X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=type.c;h=204d6f0129bc9333c3091d5479d59af6f928f255;hb=02f47f268839c472e23095ac0025e5ccbb5ed70a;hp=c6c0801e5a1c42cd3db29a98033bb814bac960e5;hpb=4aeae1b9325a9ea33361198efd19bae4b834b091;p=cparser diff --git a/type.c b/type.c index c6c0801..204d6f0 100644 --- a/type.c +++ b/type.c @@ -1,23 +1,182 @@ +/* + * This file is part of cparser. + * Copyright (C) 2007-2008 Matthias Braun + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA + * 02111-1307, USA. + */ #include #include #include + #include "type_t.h" +#include "entity_t.h" +#include "symbol_t.h" #include "type_hash.h" #include "adt/error.h" +#include "lang_features.h" static struct obstack _type_obst; -struct obstack *type_obst = &_type_obst; static FILE *out; -static int type_visited = 0; -static bool print_compound_entries; - -static void intern_print_type_pre(type_t *type); -static void intern_print_type_post(type_t *type); +struct obstack *type_obst = &_type_obst; +static int type_visited = 0; +static bool print_implicit_array_size = false; + +static void intern_print_type_pre(const type_t *type, bool top); +static void intern_print_type_post(const type_t *type, bool top); + +typedef struct atomic_type_properties_t atomic_type_properties_t; +struct atomic_type_properties_t { + unsigned size; /**< type size in bytes */ + unsigned alignment; /**< type alignment in bytes */ + unsigned flags; /**< type flags from atomic_type_flag_t */ +}; + +static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = { + //ATOMIC_TYPE_INVALID = 0, + [ATOMIC_TYPE_VOID] = { + .size = 0, + .alignment = 0, + .flags = ATOMIC_TYPE_FLAG_NONE + }, + [ATOMIC_TYPE_CHAR] = { + .size = 1, + .alignment = 1, + /* signed flag will be set when known */ + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UCHAR] = { + .size = 1, + .alignment = 1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_SHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED + }, + [ATOMIC_TYPE_USHORT] = { + .size = 2, + .alignment = 2, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_INT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_UINT] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_LONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_ULONGLONG] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_BOOL] = { + .size = (unsigned) -1, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC, + }, + [ATOMIC_TYPE_FLOAT] = { + .size = 4, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_DOUBLE] = { + .size = 8, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + [ATOMIC_TYPE_LONG_DOUBLE] = { + .size = 12, + .alignment = (unsigned) -1, + .flags = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC + | ATOMIC_TYPE_FLAG_SIGNED, + }, + /* complex and imaginary types are set in init_types */ +}; void init_types(void) { obstack_init(type_obst); + + atomic_type_properties_t *props = atomic_type_properties; + + if (char_is_signed) { + props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED; + } + + unsigned int_size = machine_size < 32 ? 2 : 4; + unsigned long_size = machine_size < 64 ? 4 : 8; + unsigned llong_size = machine_size < 32 ? 4 : 8; + + props[ATOMIC_TYPE_INT].size = int_size; + props[ATOMIC_TYPE_INT].alignment = int_size; + props[ATOMIC_TYPE_UINT].size = int_size; + props[ATOMIC_TYPE_UINT].alignment = int_size; + props[ATOMIC_TYPE_LONG].size = long_size; + props[ATOMIC_TYPE_LONG].alignment = long_size; + props[ATOMIC_TYPE_ULONG].size = long_size; + props[ATOMIC_TYPE_ULONG].alignment = long_size; + props[ATOMIC_TYPE_LONGLONG].size = llong_size; + props[ATOMIC_TYPE_LONGLONG].alignment = llong_size; + props[ATOMIC_TYPE_ULONGLONG].size = llong_size; + props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size; + + /* TODO: backend specific, need a way to query the backend for this. + * The following are good settings for x86 */ + props[ATOMIC_TYPE_FLOAT].alignment = 4; + props[ATOMIC_TYPE_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4; + props[ATOMIC_TYPE_LONGLONG].alignment = 4; + props[ATOMIC_TYPE_ULONGLONG].alignment = 4; + + /* TODO: make this configurable for platforms which do not use byte sized + * bools. */ + props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR]; } void exit_types(void) @@ -30,154 +189,297 @@ void type_set_output(FILE *stream) out = stream; } -void set_print_compound_entries(bool enabled) -{ - print_compound_entries = enabled; -} - void inc_type_visited(void) { type_visited++; } -void print_type_qualifiers(unsigned qualifiers) +void print_type_qualifiers(type_qualifiers_t qualifiers) { - if(qualifiers & TYPE_QUALIFIER_CONST) fputs("const ", out); - if(qualifiers & TYPE_QUALIFIER_VOLATILE) fputs("volatile ", out); - if(qualifiers & TYPE_QUALIFIER_RESTRICT) fputs("restrict ", out); + int first = 1; + if (qualifiers & TYPE_QUALIFIER_CONST) { + fputs(" const" + first, out); + first = 0; + } + if (qualifiers & TYPE_QUALIFIER_VOLATILE) { + fputs(" volatile" + first, out); + first = 0; + } + if (qualifiers & TYPE_QUALIFIER_RESTRICT) { + fputs(" restrict" + first, out); + first = 0; + } } -static -void print_atomic_type(const type_t *type) -{ - print_type_qualifiers(type->qualifiers); - - const char *s; - switch(type->v.atomic_type.atype) { - case ATOMIC_TYPE_INVALID: s = "INVALIDATOMIC"; break; - case ATOMIC_TYPE_VOID: s = "void"; break; - case ATOMIC_TYPE_BOOL: s = "_Bool"; break; - case ATOMIC_TYPE_CHAR: s = "char"; break; - case ATOMIC_TYPE_SCHAR: s = "signed char"; break; - case ATOMIC_TYPE_UCHAR: s = "unsigned char"; break; - case ATOMIC_TYPE_INT: s = "int"; break; - case ATOMIC_TYPE_UINT: s = "unsigned int"; break; - case ATOMIC_TYPE_SHORT: s = "short"; break; - case ATOMIC_TYPE_USHORT: s = "unsigned short"; break; - case ATOMIC_TYPE_LONG: s = "long"; break; - case ATOMIC_TYPE_ULONG: s = "unsigned long"; break; - case ATOMIC_TYPE_LONGLONG: s = "long long"; break; - case ATOMIC_TYPE_ULONGLONG: s = "unsigned long long"; break; - case ATOMIC_TYPE_LONG_DOUBLE: s = "long double"; break; - case ATOMIC_TYPE_FLOAT: s = "float"; break; - case ATOMIC_TYPE_DOUBLE: s = "double"; break; - default: s = "UNKNOWNATOMIC"; break; +const char *get_atomic_kind_name(atomic_type_kind_t kind) +{ + switch(kind) { + case ATOMIC_TYPE_INVALID: break; + case ATOMIC_TYPE_VOID: return "void"; + case ATOMIC_TYPE_BOOL: return c_mode & _CXX ? "bool" : "_Bool"; + case ATOMIC_TYPE_CHAR: return "char"; + case ATOMIC_TYPE_SCHAR: return "signed char"; + case ATOMIC_TYPE_UCHAR: return "unsigned char"; + case ATOMIC_TYPE_INT: return "int"; + case ATOMIC_TYPE_UINT: return "unsigned int"; + case ATOMIC_TYPE_SHORT: return "short"; + case ATOMIC_TYPE_USHORT: return "unsigned short"; + case ATOMIC_TYPE_LONG: return "long"; + case ATOMIC_TYPE_ULONG: return "unsigned long"; + case ATOMIC_TYPE_LONGLONG: return "long long"; + case ATOMIC_TYPE_ULONGLONG: return "unsigned long long"; + case ATOMIC_TYPE_LONG_DOUBLE: return "long double"; + case ATOMIC_TYPE_FLOAT: return "float"; + case ATOMIC_TYPE_DOUBLE: return "double"; } + return "INVALIDATOMIC"; +} + +/** + * Prints the name of an atomic type kinds. + * + * @param kind The type kind. + */ +static void print_atomic_kinds(atomic_type_kind_t kind) +{ + const char *s = get_atomic_kind_name(kind); fputs(s, out); } -static void print_function_type_pre(const type_t *type) +/** + * Prints the name of an atomic type. + * + * @param type The type. + */ +static void print_atomic_type(const atomic_type_t *type) { - print_type_qualifiers(type->qualifiers); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); + print_atomic_kinds(type->akind); +} - intern_print_type_pre(type->v.function_type.result_type); +/** + * Prints the name of a complex type. + * + * @param type The type. + */ +static +void print_complex_type(const complex_type_t *type) +{ + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); + fputs(" _Complex " + empty, out); + print_atomic_kinds(type->akind); +} - /* TODO: don't emit braces if we're the toplevel type... */ - fputc('(', out); +/** + * Prints the name of an imaginary type. + * + * @param type The type. + */ +static +void print_imaginary_type(const imaginary_type_t *type) +{ + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); + fputs(" _Imaginary " + empty, out); + print_atomic_kinds(type->akind); } -static void print_function_type_post(const type_t *type, - const context_t *context) +/** + * Print the first part (the prefix) of a type. + * + * @param type The type to print. + * @param top true, if this is the top type, false if it's an embedded type. + */ +static void print_function_type_pre(const function_type_t *type, bool top) { - /* TODO: don't emit braces if we're the toplevel type... */ - intern_print_type_post(type->v.function_type.result_type); - fputc(')', out); + if (type->linkage != NULL) { + fputs("extern \"", out); + fputs(type->linkage->string, out); + fputs("\" ", out); + } - fputc('(', out); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); - int first = 1; - if(context == NULL) { - function_parameter_t *parameter = type->v.function_type.parameters; + intern_print_type_pre(type->return_type, false); + +#if 0 + /* TODO: revive with linkage */ + switch (type->linkage) { + case CC_CDECL: + fputs("__cdecl ", out); + break; + case CC_STDCALL: + fputs("__stdcall ", out); + break; + case CC_FASTCALL: + fputs("__fastcall ", out); + break; + case CC_THISCALL: + fputs("__thiscall ", out); + break; + case CC_DEFAULT: + break; + } +#endif + + /* don't emit parenthesis if we're the toplevel type... */ + if (!top) + fputc('(', out); +} + +/** + * Print the second part (the postfix) of a type. + * + * @param type The type to print. + * @param top true, if this is the top type, false if it's an embedded type. + */ +static void print_function_type_post(const function_type_t *type, + const scope_t *parameters, bool top) +{ + /* don't emit parenthesis if we're the toplevel type... */ + if (!top) + fputc(')', out); + + fputc('(', out); + bool first = true; + if (parameters == NULL) { + function_parameter_t *parameter = type->parameters; for( ; parameter != NULL; parameter = parameter->next) { - if(first) { - first = 0; + if (first) { + first = false; } else { fputs(", ", out); } print_type(parameter->type); } } else { - declaration_t *parameter = context->declarations; - for( ; parameter != NULL; parameter = parameter->next) { - if(first) { - first = 0; + entity_t *parameter = parameters->entities; + for( ; parameter != NULL; parameter = parameter->base.next) { + if (first) { + first = false; } else { fputs(", ", out); } - print_type_ext(parameter->type, parameter->symbol, - ¶meter->context); + assert(is_declaration(parameter)); + print_type_ext(parameter->declaration.type, parameter->base.symbol, + NULL); } } - if(type->v.function_type.variadic) { - if(first) { - first = 0; + if (type->variadic) { + if (first) { + first = false; } else { fputs(", ", out); } fputs("...", out); } - if(first && !type->v.function_type.unspecified_parameters) { + if (first && !type->unspecified_parameters) { fputs("void", out); } fputc(')', out); + + intern_print_type_post(type->return_type, false); } -static void print_pointer_type_pre(const type_t *type) +/** + * Prints the prefix part of a pointer type. + * + * @param type The pointer type. + */ +static void print_pointer_type_pre(const pointer_type_t *type) { - intern_print_type_pre(type->v.pointer_type.points_to); + intern_print_type_pre(type->points_to, false); fputs("*", out); - print_type_qualifiers(type->qualifiers); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); } -static void print_pointer_type_post(const type_t *type) +/** + * Prints the postfix part of a pointer type. + * + * @param type The pointer type. + */ +static void print_pointer_type_post(const pointer_type_t *type) { - intern_print_type_post(type->v.pointer_type.points_to); + intern_print_type_post(type->points_to, false); } -static void print_array_type_pre(const type_t *type) +/** + * Prints the prefix part of an array type. + * + * @param type The array type. + */ +static void print_array_type_pre(const array_type_t *type) { - intern_print_type_pre(type->v.array_type.element_type); + intern_print_type_pre(type->element_type, false); } -static void print_array_type_post(const type_t *type) +/** + * Prints the postfix part of an array type. + * + * @param type The array type. + */ +static void print_array_type_post(const array_type_t *type) { fputc('[', out); - if(type->v.array_type.is_static) { + if (type->is_static) { fputs("static ", out); } - print_type_qualifiers(type->qualifiers); - if(type->v.array_type.size != NULL) { - print_expression(type->v.array_type.size); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); + if (type->size_expression != NULL + && (print_implicit_array_size || !type->has_implicit_size)) { + print_expression(type->size_expression); } fputc(']', out); - intern_print_type_post(type->v.array_type.element_type); + intern_print_type_post(type->element_type, false); } -void print_enum_definition(const declaration_t *declaration) +/** + * Prints the postfix part of a bitfield type. + * + * @param type The array type. + */ +static void print_bitfield_type_post(const bitfield_type_t *type) +{ + fputs(" : ", out); + print_expression(type->size_expression); + intern_print_type_post(type->base_type, false); +} + +/** + * Prints an enum definition. + * + * @param declaration The enum's type declaration. + */ +void print_enum_definition(const enum_t *enume) { fputs("{\n", out); change_indent(1); - declaration_t *entry = declaration->next; - for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY; - entry = entry->next) { + entity_t *entry = enume->base.next; + for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE; + entry = entry->base.next) { print_indent(); - fprintf(out, "%s", entry->symbol->string); - if(entry->init.initializer != NULL) { + fprintf(out, "%s", entry->base.symbol->string); + if (entry->enum_value.value != NULL) { fprintf(out, " = "); - print_expression(entry->init.enum_value); + + /* skip the implicit cast */ + expression_t *expression = entry->enum_value.value; + if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) { + expression = expression->unary.value; + } + print_expression(expression); } fprintf(out, ",\n"); } @@ -187,29 +489,41 @@ void print_enum_definition(const declaration_t *declaration) fputs("}", out); } -static void print_type_enum(const type_t *type) +/** + * Prints an enum type. + * + * @param type The enum type. + */ +static void print_type_enum(const enum_type_t *type) { - print_type_qualifiers(type->qualifiers); - fputs("enum ", out); + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); + fputs(" enum " + empty, out); - declaration_t *declaration = type->v.enum_type.declaration; - symbol_t *symbol = declaration->symbol; - if(symbol != NULL) { + enum_t *enume = type->enume; + symbol_t *symbol = enume->base.symbol; + if (symbol != NULL) { fputs(symbol->string, out); } else { - print_enum_definition(declaration); + print_enum_definition(enume); } } -void print_compound_definition(const declaration_t *declaration) +/** + * Print the compound part of a compound type. + */ +void print_compound_definition(const compound_t *compound) { fputs("{\n", out); change_indent(1); - declaration_t *iter = declaration->context.declarations; - for( ; iter != NULL; iter = iter->next) { + entity_t *entity = compound->members.entities; + for( ; entity != NULL; entity = entity->base.next) { + if (entity->kind != ENTITY_COMPOUND_MEMBER) + continue; + print_indent(); - print_declaration(iter); + print_entity(entity); fputc('\n', out); } @@ -218,95 +532,144 @@ void print_compound_definition(const declaration_t *declaration) fputs("}", out); } -static void print_compound_type(const type_t *type) +/** + * Prints a compound type. + * + * @param type The compound type. + */ +static void print_compound_type(const compound_type_t *type) { - print_type_qualifiers(type->qualifiers); + int empty = type->base.qualifiers == 0; + print_type_qualifiers(type->base.qualifiers); - if(type->type == TYPE_COMPOUND_STRUCT) { - fputs("struct ", out); + if (type->base.kind == TYPE_COMPOUND_STRUCT) { + fputs(" struct " + empty, out); } else { - assert(type->type == TYPE_COMPOUND_UNION); - fputs("union ", out); + assert(type->base.kind == TYPE_COMPOUND_UNION); + fputs(" union " + empty, out); } - declaration_t *declaration = type->v.compound_type.declaration; - symbol_t *symbol = declaration->symbol; - if(symbol != NULL) { + compound_t *compound = type->compound; + symbol_t *symbol = compound->base.symbol; + if (symbol != NULL) { fputs(symbol->string, out); } else { - print_compound_definition(declaration); + print_compound_definition(compound); } } -static void print_typedef_type_pre(type_t *type) +/** + * Prints the prefix part of a typedef type. + * + * @param type The typedef type. + */ +static void print_typedef_type_pre(const typedef_type_t *const type) { - fputs(type->v.typedef_type.declaration->symbol->string, out); + print_type_qualifiers(type->base.qualifiers); + if (type->base.qualifiers != 0) + fputc(' ', out); + fputs(type->typedefe->base.symbol->string, out); } -static void print_typeof_type_pre(type_t *type) +/** + * Prints the prefix part of a typeof type. + * + * @param type The typeof type. + */ +static void print_typeof_type_pre(const typeof_type_t *const type) { fputs("typeof(", out); - if(type->v.typeof_type.expression != NULL) { - assert(type->v.typeof_type.typeof_type == NULL); - print_expression(type->v.typeof_type.expression); + if (type->expression != NULL) { + assert(type->typeof_type == NULL); + print_expression(type->expression); } else { - print_type(type->v.typeof_type.typeof_type); + print_type(type->typeof_type); } fputc(')', out); } -static void intern_print_type_pre(type_t *type) +/** + * Prints the prefix part of a type. + * + * @param type The type. + * @param top true if we print the toplevel type, false else. + */ +static void intern_print_type_pre(const type_t *const type, const bool top) { - switch(type->type) { + switch(type->kind) { + case TYPE_ERROR: + fputs("", out); + return; case TYPE_INVALID: - fputs("invalid", out); + fputs("", out); return; case TYPE_ENUM: - print_type_enum(type); + print_type_enum(&type->enumt); return; case TYPE_ATOMIC: - print_atomic_type(type); + print_atomic_type(&type->atomic); + return; + case TYPE_COMPLEX: + print_complex_type(&type->complex); + return; + case TYPE_IMAGINARY: + print_imaginary_type(&type->imaginary); return; case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: - print_compound_type(type); + print_compound_type(&type->compound); return; case TYPE_BUILTIN: - fputs(type->v.builtin_type.symbol->string, out); + fputs(type->builtin.symbol->string, out); return; case TYPE_FUNCTION: - print_function_type_pre(type); + print_function_type_pre(&type->function, top); return; case TYPE_POINTER: - print_pointer_type_pre(type); + print_pointer_type_pre(&type->pointer); + return; + case TYPE_BITFIELD: + intern_print_type_pre(type->bitfield.base_type, top); return; case TYPE_ARRAY: - print_array_type_pre(type); + print_array_type_pre(&type->array); return; case TYPE_TYPEDEF: - print_typedef_type_pre(type); + print_typedef_type_pre(&type->typedeft); return; case TYPE_TYPEOF: - print_typeof_type_pre(type); + print_typeof_type_pre(&type->typeoft); return; } fputs("unknown", out); } -static void intern_print_type_post(type_t *type) +/** + * Prints the postfix part of a type. + * + * @param type The type. + * @param top true if we print the toplevel type, false else. + */ +static void intern_print_type_post(const type_t *const type, const bool top) { - switch(type->type) { + switch(type->kind) { case TYPE_FUNCTION: - print_function_type_post(type, NULL); + print_function_type_post(&type->function, NULL, top); return; case TYPE_POINTER: - print_pointer_type_post(type); + print_pointer_type_post(&type->pointer); return; case TYPE_ARRAY: - print_array_type_post(type); + print_array_type_post(&type->array); + return; + case TYPE_BITFIELD: + print_bitfield_type_post(&type->bitfield); return; + case TYPE_ERROR: case TYPE_INVALID: case TYPE_ATOMIC: + case TYPE_COMPLEX: + case TYPE_IMAGINARY: case TYPE_ENUM: case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: @@ -317,170 +680,339 @@ static void intern_print_type_post(type_t *type) } } -void print_type(type_t *type) +/** + * Prints a type. + * + * @param type The type. + */ +void print_type(const type_t *const type) { print_type_ext(type, NULL, NULL); } -void print_type_ext(type_t *type, const symbol_t *symbol, - const context_t *context) +void print_type_ext(const type_t *const type, const symbol_t *symbol, + const scope_t *parameters) { - if(type == NULL) { + if (type == NULL) { fputs("nil type", out); return; } - intern_print_type_pre(type); - if(symbol != NULL) { + intern_print_type_pre(type, true); + if (symbol != NULL) { fputc(' ', out); fputs(symbol->string, out); } - if(type->type == TYPE_FUNCTION) { - print_function_type_post(type, context); + if (type->kind == TYPE_FUNCTION) { + print_function_type_post(&type->function, parameters, true); + } else { + intern_print_type_post(type, true); + } +} + +/** + * Return the size of a type AST node. + * + * @param type The type. + */ +static size_t get_type_size(const type_t *type) +{ + switch(type->kind) { + case TYPE_ATOMIC: return sizeof(atomic_type_t); + case TYPE_COMPLEX: return sizeof(complex_type_t); + case TYPE_IMAGINARY: return sizeof(imaginary_type_t); + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: return sizeof(compound_type_t); + case TYPE_ENUM: return sizeof(enum_type_t); + case TYPE_FUNCTION: return sizeof(function_type_t); + case TYPE_POINTER: return sizeof(pointer_type_t); + case TYPE_ARRAY: return sizeof(array_type_t); + case TYPE_BUILTIN: return sizeof(builtin_type_t); + case TYPE_TYPEDEF: return sizeof(typedef_type_t); + case TYPE_TYPEOF: return sizeof(typeof_type_t); + case TYPE_BITFIELD: return sizeof(bitfield_type_t); + case TYPE_ERROR: panic("error type found"); + case TYPE_INVALID: panic("invalid type found"); + } + panic("unknown type found"); +} + +/** + * Duplicates a type. + * + * @param type The type to copy. + * @return A copy of the type. + * + * @note This does not produce a deep copy! + */ +type_t *duplicate_type(const type_t *type) +{ + size_t size = get_type_size(type); + + type_t *copy = obstack_alloc(type_obst, size); + memcpy(copy, type, size); + + return copy; +} + +/** + * Returns the unqualified type of a given type. + * + * @param type The type. + * @returns The unqualified type. + */ +type_t *get_unqualified_type(type_t *type) +{ + assert(!is_typeref(type)); + + if (type->base.qualifiers == TYPE_QUALIFIER_NONE) + return type; + + type_t *unqualified_type = duplicate_type(type); + unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE; + + type_t *result = typehash_insert(unqualified_type); + if (result != unqualified_type) { + obstack_free(type_obst, unqualified_type); + } + + return result; +} + +type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual) +{ + type_t *type = skip_typeref(orig_type); + + type_t *copy; + if (is_type_array(type)) { + /* For array types the element type has to be adjusted */ + type_t *element_type = type->array.element_type; + type_t *qual_element_type = get_qualified_type(element_type, qual); + + if (qual_element_type == element_type) + return orig_type; + + copy = duplicate_type(type); + copy->array.element_type = qual_element_type; + } else if (is_type_valid(type)) { + if ((type->base.qualifiers & qual) == qual) + return orig_type; + + copy = duplicate_type(type); + copy->base.qualifiers |= qual; } else { - intern_print_type_post(type); + return type; } + + type = typehash_insert(copy); + if (type != copy) + obstack_free(type_obst, copy); + + return type; } +/** + * Check if a type is valid. + * + * @param type The type to check. + * @return true if type represents a valid type. + */ bool type_valid(const type_t *type) { - return type->type != TYPE_INVALID; + return type->kind != TYPE_INVALID; +} + +static bool test_atomic_type_flag(atomic_type_kind_t kind, + atomic_type_flag_t flag) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return (atomic_type_properties[kind].flags & flag) != 0; } +/** + * Returns true if the given type is an integer type. + * + * @param type The type to check. + * @return True if type is an integer type. + */ bool is_type_integer(const type_t *type) { - if(type->type == TYPE_ENUM) + assert(!is_typeref(type)); + + if (type->kind == TYPE_ENUM) + return true; + if (type->kind == TYPE_BITFIELD) return true; - if(type->type != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->v.atomic_type.atype) { - case ATOMIC_TYPE_BOOL: - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_ULONGLONG: - return true; - default: - return false; - } + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER); +} + +/** + * Returns true if the given type is an enum type. + * + * @param type The type to check. + * @return True if type is an enum type. + */ +bool is_type_enum(const type_t *type) +{ + assert(!is_typeref(type)); + return type->kind == TYPE_ENUM; } -bool is_type_floating(const type_t *type) +/** + * Returns true if the given type is an floating point type. + * + * @param type The type to check. + * @return True if type is a floating point type. + */ +bool is_type_float(const type_t *type) { - if(type->type != TYPE_ATOMIC) + assert(!is_typeref(type)); + + if (type->kind != TYPE_ATOMIC) return false; - switch(type->v.atomic_type.atype) { - case ATOMIC_TYPE_FLOAT: - case ATOMIC_TYPE_DOUBLE: - case ATOMIC_TYPE_LONG_DOUBLE: -#ifdef PROVIDE_COMPLEX - case ATOMIC_TYPE_FLOAT_COMPLEX: - case ATOMIC_TYPE_DOUBLE_COMPLEX: - case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX: - case ATOMIC_TYPE_FLOAT_IMAGINARY: - case ATOMIC_TYPE_DOUBLE_IMAGINARY: - case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY: -#endif - return true; - default: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT); +} + +/** + * Returns true if the given type is an complex type. + * + * @param type The type to check. + * @return True if type is a complex type. + */ +bool is_type_complex(const type_t *type) +{ + assert(!is_typeref(type)); + + if (type->kind != TYPE_ATOMIC) return false; - } + + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX); } +/** + * Returns true if the given type is a signed type. + * + * @param type The type to check. + * @return True if type is a signed type. + */ bool is_type_signed(const type_t *type) { + assert(!is_typeref(type)); + /* enum types are int for now */ - if(type->type == TYPE_ENUM) + if (type->kind == TYPE_ENUM) return true; + if (type->kind == TYPE_BITFIELD) + return is_type_signed(type->bitfield.base_type); - if(type->type != TYPE_ATOMIC) + if (type->kind != TYPE_ATOMIC) return false; - switch(type->v.atomic_type.atype) { - case ATOMIC_TYPE_CHAR: - case ATOMIC_TYPE_SCHAR: - case ATOMIC_TYPE_SHORT: - case ATOMIC_TYPE_INT: - case ATOMIC_TYPE_LONG: - case ATOMIC_TYPE_LONGLONG: - case ATOMIC_TYPE_FLOAT: - case ATOMIC_TYPE_DOUBLE: - case ATOMIC_TYPE_LONG_DOUBLE: -#ifdef PROVIDE_COMPLEX - case ATOMIC_TYPE_FLOAT_COMPLEX: - case ATOMIC_TYPE_DOUBLE_COMPLEX: - case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX: - case ATOMIC_TYPE_FLOAT_IMAGINARY: - case ATOMIC_TYPE_DOUBLE_IMAGINARY: - case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY: -#endif - return true; + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED); +} - case ATOMIC_TYPE_BOOL: - case ATOMIC_TYPE_UCHAR: - case ATOMIC_TYPE_USHORT: - case ATOMIC_TYPE_UINT: - case ATOMIC_TYPE_ULONG: - case ATOMIC_TYPE_ULONGLONG: - return false; +/** + * Returns true if the given type represents an arithmetic type. + * + * @param type The type to check. + * @return True if type represents an arithmetic type. + */ +bool is_type_arithmetic(const type_t *type) +{ + assert(!is_typeref(type)); - case ATOMIC_TYPE_INVALID: - case ATOMIC_TYPE_VOID: + switch(type->kind) { + case TYPE_BITFIELD: + case TYPE_ENUM: + return true; + case TYPE_ATOMIC: + return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_COMPLEX: + return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + case TYPE_IMAGINARY: + return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC); + default: return false; } - - panic("invalid atomic type found"); - return false; } -bool is_type_arithmetic(const type_t *type) +/** + * Returns true if the given type is an integer or float type. + * + * @param type The type to check. + * @return True if type is an integer or float type. + */ +bool is_type_real(const type_t *type) { - if(is_type_integer(type) || is_type_floating(type)) - return 1; - - return 0; + /* 6.2.5 (17) */ + return is_type_integer(type) || is_type_float(type); } +/** + * Returns true if the given type represents a scalar type. + * + * @param type The type to check. + * @return True if type represents a scalar type. + */ bool is_type_scalar(const type_t *type) { - if(type->type == TYPE_POINTER) - return 1; + assert(!is_typeref(type)); + + switch (type->kind) { + case TYPE_POINTER: return true; + case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type); + default: break; + } return is_type_arithmetic(type); } +/** + * Check if a given type is incomplete. + * + * @param type The type to check. + * @return True if the given type is incomplete (ie. just forward). + */ bool is_type_incomplete(const type_t *type) { - switch(type->type) { + assert(!is_typeref(type)); + + switch(type->kind) { case TYPE_COMPOUND_STRUCT: case TYPE_COMPOUND_UNION: { - declaration_t *declaration = type->v.compound_type.declaration; - return !declaration->init.is_defined; + const compound_type_t *compound_type = &type->compound; + return !compound_type->compound->complete; } - case TYPE_FUNCTION: - return true; + case TYPE_ENUM: + return false; case TYPE_ARRAY: - return type->v.array_type.size == NULL; + return type->array.size_expression == NULL + && !type->array.size_constant; case TYPE_ATOMIC: + return type->atomic.akind == ATOMIC_TYPE_VOID; + + case TYPE_COMPLEX: + return type->complex.akind == ATOMIC_TYPE_VOID; + + case TYPE_IMAGINARY: + return type->imaginary.akind == ATOMIC_TYPE_VOID; + + case TYPE_BITFIELD: + case TYPE_FUNCTION: case TYPE_POINTER: - case TYPE_ENUM: + case TYPE_BUILTIN: + case TYPE_ERROR: return false; case TYPE_TYPEDEF: case TYPE_TYPEOF: - case TYPE_BUILTIN: panic("is_type_incomplete called without typerefs skipped"); case TYPE_INVALID: break; @@ -489,111 +1021,440 @@ bool is_type_incomplete(const type_t *type) panic("invalid type found"); } -bool types_compatible(const type_t *type1, const type_t *type2) +bool is_type_object(const type_t *type) +{ + return !is_type_function(type) && !is_type_incomplete(type); +} + +/** + * Check if two function types are compatible. + */ +static bool function_types_compatible(const function_type_t *func1, + const function_type_t *func2) { - /* TODO: really incomplete */ - if(type1 == type2) + const type_t* const ret1 = skip_typeref(func1->return_type); + const type_t* const ret2 = skip_typeref(func2->return_type); + if (!types_compatible(ret1, ret2)) + return false; + + if (func1->linkage != func2->linkage) + return false; + + /* can parameters be compared? */ + if (func1->unspecified_parameters || func2->unspecified_parameters) return true; - if(type1->type == TYPE_ATOMIC && type2->type == TYPE_ATOMIC) - return type1->v.atomic_type.atype == type2->v.atomic_type.atype; + if (func1->variadic != func2->variadic) + return false; + + /* TODO: handling of unspecified parameters not correct yet */ - return false; + /* all argument types must be compatible */ + function_parameter_t *parameter1 = func1->parameters; + function_parameter_t *parameter2 = func2->parameters; + for ( ; parameter1 != NULL && parameter2 != NULL; + parameter1 = parameter1->next, parameter2 = parameter2->next) { + type_t *parameter1_type = skip_typeref(parameter1->type); + type_t *parameter2_type = skip_typeref(parameter2->type); + + parameter1_type = get_unqualified_type(parameter1_type); + parameter2_type = get_unqualified_type(parameter2_type); + + if (!types_compatible(parameter1_type, parameter2_type)) + return false; + } + /* same number of arguments? */ + if (parameter1 != NULL || parameter2 != NULL) + return false; + + return true; } -bool pointers_compatible(const type_t *type1, const type_t *type2) +/** + * Check if two array types are compatible. + */ +static bool array_types_compatible(const array_type_t *array1, + const array_type_t *array2) { - assert(type1->type == TYPE_POINTER); - assert(type2->type == TYPE_POINTER); -#if 0 - return types_compatible(type1->v.pointer_type.points_to, - type2->v.pointer_type.points_to); -#endif - return true; + type_t *element_type1 = skip_typeref(array1->element_type); + type_t *element_type2 = skip_typeref(array2->element_type); + if (!types_compatible(element_type1, element_type2)) + return false; + + if (!array1->size_constant || !array2->size_constant) + return true; + + return array1->size == array2->size; } /** - * duplicates a type - * note that this does not produce a deep copy! + * Check if two types are compatible. */ -static type_t *duplicate_type(type_t *type) +bool types_compatible(const type_t *type1, const type_t *type2) { - type_t *copy = obstack_alloc(type_obst, sizeof(*copy)); - memcpy(copy, type, sizeof(*copy)); + assert(!is_typeref(type1)); + assert(!is_typeref(type2)); - (void) duplicate_type; + /* shortcut: the same type is always compatible */ + if (type1 == type2) + return true; - return type; + if (!is_type_valid(type1) || !is_type_valid(type2)) + return true; + + if (type1->base.qualifiers != type2->base.qualifiers) + return false; + if (type1->kind != type2->kind) + return false; + + switch (type1->kind) { + case TYPE_FUNCTION: + return function_types_compatible(&type1->function, &type2->function); + case TYPE_ATOMIC: + return type1->atomic.akind == type2->atomic.akind; + case TYPE_COMPLEX: + return type1->complex.akind == type2->complex.akind; + case TYPE_IMAGINARY: + return type1->imaginary.akind == type2->imaginary.akind; + case TYPE_ARRAY: + return array_types_compatible(&type1->array, &type2->array); + + case TYPE_POINTER: { + const type_t *const to1 = skip_typeref(type1->pointer.points_to); + const type_t *const to2 = skip_typeref(type2->pointer.points_to); + return types_compatible(to1, to2); + } + + case TYPE_COMPOUND_STRUCT: + case TYPE_COMPOUND_UNION: + case TYPE_ENUM: + case TYPE_BUILTIN: + /* TODO: not implemented */ + break; + + case TYPE_BITFIELD: + /* not sure if this makes sense or is even needed, implement it if you + * really need it! */ + panic("type compatibility check for bitfield type"); + + case TYPE_ERROR: + /* Hmm, the error type should be compatible to all other types */ + return true; + case TYPE_INVALID: + panic("invalid type found in compatible types"); + case TYPE_TYPEDEF: + case TYPE_TYPEOF: + panic("typerefs not skipped in compatible types?!?"); + } + + /* TODO: incomplete */ + return false; } +/** + * Skip all typerefs and return the underlying type. + */ type_t *skip_typeref(type_t *type) { - unsigned qualifiers = type->qualifiers; - - while(1) { - switch(type->type) { - case TYPE_TYPEDEF: - qualifiers |= type->qualifiers; - if(type->v.typedef_type.resolved_type != NULL) { - type = type->v.typedef_type.resolved_type; + type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE; + type_modifiers_t modifiers = TYPE_MODIFIER_NONE; + + while (true) { + switch (type->kind) { + case TYPE_ERROR: + return type; + case TYPE_TYPEDEF: { + qualifiers |= type->base.qualifiers; + modifiers |= type->base.modifiers; + const typedef_type_t *typedef_type = &type->typedeft; + if (typedef_type->resolved_type != NULL) { + type = typedef_type->resolved_type; break; } - type = type->v.typedef_type.declaration->type; + type = typedef_type->typedefe->type; continue; - case TYPE_TYPEOF: - if(type->v.typeof_type.typeof_type != NULL) { - type = type->v.typeof_type.typeof_type; + } + case TYPE_TYPEOF: { + const typeof_type_t *typeof_type = &type->typeoft; + if (typeof_type->typeof_type != NULL) { + type = typeof_type->typeof_type; } else { - type = type->v.typeof_type.expression->datatype; + type = typeof_type->expression->base.type; } continue; - case TYPE_BUILTIN: - type = type->v.builtin_type.real_type; - continue; + } default: break; } break; } + if (qualifiers != TYPE_QUALIFIER_NONE || modifiers != TYPE_MODIFIER_NONE) { + type_t *const copy = duplicate_type(type); + + /* for const with typedefed array type the element type has to be + * adjusted */ + if (is_type_array(copy)) { + type_t *element_type = copy->array.element_type; + element_type = duplicate_type(element_type); + element_type->base.qualifiers |= qualifiers; + element_type->base.modifiers |= modifiers; + copy->array.element_type = element_type; + } else { + copy->base.qualifiers |= qualifiers; + copy->base.modifiers |= modifiers; + } + + type = typehash_insert(copy); + if (type != copy) { + obstack_free(type_obst, copy); + } + } + return type; } +type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type) { + type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE; + + while (true) { + switch (type->base.kind) { + case TYPE_ERROR: + return TYPE_QUALIFIER_NONE; + case TYPE_TYPEDEF: + qualifiers |= type->base.qualifiers; + const typedef_type_t *typedef_type = &type->typedeft; + if (typedef_type->resolved_type != NULL) + type = typedef_type->resolved_type; + else + type = typedef_type->typedefe->type; + continue; + case TYPE_TYPEOF: { + const typeof_type_t *typeof_type = &type->typeoft; + if (typeof_type->typeof_type != NULL) { + type = typeof_type->typeof_type; + } else { + type = typeof_type->expression->base.type; + } + continue; + } + case TYPE_ARRAY: + if (skip_array_type) { + type = type->array.element_type; + continue; + } + break; + default: + break; + } + break; + } + return type->base.qualifiers | qualifiers; +} + +unsigned get_atomic_type_size(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].size; +} + +unsigned get_atomic_type_alignment(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].alignment; +} + +unsigned get_atomic_type_flags(atomic_type_kind_t kind) +{ + assert(kind <= ATOMIC_TYPE_LAST); + return atomic_type_properties[kind].flags; +} + +atomic_type_kind_t get_intptr_kind(void) +{ + if (machine_size <= 32) + return ATOMIC_TYPE_INT; + else if (machine_size <= 64) + return ATOMIC_TYPE_LONG; + else + return ATOMIC_TYPE_LONGLONG; +} + +atomic_type_kind_t get_uintptr_kind(void) +{ + if (machine_size <= 32) + return ATOMIC_TYPE_UINT; + else if (machine_size <= 64) + return ATOMIC_TYPE_ULONG; + else + return ATOMIC_TYPE_ULONGLONG; +} + +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) { + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if (kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_SCHAR, + ATOMIC_TYPE_SHORT, + ATOMIC_TYPE_INT, + ATOMIC_TYPE_LONG, + ATOMIC_TYPE_LONGLONG + }; + for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) { + if (get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} +/** + * Find the atomic type kind representing a given size (signed). + */ +atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) { + static atomic_type_kind_t kinds[32]; + + assert(size < 32); + atomic_type_kind_t kind = kinds[size]; + if (kind == ATOMIC_TYPE_INVALID) { + static const atomic_type_kind_t possible_kinds[] = { + ATOMIC_TYPE_UCHAR, + ATOMIC_TYPE_USHORT, + ATOMIC_TYPE_UINT, + ATOMIC_TYPE_ULONG, + ATOMIC_TYPE_ULONGLONG + }; + for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) { + if (get_atomic_type_size(possible_kinds[i]) == size) { + kind = possible_kinds[i]; + break; + } + } + kinds[size] = kind; + } + return kind; +} +/** + * Hash the given type and return the "singleton" version + * of it. + */ static type_t *identify_new_type(type_t *type) { type_t *result = typehash_insert(type); - if(result != type) { + if (result != type) { obstack_free(type_obst, type); } return result; } -type_t *make_atomic_type(atomic_type_type_t type, type_qualifiers_t qualifiers) +/** + * Creates a new atomic type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t)); + memset(type, 0, sizeof(atomic_type_t)); + + type->kind = TYPE_ATOMIC; + type->base.size = get_atomic_type_size(akind); + type->base.alignment = get_atomic_type_alignment(akind); + type->base.qualifiers = qualifiers; + type->atomic.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new complex type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t)); + memset(type, 0, sizeof(complex_type_t)); + + type->kind = TYPE_COMPLEX; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->complex.akind = akind; + + return identify_new_type(type); +} + +/** + * Creates a new imaginary type. + * + * @param akind The kind of the atomic type. + * @param qualifiers Type qualifiers for the new type. + */ +type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers) { - type_t *atomic_type = obstack_alloc(type_obst, sizeof(atomic_type[0])); - memset(atomic_type, 0, sizeof(atomic_type[0])); - atomic_type->type = TYPE_ATOMIC; - atomic_type->qualifiers = qualifiers; - atomic_type->v.atomic_type.atype = type; + type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t)); + memset(type, 0, sizeof(imaginary_type_t)); - return identify_new_type(atomic_type); + type->kind = TYPE_IMAGINARY; + type->base.qualifiers = qualifiers; + type->base.alignment = get_atomic_type_alignment(akind); + type->imaginary.akind = akind; + + return identify_new_type(type); } +/** + * Creates a new pointer type. + * + * @param points_to The points-to type for the new type. + * @param qualifiers Type qualifiers for the new type. + */ type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers) { - type_t *pointer_type = obstack_alloc(type_obst, sizeof(pointer_type[0])); - memset(pointer_type, 0, sizeof(pointer_type[0])); - pointer_type->type = TYPE_POINTER; - pointer_type->qualifiers = qualifiers; - pointer_type->v.pointer_type.points_to = points_to; + type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t)); + memset(type, 0, sizeof(pointer_type_t)); - return identify_new_type(pointer_type); + type->kind = TYPE_POINTER; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->pointer.points_to = points_to; + + return identify_new_type(type); } +type_t *make_array_type(type_t *element_type, size_t size, + type_qualifiers_t qualifiers) +{ + type_t *type = obstack_alloc(type_obst, sizeof(array_type_t)); + memset(type, 0, sizeof(array_type_t)); + + type->kind = TYPE_ARRAY; + type->base.qualifiers = qualifiers; + type->base.alignment = 0; + type->array.element_type = element_type; + type->array.size = size; + type->array.size_constant = true; + + return identify_new_type(type); +} + +/** + * Debug helper. Prints the given type to stdout. + */ static __attribute__((unused)) -void dbg_type(type_t *type) +void dbg_type(const type_t *type) { FILE *old_out = out; out = stderr;