X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=ir%2Fbe%2Fbecopyheur4.c;h=4b903b20d34698af8d01c0da502592c0a05118b0;hb=6b1c4998aa018f971620bb1eb72898ee7b905371;hp=6818e3a331dba98391a798cd4752fd0a7cacf082;hpb=4f1f35735b0cad291e9fbf753636fa1bbb0b3009;p=libfirm diff --git a/ir/be/becopyheur4.c b/ir/be/becopyheur4.c index 6818e3a33..4b903b20d 100644 --- a/ir/be/becopyheur4.c +++ b/ir/be/becopyheur4.c @@ -1,113 +1,604 @@ -/** - * This is the C implementation of the trivial mst algo - * originally written in Java by Sebastian Hack. - * Performs simple copy minimzation. +/* + * Copyright (C) 1995-2008 University of Karlsruhe. All right reserved. + * + * This file is part of libFirm. + * + * This file may be distributed and/or modified under the terms of the + * GNU General Public License version 2 as published by the Free Software + * Foundation and appearing in the file LICENSE.GPL included in the + * packaging of this file. * - * @author Christian Wuerdig - * @date 27.04.2007 - * @id $Id$ + * Licensees holding valid libFirm Professional Edition licenses may use + * this file in accordance with the libFirm Commercial License. + * Agreement provided with the Software. + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE. */ -#if 0 -#ifdef HAVE_CONFIG_H +/** + * @file + * @brief Simple copy minimization heuristics. + * @author Christian Wuerdig + * @date 27.04.2007 + * @version $Id$ + * + * This is the C implementation of the mst algorithm + * originally written in Java by Sebastian Hack. + * (also known as "heur3" :) + * Performs simple copy minimization. + */ #include "config.h" -#endif /* HAVE_CONFIG_H */ + +#define DISABLE_STATEV + +#include #include "array.h" -#include "irnode.h" +#include "irnode_t.h" #include "bitset.h" #include "raw_bitset.h" #include "irphase_t.h" +#include "pqueue.h" +#include "xmalloc.h" +#include "pdeq.h" +#include "pset.h" +#include "irprintf.h" +#include "irbitset.h" +#include "error.h" +#include "list.h" +#include "statev.h" + +#include "irbitset.h" #include "bearch.h" #include "beifg.h" #include "be_t.h" +#include "becopyopt_t.h" +#include "bemodule.h" + + +#define COL_COST_INFEASIBLE DBL_MAX +#define AFF_NEIGHBOUR_FIX_BENEFIT 128.0 +#define NEIGHBOUR_CONSTR_COSTS 64.0 + +#ifdef DEBUG_libfirm + +#define DBG_AFF_CHUNK(env, level, chunk) do { if (firm_dbg_get_mask(dbg) & (level)) dbg_aff_chunk((env), (chunk)); } while(0) +#define DBG_COL_COST(env, level, cost) do { if (firm_dbg_get_mask(dbg) & (level)) dbg_col_cost((env), (cost)); } while(0) + +static firm_dbg_module_t *dbg = NULL; + +#else + +#define DBG_AFF_CHUNK(env, level, chunk) +#define DBG_COL_COST(env, level, cost) + +#endif + +typedef float real_t; +#define REAL(C) (C ## f) + +static unsigned last_chunk_id = 0; +static int recolor_limit = 7; +static real_t dislike_influence = REAL(0.1); + +typedef struct _col_cost_t { + int col; + real_t cost; +} col_cost_t; + +/** + * An affinity chunk. + */ typedef struct _aff_chunk_t { - ir_node **nodes; - int weight; + const ir_node **n; /**< An ARR_F containing all nodes of the chunk. */ + const ir_node **interfere; /**< An ARR_F containing all inference. */ + int weight; /**< Weight of this chunk */ + unsigned weight_consistent : 1; /**< Set if the weight is consistent. */ + unsigned deleted : 1; /**< For debugging: Set if the was deleted. */ + unsigned id; /**< An id of this chunk. */ + unsigned visited; + col_cost_t color_affinity[1]; } aff_chunk_t; +/** + * An affinity edge. + */ typedef struct _aff_edge_t { - ir_node *src; - ir_node *tgt; - double weight; + const ir_node *src; /**< Source node. */ + const ir_node *tgt; /**< Target node. */ + int weight; /**< The weight of this edge. */ } aff_edge_t; -/* main coalescing environment*/ -typedef struct _co_mst_safe_env_t { +/* main coalescing environment */ +typedef struct _co_mst_env_t { int n_regs; /**< number of regs in class */ int k; /**< number of non-ignore registers in class */ bitset_t *ignore_regs; /**< set containing all global ignore registers */ ir_phase ph; /**< phase object holding data for nodes */ - pqueue *chunks; /**< priority queue for chunks */ + pqueue_t *chunks; /**< priority queue for chunks */ + pset *chunkset; /**< set holding all chunks */ be_ifg_t *ifg; /**< the interference graph */ - const arch_env_t *aenv; /**< the arch environment */ -} co_mst_safe_env_t; + copy_opt_t *co; /**< the copy opt object */ + unsigned chunk_visited; + col_cost_t **single_cols; +} co_mst_env_t; /* stores coalescing related information for a node */ -typedef struct _co_mst_safe_irn_t { - ir_node *irn; - aff_chunk_t *chunk; - bitset_t *adm_colors; - int init_col; - int tmp_col; - int int_neigh; - unsigned fixed : 1; -} co_mst_safe_irn_t; - -#define get_co_mst_safe_irn(mst_env, irn) (phase_get_or_set_irn_data(&(mst_env)->ph, (irn))) - -/* compares two affinity edges */ +typedef struct _co_mst_irn_t { + const ir_node *irn; /**< the irn this information belongs to */ + aff_chunk_t *chunk; /**< the chunk this irn belongs to */ + bitset_t *adm_colors; /**< set of admissible colors for this irn */ + ir_node **int_neighs; /**< array of all interfering neighbours (cached for speed reasons) */ + int n_neighs; /**< length of the interfering neighbours array. */ + int int_aff_neigh; /**< number of interfering affinity neighbours */ + int col; /**< color currently assigned */ + int init_col; /**< the initial color */ + int tmp_col; /**< a temporary assigned color */ + unsigned fixed : 1; /**< the color is fixed */ + struct list_head list; /**< Queue for coloring undo. */ + real_t constr_factor; +} co_mst_irn_t; + +#define get_co_mst_irn(mst_env, irn) (phase_get_or_set_irn_data(&(mst_env)->ph, (irn))) + +typedef int decide_func_t(const co_mst_irn_t *node, int col); + +#ifdef DEBUG_libfirm + +/** + * Write a chunk to stderr for debugging. + */ +static void dbg_aff_chunk(const co_mst_env_t *env, const aff_chunk_t *c) { + int i, l; + (void) env; + if (c->weight_consistent) + ir_fprintf(stderr, " $%d ", c->weight); + ir_fprintf(stderr, "{"); + for (i = 0, l = ARR_LEN(c->n); i < l; ++i) { + const ir_node *n = c->n[i]; + ir_fprintf(stderr, " %+F,", n); + } + ir_fprintf(stderr, "}"); +} + +/** + * Dump all admissible colors to stderr. + */ +static void dbg_admissible_colors(const co_mst_env_t *env, const co_mst_irn_t *node) { + bitset_pos_t idx; + (void) env; + + if (bitset_popcnt(node->adm_colors) < 1) + fprintf(stderr, "no admissible colors?!?"); + else { + bitset_foreach(node->adm_colors, idx) { + fprintf(stderr, " %d", idx); + } + } +} + +/** + * Dump color-cost pairs to stderr. + */ +static void dbg_col_cost(const co_mst_env_t *env, const col_cost_t *cost) { + int i; + for (i = 0; i < env->n_regs; ++i) + fprintf(stderr, " (%d, %.4f)", cost[i].col, cost[i].cost); +} + +#endif /* DEBUG_libfirm */ + +static inline int get_mst_irn_col(const co_mst_irn_t *node) { + return node->tmp_col >= 0 ? node->tmp_col : node->col; +} + +/** + * @return 1 if node @p node has color @p col, 0 otherwise. + */ +static int decider_has_color(const co_mst_irn_t *node, int col) { + return get_mst_irn_col(node) == col; +} + +/** + * @return 1 if node @p node has not color @p col, 0 otherwise. + */ +static int decider_hasnot_color(const co_mst_irn_t *node, int col) { + return get_mst_irn_col(node) != col; +} + +/** + * Always returns true. + */ +static int decider_always_yes(const co_mst_irn_t *node, int col) { + (void) node; + (void) col; + return 1; +} + +/** compares two affinity edges by its weight */ static int cmp_aff_edge(const void *a, const void *b) { - const aff_edge_t * const *e1 = d1; - const aff_edge_t * const *e2 = d2; + const aff_edge_t *e1 = a; + const aff_edge_t *e2 = b; + if (e2->weight == e1->weight) { + if (e2->src->node_idx == e1->src->node_idx) + return QSORT_CMP(e2->tgt->node_idx, e1->tgt->node_idx); + else + return QSORT_CMP(e2->src->node_idx, e1->src->node_idx); + } /* sort in descending order */ - return (*e1)->weight < (*e2)->weight ? 1 : -1; + return QSORT_CMP(e2->weight, e1->weight); +} + +/** compares to color-cost pairs */ +static __attribute__((unused)) int cmp_col_cost_lt(const void *a, const void *b) { + const col_cost_t *c1 = a; + const col_cost_t *c2 = b; + real_t diff = c1->cost - c2->cost; + return (diff > 0) - (diff < 0); +} + +static int cmp_col_cost_gt(const void *a, const void *b) { + const col_cost_t *c1 = a; + const col_cost_t *c2 = b; + real_t diff = c2->cost - c1->cost; + return (diff > 0) - (diff < 0); +} + +/** + * Creates a new affinity chunk + */ +static inline aff_chunk_t *new_aff_chunk(co_mst_env_t *env) { + aff_chunk_t *c = XMALLOCF(aff_chunk_t, color_affinity, env->n_regs); + c->n = NEW_ARR_F(const ir_node *, 0); + c->interfere = NEW_ARR_F(const ir_node *, 0); + c->weight = -1; + c->weight_consistent = 0; + c->deleted = 0; + c->id = ++last_chunk_id; + c->visited = 0; + pset_insert(env->chunkset, c, c->id); + return c; +} + +/** + * Frees all memory allocated by an affinity chunk. + */ +static inline void delete_aff_chunk(co_mst_env_t *env, aff_chunk_t *c) { + pset_remove(env->chunkset, c, c->id); + DEL_ARR_F(c->interfere); + DEL_ARR_F(c->n); + c->deleted = 1; + free(c); +} + +/** + * binary search of sorted nodes. + * + * @return the position where n is found in the array arr or ~pos + * if the nodes is not here. + */ +static inline int nodes_bsearch(const ir_node **arr, const ir_node *n) { + int hi = ARR_LEN(arr); + int lo = 0; + + while (lo < hi) { + int md = lo + ((hi - lo) >> 1); + + if (arr[md] == n) + return md; + if (arr[md] < n) + lo = md + 1; + else + hi = md; + } + + return ~lo; +} + +/** Check if a node n can be found inside arr. */ +static int node_contains(const ir_node **arr, const ir_node *n) { + int i = nodes_bsearch(arr, n); + return i >= 0; +} + +/** + * Insert a node into the sorted nodes list. + * + * @return 1 if the node was inserted, 0 else + */ +static int nodes_insert(const ir_node ***arr, const ir_node *irn) { + int idx = nodes_bsearch(*arr, irn); + + if (idx < 0) { + int i, n = ARR_LEN(*arr); + const ir_node **l; + + ARR_APP1(const ir_node *, *arr, irn); + + /* move it */ + idx = ~idx; + l = *arr; + for (i = n - 1; i >= idx; --i) + l[i + 1] = l[i]; + l[idx] = irn; + return 1; + } + return 0; +} + +/** + * Adds a node to an affinity chunk + */ +static inline void aff_chunk_add_node(aff_chunk_t *c, co_mst_irn_t *node) { + int i; + + if (! nodes_insert(&c->n, node->irn)) + return; + + c->weight_consistent = 0; + node->chunk = c; + + for (i = node->n_neighs - 1; i >= 0; --i) { + ir_node *neigh = node->int_neighs[i]; + nodes_insert(&c->interfere, neigh); + } } /** * In case there is no phase information for irn, initialize it. */ -static void *co_mst_safe_irn_init(ir_phase *ph, ir_node *irn, void *old) { - co_mst_safe_irn_t *res = old ? old : phase_alloc(ph, sizeof(res[0])); - co_mst_safe_env_t *env = ph->priv; +static void *co_mst_irn_init(ir_phase *ph, const ir_node *irn, void *old) { + co_mst_irn_t *res = old ? old : phase_alloc(ph, sizeof(res[0])); + co_mst_env_t *env = ph->priv; - if (res != old) { - void *neigh_it = be_ifg_neighbours_iter_alloca(env->ifg); + if (!old) { const arch_register_req_t *req; - ir_node *m; + void *nodes_it = be_ifg_nodes_iter_alloca(env->ifg); + ir_node *neigh; + unsigned len; + + res->irn = irn; + res->chunk = NULL; + res->fixed = 0; + res->tmp_col = -1; + res->int_neighs = NULL; + res->int_aff_neigh = 0; + res->col = arch_register_get_index(arch_get_irn_register(irn)); + res->init_col = res->col; + INIT_LIST_HEAD(&res->list); - res->irn = irn; - res->chunk = NULL; - res->fixed = 0; - res->tmp_col = -1; - res->int_neigh = 0; - res->init_col = arch_register_get_index(arch_get_irn_register(env->aenv, irn)); + DB((dbg, LEVEL_4, "Creating phase info for %+F\n", irn)); /* set admissible registers */ res->adm_colors = bitset_obstack_alloc(phase_obst(ph), env->n_regs); /* Exclude colors not assignable to the irn */ - req = arch_get_register_req(env->aenv, irn, -1); + req = arch_get_register_req_out(irn); if (arch_register_req_is(req, limited)) rbitset_copy_to_bitset(req->limited, res->adm_colors); + else + bitset_set_all(res->adm_colors); /* exclude global ignore registers as well */ bitset_andnot(res->adm_colors, env->ignore_regs); - /* calculate the number of interfering neigbours */ - be_ifg_foreach_neighbour(env->ifg, neigh_it, irn, m) { - if (! arch_irn_is(env->aenv, m, ignore)) - res->int_neigh++; + /* compute the constraint factor */ + res->constr_factor = (real_t) (1 + env->n_regs - bitset_popcnt(res->adm_colors)) / env->n_regs; + + /* set the number of interfering affinity neighbours to -1, they are calculated later */ + res->int_aff_neigh = -1; + + /* build list of interfering neighbours */ + len = 0; + be_ifg_foreach_neighbour(env->ifg, nodes_it, irn, neigh) { + if (!arch_irn_is_ignore(neigh)) { + obstack_ptr_grow(phase_obst(ph), neigh); + ++len; + } } + res->int_neighs = obstack_finish(phase_obst(ph)); + res->n_neighs = len; + } + return res; +} + +/** + * Check if affinity chunk @p chunk interferes with node @p irn. + */ +static inline int aff_chunk_interferes(const aff_chunk_t *chunk, const ir_node *irn) { + return node_contains(chunk->interfere, irn); +} + +/** + * Check if there are interference edges from c1 to c2. + * @param c1 A chunk + * @param c2 Another chunk + * @return 1 if there are interferences between nodes of c1 and c2, 0 otherwise. + */ +static inline int aff_chunks_interfere(const aff_chunk_t *c1, const aff_chunk_t *c2) { + int i; + + if (c1 == c2) + return 0; + + /* check if there is a node in c2 having an interfering neighbor in c1 */ + for (i = ARR_LEN(c2->n) - 1; i >= 0; --i) { + const ir_node *irn = c2->n[i]; + + if (node_contains(c1->interfere, irn)) + return 1; + } + return 0; +} + +/** + * Returns the affinity chunk of @p irn or creates a new + * one with @p irn as element if there is none assigned. + */ +static inline aff_chunk_t *get_aff_chunk(co_mst_env_t *env, const ir_node *irn) { + co_mst_irn_t *node = get_co_mst_irn(env, irn); + return node->chunk; +} + +/** + * Let chunk(src) absorb the nodes of chunk(tgt) (only possible when there + * are no interference edges from chunk(src) to chunk(tgt)). + * @return 1 if successful, 0 if not possible + */ +static int aff_chunk_absorb(co_mst_env_t *env, const ir_node *src, const ir_node *tgt) { + aff_chunk_t *c1 = get_aff_chunk(env, src); + aff_chunk_t *c2 = get_aff_chunk(env, tgt); + +#ifdef DEBUG_libfirm + DB((dbg, LEVEL_4, "Attempt to let c1 (id %u): ", c1 ? c1->id : 0)); + if (c1) { + DBG_AFF_CHUNK(env, LEVEL_4, c1); + } else { + DB((dbg, LEVEL_4, "{%+F}", src)); + } + DB((dbg, LEVEL_4, "\n\tabsorb c2 (id %u): ", c2 ? c2->id : 0)); + if (c2) { + DBG_AFF_CHUNK(env, LEVEL_4, c2); + } else { + DB((dbg, LEVEL_4, "{%+F}", tgt)); + } + DB((dbg, LEVEL_4, "\n")); +#endif + + if (c1 == NULL) { + if (c2 == NULL) { + /* no chunk exists */ + co_mst_irn_t *mirn = get_co_mst_irn(env, src); + int i; + + for (i = mirn->n_neighs - 1; i >= 0; --i) { + if (mirn->int_neighs[i] == tgt) + break; + } + if (i < 0) { + /* create one containing both nodes */ + c1 = new_aff_chunk(env); + aff_chunk_add_node(c1, get_co_mst_irn(env, src)); + aff_chunk_add_node(c1, get_co_mst_irn(env, tgt)); + goto absorbed; + } + } else { + /* c2 already exists */ + if (! aff_chunk_interferes(c2, src)) { + aff_chunk_add_node(c2, get_co_mst_irn(env, src)); + goto absorbed; + } + } + } else if (c2 == NULL) { + /* c1 already exists */ + if (! aff_chunk_interferes(c1, tgt)) { + aff_chunk_add_node(c1, get_co_mst_irn(env, tgt)); + goto absorbed; + } + } else if (c1 != c2 && ! aff_chunks_interfere(c1, c2)) { + int idx, len; + + for (idx = 0, len = ARR_LEN(c2->n); idx < len; ++idx) + aff_chunk_add_node(c1, get_co_mst_irn(env, c2->n[idx])); + + for (idx = 0, len = ARR_LEN(c2->interfere); idx < len; ++idx) { + const ir_node *irn = c2->interfere[idx]; + nodes_insert(&c1->interfere, irn); + } + + c1->weight_consistent = 0; + + delete_aff_chunk(env, c2); + goto absorbed; + } + DB((dbg, LEVEL_4, " ... c1 interferes with c2, skipped\n")); + return 0; + +absorbed: + DB((dbg, LEVEL_4, " ... absorbed\n")); + return 1; +} + +/** + * Assures that the weight of the given chunk is consistent. + */ +static void aff_chunk_assure_weight(co_mst_env_t *env, aff_chunk_t *c) { + if (! c->weight_consistent) { + int w = 0; + int idx, len, i; + + for (i = 0; i < env->n_regs; ++i) { + c->color_affinity[i].col = i; + c->color_affinity[i].cost = REAL(0.0); + } + + for (idx = 0, len = ARR_LEN(c->n); idx < len; ++idx) { + const ir_node *n = c->n[idx]; + const affinity_node_t *an = get_affinity_info(env->co, n); + co_mst_irn_t *node = get_co_mst_irn(env, n); + + node->chunk = c; + if (node->constr_factor > REAL(0.0)) { + bitset_pos_t col; + bitset_foreach (node->adm_colors, col) + c->color_affinity[col].cost += node->constr_factor; + } + + if (an != NULL) { + neighb_t *neigh; + co_gs_foreach_neighb(an, neigh) { + const ir_node *m = neigh->irn; + + if (arch_irn_is_ignore(m)) + continue; + + w += node_contains(c->n, m) ? neigh->costs : 0; + } + } + } + + for (i = 0; i < env->n_regs; ++i) + c->color_affinity[i].cost *= (REAL(1.0) / ARR_LEN(c->n)); + c->weight = w; + // c->weight = bitset_popcnt(c->nodes); + c->weight_consistent = 1; } +} + +/** + * Count the number of interfering affinity neighbours + */ +static int count_interfering_aff_neighs(co_mst_env_t *env, const affinity_node_t *an) { + const neighb_t *neigh; + const ir_node *irn = an->irn; + const co_mst_irn_t *node = get_co_mst_irn(env, irn); + int res = 0; + + co_gs_foreach_neighb(an, neigh) { + const ir_node *n = neigh->irn; + int i; + if (arch_irn_is_ignore(n)) + continue; + + /* check if the affinity neighbour interfere */ + for (i = 0; i < node->n_neighs; ++i) { + if (node->int_neighs[i] == n) { + ++res; + break; + } + } + } return res; } + /** * Build chunks of nodes connected by affinity edges. * We start at the heaviest affinity edge. @@ -115,91 +606,889 @@ static void *co_mst_safe_irn_init(ir_phase *ph, ir_node *irn, void *old) { * merged if there are no interference edges from one * chunk to the other. */ -static void build_affinity_chunks(co_mst_safe_env_t *env) { - void *nodes_it = be_ifg_nodes_iter_alloca(env->ifg); - aff_edge_t **edges = NEW_ARR_F(aff_edge_t *, 0); - int i; +static void build_affinity_chunks(co_mst_env_t *env) { + void *nodes_it = be_ifg_nodes_iter_alloca(env->ifg); + aff_edge_t *edges = NEW_ARR_F(aff_edge_t, 0); + ir_node *n; + int i, len; + aff_chunk_t *curr_chunk; /* at first we create the affinity edge objects */ be_ifg_foreach_node(env->ifg, nodes_it, n) { - int n_idx = get_irn_idx(n); - co_mst_safe_irn_t *n1; - affinity_node_t *an; + int n_idx = get_irn_idx(n); + co_mst_irn_t *n1; + affinity_node_t *an; - if (arch_irn_is(env->aenv, n, ignore)) + if (arch_irn_is_ignore(n)) continue; - n1 = get_co_mst_safe_irn(env, n); - an = get_affinity_info(co, n); + n1 = get_co_mst_irn(env, n); + an = get_affinity_info(env->co, n); if (an != NULL) { neighb_t *neigh; - co_gs_foreach_neighb(an, neigh) { - ir_node *m = neigh->irn; - int m_idx = get_irn_idx(m); - co_mst_safe_irn_t *n2; - if (arch_irn_is(env->aenv, m, ignore)) - continue; + if (n1->int_aff_neigh < 0) + n1->int_aff_neigh = count_interfering_aff_neighs(env, an); - n2 = get_co_mst_safe_irn(env, m); + /* build the affinity edges */ + co_gs_foreach_neighb(an, neigh) { + const ir_node *m = neigh->irn; + int m_idx = get_irn_idx(m); - /* record the edge in only one direction and only to non-ignore nodes */ + /* record the edge in only one direction */ if (n_idx < m_idx) { - aff_edge_t *edge = phase_alloc(&env->ph, sizeof(*edge)); + co_mst_irn_t *n2; + aff_edge_t edge; + + /* skip ignore nodes */ + if (arch_irn_is_ignore(m)) + continue; + + edge.src = n; + edge.tgt = m; - edge->src = n; - edge->tgt = m; - edge->weight = (double)neigh->cost / (double)(1 + n1->int_neigh + n2->int_neigh); - ARR_APP1(aff_edge_t *, edges, edge); + n2 = get_co_mst_irn(env, m); + if (n2->int_aff_neigh < 0) { + affinity_node_t *am = get_affinity_info(env->co, m); + n2->int_aff_neigh = count_interfering_aff_neighs(env, am); + } + /* + * these weights are pure hackery ;-). + * It's not chriswue's fault but mine. + */ + edge.weight = neigh->costs; + ARR_APP1(aff_edge_t, edges, edge); } } } } - /* now: sort edges and build the chunks */ - qsort(edges, ARR_LEN(edges), sizeof(edges[0]), cmp_aff_edge); - for (i = 0; i < ARR_LEN(edges); ++i) { + /* now: sort edges and build the affinity chunks */ + len = ARR_LEN(edges); + qsort(edges, len, sizeof(edges[0]), cmp_aff_edge); + for (i = 0; i < len; ++i) { + DBG((dbg, LEVEL_1, "edge (%u,%u) %f\n", edges[i].src->node_idx, edges[i].tgt->node_idx, edges[i].weight)); + + (void)aff_chunk_absorb(env, edges[i].src, edges[i].tgt); + } + + /* now insert all chunks into a priority queue */ + foreach_pset(env->chunkset, curr_chunk) { + aff_chunk_assure_weight(env, curr_chunk); + + DBG((dbg, LEVEL_1, "entry #%u", curr_chunk->id)); + DBG_AFF_CHUNK(env, LEVEL_1, curr_chunk); + DBG((dbg, LEVEL_1, "\n")); + + pqueue_put(env->chunks, curr_chunk, curr_chunk->weight); + } + + foreach_phase_irn(&env->ph, n) { + co_mst_irn_t *mirn = get_co_mst_irn(env, n); + + if (mirn->chunk == NULL) { + /* no chunk is allocated so far, do it now */ + aff_chunk_t *curr_chunk = new_aff_chunk(env); + aff_chunk_add_node(curr_chunk, mirn); + + aff_chunk_assure_weight(env, curr_chunk); + DBG((dbg, LEVEL_1, "entry #%u", curr_chunk->id)); + DBG_AFF_CHUNK(env, LEVEL_1, curr_chunk); + DBG((dbg, LEVEL_1, "\n")); + + pqueue_put(env->chunks, curr_chunk, curr_chunk->weight); + } } DEL_ARR_F(edges); } +static __attribute__((unused)) void chunk_order_nodes(co_mst_env_t *env, aff_chunk_t *chunk) +{ + pqueue_t *grow = new_pqueue(); + const ir_node *max_node = NULL; + int max_weight = 0; + int i; + + for (i = ARR_LEN(chunk->n) - 1; i >= 0; i--) { + const ir_node *irn = chunk->n[i]; + affinity_node_t *an = get_affinity_info(env->co, irn); + int w = 0; + neighb_t *neigh; + + if (arch_irn_is_ignore(irn)) + continue; + + if (an) { + co_gs_foreach_neighb(an, neigh) + w += neigh->costs; + + if (w > max_weight) { + max_weight = w; + max_node = irn; + } + } + } + + if (max_node) { + bitset_t *visited = bitset_irg_malloc(env->co->irg); + + for (i = ARR_LEN(chunk->n) - 1; i >= 0; --i) + bitset_add_irn(visited, chunk->n[i]); + + pqueue_put(grow, (void *) max_node, max_weight); + bitset_remv_irn(visited, max_node); + i = 0; + while (!pqueue_empty(grow)) { + ir_node *irn = pqueue_pop_front(grow); + affinity_node_t *an = get_affinity_info(env->co, irn); + neighb_t *neigh; + + if (arch_irn_is_ignore(irn)) + continue; + + assert(i <= ARR_LEN(chunk->n)); + chunk->n[i++] = irn; + + assert(an); + + /* build the affinity edges */ + co_gs_foreach_neighb(an, neigh) { + co_mst_irn_t *node = get_co_mst_irn(env, neigh->irn); + + if (bitset_contains_irn(visited, node->irn)) { + pqueue_put(grow, (void *) neigh->irn, neigh->costs); + bitset_remv_irn(visited, node->irn); + } + } + } + + del_pqueue(grow); + bitset_free(visited); + } +} + /** - * Main driver for mst safe coalescing algorithm. + * Greedy collect affinity neighbours into thew new chunk @p chunk starting at node @p node. + */ +static void expand_chunk_from(co_mst_env_t *env, co_mst_irn_t *node, bitset_t *visited, + aff_chunk_t *chunk, aff_chunk_t *orig_chunk, decide_func_t *decider, int col) +{ + waitq *nodes = new_waitq(); + + DBG((dbg, LEVEL_1, "\n\tExpanding new chunk (#%u) from %+F, color %d:", chunk->id, node->irn, col)); + + /* init queue and chunk */ + waitq_put(nodes, node); + bitset_set(visited, get_irn_idx(node->irn)); + aff_chunk_add_node(chunk, node); + DB((dbg, LEVEL_1, " %+F", node->irn)); + + /* as long as there are nodes in the queue */ + while (! waitq_empty(nodes)) { + co_mst_irn_t *n = waitq_get(nodes); + affinity_node_t *an = get_affinity_info(env->co, n->irn); + + /* check all affinity neighbors */ + if (an != NULL) { + neighb_t *neigh; + co_gs_foreach_neighb(an, neigh) { + const ir_node *m = neigh->irn; + int m_idx = get_irn_idx(m); + co_mst_irn_t *n2; + + if (arch_irn_is_ignore(m)) + continue; + + n2 = get_co_mst_irn(env, m); + + if (! bitset_is_set(visited, m_idx) && + decider(n2, col) && + ! n2->fixed && + ! aff_chunk_interferes(chunk, m) && + node_contains(orig_chunk->n, m)) + { + /* + following conditions are met: + - neighbour is not visited + - neighbour likes the color + - neighbour has not yet a fixed color + - the new chunk doesn't interfere with the neighbour + - neighbour belongs or belonged once to the original chunk + */ + bitset_set(visited, m_idx); + aff_chunk_add_node(chunk, n2); + DB((dbg, LEVEL_1, " %+F", n2->irn)); + /* enqueue for further search */ + waitq_put(nodes, n2); + } + } + } + } + + DB((dbg, LEVEL_1, "\n")); + + del_waitq(nodes); +} + +/** + * Fragment the given chunk into chunks having given color and not having given color. + */ +static aff_chunk_t *fragment_chunk(co_mst_env_t *env, int col, aff_chunk_t *c, waitq *tmp) { + bitset_t *visited = bitset_irg_malloc(env->co->irg); + int idx, len; + aff_chunk_t *best = NULL; + + for (idx = 0, len = ARR_LEN(c->n); idx < len; ++idx) { + const ir_node *irn; + co_mst_irn_t *node; + aff_chunk_t *tmp_chunk; + decide_func_t *decider; + int check_for_best; + + irn = c->n[idx]; + if (bitset_is_set(visited, get_irn_idx(irn))) + continue; + + node = get_co_mst_irn(env, irn); + + if (get_mst_irn_col(node) == col) { + decider = decider_has_color; + check_for_best = 1; + DBG((dbg, LEVEL_4, "\tcolor %d wanted\n", col)); + } + else { + decider = decider_hasnot_color; + check_for_best = 0; + DBG((dbg, LEVEL_4, "\tcolor %d forbidden\n", col)); + } + + /* create a new chunk starting at current node */ + tmp_chunk = new_aff_chunk(env); + waitq_put(tmp, tmp_chunk); + expand_chunk_from(env, node, visited, tmp_chunk, c, decider, col); + assert(ARR_LEN(tmp_chunk->n) > 0 && "No nodes added to chunk"); + + /* remember the local best */ + aff_chunk_assure_weight(env, tmp_chunk); + if (check_for_best && (! best || best->weight < tmp_chunk->weight)) + best = tmp_chunk; + } + + assert(best && "No chunk found?"); + bitset_free(visited); + return best; +} + +/** + * Resets the temporary fixed color of all nodes within wait queue @p nodes. + * ATTENTION: the queue is empty after calling this function! */ -int co_solve_heuristic_mst_safe(copy_opt_t *co) +static inline void reject_coloring(struct list_head *nodes) { + co_mst_irn_t *n, *temp; + DB((dbg, LEVEL_4, "\treject coloring for")); + list_for_each_entry_safe(co_mst_irn_t, n, temp, nodes, list) { + DB((dbg, LEVEL_4, " %+F", n->irn)); + assert(n->tmp_col >= 0); + n->tmp_col = -1; + list_del_init(&n->list); + } + DB((dbg, LEVEL_4, "\n")); +} + +static inline void materialize_coloring(struct list_head *nodes) { + co_mst_irn_t *n, *temp; + list_for_each_entry_safe(co_mst_irn_t, n, temp, nodes, list) { + assert(n->tmp_col >= 0); + n->col = n->tmp_col; + n->tmp_col = -1; + list_del_init(&n->list); + } +} + +static inline void set_temp_color(co_mst_irn_t *node, int col, struct list_head *changed) +{ + assert(col >= 0); + assert(!node->fixed); + assert(node->tmp_col < 0); + assert(node->list.next == &node->list && node->list.prev == &node->list); + assert(bitset_is_set(node->adm_colors, col)); + + list_add_tail(&node->list, changed); + node->tmp_col = col; +} + +static inline int is_loose(co_mst_irn_t *node) { - be_ifg_t *ifg = co->cenv->ifg; - unsigned n_regs = co->cenv->cls->n_regs; - bitset_t *ignore_regs = bitset_alloca(n_regs); - unsigned k; - co_mst_safe_env_t mst_env; + return !node->fixed && node->tmp_col < 0; +} + +/** + * Determines the costs for each color if it would be assigned to node @p node. + */ +static void determine_color_costs(co_mst_env_t *env, co_mst_irn_t *node, col_cost_t *costs) +{ + int *neigh_cols = ALLOCAN(int, env->n_regs); + int n_loose = 0; + real_t coeff; + int i; + + for (i = 0; i < env->n_regs; ++i) { + neigh_cols[i] = 0; + costs[i].col = i; + costs[i].cost = bitset_is_set(node->adm_colors, i) ? node->constr_factor : REAL(0.0); + } + + for (i = 0; i < node->n_neighs; ++i) { + co_mst_irn_t *n = get_co_mst_irn(env, node->int_neighs[i]); + int col = get_mst_irn_col(n); + if (is_loose(n)) { + ++n_loose; + ++neigh_cols[col]; + } else + costs[col].cost = REAL(0.0); + } + + if (n_loose > 0) { + coeff = REAL(1.0) / n_loose; + for (i = 0; i < env->n_regs; ++i) + costs[i].cost *= REAL(1.0) - coeff * neigh_cols[i]; + } +} + +/* need forward declaration due to recursive call */ +static int recolor_nodes(co_mst_env_t *env, co_mst_irn_t *node, col_cost_t *costs, struct list_head *changed_ones, int depth, int *max_depth, int *trip); + +/** + * Tries to change node to a color but @p explude_col. + * @return 1 if succeeded, 0 otherwise. + */ +static int change_node_color_excluded(co_mst_env_t *env, co_mst_irn_t *node, int exclude_col, struct list_head *changed, int depth, int *max_depth, int *trip) { + int col = get_mst_irn_col(node); + int res = 0; + + /* neighbours has already a different color -> good, temporary fix it */ + if (col != exclude_col) { + if (is_loose(node)) + set_temp_color(node, col, changed); + return 1; + } + + /* The node has the color it should not have _and_ has not been visited yet. */ + if (is_loose(node)) { + col_cost_t *costs = ALLOCAN(col_cost_t, env->n_regs); + + /* Get the costs for giving the node a specific color. */ + determine_color_costs(env, node, costs); + + /* Since the node must not have the not_col, set the costs for that color to "infinity" */ + costs[exclude_col].cost = REAL(0.0); + + /* sort the colors according costs, cheapest first. */ + qsort(costs, env->n_regs, sizeof(costs[0]), cmp_col_cost_gt); + + /* Try recoloring the node using the color list. */ + res = recolor_nodes(env, node, costs, changed, depth + 1, max_depth, trip); + } + + return res; +} + +/** + * Tries to bring node @p node to cheapest color and color all interfering neighbours with other colors. + * ATTENTION: Expect @p costs already sorted by increasing costs. + * @return 1 if coloring could be applied, 0 otherwise. + */ +static int recolor_nodes(co_mst_env_t *env, co_mst_irn_t *node, col_cost_t *costs, struct list_head *changed, int depth, int *max_depth, int *trip) { + int i; + struct list_head local_changed; + + ++*trip; + if (depth > *max_depth) + *max_depth = depth; + + DBG((dbg, LEVEL_4, "\tRecoloring %+F with color-costs", node->irn)); + DBG_COL_COST(env, LEVEL_4, costs); + DB((dbg, LEVEL_4, "\n")); + + if (depth >= recolor_limit) { + DBG((dbg, LEVEL_4, "\tHit recolor limit\n")); + return 0; + } + + for (i = 0; i < env->n_regs; ++i) { + int tgt_col = costs[i].col; + int neigh_ok = 1; + int j; + + /* If the costs for that color (and all successive) are infinite, bail out we won't make it anyway. */ + if (costs[i].cost == REAL(0.0)) { + DBG((dbg, LEVEL_4, "\tAll further colors forbidden\n")); + return 0; + } + + /* Set the new color of the node and mark the node as temporarily fixed. */ + assert(node->tmp_col < 0 && "Node must not have been temporary fixed."); + INIT_LIST_HEAD(&local_changed); + set_temp_color(node, tgt_col, &local_changed); + DBG((dbg, LEVEL_4, "\tTemporary setting %+F to color %d\n", node->irn, tgt_col)); + + /* try to color all interfering neighbours with current color forbidden */ + for (j = 0; j < node->n_neighs; ++j) { + co_mst_irn_t *nn; + ir_node *neigh; + + neigh = node->int_neighs[j]; + + if (arch_irn_is_ignore(neigh)) + continue; + + nn = get_co_mst_irn(env, neigh); + DB((dbg, LEVEL_4, "\tHandling neighbour %+F, at position %d (fixed: %d, tmp_col: %d, col: %d)\n", + neigh, j, nn->fixed, nn->tmp_col, nn->col)); + + /* + Try to change the color of the neighbor and record all nodes which + get changed in the tmp list. Add this list to the "changed" list for + that color. If we did not succeed to change the color of the neighbor, + we bail out and try the next color. + */ + if (get_mst_irn_col(nn) == tgt_col) { + /* try to color neighbour with tgt_col forbidden */ + neigh_ok = change_node_color_excluded(env, nn, tgt_col, &local_changed, depth + 1, max_depth, trip); + + if (!neigh_ok) + break; + } + } + + /* + We managed to assign the target color to all neighbors, so from the perspective + of the current node, every thing was ok and we can return safely. + */ + if (neigh_ok) { + /* append the local_changed ones to global ones */ + list_splice(&local_changed, changed); + return 1; + } + else { + /* coloring of neighbours failed, so we try next color */ + reject_coloring(&local_changed); + } + } + + DBG((dbg, LEVEL_4, "\tAll colors failed\n")); + return 0; +} + +/** + * Tries to bring node @p node and all it's neighbours to color @p tgt_col. + * @return 1 if color @p col could be applied, 0 otherwise + */ +static int change_node_color(co_mst_env_t *env, co_mst_irn_t *node, int tgt_col, struct list_head *changed) { + int col = get_mst_irn_col(node); + + /* if node already has the target color -> good, temporary fix it */ + if (col == tgt_col) { + DBG((dbg, LEVEL_4, "\t\tCNC: %+F has already color %d, fix temporary\n", node->irn, tgt_col)); + if (is_loose(node)) + set_temp_color(node, tgt_col, changed); + return 1; + } + + /* + Node has not yet a fixed color and target color is admissible + -> try to recolor node and it's affinity neighbours + */ + if (is_loose(node) && bitset_is_set(node->adm_colors, tgt_col)) { + col_cost_t *costs = env->single_cols[tgt_col]; + int res, max_depth, trip; + + max_depth = 0; + trip = 0; + + DBG((dbg, LEVEL_4, "\t\tCNC: Attempt to recolor %+F ===>>\n", node->irn)); + res = recolor_nodes(env, node, costs, changed, 0, &max_depth, &trip); + DBG((dbg, LEVEL_4, "\t\tCNC: <<=== Recoloring of %+F %s\n", node->irn, res ? "succeeded" : "failed")); + stat_ev_int("heur4_recolor_depth_max", max_depth); + stat_ev_int("heur4_recolor_trip", trip); + + + return res; + } + +#ifdef DEBUG_libfirm + if (firm_dbg_get_mask(dbg) & LEVEL_4) { + if (!is_loose(node)) + DB((dbg, LEVEL_4, "\t\tCNC: %+F has already fixed color %d\n", node->irn, col)); + else { + DB((dbg, LEVEL_4, "\t\tCNC: color %d not admissible for %+F (", tgt_col, node->irn)); + dbg_admissible_colors(env, node); + DB((dbg, LEVEL_4, ")\n")); + } + } +#endif + + return 0; +} + +/** + * Tries to color an affinity chunk (or at least a part of it). + * Inserts uncolored parts of the chunk as a new chunk into the priority queue. + */ +static void color_aff_chunk(co_mst_env_t *env, aff_chunk_t *c) { + aff_chunk_t *best_chunk = NULL; + int n_nodes = ARR_LEN(c->n); + int best_color = -1; + int n_int_chunks = 0; + waitq *tmp_chunks = new_waitq(); + waitq *best_starts = NULL; + col_cost_t *order = ALLOCANZ(col_cost_t, env->n_regs); + bitset_t *visited; + int idx, len, i, nidx, pos; + struct list_head changed; + + DB((dbg, LEVEL_2, "fragmentizing chunk #%u", c->id)); + DBG_AFF_CHUNK(env, LEVEL_2, c); + DB((dbg, LEVEL_2, "\n")); + + stat_ev_ctx_push_fmt("heur4_color_chunk", "%u", c->id); + + ++env->chunk_visited; + + /* compute color preference */ + for (pos = 0, len = ARR_LEN(c->interfere); pos < len; ++pos) { + const ir_node *n = c->interfere[pos]; + co_mst_irn_t *node = get_co_mst_irn(env, n); + aff_chunk_t *chunk = node->chunk; + + if (is_loose(node) && chunk && chunk->visited < env->chunk_visited) { + assert(!chunk->deleted); + chunk->visited = env->chunk_visited; + ++n_int_chunks; + + aff_chunk_assure_weight(env, chunk); + for (i = 0; i < env->n_regs; ++i) + order[i].cost += chunk->color_affinity[i].cost; + } + } + + for (i = 0; i < env->n_regs; ++i) { + real_t dislike = n_int_chunks > 0 ? REAL(1.0) - order[i].cost / n_int_chunks : REAL(0.0); + order[i].col = i; + order[i].cost = (REAL(1.0) - dislike_influence) * c->color_affinity[i].cost + dislike_influence * dislike; + } + + qsort(order, env->n_regs, sizeof(order[0]), cmp_col_cost_gt); + + DBG_COL_COST(env, LEVEL_2, order); + DB((dbg, LEVEL_2, "\n")); + + /* check which color is the "best" for the given chunk. + * if we found a color which was ok for all nodes, we take it + * and do not look further. (see did_all flag usage below.) + * If we have many colors which fit all nodes it is hard to decide + * which one to take anyway. + * TODO Sebastian: Perhaps we should at all nodes and figure out + * a suitable color using costs as done above (determine_color_costs). + */ + for (i = 0; i < env->k; ++i) { + int col = order[i].col; + waitq *good_starts = new_waitq(); + aff_chunk_t *local_best; + int n_succeeded; + + /* skip ignore colors */ + if (bitset_is_set(env->ignore_regs, col)) + continue; + + DB((dbg, LEVEL_2, "\ttrying color %d\n", col)); + + n_succeeded = 0; + + /* try to bring all nodes of given chunk to the current color. */ + for (idx = 0, len = ARR_LEN(c->n); idx < len; ++idx) { + const ir_node *irn = c->n[idx]; + co_mst_irn_t *node = get_co_mst_irn(env, irn); + int good; + + assert(! node->fixed && "Node must not have a fixed color."); + DB((dbg, LEVEL_4, "\t\tBringing %+F from color %d to color %d ...\n", irn, node->col, col)); + + /* + The order of the colored nodes is important, so we record the successfully + colored ones in the order they appeared. + */ + INIT_LIST_HEAD(&changed); + stat_ev_tim_push(); + good = change_node_color(env, node, col, &changed); + stat_ev_tim_pop("heur4_recolor"); + if (good) { + waitq_put(good_starts, node); + materialize_coloring(&changed); + node->fixed = 1; + } + + else + reject_coloring(&changed); + + n_succeeded += good; + DB((dbg, LEVEL_4, "\t\t... %+F attempt from %d to %d %s\n", irn, node->col, col, good ? "succeeded" : "failed")); + } + + /* unfix all nodes */ + for (idx = 0, len = ARR_LEN(c->n); idx < len; ++idx) { + co_mst_irn_t *node = get_co_mst_irn(env, c->n[idx]); + node->fixed = 0; + } + + /* try next color when failed */ + if (n_succeeded == 0) + continue; + + /* fragment the chunk according to the coloring */ + local_best = fragment_chunk(env, col, c, tmp_chunks); + + /* search the best of the good list + and make it the new best if it is better than the current */ + if (local_best) { + aff_chunk_assure_weight(env, local_best); + + DB((dbg, LEVEL_3, "\t\tlocal best chunk (id %u) for color %d: ", local_best->id, col)); + DBG_AFF_CHUNK(env, LEVEL_3, local_best); + + if (! best_chunk || best_chunk->weight < local_best->weight) { + best_chunk = local_best; + best_color = col; + if (best_starts) + del_waitq(best_starts); + best_starts = good_starts; + DB((dbg, LEVEL_3, "\n\t\t... setting global best chunk (id %u), color %d\n", best_chunk->id, best_color)); + } else { + DB((dbg, LEVEL_3, "\n\t\t... omitting, global best is better\n")); + del_waitq(good_starts); + } + } + else { + del_waitq(good_starts); + } + + /* if all nodes were recolored, bail out */ + if (n_succeeded == n_nodes) + break; + } + + stat_ev_int("heur4_colors_tried", i); + + /* free all intermediate created chunks except best one */ + while (! waitq_empty(tmp_chunks)) { + aff_chunk_t *tmp = waitq_get(tmp_chunks); + if (tmp != best_chunk) + delete_aff_chunk(env, tmp); + } + del_waitq(tmp_chunks); + + /* return if coloring failed */ + if (! best_chunk) { + if (best_starts) + del_waitq(best_starts); + return; + } + + DB((dbg, LEVEL_2, "\tbest chunk #%u ", best_chunk->id)); + DBG_AFF_CHUNK(env, LEVEL_2, best_chunk); + DB((dbg, LEVEL_2, "using color %d\n", best_color)); + + for (idx = 0, len = ARR_LEN(best_chunk->n); idx < len; ++idx) { + const ir_node *irn = best_chunk->n[idx]; + co_mst_irn_t *node = get_co_mst_irn(env, irn); + int res; + + /* bring the node to the color. */ + DB((dbg, LEVEL_4, "\tManifesting color %d for %+F, chunk #%u\n", best_color, node->irn, best_chunk->id)); + INIT_LIST_HEAD(&changed); + stat_ev_tim_push(); + res = change_node_color(env, node, best_color, &changed); + stat_ev_tim_pop("heur4_recolor"); + if (res) { + materialize_coloring(&changed); + node->fixed = 1; + } + assert(list_empty(&changed)); + } + + /* remove the nodes in best chunk from original chunk */ + len = ARR_LEN(best_chunk->n); + for (idx = 0; idx < len; ++idx) { + const ir_node *irn = best_chunk->n[idx]; + int pos = nodes_bsearch(c->n, irn); + + if (pos > 0) + c->n[pos] = NULL; + } + len = ARR_LEN(c->n); + for (idx = nidx = 0; idx < len; ++idx) { + const ir_node *irn = c->n[idx]; + + if (irn != NULL) { + c->n[nidx++] = irn; + } + } + ARR_SHRINKLEN(c->n, nidx); + + + /* we have to get the nodes back into the original chunk because they are scattered over temporary chunks */ + for (idx = 0, len = ARR_LEN(c->n); idx < len; ++idx) { + const ir_node *n = c->n[idx]; + co_mst_irn_t *nn = get_co_mst_irn(env, n); + nn->chunk = c; + } + + /* fragment the remaining chunk */ + visited = bitset_irg_malloc(env->co->irg); + for (idx = 0, len = ARR_LEN(best_chunk->n); idx < len; ++idx) + bitset_set(visited, get_irn_idx(best_chunk->n[idx])); + + for (idx = 0, len = ARR_LEN(c->n); idx < len; ++idx) { + const ir_node *irn = c->n[idx]; + if (! bitset_is_set(visited, get_irn_idx(irn))) { + aff_chunk_t *new_chunk = new_aff_chunk(env); + co_mst_irn_t *node = get_co_mst_irn(env, irn); + + expand_chunk_from(env, node, visited, new_chunk, c, decider_always_yes, 0); + aff_chunk_assure_weight(env, new_chunk); + pqueue_put(env->chunks, new_chunk, new_chunk->weight); + } + } + + for (idx = 0, len = ARR_LEN(best_chunk->n); idx < len; ++idx) { + const ir_node *n = best_chunk->n[idx]; + co_mst_irn_t *nn = get_co_mst_irn(env, n); + nn->chunk = NULL; + } + + /* clear obsolete chunks and free some memory */ + delete_aff_chunk(env, best_chunk); + bitset_free(visited); + if (best_starts) + del_waitq(best_starts); + + stat_ev_ctx_pop("heur4_color_chunk"); +} + +/** + * Main driver for mst safe coalescing algorithm. + */ +static int co_solve_heuristic_mst(copy_opt_t *co) { + unsigned n_regs = co->cls->n_regs; + bitset_t *ignore_regs = bitset_alloca(n_regs); + unsigned i, j, k; + ir_node *irn; + co_mst_env_t mst_env; + + last_chunk_id = 0; + + stat_ev_tim_push(); /* init phase */ - phase_init(&mst_env.ph, "co_mst_safe", co->irg, PHASE_DEFAULT_GROWTH, co_mst_safe_irn_init, &mst_env); + phase_init(&mst_env.ph, "co_mst", co->irg, PHASE_DEFAULT_GROWTH, co_mst_irn_init, &mst_env); - k = be_put_ignore_regs(co->cenv->birg, co->cenv->cls, ignore_regs); + k = be_put_ignore_regs(co->cenv->birg, co->cls, ignore_regs); k = n_regs - k; - mst_env.n_regs = n_regs; - mst_env.k = k; - mst_env.chunks = new_pqueue(); - mst_env.co = co; + mst_env.n_regs = n_regs; + mst_env.k = k; + mst_env.chunks = new_pqueue(); + mst_env.co = co; + mst_env.ignore_regs = ignore_regs; + mst_env.ifg = co->cenv->ifg; + mst_env.chunkset = pset_new_ptr(512); + mst_env.chunk_visited = 0; + mst_env.single_cols = phase_alloc(&mst_env.ph, sizeof(*mst_env.single_cols) * n_regs); + + for (i = 0; i < n_regs; ++i) { + col_cost_t *vec = phase_alloc(&mst_env.ph, sizeof(*vec) * n_regs); + + mst_env.single_cols[i] = vec; + for (j = 0; j < n_regs; ++j) { + vec[j].col = j; + vec[j].cost = REAL(0.0); + } + vec[i].col = 0; + vec[0].col = i; + vec[0].cost = REAL(1.0); + } + + DBG((dbg, LEVEL_1, "==== Coloring %+F, class %s ====\n", co->irg, co->cls->name)); /* build affinity chunks */ + stat_ev_tim_push(); build_affinity_chunks(&mst_env); + stat_ev_tim_pop("heur4_initial_chunk"); /* color chunks as long as there are some */ while (! pqueue_empty(mst_env.chunks)) { - aff_chunk_t *chunk = pqueue_get(mst_env.chunks); + aff_chunk_t *chunk = pqueue_pop_front(mst_env.chunks); + color_aff_chunk(&mst_env, chunk); + DB((dbg, LEVEL_4, "<<<====== Coloring chunk (%u) done\n", chunk->id)); + delete_aff_chunk(&mst_env, chunk); + } + + /* apply coloring */ + foreach_phase_irn(&mst_env.ph, irn) { + co_mst_irn_t *mirn; + const arch_register_t *reg; + + if (arch_irn_is_ignore(irn)) + continue; + + mirn = get_co_mst_irn(&mst_env, irn); + // assert(mirn->fixed && "Node should have fixed color"); + + /* skip nodes where color hasn't changed */ + if (mirn->init_col == mirn->col) + continue; + + reg = arch_register_for_index(co->cls, mirn->col); + arch_set_irn_register(irn, reg); + DB((dbg, LEVEL_1, "%+F set color from %d to %d\n", irn, mirn->init_col, mirn->col)); } /* free allocated memory */ del_pqueue(mst_env.chunks); phase_free(&mst_env.ph); + del_pset(mst_env.chunkset); + + stat_ev_tim_pop("heur4_total"); + + return 0; } -#endif +static const lc_opt_table_entry_t options[] = { + LC_OPT_ENT_INT ("limit", "limit recoloring", &recolor_limit), + LC_OPT_ENT_DBL ("di", "dislike influence", &dislike_influence), + LC_OPT_LAST +}; + + +void be_init_copyheur4(void) { + lc_opt_entry_t *be_grp = lc_opt_get_grp(firm_opt_get_root(), "be"); + lc_opt_entry_t *ra_grp = lc_opt_get_grp(be_grp, "ra"); + lc_opt_entry_t *chordal_grp = lc_opt_get_grp(ra_grp, "chordal"); + lc_opt_entry_t *co_grp = lc_opt_get_grp(chordal_grp, "co"); + lc_opt_entry_t *heur4_grp = lc_opt_get_grp(co_grp, "heur4"); + + static co_algo_info copyheur = { + co_solve_heuristic_mst, 0 + }; + + lc_opt_add_table(heur4_grp, options); + be_register_copyopt("heur4", ©heur); + + FIRM_DBG_REGISTER(dbg, "firm.be.co.heur4"); +} + +BE_REGISTER_MODULE_CONSTRUCTOR(be_init_copyheur4);