X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;f=heuristical.c;h=f202c74e2ff1b0e6da7363cb1e73d21446458b2c;hb=2574baf55fbe5e09e07d66c891de63fd791b7647;hp=37f62acc3d834fe8ebca4cd63da124bddf42acaa;hpb=15e664556dbc0e4c2d45a7fbfe0c5b537531aeb9;p=libfirm diff --git a/heuristical.c b/heuristical.c index 37f62acc3..f202c74e2 100644 --- a/heuristical.c +++ b/heuristical.c @@ -1,9 +1,41 @@ +/* + * Copyright (C) 1995-2008 University of Karlsruhe. All right reserved. + * + * This file is part of libFirm. + * + * This file may be distributed and/or modified under the terms of the + * GNU General Public License version 2 as published by the Free Software + * Foundation and appearing in the file LICENSE.GPL included in the + * packaging of this file. + * + * Licensees holding valid libFirm Professional Edition licenses may use + * this file in accordance with the libFirm Commercial License. + * Agreement provided with the Software. + * + * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE + * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE. + */ + +/** + * @file + * @brief Heuristic PBQP solver. + * @date 02.10.2008 + * @author Sebastian Buchwald + * @version $Id$ + */ +#include "config.h" + #include "adt/array.h" #include "assert.h" #include "error.h" +#include "bucket.h" #include "heuristical.h" +#include "optimal.h" +#if KAPS_DUMP #include "html_dumper.h" +#endif #include "kaps.h" #include "matrix.h" #include "pbqp_edge.h" @@ -12,674 +44,96 @@ #include "pbqp_node_t.h" #include "vector.h" -static pbqp_edge **edge_bucket; -static pbqp_node **node_buckets[4]; -static pbqp_node **reduced_bucket = NULL; -static int buckets_filled = 0; - -static void init_buckets(void) -{ - int i; - - edge_bucket = NEW_ARR_F(pbqp_edge *, 0); - reduced_bucket = NEW_ARR_F(pbqp_node *, 0); - - for (i = 0; i < 4; ++i) { - node_buckets[i] = NEW_ARR_F(pbqp_node *, 0); - } -} - -static void free_buckets(void) -{ - int i; - - for (i = 0; i < 4; ++i) { - DEL_ARR_F(node_buckets[i]); - node_buckets[i] = NULL; - } - - DEL_ARR_F(edge_bucket); - edge_bucket = NULL; - - DEL_ARR_F(reduced_bucket); - reduced_bucket = NULL; - - buckets_filled = 0; -} - -static void fill_node_buckets(pbqp *pbqp) -{ - unsigned node_index; - unsigned node_len; - - assert(pbqp); - node_len = pbqp->num_nodes; - - for (node_index = 0; node_index < node_len; ++node_index) { - unsigned arity; - pbqp_node *node = get_node(pbqp, node_index); - - if (!node) continue; - - arity = ARR_LEN(node->edges); - - /* We have only one bucket for nodes with arity >= 3. */ - if (arity > 3) { - arity = 3; - } - - node->bucket_index = ARR_LEN(node_buckets[arity]); - - ARR_APP1(pbqp_node *, node_buckets[arity], node); - } - - buckets_filled = 1; -} +#include "timing.h" -static void normalize_towards_source(pbqp *pbqp, pbqp_edge *edge) +static void apply_RN(pbqp *pbqp) { - pbqp_matrix *mat; - pbqp_node *src_node; - pbqp_node *tgt_node; - vector *src_vec; - vector *tgt_vec; - int src_len; - int tgt_len; - int src_index; + pbqp_node *node = NULL; + unsigned min_index = 0; assert(pbqp); - assert(edge); - - src_node = edge->src; - tgt_node = edge->tgt; - assert(src_node); - assert(tgt_node); - - src_vec = src_node->costs; - tgt_vec = tgt_node->costs; - assert(src_vec); - assert(tgt_vec); - - src_len = src_vec->len; - tgt_len = tgt_vec->len; - assert(src_len > 0); - assert(tgt_len > 0); - - mat = edge->costs; - assert(mat); - - /* Normalize towards source node. */ - for (src_index = 0; src_index < src_len; ++src_index) { - num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec); - - if (min != 0) { - pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min); - src_vec->entries[src_index].data = pbqp_add( - src_vec->entries[src_index].data, min); - - // TODO add to edge_list if inf - } - } -} - -static void normalize_towards_target(pbqp *pbqp, pbqp_edge *edge) -{ - pbqp_matrix *mat; - pbqp_node *src_node; - pbqp_node *tgt_node; - vector *src_vec; - vector *tgt_vec; - int src_len; - int tgt_len; - int tgt_index; - - assert(pbqp); - assert(edge); - - src_node = edge->src; - tgt_node = edge->tgt; - assert(src_node); - assert(tgt_node); - - src_vec = src_node->costs; - tgt_vec = tgt_node->costs; - assert(src_vec); - assert(tgt_vec); - - src_len = src_vec->len; - tgt_len = tgt_vec->len; - assert(src_len > 0); - assert(tgt_len > 0); - - mat = edge->costs; - assert(mat); - - for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) { - num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec); - - if (min != 0) { - pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min); - tgt_vec->entries[tgt_index].data = pbqp_add( - tgt_vec->entries[tgt_index].data, min); - - // TODO add to edge_list if inf - } - } -} - -static void reorder_node(pbqp_node *node) -{ - unsigned arity; - unsigned old_arity; - unsigned old_bucket_len; - unsigned old_bucket_index; - pbqp_node **old_bucket; - pbqp_node *other; - - if (!buckets_filled) return; + /* We want to reduce a node with maximum degree. */ + node = get_node_with_max_degree(); assert(node); + assert(pbqp_node_get_degree(node) > 2); - arity = ARR_LEN(node->edges); - - /* Same bucket as before */ - if (arity > 2) return; - - /* Assume node lost one incident edge. */ - old_arity = arity + 1; - old_bucket = node_buckets[old_arity]; - old_bucket_len = ARR_LEN(old_bucket); - old_bucket_index = node->bucket_index; - - if (old_bucket_len <= old_bucket_index || - old_bucket[old_bucket_index] != node) { - /* Old arity is new arity, so we have nothing to do. */ - assert(old_bucket_index < ARR_LEN(node_buckets[arity]) && - node_buckets[arity][old_bucket_index] == node); - return; - } - - assert(old_bucket[old_bucket_index] == node); - - /* Delete node from old bucket... */ - other = old_bucket[old_bucket_len - 1]; - other->bucket_index = old_bucket_index; - old_bucket[old_bucket_index] = other; - ARR_SHRINKLEN(node_buckets[old_arity], old_bucket_len - 1); - - /* ..and add to new one. */ - node->bucket_index = ARR_LEN(node_buckets[arity]); - ARR_APP1(pbqp_node*, node_buckets[arity], node); -} - -static void simplify_edge(pbqp *pbqp, pbqp_edge *edge) -{ - pbqp_matrix *mat; - pbqp_node *src_node; - pbqp_node *tgt_node; - vector *src_vec; - vector *tgt_vec; - int src_len; - int tgt_len; - - assert(pbqp); - assert(edge); - - src_node = edge->src; - tgt_node = edge->tgt; - assert(src_node); - assert(tgt_node); - +#if KAPS_DUMP if (pbqp->dump_file) { - char txt[100]; - sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index); - dump_section(pbqp->dump_file, 3, txt); + char txt[100]; + sprintf(txt, "RN-Reduction of Node n%d", node->index); + dump_section(pbqp->dump_file, 2, txt); + pbqp_dump_graph(pbqp); } +#endif - src_vec = src_node->costs; - tgt_vec = tgt_node->costs; - assert(src_vec); - assert(tgt_vec); - - src_len = src_vec->len; - tgt_len = tgt_vec->len; - assert(src_len > 0); - assert(tgt_len > 0); - - mat = edge->costs; - assert(mat); + min_index = get_local_minimal_alternative(pbqp, node); +#if KAPS_DUMP if (pbqp->dump_file) { - fputs("Input:
\n", pbqp->dump_file); - dump_simplifyedge(pbqp, edge); + fprintf(pbqp->dump_file, "node n%d is set to %d

\n", + node->index, min_index); } +#endif - normalize_towards_source(pbqp, edge); - normalize_towards_target(pbqp, edge); - - if (pbqp->dump_file) { - fputs("
\nOutput:
\n", pbqp->dump_file); - dump_simplifyedge(pbqp, edge); +#if KAPS_STATISTIC + if (dump == 0) { + FILE *fh = fopen("solutions.pb", "a"); + fprintf(fh, "[%u]", min_index); + fclose(fh); + pbqp->num_rn++; } +#endif - if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) { - if (pbqp->dump_file) { - fputs("edge has been eliminated
\n", pbqp->dump_file); - } - - delete_edge(edge); - reorder_node(src_node); - reorder_node(tgt_node); - } + /* Now that we found the local minimum set all other costs to infinity. */ + select_alternative(node, min_index); } -void solve_pbqp_heuristical(pbqp *pbqp) +static void apply_heuristic_reductions(pbqp *pbqp) { - unsigned node_index; - unsigned node_len; - - assert(pbqp); - - if (pbqp->dump_file) { - pbqp_dump_input(pbqp); - dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices"); - } - - node_len = pbqp->num_nodes; - - init_buckets(); - - /* First simplify all edges. */ - for (node_index = 0; node_index < node_len; ++node_index) { - unsigned edge_index; - pbqp_node *node = get_node(pbqp, node_index); - pbqp_edge **edges; - unsigned edge_len; - - if (!node) continue; - - edges = node->edges; - edge_len = ARR_LEN(edges); - - for (edge_index = 0; edge_index < edge_len; ++edge_index) { - pbqp_edge *edge = edges[edge_index]; - - /* Simplify only once per edge. */ - if (node != edge->src) continue; - - simplify_edge(pbqp, edge); - } - } - - /* Put node into bucket representing their arity. */ - fill_node_buckets(pbqp); - for (;;) { - if (ARR_LEN(edge_bucket) > 0) { - panic("Please implement edge simplification"); - } else if (ARR_LEN(node_buckets[1]) > 0) { + if (edge_bucket_get_length(edge_bucket) > 0) { + apply_edge(pbqp); + } else if (node_bucket_get_length(node_buckets[1]) > 0) { apply_RI(pbqp); - } else if (ARR_LEN(node_buckets[2]) > 0) { + } else if (node_bucket_get_length(node_buckets[2]) > 0) { apply_RII(pbqp); - } else if (ARR_LEN(node_buckets[3]) > 0) { - panic("Please implement RN simplification"); + } else if (node_bucket_get_length(node_buckets[3]) > 0) { + apply_RN(pbqp); } else { - break; - } - } - - if (pbqp->dump_file) { - dump_section(pbqp->dump_file, 1, "4. Determine Solution/Minimum"); - dump_section(pbqp->dump_file, 2, "4.1. Trivial Solution"); - } - - /* Solve trivial nodes and calculate solution. */ - node_len = ARR_LEN(node_buckets[0]); - for (node_index = 0; node_index < node_len; ++node_index) { - pbqp_node *node = node_buckets[0][node_index]; - assert(node); - - node->solution = vector_get_min_index(node->costs); - pbqp->solution = pbqp_add(pbqp->solution, - node->costs->entries[node->solution].data); - if (pbqp->dump_file) { - fprintf(pbqp->dump_file, "node n%d is set to %d
\n", node->index, node->solution); - dump_node(pbqp, node); - } - } - - if (pbqp->dump_file) { - dump_section(pbqp->dump_file, 2, "Minimum"); - fprintf(pbqp->dump_file, "Minimum is equal to %d.", pbqp->solution); - dump_section(pbqp->dump_file, 2, "Back Propagation"); - } - - /* Solve reduced nodes. */ - node_len = ARR_LEN(reduced_bucket); - for (node_index = node_len; node_index > 0; --node_index) { - pbqp_node *node = reduced_bucket[node_index - 1]; - assert(node); - - switch (ARR_LEN(node->edges)) { - case 1: - back_propagate_RI(pbqp, node); - break; - case 2: - back_propagate_RII(pbqp, node); - break; - default: - panic("Only nodes with degree one or two should be in this bucket"); - break; - } - } - - free_buckets(); -} - -void apply_RI(pbqp *pbqp) -{ - pbqp_node **bucket = node_buckets[1]; - unsigned bucket_len = ARR_LEN(bucket); - pbqp_node *node = bucket[bucket_len - 1]; - pbqp_edge *edge = node->edges[0]; - pbqp_matrix *mat = edge->costs; - int is_src = edge->src == node; - pbqp_node *other_node; - - if (is_src) { - other_node = edge->tgt; - } else { - other_node = edge->src; - } - - if (pbqp->dump_file) { - char txt[100]; - sprintf(txt, "RI-Reduktion of Node n%d", node->index); - dump_section(pbqp->dump_file, 2, txt); - pbqp_dump_graph(pbqp); - fputs("
\nBefore reduction:
\n", pbqp->dump_file); - dump_node(pbqp, node); - dump_node(pbqp, other_node); - dump_edge(pbqp, edge); - } - - if (is_src) { - pbqp_matrix_add_to_all_cols(mat, node->costs); - normalize_towards_target(pbqp, edge); - } else { - pbqp_matrix_add_to_all_rows(mat, node->costs); - normalize_towards_source(pbqp, edge); - } - disconnect_edge(other_node, edge); - - if (pbqp->dump_file) { - fputs("
\nAfter reduction:
\n", pbqp->dump_file); - dump_node(pbqp, other_node); - } - - /* Remove node from bucket... */ - ARR_SHRINKLEN(bucket, (int)bucket_len - 1); - reorder_node(other_node); - - /* ...and add it to back propagation list. */ - node->bucket_index = ARR_LEN(reduced_bucket); - ARR_APP1(pbqp_node *, reduced_bucket, node); -} - -void apply_RII(pbqp *pbqp) -{ - pbqp_node **bucket = node_buckets[2]; - unsigned bucket_len = ARR_LEN(bucket); - pbqp_node *node = bucket[bucket_len - 1]; - pbqp_edge *src_edge = node->edges[0]; - pbqp_edge *tgt_edge = node->edges[1]; - int src_is_src = src_edge->src == node; - int tgt_is_src = tgt_edge->src == node; - pbqp_matrix *src_mat; - pbqp_matrix *tgt_mat; - pbqp_node *src_node; - pbqp_node *tgt_node; - pbqp_matrix *mat; - vector *vec; - vector *node_vec; - vector *src_vec; - vector *tgt_vec; - unsigned col_index; - unsigned col_len; - unsigned row_index; - unsigned row_len; - unsigned node_len; - - assert(pbqp); - - if (src_is_src) { - src_node = src_edge->tgt; - } else { - src_node = src_edge->src; - } - - if (tgt_is_src) { - tgt_node = tgt_edge->tgt; - } else { - tgt_node = tgt_edge->src; - } - - /* Swap nodes if necessary. */ - if (tgt_node->index < src_node->index) { - pbqp_node *tmp_node; - pbqp_edge *tmp_edge; - - tmp_node = src_node; - src_node = tgt_node; - tgt_node = tmp_node; - - tmp_edge = src_edge; - src_edge = tgt_edge; - tgt_edge = tmp_edge; - - src_is_src = src_edge->src == node; - tgt_is_src = tgt_edge->src == node; - } - - if (pbqp->dump_file) { - char txt[100]; - sprintf(txt, "RII-Reduktion of Node n%d", node->index); - dump_section(pbqp->dump_file, 2, txt); - pbqp_dump_graph(pbqp); - fputs("
\nBefore reduction:
\n", pbqp->dump_file); - dump_node(pbqp, src_node); - dump_edge(pbqp, src_edge); - dump_node(pbqp, node); - dump_edge(pbqp, tgt_edge); - dump_node(pbqp, tgt_node); - } - - src_mat = src_edge->costs; - tgt_mat = tgt_edge->costs; - - src_vec = src_node->costs; - tgt_vec = tgt_node->costs; - node_vec = node->costs; - - row_len = src_vec->len; - col_len = tgt_vec->len; - node_len = node_vec->len; - - mat = pbqp_matrix_alloc(pbqp, row_len, col_len); - - for (row_index = 0; row_index < row_len; ++row_index) { - for (col_index = 0; col_index < col_len; ++col_index) { - vec = vector_copy(pbqp, node_vec); - - if (src_is_src) { - vector_add_matrix_col(vec, src_mat, row_index); - } else { - vector_add_matrix_row(vec, src_mat, row_index); - } - - if (tgt_is_src) { - vector_add_matrix_col(vec, tgt_mat, col_index); - } else { - vector_add_matrix_row(vec, tgt_mat, col_index); - } - - mat->entries[row_index * col_len + col_index] = vector_get_min(vec); - - obstack_free(&pbqp->obstack, vec); + return; } } - - pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index); - - /* Disconnect node. */ - disconnect_edge(src_node, src_edge); - disconnect_edge(tgt_node, tgt_edge); - - /* Remove node from bucket... */ - ARR_SHRINKLEN(bucket, (int)bucket_len - 1); - - /* ...and add it to back propagation list. */ - node->bucket_index = ARR_LEN(reduced_bucket); - ARR_APP1(pbqp_node *, reduced_bucket, node); - - if (edge == NULL) { - edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat); - } else { - pbqp_matrix_add(edge->costs, mat); - - /* Free local matrix. */ - obstack_free(&pbqp->obstack, mat); - - reorder_node(src_node); - reorder_node(tgt_node); - } - - if (pbqp->dump_file) { - fputs("
\nAfter reduction:
\n", pbqp->dump_file); - dump_edge(pbqp, edge); - } - - /* Edge has changed so we simplify it. */ - simplify_edge(pbqp, edge); -} - -void back_propagate_RI(pbqp *pbqp, pbqp_node *node) -{ - pbqp_edge *edge; - pbqp_node *other; - pbqp_matrix *mat; - vector *vec; - int is_src; - - assert(pbqp); - assert(node); - - edge = node->edges[0]; - mat = edge->costs; - is_src = edge->src == node; - vec = node->costs; - - if (is_src) { - other = edge->tgt; - assert(other); - vector_add_matrix_col(vec, mat, other->solution); - } else { - other = edge->src; - assert(other); - vector_add_matrix_row(vec, mat, other->solution); - } - - node->solution = vector_get_min_index(vec); - if (pbqp->dump_file) { - fprintf(pbqp->dump_file, "node n%d is set to %d
\n", node->index, node->solution); - } } -void back_propagate_RII(pbqp *pbqp, pbqp_node *node) +void solve_pbqp_heuristical(pbqp *pbqp) { - pbqp_edge *src_edge = node->edges[0]; - pbqp_edge *tgt_edge = node->edges[1]; - int src_is_src = src_edge->src == node; - int tgt_is_src = tgt_edge->src == node; - pbqp_matrix *src_mat; - pbqp_matrix *tgt_mat; - pbqp_node *src_node; - pbqp_node *tgt_node; - vector *vec; - vector *node_vec; - unsigned col_index; - unsigned row_index; - - assert(pbqp); - - if (src_is_src) { - src_node = src_edge->tgt; - } else { - src_node = src_edge->src; - } - - if (tgt_is_src) { - tgt_node = tgt_edge->tgt; - } else { - tgt_node = tgt_edge->src; - } - - /* Swap nodes if necessary. */ - if (tgt_node->index < src_node->index) { - pbqp_node *tmp_node; - pbqp_edge *tmp_edge; - - tmp_node = src_node; - src_node = tgt_node; - tgt_node = tmp_node; - - tmp_edge = src_edge; - src_edge = tgt_edge; - tgt_edge = tmp_edge; - - src_is_src = src_edge->src == node; - tgt_is_src = tgt_edge->src == node; - } - - src_mat = src_edge->costs; - tgt_mat = tgt_edge->costs; - - node_vec = node->costs; + /* Reduce nodes degree ... */ + initial_simplify_edges(pbqp); - row_index = src_node->solution; - col_index = tgt_node->solution; + /* ... and put node into bucket representing their degree. */ + fill_node_buckets(pbqp); - vec = vector_copy(pbqp, node_vec); +#if KAPS_STATISTIC + FILE *fh = fopen("solutions.pb", "a"); + fprintf(fh, "Solution"); + fclose(fh); +#endif - if (src_is_src) { - vector_add_matrix_col(vec, src_mat, row_index); - } else { - vector_add_matrix_row(vec, src_mat, row_index); - } + apply_heuristic_reductions(pbqp); - if (tgt_is_src) { - vector_add_matrix_col(vec, tgt_mat, col_index); - } else { - vector_add_matrix_row(vec, tgt_mat, col_index); - } + pbqp->solution = determine_solution(pbqp); - node->solution = vector_get_min_index(vec); - if (pbqp->dump_file) { - fprintf(pbqp->dump_file, "node n%d is set to %d
\n", node->index, node->solution); - } - - obstack_free(&pbqp->obstack, vec); -} +#if KAPS_STATISTIC + fh = fopen("solutions.pb", "a"); + fprintf(fh, ": %lld RE:%u R0:%u R1:%u R2:%u RN/BF:%u\n", pbqp->solution, + pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2, + pbqp->num_rn); + fclose(fh); +#endif -int node_is_reduced(pbqp_node *node) -{ - if (!reduced_bucket) return 0; - - assert(node); - if (ARR_LEN(node->edges) == 0) return 1; - - unsigned bucket_length = ARR_LEN(reduced_bucket); - unsigned bucket_index = node->bucket_index; + /* Solve reduced nodes. */ + back_propagate(pbqp); - return bucket_index < bucket_length && reduced_bucket[bucket_index] == node; + free_buckets(); }