear block links... */
-       for (i = 0; i < n_blocks; ++i) {
-               ir_node *block = blocklist[i];
-               set_irn_link(block, NULL);
-       }
-
-       /* walk blocks in reverse postorder, the costs for each block are the
-        * sum of the costs of its predecessors (excluding the costs on backedges
-        * which we can't determine) */
-       for (i = n_blocks-1; i >= 0; --i) {
-               block_costs_t *cost_info;
-               ir_node *block = blocklist[i];
-
-               float execfreq   = get_block_execfreq(execfreqs, block);
-               float costs      = execfreq;
-               int   n_cfgpreds = get_Block_n_cfgpreds(block);
-               int   p;
-               for (p = 0; p < n_cfgpreds; ++p) {
-                       ir_node       *pred_block = get_Block_cfgpred_block(block, p);
-                       block_costs_t *pred_costs = get_irn_link(pred_block);
-                       /* we don't have any info for backedges */
-                       if (pred_costs == NULL)
-                               continue;
-                       costs += pred_costs->costs;
-               }
-
-               cost_info          = OALLOCZ(&obst, block_costs_t);
-               cost_info->costs   = costs;
-               cost_info->dfs_num = dfs_num++;
-               set_irn_link(block, cost_info);
-       }
-
-       /* sort array by block costs */
-       qsort(blocklist, n_blocks, sizeof(blocklist[0]), cmp_block_costs);
-
-       ir_reserve_resources(irg, IR_RESOURCE_BLOCK_VISITED);
-       inc_irg_block_visited(irg);
-
-       for (i = 0; i < n_blocks; ++i) {
-               ir_node       *block = blocklist[i];
-               if (Block_block_visited(block))
-                       continue;
-
-               /* continually add predecessors with highest costs to worklist
-                * (without using backedges) */
-               do {
-                       block_costs_t *info       = get_irn_link(block);
-                       ir_node       *best_pred  = NULL;
-                       float          best_costs = -1;
-                       int            n_cfgpred  = get_Block_n_cfgpreds(block);
-                       int            i;
-
-                       pdeq_putr(worklist, block);
-                       mark_Block_block_visited(block);
-                       for (i = 0; i < n_cfgpred; ++i) {
-                               ir_node       *pred_block = get_Block_cfgpred_block(block, i);
-                               block_costs_t *pred_info  = get_irn_link(pred_block);
-
-                               /* ignore backedges */
-                               if (pred_info->dfs_num > info->dfs_num)
-                                       continue;
-
-                               if (info->costs > best_costs) {
-                                       best_costs = info->costs;
-                                       best_pred  = pred_block;
-                               }
-                       }
-                       block = best_pred;
-               } while(block != NULL && !Block_block_visited(block));
-
-               /* now put all nodes in the worklist in our final order */
-               while (!pdeq_empty(worklist)) {
-                       ir_node *pblock = pdeq_getr(worklist);
-                       assert(order_p < n_blocks);
-                       order[order_p++] = pblock;
-               }
-       }
-       assert(order_p == n_blocks);
-       del_pdeq(worklist);
-
-       ir_free_resources(irg, IR_RESOURCE_BLOCK_VISITED);
-
-       DEL_ARR_F(blocklist);
-
-       obstack_free(&obst, NULL);
-       obstack_init(&obst);
-
-       block_order   = order;
-       n_block_order = n_blocks;
-}
-
-/**
- * Run the register allocator for the current register class.
- */
-static void be_straight_alloc_cls(void)
-{
-       int i;
-
-       lv = be_assure_liveness(birg);
-       be_liveness_assure_sets(lv);
-
-       ir_reserve_resources(irg, IR_RESOURCE_IRN_LINK);
-
-       DB((dbg, LEVEL_2, "=== Allocating registers of %s ===\n", cls->name));
-
-       be_clear_links(irg);
-
-       irg_block_walk_graph(irg, NULL, analyze_block, NULL);
-       if (create_congruence_classes)
-               combine_congruence_classes();
-
-       for (i = 0; i < n_block_order; ++i) {
-               ir_node *block = block_order[i];
-               allocate_coalesce_block(block, NULL);
-       }
-
-       ir_free_resources(irg, IR_RESOURCE_IRN_LINK);
-}
-
-static void dump(int mask, ir_graph *irg, const char *suffix,
-                 void (*dumper)(ir_graph *, const char *))
-{
-       if(birg->main_env->options->dump_flags & mask)
-               be_dump(irg, suffix, dumper);
-}
-
-/**
- * Run the spiller on the current graph.
- */
-static void spill(void)
-{
-       /* make sure all nodes show their real register pressure */
-       BE_TIMER_PUSH(t_ra_constr);
-       be_pre_spill_prepare_constr(birg, cls);
-       BE_TIMER_POP(t_ra_constr);
-
-       dump(DUMP_RA, irg, "-spillprepare", dump_ir_block_graph_sched);
-
-       /* spill */
-       BE_TIMER_PUSH(t_ra_spill);
-       be_do_spill(birg, cls);
-       BE_TIMER_POP(t_ra_spill);
-
-       BE_TIMER_PUSH(t_ra_spill_apply);
-       check_for_memory_operands(irg);
-       BE_TIMER_POP(t_ra_spill_apply);
-
-       dump(DUMP_RA, irg, "-spill", dump_ir_block_graph_sched);
-}
-
-/**
- * The straight register allocator for a whole procedure.
- */
-static void be_straight_alloc(be_irg_t *new_birg)
-{
-       const arch_env_t *arch_env = new_birg->main_env->arch_env;
-       int   n_cls                = arch_env_get_n_reg_class(arch_env);
-       int   c;
-
-       obstack_init(&obst);
-
-       birg      = new_birg;
-       irg       = be_get_birg_irg(birg);
-       execfreqs = birg->exec_freq;
-
-       /* determine a good coloring order */
-       determine_block_order();
-
-       for (c = 0; c < n_cls; ++c) {
-               cls             = arch_env_get_reg_class(arch_env, c);
-               default_cls_req = NULL;
-               if (arch_register_class_flags(cls) & arch_register_class_flag_manual_ra)
-                       continue;
-
-               stat_ev_ctx_push_str("regcls", cls->name);
-
-               n_regs      = arch_register_class_n_regs(cls);
-               normal_regs = rbitset_malloc(n_regs);
-               be_abi_set_non_ignore_regs(birg->abi, cls, normal_regs);
-
-               spill();
-
-               /* verify schedule and register pressure */
-               BE_TIMER_PUSH(t_verify);
-               if (birg->main_env->options->vrfy_option == BE_VRFY_WARN) {
-                       be_verify_schedule(birg);
-                       be_verify_register_pressure(birg, cls, irg);
-               } else if (birg->main_env->options->vrfy_option == BE_VRFY_ASSERT) {
-                       assert(be_verify_schedule(birg) && "Schedule verification failed");
-                       assert(be_verify_register_pressure(birg, cls, irg)
-                               && "Register pressure verification failed");
-               }
-               BE_TIMER_POP(t_verify);
-
-               BE_TIMER_PUSH(t_ra_color);
-               be_straight_alloc_cls();
-               BE_TIMER_POP(t_ra_color);
-
-               /* we most probably constructed new Phis so liveness info is invalid
-                * now */
-               /* TODO: test liveness_introduce */
-               be_liveness_invalidate(lv);
-               free(normal_regs);
-
-               stat_ev_ctx_pop("regcls");
-       }
-
-       BE_TIMER_PUSH(t_ra_spill_apply);
-       be_abi_fix_stack_nodes(birg->abi);
-       BE_TIMER_POP(t_ra_spill_apply);
-
-       BE_TIMER_PUSH(t_verify);
-       if (birg->main_env->options->vrfy_option == BE_VRFY_WARN) {
-               be_verify_register_allocation(birg);
-       } else if (birg->main_env->options->vrfy_option == BE_VRFY_ASSERT) {
-               assert(be_verify_register_allocation(birg)
-                               && "Register allocation invalid");
-       }
-       BE_TIMER_POP(t_verify);
-
-       obstack_free(&obst, NULL);
-}
-
-/**
- * Initializes this module.
- */
-void be_init_straight_alloc(void)
-{
-       static be_ra_t be_ra_straight = {
-               be_straight_alloc,
-       };
-       lc_opt_entry_t *be_grp              = lc_opt_get_grp(firm_opt_get_root(), "be");
-       lc_opt_entry_t *straightalloc_group = lc_opt_get_grp(be_grp, "straightalloc");
-       lc_opt_add_table(straightalloc_group, options);
-
-       be_register_allocator("straight", &be_ra_straight);
-       FIRM_DBG_REGISTER(dbg, "firm.be.straightalloc");
-}
-
-BE_REGISTER_MODULE_CONSTRUCTOR(be_init_straight_alloc);
diff --git a/ir/be/beprefalloc.c b/ir/be/beprefalloc.c
new file mode 100644 (file)
index 0000000..79aeb26
--- /dev/null
@@ -0,0 +1,2043 @@
+/*
+ * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
+ *
+ * This file is part of libFirm.
+ *
+ * This file may be distributed and/or modified under the terms of the
+ * GNU General Public License version 2 as published by the Free Software
+ * Foundation and appearing in the file LICENSE.GPL included in the
+ * packaging of this file.
+ *
+ * Licensees holding valid libFirm Professional Edition licenses may use
+ * this file in accordance with the libFirm Commercial License.
+ * Agreement provided with the Software.
+ *
+ * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+ * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE.
+ */
+
+/**
+ * @file
+ * @brief       Preference Guided Register Assignment
+ * @author      Matthias Braun
+ * @date        14.2.2009
+ * @version     $Id$
+ *
+ * The idea is to allocate registers in 2 passes:
+ * 1. A first pass to determine "preferred" registers for live-ranges. This
+ *    calculates for each register and each live-range a value indicating
+ *    the usefulness. (You can roughly think of the value as the negative
+ *    costs needed for copies when the value is in the specific registers...)
+ *
+ * 2. Walk blocks and assigns registers in a greedy fashion. Preferring
+ *    registers with high preferences. When register constraints are not met,
+ *    add copies and split live-ranges.
+ *
+ * TODO:
+ *  - make use of free registers in the permute_values code
+ */
+#include "config.h"
+
+#include <float.h>
+#include <stdbool.h>
+#include <math.h>
+
+#include "error.h"
+#include "execfreq.h"
+#include "ircons.h"
+#include "irdom.h"
+#include "iredges_t.h"
+#include "irgraph_t.h"
+#include "irgwalk.h"
+#include "irnode_t.h"
+#include "irprintf.h"
+#include "obst.h"
+#include "raw_bitset.h"
+#include "unionfind.h"
+#include "pdeq.h"
+#include "hungarian.h"
+
+#include "beabi.h"
+#include "bechordal_t.h"
+#include "be.h"
+#include "beirg.h"
+#include "belive_t.h"
+#include "bemodule.h"
+#include "benode.h"
+#include "bera.h"
+#include "besched.h"
+#include "bespill.h"
+#include "bespillutil.h"
+#include "beverify.h"
+#include "beutil.h"
+
+#define USE_FACTOR                     1.0f
+#define DEF_FACTOR                     1.0f
+#define NEIGHBOR_FACTOR                0.2f
+#define AFF_SHOULD_BE_SAME             0.5f
+#define AFF_PHI                        1.0f
+#define SPLIT_DELTA                    1.0f
+#define MAX_OPTIMISTIC_SPLIT_RECURSION 0
+
+DEBUG_ONLY(static firm_dbg_module_t *dbg = NULL;)
+
+static struct obstack               obst;
+static be_irg_t                    *birg;
+static ir_graph                    *irg;
+static const arch_register_class_t *cls;
+static const arch_register_req_t   *default_cls_req;
+static be_lv_t                     *lv;
+static const ir_exec_freq          *execfreqs;
+static unsigned                     n_regs;
+static unsigned                    *normal_regs;
+static int                         *congruence_classes;
+static ir_node                    **block_order;
+static int                          n_block_order;
+static int                          create_preferences        = true;
+static int                          create_congruence_classes = true;
+static int                          propagate_phi_registers   = true;
+
+static const lc_opt_table_entry_t options[] = {
+       LC_OPT_ENT_BOOL("prefs", "use preference based coloring", &create_preferences),
+       LC_OPT_ENT_BOOL("congruences", "create congruence classes", &create_congruence_classes),
+       LC_OPT_ENT_BOOL("prop_phi", "propagate phi registers", &propagate_phi_registers),
+       LC_OPT_LAST
+};
+
+/** currently active assignments (while processing a basic block)
+ * maps registers to values(their current copies) */
+static ir_node **assignments;
+
+/**
+ * allocation information: last_uses, register preferences
+ * the information is per firm-node.
+ */
+struct allocation_info_t {
+       unsigned  last_uses;      /**< bitset indicating last uses (input pos) */
+       ir_node  *current_value;  /**< copy of the value that should be used */
+       ir_node  *original_value; /**< for copies point to original value */
+       float     prefs[0];       /**< register preferences */
+};
+typedef struct allocation_info_t allocation_info_t;
+
+/** helper datastructure used when sorting register preferences */
+struct reg_pref_t {
+       unsigned num;
+       float    pref;
+};
+typedef struct reg_pref_t reg_pref_t;
+
+/** per basic-block information */
+struct block_info_t {
+       bool     processed;       /**< indicate whether block is processed */
+       ir_node *assignments[0];  /**< register assignments at end of block */
+};
+typedef struct block_info_t block_info_t;
+
+/**
+ * Get the allocation info for a node.
+ * The info is allocated on the first visit of a node.
+ */
+static allocation_info_t *get_allocation_info(ir_node *node)
+{
+       allocation_info_t *info = get_irn_link(node);
+       if (info == NULL) {
+               info = OALLOCFZ(&obst, allocation_info_t, prefs, n_regs);
+               info->current_value  = node;
+               info->original_value = node;
+               set_irn_link(node, info);
+       }
+
+       return info;
+}
+
+static allocation_info_t *try_get_allocation_info(const ir_node *node)
+{
+       return (allocation_info_t*) get_irn_link(node);
+}
+
+/**
+ * Get allocation information for a basic block
+ */
+static block_info_t *get_block_info(ir_node *block)
+{
+       block_info_t *info = get_irn_link(block);
+
+       assert(is_Block(block));
+       if (info == NULL) {
+               info = OALLOCFZ(&obst, block_info_t, assignments, n_regs);
+               set_irn_link(block, info);
+       }
+
+       return info;
+}
+
+/**
+ * Get default register requirement for the current register class
+ */
+static const arch_register_req_t *get_default_req_current_cls(void)
+{
+       if (default_cls_req == NULL) {
+               struct obstack      *obst = get_irg_obstack(irg);
+               arch_register_req_t *req  = OALLOCZ(obst, arch_register_req_t);
+
+               req->type = arch_register_req_type_normal;
+               req->cls  = cls;
+
+               default_cls_req = req;
+       }
+       return default_cls_req;
+}
+
+/**
+ * Link the allocation info of a node to a copy.
+ * Afterwards, both nodes uses the same allocation info.
+ * Copy must not have an allocation info assigned yet.
+ *
+ * @param copy   the node that gets the allocation info assigned
+ * @param value  the original node
+ */
+static void mark_as_copy_of(ir_node *copy, ir_node *value)
+{
+       ir_node           *original;
+       allocation_info_t *info      = get_allocation_info(value);
+       allocation_info_t *copy_info = get_allocation_info(copy);
+
+       /* find original value */
+       original = info->original_value;
+       if (original != value) {
+               info = get_allocation_info(original);
+       }
+
+       assert(info->original_value == original);
+       info->current_value = copy;
+
+       /* the copy should not be linked to something else yet */
+       assert(copy_info->original_value == copy);
+       copy_info->original_value = original;
+
+       /* copy over allocation preferences */
+       memcpy(copy_info->prefs, info->prefs, n_regs * sizeof(copy_info->prefs[0]));
+}
+
+/**
+ * Calculate the penalties for every register on a node and its live neighbors.
+ *
+ * @param live_nodes  the set of live nodes at the current position, may be NULL
+ * @param penalty     the penalty to subtract from
+ * @param limited     a raw bitset containing the limited set for the node
+ * @param node        the node
+ */
+static void give_penalties_for_limits(const ir_nodeset_t *live_nodes,
+                                      float penalty, const unsigned* limited,
+                                      ir_node *node)
+{
+       ir_nodeset_iterator_t iter;
+       unsigned              r;
+       unsigned              n_allowed;
+       allocation_info_t     *info = get_allocation_info(node);
+       ir_node               *neighbor;
+
+       /* give penalty for all forbidden regs */
+       for (r = 0; r < n_regs; ++r) {
+               if (rbitset_is_set(limited, r))
+                       continue;
+
+               info->prefs[r] -= penalty;
+       }
+
+       /* all other live values should get a penalty for allowed regs */
+       if (live_nodes == NULL)
+               return;
+
+       penalty   *= NEIGHBOR_FACTOR;
+       n_allowed  = rbitset_popcnt(limited, n_regs);
+       if (n_allowed > 1) {
+               /* only create a very weak penalty if multiple regs are allowed */
+               penalty = (penalty * 0.8f) / n_allowed;
+       }
+       foreach_ir_nodeset(live_nodes, neighbor, iter) {
+               allocation_info_t *neighbor_info;
+
+               /* TODO: if op is used on multiple inputs we might not do a
+                * continue here */
+               if (neighbor == node)
+                       continue;
+
+               neighbor_info = get_allocation_info(neighbor);
+               for (r = 0; r < n_regs; ++r) {
+                       if (!rbitset_is_set(limited, r))
+                               continue;
+
+                       neighbor_info->prefs[r] -= penalty;
+               }
+       }
+}
+
+/**
+ * Calculate the preferences of a definition for the current register class.
+ * If the definition uses a limited set of registers, reduce the preferences
+ * for the limited register on the node and its neighbors.
+ *
+ * @param live_nodes  the set of live nodes at the current node
+ * @param weight      the weight
+ * @param node        the current node
+ */
+static void check_defs(const ir_nodeset_t *live_nodes, float weight,
+                       ir_node *node)
+{
+       const arch_register_req_t *req;
+
+       if (get_irn_mode(node) == mode_T) {
+               const ir_edge_t *edge;
+               foreach_out_edge(node, edge) {
+                       ir_node *proj = get_edge_src_irn(edge);
+                       check_defs(live_nodes, weight, proj);
+               }
+               return;
+       }
+
+       if (!arch_irn_consider_in_reg_alloc(cls, node))
+               return;
+
+       req = arch_get_register_req_out(node);
+       if (req->type & arch_register_req_type_limited) {
+               const unsigned *limited = req->limited;
+               float           penalty = weight * DEF_FACTOR;
+               give_penalties_for_limits(live_nodes, penalty, limited, node);
+       }
+
+       if (req->type & arch_register_req_type_should_be_same) {
+               ir_node           *insn  = skip_Proj(node);
+               allocation_info_t *info  = get_allocation_info(node);
+               int                arity = get_irn_arity(insn);
+               int                i;
+
+               float factor = 1.0f / rbitset_popcnt(&req->other_same, arity);
+               for (i = 0; i < arity; ++i) {
+                       ir_node           *op;
+                       unsigned           r;
+                       allocation_info_t *op_info;
+
+                       if (!rbitset_is_set(&req->other_same, i))
+                               continue;
+
+                       op = get_irn_n(insn, i);
+
+                       /* if we the value at the should_be_same input doesn't die at the
+                        * node, then it is no use to propagate the constraints (since a
+                        * copy will emerge anyway) */
+                       if (ir_nodeset_contains(live_nodes, op))
+                               continue;
+
+                       op_info = get_allocation_info(op);
+                       for (r = 0; r < n_regs; ++r) {
+                               op_info->prefs[r] += info->prefs[r] * factor;
+                       }
+               }
+       }
+}
+
+/**
+ * Walker: Runs an a block calculates the preferences for any
+ * node and every register from the considered register class.
+ */
+static void analyze_block(ir_node *block, void *data)
+{
+       float         weight = get_block_execfreq(execfreqs, block);
+       ir_nodeset_t  live_nodes;
+       ir_node      *node;
+       (void) data;
+
+       ir_nodeset_init(&live_nodes);
+       be_liveness_end_of_block(lv, cls, block, &live_nodes);
+
+       sched_foreach_reverse(block, node) {
+               allocation_info_t *info;
+               int                i;
+               int                arity;
+
+               if (is_Phi(node))
+                       break;
+
+               if (create_preferences)
+                       check_defs(&live_nodes, weight, node);
+
+               /* mark last uses */
+               arity = get_irn_arity(node);
+
+               /* the allocation info node currently only uses 1 unsigned value
+                  to mark last used inputs. So we will fail for a node with more than
+                  32 inputs. */
+               if (arity >= (int) sizeof(unsigned) * 8) {
+                       panic("Node with more than %d inputs not supported yet",
+                                       (int) sizeof(unsigned) * 8);
+               }
+
+               info = get_allocation_info(node);
+               for (i = 0; i < arity; ++i) {
+                       ir_node *op = get_irn_n(node, i);
+                       if (!arch_irn_consider_in_reg_alloc(cls, op))
+                               continue;
+
+                       /* last usage of a value? */
+                       if (!ir_nodeset_contains(&live_nodes, op)) {
+                               rbitset_set(&info->last_uses, i);
+                       }
+               }
+
+               be_liveness_transfer(cls, node, &live_nodes);
+
+               if (create_preferences) {
+                       /* update weights based on usage constraints */
+                       for (i = 0; i < arity; ++i) {
+                               const arch_register_req_t *req;
+                               const unsigned            *limited;
+                               ir_node                   *op = get_irn_n(node, i);
+
+                               if (!arch_irn_consider_in_reg_alloc(cls, op))
+                                       continue;
+
+                               req = arch_get_register_req(node, i);
+                               if (!(req->type & arch_register_req_type_limited))
+                                       continue;
+
+                               limited = req->limited;
+                               give_penalties_for_limits(&live_nodes, weight * USE_FACTOR,
+                                                         limited, op);
+                       }
+               }
+       }
+
+       ir_nodeset_destroy(&live_nodes);
+}
+
+static void congruence_def(ir_nodeset_t *live_nodes, ir_node *node)
+{
+       const arch_register_req_t *req;
+
+       if (get_irn_mode(node) == mode_T) {
+               const ir_edge_t *edge;
+               foreach_out_edge(node, edge) {
+                       ir_node *def = get_edge_src_irn(edge);
+                       congruence_def(live_nodes, def);
+               }
+               return;
+       }
+
+       if (!arch_irn_consider_in_reg_alloc(cls, node))
+               return;
+
+       /* should be same constraint? */
+       req = arch_get_register_req_out(node);
+       if (req->type & arch_register_req_type_should_be_same) {
+               ir_node *insn  = skip_Proj(node);
+               int      arity = get_irn_arity(insn);
+               int      i;
+               unsigned node_idx = get_irn_idx(node);
+               node_idx          = uf_find(congruence_classes, node_idx);
+
+               for (i = 0; i < arity; ++i) {
+                       ir_node               *live;
+                       ir_node               *op;
+                       int                    op_idx;
+                       ir_nodeset_iterator_t  iter;
+                       bool                   interferes = false;
+
+                       if (!rbitset_is_set(&req->other_same, i))
+                               continue;
+
+                       op     = get_irn_n(insn, i);
+                       op_idx = get_irn_idx(op);
+                       op_idx = uf_find(congruence_classes, op_idx);
+
+                       /* do we interfere with the value */
+                       foreach_ir_nodeset(live_nodes, live, iter) {
+                               int lv_idx = get_irn_idx(live);
+                               lv_idx     = uf_find(congruence_classes, lv_idx);
+                               if (lv_idx == op_idx) {
+                                       interferes = true;
+                                       break;
+                               }
+                       }
+                       /* don't put in same affinity class if we interfere */
+                       if (interferes)
+                               continue;
+
+                       node_idx = uf_union(congruence_classes, node_idx, op_idx);
+                       DB((dbg, LEVEL_3, "Merge %+F and %+F congruence classes\n",
+                           node, op));
+                       /* one should_be_same is enough... */
+                       break;
+               }
+       }
+}
+
+static void create_congruence_class(ir_node *block, void *data)
+{
+       ir_nodeset_t  live_nodes;
+       ir_node      *node;
+
+       (void) data;
+       ir_nodeset_init(&live_nodes);
+       be_liveness_end_of_block(lv, cls, block, &live_nodes);
+
+       /* check should be same constraints */
+       sched_foreach_reverse(block, node) {
+               if (is_Phi(node))
+                       break;
+
+               congruence_def(&live_nodes, node);
+               be_liveness_transfer(cls, node, &live_nodes);
+       }
+
+       /* check phi congruence classes */
+       sched_foreach_reverse_from(node, node) {
+               int i;
+               int arity;
+               int node_idx;
+               assert(is_Phi(node));
+
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+
+               node_idx = get_irn_idx(node);
+               node_idx = uf_find(congruence_classes, node_idx);
+
+               arity = get_irn_arity(node);
+               for (i = 0; i < arity; ++i) {
+                       bool                  interferes = false;
+                       ir_nodeset_iterator_t iter;
+                       unsigned              r;
+                       int                   old_node_idx;
+                       ir_node              *live;
+                       ir_node              *phi;
+                       allocation_info_t    *head_info;
+                       allocation_info_t    *other_info;
+                       ir_node              *op     = get_Phi_pred(node, i);
+                       int                   op_idx = get_irn_idx(op);
+                       op_idx = uf_find(congruence_classes, op_idx);
+
+                       /* do we interfere with the value */
+                       foreach_ir_nodeset(&live_nodes, live, iter) {
+                               int lv_idx = get_irn_idx(live);
+                               lv_idx     = uf_find(congruence_classes, lv_idx);
+                               if (lv_idx == op_idx) {
+                                       interferes = true;
+                                       break;
+                               }
+                       }
+                       /* don't put in same affinity class if we interfere */
+                       if (interferes)
+                               continue;
+                       /* any other phi has the same input? */
+                       sched_foreach(block, phi) {
+                               ir_node *oop;
+                               int      oop_idx;
+                               if (!is_Phi(phi))
+                                       break;
+                               if (!arch_irn_consider_in_reg_alloc(cls, phi))
+                                       continue;
+                               oop = get_Phi_pred(phi, i);
+                               if (oop == op)
+                                       continue;
+                               oop_idx = get_irn_idx(oop);
+                               oop_idx = uf_find(congruence_classes, oop_idx);
+                               if (oop_idx == op_idx) {
+                                       interferes = true;
+                                       break;
+                               }
+                       }
+                       if (interferes)
+                               continue;
+
+                       /* merge the 2 congruence classes and sum up their preferences */
+                       old_node_idx = node_idx;
+                       node_idx = uf_union(congruence_classes, node_idx, op_idx);
+                       DB((dbg, LEVEL_3, "Merge %+F and %+F congruence classes\n",
+                           node, op));
+
+                       old_node_idx = node_idx == old_node_idx ? op_idx : old_node_idx;
+                       head_info  = get_allocation_info(get_idx_irn(irg, node_idx));
+                       other_info = get_allocation_info(get_idx_irn(irg, old_node_idx));
+                       for (r = 0; r < n_regs; ++r) {
+                               head_info->prefs[r] += other_info->prefs[r];
+                       }
+               }
+       }
+}
+
+static void set_congruence_prefs(ir_node *node, void *data)
+{
+       allocation_info_t *info;
+       allocation_info_t *head_info;
+       unsigned node_idx = get_irn_idx(node);
+       unsigned node_set = uf_find(congruence_classes, node_idx);
+
+       (void) data;
+
+       /* head of congruence class or not in any class */
+       if (node_set == node_idx)
+               return;
+
+       if (!arch_irn_consider_in_reg_alloc(cls, node))
+               return;
+
+       head_info = get_allocation_info(get_idx_irn(irg, node_set));
+       info      = get_allocation_info(node);
+
+       memcpy(info->prefs, head_info->prefs, n_regs * sizeof(info->prefs[0]));
+}
+
+static void combine_congruence_classes(void)
+{
+       size_t n = get_irg_last_idx(irg);
+       congruence_classes = XMALLOCN(int, n);
+       uf_init(congruence_classes, n);
+
+       /* create congruence classes */
+       irg_block_walk_graph(irg, create_congruence_class, NULL, NULL);
+       /* merge preferences */
+       irg_walk_graph(irg, set_congruence_prefs, NULL, NULL);
+       free(congruence_classes);
+}
+
+
+
+
+
+/**
+ * Assign register reg to the given node.
+ *
+ * @param node  the node
+ * @param reg   the register
+ */
+static void use_reg(ir_node *node, const arch_register_t *reg)
+{
+       unsigned r = arch_register_get_index(reg);
+       assignments[r] = node;
+       arch_set_irn_register(node, reg);
+}
+
+static void free_reg_of_value(ir_node *node)
+{
+       const arch_register_t *reg;
+       unsigned               r;
+
+       if (!arch_irn_consider_in_reg_alloc(cls, node))
+               return;
+
+       reg        = arch_get_irn_register(node);
+       r          = arch_register_get_index(reg);
+       /* assignment->value may be NULL if a value is used at 2 inputs
+          so it gets freed twice. */
+       assert(assignments[r] == node || assignments[r] == NULL);
+       assignments[r] = NULL;
+}
+
+/**
+ * Compare two register preferences in decreasing order.
+ */
+static int compare_reg_pref(const void *e1, const void *e2)
+{
+       const reg_pref_t *rp1 = (const reg_pref_t*) e1;
+       const reg_pref_t *rp2 = (const reg_pref_t*) e2;
+       if (rp1->pref < rp2->pref)
+               return 1;
+       if (rp1->pref > rp2->pref)
+               return -1;
+       return 0;
+}
+
+static void fill_sort_candidates(reg_pref_t *regprefs,
+                                 const allocation_info_t *info)
+{
+       unsigned r;
+
+       for (r = 0; r < n_regs; ++r) {
+               float pref = info->prefs[r];
+               regprefs[r].num  = r;
+               regprefs[r].pref = pref;
+       }
+       /* TODO: use a stable sort here to avoid unnecessary register jumping */
+       qsort(regprefs, n_regs, sizeof(regprefs[0]), compare_reg_pref);
+}
+
+static bool try_optimistic_split(ir_node *to_split, ir_node *before,
+                                 float pref, float pref_delta,
+                                 unsigned *forbidden_regs, int recursion)
+{
+       const arch_register_t *from_reg;
+       const arch_register_t *reg;
+       ir_node               *original_insn;
+       ir_node               *block;
+       ir_node               *copy;
+       unsigned               r;
+       unsigned               from_r;
+       unsigned               i;
+       allocation_info_t     *info = get_allocation_info(to_split);
+       reg_pref_t            *prefs;
+       float                  delta;
+       float                  split_threshold;
+
+       (void) pref;
+
+       /* stupid hack: don't optimisticallt split don't spill nodes...
+        * (so we don't split away the values produced because of
+        *  must_be_different constraints) */
+       original_insn = skip_Proj(info->original_value);
+       if (arch_irn_get_flags(original_insn) & arch_irn_flags_dont_spill)
+               return false;
+
+       from_reg        = arch_get_irn_register(to_split);
+       from_r          = arch_register_get_index(from_reg);
+       block           = get_nodes_block(before);
+       split_threshold = get_block_execfreq(execfreqs, block) * SPLIT_DELTA;
+
+       if (pref_delta < split_threshold*0.5)
+               return false;
+
+       /* find the best free position where we could move to */
+       prefs = ALLOCAN(reg_pref_t, n_regs);
+       fill_sort_candidates(prefs, info);
+       for (i = 0; i < n_regs; ++i) {
+               float apref;
+               float apref_delta;
+               bool  res;
+               bool  old_source_state;
+
+               /* we need a normal register which is not an output register
+                  an different from the current register of to_split */
+               r = prefs[i].num;
+               if (!rbitset_is_set(normal_regs, r))
+                       continue;
+               if (rbitset_is_set(forbidden_regs, r))
+                       continue;
+               if (r == from_r)
+                       continue;
+
+               /* is the split worth it? */
+               delta = pref_delta + prefs[i].pref;
+               if (delta < split_threshold) {
+                       DB((dbg, LEVEL_3, "Not doing optimistical split of %+F (depth %d), win %f too low\n",
+                               to_split, recursion, delta));
+                       return false;
+               }
+
+               /* if the register is free then we can do the split */
+               if (assignments[r] == NULL)
+                       break;
+
+               /* otherwise we might try recursively calling optimistic_split */
+               if (recursion+1 > MAX_OPTIMISTIC_SPLIT_RECURSION)
+                       continue;
+
+               apref        = prefs[i].pref;
+               apref_delta  = i+1 < n_regs ? apref - prefs[i+1].pref : 0;
+               apref_delta += pref_delta - split_threshold;
+
+               /* our source register isn't a usefull destination for recursive
+                  splits */
+               old_source_state = rbitset_is_set(forbidden_regs, from_r);
+               rbitset_set(forbidden_regs, from_r);
+               /* try recursive split */
+               res = try_optimistic_split(assignments[r], before, apref,
+                                          apref_delta, forbidden_regs, recursion+1);
+               /* restore our destination */
+               if (old_source_state) {
+                       rbitset_set(forbidden_regs, from_r);
+               } else {
+                       rbitset_clear(forbidden_regs, from_r);
+               }
+
+               if (res)
+                       break;
+       }
+       if (i >= n_regs)
+               return false;
+
+       reg  = arch_register_for_index(cls, r);
+       copy = be_new_Copy(cls, block, to_split);
+       mark_as_copy_of(copy, to_split);
+       /* hacky, but correct here */
+       if (assignments[arch_register_get_index(from_reg)] == to_split)
+               free_reg_of_value(to_split);
+       use_reg(copy, reg);
+       sched_add_before(before, copy);
+
+       DB((dbg, LEVEL_3,
+           "Optimistic live-range split %+F move %+F(%s) -> %s before %+F (win %f, depth %d)\n",
+           copy, to_split, from_reg->name, reg->name, before, delta, recursion));
+       return true;
+}
+
+/**
+ * Determine and assign a register for node @p node
+ */
+static void assign_reg(const ir_node *block, ir_node *node,
+                       unsigned *forbidden_regs)
+{
+       const arch_register_t     *reg;
+       allocation_info_t         *info;
+       const arch_register_req_t *req;
+       reg_pref_t                *reg_prefs;
+       ir_node                   *in_node;
+       unsigned                   i;
+       const unsigned            *allowed_regs;
+       unsigned                   r;
+
+       assert(!is_Phi(node));
+       assert(arch_irn_consider_in_reg_alloc(cls, node));
+
+       /* preassigned register? */
+       reg = arch_get_irn_register(node);
+       if (reg != NULL) {
+               DB((dbg, LEVEL_2, "Preassignment %+F -> %s\n", node, reg->name));
+               use_reg(node, reg);
+               return;
+       }
+
+       /* give should_be_same boni */
+       info = get_allocation_info(node);
+       req  = arch_get_register_req_out(node);
+
+       in_node = skip_Proj(node);
+       if (req->type & arch_register_req_type_should_be_same) {
+               float weight = get_block_execfreq(execfreqs, block);
+               int   arity  = get_irn_arity(in_node);
+               int   i;
+
+               assert(arity <= (int) sizeof(req->other_same) * 8);
+               for (i = 0; i < arity; ++i) {
+                       ir_node               *in;
+                       const arch_register_t *reg;
+                       unsigned               r;
+                       if (!rbitset_is_set(&req->other_same, i))
+                               continue;
+
+                       in  = get_irn_n(in_node, i);
+                       reg = arch_get_irn_register(in);
+                       assert(reg != NULL);
+                       r = arch_register_get_index(reg);
+
+                       /* if the value didn't die here then we should not propagate the
+                        * should_be_same info */
+                       if (assignments[r] == in)
+                               continue;
+
+                       info->prefs[r] += weight * AFF_SHOULD_BE_SAME;
+               }
+       }
+
+       /* create list of register candidates and sort by their preference */
+       DB((dbg, LEVEL_2, "Candidates for %+F:", node));
+       reg_prefs = alloca(n_regs * sizeof(reg_prefs[0]));
+       fill_sort_candidates(reg_prefs, info);
+       for (i = 0; i < n_regs; ++i) {
+               unsigned num = reg_prefs[i].num;
+               const arch_register_t *reg;
+
+               if (!rbitset_is_set(normal_regs, num))
+                       continue;
+
+               reg = arch_register_for_index(cls, num);
+               DB((dbg, LEVEL_2, " %s(%f)", reg->name, reg_prefs[i].pref));
+       }
+       DB((dbg, LEVEL_2, "\n"));
+
+       allowed_regs = normal_regs;
+       if (req->type & arch_register_req_type_limited) {
+               allowed_regs = req->limited;
+       }
+
+       for (i = 0; i < n_regs; ++i) {
+               float   pref, delta;
+               ir_node *before;
+               bool    res;
+
+               r = reg_prefs[i].num;
+               if (!rbitset_is_set(allowed_regs, r))
+                       continue;
+               if (assignments[r] == NULL)
+                       break;
+               pref   = reg_prefs[i].pref;
+               delta  = i+1 < n_regs ? pref - reg_prefs[i+1].pref : 0;
+               before = skip_Proj(node);
+               res    = try_optimistic_split(assignments[r], before,
+                                             pref, delta, forbidden_regs, 0);
+               if (res)
+                       break;
+       }
+       if (i >= n_regs) {
+               panic("No register left for %+F\n", node);
+       }
+
+       reg = arch_register_for_index(cls, r);
+       DB((dbg, LEVEL_2, "Assign %+F -> %s\n", node, reg->name));
+       use_reg(node, reg);
+}
+
+/**
+ * Add an permutation in front of a node and change the assignments
+ * due to this permutation.
+ *
+ * To understand this imagine a permutation like this:
+ *
+ * 1 -> 2
+ * 2 -> 3
+ * 3 -> 1, 5
+ * 4 -> 6
+ * 5
+ * 6
+ * 7 -> 7
+ *
+ * First we count how many destinations a single value has. At the same time
+ * we can be sure that each destination register has at most 1 source register
+ * (it can have 0 which means we don't care what value is in it).
+ * We ignore all fullfilled permuations (like 7->7)
+ * In a first pass we create as much copy instructions as possible as they
+ * are generally cheaper than exchanges. We do this by counting into how many
+ * destinations a register has to be copied (in the example it's 2 for register
+ * 3, or 1 for the registers 1,2,4 and 7).
+ * We can then create a copy into every destination register when the usecount
+ * of that register is 0 (= noone else needs the value in the register).
+ *
+ * After this step we should have cycles left. We implement a cyclic permutation
+ * of n registers with n-1 transpositions.
+ *
+ * @param live_nodes   the set of live nodes, updated due to live range split
+ * @param before       the node before we add the permutation
+ * @param permutation  the permutation array indices are the destination
+ *                     registers, the values in the array are the source
+ *                     registers.
+ */
+static void permute_values(ir_nodeset_t *live_nodes, ir_node *before,
+                             unsigned *permutation)
+{
+       unsigned  *n_used = ALLOCANZ(unsigned, n_regs);
+       ir_node   *block;
+       unsigned   r;
+
+       /* determine how often each source register needs to be read */
+       for (r = 0; r < n_regs; ++r) {
+               unsigned  old_reg = permutation[r];
+               ir_node  *value;
+
+               value = assignments[old_reg];
+               if (value == NULL) {
+                       /* nothing to do here, reg is not live. Mark it as fixpoint
+                        * so we ignore it in the next steps */
+                       permutation[r] = r;
+                       continue;
+               }
+
+               ++n_used[old_reg];
+       }
+
+       block = get_nodes_block(before);
+
+       /* step1: create copies where immediately possible */
+       for (r = 0; r < n_regs; /* empty */) {
+               ir_node *copy;
+               ir_node *src;
+               const arch_register_t *reg;
+               unsigned               old_r = permutation[r];
+
+               /* - no need to do anything for fixed points.
+                  - we can't copy if the value in the dest reg is still needed */
+               if (old_r == r || n_used[r] > 0) {
+                       ++r;
+                       continue;
+               }
+
+               /* create a copy */
+               src  = assignments[old_r];
+               copy = be_new_Copy(cls, block, src);
+               sched_add_before(before, copy);
+               reg = arch_register_for_index(cls, r);
+               DB((dbg, LEVEL_2, "Copy %+F (from %+F, before %+F) -> %s\n",
+                   copy, src, before, reg->name));
+               mark_as_copy_of(copy, src);
+               use_reg(copy, reg);
+
+               if (live_nodes != NULL) {
+                       ir_nodeset_insert(live_nodes, copy);
+               }
+
+               /* old register has 1 user less, permutation is resolved */
+               assert(arch_register_get_index(arch_get_irn_register(src)) == old_r);
+               permutation[r] = r;
+
+               assert(n_used[old_r] > 0);
+               --n_used[old_r];
+               if (n_used[old_r] == 0) {
+                       if (live_nodes != NULL) {
+                               ir_nodeset_remove(live_nodes, src);
+                       }
+                       free_reg_of_value(src);
+               }
+
+               /* advance or jump back (if this copy enabled another copy) */
+               if (old_r < r && n_used[old_r] == 0) {
+                       r = old_r;
+               } else {
+                       ++r;
+               }
+       }
+
+       /* at this point we only have "cycles" left which we have to resolve with
+        * perm instructions
+        * TODO: if we have free registers left, then we should really use copy
+        * instructions for any cycle longer than 2 registers...
+        * (this is probably architecture dependent, there might be archs where
+        *  copies are preferable even for 2-cycles) */
+
+       /* create perms with the rest */
+       for (r = 0; r < n_regs; /* empty */) {
+               const arch_register_t *reg;
+               unsigned  old_r = permutation[r];
+               unsigned  r2;
+               ir_node  *in[2];
+               ir_node  *perm;
+               ir_node  *proj0;
+               ir_node  *proj1;
+
+               if (old_r == r) {
+                       ++r;
+                       continue;
+               }
+
+               /* we shouldn't have copies from 1 value to multiple destinations left*/
+               assert(n_used[old_r] == 1);
+
+               /* exchange old_r and r2; after that old_r is a fixed point */
+               r2 = permutation[old_r];
+
+               in[0] = assignments[r2];
+               in[1] = assignments[old_r];
+               perm = be_new_Perm(cls, block, 2, in);
+               sched_add_before(before, perm);
+               DB((dbg, LEVEL_2, "Perm %+F (perm %+F,%+F, before %+F)\n",
+                   perm, in[0], in[1], before));
+
+               proj0 = new_r_Proj(block, perm, get_irn_mode(in[0]), 0);
+               mark_as_copy_of(proj0, in[0]);
+               reg = arch_register_for_index(cls, old_r);
+               use_reg(proj0, reg);
+
+               proj1 = new_r_Proj(block, perm, get_irn_mode(in[1]), 1);
+               mark_as_copy_of(proj1, in[1]);
+               reg = arch_register_for_index(cls, r2);
+               use_reg(proj1, reg);
+
+               /* 1 value is now in the correct register */
+               permutation[old_r] = old_r;
+               /* the source of r changed to r2 */
+               permutation[r] = r2;
+
+               /* if we have reached a fixpoint update data structures */
+               if (live_nodes != NULL) {
+                       ir_nodeset_remove(live_nodes, in[0]);
+                       ir_nodeset_remove(live_nodes, in[1]);
+                       ir_nodeset_remove(live_nodes, proj0);
+                       ir_nodeset_insert(live_nodes, proj1);
+               }
+       }
+
+#ifdef DEBUG_libfirm
+       /* now we should only have fixpoints left */
+       for (r = 0; r < n_regs; ++r) {
+               assert(permutation[r] == r);
+       }
+#endif
+}
+
+/**
+ * Free regs for values last used.
+ *
+ * @param live_nodes   set of live nodes, will be updated
+ * @param node         the node to consider
+ */
+static void free_last_uses(ir_nodeset_t *live_nodes, ir_node *node)
+{
+       allocation_info_t     *info      = get_allocation_info(node);
+       const unsigned        *last_uses = &info->last_uses;
+       int                    arity     = get_irn_arity(node);
+       int                    i;
+
+       for (i = 0; i < arity; ++i) {
+               ir_node *op;
+
+               /* check if one operand is the last use */
+               if (!rbitset_is_set(last_uses, i))
+                       continue;
+
+               op = get_irn_n(node, i);
+               free_reg_of_value(op);
+               ir_nodeset_remove(live_nodes, op);
+       }
+}
+
+/**
+ * change inputs of a node to the current value (copies/perms)
+ */
+static void rewire_inputs(ir_node *node)
+{
+       int i;
+       int arity = get_irn_arity(node);
+
+       for (i = 0; i < arity; ++i) {
+               ir_node           *op = get_irn_n(node, i);
+               allocation_info_t *info = try_get_allocation_info(op);
+
+               if (info == NULL)
+                       continue;
+
+               info = get_allocation_info(info->original_value);
+               if (info->current_value != op) {
+                       set_irn_n(node, i, info->current_value);
+               }
+       }
+}
+
+/**
+ * Create a bitset of registers occupied with value living through an
+ * instruction
+ */
+static void determine_live_through_regs(unsigned *bitset, ir_node *node)
+{
+       const allocation_info_t *info = get_allocation_info(node);
+       unsigned r;
+       int i;
+       int arity;
+
+       /* mark all used registers as potentially live-through */
+       for (r = 0; r < n_regs; ++r) {
+               if (assignments[r] == NULL)
+                       continue;
+               if (!rbitset_is_set(normal_regs, r))
+                       continue;
+
+               rbitset_set(bitset, r);
+       }
+
+       /* remove registers of value dying at the instruction */
+       arity = get_irn_arity(node);
+       for (i = 0; i < arity; ++i) {
+               ir_node               *op;
+               const arch_register_t *reg;
+
+               if (!rbitset_is_set(&info->last_uses, i))
+                       continue;
+
+               op  = get_irn_n(node, i);
+               reg = arch_get_irn_register(op);
+               rbitset_clear(bitset, arch_register_get_index(reg));
+       }
+}
+
+/**
+ * Enforce constraints at a node by live range splits.
+ *
+ * @param  live_nodes  the set of live nodes, might be changed
+ * @param  node        the current node
+ */
+static void enforce_constraints(ir_nodeset_t *live_nodes, ir_node *node,
+                                unsigned *forbidden_regs)
+{
+       int arity = get_irn_arity(node);
+       int i, res;
+       hungarian_problem_t *bp;
+       unsigned l, r;
+       unsigned *assignment;
+
+       /* construct a list of register occupied by live-through values */
+       unsigned *live_through_regs = NULL;
+
+       /* see if any use constraints are not met */
+       bool good = true;
+       for (i = 0; i < arity; ++i) {
+               ir_node                   *op = get_irn_n(node, i);
+               const arch_register_t     *reg;
+               const arch_register_req_t *req;
+               const unsigned            *limited;
+               unsigned                  r;
+
+               if (!arch_irn_consider_in_reg_alloc(cls, op))
+                       continue;
+
+               /* are there any limitations for the i'th operand? */
+               req = arch_get_register_req(node, i);
+               if (!(req->type & arch_register_req_type_limited))
+                       continue;
+
+               limited = req->limited;
+               reg     = arch_get_irn_register(op);
+               r       = arch_register_get_index(reg);
+               if (!rbitset_is_set(limited, r)) {
+                       /* found an assignment outside the limited set */
+                       good = false;
+                       break;
+               }
+       }
+
+       /* is any of the live-throughs using a constrained output register? */
+       if (get_irn_mode(node) == mode_T) {
+               const ir_edge_t *edge;
+
+               foreach_out_edge(node, edge) {
+                       ir_node *proj = get_edge_src_irn(edge);
+                       const arch_register_req_t *req;
+
+                       if (!arch_irn_consider_in_reg_alloc(cls, proj))
+                               continue;
+
+                       req = arch_get_register_req_out(proj);
+                       if (!(req->type & arch_register_req_type_limited))
+                               continue;
+
+                       if (live_through_regs == NULL) {
+                               rbitset_alloca(live_through_regs, n_regs);
+                               determine_live_through_regs(live_through_regs, node);
+                       }
+
+                       rbitset_or(forbidden_regs, req->limited, n_regs);
+                       if (rbitsets_have_common(req->limited, live_through_regs, n_regs)) {
+                               good = false;
+                       }
+               }
+       } else {
+               if (arch_irn_consider_in_reg_alloc(cls, node)) {
+                       const arch_register_req_t *req = arch_get_register_req_out(node);
+                       if (req->type & arch_register_req_type_limited) {
+                               rbitset_alloca(live_through_regs, n_regs);
+                               determine_live_through_regs(live_through_regs, node);
+                               if (rbitsets_have_common(req->limited, live_through_regs, n_regs)) {
+                                       good = false;
+                                       rbitset_or(forbidden_regs, req->limited, n_regs);
+                               }
+                       }
+               }
+       }
+
+       if (good)
+               return;
+
+       /* create these arrays if we haven't yet */
+       if (live_through_regs == NULL) {
+               rbitset_alloca(live_through_regs, n_regs);
+       }
+
+       /* at this point we have to construct a bipartite matching problem to see
+        * which values should go to which registers
+        * Note: We're building the matrix in "reverse" - source registers are
+        *       right, destinations left because this will produce the solution
+        *       in the format required for permute_values.
+        */
+       bp = hungarian_new(n_regs, n_regs, HUNGARIAN_MATCH_PERFECT);
+
+       /* add all combinations, then remove not allowed ones */
+       for (l = 0; l < n_regs; ++l) {
+               if (!rbitset_is_set(normal_regs, l)) {
+                       hungarian_add(bp, l, l, 1);
+                       continue;
+               }
+
+               for (r = 0; r < n_regs; ++r) {
+                       if (!rbitset_is_set(normal_regs, r))
+                               continue;
+                       /* livethrough values may not use constrainted output registers */
+                       if (rbitset_is_set(live_through_regs, l)
+                                       && rbitset_is_set(forbidden_regs, r))
+                               continue;
+
+                       hungarian_add(bp, r, l, l == r ? 9 : 8);
+               }
+       }
+
+       for (i = 0; i < arity; ++i) {
+               ir_node                   *op = get_irn_n(node, i);
+               const arch_register_t     *reg;
+               const arch_register_req_t *req;
+               const unsigned            *limited;
+               unsigned                   current_reg;
+
+               if (!arch_irn_consider_in_reg_alloc(cls, op))
+                       continue;
+
+               req = arch_get_register_req(node, i);
+               if (!(req->type & arch_register_req_type_limited))
+                       continue;
+
+               limited     = req->limited;
+               reg         = arch_get_irn_register(op);
+               current_reg = arch_register_get_index(reg);
+               for (r = 0; r < n_regs; ++r) {
+                       if (rbitset_is_set(limited, r))
+                               continue;
+                       hungarian_remv(bp, r, current_reg);
+               }
+       }
+
+       //hungarian_print_cost_matrix(bp, 1);
+       hungarian_prepare_cost_matrix(bp, HUNGARIAN_MODE_MAXIMIZE_UTIL);
+
+       assignment = ALLOCAN(unsigned, n_regs);
+       res = hungarian_solve(bp, (int*) assignment, NULL, 0);
+       assert(res == 0);
+
+#if 0
+       fprintf(stderr, "Swap result:");
+       for (i = 0; i < (int) n_regs; ++i) {
+               fprintf(stderr, " %d", assignment[i]);
+       }
+       fprintf(stderr, "\n");
+#endif
+
+       hungarian_free(bp);
+
+       permute_values(live_nodes, node, assignment);
+}
+
+/** test wether a node @p n is a copy of the value of node @p of */
+static bool is_copy_of(ir_node *value, ir_node *test_value)
+{
+       allocation_info_t *test_info;
+       allocation_info_t *info;
+
+       if (value == test_value)
+               return true;
+
+       info      = get_allocation_info(value);
+       test_info = get_allocation_info(test_value);
+       return test_info->original_value == info->original_value;
+}
+
+/**
+ * find a value in the end-assignment of a basic block
+ * @returns the index into the assignment array if found
+ *          -1 if not found
+ */
+static int find_value_in_block_info(block_info_t *info, ir_node *value)
+{
+       unsigned   r;
+       ir_node  **assignments = info->assignments;
+       for (r = 0; r < n_regs; ++r) {
+               ir_node *a_value = assignments[r];
+
+               if (a_value == NULL)
+                       continue;
+               if (is_copy_of(a_value, value))
+                       return (int) r;
+       }
+
+       return -1;
+}
+
+/**
+ * Create the necessary permutations at the end of a basic block to fullfill
+ * the register assignment for phi-nodes in the next block
+ */
+static void add_phi_permutations(ir_node *block, int p)
+{
+       unsigned   r;
+       unsigned  *permutation;
+       ir_node  **old_assignments;
+       bool       need_permutation;
+       ir_node   *node;
+       ir_node   *pred = get_Block_cfgpred_block(block, p);
+
+       block_info_t *pred_info = get_block_info(pred);
+
+       /* predecessor not processed yet? nothing to do */
+       if (!pred_info->processed)
+               return;
+
+       permutation = ALLOCAN(unsigned, n_regs);
+       for (r = 0; r < n_regs; ++r) {
+               permutation[r] = r;
+       }
+
+       /* check phi nodes */
+       need_permutation = false;
+       node = sched_first(block);
+       for ( ; is_Phi(node); node = sched_next(node)) {
+               const arch_register_t *reg;
+               int                    regn;
+               int                    a;
+               ir_node               *op;
+
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+
+               op = get_Phi_pred(node, p);
+               if (!arch_irn_consider_in_reg_alloc(cls, op))
+                       continue;
+
+               a = find_value_in_block_info(pred_info, op);
+               assert(a >= 0);
+
+               reg  = arch_get_irn_register(node);
+               regn = arch_register_get_index(reg);
+               if (regn != a) {
+                       permutation[regn] = a;
+                       need_permutation  = true;
+               }
+       }
+
+       if (need_permutation) {
+               /* permute values at end of predecessor */
+               old_assignments = assignments;
+               assignments     = pred_info->assignments;
+               permute_values(NULL, be_get_end_of_block_insertion_point(pred),
+                                                permutation);
+               assignments = old_assignments;
+       }
+
+       /* change phi nodes to use the copied values */
+       node = sched_first(block);
+       for ( ; is_Phi(node); node = sched_next(node)) {
+               int      a;
+               ir_node *op;
+
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+
+               op = get_Phi_pred(node, p);
+               /* no need to do anything for Unknown inputs */
+               if (!arch_irn_consider_in_reg_alloc(cls, op))
+                       continue;
+
+               /* we have permuted all values into the correct registers so we can
+                  simply query which value occupies the phis register in the
+                  predecessor */
+               a  = arch_register_get_index(arch_get_irn_register(node));
+               op = pred_info->assignments[a];
+               set_Phi_pred(node, p, op);
+       }
+}
+
+/**
+ * Set preferences for a phis register based on the registers used on the
+ * phi inputs.
+ */
+static void adapt_phi_prefs(ir_node *phi)
+{
+       int i;
+       int arity = get_irn_arity(phi);
+       ir_node           *block = get_nodes_block(phi);
+       allocation_info_t *info  = get_allocation_info(phi);
+
+       for (i = 0; i < arity; ++i) {
+               ir_node               *op  = get_irn_n(phi, i);
+               const arch_register_t *reg = arch_get_irn_register(op);
+               ir_node               *pred_block;
+               block_info_t          *pred_block_info;
+               float                  weight;
+               unsigned               r;
+
+               if (reg == NULL)
+                       continue;
+               /* we only give the bonus if the predecessor already has registers
+                * assigned, otherwise we only see a dummy value
+                * and any conclusions about its register are useless */
+               pred_block = get_Block_cfgpred_block(block, i);
+               pred_block_info = get_block_info(pred_block);
+               if (!pred_block_info->processed)
+                       continue;
+
+               /* give bonus for already assigned register */
+               weight = get_block_execfreq(execfreqs, pred_block);
+               r      = arch_register_get_index(reg);
+               info->prefs[r] += weight * AFF_PHI;
+       }
+}
+
+/**
+ * After a phi has been assigned a register propagate preference inputs
+ * to the phi inputs.
+ */
+static void propagate_phi_register(ir_node *phi, unsigned assigned_r)
+{
+       int      i;
+       ir_node *block = get_nodes_block(phi);
+       int      arity = get_irn_arity(phi);
+
+       for (i = 0; i < arity; ++i) {
+               ir_node           *op         = get_Phi_pred(phi, i);
+               allocation_info_t *info       = get_allocation_info(op);
+               ir_node           *pred_block = get_Block_cfgpred_block(block, i);
+               unsigned           r;
+               float              weight
+                       = get_block_execfreq(execfreqs, pred_block) * AFF_PHI;
+
+               if (info->prefs[assigned_r] >= weight)
+                       continue;
+
+               /* promote the prefered register */
+               for (r = 0; r < n_regs; ++r) {
+                       if (info->prefs[r] > -weight) {
+                               info->prefs[r] = -weight;
+                       }
+               }
+               info->prefs[assigned_r] = weight;
+
+               if (is_Phi(op))
+                       propagate_phi_register(op, assigned_r);
+       }
+}
+
+static void assign_phi_registers(ir_node *block)
+{
+       int                  n_phis = 0;
+       int                  n;
+       int                  res;
+       int                 *assignment;
+       ir_node             *node;
+       hungarian_problem_t *bp;
+
+       /* count phi nodes */
+       sched_foreach(block, node) {
+               if (!is_Phi(node))
+                       break;
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+               ++n_phis;
+       }
+
+       if (n_phis == 0)
+               return;
+
+       /* build a bipartite matching problem for all phi nodes */
+       bp = hungarian_new(n_phis, n_regs, HUNGARIAN_MATCH_PERFECT);
+       n  = 0;
+       sched_foreach(block, node) {
+               unsigned r;
+
+               allocation_info_t *info;
+               if (!is_Phi(node))
+                       break;
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+
+               /* give boni for predecessor colorings */
+               adapt_phi_prefs(node);
+               /* add stuff to bipartite problem */
+               info = get_allocation_info(node);
+               DB((dbg, LEVEL_3, "Prefs for %+F: ", node));
+               for (r = 0; r < n_regs; ++r) {
+                       float costs;
+
+                       if (!rbitset_is_set(normal_regs, r))
+                               continue;
+
+                       costs = info->prefs[r];
+                       costs = costs < 0 ? -logf(-costs+1) : logf(costs+1);
+                       costs *= 100;
+                       costs += 10000;
+                       hungarian_add(bp, n, r, costs);
+                       DB((dbg, LEVEL_3, " %s(%f)", arch_register_for_index(cls, r)->name,
+                                               info->prefs[r]));
+               }
+               DB((dbg, LEVEL_3, "\n"));
+               ++n;
+       }
+
+       //hungarian_print_cost_matrix(bp, 7);
+       hungarian_prepare_cost_matrix(bp, HUNGARIAN_MODE_MAXIMIZE_UTIL);
+
+       assignment = ALLOCAN(int, n_regs);
+       res        = hungarian_solve(bp, assignment, NULL, 0);
+       assert(res == 0);
+
+       /* apply results */
+       n = 0;
+       sched_foreach(block, node) {
+               unsigned               r;
+               const arch_register_t *reg;
+
+               if (!is_Phi(node))
+                       break;
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+
+               r   = assignment[n++];
+               assert(rbitset_is_set(normal_regs, r));
+               reg = arch_register_for_index(cls, r);
+               DB((dbg, LEVEL_2, "Assign %+F -> %s\n", node, reg->name));
+               use_reg(node, reg);
+
+               /* adapt preferences for phi inputs */
+               if (propagate_phi_registers)
+                       propagate_phi_register(node, r);
+       }
+}
+
+/**
+ * Walker: assign registers to all nodes of a block that
+ * need registers from the currently considered register class.
+ */
+static void allocate_coalesce_block(ir_node *block, void *data)
+{
+       int                    i;
+       ir_nodeset_t           live_nodes;
+       ir_node               *node;
+       int                    n_preds;
+       block_info_t          *block_info;
+       block_info_t         **pred_block_infos;
+       ir_node              **phi_ins;
+       unsigned              *forbidden_regs; /**< collects registers which must
+                                               not be used for optimistic splits */
+
+       (void) data;
+       DB((dbg, LEVEL_2, "* Block %+F\n", block));
+
+       /* clear assignments */
+       block_info  = get_block_info(block);
+       assignments = block_info->assignments;
+
+       ir_nodeset_init(&live_nodes);
+
+       /* gather regalloc infos of predecessor blocks */
+       n_preds             = get_Block_n_cfgpreds(block);
+       pred_block_infos    = ALLOCAN(block_info_t*, n_preds);
+       for (i = 0; i < n_preds; ++i) {
+               ir_node      *pred      = get_Block_cfgpred_block(block, i);
+               block_info_t *pred_info = get_block_info(pred);
+               pred_block_infos[i]     = pred_info;
+       }
+
+       phi_ins = ALLOCAN(ir_node*, n_preds);
+
+       /* collect live-in nodes and preassigned values */
+       be_lv_foreach(lv, block, be_lv_state_in, i) {
+               const arch_register_t *reg;
+               int                    p;
+               bool                   need_phi = false;
+
+               node = be_lv_get_irn(lv, block, i);
+               if (!arch_irn_consider_in_reg_alloc(cls, node))
+                       continue;
+
+               /* check all predecessors for this value, if it is not everywhere the
+                  same or unknown then we have to construct a phi
+                  (we collect the potential phi inputs here) */
+               for (p = 0; p < n_preds; ++p) {
+                       block_info_t *pred_info = pred_block_infos[p];
+
+                       if (!pred_info->processed) {
+                               /* use node for now, it will get fixed later */
+                               phi_ins[p] = node;
+                               need_phi   = true;
+                       } else {
+                               int a = find_value_in_block_info(pred_info, node);
+
+                               /* must live out of predecessor */
+                               assert(a >= 0);
+                               phi_ins[p] = pred_info->assignments[a];
+                               /* different value from last time? then we need a phi */
+                               if (p > 0 && phi_ins[p-1] != phi_ins[p]) {
+                                       need_phi = true;
+                               }
+                       }
+               }
+
+               if (need_phi) {
+                       ir_mode                   *mode = get_irn_mode(node);
+                       const arch_register_req_t *req  = get_default_req_current_cls();
+                       ir_node                   *phi;
+
+                       phi = new_r_Phi(block, n_preds, phi_ins, mode);
+                       be_set_phi_reg_req(phi, req);
+
+                       DB((dbg, LEVEL_3, "Create Phi %+F (for %+F) -", phi, node));
+#ifdef DEBUG_libfirm
+                       {
+                               int i;
+                               for (i = 0; i < n_preds; ++i) {
+                                       DB((dbg, LEVEL_3, " %+F", phi_ins[i]));
+                               }
+                               DB((dbg, LEVEL_3, "\n"));
+                       }
+#endif
+                       mark_as_copy_of(phi, node);
+                       sched_add_after(block, phi);
+
+                       node = phi;
+               } else {
+                       allocation_info_t *info = get_allocation_info(node);
+                       info->current_value = phi_ins[0];
+
+                       /* Grab 1 of the inputs we constructed (might not be the same as
+                        * "node" as we could see the same copy of the value in all
+                        * predecessors */
+                       node = phi_ins[0];
+               }
+
+               /* if the node already has a register assigned use it */
+               reg = arch_get_irn_register(node);
+               if (reg != NULL) {
+                       use_reg(node, reg);
+               }
+
+               /* remember that this node is live at the beginning of the block */
+               ir_nodeset_insert(&live_nodes, node);
+       }
+
+       rbitset_alloca(forbidden_regs, n_regs);
+
+       /* handle phis... */
+       assign_phi_registers(block);
+
+       /* all live-ins must have a register */
+#ifdef DEBUG_libfirm
+       {
+               ir_nodeset_iterator_t  iter;
+               foreach_ir_nodeset(&live_nodes, node, iter) {
+                       const arch_register_t *reg = arch_get_irn_register(node);
+                       assert(reg != NULL);
+               }
+       }
+#endif
+
+       /* assign instructions in the block */
+       sched_foreach(block, node) {
+               int i;
+               int arity;
+
+               /* phis are already assigned */
+               if (is_Phi(node))
+                       continue;
+
+               rewire_inputs(node);
+
+               /* enforce use constraints */
+               rbitset_clear_all(forbidden_regs, n_regs);
+               enforce_constraints(&live_nodes, node, forbidden_regs);
+
+               rewire_inputs(node);
+
+               /* we may not use registers used for inputs for optimistic splits */
+               arity = get_irn_arity(node);
+               for (i = 0; i < arity; ++i) {
+                       ir_node *op = get_irn_n(node, i);
+                       const arch_register_t *reg;
+                       if (!arch_irn_consider_in_reg_alloc(cls, op))
+                               continue;
+
+                       reg = arch_get_irn_register(op);
+                       rbitset_set(forbidden_regs, arch_register_get_index(reg));
+               }
+
+               /* free registers of values last used at this instruction */
+               free_last_uses(&live_nodes, node);
+
+               /* assign output registers */
+               /* TODO: 2 phases: first: pre-assigned ones, 2nd real regs */
+               if (get_irn_mode(node) == mode_T) {
+                       const ir_edge_t *edge;
+                       foreach_out_edge(node, edge) {
+                               ir_node *proj = get_edge_src_irn(edge);
+                               if (!arch_irn_consider_in_reg_alloc(cls, proj))
+                                       continue;
+                               assign_reg(block, proj, forbidden_regs);
+                       }
+               } else if (arch_irn_consider_in_reg_alloc(cls, node)) {
+                       assign_reg(block, node, forbidden_regs);
+               }
+       }
+
+       ir_nodeset_destroy(&live_nodes);
+       assignments = NULL;
+
+       block_info->processed = true;
+
+       /* permute values at end of predecessor blocks in case of phi-nodes */
+       if (n_preds > 1) {
+               int p;
+               for (p = 0; p < n_preds; ++p) {
+                       add_phi_permutations(block, p);
+               }
+       }
+
+       /* if we have exactly 1 successor then we might be able to produce phi
+          copies now */
+       if (get_irn_n_edges_kind(block, EDGE_KIND_BLOCK) == 1) {
+               const ir_edge_t *edge
+                       = get_irn_out_edge_first_kind(block, EDGE_KIND_BLOCK);
+               ir_node      *succ      = get_edge_src_irn(edge);
+               int           p         = get_edge_src_pos(edge);
+               block_info_t *succ_info = get_block_info(succ);
+
+               if (succ_info->processed) {
+                       add_phi_permutations(succ, p);
+               }
+       }
+}
+
+typedef struct block_costs_t block_costs_t;
+struct block_costs_t {
+       float costs;   /**< costs of the block */
+       int   dfs_num; /**< depth first search number (to detect backedges) */
+};
+
+static int cmp_block_costs(const void *d1, const void *d2)
+{
+       const ir_node       * const *block1 = d1;
+       const ir_node       * const *block2 = d2;
+       const block_costs_t *info1  = get_irn_link(*block1);
+       const block_costs_t *info2  = get_irn_link(*block2);
+       return QSORT_CMP(info2->costs, info1->costs);
+}
+
+static void determine_block_order(void)
+{
+       int i;
+       ir_node **blocklist = be_get_cfgpostorder(irg);
+       int       n_blocks  = ARR_LEN(blocklist);
+       int       dfs_num   = 0;
+       pdeq     *worklist  = new_pdeq();
+       ir_node **order     = XMALLOCN(ir_node*, n_blocks);
+       int       order_p   = 0;
+
+       /* clear block links... */
+       for (i = 0; i < n_blocks; ++i) {
+               ir_node *block = blocklist[i];
+               set_irn_link(block, NULL);
+       }
+
+       /* walk blocks in reverse postorder, the costs for each block are the
+        * sum of the costs of its predecessors (excluding the costs on backedges
+        * which we can't determine) */
+       for (i = n_blocks-1; i >= 0; --i) {
+               block_costs_t *cost_info;
+               ir_node *block = blocklist[i];
+
+               float execfreq   = get_block_execfreq(execfreqs, block);
+               float costs      = execfreq;
+               int   n_cfgpreds = get_Block_n_cfgpreds(block);
+               int   p;
+               for (p = 0; p < n_cfgpreds; ++p) {
+                       ir_node       *pred_block = get_Block_cfgpred_block(block, p);
+                       block_costs_t *pred_costs = get_irn_link(pred_block);
+                       /* we don't have any info for backedges */
+                       if (pred_costs == NULL)
+                               continue;
+                       costs += pred_costs->costs;
+               }
+
+               cost_info          = OALLOCZ(&obst, block_costs_t);
+               cost_info->costs   = costs;
+               cost_info->dfs_num = dfs_num++;
+               set_irn_link(block, cost_info);
+       }
+
+       /* sort array by block costs */
+       qsort(blocklist, n_blocks, sizeof(blocklist[0]), cmp_block_costs);
+
+       ir_reserve_resources(irg, IR_RESOURCE_BLOCK_VISITED);
+       inc_irg_block_visited(irg);
+
+       for (i = 0; i < n_blocks; ++i) {
+               ir_node       *block = blocklist[i];
+               if (Block_block_visited(block))
+                       continue;
+
+               /* continually add predecessors with highest costs to worklist
+                * (without using backedges) */
+               do {
+                       block_costs_t *info       = get_irn_link(block);
+                       ir_node       *best_pred  = NULL;
+                       float          best_costs = -1;
+                       int            n_cfgpred  = get_Block_n_cfgpreds(block);
+                       int            i;
+
+                       pdeq_putr(worklist, block);
+                       mark_Block_block_visited(block);
+                       for (i = 0; i < n_cfgpred; ++i) {
+                               ir_node       *pred_block = get_Block_cfgpred_block(block, i);
+                               block_costs_t *pred_info  = get_irn_link(pred_block);
+
+                               /* ignore backedges */
+                               if (pred_info->dfs_num > info->dfs_num)
+                                       continue;
+
+                               if (info->costs > best_costs) {
+                                       best_costs = info->costs;
+                                       best_pred  = pred_block;
+                               }
+                       }
+                       block = best_pred;
+               } while(block != NULL && !Block_block_visited(block));
+
+               /* now put all nodes in the worklist in our final order */
+               while (!pdeq_empty(worklist)) {
+                       ir_node *pblock = pdeq_getr(worklist);
+                       assert(order_p < n_blocks);
+                       order[order_p++] = pblock;
+               }
+       }
+       assert(order_p == n_blocks);
+       del_pdeq(worklist);
+
+       ir_free_resources(irg, IR_RESOURCE_BLOCK_VISITED);
+
+       DEL_ARR_F(blocklist);
+
+       obstack_free(&obst, NULL);
+       obstack_init(&obst);
+
+       block_order   = order;
+       n_block_order = n_blocks;
+}
+
+/**
+ * Run the register allocator for the current register class.
+ */
+static void be_pref_alloc_cls(void)
+{
+       int i;
+
+       lv = be_assure_liveness(birg);
+       be_liveness_assure_sets(lv);
+
+       ir_reserve_resources(irg, IR_RESOURCE_IRN_LINK);
+
+       DB((dbg, LEVEL_2, "=== Allocating registers of %s ===\n", cls->name));
+
+       be_clear_links(irg);
+
+       irg_block_walk_graph(irg, NULL, analyze_block, NULL);
+       if (create_congruence_classes)
+               combine_congruence_classes();
+
+       for (i = 0; i < n_block_order; ++i) {
+               ir_node *block = block_order[i];
+               allocate_coalesce_block(block, NULL);
+       }
+
+       ir_free_resources(irg, IR_RESOURCE_IRN_LINK);
+}
+
+static void dump(int mask, ir_graph *irg, const char *suffix,
+                 void (*dumper)(ir_graph *, const char *))
+{
+       if(birg->main_env->options->dump_flags & mask)
+               be_dump(irg, suffix, dumper);
+}
+
+/**
+ * Run the spiller on the current graph.
+ */
+static void spill(void)
+{
+       /* make sure all nodes show their real register pressure */
+       BE_TIMER_PUSH(t_ra_constr);
+       be_pre_spill_prepare_constr(birg, cls);
+       BE_TIMER_POP(t_ra_constr);
+
+       dump(DUMP_RA, irg, "-spillprepare", dump_ir_block_graph_sched);
+
+       /* spill */
+       BE_TIMER_PUSH(t_ra_spill);
+       be_do_spill(birg, cls);
+       BE_TIMER_POP(t_ra_spill);
+
+       BE_TIMER_PUSH(t_ra_spill_apply);
+       check_for_memory_operands(irg);
+       BE_TIMER_POP(t_ra_spill_apply);
+
+       dump(DUMP_RA, irg, "-spill", dump_ir_block_graph_sched);
+}
+
+/**
+ * The pref register allocator for a whole procedure.
+ */
+static void be_pref_alloc(be_irg_t *new_birg)
+{
+       const arch_env_t *arch_env = new_birg->main_env->arch_env;
+       int   n_cls                = arch_env_get_n_reg_class(arch_env);
+       int   c;
+
+       obstack_init(&obst);
+
+       birg      = new_birg;
+       irg       = be_get_birg_irg(birg);
+       execfreqs = birg->exec_freq;
+
+       /* determine a good coloring order */
+       determine_block_order();
+
+       for (c = 0; c < n_cls; ++c) {
+               cls             = arch_env_get_reg_class(arch_env, c);
+               default_cls_req = NULL;
+               if (arch_register_class_flags(cls) & arch_register_class_flag_manual_ra)
+                       continue;
+
+               stat_ev_ctx_push_str("regcls", cls->name);
+
+               n_regs      = arch_register_class_n_regs(cls);
+               normal_regs = rbitset_malloc(n_regs);
+               be_abi_set_non_ignore_regs(birg->abi, cls, normal_regs);
+
+               spill();
+
+               /* verify schedule and register pressure */
+               BE_TIMER_PUSH(t_verify);
+               if (birg->main_env->options->vrfy_option == BE_VRFY_WARN) {
+                       be_verify_schedule(birg);
+                       be_verify_register_pressure(birg, cls, irg);
+               } else if (birg->main_env->options->vrfy_option == BE_VRFY_ASSERT) {
+                       assert(be_verify_schedule(birg) && "Schedule verification failed");
+                       assert(be_verify_register_pressure(birg, cls, irg)
+                               && "Register pressure verification failed");
+               }
+               BE_TIMER_POP(t_verify);
+
+               BE_TIMER_PUSH(t_ra_color);
+               be_pref_alloc_cls();
+               BE_TIMER_POP(t_ra_color);
+
+               /* we most probably constructed new Phis so liveness info is invalid
+                * now */
+               /* TODO: test liveness_introduce */
+               be_liveness_invalidate(lv);
+               free(normal_regs);
+
+               stat_ev_ctx_pop("regcls");
+       }
+
+       BE_TIMER_PUSH(t_ra_spill_apply);
+       be_abi_fix_stack_nodes(birg->abi);
+       BE_TIMER_POP(t_ra_spill_apply);
+
+       BE_TIMER_PUSH(t_verify);
+       if (birg->main_env->options->vrfy_option == BE_VRFY_WARN) {
+               be_verify_register_allocation(birg);
+       } else if (birg->main_env->options->vrfy_option == BE_VRFY_ASSERT) {
+               assert(be_verify_register_allocation(birg)
+                               && "Register allocation invalid");
+       }
+       BE_TIMER_POP(t_verify);
+
+       obstack_free(&obst, NULL);
+}
+
+/**
+ * Initializes this module.
+ */
+void be_init_pref_alloc(void)
+{
+       static be_ra_t be_ra_pref = {
+               be_pref_alloc,
+       };
+       lc_opt_entry_t *be_grp              = lc_opt_get_grp(firm_opt_get_root(), "be");
+       lc_opt_entry_t *prefalloc_group = lc_opt_get_grp(be_grp, "prefalloc");
+       lc_opt_add_table(prefalloc_group, options);
+
+       be_register_allocator("pref", &be_ra_pref);
+       FIRM_DBG_REGISTER(dbg, "firm.be.prefalloc");
+}
+
+BE_REGISTER_MODULE_CONSTRUCTOR(be_init_pref_alloc);