X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=ir%2Ftv%2Ffltcalc.h;h=c41257ea0c6a4a4327095c49163d0d947f9a41ff;hb=7d61ad5fbb6a87bea369c8a01103a92d9ab79a48;hp=448ccd7d6b7f352bc790b9748375d9e417767646;hpb=25a9079a440dca3115aedcc4c22438e187ed9d7d;p=libfirm diff --git a/ir/tv/fltcalc.h b/ir/tv/fltcalc.h index 448ccd7d6..c41257ea0 100644 --- a/ir/tv/fltcalc.h +++ b/ir/tv/fltcalc.h @@ -1,57 +1,65 @@ /* - * Project: libFIRM - * File name: ir/tv/fltcalc.h - * Purpose: - * Author: - * Modified by: - * Created: 2003 - * CVS-ID: $Id$ - * Copyright: (c) 2003 Universität Karlsruhe - * Licence: This file protected by GPL - GNU GENERAL PUBLIC LICENSE. - */ - -#ifndef _FLTCALC_H_ -#define _FLTCALC_H_ - -#include - -#ifdef HAVE_LONG_DOUBLE -/* XXX Set this via autoconf */ -#define HAVE_EXPLICIT_ONE -typedef long double LLDBL; -#else -typedef double LLDBL; -#endif + * Copyright (C) 1995-2011 University of Karlsruhe. All right reserved. + * + * This file is part of libFirm. + * + * This file may be distributed and/or modified under the terms of the + * GNU General Public License version 2 as published by the Free Software + * Foundation and appearing in the file LICENSE.GPL included in the + * packaging of this file. + * + * Licensees holding valid libFirm Professional Edition licenses may use + * this file in accordance with the libFirm Commercial License. + * Agreement provided with the Software. + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE. + */ -typedef enum { - FC_add, /**< addition */ - FC_sub, /**< subtraction */ - FC_mul, /**< multiplication */ - FC_div, /**< divide */ - FC_neg, /**< negate */ - FC_int, /**< truncate to integer */ - FC_rnd, /**< round to integer */ -} fc_op_t; +/** + * @file + * @brief tarval floating point calculations + * @date 2003 + * @author Mathias Heil + */ +#ifndef FIRM_TV_FLTCALC_H +#define FIRM_TV_FLTCALC_H + +#include +#include "firm_types.h" +#include "irtypes.h" enum { - FC_DEC, - FC_HEX, - FC_BIN, - FC_PACKED, + FC_DEC, + FC_HEX, + FC_BIN, + FC_PACKED }; -/* rounding modes */ +/** IEEE-754 Rounding modes. */ typedef enum { - FC_TONEAREST, - FC_TOPOSITIVE, - FC_TONEGATIVE, - FC_TOZERO, + FC_TONEAREST, /**< if unsure, to the nearest even */ + FC_TOPOSITIVE, /**< to +oo */ + FC_TONEGATIVE, /**< to -oo */ + FC_TOZERO /**< to 0 */ } fc_rounding_mode_t; #define FC_DEFAULT_PRECISION 64 -#define FC_DECLARE1(code) char* fc_##code(const void *a, void *result) -#define FC_DECLARE2(code) char* fc_##code(const void *a, const void *b, void *result) +/** + * possible float states + */ +typedef enum { + FC_NORMAL, /**< normal representation, implicit 1 */ + FC_ZERO, /**< +/-0 */ + FC_SUBNORMAL, /**< denormals, implicit 0 */ + FC_INF, /**< +/-oo */ + FC_NAN, /**< Not A Number */ +} value_class_t; + +struct fp_value; +typedef struct fp_value fp_value; /*@{*/ /** internal buffer access @@ -61,98 +69,96 @@ typedef enum { * returns the size of this buffer */ const void *fc_get_buffer(void); -const int fc_get_buffer_length(void); +int fc_get_buffer_length(void); /*}@*/ -char* fc_val_from_str(const char *str, unsigned int len, char exp_size, char mant_size, char *result); +void *fc_val_from_str(const char *str, size_t len, const float_descriptor_t *desc, void *result); /** get the representation of a floating point value * This function tries to builds a representation having the same value as the * float number passed. - * If the wished precision is less than the precicion of LLDBL the value built - * will be rounded. Therefore only an approximation of the passed float can be - * expected in this case. - * - * @param l The floating point number to build a representation for - * @param exp_size The number of bits of the new exponent - * @param mant_size The number of bits of the new mantissa - * @param result A buffer to hold the value built. If this is NULL, the internal - * accumulator buffer is used. Note that the buffer must be big - * enough to hold the value. Use fc_get_buffer_length() to find out - * the size needed - * @return The result pointer passed to the function. If this was NULL this returns - * a pointer to the internal accumulator buffer - */ -char* fc_val_from_float(LLDBL l, char exp_size, char mant_size, char *result); + * If the wished precision is less than the precision of long double the value + * built will be rounded. Therefore only an approximation of the passed float + * can be expected in this case. + * + * @param l The floating point number to build a representation for + * @param desc The floating point descriptor + * @param result A buffer to hold the value built. If this is NULL, the internal + * accumulator buffer is used. Note that the buffer must be big + * enough to hold the value. Use fc_get_buffer_length() to find out + * the size needed + * + * @return The result pointer passed to the function. If this was NULL this returns + * a pointer to the internal accumulator buffer + */ +fp_value *fc_val_from_ieee754(long double l, const float_descriptor_t *desc, + fp_value *result); /** retrieve the float value of an internal value - * This function casts the internal value to LLDBL and returns a LLDBL with - * that value. - * This implies that values of higher precision than LLDBL are subject to + * This function casts the internal value to long double and returns a + * long double with that value. + * This implies that values of higher precision than long double are subject to * rounding, so the returned value might not the same than the actually * represented value. * - * @param val The representation of a float value + * @param val The representation of a float value + * * @return a float value approximating the represented value */ -LLDBL fc_val_to_float(const void *val); +long double fc_val_to_ieee754(const fp_value *val); /** cast a value to another precision * This function changes the precision of a float representation. * If the new precision is less than the original precision the returned * value might not be the same as the original value. * - * @param val The value to be casted - * @param exp_size The number of bits of the new exponent - * @param mant_size The number of bits of the new mantissa - * @param result A buffer to hold the value built. If this is NULL, the internal - * accumulator buffer is used. Note that the buffer must be big - * enough to hold the value. Use fc_get_buffer_length() to find out - * the size needed - * @return The result pointer passed to the function. If this was NULL this returns - * a pointer to the internal accumulator buffer + * @param val The value to be casted + * @param desc The floating point descriptor + * @param result A buffer to hold the value built. If this is NULL, the internal + * accumulator buffer is used. Note that the buffer must be big + * enough to hold the value. Use fc_get_buffer_length() to find out + * the size needed + * @return The result pointer passed to the function. If this was NULL this returns + * a pointer to the internal accumulator buffer */ -char* fc_cast(const void *val, char exp_size, char mant_size, char *result); +fp_value *fc_cast(const fp_value *val, const float_descriptor_t *desc, fp_value *result); /*@{*/ /** build a special float value * This function builds a representation for a special float value, as indicated by the * function's suffix. * - * @param exponent_size The number of bits of exponent of the float type the value - * is created for - * @param mantissa_size The number of bits of mantissa of the float type the value - * is created for - * @param result A buffer to hold the value built. If this is NULL, the internal - * accumulator buffer is used. Note that the buffer must be big - * enough to hold the value. Use fc_get_buffer_length() to find out - * the size needed - * @return The result pointer passed to the function. If this was NULL this returns - * a pointer to the internal accumulator buffer - */ -char* fc_get_min(unsigned int exponent_size, unsigned int mantissa_size, char* result); -char* fc_get_max(unsigned int exponent_size, unsigned int mantissa_size, char* result); -char* fc_get_snan(unsigned int exponent_size, unsigned int mantissa_size, char* result); -char* fc_get_qnan(unsigned int exponent_size, unsigned int mantissa_size, char* result); -char* fc_get_plusinf(unsigned int exponent_size, unsigned int mantissa_size, char* result); -char* fc_get_minusinf(unsigned int exponent_size, unsigned int mantissa_size, char* result); -/*}@*/ + * @param desc The floating point descriptor + * @param result A buffer to hold the value built. If this is NULL, the internal + * accumulator buffer is used. Note that the buffer must be big + * enough to hold the value. Use fc_get_buffer_length() to find out + * the size needed + * @return The result pointer passed to the function. If this was NULL this returns + * a pointer to the internal accumulator buffer + */ +fp_value *fc_get_min(const float_descriptor_t *desc, fp_value *result); +fp_value *fc_get_max(const float_descriptor_t *desc, fp_value *result); +fp_value *fc_get_snan(const float_descriptor_t *desc, fp_value *result); +fp_value *fc_get_qnan(const float_descriptor_t *desc, fp_value *result); +fp_value *fc_get_plusinf(const float_descriptor_t *desc, fp_value *result); +fp_value *fc_get_minusinf(const float_descriptor_t *desc, fp_value *result); +/*@}*/ -int fc_is_zero(const void *a); -int fc_is_negative(const void *a); -int fc_is_inf(const void *a); -int fc_is_nan(const void *a); -int fc_is_subnormal(const void *a); +int fc_is_zero(const fp_value *a); +int fc_is_negative(const fp_value *a); +int fc_is_inf(const fp_value *a); +int fc_is_nan(const fp_value *a); +int fc_is_subnormal(const fp_value *a); -FC_DECLARE2(add); -FC_DECLARE2(sub); -FC_DECLARE2(mul); -FC_DECLARE2(div); -FC_DECLARE1(neg); -FC_DECLARE1(int); -FC_DECLARE1(rnd); +fp_value *fc_add(const fp_value *a, const fp_value *b, fp_value *result); +fp_value *fc_sub(const fp_value *a, const fp_value *b, fp_value *result); +fp_value *fc_mul(const fp_value *a, const fp_value *b, fp_value *result); +fp_value *fc_div(const fp_value *a, const fp_value *b, fp_value *result); +fp_value *fc_neg(const fp_value *a, fp_value *result); +fp_value *fc_int(const fp_value *a, fp_value *result); +fp_value *fc_rnd(const fp_value *a, fp_value *result); -char *fc_print(const void *a, char *buf, int buflen, unsigned base); +char *fc_print(const fp_value *a, char *buf, int buflen, unsigned base); /** Compare two values * This function compares two values @@ -165,7 +171,27 @@ char *fc_print(const void *a, char *buf, int buflen, unsigned base); * 1 if a > b * 2 if either value is NaN */ -int fc_comp(const void *a, const void *b); +int fc_comp(const fp_value *a, const fp_value *b); + +/** + * Converts an floating point value into an integer value. + */ +int fc_flt2int(const fp_value *a, void *result, ir_mode *dst_mode); + +/** + * Returns non-zero if the mantissa is zero, i.e. 1.0Exxx + */ +int fc_zero_mantissa(const fp_value *value); + +/** + * Returns the exponent of a value. + */ +int fc_get_exponent(const fp_value *value); + +/** + * Return non-zero if a given value can be converted lossless into another precision. + */ +int fc_can_lossless_conv_to(const fp_value *value, const float_descriptor_t *desc); /** Set new rounding mode * This function sets the rounding mode to one of the following, returning @@ -173,8 +199,8 @@ int fc_comp(const void *a, const void *b); * FC_TONEAREST (default): * Any unrepresentable value is rounded to the nearest representable * value. If it lies in the middle the value with the least significant - * bit of zero is chosen. - * Values too big to represent will round to +-infinity. + * bit of zero is chosen (the even one). + * Values too big to represent will round to +/-infinity. * FC_TONEGATIVE * Any unrepresentable value is rounded towards negative infinity. * Positive values too big to represent will round to the biggest @@ -191,7 +217,7 @@ int fc_comp(const void *a, const void *b); * Values too big to represent will round to the biggest/smallest * representable value. * - * These modes correspond to the modes required by the ieee standard. + * These modes correspond to the modes required by the IEEE-754 standard. * * @param mode The new rounding mode. Any value other than the four * defined values will have no effect. @@ -211,28 +237,35 @@ fc_rounding_mode_t fc_set_rounding_mode(fc_rounding_mode_t mode); fc_rounding_mode_t fc_get_rounding_mode(void); /** Get bit representation of a value - * This function allows to read a value in encoded form, bytewise. - * The value will be packed corresponding to the way used by the ieee + * This function allows to read a value in encoded form, byte wise. + * The value will be packed corresponding to the way used by the IEEE * encoding formats, i.e. * One bit sign * exp_size bits exponent + bias * mant_size bits mantissa, without leading 1 * - * As in ieee, an exponent of 0 indicates a denormalized number, which + * As in IEEE, an exponent of 0 indicates a denormalized number, which * implies a most significant bit of zero instead of one; an exponent * of all ones (2**exp_size - 1) encodes infinity if the mantissa is - * all zeroes, else Not A Number. + * all zeros, else Not A Number. * * @param val A pointer to the value. If NULL is passed a copy of the * most recent value passed to this function is used, saving the - * packing step. This behaviour may be changed in the future. + * packing step. This behavior may be changed in the future. * @param num_bit The maximum number of bits to return. Any bit beyond * num_bit will be returned as zero. * @param byte_ofs The byte index to read, 0 is the least significant * byte. * @return 8 bits of encoded data */ -unsigned char fc_sub_bits(const void *val, unsigned num_bit, unsigned byte_ofs); +unsigned char fc_sub_bits(const fp_value *val, unsigned num_bit, unsigned byte_ofs); + +/** + * Returns non-zero if the result of the last operation was exact. + */ +int fc_is_exact(void); void init_fltcalc(int precision); -#endif /* _FLTCALC_H_ */ +void finish_fltcalc(void); + +#endif /* FIRM_TV_FLTCALC_H */