X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=type.c;h=ba2938d14460d6f980f697d1f9530ed753d4208a;hb=b732f96b591a9c4a4333bd1c1d4356723f362f6d;hp=d8921302d69cbe3e4caec38925f54554b5a5f79f;hpb=0ec8ab1be56a7215c7c6093d92ce6b9c66e4a81a;p=cparser diff --git a/type.c b/type.c index d892130..ba2938d 100644 --- a/type.c +++ b/type.c @@ -1,169 +1,1286 @@ +/* + * This file is part of cparser. + * Copyright (C) 2007-2008 Matthias Braun + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA + * 02111-1307, USA. + */ #include +#include +#include + #include "type_t.h" +#include "symbol_t.h" +#include "type_hash.h" #include "adt/error.h" +#include "lang_features.h" + +static struct obstack _type_obst; +static FILE *out; +struct obstack *type_obst = &_type_obst; +static int type_visited = 0; +static bool print_implicit_array_size = false; + +static void intern_print_type_pre(const type_t *type, bool top); +static void intern_print_type_post(const type_t *type, bool top); -static struct obstack _type_obst; -struct obstack *type_obst = &_type_obst; +typedef struct atomic_type_properties_t atomic_type_properties_t; +struct atomic_type_properties_t { + unsigned size; /**< type size in bytes */ + unsigned alignment; /**< type alignment in bytes */ + unsigned flags; /**< type flags from atomic_type_flag_t */ +}; -void init_types() +static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = { + //ATOMIC_TYPE_INVALID = 0, + [ATOMIC_TYPE_VOID] = { + .size = 0, + .alignment = 0, + .flags = ATOMIC_TYPE_FLAG_NONE + }, + [ATOMIC_TYPE_CHAR] = { + .size = 1, + .alignment = 1, + /* signed flag will be set when known */ + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED + }, + [ATOMIC_TYPE_USHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_INT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UINT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_BOOL] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_FLOAT] = { + .size = 4, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_DOUBLE] = { + .size = 8, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_LONG_DOUBLE] = { + .size = 12, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + /* complex and imaginary types are set in init_types */ +}; + +void init_types(void) { obstack_init(type_obst); + + atomic_type_properties_t *props = atomic_type_properties; + + if(char_is_signed) { + props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED; + } + + unsigned int_size = machine_size < 32 ? 2 : 4; + unsigned long_size = machine_size < 64 ? 4 : 8; + unsigned llong_size = machine_size < 32 ? 4 : 8; + + props[ATOMIC_TYPE_INT].size = int_size; + props[ATOMIC_TYPE_INT].alignment = int_size; + props[ATOMIC_TYPE_UINT].size = int_size; + props[ATOMIC_TYPE_UINT].alignment = int_size; + props[ATOMIC_TYPE_LONG].size = long_size; + props[ATOMIC_TYPE_LONG].alignment = long_size; + props[ATOMIC_TYPE_ULONG].size = long_size; + props[ATOMIC_TYPE_ULONG].alignment = long_size; + props[ATOMIC_TYPE_LONGLONG].size = llong_size; + props[ATOMIC_TYPE_LONGLONG].alignment = llong_size; + props[ATOMIC_TYPE_ULONGLONG].size = llong_size; + props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size; + + /* TODO: backend specific, need a way to query the backend for this. + * The following are good settings for x86 */ + props[ATOMIC_TYPE_FLOAT].alignment = 4; + props[ATOMIC_TYPE_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONGLONG].alignment = 4; + props[ATOMIC_TYPE_ULONGLONG].alignment = 4; + + props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UINT]; } -void exit_types() +void exit_types(void) { obstack_free(type_obst, NULL); } +void type_set_output(FILE *stream) +{ + out = stream; +} + +void inc_type_visited(void) +{ + type_visited++; +} + +void print_type_qualifiers(type_qualifiers_t qualifiers) +{ + if(qualifiers & TYPE_QUALIFIER_CONST) fputs("const ", out); + if(qualifiers & TYPE_QUALIFIER_VOLATILE) fputs("volatile ", out); + if(qualifiers & TYPE_QUALIFIER_RESTRICT) fputs("restrict ", out); +} + +/** + * Prints the name of an atomic type kinds. + * + * @param kind The type kind. + */ static -void print_type_qualifiers(FILE *out, const type_t *type) +void print_atomic_kinds(atomic_type_kind_t kind) { - unsigned qualifiers = type->qualifiers; - if(qualifiers & TYPE_QUALIFIER_CONST) { - fputs("const ", out); - } - if(qualifiers & TYPE_QUALIFIER_VOLATILE) { - fputs("volatile ", out); - } - if(qualifiers & TYPE_QUALIFIER_RESTRICT) { - fputs("restrict ", out); - } - if(qualifiers & TYPE_QUALIFIER_INLINE) { - fputs("inline ", out); + const char *s = "INVALIDATOMIC"; + switch(kind) { + case ATOMIC_TYPE_INVALID: break; + case ATOMIC_TYPE_VOID: s = "void"; break; + case ATOMIC_TYPE_BOOL: s = "_Bool"; break; + case ATOMIC_TYPE_CHAR: s = "char"; break; + case ATOMIC_TYPE_SCHAR: s = "signed char"; break; + case ATOMIC_TYPE_UCHAR: s = "unsigned char"; break; + case ATOMIC_TYPE_INT: s = "int"; break; + case ATOMIC_TYPE_UINT: s = "unsigned int"; break; + case ATOMIC_TYPE_SHORT: s = "short"; break; + case ATOMIC_TYPE_USHORT: s = "unsigned short"; break; + case ATOMIC_TYPE_LONG: s = "long"; break; + case ATOMIC_TYPE_ULONG: s = "unsigned long"; break; + case ATOMIC_TYPE_LONGLONG: s = "long long"; break; + case ATOMIC_TYPE_ULONGLONG: s = "unsigned long long"; break; + case ATOMIC_TYPE_LONG_DOUBLE: s = "long double"; break; + case ATOMIC_TYPE_FLOAT: s = "float"; break; + case ATOMIC_TYPE_DOUBLE: s = "double"; break; } + fputs(s, out); } +/** + * Prints the name of an atomic type. + * + * @param type The type. + */ static -void print_atomic_type(FILE *out, const atomic_type_t *type) -{ - print_type_qualifiers(out, & type->type); - - switch(type->atype) { - case ATOMIC_TYPE_INVALID: fputs("INVALIDATOMIC", out); return; - case ATOMIC_TYPE_VOID: fputs("void", out); return; - case ATOMIC_TYPE_BOOL: fputs("bool", out); return; - case ATOMIC_TYPE_CHAR: fputs("char", out); return; - case ATOMIC_TYPE_SCHAR: fputs("signed char", out); return; - case ATOMIC_TYPE_UCHAR: fputs("unsigned char", out); return; - case ATOMIC_TYPE_INT: fputs("int", out); return; - case ATOMIC_TYPE_UINT: fputs("unsigned int", out); return; - case ATOMIC_TYPE_SHORT: fputs("short", out); return; - case ATOMIC_TYPE_USHORT: fputs("unsigned short", out); return; - case ATOMIC_TYPE_LONG: fputs("long", out); return; - case ATOMIC_TYPE_ULONG: fputs("unsigned long", out); return; - case ATOMIC_TYPE_LONGLONG: fputs("long long", out); return; - case ATOMIC_TYPE_ULONGLONG: fputs("unsigned long long", out); return; - case ATOMIC_TYPE_LONG_DOUBLE: fputs("long double", out); return; - case ATOMIC_TYPE_FLOAT: fputs("float", out); return; - case ATOMIC_TYPE_DOUBLE: fputs("double", out); return; - } - fputs("UNKNOWNATOMIC", out); +void print_atomic_type(const atomic_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + print_atomic_kinds(type->akind); } +/** + * Prints the name of a complex type. + * + * @param type The type. + */ static -void print_method_type(FILE *out, const method_type_t *type) +void print_complex_type(const complex_type_t *type) { - print_type_qualifiers(out, & type->type); + print_type_qualifiers(type->base.qualifiers); + fputs("_Complex ", out); + print_atomic_kinds(type->akind); +} - fputs("<", out); - print_type(out, type->result_type); - fputs(" ", out); +/** + * Prints the name of an imaginary type. + * + * @param type The type. + */ +static +void print_imaginary_type(const imaginary_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + fputs("_Imaginary ", out); + print_atomic_kinds(type->akind); +} - fputs("method(", out); - method_parameter_type_t *param_type = type->parameter_types; - int first = 1; - while(param_type != NULL) { +/** + * Print the first part (the prefix) of a type. + * + * @param type The type to print. + * @param top true, if this is the top type, false if it's an embedded type. + */ +static void print_function_type_pre(const function_type_t *type, bool top) +{ + print_type_qualifiers(type->base.qualifiers); + + intern_print_type_pre(type->return_type, false); + + /* don't emit braces if we're the toplevel type... */ + if(!top) + fputc('(', out); +} + +/** + * Print the second part (the postfix) of a type. + * + * @param type The type to print. + * @param top true, if this is the top type, false if it's an embedded type. + */ +static void print_function_type_post(const function_type_t *type, + const scope_t *scope, bool top) +{ + intern_print_type_post(type->return_type, false); + /* don't emit braces if we're the toplevel type... */ + if(!top) + fputc(')', out); + + fputc('(', out); + + bool first = true; + if(scope == NULL) { + function_parameter_t *parameter = type->parameters; + for( ; parameter != NULL; parameter = parameter->next) { + if(first) { + first = false; + } else { + fputs(", ", out); + } + print_type(parameter->type); + } + } else { + declaration_t *parameter = scope->declarations; + for( ; parameter != NULL; parameter = parameter->next) { + if(first) { + first = false; + } else { + fputs(", ", out); + } + print_type_ext(parameter->type, parameter->symbol, + ¶meter->scope); + } + } + if(type->variadic) { if(first) { - first = 0; + first = false; } else { fputs(", ", out); } - print_type(out, param_type->type); - param_type = param_type->next; + fputs("...", out); + } + if(first && !type->unspecified_parameters) { + fputs("void", out); } - fputs(")>", out); + fputc(')', out); } -static -void print_pointer_type(FILE *out, const pointer_type_t *type) +/** + * Prints the prefix part of a pointer type. + * + * @param type The pointer type. + */ +static void print_pointer_type_pre(const pointer_type_t *type) { - print_type(out, type->points_to); + intern_print_type_pre(type->points_to, false); fputs("*", out); - print_type_qualifiers(out, &type->type); + print_type_qualifiers(type->base.qualifiers); } -void print_type(FILE *out, const type_t *type) +/** + * Prints the postfix part of a pointer type. + * + * @param type The pointer type. + */ +static void print_pointer_type_post(const pointer_type_t *type) { - if(type == NULL) { - fputs("nil type", out); - return; + intern_print_type_post(type->points_to, false); +} + +/** + * Prints the prefix part of an array type. + * + * @param type The array type. + */ +static void print_array_type_pre(const array_type_t *type) +{ + intern_print_type_pre(type->element_type, false); +} + +/** + * Prints the postfix part of an array type. + * + * @param type The array type. + */ +static void print_array_type_post(const array_type_t *type) +{ + fputc('[', out); + if(type->is_static) { + fputs("static ", out); + } + print_type_qualifiers(type->base.qualifiers); + if(type->size_expression != NULL + && (print_implicit_array_size || !type->has_implicit_size)) { + print_expression(type->size_expression); } + fputc(']', out); + intern_print_type_post(type->element_type, false); +} + +/** + * Prints the postfix part of a bitfield type. + * + * @param type The array type. + */ +static void print_bitfield_type_post(const bitfield_type_t *type) +{ + fputs(" : ", out); + print_expression(type->size); + intern_print_type_post(type->base_type, false); +} + +/** + * Prints an enum definition. + * + * @param declaration The enum's type declaration. + */ +void print_enum_definition(const declaration_t *declaration) +{ + fputs("{\n", out); - switch(type->type) { + change_indent(1); + + declaration_t *entry = declaration->next; + for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY; + entry = entry->next) { + + print_indent(); + fprintf(out, "%s", entry->symbol->string); + if(entry->init.initializer != NULL) { + fprintf(out, " = "); + + /* skip the implicit cast */ + expression_t *expression = entry->init.enum_value; + if(expression->kind == EXPR_UNARY_CAST_IMPLICIT) { + expression = expression->unary.value; + } + print_expression(expression); + } + fprintf(out, ",\n"); + } + + change_indent(-1); + print_indent(); + fputs("}", out); +} + +/** + * Prints an enum type. + * + * @param type The enum type. + */ +static void print_type_enum(const enum_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + fputs("enum ", out); + + declaration_t *declaration = type->declaration; + symbol_t *symbol = declaration->symbol; + if(symbol != NULL) { + fputs(symbol->string, out); + } else { + print_enum_definition(declaration); + } +} + +/** + * Print the compound part of a compound type. + * + * @param declaration The declaration of the compound type. + */ +void print_compound_definition(const declaration_t *declaration) +{ + fputs("{\n", out); + change_indent(1); + + declaration_t *iter = declaration->scope.declarations; + for( ; iter != NULL; iter = iter->next) { + print_indent(); + print_declaration(iter); + fputc('\n', out); + } + + change_indent(-1); + print_indent(); + fputs("}", out); +} + +/** + * Prints a compound type. + * + * @param type The compound type. + */ +static void print_compound_type(const compound_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + + if(type->base.kind == TYPE_COMPOUND_STRUCT) { + fputs("struct ", out); + } else { + assert(type->base.kind == TYPE_COMPOUND_UNION); + fputs("union ", out); + } + + declaration_t *declaration = type->declaration; + symbol_t *symbol = declaration->symbol; + if(symbol != NULL) { + fputs(symbol->string, out); + } else { + print_compound_definition(declaration); + } +} + +/** + * Prints the prefix part of a typedef type. + * + * @param type The typedef type. + */ +static void print_typedef_type_pre(const typedef_type_t *const type) +{ + print_type_qualifiers(type->base.qualifiers); + fputs(type->declaration->symbol->string, out); +} + +/** + * Prints the prefix part of a typeof type. + * + * @param type The typeof type. + */ +static void print_typeof_type_pre(const typeof_type_t *const type) +{ + fputs("typeof(", out); + if(type->expression != NULL) { + assert(type->typeof_type == NULL); + print_expression(type->expression); + } else { + print_type(type->typeof_type); + } + fputc(')', out); +} + +/** + * Prints the prefix part of a type. + * + * @param type The type. + * @param top true if we print the toplevel type, false else. + */ +static void intern_print_type_pre(const type_t *const type, const bool top) +{ + switch(type->kind) { + case TYPE_ERROR: + fputs("", out); case TYPE_INVALID: - fputs("invalid", out); + fputs("", out); return; case TYPE_ENUM: - print_type_qualifiers(out, type); - fputs("enum (TODO)", out); + print_type_enum(&type->enumt); return; case TYPE_ATOMIC: - print_atomic_type(out, (const atomic_type_t*) type); + print_atomic_type(&type->atomic); + return; + case TYPE_COMPLEX: + print_complex_type(&type->complex); + return; + case TYPE_IMAGINARY: + print_imaginary_type(&type->imaginary); return; case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: - print_type_qualifiers(out, type); - if(((const compound_type_t*) type)->symbol != NULL) { - fprintf(out, "%s", ((const compound_type_t*) type)->symbol->string); - } + print_compound_type(&type->compound); return; case TYPE_BUILTIN: - fputs(((builtin_type_t*) type)->symbol->string, out); + fputs(type->builtin.symbol->string, out); return; - case TYPE_METHOD: - print_method_type(out, (const method_type_t*) type); + case TYPE_FUNCTION: + print_function_type_pre(&type->function, top); return; case TYPE_POINTER: - print_pointer_type(out, (const pointer_type_t*) type); + print_pointer_type_pre(&type->pointer); + return; + case TYPE_BITFIELD: + intern_print_type_pre(type->bitfield.base_type, top); + return; + case TYPE_ARRAY: + print_array_type_pre(&type->array); + return; + case TYPE_TYPEDEF: + print_typedef_type_pre(&type->typedeft); + return; + case TYPE_TYPEOF: + print_typeof_type_pre(&type->typeoft); return; } fputs("unknown", out); } -int type_valid(const type_t *type) +/** + * Prints the postfix part of a type. + * + * @param type The type. + * @param top true if we print the toplevel type, false else. + */ +static void intern_print_type_post(const type_t *const type, const bool top) +{ + switch(type->kind) { + case TYPE_FUNCTION: + print_function_type_post(&type->function, NULL, top); + return; + case TYPE_POINTER: + print_pointer_type_post(&type->pointer); + return; + case TYPE_ARRAY: + print_array_type_post(&type->array); + return; + case TYPE_BITFIELD: + print_bitfield_type_post(&type->bitfield); + return; + case TYPE_ERROR: + case TYPE_INVALID: + case TYPE_ATOMIC: + case TYPE_COMPLEX: + case TYPE_IMAGINARY: + case TYPE_ENUM: + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: + case TYPE_BUILTIN: + case TYPE_TYPEOF: + case TYPE_TYPEDEF: + break; + } +} + +/** + * Prints a type. + * + * @param type The type. + */ +void print_type(const type_t *const type) { - return type->type != TYPE_INVALID; + print_type_ext(type, NULL, NULL); } -int is_type_int(const type_t *type) +void print_type_ext(const type_t *const type, const symbol_t *symbol, + const scope_t *scope) { - if(type->type != TYPE_ATOMIC) - return 0; + if(type == NULL) { + fputs("nil type", out); + return; + } + + intern_print_type_pre(type, true); + if(symbol != NULL) { + fputc(' ', out); + fputs(symbol->string, out); + } + if(type->kind == TYPE_FUNCTION) { + print_function_type_post(&type->function, scope, true); + } else { + intern_print_type_post(type, true); + } +} + +/** + * Return the size of a type AST node. + * + * @param type The type. + */ +static size_t get_type_size(const type_t *type) +{ + switch(type->kind) { + case TYPE_ATOMIC: return sizeof(atomic_type_t); + case TYPE_COMPLEX: return sizeof(complex_type_t); + case TYPE_IMAGINARY: return sizeof(imaginary_type_t); + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: return sizeof(compound_type_t); + case TYPE_ENUM: return sizeof(enum_type_t); + case TYPE_FUNCTION: return sizeof(function_type_t); + case TYPE_POINTER: return sizeof(pointer_type_t); + case TYPE_ARRAY: return sizeof(array_type_t); + case TYPE_BUILTIN: return sizeof(builtin_type_t); + case TYPE_TYPEDEF: return sizeof(typedef_type_t); + case TYPE_TYPEOF: return sizeof(typeof_type_t); + case TYPE_BITFIELD: return sizeof(bitfield_type_t); + case TYPE_ERROR: panic("error type found"); + case TYPE_INVALID: panic("invalid type found"); + } + panic("unknown type found"); +} + +/** + * Duplicates a type. + * + * @param type The type to copy. + * @return A copy of the type. + * + * @note This does not produce a deep copy! + */ +type_t *duplicate_type(const type_t *type) +{ + size_t size = get_type_size(type); + + type_t *copy = obstack_alloc(type_obst, size); + memcpy(copy, type, size); + + return copy; +} - atomic_type_t *atomic_type = (atomic_type_t*) type; - switch(atomic_type->atype) { - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_ULONGLONG: - return 1; +/** + * Returns the unqualified type of a given type. + * + * @param type The type. + * @returns The unqualified type. + */ +type_t *get_unqualified_type(type_t *type) +{ + if(type->base.qualifiers == TYPE_QUALIFIER_NONE) + return type; + + type_t *unqualified_type = duplicate_type(type); + unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE; + + type_t *result = typehash_insert(unqualified_type); + if(result != unqualified_type) { + obstack_free(type_obst, unqualified_type); + } + + return result; +} + +/** + * Check if a type is valid. + * + * @param type The type to check. + * @return true if type represents a valid type. + */ +bool type_valid(const type_t *type) +{ + return type->kind != TYPE_INVALID; +} + +static bool test_atomic_type_flag(atomic_type_kind_t kind, + atomic_type_flag_t flag) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return (atomic_type_properties[kind].flags & flag) != 0; +} + +/** + * Returns true if the given type is an integer type. + * + * @param type The type to check. + * @return True if type is an integer type. + */ +bool is_type_integer(const type_t *type) +{ + assert(!is_typeref(type)); + + if(type->kind == TYPE_ENUM) + return true; + + if(type->kind != TYPE_ATOMIC) + return false; + + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER); +} + +/** + * Returns true if the given type is an floating point type. + * + * @param type The type to check. + * @return True if type is a floating point type. + */ +bool is_type_float(const type_t *type) +{ + assert(!is_typeref(type)); + + if(type->kind != TYPE_ATOMIC) + return false; + + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT); +} + +/** + * Returns true if the given type is a signed type. + * + * @param type The type to check. + * @return True if type is a signed type. + */ +bool is_type_signed(const type_t *type) +{ + assert(!is_typeref(type)); + + /* enum types are int for now */ + if(type->kind == TYPE_ENUM) + return true; + + if(type->kind != TYPE_ATOMIC) + return false; + + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED); +} + +/** + * Returns true if the given type represents an arithmetic type. + * + * @param type The type to check. + * @return True if type represents an arithmetic type. + */ +bool is_type_arithmetic(const type_t *type) +{ + assert(!is_typeref(type)); + + switch(type->kind) { + case TYPE_BITFIELD: + case TYPE_ENUM: + return true; + case TYPE_ATOMIC: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_COMPLEX: + return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_IMAGINARY: + return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); default: - return 0; + return false; + } +} + +/** + * Returns true if the given type represents a scalar type. + * + * @param type The type to check. + * @return True if type represents a scalar type. + */ +bool is_type_scalar(const type_t *type) +{ + assert(!is_typeref(type)); + + switch (type->kind) { + case TYPE_POINTER: return true; + case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type); + default: break; + } + + return is_type_arithmetic(type); +} + +/** + * Check if a given type is incomplete. + * + * @param type The type to check. + * @return True if the given type is incomplete (ie. just forward). + */ +bool is_type_incomplete(const type_t *type) +{ + assert(!is_typeref(type)); + + switch(type->kind) { + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: { + const compound_type_t *compound_type = &type->compound; + declaration_t *declaration = compound_type->declaration; + return !declaration->init.complete; + } + case TYPE_ENUM: { + const enum_type_t *enum_type = &type->enumt; + declaration_t *declaration = enum_type->declaration; + return !declaration->init.complete; + } + case TYPE_BITFIELD: + return false; + + case TYPE_FUNCTION: + return true; + + case TYPE_ARRAY: + return type->array.size_expression == NULL; + + case TYPE_ATOMIC: + return type->atomic.akind == ATOMIC_TYPE_VOID; + + case TYPE_COMPLEX: + return type->complex.akind == ATOMIC_TYPE_VOID; + + case TYPE_IMAGINARY: + return type->imaginary.akind == ATOMIC_TYPE_VOID; + + case TYPE_POINTER: + case TYPE_BUILTIN: + case TYPE_ERROR: + return false; + + case TYPE_TYPEDEF: + case TYPE_TYPEOF: + panic("is_type_incomplete called without typerefs skipped"); + case TYPE_INVALID: + break; + } + + panic("invalid type found"); +} + +/** + * Check if two function types are compatible. + */ +static bool function_types_compatible(const function_type_t *func1, + const function_type_t *func2) +{ + const type_t* const ret1 = skip_typeref(func1->return_type); + const type_t* const ret2 = skip_typeref(func2->return_type); + if (!types_compatible(ret1, ret2)) + return false; + + /* can parameters be compared? */ + if(func1->unspecified_parameters || func2->unspecified_parameters) + return true; + + if(func1->variadic != func2->variadic) + return false; + + /* TODO: handling of unspecified parameters not correct yet */ + + /* all argument types must be compatible */ + function_parameter_t *parameter1 = func1->parameters; + function_parameter_t *parameter2 = func2->parameters; + for( ; parameter1 != NULL && parameter2 != NULL; + parameter1 = parameter1->next, parameter2 = parameter2->next) { + type_t *parameter1_type = skip_typeref(parameter1->type); + type_t *parameter2_type = skip_typeref(parameter2->type); + + parameter1_type = get_unqualified_type(parameter1_type); + parameter2_type = get_unqualified_type(parameter2_type); + + if(!types_compatible(parameter1_type, parameter2_type)) + return false; + } + /* same number of arguments? */ + if(parameter1 != NULL || parameter2 != NULL) + return false; + + return true; +} + +/** + * Check if two array types are compatible. + */ +static bool array_types_compatible(const array_type_t *array1, + const array_type_t *array2) +{ + type_t *element_type1 = skip_typeref(array1->element_type); + type_t *element_type2 = skip_typeref(array2->element_type); + if(!types_compatible(element_type1, element_type2)) + return false; + + if(!array1->size_constant || !array2->size_constant) + return true; + + return array1->size == array2->size; +} + +/** + * Check if two types are compatible. + */ +bool types_compatible(const type_t *type1, const type_t *type2) +{ + assert(!is_typeref(type1)); + assert(!is_typeref(type2)); + + /* shortcut: the same type is always compatible */ + if(type1 == type2) + return true; + + if(type1->base.qualifiers != type2->base.qualifiers) + return false; + if(type1->kind != type2->kind) + return false; + + switch(type1->kind) { + case TYPE_FUNCTION: + return function_types_compatible(&type1->function, &type2->function); + case TYPE_ATOMIC: + return type1->atomic.akind == type2->atomic.akind; + case TYPE_COMPLEX: + return type1->complex.akind == type2->complex.akind; + case TYPE_IMAGINARY: + return type1->imaginary.akind == type2->imaginary.akind; + case TYPE_ARRAY: + return array_types_compatible(&type1->array, &type2->array); + + case TYPE_POINTER: { + const type_t *const to1 = skip_typeref(type1->pointer.points_to); + const type_t *const to2 = skip_typeref(type2->pointer.points_to); + return types_compatible(to1, to2); + } + + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: + case TYPE_ENUM: + case TYPE_BUILTIN: + /* TODO: not implemented */ + break; + + case TYPE_BITFIELD: + /* not sure if this makes sense or is even needed, implement it if you + * really need it! */ + panic("type compatibility check for bitfield type"); + + case TYPE_ERROR: + /* Hmm, the error type should be compatible to all other types */ + return true; + case TYPE_INVALID: + panic("invalid type found in compatible types"); + case TYPE_TYPEDEF: + case TYPE_TYPEOF: + panic("typerefs not skipped in compatible types?!?"); + } + + /* TODO: incomplete */ + return false; +} + +/** + * Check if two pointer types are compatible. + */ +bool pointers_compatible(const type_t *type1, const type_t *type2) +{ + assert(!is_typeref(type1)); + assert(!is_typeref(type2)); + + assert(type1->kind == TYPE_POINTER); + assert(type2->kind == TYPE_POINTER); + (void) type1; + (void) type2; + /* TODO */ + return true; +} + +/** + * Skip all typerefs and return the underlying type. + */ +type_t *skip_typeref(type_t *type) +{ + unsigned qualifiers = TYPE_QUALIFIER_NONE; + + while(true) { + switch(type->kind) { + case TYPE_ERROR: + return type; + case TYPE_TYPEDEF: { + qualifiers |= type->base.qualifiers; + const typedef_type_t *typedef_type = &type->typedeft; + if(typedef_type->resolved_type != NULL) { + type = typedef_type->resolved_type; + break; + } + type = typedef_type->declaration->type; + continue; + } + case TYPE_TYPEOF: { + const typeof_type_t *typeof_type = &type->typeoft; + if(typeof_type->typeof_type != NULL) { + type = typeof_type->typeof_type; + } else { + type = typeof_type->expression->base.type; + } + continue; + } + default: + break; + } + break; + } + + if (qualifiers != TYPE_QUALIFIER_NONE) { + type_t *const copy = duplicate_type(type); + copy->base.qualifiers |= qualifiers; + + type = typehash_insert(copy); + if (type != copy) { + obstack_free(type_obst, copy); + } + } + + return type; +} + +unsigned get_atomic_type_size(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].size; +} + +unsigned get_atomic_type_alignment(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].alignment; +} + +unsigned get_atomic_type_flags(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].flags; +} + +atomic_type_kind_t get_intptr_kind(void) +{ + if(machine_size <= 32) + return ATOMIC_TYPE_INT; + else if(machine_size <= 64) + return ATOMIC_TYPE_LONG; + else + return ATOMIC_TYPE_LONGLONG; +} + +atomic_type_kind_t get_uintptr_kind(void) +{ + if(machine_size <= 32) + return ATOMIC_TYPE_UINT; + else if(machine_size <= 64) + return ATOMIC_TYPE_ULONG; + else + return ATOMIC_TYPE_ULONGLONG; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) { + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if(kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_SCHAR, + ATOMIC_TYPE_SHORT, + ATOMIC_TYPE_INT, + ATOMIC_TYPE_LONG, + ATOMIC_TYPE_LONGLONG + }; + for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) { + if(get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) { + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if(kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_UCHAR, + ATOMIC_TYPE_USHORT, + ATOMIC_TYPE_UINT, + ATOMIC_TYPE_ULONG, + ATOMIC_TYPE_ULONGLONG + }; + for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) { + if(get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; } + return kind; +} + +/** + * Hash the given type and return the "singleton" version + * of it. + */ +static type_t *identify_new_type(type_t *type) +{ + type_t *result = typehash_insert(type); + if(result != type) { + obstack_free(type_obst, type); + } + return result; +} + +/** + * Creates a new atomic type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t)); + memset(type, 0, sizeof(atomic_type_t)); + + type->kind = TYPE_ATOMIC; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->atomic.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new complex type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t)); + memset(type, 0, sizeof(complex_type_t)); + + type->kind = TYPE_COMPLEX; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->complex.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new imaginary type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t)); + memset(type, 0, sizeof(imaginary_type_t)); + + type->kind = TYPE_IMAGINARY; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->imaginary.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new pointer type. + * + * @param points_to The points-to type for the new type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t)); + memset(type, 0, sizeof(pointer_type_t)); + + type->kind = TYPE_POINTER; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->pointer.points_to = points_to; + + return identify_new_type(type); +} + +type_t *make_array_type(type_t *element_type, size_t size, + type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(array_type_t)); + memset(type, 0, sizeof(array_type_t)); + + type->kind = TYPE_ARRAY; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->array.element_type = element_type; + type->array.size = size; + type->array.size_constant = true; + + return identify_new_type(type); } +/** + * Debug helper. Prints the given type to stdout. + */ static __attribute__((unused)) void dbg_type(const type_t *type) { - print_type(stdout,type); + FILE *old_out = out; + out = stderr; + print_type(type); puts("\n"); - fflush(stdout); + fflush(stderr); + out = old_out; }