X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=ir%2Fbe%2Fbechordal.c;h=a83c52a897e862deb4bcf8be5feed340206bf1eb;hb=6e3e499d6c68aee0c6a9ada6a99f16c4f6f8445b;hp=0c4334c584b764f60c089f6e0c8214d7e41c39dc;hpb=33be8f50c457cd2e6e8a4fc488248d0d47c7f491;p=libfirm diff --git a/ir/be/bechordal.c b/ir/be/bechordal.c index 0c4334c58..a83c52a89 100644 --- a/ir/be/bechordal.c +++ b/ir/be/bechordal.c @@ -26,6 +26,7 @@ #include "list.h" #include "bitset.h" #include "iterator.h" +#include "bipartite.h" #include "irmode_t.h" #include "irgraph_t.h" @@ -43,6 +44,7 @@ #include "belive_t.h" #include "benode_t.h" #include "bearch.h" +#include "beirgmod.h" #include "beifg.h" #include "bechordal_t.h" @@ -53,15 +55,22 @@ #define NO_COLOR (-1) -#undef DUMP_INTERVALS +#define MAX(x, y) ((x) > (y) ? (x) : (y)) +#define MIN(x, y) ((x) < (y) ? (x) : (y)) + +#define DUMP_INTERVALS typedef struct _be_chordal_alloc_env_t { be_chordal_env_t *chordal_env; - bitset_t *live; /**< A liveness bitset. */ - bitset_t *colors; /**< The color mask. */ - bitset_t *in_colors; /**< Colors used by live in values. */ - int colors_n; /**< The number of colors. */ + firm_dbg_module_t *constr_dbg; /**< Debug output for the constraint handler. */ + pset *pre_colored; /**< Set of precolored nodes. */ + bitset_t *live; /**< A liveness bitset. */ + bitset_t *tmp_colors; /**< An auxiliary bitset which is as long as the number of colors in the class. */ + bitset_t *colors; /**< The color mask. */ + bitset_t *in_colors; /**< Colors used by live in values. */ + bitset_t *ignore_regs; /**< A bitset of all ignore registers in the current class. */ + int colors_n; /**< The number of colors. */ } be_chordal_alloc_env_t; #include "fourcc.h" @@ -158,93 +167,517 @@ static INLINE border_t *border_add(be_chordal_env_t *env, struct list_head *head */ static INLINE int has_reg_class(const be_chordal_env_t *env, const ir_node *irn) { - return arch_irn_has_reg_class(env->main_env->arch_env, irn, -1, env->cls); + // return arch_irn_has_reg_class(env->main_env->arch_env, irn, -1, env->cls); + return arch_irn_consider_in_reg_alloc(env->birg->main_env->arch_env, env->cls, irn); } -static border_t *handle_constraint_perm(be_chordal_alloc_env_t *alloc_env, border_t *perm_border) +#define has_limited_constr(req, irn) \ + (arch_get_register_req(arch_env, (req), irn, -1) && (req)->type == arch_register_req_type_limited) + +static int get_next_free_reg(const be_chordal_alloc_env_t *alloc_env, bitset_t *colors) { - const arch_env_t *arch_env = alloc_env->chordal_env->main_env->arch_env; - bitset_t *bs = bitset_alloca(alloc_env->chordal_env->cls->n_regs); - ir_node *perm = perm_border->irn; - int n = get_irn_arity(perm_border->irn); - int n_projs = 0; + bitset_t *tmp = alloc_env->tmp_colors; + bitset_copy(tmp, colors); + bitset_or(tmp, alloc_env->ignore_regs); + return bitset_next_clear(tmp, 0); +} - border_t *b, *next_border, *cnstr_border; +typedef struct _operand_t operand_t; +struct _operand_t { + ir_node *irn; + ir_node *carrier; + operand_t *partner; + bitset_t *regs; + int pos; arch_register_req_t req; - ir_node *cnstr; - int has_cnstr = 0; - int i, m; + unsigned has_constraints : 1; +}; + +typedef struct { + operand_t *ops; + int n_ops; + int use_start; + ir_node *next_insn; + ir_node *irn; + unsigned in_constraints : 1; + unsigned out_constraints : 1; + unsigned has_constraints : 1; + unsigned pre_colored : 1; +} insn_t; + +#define insn_n_defs(insn) ((insn)->use_start) +#define insn_n_uses(insn) ((insn)->n_ops - (insn)->use_start) + +static insn_t *scan_insn(be_chordal_alloc_env_t *alloc_env, ir_node *irn, struct obstack *obst) +{ + const be_chordal_env_t *env = alloc_env->chordal_env; + const arch_env_t *arch_env = env->birg->main_env->arch_env; + operand_t o; + insn_t *insn; + int i, n; + int pre_colored = 0; + + insn = obstack_alloc(obst, sizeof(insn[0])); + memset(insn, 0, sizeof(insn[0])); + + insn->irn = irn; + insn->next_insn = sched_next(irn); + if(get_irn_mode(irn) == mode_T) { + ir_node *p; + + for(p = sched_next(irn); is_Proj(p); p = sched_next(p)) { + if(arch_irn_consider_in_reg_alloc(arch_env, env->cls, p)) { + arch_get_register_req(arch_env, &o.req, p, -1); + o.carrier = p; + o.irn = irn; + o.pos = -(get_Proj_proj(p) + 1); + o.partner = NULL; + o.has_constraints = arch_register_req_is(&o.req, limited); + obstack_grow(obst, &o, sizeof(o)); + insn->n_ops++; + insn->out_constraints |= o.has_constraints; + pre_colored += arch_get_irn_register(arch_env, p) != NULL; + } + } + + insn->next_insn = p; + } + + else if(arch_irn_consider_in_reg_alloc(arch_env, env->cls, irn)) { + arch_get_register_req(arch_env, &o.req, irn, -1); + o.carrier = irn; + o.irn = irn; + o.pos = -1; + o.partner = NULL; + o.has_constraints = arch_register_req_is(&o.req, limited); + obstack_grow(obst, &o, sizeof(o)); + insn->n_ops++; + insn->out_constraints |= o.has_constraints; + pre_colored += arch_get_irn_register(arch_env, irn) != NULL; + } + + insn->pre_colored = pre_colored == insn->n_ops && insn->n_ops > 0; + insn->use_start = insn->n_ops; + + for(i = 0, n = get_irn_arity(irn); i < n; ++i) { + ir_node *op = get_irn_n(irn, i); + + if(arch_irn_consider_in_reg_alloc(arch_env, env->cls, op)) { + arch_get_register_req(arch_env, &o.req, irn, i); + o.carrier = op; + o.irn = irn; + o.pos = i; + o.partner = NULL; + o.has_constraints = arch_register_req_is(&o.req, limited); + obstack_grow(obst, &o, sizeof(o)); + insn->n_ops++; + insn->in_constraints |= o.has_constraints; + } + } + + insn->has_constraints = insn->in_constraints | insn->out_constraints; + insn->ops = obstack_finish(obst); + + /* Compute the admissible registers bitsets. */ + for(i = 0; i < insn->n_ops; ++i) { + operand_t *op = &insn->ops[i]; - assert(is_Perm(perm)); + assert(op->req.cls == env->cls); + op->regs = bitset_obstack_alloc(obst, env->cls->n_regs); + + if(arch_register_req_is(&op->req, limited)) + op->req.limited(op->req.limited_env, op->regs); + else + arch_put_non_ignore_regs(env->birg->main_env->arch_env, env->cls, op->regs); + } + + return insn; +} + +static bitset_t *get_decisive_partner_regs(bitset_t *bs, const operand_t *o1, const operand_t *o2) +{ + bitset_t *res = bs; + + if(!o1) { + bitset_copy(bs, o2->regs); + return bs; + } + + if(!o2) { + bitset_copy(bs, o1->regs); + return bs; + } + + assert(o1->req.cls == o2->req.cls); + + if(bitset_contains(o1->regs, o2->regs)) + bitset_copy(bs, o1->regs); + else if(bitset_contains(o2->regs, o1->regs)) + bitset_copy(bs, o2->regs); + else + res = NULL; + + return res; +} + +static void pair_up_operands(const be_chordal_alloc_env_t *alloc_env, insn_t *insn) +{ + const be_chordal_env_t *env = alloc_env->chordal_env; + + int n_uses = insn_n_uses(insn); + int n_defs = insn_n_defs(insn); + bitset_t *bs = bitset_alloca(env->cls->n_regs); + bipartite_t *bp = bipartite_new(n_defs, n_uses); + int *pairing = alloca(MAX(n_defs, n_uses) * sizeof(pairing[0])); + + int i, j; /* - * After the Perm, there must be a sequence of Projs - * which extract the permuted values of the Perm. - */ - for(b = perm_border; is_Proj(b->irn); b = border_next(b)) { - assert(is_Proj(b->irn)); - assert(b->is_def); - n_projs++; + For each out operand, try to find an in operand which can be assigned the + same register as the out operand. + */ + for(j = 0; j < insn->use_start; ++j) { + operand_t *out_op = &insn->ops[j]; + + /* Try to find an in operand which has ... */ + for(i = insn->use_start; i < insn->n_ops; ++i) { + const operand_t *op = &insn->ops[i]; + + /* + The in operand can only be paired with a def, if the node defining the + operand's value does not interfere with the instruction itself. That + would mean, that it is live at the instruction, so no result of the instruction + can have the same register as the operand. + + Furthermore, tow operands can be paired, if the admissible registers + of one are a subset of the other's. We record the operand whose constraints + count in the decisive array. + */ + if(!values_interfere(op->irn, op->carrier)) { + if(get_decisive_partner_regs(bs, out_op, op)) + bipartite_add(bp, j, i - insn->use_start); + } + } + } + + /* Compute the pairing. */ + bipartite_matching(bp, pairing); + for(i = 0; i < insn->use_start; ++i) { + int p = pairing[i] + insn->use_start; + + if(p >= insn->use_start) { + insn->ops[i].partner = &insn->ops[p]; + insn->ops[p].partner = &insn->ops[i]; + } + } + + bipartite_free(bp); +} + + +static ir_node *pre_process_constraints(be_chordal_alloc_env_t *alloc_env, insn_t **the_insn) +{ + be_chordal_env_t *env = alloc_env->chordal_env; + const arch_env_t *aenv = env->birg->main_env->arch_env; + firm_dbg_module_t *dbg = alloc_env->constr_dbg; + insn_t *insn = *the_insn; + ir_node *bl = get_nodes_block(insn->irn); + ir_node *copy = NULL; + ir_node *perm = NULL; + bitset_t *out_constr = bitset_alloca(env->cls->n_regs); + bitset_t *bs = bitset_alloca(env->cls->n_regs); + + int i; + + assert(insn->has_constraints && "only do this for constrained nodes"); + + /* + Collect all registers that occur in output constraints. + This is necessary, since if the insn has one of these as an input constraint + and the corresponding operand interferes with the insn, the operand must + be copied. + */ + for(i = 0; i < insn->use_start; ++i) { + operand_t *op = &insn->ops[i]; + if(op->has_constraints) + bitset_or(out_constr, op->regs); } - cnstr_border = b; - next_border = border_next(b); - cnstr = b->irn; + /* + Now, figure out which input operand must be copied since it has input + constraints which are also output constraints. + */ + for(i = insn->use_start; i < insn->n_ops; ++i) { + operand_t *op = &insn->ops[i]; + if(op->has_constraints && (values_interfere(op->carrier, insn->irn) || arch_irn_is(aenv, op->carrier, ignore))) { + bitset_copy(bs, op->regs); + bitset_and(bs, out_constr); - assert(n_projs == n && "There must be as many Projs as the Perm is wide"); + /* + The operand (interfering with the node) has input constraints + which also occur as output constraints, so insert a copy. + */ + if(bitset_popcnt(bs) > 0) { + copy = be_new_Copy(op->req.cls, env->irg, bl, op->carrier); + insn->ops[i].carrier = copy; + sched_add_before(insn->irn, copy); + + DBG((dbg, LEVEL_2, "adding copy for interfering and constrained op %+F\n", op->carrier)); + } + } + } - /* The node after the last perm proj must be the constrained node. */ - cnstr = b->irn; - for(i = -1, m = get_irn_arity(cnstr); i < m; ++i) { - req.type = arch_register_req_type_normal; - if(arch_get_register_req(arch_env, &req, cnstr, i) && req.type == arch_register_req_type_limited) { - has_cnstr = 1; - break; + /* + Make the Perm, recompute liveness and re-scan the insn since the + in operands are now the Projs of the Perm. + */ + perm = insert_Perm_after(aenv, env->cls, env->dom_front, sched_prev(insn->irn)); + + /* Registers are propagated by insert_Perm_after(). Clean them here! */ + if(perm) { + const ir_edge_t *edge; + + foreach_out_edge(perm, edge) { + ir_node *proj = get_edge_src_irn(edge); + arch_set_irn_register(aenv, proj, NULL); + } + + /* + We also have to re-build the insn since the input operands are now the Projs of + the Perm. Recomputing liveness is also a good idea if a Perm is inserted, since + the live sets may change. + */ + be_liveness(env->irg); + obstack_free(&env->obst, insn); + *the_insn = insn = scan_insn(alloc_env, insn->irn, &env->obst); + + /* + Copy the input constraints of the insn to the Perm as output + constraints. Succeeding phases (coalescing will need that). + */ + for(i = insn->use_start; i < insn->n_ops; ++i) { + operand_t *op = &insn->ops[i]; + ir_node *proj = op->carrier; + /* + Note that the predecessor must not be a Proj of the Perm, + since ignore-nodes are not Perm'ed. + */ + if(op->has_constraints && is_Proj(proj) && get_Proj_pred(proj) == perm) { + be_set_constr_limited(perm, BE_OUT_POS(get_Proj_proj(proj)), &op->req); + } } } - assert(has_cnstr && "The node must have a register constraint"); + return perm; +} + +static ir_node *handle_constraints(be_chordal_alloc_env_t *alloc_env, ir_node *irn, int *silent) +{ + be_chordal_env_t *env = alloc_env->chordal_env; + void *base = obstack_base(&env->obst); + insn_t *insn = scan_insn(alloc_env, irn, &env->obst); + ir_node *res = insn->next_insn; + int be_silent = *silent; + + if(insn->pre_colored) { + int i; + for(i = 0; i < insn->use_start; ++i) + pset_insert_ptr(alloc_env->pre_colored, insn->ops[i].carrier); + } /* - * Consider the code in beconstrperm.c - * We turned each input constraint of a node into an output - * constraint of the Perm's Proj. So we only have to - * consider output constraints here. - */ - for(b = perm_border; b != next_border; b = border_next(b)) { - ir_node *irn = b->irn; + If the current node is a barrier toggle the silent flag. + If we are in the start block, we are ought to be silent at the beginning, + so the toggling activates the constraint handling but skips the barrier. + If we are in the end block we handle the in requirements of the barrier + and set the rest to silent. + */ + if(be_is_Barrier(irn)) + *silent = !*silent; + + if(be_silent) + goto end; + + /* + Perms inserted before the constraint handling phase are considered to be + correctly precolored. These Perms arise during the ABI handling phase. + */ + if(insn->has_constraints) { + firm_dbg_module_t *dbg = alloc_env->constr_dbg; + const arch_env_t *aenv = env->birg->main_env->arch_env; + int n_regs = env->cls->n_regs; + bitset_t *bs = bitset_alloca(n_regs); + ir_node **alloc_nodes = alloca(n_regs * sizeof(alloc_nodes[0])); + bipartite_t *bp = bipartite_new(n_regs, n_regs); + int *assignment = alloca(n_regs * sizeof(assignment[0])); + pmap *partners = pmap_create(); + + int i, n_alloc; + long col; + const ir_edge_t *edge; + ir_node *perm = NULL; + + /* + prepare the constraint handling of this node. + Perms are constructed and Copies are created for constrained values + interfering with the instruction. + */ + perm = pre_process_constraints(alloc_env, &insn); + + /* find suitable in operands to the out operands of the node. */ + pair_up_operands(alloc_env, insn); + + /* + look at the in/out operands and add each operand (and its possible partner) + to a bipartite graph (left: nodes with partners, right: admissible colors). + */ + for(i = 0, n_alloc = 0; i < insn->n_ops; ++i) { + operand_t *op = &insn->ops[i]; + + /* + If the operand has no partner or the partner has not been marked + for allocation, determine the admissible registers and mark it + for allocation by associating the node and its partner with the + set of admissible registers via a bipartite graph. + */ + if(!op->partner || !pmap_contains(partners, op->partner->carrier)) { - req.type = arch_register_req_type_normal; - if(arch_get_register_req(arch_env, &req, irn, -1) && req.type == arch_register_req_type_limited) { + pmap_insert(partners, op->carrier, op->partner ? op->partner->carrier : NULL); + alloc_nodes[n_alloc] = op->carrier; + + DBG((dbg, LEVEL_2, "\tassociating %+F and %+F\n", op->carrier, op->partner ? op->partner->carrier : NULL)); + + bitset_clear_all(bs); + get_decisive_partner_regs(bs, op, op->partner); + + DBG((dbg, LEVEL_2, "\tallowed registers for %+F: %B\n", op->carrier, bs)); + + bitset_foreach(bs, col) + bipartite_add(bp, n_alloc, col); + + n_alloc++; + } + } + + /* + Put all nodes which live by the constrained instruction also to the + allocation bipartite graph. They are considered unconstrained. + */ + if(perm) { + foreach_out_edge(perm, edge) { + ir_node *proj = get_edge_src_irn(edge); + + assert(is_Proj(proj)); + + if(values_interfere(proj, irn) && !pmap_contains(partners, proj)) { + assert(n_alloc < n_regs); + alloc_nodes[n_alloc] = proj; + pmap_insert(partners, proj, NULL); + + bitset_clear_all(bs); + arch_put_non_ignore_regs(aenv, env->cls, bs); + bitset_foreach(bs, col) + bipartite_add(bp, n_alloc, col); + + n_alloc++; + } + } + } + + /* Compute a valid register allocation. */ + bipartite_matching(bp, assignment); + + /* Assign colors obtained from the matching. */ + for(i = 0; i < n_alloc; ++i) { const arch_register_t *reg; - int col; + ir_node *nodes[2]; + int j; - bitset_clear_all(bs); - req.data.limited(irn, -1, bs); - col = bitset_next_set(bs, 0); - reg = arch_register_for_index(alloc_env->chordal_env->cls, col); + assert(assignment[i] >= 0 && "there must have been a register assigned"); + reg = arch_register_for_index(env->cls, assignment[i]); - arch_set_irn_register(arch_env, irn, reg); - bitset_set(alloc_env->colors, col); + nodes[0] = alloc_nodes[i]; + nodes[1] = pmap_get(partners, alloc_nodes[i]); + + for(j = 0; j < 2; ++j) { + if(!nodes[j]) + continue; + + arch_set_irn_register(aenv, nodes[j], reg); + pset_hinsert_ptr(alloc_env->pre_colored, nodes[j]); + DBG((dbg, LEVEL_2, "\tsetting %+F to register %s\n", nodes[j], reg->name)); + } } - } - for(b = perm_border; b != next_border; b = border_next(b)) { - ir_node *irn = b->irn; - int nr = get_irn_graph_nr(irn); - bitset_set(alloc_env->live, nr); + /* Allocate the non-constrained Projs of the Perm. */ + if(perm) { - if(arch_get_irn_register(arch_env, irn) == NULL) { - int col = bitset_next_clear(alloc_env->colors, 0); - const arch_register_t *reg = arch_register_for_index(alloc_env->chordal_env->cls, col); + bitset_clear_all(bs); - arch_set_irn_register(arch_env, irn, reg); + /* Put the colors of all Projs in a bitset. */ + foreach_out_edge(perm, edge) { + ir_node *proj = get_edge_src_irn(edge); + const arch_register_t *reg = arch_get_irn_register(aenv, proj); + + if(reg != NULL) + bitset_set(bs, reg->index); + } + + /* Assign the not yet assigned Projs of the Perm a suitable color. */ + foreach_out_edge(perm, edge) { + ir_node *proj = get_edge_src_irn(edge); + const arch_register_t *reg = arch_get_irn_register(aenv, proj); + + DBG((dbg, LEVEL_2, "\tchecking reg of %+F: %s\n", proj, reg ? reg->name : "")); + + if(reg == NULL) { + col = get_next_free_reg(alloc_env, bs); + reg = arch_register_for_index(env->cls, col); + bitset_set(bs, reg->index); + arch_set_irn_register(aenv, proj, reg); + pset_insert_ptr(alloc_env->pre_colored, proj); + DBG((dbg, LEVEL_2, "\tsetting %+F to register %s\n", proj, reg->name)); + } + } } + + pmap_destroy(partners); } - return cnstr_border; +end: + obstack_free(&env->obst, base); + return res; +} + +/** + * Handle constraint nodes in each basic block. + * handle_constraints() inserts Perm nodes which perm + * over all values live at the constrained node right in front + * of the constrained node. These Perms signal a constrained node. + * For further comments, refer to handle_constraints(). + */ +static void constraints(ir_node *bl, void *data) +{ + be_chordal_alloc_env_t *env = data; + + /* + Start silent in the start block. + The silence remains until the first barrier is seen. + Each other block is begun loud. + */ + int silent = bl == get_irg_start_block(get_irn_irg(bl)); + ir_node *irn; + + /* + If the block is the start block search the barrier and + start handling constraints from there. + */ + + for(irn = sched_first(bl); !sched_is_end(irn);) { + irn = handle_constraints(env, irn, &silent); + } } /** @@ -366,15 +799,15 @@ static void assign(ir_node *block, void *env_ptr) bitset_t *live = alloc_env->live; bitset_t *colors = alloc_env->colors; bitset_t *in_colors = alloc_env->in_colors; - const arch_env_t *arch_env = env->main_env->arch_env; + const arch_env_t *arch_env = env->birg->main_env->arch_env; const ir_node *irn; border_t *b; struct list_head *head = get_block_border_head(env, block); pset *live_in = put_live_in(block, pset_new_ptr_default()); - bitset_clear_all(live); bitset_clear_all(colors); + bitset_clear_all(live); bitset_clear_all(in_colors); DBG((dbg, LEVEL_4, "Assigning colors for block %+F\n", block)); @@ -407,7 +840,8 @@ static void assign(ir_node *block, void *env_ptr) } /* - * Mind that the sequence of defs from back to front defines a perfect + * Mind that the sequence + * of defs from back to front defines a perfect * elimination order. So, coloring the definitions from first to last * will work. */ @@ -423,20 +857,27 @@ static void assign(ir_node *block, void *env_ptr) const arch_register_t *reg; int col = NO_COLOR; - DBG((dbg, LEVEL_4, "\tcolors in use: %b\n", colors)); - - col = bitset_next_clear(colors, 0); - reg = arch_register_for_index(env->cls, col); + if(pset_find_ptr(alloc_env->pre_colored, irn)) { + reg = arch_get_irn_register(arch_env, irn); + col = reg->index; + assert(!bitset_is_set(colors, col) && "pre-colored register must be free"); + } - assert(arch_get_irn_register(arch_env, irn) == NULL && "This node must not have been assigned a register yet"); - assert(!bitset_is_set(live, nr) && "Value's definition must not have been encountered"); + else { + col = get_next_free_reg(alloc_env, colors); + reg = arch_register_for_index(env->cls, col); + assert(arch_get_irn_register(arch_env, irn) == NULL && "This node must not have been assigned a register yet"); + assert(!arch_register_type_is(reg, ignore) && "Must not assign ignore register"); + } bitset_set(colors, col); - bitset_set(live, nr); - arch_set_irn_register(arch_env, irn, reg); + DBG((dbg, LEVEL_1, "\tassigning register %s(%d) to %+F\n", arch_register_get_name(reg), col, irn)); + + assert(!bitset_is_set(live, nr) && "Value's definition must not have been encountered"); + bitset_set(live, nr); } /* Clear the color upon a use. */ @@ -451,18 +892,6 @@ static void assign(ir_node *block, void *env_ptr) bitset_clear(colors, col); bitset_clear(live, nr); - - /* - * If we encounter a Perm, it is due to register constraints. - * To achieve a valid coloring in the presence of register - * constraints, we invoke a special function which takes care - * that all constraints are fulfilled. - * This function assigned valid colors to the projs of the - * Perm and the constrained node itself and skips these - * nodes in the border list. - */ - if(is_Perm(b->irn)) - b = handle_constraint_perm(alloc_env, border_next(b)); } } @@ -471,20 +900,40 @@ static void assign(ir_node *block, void *env_ptr) void be_ra_chordal_color(be_chordal_env_t *chordal_env) { - int node_count = get_graph_node_count(chordal_env->irg); + be_chordal_alloc_env_t env; + char buf[256]; + int i; + int colors_n = arch_register_class_n_regs(chordal_env->cls); ir_graph *irg = chordal_env->irg; - be_chordal_alloc_env_t env; if(get_irg_dom_state(irg) != dom_consistent) compute_doms(irg); - env.chordal_env = chordal_env; - env.live = bitset_malloc(node_count); - env.colors = bitset_malloc(colors_n); - env.in_colors = bitset_malloc(colors_n); - env.colors_n = colors_n; + env.chordal_env = chordal_env; + env.colors_n = colors_n; + env.colors = bitset_alloca(colors_n); + env.tmp_colors = bitset_alloca(colors_n); + env.in_colors = bitset_alloca(colors_n); + env.ignore_regs = bitset_alloca(colors_n); + env.pre_colored = pset_new_ptr_default(); + FIRM_DBG_REGISTER(env.constr_dbg, "firm.be.chordal.constr"); + + for(i = 0; i < colors_n; ++i) + if(arch_register_type_is(&chordal_env->cls->regs[i], ignore)) + bitset_set(env.ignore_regs, i); + + /* Handle register targeting constraints */ + dom_tree_walk_irg(irg, constraints, NULL, &env); + + if(chordal_env->opts->dump_flags & BE_CH_DUMP_CONSTR) { + snprintf(buf, sizeof(buf), "-%s-constr", chordal_env->cls->name); + be_dump(chordal_env->irg, buf, dump_ir_block_graph_sched); + } + + be_numbering(irg); + env.live = bitset_malloc(get_graph_node_count(chordal_env->irg)); /* First, determine the pressure */ dom_tree_walk_irg(irg, pressure, NULL, &env); @@ -492,20 +941,15 @@ void be_ra_chordal_color(be_chordal_env_t *chordal_env) /* Assign the colors */ dom_tree_walk_irg(irg, assign, NULL, &env); -#ifdef DUMP_INTERVALS - { - char buf[128]; - plotter_t *plotter; + be_numbering_done(irg); - ir_snprintf(buf, sizeof(buf), "ifg_%s_%F.eps", cls->name, irg); + if(chordal_env->opts->dump_flags & BE_CH_DUMP_TREE_INTV) { + plotter_t *plotter; + ir_snprintf(buf, sizeof(buf), "ifg_%s_%F.eps", chordal_env->cls->name, irg); plotter = new_plotter_ps(buf); - - draw_interval_tree(&draw_chordal_def_opts, chordal_env, plotter, env->arch_env, cls); + draw_interval_tree(&draw_chordal_def_opts, chordal_env, plotter); plotter_free(plotter); } -#endif - free(env.live); - free(env.colors); - free(env.in_colors); + del_pset(env.pre_colored); }