X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=type.c;h=d5d4a014838d5db796614b1502a5a95b6ddf7ab4;hb=46ef2e565f46ee5876872ef250796e428c3ac6df;hp=d4ad8b94afe52a7307af6b5d46632a6fba205d3f;hpb=220bd1d88703eede6a4891f3014708c8259b303e;p=cparser diff --git a/type.c b/type.c index d4ad8b9..d5d4a01 100644 --- a/type.c +++ b/type.c @@ -1,22 +1,191 @@ +/* + * This file is part of cparser. + * Copyright (C) 2007-2008 Matthias Braun + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA + * 02111-1307, USA. + */ #include #include #include + #include "type_t.h" +#include "entity_t.h" +#include "symbol_t.h" #include "type_hash.h" #include "adt/error.h" +#include "adt/util.h" +#include "lang_features.h" static struct obstack _type_obst; -struct obstack *type_obst = &_type_obst; static FILE *out; -static int type_visited = 0; +struct obstack *type_obst = &_type_obst; +static int type_visited = 0; +static bool print_implicit_array_size = false; static void intern_print_type_pre(const type_t *type, bool top); static void intern_print_type_post(const type_t *type, bool top); +typedef struct atomic_type_properties_t atomic_type_properties_t; +struct atomic_type_properties_t { + unsigned size; /**< type size in bytes */ + unsigned alignment; /**< type alignment in bytes */ + unsigned flags; /**< type flags from atomic_type_flag_t */ +}; + +static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = { + //ATOMIC_TYPE_INVALID = 0, + [ATOMIC_TYPE_VOID] = { + .size = 0, + .alignment = 0, + .flags = ATOMIC_TYPE_FLAG_NONE + }, + [ATOMIC_TYPE_WCHAR_T] = { + .size = (unsigned)-1, + .alignment = (unsigned)-1, + /* signed flag will be set when known */ + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_CHAR] = { + .size = 1, + .alignment = 1, + /* signed flag will be set when known */ + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED + }, + [ATOMIC_TYPE_USHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_INT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UINT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_BOOL] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_FLOAT] = { + .size = 4, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_DOUBLE] = { + .size = 8, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_LONG_DOUBLE] = { + .size = 12, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + /* complex and imaginary types are set in init_types */ +}; + void init_types(void) { obstack_init(type_obst); + + atomic_type_properties_t *props = atomic_type_properties; + + if (char_is_signed) { + props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED; + } + + unsigned int_size = machine_size < 32 ? 2 : 4; + unsigned long_size = machine_size < 64 ? 4 : 8; + unsigned llong_size = machine_size < 32 ? 4 : 8; + + props[ATOMIC_TYPE_INT].size = int_size; + props[ATOMIC_TYPE_INT].alignment = int_size; + props[ATOMIC_TYPE_UINT].size = int_size; + props[ATOMIC_TYPE_UINT].alignment = int_size; + props[ATOMIC_TYPE_LONG].size = long_size; + props[ATOMIC_TYPE_LONG].alignment = long_size; + props[ATOMIC_TYPE_ULONG].size = long_size; + props[ATOMIC_TYPE_ULONG].alignment = long_size; + props[ATOMIC_TYPE_LONGLONG].size = llong_size; + props[ATOMIC_TYPE_LONGLONG].alignment = llong_size; + props[ATOMIC_TYPE_ULONGLONG].size = llong_size; + props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size; + + /* TODO: backend specific, need a way to query the backend for this. + * The following are good settings for x86 */ + props[ATOMIC_TYPE_FLOAT].alignment = 4; + props[ATOMIC_TYPE_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONGLONG].alignment = 4; + props[ATOMIC_TYPE_ULONGLONG].alignment = 4; + + /* TODO: make this configurable for platforms which do not use byte sized + * bools. */ + props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR]; + + props[ATOMIC_TYPE_WCHAR_T] = props[wchar_atomic_kind]; } void exit_types(void) @@ -36,222 +205,425 @@ void inc_type_visited(void) void print_type_qualifiers(type_qualifiers_t qualifiers) { - if(qualifiers & TYPE_QUALIFIER_CONST) fputs("const ", out); - if(qualifiers & TYPE_QUALIFIER_VOLATILE) fputs("volatile ", out); - if(qualifiers & TYPE_QUALIFIER_RESTRICT) fputs("restrict ", out); + int first = 1; + if (qualifiers & TYPE_QUALIFIER_CONST) { + fputs(" const" + first, out); + first = 0; + } + if (qualifiers & TYPE_QUALIFIER_VOLATILE) { + fputs(" volatile" + first, out); + first = 0; + } + if (qualifiers & TYPE_QUALIFIER_RESTRICT) { + fputs(" restrict" + first, out); + first = 0; + } } -static -void print_atomic_type(const atomic_type_t *type) -{ - print_type_qualifiers(type->type.qualifiers); - - const char *s; - switch(type->akind) { - case ATOMIC_TYPE_INVALID: s = "INVALIDATOMIC"; break; - case ATOMIC_TYPE_VOID: s = "void"; break; - case ATOMIC_TYPE_BOOL: s = "_Bool"; break; - case ATOMIC_TYPE_CHAR: s = "char"; break; - case ATOMIC_TYPE_SCHAR: s = "signed char"; break; - case ATOMIC_TYPE_UCHAR: s = "unsigned char"; break; - case ATOMIC_TYPE_INT: s = "int"; break; - case ATOMIC_TYPE_UINT: s = "unsigned int"; break; - case ATOMIC_TYPE_SHORT: s = "short"; break; - case ATOMIC_TYPE_USHORT: s = "unsigned short"; break; - case ATOMIC_TYPE_LONG: s = "long"; break; - case ATOMIC_TYPE_ULONG: s = "unsigned long"; break; - case ATOMIC_TYPE_LONGLONG: s = "long long"; break; - case ATOMIC_TYPE_ULONGLONG: s = "unsigned long long"; break; - case ATOMIC_TYPE_LONG_DOUBLE: s = "long double"; break; - case ATOMIC_TYPE_FLOAT: s = "float"; break; - case ATOMIC_TYPE_DOUBLE: s = "double"; break; - default: s = "UNKNOWNATOMIC"; break; +const char *get_atomic_kind_name(atomic_type_kind_t kind) +{ + switch(kind) { + case ATOMIC_TYPE_INVALID: break; + case ATOMIC_TYPE_VOID: return "void"; + case ATOMIC_TYPE_WCHAR_T: return "wchar_t"; + case ATOMIC_TYPE_BOOL: return c_mode & _CXX ? "bool" : "_Bool"; + case ATOMIC_TYPE_CHAR: return "char"; + case ATOMIC_TYPE_SCHAR: return "signed char"; + case ATOMIC_TYPE_UCHAR: return "unsigned char"; + case ATOMIC_TYPE_INT: return "int"; + case ATOMIC_TYPE_UINT: return "unsigned int"; + case ATOMIC_TYPE_SHORT: return "short"; + case ATOMIC_TYPE_USHORT: return "unsigned short"; + case ATOMIC_TYPE_LONG: return "long"; + case ATOMIC_TYPE_ULONG: return "unsigned long"; + case ATOMIC_TYPE_LONGLONG: return "long long"; + case ATOMIC_TYPE_ULONGLONG: return "unsigned long long"; + case ATOMIC_TYPE_LONG_DOUBLE: return "long double"; + case ATOMIC_TYPE_FLOAT: return "float"; + case ATOMIC_TYPE_DOUBLE: return "double"; } + return "INVALIDATOMIC"; +} + +/** + * Prints the name of an atomic type kinds. + * + * @param kind The type kind. + */ +static void print_atomic_kinds(atomic_type_kind_t kind) +{ + const char *s = get_atomic_kind_name(kind); fputs(s, out); } +/** + * Prints the name of an atomic type. + * + * @param type The type. + */ +static void print_atomic_type(const atomic_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); + print_atomic_kinds(type->akind); +} + +/** + * Prints the name of a complex type. + * + * @param type The type. + */ +static +void print_complex_type(const complex_type_t *type) +{ + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); + fputs(" _Complex " + empty, out); + print_atomic_kinds(type->akind); +} + +/** + * Prints the name of an imaginary type. + * + * @param type The type. + */ +static +void print_imaginary_type(const imaginary_type_t *type) +{ + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); + fputs(" _Imaginary " + empty, out); + print_atomic_kinds(type->akind); +} + +/** + * Print the first part (the prefix) of a type. + * + * @param type The type to print. + * @param top true, if this is the top type, false if it's an embedded type. + */ static void print_function_type_pre(const function_type_t *type, bool top) { - print_type_qualifiers(type->type.qualifiers); + switch (type->linkage) { + case LINKAGE_INVALID: + break; + + case LINKAGE_C: + if (c_mode & _CXX) + fputs("extern \"C\" ", out); + break; + + case LINKAGE_CXX: + if (!(c_mode & _CXX)) + fputs("extern \"C++\" ", out); + break; + } + + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); intern_print_type_pre(type->return_type, false); - /* don't emit braces if we're the toplevel type... */ - if(!top) + switch (type->calling_convention) { + case CC_CDECL: fputs("__cdecl ", out); break; + case CC_STDCALL: fputs("__stdcall ", out); break; + case CC_FASTCALL: fputs("__fastcall ", out); break; + case CC_THISCALL: fputs("__thiscall ", out); break; + case CC_DEFAULT: break; + } + + /* don't emit parenthesis if we're the toplevel type... */ + if (!top) fputc('(', out); } +/** + * Print the second part (the postfix) of a type. + * + * @param type The type to print. + * @param top true, if this is the top type, false if it's an embedded type. + */ static void print_function_type_post(const function_type_t *type, - const context_t *context, bool top) + const scope_t *parameters, bool top) { - intern_print_type_post(type->return_type, false); - /* don't emit braces if we're the toplevel type... */ - if(!top) + /* don't emit parenthesis if we're the toplevel type... */ + if (!top) fputc(')', out); fputc('(', out); - - int first = 1; - if(context == NULL) { + bool first = true; + if (parameters == NULL) { function_parameter_t *parameter = type->parameters; for( ; parameter != NULL; parameter = parameter->next) { - if(first) { - first = 0; + if (first) { + first = false; } else { fputs(", ", out); } print_type(parameter->type); } } else { - declaration_t *parameter = context->declarations; - for( ; parameter != NULL; parameter = parameter->next) { - if(first) { - first = 0; + entity_t *parameter = parameters->entities; + for (; parameter != NULL; parameter = parameter->base.next) { + if (parameter->kind != ENTITY_PARAMETER) + continue; + + if (first) { + first = false; } else { fputs(", ", out); } - print_type_ext(parameter->type, parameter->symbol, - ¶meter->context); + const type_t *const type = parameter->declaration.type; + if (type == NULL) { + fputs(parameter->base.symbol->string, out); + } else { + print_type_ext(type, parameter->base.symbol, NULL); + } } } - if(type->variadic) { - if(first) { - first = 0; + if (type->variadic) { + if (first) { + first = false; } else { fputs(", ", out); } fputs("...", out); } - if(first && !type->unspecified_parameters) { + if (first && !type->unspecified_parameters) { fputs("void", out); } fputc(')', out); + + intern_print_type_post(type->return_type, false); } +/** + * Prints the prefix part of a pointer type. + * + * @param type The pointer type. + */ static void print_pointer_type_pre(const pointer_type_t *type) { intern_print_type_pre(type->points_to, false); - fputs("*", out); - print_type_qualifiers(type->type.qualifiers); + variable_t *const variable = type->base_variable; + if (variable != NULL) { + fputs(" __based(", out); + fputs(variable->base.base.symbol->string, out); + fputs(") ", out); + } + fputc('*', out); + type_qualifiers_t const qual = type->base.qualifiers; + if (qual != 0) + fputc(' ', out); + print_type_qualifiers(qual); +} + +/** + * Prints the prefix part of a reference type. + * + * @param type The reference type. + */ +static void print_reference_type_pre(const reference_type_t *type) +{ + intern_print_type_pre(type->refers_to, false); + fputc('&', out); } +/** + * Prints the postfix part of a pointer type. + * + * @param type The pointer type. + */ static void print_pointer_type_post(const pointer_type_t *type) { intern_print_type_post(type->points_to, false); } +/** + * Prints the postfix part of a reference type. + * + * @param type The reference type. + */ +static void print_reference_type_post(const reference_type_t *type) +{ + intern_print_type_post(type->refers_to, false); +} + +/** + * Prints the prefix part of an array type. + * + * @param type The array type. + */ static void print_array_type_pre(const array_type_t *type) { intern_print_type_pre(type->element_type, false); } +/** + * Prints the postfix part of an array type. + * + * @param type The array type. + */ static void print_array_type_post(const array_type_t *type) { fputc('[', out); - if(type->is_static) { + if (type->is_static) { fputs("static ", out); } - print_type_qualifiers(type->type.qualifiers); - if(type->size != NULL) { - print_expression(type->size); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); + if (type->size_expression != NULL + && (print_implicit_array_size || !type->has_implicit_size)) { + print_expression(type->size_expression); } fputc(']', out); intern_print_type_post(type->element_type, false); } +/** + * Prints the postfix part of a bitfield type. + * + * @param type The array type. + */ static void print_bitfield_type_post(const bitfield_type_t *type) { fputs(" : ", out); - print_expression(type->size); - intern_print_type_post(type->base, false); + print_expression(type->size_expression); + intern_print_type_post(type->base_type, false); } -void print_enum_definition(const declaration_t *declaration) +/** + * Prints an enum definition. + * + * @param declaration The enum's type declaration. + */ +void print_enum_definition(const enum_t *enume) { fputs("{\n", out); change_indent(1); - declaration_t *entry = declaration->next; - for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY; - entry = entry->next) { + entity_t *entry = enume->base.next; + for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE; + entry = entry->base.next) { print_indent(); - fprintf(out, "%s", entry->symbol->string); - if(entry->init.initializer != NULL) { - fprintf(out, " = "); - print_expression(entry->init.enum_value); + fputs(entry->base.symbol->string, out); + if (entry->enum_value.value != NULL) { + fputs(" = ", out); + + /* skip the implicit cast */ + expression_t *expression = entry->enum_value.value; + if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) { + expression = expression->unary.value; + } + print_expression(expression); } - fprintf(out, ",\n"); + fputs(",\n", out); } change_indent(-1); print_indent(); - fputs("}", out); + fputc('}', out); } +/** + * Prints an enum type. + * + * @param type The enum type. + */ static void print_type_enum(const enum_type_t *type) { - print_type_qualifiers(type->type.qualifiers); - fputs("enum ", out); + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); + fputs(" enum " + empty, out); - declaration_t *declaration = type->declaration; - symbol_t *symbol = declaration->symbol; - if(symbol != NULL) { + enum_t *enume = type->enume; + symbol_t *symbol = enume->base.symbol; + if (symbol != NULL) { fputs(symbol->string, out); } else { - print_enum_definition(declaration); + print_enum_definition(enume); } } -void print_compound_definition(const declaration_t *declaration) +/** + * Print the compound part of a compound type. + */ +void print_compound_definition(const compound_t *compound) { fputs("{\n", out); change_indent(1); - declaration_t *iter = declaration->context.declarations; - for( ; iter != NULL; iter = iter->next) { + entity_t *entity = compound->members.entities; + for( ; entity != NULL; entity = entity->base.next) { + if (entity->kind != ENTITY_COMPOUND_MEMBER) + continue; + print_indent(); - print_declaration(iter); + print_entity(entity); fputc('\n', out); } change_indent(-1); print_indent(); - fputs("}", out); + fputc('}', out); + if (compound->modifiers & DM_TRANSPARENT_UNION) { + fputs("__attribute__((__transparent_union__))", out); + } } +/** + * Prints a compound type. + * + * @param type The compound type. + */ static void print_compound_type(const compound_type_t *type) { - print_type_qualifiers(type->type.qualifiers); + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); - if(type->type.kind == TYPE_COMPOUND_STRUCT) { - fputs("struct ", out); + if (type->base.kind == TYPE_COMPOUND_STRUCT) { + fputs(" struct " + empty, out); } else { - assert(type->type.kind == TYPE_COMPOUND_UNION); - fputs("union ", out); + assert(type->base.kind == TYPE_COMPOUND_UNION); + fputs(" union " + empty, out); } - declaration_t *declaration = type->declaration; - symbol_t *symbol = declaration->symbol; - if(symbol != NULL) { + compound_t *compound = type->compound; + symbol_t *symbol = compound->base.symbol; + if (symbol != NULL) { fputs(symbol->string, out); } else { - print_compound_definition(declaration); + print_compound_definition(compound); } } +/** + * Prints the prefix part of a typedef type. + * + * @param type The typedef type. + */ static void print_typedef_type_pre(const typedef_type_t *const type) { - print_type_qualifiers(type->type.qualifiers); - fputs(type->declaration->symbol->string, out); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); + fputs(type->typedefe->base.symbol->string, out); } +/** + * Prints the prefix part of a typeof type. + * + * @param type The typeof type. + */ static void print_typeof_type_pre(const typeof_type_t *const type) { fputs("typeof(", out); - if(type->expression != NULL) { - assert(type->typeof_type == NULL); + if (type->expression != NULL) { print_expression(type->expression); } else { print_type(type->typeof_type); @@ -259,11 +631,20 @@ static void print_typeof_type_pre(const typeof_type_t *const type) fputc(')', out); } +/** + * Prints the prefix part of a type. + * + * @param type The type. + * @param top true if we print the toplevel type, false else. + */ static void intern_print_type_pre(const type_t *const type, const bool top) { switch(type->kind) { + case TYPE_ERROR: + fputs("", out); + return; case TYPE_INVALID: - fputs("invalid", out); + fputs("", out); return; case TYPE_ENUM: print_type_enum(&type->enumt); @@ -271,6 +652,12 @@ static void intern_print_type_pre(const type_t *const type, const bool top) case TYPE_ATOMIC: print_atomic_type(&type->atomic); return; + case TYPE_COMPLEX: + print_complex_type(&type->complex); + return; + case TYPE_IMAGINARY: + print_imaginary_type(&type->imaginary); + return; case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: print_compound_type(&type->compound); @@ -284,8 +671,11 @@ static void intern_print_type_pre(const type_t *const type, const bool top) case TYPE_POINTER: print_pointer_type_pre(&type->pointer); return; + case TYPE_REFERENCE: + print_reference_type_pre(&type->reference); + return; case TYPE_BITFIELD: - intern_print_type_pre(type->bitfield.base, top); + intern_print_type_pre(type->bitfield.base_type, top); return; case TYPE_ARRAY: print_array_type_pre(&type->array); @@ -300,6 +690,12 @@ static void intern_print_type_pre(const type_t *const type, const bool top) fputs("unknown", out); } +/** + * Prints the postfix part of a type. + * + * @param type The type. + * @param top true if we print the toplevel type, false else. + */ static void intern_print_type_post(const type_t *const type, const bool top) { switch(type->kind) { @@ -309,14 +705,20 @@ static void intern_print_type_post(const type_t *const type, const bool top) case TYPE_POINTER: print_pointer_type_post(&type->pointer); return; + case TYPE_REFERENCE: + print_reference_type_post(&type->reference); + return; case TYPE_ARRAY: print_array_type_post(&type->array); return; case TYPE_BITFIELD: print_bitfield_type_post(&type->bitfield); return; + case TYPE_ERROR: case TYPE_INVALID: case TYPE_ATOMIC: + case TYPE_COMPLEX: + case TYPE_IMAGINARY: case TYPE_ENUM: case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: @@ -325,203 +727,284 @@ static void intern_print_type_post(const type_t *const type, const bool top) case TYPE_TYPEDEF: break; } + + if (type->base.modifiers & DM_TRANSPARENT_UNION) { + fputs("__attribute__((__transparent_union__))", out); + } } +/** + * Prints a type. + * + * @param type The type. + */ void print_type(const type_t *const type) { print_type_ext(type, NULL, NULL); } void print_type_ext(const type_t *const type, const symbol_t *symbol, - const context_t *context) + const scope_t *parameters) { - if(type == NULL) { + if (type == NULL) { fputs("nil type", out); return; } intern_print_type_pre(type, true); - if(symbol != NULL) { + if (symbol != NULL) { fputc(' ', out); fputs(symbol->string, out); } - if(type->kind == TYPE_FUNCTION) { - print_function_type_post(&type->function, context, true); + if (type->kind == TYPE_FUNCTION) { + print_function_type_post(&type->function, parameters, true); } else { intern_print_type_post(type, true); } } -static size_t get_type_size(type_t *type) +/** + * Return the size of a type AST node. + * + * @param type The type. + */ +static size_t get_type_size(const type_t *type) { switch(type->kind) { case TYPE_ATOMIC: return sizeof(atomic_type_t); + case TYPE_COMPLEX: return sizeof(complex_type_t); + case TYPE_IMAGINARY: return sizeof(imaginary_type_t); case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: return sizeof(compound_type_t); case TYPE_ENUM: return sizeof(enum_type_t); case TYPE_FUNCTION: return sizeof(function_type_t); case TYPE_POINTER: return sizeof(pointer_type_t); + case TYPE_REFERENCE: return sizeof(reference_type_t); case TYPE_ARRAY: return sizeof(array_type_t); case TYPE_BUILTIN: return sizeof(builtin_type_t); case TYPE_TYPEDEF: return sizeof(typedef_type_t); case TYPE_TYPEOF: return sizeof(typeof_type_t); case TYPE_BITFIELD: return sizeof(bitfield_type_t); + case TYPE_ERROR: panic("error type found"); case TYPE_INVALID: panic("invalid type found"); } panic("unknown type found"); } /** - * duplicates a type - * note that this does not produce a deep copy! + * Duplicates a type. + * + * @param type The type to copy. + * @return A copy of the type. + * + * @note This does not produce a deep copy! */ -type_t *duplicate_type(type_t *type) +type_t *duplicate_type(const type_t *type) { size_t size = get_type_size(type); type_t *copy = obstack_alloc(type_obst, size); memcpy(copy, type, size); + copy->base.firm_type = NULL; return copy; } +/** + * Returns the unqualified type of a given type. + * + * @param type The type. + * @returns The unqualified type. + */ type_t *get_unqualified_type(type_t *type) { - if(type->base.qualifiers == TYPE_QUALIFIER_NONE) + assert(!is_typeref(type)); + + if (type->base.qualifiers == TYPE_QUALIFIER_NONE) return type; type_t *unqualified_type = duplicate_type(type); unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE; - type_t *result = typehash_insert(unqualified_type); - if(result != unqualified_type) { - obstack_free(type_obst, unqualified_type); + return identify_new_type(unqualified_type); +} + +type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual) +{ + type_t *type = skip_typeref(orig_type); + + type_t *copy; + if (is_type_array(type)) { + /* For array types the element type has to be adjusted */ + type_t *element_type = type->array.element_type; + type_t *qual_element_type = get_qualified_type(element_type, qual); + + if (qual_element_type == element_type) + return orig_type; + + copy = duplicate_type(type); + copy->array.element_type = qual_element_type; + } else if (is_type_valid(type)) { + if ((type->base.qualifiers & qual) == qual) + return orig_type; + + copy = duplicate_type(type); + copy->base.qualifiers |= qual; + } else { + return type; } - return result; + return identify_new_type(copy); } +/** + * Check if a type is valid. + * + * @param type The type to check. + * @return true if type represents a valid type. + */ bool type_valid(const type_t *type) { return type->kind != TYPE_INVALID; } +static bool test_atomic_type_flag(atomic_type_kind_t kind, + atomic_type_flag_t flag) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return (atomic_type_properties[kind].flags & flag) != 0; +} + +/** + * Returns true if the given type is an integer type. + * + * @param type The type to check. + * @return True if type is an integer type. + */ bool is_type_integer(const type_t *type) { assert(!is_typeref(type)); - if(type->kind == TYPE_ENUM) + if (type->kind == TYPE_ENUM) + return true; + if (type->kind == TYPE_BITFIELD) return true; - if(type->kind != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->atomic.akind) { - case ATOMIC_TYPE_BOOL: - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_ULONGLONG: - return true; - default: - return false; - } + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER); +} + +/** + * Returns true if the given type is an enum type. + * + * @param type The type to check. + * @return True if type is an enum type. + */ +bool is_type_enum(const type_t *type) +{ + assert(!is_typeref(type)); + return type->kind == TYPE_ENUM; } -bool is_type_floating(const type_t *type) +/** + * Returns true if the given type is an floating point type. + * + * @param type The type to check. + * @return True if type is a floating point type. + */ +bool is_type_float(const type_t *type) { assert(!is_typeref(type)); - if(type->kind != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->atomic.akind) { - case ATOMIC_TYPE_FLOAT: - case ATOMIC_TYPE_DOUBLE: - case ATOMIC_TYPE_LONG_DOUBLE: -#ifdef PROVIDE_COMPLEX - case ATOMIC_TYPE_FLOAT_COMPLEX: - case ATOMIC_TYPE_DOUBLE_COMPLEX: - case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX: - case ATOMIC_TYPE_FLOAT_IMAGINARY: - case ATOMIC_TYPE_DOUBLE_IMAGINARY: - case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY: -#endif - return true; - default: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT); +} + +/** + * Returns true if the given type is an complex type. + * + * @param type The type to check. + * @return True if type is a complex type. + */ +bool is_type_complex(const type_t *type) +{ + assert(!is_typeref(type)); + + if (type->kind != TYPE_ATOMIC) return false; - } + + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX); } +/** + * Returns true if the given type is a signed type. + * + * @param type The type to check. + * @return True if type is a signed type. + */ bool is_type_signed(const type_t *type) { assert(!is_typeref(type)); /* enum types are int for now */ - if(type->kind == TYPE_ENUM) - return true; - - if(type->kind != TYPE_ATOMIC) - return false; - - switch(type->atomic.akind) { - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_FLOAT: - case ATOMIC_TYPE_DOUBLE: - case ATOMIC_TYPE_LONG_DOUBLE: -#ifdef PROVIDE_COMPLEX - case ATOMIC_TYPE_FLOAT_COMPLEX: - case ATOMIC_TYPE_DOUBLE_COMPLEX: - case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX: - case ATOMIC_TYPE_FLOAT_IMAGINARY: - case ATOMIC_TYPE_DOUBLE_IMAGINARY: - case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY: -#endif + if (type->kind == TYPE_ENUM) return true; + if (type->kind == TYPE_BITFIELD) + return is_type_signed(type->bitfield.base_type); - case ATOMIC_TYPE_BOOL: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_ULONGLONG: + if (type->kind != TYPE_ATOMIC) return false; - case ATOMIC_TYPE_VOID: - case ATOMIC_TYPE_INVALID: - case ATOMIC_TYPE_LAST: - return false; - } - - panic("invalid atomic type found"); - return false; + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED); } +/** + * Returns true if the given type represents an arithmetic type. + * + * @param type The type to check. + * @return True if type represents an arithmetic type. + */ bool is_type_arithmetic(const type_t *type) { assert(!is_typeref(type)); - if(type->kind == TYPE_BITFIELD) - return true; - - if(is_type_integer(type) || is_type_floating(type)) + switch(type->kind) { + case TYPE_BITFIELD: + case TYPE_ENUM: return true; + case TYPE_ATOMIC: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_COMPLEX: + return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_IMAGINARY: + return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + default: + return false; + } +} - return false; +/** + * Returns true if the given type is an integer or float type. + * + * @param type The type to check. + * @return True if type is an integer or float type. + */ +bool is_type_real(const type_t *type) +{ + /* 6.2.5 (17) */ + return is_type_integer(type) || is_type_float(type); } +/** + * Returns true if the given type represents a scalar type. + * + * @param type The type to check. + * @return True if type represents a scalar type. + */ bool is_type_scalar(const type_t *type) { assert(!is_typeref(type)); @@ -529,12 +1012,18 @@ bool is_type_scalar(const type_t *type) switch (type->kind) { case TYPE_POINTER: return true; case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type); - default: break; + default: break; } return is_type_arithmetic(type); } +/** + * Check if a given type is incomplete. + * + * @param type The type to check. + * @return True if the given type is incomplete (ie. just forward). + */ bool is_type_incomplete(const type_t *type) { assert(!is_typeref(type)); @@ -543,22 +1032,30 @@ bool is_type_incomplete(const type_t *type) case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: { const compound_type_t *compound_type = &type->compound; - declaration_t *declaration = compound_type->declaration; - return !declaration->init.is_defined; + return !compound_type->compound->complete; } - case TYPE_BITFIELD: - case TYPE_FUNCTION: - return true; + case TYPE_ENUM: + return false; case TYPE_ARRAY: - return type->array.size == NULL; + return type->array.size_expression == NULL + && !type->array.size_constant; case TYPE_ATOMIC: return type->atomic.akind == ATOMIC_TYPE_VOID; + case TYPE_COMPLEX: + return type->complex.akind == ATOMIC_TYPE_VOID; + + case TYPE_IMAGINARY: + return type->imaginary.akind == ATOMIC_TYPE_VOID; + + case TYPE_BITFIELD: + case TYPE_FUNCTION: case TYPE_POINTER: - case TYPE_ENUM: + case TYPE_REFERENCE: case TYPE_BUILTIN: + case TYPE_ERROR: return false; case TYPE_TYPEDEF: @@ -571,6 +1068,14 @@ bool is_type_incomplete(const type_t *type) panic("invalid type found"); } +bool is_type_object(const type_t *type) +{ + return !is_type_function(type) && !is_type_incomplete(type); +} + +/** + * Check if two function types are compatible. + */ static bool function_types_compatible(const function_type_t *func1, const function_type_t *func2) { @@ -579,11 +1084,17 @@ static bool function_types_compatible(const function_type_t *func1, if (!types_compatible(ret1, ret2)) return false; + if (func1->linkage != func2->linkage) + return false; + + if (func1->calling_convention != func2->calling_convention) + return false; + /* can parameters be compared? */ - if(func1->unspecified_parameters || func2->unspecified_parameters) + if (func1->unspecified_parameters || func2->unspecified_parameters) return true; - if(func1->variadic != func2->variadic) + if (func1->variadic != func2->variadic) return false; /* TODO: handling of unspecified parameters not correct yet */ @@ -591,7 +1102,7 @@ static bool function_types_compatible(const function_type_t *func1, /* all argument types must be compatible */ function_parameter_t *parameter1 = func1->parameters; function_parameter_t *parameter2 = func2->parameters; - for( ; parameter1 != NULL && parameter2 != NULL; + for ( ; parameter1 != NULL && parameter2 != NULL; parameter1 = parameter1->next, parameter2 = parameter2->next) { type_t *parameter1_type = skip_typeref(parameter1->type); type_t *parameter2_type = skip_typeref(parameter2->type); @@ -599,51 +1110,62 @@ static bool function_types_compatible(const function_type_t *func1, parameter1_type = get_unqualified_type(parameter1_type); parameter2_type = get_unqualified_type(parameter2_type); - if(!types_compatible(parameter1_type, parameter2_type)) + if (!types_compatible(parameter1_type, parameter2_type)) return false; } /* same number of arguments? */ - if(parameter1 != NULL || parameter2 != NULL) + if (parameter1 != NULL || parameter2 != NULL) return false; return true; } +/** + * Check if two array types are compatible. + */ static bool array_types_compatible(const array_type_t *array1, const array_type_t *array2) { type_t *element_type1 = skip_typeref(array1->element_type); type_t *element_type2 = skip_typeref(array2->element_type); - if(!types_compatible(element_type1, element_type2)) + if (!types_compatible(element_type1, element_type2)) return false; - if(array1->size != NULL && array2->size != NULL) { - /* TODO: check if size expression evaluate to the same value - * if they are constant */ - } + if (!array1->size_constant || !array2->size_constant) + return true; - return true; + return array1->size == array2->size; } +/** + * Check if two types are compatible. + */ bool types_compatible(const type_t *type1, const type_t *type2) { assert(!is_typeref(type1)); assert(!is_typeref(type2)); /* shortcut: the same type is always compatible */ - if(type1 == type2) + if (type1 == type2) return true; - if(type1->base.qualifiers != type2->base.qualifiers) + if (!is_type_valid(type1) || !is_type_valid(type2)) + return true; + + if (type1->base.qualifiers != type2->base.qualifiers) return false; - if(type1->kind != type2->kind) + if (type1->kind != type2->kind) return false; - switch(type1->kind) { + switch (type1->kind) { case TYPE_FUNCTION: return function_types_compatible(&type1->function, &type2->function); case TYPE_ATOMIC: return type1->atomic.akind == type2->atomic.akind; + case TYPE_COMPLEX: + return type1->complex.akind == type2->complex.akind; + case TYPE_IMAGINARY: + return type1->imaginary.akind == type2->imaginary.akind; case TYPE_ARRAY: return array_types_compatible(&type1->array, &type2->array); @@ -653,6 +1175,12 @@ bool types_compatible(const type_t *type1, const type_t *type2) return types_compatible(to1, to2); } + case TYPE_REFERENCE: { + const type_t *const to1 = skip_typeref(type1->reference.refers_to); + const type_t *const to2 = skip_typeref(type2->reference.refers_to); + return types_compatible(to1, to2); + } + case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: case TYPE_ENUM: @@ -665,6 +1193,9 @@ bool types_compatible(const type_t *type1, const type_t *type2) * really need it! */ panic("type compatibility check for bitfield type"); + case TYPE_ERROR: + /* Hmm, the error type should be compatible to all other types */ + return true; case TYPE_INVALID: panic("invalid type found in compatible types"); case TYPE_TYPEDEF: @@ -676,98 +1207,351 @@ bool types_compatible(const type_t *type1, const type_t *type2) return false; } -bool pointers_compatible(const type_t *type1, const type_t *type2) -{ - assert(!is_typeref(type1)); - assert(!is_typeref(type2)); - - assert(type1->kind == TYPE_POINTER); - assert(type2->kind == TYPE_POINTER); - /* TODO */ - return true; -} - +/** + * Skip all typerefs and return the underlying type. + */ type_t *skip_typeref(type_t *type) { - unsigned qualifiers = TYPE_QUALIFIER_NONE; + type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE; + type_modifiers_t modifiers = TYPE_MODIFIER_NONE; + il_alignment_t alignment = 0; + + while (true) { + if (alignment < type->base.alignment) + alignment = type->base.alignment; - while(true) { - switch(type->kind) { + switch (type->kind) { + case TYPE_ERROR: + return type; case TYPE_TYPEDEF: { qualifiers |= type->base.qualifiers; + modifiers |= type->base.modifiers; + const typedef_type_t *typedef_type = &type->typedeft; - if(typedef_type->resolved_type != NULL) { + if (typedef_type->resolved_type != NULL) { type = typedef_type->resolved_type; break; } - type = typedef_type->declaration->type; + type = typedef_type->typedefe->type; continue; } - case TYPE_TYPEOF: { - const typeof_type_t *typeof_type = &type->typeoft; - if(typeof_type->typeof_type != NULL) { - type = typeof_type->typeof_type; - } else { - type = typeof_type->expression->base.datatype; - } + case TYPE_TYPEOF: + qualifiers |= type->base.qualifiers; + modifiers |= type->base.modifiers; + type = type->typeoft.typeof_type; continue; - } default: break; } break; } - if (qualifiers != TYPE_QUALIFIER_NONE) { - type_t *const copy = duplicate_type(type); - copy->base.qualifiers |= qualifiers; - - type = typehash_insert(copy); - if (type != copy) { - obstack_free(type_obst, copy); + if (qualifiers != TYPE_QUALIFIER_NONE || + modifiers != TYPE_MODIFIER_NONE || + alignment > type->base.alignment) { + type_t *const copy = duplicate_type(type); + + /* for const with typedefed array type the element type has to be + * adjusted */ + if (is_type_array(copy)) { + type_t *element_type = copy->array.element_type; + element_type = duplicate_type(element_type); + element_type->base.qualifiers |= qualifiers; + element_type->base.modifiers |= modifiers; + element_type->base.alignment = alignment; + copy->array.element_type = element_type; + } else { + copy->base.qualifiers |= qualifiers; + copy->base.modifiers |= modifiers; + copy->base.alignment = alignment; } + + type = identify_new_type(copy); } return type; } +type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type) +{ + type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE; + while (true) { + switch (type->base.kind) { + case TYPE_ERROR: + return TYPE_QUALIFIER_NONE; + case TYPE_TYPEDEF: + qualifiers |= type->base.qualifiers; + const typedef_type_t *typedef_type = &type->typedeft; + if (typedef_type->resolved_type != NULL) + type = typedef_type->resolved_type; + else + type = typedef_type->typedefe->type; + continue; + case TYPE_TYPEOF: + type = type->typeoft.typeof_type; + continue; + case TYPE_ARRAY: + if (skip_array_type) { + type = type->array.element_type; + continue; + } + break; + default: + break; + } + break; + } + return type->base.qualifiers | qualifiers; +} -static type_t *identify_new_type(type_t *type) +unsigned get_atomic_type_size(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].size; +} + +unsigned get_atomic_type_alignment(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].alignment; +} + +unsigned get_atomic_type_flags(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].flags; +} + +atomic_type_kind_t get_intptr_kind(void) +{ + if (machine_size <= 32) + return ATOMIC_TYPE_INT; + else if (machine_size <= 64) + return ATOMIC_TYPE_LONG; + else + return ATOMIC_TYPE_LONGLONG; +} + +atomic_type_kind_t get_uintptr_kind(void) +{ + if (machine_size <= 32) + return ATOMIC_TYPE_UINT; + else if (machine_size <= 64) + return ATOMIC_TYPE_ULONG; + else + return ATOMIC_TYPE_ULONGLONG; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) +{ + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if (kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_SCHAR, + ATOMIC_TYPE_SHORT, + ATOMIC_TYPE_INT, + ATOMIC_TYPE_LONG, + ATOMIC_TYPE_LONGLONG + }; + for (size_t i = 0; i < lengthof(possible_kinds); ++i) { + if (get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) +{ + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if (kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_UCHAR, + ATOMIC_TYPE_USHORT, + ATOMIC_TYPE_UINT, + ATOMIC_TYPE_ULONG, + ATOMIC_TYPE_ULONGLONG + }; + for (size_t i = 0; i < lengthof(possible_kinds); ++i) { + if (get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} + +/** + * Hash the given type and return the "singleton" version + * of it. + */ +type_t *identify_new_type(type_t *type) { type_t *result = typehash_insert(type); - if(result != type) { + if (result != type) { obstack_free(type_obst, type); } return result; } -type_t *make_atomic_type(atomic_type_kind_t atype, type_qualifiers_t qualifiers) +/** + * Creates a new atomic type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) { type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t)); memset(type, 0, sizeof(atomic_type_t)); type->kind = TYPE_ATOMIC; + type->base.size = get_atomic_type_size(akind); + type->base.alignment = get_atomic_type_alignment(akind); type->base.qualifiers = qualifiers; - type->atomic.akind = atype; + type->atomic.akind = akind; return identify_new_type(type); } +/** + * Creates a new complex type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t)); + memset(type, 0, sizeof(complex_type_t)); + + type->kind = TYPE_COMPLEX; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->complex.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new imaginary type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t)); + memset(type, 0, sizeof(imaginary_type_t)); + + type->kind = TYPE_IMAGINARY; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->imaginary.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new pointer type. + * + * @param points_to The points-to type for the new type. + * @param qualifiers Type qualifiers for the new type. + */ type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers) { type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t)); memset(type, 0, sizeof(pointer_type_t)); - type->kind = TYPE_POINTER; - type->base.qualifiers = qualifiers; - type->pointer.points_to = points_to; + type->kind = TYPE_POINTER; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->pointer.points_to = points_to; + type->pointer.base_variable = NULL; return identify_new_type(type); } +/** + * Creates a new reference type. + * + * @param refers_to The referred-to type for the new type. + */ +type_t *make_reference_type(type_t *refers_to) +{ + type_t *type = obstack_alloc(type_obst, sizeof(reference_type_t)); + memset(type, 0, sizeof(reference_type_t)); + + type->kind = TYPE_REFERENCE; + type->base.qualifiers = 0; + type->base.alignment = 0; + type->reference.refers_to = refers_to; + + return identify_new_type(type); +} + +/** + * Creates a new based pointer type. + * + * @param points_to The points-to type for the new type. + * @param qualifiers Type qualifiers for the new type. + * @param variable The based variable + */ +type_t *make_based_pointer_type(type_t *points_to, + type_qualifiers_t qualifiers, variable_t *variable) +{ + type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t)); + memset(type, 0, sizeof(pointer_type_t)); + + type->kind = TYPE_POINTER; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->pointer.points_to = points_to; + type->pointer.base_variable = variable; + + return identify_new_type(type); +} + + +type_t *make_array_type(type_t *element_type, size_t size, + type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(array_type_t)); + memset(type, 0, sizeof(array_type_t)); + + type->kind = TYPE_ARRAY; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->array.element_type = element_type; + type->array.size = size; + type->array.size_constant = true; + + return identify_new_type(type); +} + +/** + * Debug helper. Prints the given type to stdout. + */ static __attribute__((unused)) -void dbg_type(type_t *type) +void dbg_type(const type_t *type) { FILE *old_out = out; out = stderr;