X-Git-Url: http://nsz.repo.hu/git/?a=blobdiff_plain;ds=sidebyside;f=ir%2Fana%2Fexecfreq.c;h=e312cd3befd72df00d5dcad6612794e95a2591e4;hb=e84184056559e90f2dffc7f7648f40705864e088;hp=957dc89e2d5b407d011ff6402cca131452059d91;hpb=1cf12f11881bd8bed7a318cb2710cb19fa4719c7;p=libfirm diff --git a/ir/ana/execfreq.c b/ir/ana/execfreq.c index 957dc89e2..e312cd3be 100644 --- a/ir/ana/execfreq.c +++ b/ir/ana/execfreq.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 1995-2007 University of Karlsruhe. All right reserved. + * Copyright (C) 1995-2008 University of Karlsruhe. All right reserved. * * This file is part of libFirm. * @@ -24,28 +24,22 @@ * @date 28.05.2006 * @version $Id$ */ -#ifdef HAVE_CONFIG_H #include "config.h" -#endif - -#undef USE_GSL #include #include #include #include -#ifdef USE_GSL -#include -#include -#else -#include "gaussjordan.h" -#endif +#include "gaussseidel.h" #include "firm_common_t.h" #include "set.h" #include "hashptr.h" #include "debug.h" +#include "statev.h" +#include "dfs_t.h" +#include "absgraph.h" #include "irprog_t.h" #include "irgraph_t.h" @@ -54,25 +48,33 @@ #include "irgwalk.h" #include "iredges.h" #include "irprintf.h" +#include "irtools.h" #include "irhooks.h" #include "execfreq.h" -#define set_foreach(s,i) for((i)=set_first((s)); (i); (i)=set_next((s))) +/* enable to also solve the equations with Gauss-Jordan */ +#undef COMPARE_AGAINST_GAUSSJORDAN + +#ifdef COMPARE_AGAINST_GAUSSJORDAN +#include "gaussjordan.h" +#endif + + +#define EPSILON 1e-5 +#define UNDEF(x) (fabs(x) < EPSILON) +#define SEIDEL_TOLERANCE 1e-7 #define MAX_INT_FREQ 1000000 +#define set_foreach(s,i) for((i)=set_first((s)); (i); (i)=set_next((s))) + typedef struct _freq_t { const ir_node *irn; + int idx; double freq; } freq_t; - -typedef struct _walkerdata_t { - set *set; - size_t idx; -} walkerdata_t; - struct ir_exec_freq { set *set; hook_entry_t hook; @@ -87,6 +89,7 @@ cmp_freq(const void *a, const void *b, size_t size) { const freq_t *p = a; const freq_t *q = b; + (void) size; return !(p->irn == q->irn); } @@ -107,6 +110,7 @@ set_insert_freq(set * set, const ir_node * irn) query.irn = irn; query.freq = 0.0; + query.idx = -1; return set_insert(set, &query, sizeof(query), HASH_PTR(irn)); } @@ -132,58 +136,47 @@ get_block_execfreq_ulong(const ir_exec_freq *ef, const ir_node *bb) { double f = get_block_execfreq(ef, bb); int res = (int) (f > ef->min_non_zero ? ef->m * f + ef->b : 1.0); - - // printf("%20.6f %10d\n", f, res); return res; } -#define EPSILON 0.0001 -#define UNDEF(x) !(x > EPSILON) - -static void -block_walker(ir_node * bb, void * data) -{ - walkerdata_t *wd = data; - - set_insert_freq(wd->set, bb); - set_irn_link(bb, (void*)wd->idx++); -} - -#ifdef USE_GSL -static gsl_vector * -solve_lgs(double * a_data, double * b_data, size_t size) -{ - gsl_matrix_view m - = gsl_matrix_view_array (a_data, size, size); - - gsl_vector_view b - = gsl_vector_view_array (b_data, size); - - gsl_vector *x = gsl_vector_alloc (size); - - int s; - - gsl_permutation * p = gsl_permutation_alloc (size); - - gsl_linalg_LU_decomp (&m.matrix, p, &s); - - gsl_linalg_LU_solve (&m.matrix, p, &b.vector, x); - - gsl_permutation_free (p); - - return x; -} -#else static double * -solve_lgs(double * A, double * b, size_t size) +solve_lgs(gs_matrix_t *mat, double *x, int size) { - if(firm_gaussjordansolve(A,b,size) == 0) { - return b; - } else { - return NULL; - } + double init = 1.0 / size; + double dev; + int i, iter = 0; + + /* better convergence. */ + for (i = 0; i < size; ++i) + x[i] = init; + + stat_ev_dbl("execfreq_matrix_size", size); + stat_ev_tim_push(); + do { + ++iter; + dev = gs_matrix_gauss_seidel(mat, x, size); + } while(fabs(dev) > SEIDEL_TOLERANCE); + stat_ev_tim_pop("execfreq_seidel_time"); + stat_ev_dbl("execfreq_seidel_iter", iter); + +#ifdef COMPARE_AGAINST_GAUSSJORDAN + { + double *nw = XMALLOCN(double, size * size); + double *nx = XMALLOCNZ(double, size); + + gs_matrix_export(mat, nw, size); + + stat_ev_tim_push(); + firm_gaussjordansolve(nw, nx, size); + stat_ev_tim_pop("execfreq_jordan_time"); + + xfree(nw); + xfree(nx); + } +#endif + + return x; } -#endif /* USE_GSL */ static double get_cf_probability(ir_node *bb, int pos, double loop_weight) @@ -217,14 +210,14 @@ static void exec_freq_node_info(void *ctx, FILE *f, const ir_node *irn) ir_exec_freq *create_execfreq(ir_graph *irg) { - ir_exec_freq *execfreq = xmalloc(sizeof(execfreq[0])); - memset(execfreq, 0, sizeof(execfreq[0])); + ir_exec_freq *execfreq = XMALLOCZ(ir_exec_freq); execfreq->set = new_set(cmp_freq, 32); memset(&execfreq->hook, 0, sizeof(execfreq->hook)); execfreq->hook.context = execfreq; execfreq->hook.hook._hook_node_info = exec_freq_node_info; register_hook(hook_node_info, &execfreq->hook); + (void) irg; return execfreq; } @@ -235,148 +228,159 @@ void set_execfreq(ir_exec_freq *execfreq, const ir_node *block, double freq) f->freq = freq; } +static void collect_blocks(ir_node *bl, void *data) +{ + set *freqs = data; + set_insert_freq(freqs, bl); +} + ir_exec_freq * compute_execfreq(ir_graph * irg, double loop_weight) { - size_t size; - double *matrix; - double *rhs; - int i; - freq_t *freq; - walkerdata_t wd; - ir_exec_freq *ef; + gs_matrix_t *mat; + int size; + int idx; + freq_t *freq, *s, *e; + ir_exec_freq *ef; set *freqs; -#ifdef USE_GSL - gsl_vector *x; -#else + dfs_t *dfs; double *x; -#endif - - ef = xmalloc(sizeof(ef[0])); - memset(ef, 0, sizeof(ef[0])); - ef->min_non_zero = 1e50; /* initialize with a reasonable large number. */ - freqs = ef->set = new_set(cmp_freq, 32); + double norm; + + /* + * compute a DFS. + * using a toposort on the CFG (without back edges) will propagate + * the values better for the gauss/seidel iteration. + * => they can "flow" from start to end. + */ + dfs = dfs_new(&absgraph_irg_cfg_succ, irg); + ef = XMALLOCZ(ir_exec_freq); + ef->min_non_zero = HUGE_VAL; /* initialize with a reasonable large number. */ + freqs = ef->set = new_set(cmp_freq, dfs_get_n_nodes(dfs)); + + /* + * Populate the exec freq set. + * The DFS cannot be used alone, since the CFG might not be connected + * due to unreachable code. + */ + irg_block_walk_graph(irg, collect_blocks, NULL, freqs); construct_cf_backedges(irg); edges_assure(irg); - wd.idx = 0; - wd.set = freqs; - - irg_block_walk_graph(irg, block_walker, NULL, &wd); - - size = set_count(freqs); - matrix = xmalloc(size*size*sizeof(*matrix)); - memset(matrix, 0, size*size*sizeof(*matrix)); - rhs = xmalloc(size*sizeof(*rhs)); - memset(rhs, 0, size*sizeof(*rhs)); - - set_foreach(freqs, freq) { - ir_node *bb = (ir_node *)freq->irn; - size_t idx = (int)get_irn_link(bb); + size = dfs_get_n_nodes(dfs); + mat = gs_new_matrix(size, size); + x = XMALLOCN(double, size); - matrix[idx * (size + 1)] = -1.0; + for (idx = dfs_get_n_nodes(dfs) - 1; idx >= 0; --idx) { + ir_node *bb = (ir_node *) dfs_get_post_num_node(dfs, size - idx - 1); + freq_t *freq; + int i; - if (bb == get_irg_start_block(irg)) { - rhs[(int)get_irn_link(bb)] = -1.0; - continue; - } + freq = set_insert_freq(freqs, bb); + freq->idx = idx; for(i = get_Block_n_cfgpreds(bb) - 1; i >= 0; --i) { - ir_node *pred = get_Block_cfgpred_block(bb, i); - size_t pred_idx = (int)get_irn_link(pred); + ir_node *pred = get_Block_cfgpred_block(bb, i); + int pred_idx = size - dfs_get_post_num(dfs, pred) - 1; - // matrix[pred_idx + idx*size] += 1.0/(double)get_Block_n_cfg_outs(pred); - matrix[pred_idx + idx * size] += get_cf_probability(bb, i, loop_weight); + gs_matrix_set(mat, idx, pred_idx, get_cf_probability(bb, i, loop_weight)); } + gs_matrix_set(mat, idx, idx, -1.0); } - x = solve_lgs(matrix, rhs, size); - if (x == NULL) { - DEBUG_ONLY(ir_fprintf(stderr, "Debug Warning: Couldn't estimate execution frequencies for %+F\n", irg)); - ef->infeasible = 1; - } else { - ef->max = 0.0; - - set_foreach(freqs, freq) { - const ir_node *bb = freq->irn; - size_t idx = PTR_TO_INT(get_irn_link(bb)); - -#ifdef USE_GSL - freq->freq = UNDEF(gsl_vector_get(x, idx)) ? EPSILON : gsl_vector_get(x, idx); -#else - freq->freq = UNDEF(x[idx]) ? EPSILON : x[idx]; -#endif + dfs_free(dfs); + + /* + * Add a loop from end to start. + * The problem is then an eigenvalue problem: + * Solve A*x = 1*x => (A-I)x = 0 + */ + s = set_find_freq(freqs, get_irg_start_block(irg)); + e = set_find_freq(freqs, get_irg_end_block(irg)); + if (e->idx >= 0) + gs_matrix_set(mat, s->idx, e->idx, 1.0); + + /* solve the system and delete the matrix */ + solve_lgs(mat, x, size); + gs_delete_matrix(mat); + + /* + * compute the normalization factor. + * 1.0 / exec freq of start block. + */ + norm = x[s->idx] != 0.0 ? 1.0 / x[s->idx] : 1.0; + + ef->max = 0.0; + set_foreach(freqs, freq) { + int idx = freq->idx; - /* get the maximum exec freq */ - ef->max = MAX(ef->max, freq->freq); + /* take abs because it sometimes can be -0 in case of endless loops */ + freq->freq = fabs(x[idx]) * norm; - /* Get the minimum non-zero execution frequency. */ - if(freq->freq > 0.0) - ef->min_non_zero = MIN(ef->min_non_zero, freq->freq); - } + /* get the maximum exec freq */ + ef->max = MAX(ef->max, freq->freq); - /* compute m and b of the transformation used to convert the doubles into scaled ints */ - { - double smallest_diff = 1.0; + /* Get the minimum non-zero execution frequency. */ + if(freq->freq > 0.0) + ef->min_non_zero = MIN(ef->min_non_zero, freq->freq); + } - double l2 = ef->min_non_zero; - double h2 = ef->max; - double l1 = 1.0; - double h1 = MAX_INT_FREQ; + /* compute m and b of the transformation used to convert the doubles into scaled ints */ + { + double smallest_diff = 1.0; - double *fs = malloc(set_count(freqs) * sizeof(fs[0])); - int i, j, n = 0; + double l2 = ef->min_non_zero; + double h2 = ef->max; + double l1 = 1.0; + double h1 = MAX_INT_FREQ; - set_foreach(freqs, freq) - fs[n++] = freq->freq; + double *fs = malloc(set_count(freqs) * sizeof(fs[0])); + int i, j, n = 0; - /* - * find the smallest difference of the execution frequencies - * we try to ressolve it with 1 integer. - */ - for(i = 0; i < n; ++i) { - if(fs[i] <= 0.0) - continue; + set_foreach(freqs, freq) + fs[n++] = freq->freq; - for(j = i + 1; j < n; ++j) { - double diff = fabs(fs[i] - fs[j]); + /* + * find the smallest difference of the execution frequencies + * we try to ressolve it with 1 integer. + */ + for(i = 0; i < n; ++i) { + if(fs[i] <= 0.0) + continue; - if(!UNDEF(diff)) - smallest_diff = MIN(diff, smallest_diff); - } - } + for(j = i + 1; j < n; ++j) { + double diff = fabs(fs[i] - fs[j]); - /* according to that the slope of the translation function is 1.0 / smallest diff */ - ef->m = 1.0 / smallest_diff; + if(!UNDEF(diff)) + smallest_diff = MIN(diff, smallest_diff); + } + } - /* the abscissa is then given by */ - ef->b = l1 - ef->m * l2; + /* according to that the slope of the translation function is 1.0 / smallest diff */ + ef->m = 1.0 / smallest_diff; - /* - * if the slope is so high that the largest integer would be larger than MAX_INT_FREQ - * set the largest int freq to that upper limit and recompute the translation function - */ - if(ef->m * h2 + ef->b > MAX_INT_FREQ) { - ef->m = (h1 - l1) / (h2 - l2); - ef->b = l1 - ef->m * l2; - } + /* the abscissa is then given by */ + ef->b = l1 - ef->m * l2; - // printf("smallest_diff: %g, l1: %f, h1: %f, l2: %f, h2: %f, m: %f, b: %f\n", smallest_diff, l1, h1, l2, h2, ef->m, ef->b); - free(fs); + /* + * if the slope is so high that the largest integer would be larger than MAX_INT_FREQ + * set the largest int freq to that upper limit and recompute the translation function + */ + if(ef->m * h2 + ef->b > MAX_INT_FREQ) { + ef->m = (h1 - l1) / (h2 - l2); + ef->b = l1 - ef->m * l2; } -#ifdef USE_GSL - gsl_vector_free(x); -#endif - memset(&ef->hook, 0, sizeof(ef->hook)); - ef->hook.context = ef; - ef->hook.hook._hook_node_info = exec_freq_node_info; - register_hook(hook_node_info, &ef->hook); + free(fs); } - free(matrix); - free(rhs); + memset(&ef->hook, 0, sizeof(ef->hook)); + ef->hook.context = ef; + ef->hook.hook._hook_node_info = exec_freq_node_info; + register_hook(hook_node_info, &ef->hook); + + xfree(x); return ef; }