X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=type.c;h=67aee7687bce477522d62c6593dff5f333b17395;hb=fc4c19932ddbc935a3f601490c38bcfe62ab5a0d;hp=957ea4ff0b5567261790efbacfb6d18002a89cae;hpb=fd16b92f058181088a385c3224c8814831c006d3;p=cparser diff --git a/type.c b/type.c index 957ea4f..67aee76 100644 --- a/type.c +++ b/type.c @@ -1,6 +1,6 @@ /* * This file is part of cparser. - * Copyright (C) 2007-2008 Matthias Braun + * Copyright (C) 2007-2009 Matthias Braun * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License @@ -21,22 +21,231 @@ #include #include + #include "type_t.h" +#include "types.h" +#include "entity_t.h" +#include "symbol_t.h" #include "type_hash.h" #include "adt/error.h" +#include "adt/util.h" +#include "lang_features.h" +#include "warning.h" +#include "diagnostic.h" +#include "printer.h" +#include "driver/firm_cmdline.h" + +/** The default calling convention. */ +cc_kind_t default_calling_convention = CC_CDECL; static struct obstack _type_obst; -static FILE *out; struct obstack *type_obst = &_type_obst; -static int type_visited = 0; -static bool print_implicit_array_size = true; +static bool print_implicit_array_size = false; + +static void intern_print_type_pre(const type_t *type); +static void intern_print_type_post(const type_t *type); + +typedef struct atomic_type_properties_t atomic_type_properties_t; +struct atomic_type_properties_t { + unsigned size; /**< type size in bytes */ + unsigned alignment; /**< type alignment in bytes */ + unsigned flags; /**< type flags from atomic_type_flag_t */ +}; + +/** + * Returns the size of a type node. + * + * @param kind the type kind + */ +static size_t get_type_struct_size(type_kind_t kind) +{ + static const size_t sizes[] = { + [TYPE_ATOMIC] = sizeof(atomic_type_t), + [TYPE_COMPLEX] = sizeof(complex_type_t), + [TYPE_IMAGINARY] = sizeof(imaginary_type_t), + [TYPE_BITFIELD] = sizeof(bitfield_type_t), + [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t), + [TYPE_COMPOUND_UNION] = sizeof(compound_type_t), + [TYPE_ENUM] = sizeof(enum_type_t), + [TYPE_FUNCTION] = sizeof(function_type_t), + [TYPE_POINTER] = sizeof(pointer_type_t), + [TYPE_ARRAY] = sizeof(array_type_t), + [TYPE_BUILTIN] = sizeof(builtin_type_t), + [TYPE_TYPEDEF] = sizeof(typedef_type_t), + [TYPE_TYPEOF] = sizeof(typeof_type_t), + }; + assert(lengthof(sizes) == (int)TYPE_TYPEOF + 1); + assert(kind <= TYPE_TYPEOF); + assert(sizes[kind] != 0); + return sizes[kind]; +} + +type_t *allocate_type_zero(type_kind_t kind) +{ + size_t size = get_type_struct_size(kind); + type_t *res = obstack_alloc(type_obst, size); + memset(res, 0, size); + res->base.kind = kind; -static void intern_print_type_pre(const type_t *type, bool top); -static void intern_print_type_post(const type_t *type, bool top); + return res; +} + +/** + * Properties of atomic types. + */ +static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = { + //ATOMIC_TYPE_INVALID = 0, + [ATOMIC_TYPE_VOID] = { + .size = 0, + .alignment = 0, + .flags = ATOMIC_TYPE_FLAG_NONE + }, + [ATOMIC_TYPE_WCHAR_T] = { + .size = (unsigned)-1, + .alignment = (unsigned)-1, + /* signed flag will be set when known */ + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_CHAR] = { + .size = 1, + .alignment = 1, + /* signed flag will be set when known */ + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED + }, + [ATOMIC_TYPE_USHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_INT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UINT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_BOOL] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_FLOAT] = { + .size = 4, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_DOUBLE] = { + .size = 8, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_LONG_DOUBLE] = { + .size = 12, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + /* complex and imaginary types are set in init_types */ +}; void init_types(void) { obstack_init(type_obst); + + atomic_type_properties_t *props = atomic_type_properties; + + if (char_is_signed) { + props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED; + } + + unsigned int_size = machine_size < 32 ? 2 : 4; + /* long is always 32bit on windows */ + unsigned long_size = c_mode & _MS ? 4 : (machine_size < 64 ? 4 : 8); + unsigned llong_size = machine_size < 32 ? 4 : 8; + + props[ATOMIC_TYPE_INT].size = int_size; + props[ATOMIC_TYPE_INT].alignment = int_size; + props[ATOMIC_TYPE_UINT].size = int_size; + props[ATOMIC_TYPE_UINT].alignment = int_size; + props[ATOMIC_TYPE_LONG].size = long_size; + props[ATOMIC_TYPE_LONG].alignment = long_size; + props[ATOMIC_TYPE_ULONG].size = long_size; + props[ATOMIC_TYPE_ULONG].alignment = long_size; + props[ATOMIC_TYPE_LONGLONG].size = llong_size; + props[ATOMIC_TYPE_LONGLONG].alignment = llong_size; + props[ATOMIC_TYPE_ULONGLONG].size = llong_size; + props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size; + + /* TODO: backend specific, need a way to query the backend for this. + * The following are good settings for x86 */ + if (machine_size <= 32) { + props[ATOMIC_TYPE_FLOAT].alignment = 4; + props[ATOMIC_TYPE_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONGLONG].alignment = 4; + props[ATOMIC_TYPE_ULONGLONG].alignment = 4; + } else { + props[ATOMIC_TYPE_FLOAT].alignment = 4; + props[ATOMIC_TYPE_DOUBLE].alignment = 8; + props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 8; + props[ATOMIC_TYPE_LONGLONG].alignment = 8; + props[ATOMIC_TYPE_ULONGLONG].alignment = 8; + } + if (force_long_double_size > 0) { + props[ATOMIC_TYPE_LONG_DOUBLE].size = force_long_double_size; + props[ATOMIC_TYPE_LONG_DOUBLE].alignment = force_long_double_size; + } + + /* TODO: make this configurable for platforms which do not use byte sized + * bools. */ + props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR]; + + props[ATOMIC_TYPE_WCHAR_T] = props[wchar_atomic_kind]; } void exit_types(void) @@ -44,125 +253,186 @@ void exit_types(void) obstack_free(type_obst, NULL); } -void type_set_output(FILE *stream) +void print_type_qualifiers(type_qualifiers_t qualifiers) { - out = stream; + if (qualifiers & TYPE_QUALIFIER_CONST) { + print_string("const "); + } + if (qualifiers & TYPE_QUALIFIER_VOLATILE) { + print_string("volatile "); + } + if (qualifiers & TYPE_QUALIFIER_RESTRICT) { + print_string("restrict "); + } } -void inc_type_visited(void) +const char *get_atomic_kind_name(atomic_type_kind_t kind) { - type_visited++; + switch(kind) { + case ATOMIC_TYPE_INVALID: break; + case ATOMIC_TYPE_VOID: return "void"; + case ATOMIC_TYPE_WCHAR_T: return "wchar_t"; + case ATOMIC_TYPE_BOOL: return c_mode & _CXX ? "bool" : "_Bool"; + case ATOMIC_TYPE_CHAR: return "char"; + case ATOMIC_TYPE_SCHAR: return "signed char"; + case ATOMIC_TYPE_UCHAR: return "unsigned char"; + case ATOMIC_TYPE_INT: return "int"; + case ATOMIC_TYPE_UINT: return "unsigned int"; + case ATOMIC_TYPE_SHORT: return "short"; + case ATOMIC_TYPE_USHORT: return "unsigned short"; + case ATOMIC_TYPE_LONG: return "long"; + case ATOMIC_TYPE_ULONG: return "unsigned long"; + case ATOMIC_TYPE_LONGLONG: return "long long"; + case ATOMIC_TYPE_ULONGLONG: return "unsigned long long"; + case ATOMIC_TYPE_LONG_DOUBLE: return "long double"; + case ATOMIC_TYPE_FLOAT: return "float"; + case ATOMIC_TYPE_DOUBLE: return "double"; + } + return "INVALIDATOMIC"; } -void print_type_qualifiers(type_qualifiers_t qualifiers) +/** + * Prints the name of an atomic type kinds. + * + * @param kind The type kind. + */ +static void print_atomic_kinds(atomic_type_kind_t kind) { - if(qualifiers & TYPE_QUALIFIER_CONST) fputs("const ", out); - if(qualifiers & TYPE_QUALIFIER_VOLATILE) fputs("volatile ", out); - if(qualifiers & TYPE_QUALIFIER_RESTRICT) fputs("restrict ", out); + const char *s = get_atomic_kind_name(kind); + print_string(s); } /** - * Prints the name of a atomic type. + * Prints the name of an atomic type. * * @param type The type. */ -static -void print_atomic_type(const atomic_type_t *type) +static void print_atomic_type(const atomic_type_t *type) { - print_type_qualifiers(type->type.qualifiers); + print_type_qualifiers(type->base.qualifiers); + print_atomic_kinds(type->akind); +} - const char *s; - switch(type->akind) { - case ATOMIC_TYPE_INVALID: s = "INVALIDATOMIC"; break; - case ATOMIC_TYPE_VOID: s = "void"; break; - case ATOMIC_TYPE_BOOL: s = "_Bool"; break; - case ATOMIC_TYPE_CHAR: s = "char"; break; - case ATOMIC_TYPE_SCHAR: s = "signed char"; break; - case ATOMIC_TYPE_UCHAR: s = "unsigned char"; break; - case ATOMIC_TYPE_INT: s = "int"; break; - case ATOMIC_TYPE_UINT: s = "unsigned int"; break; - case ATOMIC_TYPE_SHORT: s = "short"; break; - case ATOMIC_TYPE_USHORT: s = "unsigned short"; break; - case ATOMIC_TYPE_LONG: s = "long"; break; - case ATOMIC_TYPE_ULONG: s = "unsigned long"; break; - case ATOMIC_TYPE_LONGLONG: s = "long long"; break; - case ATOMIC_TYPE_ULONGLONG: s = "unsigned long long"; break; - case ATOMIC_TYPE_LONG_DOUBLE: s = "long double"; break; - case ATOMIC_TYPE_FLOAT: s = "float"; break; - case ATOMIC_TYPE_DOUBLE: s = "double"; break; - default: s = "UNKNOWNATOMIC"; break; - } - fputs(s, out); +/** + * Prints the name of a complex type. + * + * @param type The type. + */ +static void print_complex_type(const complex_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + print_string("_Complex"); + print_atomic_kinds(type->akind); +} + +/** + * Prints the name of an imaginary type. + * + * @param type The type. + */ +static void print_imaginary_type(const imaginary_type_t *type) +{ + print_type_qualifiers(type->base.qualifiers); + print_string("_Imaginary "); + print_atomic_kinds(type->akind); } /** * Print the first part (the prefix) of a type. * * @param type The type to print. - * @param top true, if this is the top type, false if it's an embedded type. */ -static void print_function_type_pre(const function_type_t *type, bool top) +static void print_function_type_pre(const function_type_t *type) { - print_type_qualifiers(type->type.qualifiers); + switch (type->linkage) { + case LINKAGE_INVALID: + break; + + case LINKAGE_C: + if (c_mode & _CXX) + print_string("extern \"C\" "); + break; - intern_print_type_pre(type->return_type, false); + case LINKAGE_CXX: + if (!(c_mode & _CXX)) + print_string("extern \"C++\" "); + break; + } - /* don't emit braces if we're the toplevel type... */ - if(!top) - fputc('(', out); + print_type_qualifiers(type->base.qualifiers); + + intern_print_type_pre(type->return_type); + + cc_kind_t cc = type->calling_convention; +restart: + switch (cc) { + case CC_CDECL: print_string(" __cdecl"); break; + case CC_STDCALL: print_string(" __stdcall"); break; + case CC_FASTCALL: print_string(" __fastcall"); break; + case CC_THISCALL: print_string(" __thiscall"); break; + case CC_DEFAULT: + if (default_calling_convention != CC_CDECL) { + /* show the default calling convention if its not cdecl */ + cc = default_calling_convention; + goto restart; + } + break; + } } /** * Print the second part (the postfix) of a type. * * @param type The type to print. - * @param top true, if this is the top type, false if it's an embedded type. */ static void print_function_type_post(const function_type_t *type, - const scope_t *scope, bool top) + const scope_t *parameters) { - intern_print_type_post(type->return_type, false); - /* don't emit braces if we're the toplevel type... */ - if(!top) - fputc(')', out); - - fputc('(', out); - - int first = 1; - if(scope == NULL) { + print_string("("); + bool first = true; + if (parameters == NULL) { function_parameter_t *parameter = type->parameters; for( ; parameter != NULL; parameter = parameter->next) { - if(first) { - first = 0; + if (first) { + first = false; } else { - fputs(", ", out); + print_string(", "); } print_type(parameter->type); } } else { - declaration_t *parameter = scope->declarations; - for( ; parameter != NULL; parameter = parameter->next) { - if(first) { - first = 0; + entity_t *parameter = parameters->entities; + for (; parameter != NULL; parameter = parameter->base.next) { + if (parameter->kind != ENTITY_PARAMETER) + continue; + + if (first) { + first = false; } else { - fputs(", ", out); + print_string(", "); + } + const type_t *const type = parameter->declaration.type; + if (type == NULL) { + print_string(parameter->base.symbol->string); + } else { + print_type_ext(type, parameter->base.symbol, NULL); } - print_type_ext(parameter->type, parameter->symbol, - ¶meter->scope); } } - if(type->variadic) { - if(first) { - first = 0; + if (type->variadic) { + if (first) { + first = false; } else { - fputs(", ", out); + print_string(", "); } - fputs("...", out); + print_string("..."); } - if(first && !type->unspecified_parameters) { - fputs("void", out); + if (first && !type->unspecified_parameters) { + print_string("void"); } - fputc(')', out); + print_string(")"); + + intern_print_type_post(type->return_type); } /** @@ -172,9 +442,21 @@ static void print_function_type_post(const function_type_t *type, */ static void print_pointer_type_pre(const pointer_type_t *type) { - intern_print_type_pre(type->points_to, false); - fputs("*", out); - print_type_qualifiers(type->type.qualifiers); + type_t const *const points_to = type->points_to; + intern_print_type_pre(points_to); + if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION) + print_string(" ("); + variable_t *const variable = type->base_variable; + if (variable != NULL) { + print_string(" __based("); + print_string(variable->base.base.symbol->string); + print_string(") "); + } + print_string("*"); + type_qualifiers_t const qual = type->base.qualifiers; + if (qual != 0) + print_string(" "); + print_type_qualifiers(qual); } /** @@ -184,7 +466,37 @@ static void print_pointer_type_pre(const pointer_type_t *type) */ static void print_pointer_type_post(const pointer_type_t *type) { - intern_print_type_post(type->points_to, false); + type_t const *const points_to = type->points_to; + if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION) + print_string(")"); + intern_print_type_post(points_to); +} + +/** + * Prints the prefix part of a reference type. + * + * @param type The reference type. + */ +static void print_reference_type_pre(const reference_type_t *type) +{ + type_t const *const refers_to = type->refers_to; + intern_print_type_pre(refers_to); + if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION) + print_string(" ("); + print_string("&"); +} + +/** + * Prints the postfix part of a reference type. + * + * @param type The reference type. + */ +static void print_reference_type_post(const reference_type_t *type) +{ + type_t const *const refers_to = type->refers_to; + if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION) + print_string(")"); + intern_print_type_post(refers_to); } /** @@ -194,7 +506,7 @@ static void print_pointer_type_post(const pointer_type_t *type) */ static void print_array_type_pre(const array_type_t *type) { - intern_print_type_pre(type->element_type, false); + intern_print_type_pre(type->element_type); } /** @@ -204,17 +516,17 @@ static void print_array_type_pre(const array_type_t *type) */ static void print_array_type_post(const array_type_t *type) { - fputc('[', out); - if(type->is_static) { - fputs("static ", out); + print_string("["); + if (type->is_static) { + print_string("static "); } - print_type_qualifiers(type->type.qualifiers); - if(type->size_expression != NULL + print_type_qualifiers(type->base.qualifiers); + if (type->size_expression != NULL && (print_implicit_array_size || !type->has_implicit_size)) { print_expression(type->size_expression); } - fputc(']', out); - intern_print_type_post(type->element_type, false); + print_string("]"); + intern_print_type_post(type->element_type); } /** @@ -224,9 +536,9 @@ static void print_array_type_post(const array_type_t *type) */ static void print_bitfield_type_post(const bitfield_type_t *type) { - fputs(" : ", out); - print_expression(type->size); - intern_print_type_post(type->base, false); + print_string(" : "); + print_expression(type->size_expression); + intern_print_type_post(type->base_type); } /** @@ -234,28 +546,34 @@ static void print_bitfield_type_post(const bitfield_type_t *type) * * @param declaration The enum's type declaration. */ -void print_enum_definition(const declaration_t *declaration) +void print_enum_definition(const enum_t *enume) { - fputs("{\n", out); + print_string("{\n"); change_indent(1); - declaration_t *entry = declaration->next; - for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY; - entry = entry->next) { + entity_t *entry = enume->base.next; + for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE; + entry = entry->base.next) { print_indent(); - fprintf(out, "%s", entry->symbol->string); - if(entry->init.initializer != NULL) { - fprintf(out, " = "); - print_expression(entry->init.enum_value); + print_string(entry->base.symbol->string); + if (entry->enum_value.value != NULL) { + print_string(" = "); + + /* skip the implicit cast */ + expression_t *expression = entry->enum_value.value; + if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) { + expression = expression->unary.value; + } + print_expression(expression); } - fprintf(out, ",\n"); + print_string(",\n"); } change_indent(-1); print_indent(); - fputs("}", out); + print_string("}"); } /** @@ -265,38 +583,42 @@ void print_enum_definition(const declaration_t *declaration) */ static void print_type_enum(const enum_type_t *type) { - print_type_qualifiers(type->type.qualifiers); - fputs("enum ", out); + print_type_qualifiers(type->base.qualifiers); + print_string("enum "); - declaration_t *declaration = type->declaration; - symbol_t *symbol = declaration->symbol; - if(symbol != NULL) { - fputs(symbol->string, out); + enum_t *enume = type->enume; + symbol_t *symbol = enume->base.symbol; + if (symbol != NULL) { + print_string(symbol->string); } else { - print_enum_definition(declaration); + print_enum_definition(enume); } } /** * Print the compound part of a compound type. - * - * @param declaration The declaration of the compound type. */ -void print_compound_definition(const declaration_t *declaration) +void print_compound_definition(const compound_t *compound) { - fputs("{\n", out); + print_string("{\n"); change_indent(1); - declaration_t *iter = declaration->scope.declarations; - for( ; iter != NULL; iter = iter->next) { + entity_t *entity = compound->members.entities; + for( ; entity != NULL; entity = entity->base.next) { + if (entity->kind != ENTITY_COMPOUND_MEMBER) + continue; + print_indent(); - print_declaration(iter); - fputc('\n', out); + print_entity(entity); + print_string("\n"); } change_indent(-1); print_indent(); - fputs("}", out); + print_string("}"); + if (compound->modifiers & DM_TRANSPARENT_UNION) { + print_string("__attribute__((__transparent_union__))"); + } } /** @@ -306,21 +628,21 @@ void print_compound_definition(const declaration_t *declaration) */ static void print_compound_type(const compound_type_t *type) { - print_type_qualifiers(type->type.qualifiers); + print_type_qualifiers(type->base.qualifiers); - if(type->type.kind == TYPE_COMPOUND_STRUCT) { - fputs("struct ", out); + if (type->base.kind == TYPE_COMPOUND_STRUCT) { + print_string("struct "); } else { - assert(type->type.kind == TYPE_COMPOUND_UNION); - fputs("union ", out); + assert(type->base.kind == TYPE_COMPOUND_UNION); + print_string("union "); } - declaration_t *declaration = type->declaration; - symbol_t *symbol = declaration->symbol; - if(symbol != NULL) { - fputs(symbol->string, out); + compound_t *compound = type->compound; + symbol_t *symbol = compound->base.symbol; + if (symbol != NULL) { + print_string(symbol->string); } else { - print_compound_definition(declaration); + print_compound_definition(compound); } } @@ -331,8 +653,8 @@ static void print_compound_type(const compound_type_t *type) */ static void print_typedef_type_pre(const typedef_type_t *const type) { - print_type_qualifiers(type->type.qualifiers); - fputs(type->declaration->symbol->string, out); + print_type_qualifiers(type->base.qualifiers); + print_string(type->typedefe->base.symbol->string); } /** @@ -342,29 +664,28 @@ static void print_typedef_type_pre(const typedef_type_t *const type) */ static void print_typeof_type_pre(const typeof_type_t *const type) { - fputs("typeof(", out); - if(type->expression != NULL) { - assert(type->typeof_type == NULL); + print_string("typeof("); + if (type->expression != NULL) { print_expression(type->expression); } else { print_type(type->typeof_type); } - fputc(')', out); + print_string(")"); } /** * Prints the prefix part of a type. * * @param type The type. - * @param top true if we print the toplevel type, false else. */ -static void intern_print_type_pre(const type_t *const type, const bool top) +static void intern_print_type_pre(const type_t *const type) { switch(type->kind) { case TYPE_ERROR: - fputs("", out); + print_string(""); + return; case TYPE_INVALID: - fputs("", out); + print_string(""); return; case TYPE_ENUM: print_type_enum(&type->enumt); @@ -372,21 +693,30 @@ static void intern_print_type_pre(const type_t *const type, const bool top) case TYPE_ATOMIC: print_atomic_type(&type->atomic); return; + case TYPE_COMPLEX: + print_complex_type(&type->complex); + return; + case TYPE_IMAGINARY: + print_imaginary_type(&type->imaginary); + return; case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: print_compound_type(&type->compound); return; case TYPE_BUILTIN: - fputs(type->builtin.symbol->string, out); + print_string(type->builtin.symbol->string); return; case TYPE_FUNCTION: - print_function_type_pre(&type->function, top); + print_function_type_pre(&type->function); return; case TYPE_POINTER: print_pointer_type_pre(&type->pointer); return; + case TYPE_REFERENCE: + print_reference_type_pre(&type->reference); + return; case TYPE_BITFIELD: - intern_print_type_pre(type->bitfield.base, top); + intern_print_type_pre(type->bitfield.base_type); return; case TYPE_ARRAY: print_array_type_pre(&type->array); @@ -398,24 +728,26 @@ static void intern_print_type_pre(const type_t *const type, const bool top) print_typeof_type_pre(&type->typeoft); return; } - fputs("unknown", out); + print_string("unknown"); } /** * Prints the postfix part of a type. * * @param type The type. - * @param top true if we print the toplevel type, false else. */ -static void intern_print_type_post(const type_t *const type, const bool top) +static void intern_print_type_post(const type_t *const type) { switch(type->kind) { case TYPE_FUNCTION: - print_function_type_post(&type->function, NULL, top); + print_function_type_post(&type->function, NULL); return; case TYPE_POINTER: print_pointer_type_post(&type->pointer); return; + case TYPE_REFERENCE: + print_reference_type_post(&type->reference); + return; case TYPE_ARRAY: print_array_type_post(&type->array); return; @@ -425,6 +757,8 @@ static void intern_print_type_post(const type_t *const type, const bool top) case TYPE_ERROR: case TYPE_INVALID: case TYPE_ATOMIC: + case TYPE_COMPLEX: + case TYPE_IMAGINARY: case TYPE_ENUM: case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: @@ -446,48 +780,23 @@ void print_type(const type_t *const type) } void print_type_ext(const type_t *const type, const symbol_t *symbol, - const scope_t *scope) + const scope_t *parameters) { - if(type == NULL) { - fputs("nil type", out); + if (type == NULL) { + print_string("nil type"); return; } - intern_print_type_pre(type, true); - if(symbol != NULL) { - fputc(' ', out); - fputs(symbol->string, out); + intern_print_type_pre(type); + if (symbol != NULL) { + print_string(" "); + print_string(symbol->string); } - if(type->kind == TYPE_FUNCTION) { - print_function_type_post(&type->function, scope, true); + if (type->kind == TYPE_FUNCTION) { + print_function_type_post(&type->function, parameters); } else { - intern_print_type_post(type, true); - } -} - -/** - * Return the size of a type AST node. - * - * @param type The type. - */ -static size_t get_type_size(const type_t *type) -{ - switch(type->kind) { - case TYPE_ATOMIC: return sizeof(atomic_type_t); - case TYPE_COMPOUND_STRUCT: - case TYPE_COMPOUND_UNION: return sizeof(compound_type_t); - case TYPE_ENUM: return sizeof(enum_type_t); - case TYPE_FUNCTION: return sizeof(function_type_t); - case TYPE_POINTER: return sizeof(pointer_type_t); - case TYPE_ARRAY: return sizeof(array_type_t); - case TYPE_BUILTIN: return sizeof(builtin_type_t); - case TYPE_TYPEDEF: return sizeof(typedef_type_t); - case TYPE_TYPEOF: return sizeof(typeof_type_t); - case TYPE_BITFIELD: return sizeof(bitfield_type_t); - case TYPE_ERROR: panic("error type found"); - case TYPE_INVALID: panic("invalid type found"); + intern_print_type_post(type); } - panic("unknown type found"); } /** @@ -500,10 +809,11 @@ static size_t get_type_size(const type_t *type) */ type_t *duplicate_type(const type_t *type) { - size_t size = get_type_size(type); + size_t size = get_type_struct_size(type->kind); type_t *copy = obstack_alloc(type_obst, size); memcpy(copy, type, size); + copy->base.firm_type = NULL; return copy; } @@ -516,18 +826,43 @@ type_t *duplicate_type(const type_t *type) */ type_t *get_unqualified_type(type_t *type) { - if(type->base.qualifiers == TYPE_QUALIFIER_NONE) + assert(!is_typeref(type)); + + if (type->base.qualifiers == TYPE_QUALIFIER_NONE) return type; type_t *unqualified_type = duplicate_type(type); unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE; - type_t *result = typehash_insert(unqualified_type); - if(result != unqualified_type) { - obstack_free(type_obst, unqualified_type); + return identify_new_type(unqualified_type); +} + +type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual) +{ + type_t *type = skip_typeref(orig_type); + + type_t *copy; + if (is_type_array(type)) { + /* For array types the element type has to be adjusted */ + type_t *element_type = type->array.element_type; + type_t *qual_element_type = get_qualified_type(element_type, qual); + + if (qual_element_type == element_type) + return orig_type; + + copy = duplicate_type(type); + copy->array.element_type = qual_element_type; + } else if (is_type_valid(type)) { + if ((type->base.qualifiers & qual) == qual) + return orig_type; + + copy = duplicate_type(type); + copy->base.qualifiers |= qual; + } else { + return type; } - return result; + return identify_new_type(copy); } /** @@ -541,6 +876,13 @@ bool type_valid(const type_t *type) return type->kind != TYPE_INVALID; } +static bool test_atomic_type_flag(atomic_type_kind_t kind, + atomic_type_flag_t flag) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return (atomic_type_properties[kind].flags & flag) != 0; +} + /** * Returns true if the given type is an integer type. * @@ -551,29 +893,27 @@ bool is_type_integer(const type_t *type) { assert(!is_typeref(type)); - if(type->kind == TYPE_ENUM) + if (type->kind == TYPE_ENUM) + return true; + if (type->kind == TYPE_BITFIELD) return true; - if(type->kind != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->atomic.akind) { - case ATOMIC_TYPE_BOOL: - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_ULONGLONG: - return true; - default: - return false; - } + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER); +} + +/** + * Returns true if the given type is an enum type. + * + * @param type The type to check. + * @return True if type is an enum type. + */ +bool is_type_enum(const type_t *type) +{ + assert(!is_typeref(type)); + return type->kind == TYPE_ENUM; } /** @@ -586,25 +926,26 @@ bool is_type_float(const type_t *type) { assert(!is_typeref(type)); - if(type->kind != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->atomic.akind) { - case ATOMIC_TYPE_FLOAT: - case ATOMIC_TYPE_DOUBLE: - case ATOMIC_TYPE_LONG_DOUBLE: -#ifdef PROVIDE_COMPLEX - case ATOMIC_TYPE_FLOAT_COMPLEX: - case ATOMIC_TYPE_DOUBLE_COMPLEX: - case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX: - case ATOMIC_TYPE_FLOAT_IMAGINARY: - case ATOMIC_TYPE_DOUBLE_IMAGINARY: - case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY: -#endif - return true; - default: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT); +} + +/** + * Returns true if the given type is an complex type. + * + * @param type The type to check. + * @return True if type is a complex type. + */ +bool is_type_complex(const type_t *type) +{ + assert(!is_typeref(type)); + + if (type->kind != TYPE_ATOMIC) return false; - } + + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX); } /** @@ -618,48 +959,15 @@ bool is_type_signed(const type_t *type) assert(!is_typeref(type)); /* enum types are int for now */ - if(type->kind == TYPE_ENUM) + if (type->kind == TYPE_ENUM) return true; + if (type->kind == TYPE_BITFIELD) + return is_type_signed(type->bitfield.base_type); - if(type->kind != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->atomic.akind) { - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_FLOAT: - case ATOMIC_TYPE_DOUBLE: - case ATOMIC_TYPE_LONG_DOUBLE: -#ifdef PROVIDE_COMPLEX - case ATOMIC_TYPE_FLOAT_COMPLEX: - case ATOMIC_TYPE_DOUBLE_COMPLEX: - case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX: - case ATOMIC_TYPE_FLOAT_IMAGINARY: - case ATOMIC_TYPE_DOUBLE_IMAGINARY: - case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY: -#endif - return true; - - case ATOMIC_TYPE_BOOL: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_ULONGLONG: - return false; - - case ATOMIC_TYPE_VOID: - case ATOMIC_TYPE_INVALID: - case ATOMIC_TYPE_LAST: - return false; - } - - panic("invalid atomic type found"); - return false; + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED); } /** @@ -672,13 +980,31 @@ bool is_type_arithmetic(const type_t *type) { assert(!is_typeref(type)); - if(type->kind == TYPE_BITFIELD) - return true; - - if(is_type_integer(type) || is_type_float(type)) + switch(type->kind) { + case TYPE_BITFIELD: + case TYPE_ENUM: return true; + case TYPE_ATOMIC: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_COMPLEX: + return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_IMAGINARY: + return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + default: + return false; + } +} - return false; +/** + * Returns true if the given type is an integer or float type. + * + * @param type The type to check. + * @return True if type is an integer or float type. + */ +bool is_type_real(const type_t *type) +{ + /* 6.2.5 (17) */ + return is_type_integer(type) || is_type_float(type); } /** @@ -692,9 +1018,9 @@ bool is_type_scalar(const type_t *type) assert(!is_typeref(type)); switch (type->kind) { - case TYPE_POINTER: return true; - case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type); - default: break; + case TYPE_POINTER: return true; + case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type); + default: break; } return is_type_arithmetic(type); @@ -714,25 +1040,28 @@ bool is_type_incomplete(const type_t *type) case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: { const compound_type_t *compound_type = &type->compound; - declaration_t *declaration = compound_type->declaration; - return !declaration->init.is_defined; - } - case TYPE_ENUM: { - const enum_type_t *enum_type = &type->enumt; - declaration_t *declaration = enum_type->declaration; - return !declaration->init.is_defined; + return !compound_type->compound->complete; } - case TYPE_BITFIELD: - case TYPE_FUNCTION: - return true; + case TYPE_ENUM: + return false; case TYPE_ARRAY: - return type->array.size_expression == NULL; + return type->array.size_expression == NULL + && !type->array.size_constant; case TYPE_ATOMIC: return type->atomic.akind == ATOMIC_TYPE_VOID; + case TYPE_COMPLEX: + return type->complex.akind == ATOMIC_TYPE_VOID; + + case TYPE_IMAGINARY: + return type->imaginary.akind == ATOMIC_TYPE_VOID; + + case TYPE_BITFIELD: + case TYPE_FUNCTION: case TYPE_POINTER: + case TYPE_REFERENCE: case TYPE_BUILTIN: case TYPE_ERROR: return false; @@ -747,6 +1076,19 @@ bool is_type_incomplete(const type_t *type) panic("invalid type found"); } +bool is_type_object(const type_t *type) +{ + return !is_type_function(type) && !is_type_incomplete(type); +} + +bool is_builtin_va_list(type_t *type) +{ + type_t *tp = skip_typeref(type); + + return tp->kind == type_valist->kind && + tp->builtin.symbol == type_valist->builtin.symbol; +} + /** * Check if two function types are compatible. */ @@ -758,19 +1100,33 @@ static bool function_types_compatible(const function_type_t *func1, if (!types_compatible(ret1, ret2)) return false; - /* can parameters be compared? */ - if(func1->unspecified_parameters || func2->unspecified_parameters) - return true; + if (func1->linkage != func2->linkage) + return false; + + cc_kind_t cc1 = func1->calling_convention; + if (cc1 == CC_DEFAULT) + cc1 = default_calling_convention; + cc_kind_t cc2 = func2->calling_convention; + if (cc2 == CC_DEFAULT) + cc2 = default_calling_convention; - if(func1->variadic != func2->variadic) + if (cc1 != cc2) return false; + if (func1->variadic != func2->variadic) + return false; + + /* can parameters be compared? */ + if ((func1->unspecified_parameters && !func1->kr_style_parameters) + || (func2->unspecified_parameters && !func2->kr_style_parameters)) + return true; + /* TODO: handling of unspecified parameters not correct yet */ /* all argument types must be compatible */ function_parameter_t *parameter1 = func1->parameters; function_parameter_t *parameter2 = func2->parameters; - for( ; parameter1 != NULL && parameter2 != NULL; + for ( ; parameter1 != NULL && parameter2 != NULL; parameter1 = parameter1->next, parameter2 = parameter2->next) { type_t *parameter1_type = skip_typeref(parameter1->type); type_t *parameter2_type = skip_typeref(parameter2->type); @@ -778,11 +1134,11 @@ static bool function_types_compatible(const function_type_t *func1, parameter1_type = get_unqualified_type(parameter1_type); parameter2_type = get_unqualified_type(parameter2_type); - if(!types_compatible(parameter1_type, parameter2_type)) + if (!types_compatible(parameter1_type, parameter2_type)) return false; } /* same number of arguments? */ - if(parameter1 != NULL || parameter2 != NULL) + if (parameter1 != NULL || parameter2 != NULL) return false; return true; @@ -796,10 +1152,10 @@ static bool array_types_compatible(const array_type_t *array1, { type_t *element_type1 = skip_typeref(array1->element_type); type_t *element_type2 = skip_typeref(array2->element_type); - if(!types_compatible(element_type1, element_type2)) + if (!types_compatible(element_type1, element_type2)) return false; - if(!array1->size_constant || !array2->size_constant) + if (!array1->size_constant || !array2->size_constant) return true; return array1->size == array2->size; @@ -814,19 +1170,26 @@ bool types_compatible(const type_t *type1, const type_t *type2) assert(!is_typeref(type2)); /* shortcut: the same type is always compatible */ - if(type1 == type2) + if (type1 == type2) + return true; + + if (!is_type_valid(type1) || !is_type_valid(type2)) return true; - if(type1->base.qualifiers != type2->base.qualifiers) + if (type1->base.qualifiers != type2->base.qualifiers) return false; - if(type1->kind != type2->kind) + if (type1->kind != type2->kind) return false; - switch(type1->kind) { + switch (type1->kind) { case TYPE_FUNCTION: return function_types_compatible(&type1->function, &type2->function); case TYPE_ATOMIC: return type1->atomic.akind == type2->atomic.akind; + case TYPE_COMPLEX: + return type1->complex.akind == type2->complex.akind; + case TYPE_IMAGINARY: + return type1->imaginary.akind == type2->imaginary.akind; case TYPE_ARRAY: return array_types_compatible(&type1->array, &type2->array); @@ -836,8 +1199,18 @@ bool types_compatible(const type_t *type1, const type_t *type2) return types_compatible(to1, to2); } + case TYPE_REFERENCE: { + const type_t *const to1 = skip_typeref(type1->reference.refers_to); + const type_t *const to2 = skip_typeref(type2->reference.refers_to); + return types_compatible(to1, to2); + } + case TYPE_COMPOUND_STRUCT: - case TYPE_COMPOUND_UNION: + case TYPE_COMPOUND_UNION: { + + + break; + } case TYPE_ENUM: case TYPE_BUILTIN: /* TODO: not implemented */ @@ -862,52 +1235,32 @@ bool types_compatible(const type_t *type1, const type_t *type2) return false; } -/** - * Check if two pointer types are compatible. - */ -bool pointers_compatible(const type_t *type1, const type_t *type2) -{ - assert(!is_typeref(type1)); - assert(!is_typeref(type2)); - - assert(type1->kind == TYPE_POINTER); - assert(type2->kind == TYPE_POINTER); - (void) type1; - (void) type2; - /* TODO */ - return true; -} - /** * Skip all typerefs and return the underlying type. */ type_t *skip_typeref(type_t *type) { - unsigned qualifiers = TYPE_QUALIFIER_NONE; + type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE; - while(true) { - switch(type->kind) { + while (true) { + switch (type->kind) { case TYPE_ERROR: return type; case TYPE_TYPEDEF: { qualifiers |= type->base.qualifiers; + const typedef_type_t *typedef_type = &type->typedeft; - if(typedef_type->resolved_type != NULL) { + if (typedef_type->resolved_type != NULL) { type = typedef_type->resolved_type; break; } - type = typedef_type->declaration->type; + type = typedef_type->typedefe->type; continue; } - case TYPE_TYPEOF: { - const typeof_type_t *typeof_type = &type->typeoft; - if(typeof_type->typeof_type != NULL) { - type = typeof_type->typeof_type; - } else { - type = typeof_type->expression->base.type; - } + case TYPE_TYPEOF: + qualifiers |= type->base.qualifiers; + type = type->typeoft.typeof_type; continue; - } default: break; } @@ -915,26 +1268,297 @@ type_t *skip_typeref(type_t *type) } if (qualifiers != TYPE_QUALIFIER_NONE) { - type_t *const copy = duplicate_type(type); - copy->base.qualifiers |= qualifiers; - - type = typehash_insert(copy); - if (type != copy) { - obstack_free(type_obst, copy); + type_t *const copy = duplicate_type(type); + + /* for const with typedefed array type the element type has to be + * adjusted */ + if (is_type_array(copy)) { + type_t *element_type = copy->array.element_type; + element_type = duplicate_type(element_type); + element_type->base.qualifiers |= qualifiers; + copy->array.element_type = element_type; + } else { + copy->base.qualifiers |= qualifiers; } + + type = identify_new_type(copy); } return type; } +unsigned get_type_size(type_t *type) +{ + switch (type->kind) { + case TYPE_INVALID: + break; + case TYPE_ERROR: + return 0; + case TYPE_ATOMIC: + return get_atomic_type_size(type->atomic.akind); + case TYPE_COMPLEX: + return get_atomic_type_size(type->complex.akind) * 2; + case TYPE_IMAGINARY: + return get_atomic_type_size(type->imaginary.akind); + case TYPE_COMPOUND_UNION: + layout_union_type(&type->compound); + return type->compound.compound->size; + case TYPE_COMPOUND_STRUCT: + layout_struct_type(&type->compound); + return type->compound.compound->size; + case TYPE_ENUM: + return get_atomic_type_size(type->enumt.akind); + case TYPE_FUNCTION: + return 0; /* non-const (but "address-const") */ + case TYPE_REFERENCE: + case TYPE_POINTER: + /* TODO: make configurable by backend */ + return 4; + case TYPE_ARRAY: { + /* TODO: correct if element_type is aligned? */ + il_size_t element_size = get_type_size(type->array.element_type); + return type->array.size * element_size; + } + case TYPE_BITFIELD: + return 0; + case TYPE_BUILTIN: + return get_type_size(type->builtin.real_type); + case TYPE_TYPEDEF: + return get_type_size(type->typedeft.typedefe->type); + case TYPE_TYPEOF: + if (type->typeoft.typeof_type) { + return get_type_size(type->typeoft.typeof_type); + } else { + return get_type_size(type->typeoft.expression->base.type); + } + } + panic("invalid type in get_type_size"); +} + +unsigned get_type_alignment(type_t *type) +{ + switch (type->kind) { + case TYPE_INVALID: + break; + case TYPE_ERROR: + return 0; + case TYPE_ATOMIC: + return get_atomic_type_alignment(type->atomic.akind); + case TYPE_COMPLEX: + return get_atomic_type_alignment(type->complex.akind); + case TYPE_IMAGINARY: + return get_atomic_type_alignment(type->imaginary.akind); + case TYPE_COMPOUND_UNION: + layout_union_type(&type->compound); + return type->compound.compound->alignment; + case TYPE_COMPOUND_STRUCT: + layout_struct_type(&type->compound); + return type->compound.compound->alignment; + case TYPE_ENUM: + return get_atomic_type_alignment(type->enumt.akind); + case TYPE_FUNCTION: + /* what is correct here? */ + return 4; + case TYPE_REFERENCE: + case TYPE_POINTER: + /* TODO: make configurable by backend */ + return 4; + case TYPE_ARRAY: + return get_type_alignment(type->array.element_type); + case TYPE_BITFIELD: + return 0; + case TYPE_BUILTIN: + return get_type_alignment(type->builtin.real_type); + case TYPE_TYPEDEF: { + il_alignment_t alignment + = get_type_alignment(type->typedeft.typedefe->type); + if (type->typedeft.typedefe->alignment > alignment) + alignment = type->typedeft.typedefe->alignment; + + return alignment; + } + case TYPE_TYPEOF: + if (type->typeoft.typeof_type) { + return get_type_alignment(type->typeoft.typeof_type); + } else { + return get_type_alignment(type->typeoft.expression->base.type); + } + } + panic("invalid type in get_type_alignment"); +} + +decl_modifiers_t get_type_modifiers(const type_t *type) +{ + switch(type->kind) { + case TYPE_INVALID: + case TYPE_ERROR: + break; + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: + return type->compound.compound->modifiers; + case TYPE_FUNCTION: + return type->function.modifiers; + case TYPE_ENUM: + case TYPE_ATOMIC: + case TYPE_COMPLEX: + case TYPE_IMAGINARY: + case TYPE_REFERENCE: + case TYPE_POINTER: + case TYPE_BITFIELD: + case TYPE_ARRAY: + return 0; + case TYPE_BUILTIN: + return get_type_modifiers(type->builtin.real_type); + case TYPE_TYPEDEF: { + decl_modifiers_t modifiers = type->typedeft.typedefe->modifiers; + modifiers |= get_type_modifiers(type->typedeft.typedefe->type); + return modifiers; + } + case TYPE_TYPEOF: + if (type->typeoft.typeof_type) { + return get_type_modifiers(type->typeoft.typeof_type); + } else { + return get_type_modifiers(type->typeoft.expression->base.type); + } + } + panic("invalid type found in get_type_modifiers"); +} + +type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type) +{ + type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE; + + while (true) { + switch (type->base.kind) { + case TYPE_ERROR: + return TYPE_QUALIFIER_NONE; + case TYPE_TYPEDEF: + qualifiers |= type->base.qualifiers; + const typedef_type_t *typedef_type = &type->typedeft; + if (typedef_type->resolved_type != NULL) + type = typedef_type->resolved_type; + else + type = typedef_type->typedefe->type; + continue; + case TYPE_TYPEOF: + type = type->typeoft.typeof_type; + continue; + case TYPE_ARRAY: + if (skip_array_type) { + type = type->array.element_type; + continue; + } + break; + default: + break; + } + break; + } + return type->base.qualifiers | qualifiers; +} + +unsigned get_atomic_type_size(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].size; +} + +unsigned get_atomic_type_alignment(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].alignment; +} + +unsigned get_atomic_type_flags(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].flags; +} + +atomic_type_kind_t get_intptr_kind(void) +{ + if (machine_size <= 32) + return ATOMIC_TYPE_INT; + else if (machine_size <= 64) + return ATOMIC_TYPE_LONG; + else + return ATOMIC_TYPE_LONGLONG; +} + +atomic_type_kind_t get_uintptr_kind(void) +{ + if (machine_size <= 32) + return ATOMIC_TYPE_UINT; + else if (machine_size <= 64) + return ATOMIC_TYPE_ULONG; + else + return ATOMIC_TYPE_ULONGLONG; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) +{ + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if (kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_SCHAR, + ATOMIC_TYPE_SHORT, + ATOMIC_TYPE_INT, + ATOMIC_TYPE_LONG, + ATOMIC_TYPE_LONGLONG + }; + for (size_t i = 0; i < lengthof(possible_kinds); ++i) { + if (get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) +{ + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if (kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_UCHAR, + ATOMIC_TYPE_USHORT, + ATOMIC_TYPE_UINT, + ATOMIC_TYPE_ULONG, + ATOMIC_TYPE_ULONGLONG + }; + for (size_t i = 0; i < lengthof(possible_kinds); ++i) { + if (get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} + /** * Hash the given type and return the "singleton" version * of it. */ -static type_t *identify_new_type(type_t *type) +type_t *identify_new_type(type_t *type) { type_t *result = typehash_insert(type); - if(result != type) { + if (result != type) { obstack_free(type_obst, type); } return result; @@ -946,14 +1570,50 @@ static type_t *identify_new_type(type_t *type) * @param akind The kind of the atomic type. * @param qualifiers Type qualifiers for the new type. */ -type_t *make_atomic_type(atomic_type_kind_t atype, type_qualifiers_t qualifiers) +type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) { type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t)); memset(type, 0, sizeof(atomic_type_t)); type->kind = TYPE_ATOMIC; type->base.qualifiers = qualifiers; - type->atomic.akind = atype; + type->atomic.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new complex type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t)); + memset(type, 0, sizeof(complex_type_t)); + + type->kind = TYPE_COMPLEX; + type->base.qualifiers = qualifiers; + type->complex.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new imaginary type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t)); + memset(type, 0, sizeof(imaginary_type_t)); + + type->kind = TYPE_IMAGINARY; + type->base.qualifiers = qualifiers; + type->imaginary.akind = akind; return identify_new_type(type); } @@ -961,7 +1621,7 @@ type_t *make_atomic_type(atomic_type_kind_t atype, type_qualifiers_t qualifiers) /** * Creates a new pointer type. * - * @param points_to The points-to type for teh new type. + * @param points_to The points-to type for the new type. * @param qualifiers Type qualifiers for the new type. */ type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers) @@ -969,13 +1629,53 @@ type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers) type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t)); memset(type, 0, sizeof(pointer_type_t)); - type->kind = TYPE_POINTER; - type->base.qualifiers = qualifiers; - type->pointer.points_to = points_to; + type->kind = TYPE_POINTER; + type->base.qualifiers = qualifiers; + type->pointer.points_to = points_to; + type->pointer.base_variable = NULL; return identify_new_type(type); } +/** + * Creates a new reference type. + * + * @param refers_to The referred-to type for the new type. + */ +type_t *make_reference_type(type_t *refers_to) +{ + type_t *type = obstack_alloc(type_obst, sizeof(reference_type_t)); + memset(type, 0, sizeof(reference_type_t)); + + type->kind = TYPE_REFERENCE; + type->base.qualifiers = 0; + type->reference.refers_to = refers_to; + + return identify_new_type(type); +} + +/** + * Creates a new based pointer type. + * + * @param points_to The points-to type for the new type. + * @param qualifiers Type qualifiers for the new type. + * @param variable The based variable + */ +type_t *make_based_pointer_type(type_t *points_to, + type_qualifiers_t qualifiers, variable_t *variable) +{ + type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t)); + memset(type, 0, sizeof(pointer_type_t)); + + type->kind = TYPE_POINTER; + type->base.qualifiers = qualifiers; + type->pointer.points_to = points_to; + type->pointer.base_variable = variable; + + return identify_new_type(type); +} + + type_t *make_array_type(type_t *element_type, size_t size, type_qualifiers_t qualifiers) { @@ -991,16 +1691,316 @@ type_t *make_array_type(type_t *element_type, size_t size, return identify_new_type(type); } +static entity_t *pack_bitfield_members_big_endian(il_size_t *struct_offset, + il_alignment_t *struct_alignment, bool packed, entity_t *first) +{ + type_t *current_base_type = NULL; + il_size_t offset = *struct_offset; + il_alignment_t alignment = *struct_alignment; + size_t bit_offset = 0; + + if (packed) + panic("packed bitfields on big-endian arch not supported yet"); + + entity_t *member; + for (member = first; member != NULL; member = member->base.next) { + if (member->kind != ENTITY_COMPOUND_MEMBER) + continue; + + type_t *type = member->declaration.type; + if (type->kind != TYPE_BITFIELD) + break; + + size_t bit_size = type->bitfield.bit_size; + type_t *base_type = skip_typeref(type->bitfield.base_type); + + /* see if we need to start a new "bucket" */ + if (base_type != current_base_type || bit_size > bit_offset) { + if (current_base_type != NULL) + offset += get_type_size(current_base_type); + + current_base_type = base_type; + il_alignment_t base_alignment = get_type_alignment(base_type); + il_alignment_t alignment_mask = base_alignment-1; + if (base_alignment > alignment) + alignment = base_alignment; + offset = (offset + base_alignment-1) & ~alignment_mask; + bit_offset = get_type_size(base_type) * BITS_PER_BYTE; + assert(bit_offset >= bit_size); + } + + bit_offset -= bit_size; + member->compound_member.offset = offset; + member->compound_member.bit_offset = bit_offset; + } + + if (current_base_type != NULL) + offset += get_type_size(current_base_type); + + *struct_offset = offset; + *struct_alignment = alignment; + return member; +} + +static entity_t *pack_bitfield_members(il_size_t *struct_offset, + il_alignment_t *struct_alignment, + bool packed, entity_t *first) +{ + il_size_t offset = *struct_offset; + il_alignment_t alignment = *struct_alignment; + size_t bit_offset = 0; + + entity_t *member; + for (member = first; member != NULL; member = member->base.next) { + if (member->kind != ENTITY_COMPOUND_MEMBER) + continue; + + type_t *type = member->declaration.type; + if (type->kind != TYPE_BITFIELD) + break; + + type_t *base_type = skip_typeref(type->bitfield.base_type); + il_alignment_t base_alignment = get_type_alignment(base_type); + il_alignment_t alignment_mask = base_alignment-1; + if (base_alignment > alignment) + alignment = base_alignment; + + size_t bit_size = type->bitfield.bit_size; + if (!packed) { + bit_offset += (offset & alignment_mask) * BITS_PER_BYTE; + offset &= ~alignment_mask; + size_t base_size = get_type_size(base_type) * BITS_PER_BYTE; + + if (bit_offset + bit_size > base_size || bit_size == 0) { + offset += (bit_offset+BITS_PER_BYTE-1) / BITS_PER_BYTE; + offset = (offset + base_alignment-1) & ~alignment_mask; + bit_offset = 0; + } + } + + member->compound_member.offset = offset; + member->compound_member.bit_offset = bit_offset; + + bit_offset += bit_size; + offset += bit_offset / BITS_PER_BYTE; + bit_offset %= BITS_PER_BYTE; + } + + if (bit_offset > 0) + offset += 1; + + *struct_offset = offset; + *struct_alignment = alignment; + return member; +} + +void layout_struct_type(compound_type_t *type) +{ + assert(type->compound != NULL); + + compound_t *compound = type->compound; + if (!compound->complete) + return; + if (type->compound->layouted) + return; + + il_size_t offset = 0; + il_alignment_t alignment = compound->alignment; + bool need_pad = false; + + entity_t *entry = compound->members.entities; + while (entry != NULL) { + if (entry->kind != ENTITY_COMPOUND_MEMBER) { + entry = entry->base.next; + continue; + } + + type_t *m_type = entry->declaration.type; + type_t *skipped = skip_typeref(m_type); + if (! is_type_valid(skipped)) { + entry = entry->base.next; + continue; + } + + if (skipped->kind == TYPE_BITFIELD) { + if (byte_order_big_endian) { + entry = pack_bitfield_members_big_endian(&offset, &alignment, + compound->packed, + entry); + } else { + entry = pack_bitfield_members(&offset, &alignment, + compound->packed, entry); + } + continue; + } + + il_alignment_t m_alignment = get_type_alignment(m_type); + if (m_alignment > alignment) + alignment = m_alignment; + + if (!compound->packed) { + il_size_t new_offset = (offset + m_alignment-1) & -m_alignment; + + if (new_offset > offset) { + need_pad = true; + offset = new_offset; + } + } + + entry->compound_member.offset = offset; + offset += get_type_size(m_type); + + entry = entry->base.next; + } + + if (!compound->packed) { + il_size_t new_offset = (offset + alignment-1) & -alignment; + if (new_offset > offset) { + need_pad = true; + offset = new_offset; + } + } + + if (need_pad) { + if (warning.padded) { + warningf(&compound->base.source_position, "'%T' needs padding", + type); + } + } else if (compound->packed && warning.packed) { + warningf(&compound->base.source_position, + "superfluous packed attribute on '%T'", type); + } + + compound->size = offset; + compound->alignment = alignment; + compound->layouted = true; +} + +void layout_union_type(compound_type_t *type) +{ + assert(type->compound != NULL); + + compound_t *compound = type->compound; + if (! compound->complete) + return; + + il_size_t size = 0; + il_alignment_t alignment = compound->alignment; + + entity_t *entry = compound->members.entities; + for (; entry != NULL; entry = entry->base.next) { + if (entry->kind != ENTITY_COMPOUND_MEMBER) + continue; + + type_t *m_type = entry->declaration.type; + if (! is_type_valid(skip_typeref(m_type))) + continue; + + entry->compound_member.offset = 0; + il_size_t m_size = get_type_size(m_type); + if (m_size > size) + size = m_size; + il_alignment_t m_alignment = get_type_alignment(m_type); + if (m_alignment > alignment) + alignment = m_alignment; + } + size = (size + alignment - 1) & -alignment; + + compound->size = size; + compound->alignment = alignment; +} + +static function_parameter_t *allocate_parameter(type_t *const type) +{ + function_parameter_t *const param + = obstack_alloc(type_obst, sizeof(*param)); + memset(param, 0, sizeof(*param)); + param->type = type; + return param; +} + +type_t *make_function_2_type(type_t *return_type, type_t *argument_type1, + type_t *argument_type2) +{ + function_parameter_t *const parameter2 = allocate_parameter(argument_type2); + function_parameter_t *const parameter1 = allocate_parameter(argument_type1); + parameter1->next = parameter2; + + type_t *type = allocate_type_zero(TYPE_FUNCTION); + type->function.return_type = return_type; + type->function.parameters = parameter1; + type->function.linkage = LINKAGE_C; + + return identify_new_type(type); +} + +type_t *make_function_1_type(type_t *return_type, type_t *argument_type) +{ + function_parameter_t *const parameter = allocate_parameter(argument_type); + + type_t *type = allocate_type_zero(TYPE_FUNCTION); + type->function.return_type = return_type; + type->function.parameters = parameter; + type->function.linkage = LINKAGE_C; + + return identify_new_type(type); +} + +type_t *make_function_1_type_variadic(type_t *return_type, + type_t *argument_type) +{ + function_parameter_t *const parameter = allocate_parameter(argument_type); + + type_t *type = allocate_type_zero(TYPE_FUNCTION); + type->function.return_type = return_type; + type->function.parameters = parameter; + type->function.variadic = true; + type->function.linkage = LINKAGE_C; + + return identify_new_type(type); +} + +type_t *make_function_0_type(type_t *return_type) +{ + type_t *type = allocate_type_zero(TYPE_FUNCTION); + type->function.return_type = return_type; + type->function.parameters = NULL; + type->function.linkage = LINKAGE_C; + + return identify_new_type(type); +} + +type_t *make_function_type(type_t *return_type, int n_types, + type_t *const *argument_types, + decl_modifiers_t modifiers) +{ + type_t *type = allocate_type_zero(TYPE_FUNCTION); + type->function.return_type = return_type; + type->function.modifiers |= modifiers; + type->function.linkage = LINKAGE_C; + + function_parameter_t *last = NULL; + for (int i = 0; i < n_types; ++i) { + function_parameter_t *parameter = allocate_parameter(argument_types[i]); + if (last == NULL) { + type->function.parameters = parameter; + } else { + last->next = parameter; + } + last = parameter; + } + + return identify_new_type(type); +} + /** * Debug helper. Prints the given type to stdout. */ static __attribute__((unused)) void dbg_type(const type_t *type) { - FILE *old_out = out; - out = stderr; + print_to_file(stderr); print_type(type); - puts("\n"); + print_string("\n"); fflush(stderr); - out = old_out; }