- 2009 patch
[cparser] / type.c
diff --git a/type.c b/type.c
index 9594ae8..667a912 100644 (file)
--- a/type.c
+++ b/type.c
+/*
+ * This file is part of cparser.
+ * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+ * 02111-1307, USA.
+ */
 #include <config.h>
 
 #include <stdio.h>
 #include <assert.h>
+
 #include "type_t.h"
+#include "types.h"
+#include "entity_t.h"
+#include "symbol_t.h"
 #include "type_hash.h"
 #include "adt/error.h"
+#include "adt/util.h"
+#include "lang_features.h"
+#include "warning.h"
+#include "diagnostic.h"
+#include "driver/firm_cmdline.h"
+
+/** The default calling convention. */
+cc_kind_t default_calling_convention = CC_CDECL;
 
 static struct obstack   _type_obst;
-struct obstack         *type_obst = &_type_obst;
 static FILE            *out;
-static int              type_visited = 0;
+struct obstack         *type_obst                 = &_type_obst;
+static bool             print_implicit_array_size = false;
+
+static void intern_print_type_pre(const type_t *type);
+static void intern_print_type_post(const type_t *type);
 
-static void intern_print_type_pre(const type_t *type, bool top);
-static void intern_print_type_post(const type_t *type, bool top);
+typedef struct atomic_type_properties_t atomic_type_properties_t;
+struct atomic_type_properties_t {
+       unsigned   size;              /**< type size in bytes */
+       unsigned   alignment;         /**< type alignment in bytes */
+       unsigned   flags;             /**< type flags from atomic_type_flag_t */
+};
+
+/**
+ * Properties of atomic types.
+ */
+static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
+       //ATOMIC_TYPE_INVALID = 0,
+       [ATOMIC_TYPE_VOID] = {
+               .size       = 0,
+               .alignment  = 0,
+               .flags      = ATOMIC_TYPE_FLAG_NONE
+       },
+       [ATOMIC_TYPE_WCHAR_T] = {
+               .size       = (unsigned)-1,
+               .alignment  = (unsigned)-1,
+               /* signed flag will be set when known */
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_CHAR] = {
+               .size       = 1,
+               .alignment  = 1,
+               /* signed flag will be set when known */
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_SCHAR] = {
+               .size       = 1,
+               .alignment  = 1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_UCHAR] = {
+               .size       = 1,
+               .alignment  = 1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_SHORT] = {
+               .size       = 2,
+               .alignment  = 2,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED
+       },
+       [ATOMIC_TYPE_USHORT] = {
+               .size       = 2,
+               .alignment  = 2,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_INT] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_UINT] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_LONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_ULONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_LONGLONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_ULONGLONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_BOOL] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_FLOAT] = {
+               .size       = 4,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_DOUBLE] = {
+               .size       = 8,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_LONG_DOUBLE] = {
+               .size       = 12,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       /* complex and imaginary types are set in init_types */
+};
 
 void init_types(void)
 {
        obstack_init(type_obst);
+
+       atomic_type_properties_t *props = atomic_type_properties;
+
+       if (char_is_signed) {
+               props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED;
+       }
+
+       unsigned int_size   = machine_size < 32 ? 2 : 4;
+       unsigned long_size  = machine_size < 64 ? 4 : 8;
+       unsigned llong_size = machine_size < 32 ? 4 : 8;
+
+       props[ATOMIC_TYPE_INT].size            = int_size;
+       props[ATOMIC_TYPE_INT].alignment       = int_size;
+       props[ATOMIC_TYPE_UINT].size           = int_size;
+       props[ATOMIC_TYPE_UINT].alignment      = int_size;
+       props[ATOMIC_TYPE_LONG].size           = long_size;
+       props[ATOMIC_TYPE_LONG].alignment      = long_size;
+       props[ATOMIC_TYPE_ULONG].size          = long_size;
+       props[ATOMIC_TYPE_ULONG].alignment     = long_size;
+       props[ATOMIC_TYPE_LONGLONG].size       = llong_size;
+       props[ATOMIC_TYPE_LONGLONG].alignment  = llong_size;
+       props[ATOMIC_TYPE_ULONGLONG].size      = llong_size;
+       props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size;
+
+       /* TODO: backend specific, need a way to query the backend for this.
+        * The following are good settings for x86 */
+       props[ATOMIC_TYPE_FLOAT].alignment       = 4;
+       props[ATOMIC_TYPE_DOUBLE].alignment      = 4;
+       props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4;
+       props[ATOMIC_TYPE_LONGLONG].alignment    = 4;
+       props[ATOMIC_TYPE_ULONGLONG].alignment   = 4;
+       if (firm_opt.os_support == OS_SUPPORT_MACHO) {
+               props[ATOMIC_TYPE_LONG_DOUBLE].size      = 16;
+               props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 16;
+       }
+
+       /* TODO: make this configurable for platforms which do not use byte sized
+        * bools. */
+       props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR];
+
+       props[ATOMIC_TYPE_WCHAR_T] = props[wchar_atomic_kind];
 }
 
 void exit_types(void)
@@ -29,229 +211,437 @@ void type_set_output(FILE *stream)
        out = stream;
 }
 
-void inc_type_visited(void)
+void print_type_qualifiers(type_qualifiers_t qualifiers)
 {
-       type_visited++;
+       int first = 1;
+       if (qualifiers & TYPE_QUALIFIER_CONST) {
+               fputs(" const" + first,    out);
+               first = 0;
+       }
+       if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
+               fputs(" volatile" + first, out);
+               first = 0;
+       }
+       if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
+               fputs(" restrict" + first, out);
+               first = 0;
+       }
 }
 
-void print_type_qualifiers(type_qualifiers_t qualifiers)
+const char *get_atomic_kind_name(atomic_type_kind_t kind)
 {
-       if(qualifiers & TYPE_QUALIFIER_CONST)    fputs("const ",    out);
-       if(qualifiers & TYPE_QUALIFIER_VOLATILE) fputs("volatile ", out);
-       if(qualifiers & TYPE_QUALIFIER_RESTRICT) fputs("restrict ", out);
+       switch(kind) {
+       case ATOMIC_TYPE_INVALID: break;
+       case ATOMIC_TYPE_VOID:        return "void";
+       case ATOMIC_TYPE_WCHAR_T:     return "wchar_t";
+       case ATOMIC_TYPE_BOOL:        return c_mode & _CXX ? "bool" : "_Bool";
+       case ATOMIC_TYPE_CHAR:        return "char";
+       case ATOMIC_TYPE_SCHAR:       return "signed char";
+       case ATOMIC_TYPE_UCHAR:       return "unsigned char";
+       case ATOMIC_TYPE_INT:         return "int";
+       case ATOMIC_TYPE_UINT:        return "unsigned int";
+       case ATOMIC_TYPE_SHORT:       return "short";
+       case ATOMIC_TYPE_USHORT:      return "unsigned short";
+       case ATOMIC_TYPE_LONG:        return "long";
+       case ATOMIC_TYPE_ULONG:       return "unsigned long";
+       case ATOMIC_TYPE_LONGLONG:    return "long long";
+       case ATOMIC_TYPE_ULONGLONG:   return "unsigned long long";
+       case ATOMIC_TYPE_LONG_DOUBLE: return "long double";
+       case ATOMIC_TYPE_FLOAT:       return "float";
+       case ATOMIC_TYPE_DOUBLE:      return "double";
+       }
+       return "INVALIDATOMIC";
 }
 
-static
-void print_atomic_type(const atomic_type_t *type)
-{
-       print_type_qualifiers(type->type.qualifiers);
-
-       const char *s;
-       switch(type->akind) {
-       case ATOMIC_TYPE_INVALID:     s = "INVALIDATOMIC";      break;
-       case ATOMIC_TYPE_VOID:        s = "void";               break;
-       case ATOMIC_TYPE_BOOL:        s = "_Bool";              break;
-       case ATOMIC_TYPE_CHAR:        s = "char";               break;
-       case ATOMIC_TYPE_SCHAR:       s = "signed char";        break;
-       case ATOMIC_TYPE_UCHAR:       s = "unsigned char";      break;
-       case ATOMIC_TYPE_INT:         s = "int";                break;
-       case ATOMIC_TYPE_UINT:        s = "unsigned int";       break;
-       case ATOMIC_TYPE_SHORT:       s = "short";              break;
-       case ATOMIC_TYPE_USHORT:      s = "unsigned short";     break;
-       case ATOMIC_TYPE_LONG:        s = "long";               break;
-       case ATOMIC_TYPE_ULONG:       s = "unsigned long";      break;
-       case ATOMIC_TYPE_LONGLONG:    s = "long long";          break;
-       case ATOMIC_TYPE_ULONGLONG:   s = "unsigned long long"; break;
-       case ATOMIC_TYPE_LONG_DOUBLE: s = "long double";        break;
-       case ATOMIC_TYPE_FLOAT:       s = "float";              break;
-       case ATOMIC_TYPE_DOUBLE:      s = "double";             break;
-       default:                      s = "UNKNOWNATOMIC";      break;
-       }
+/**
+ * Prints the name of an atomic type kinds.
+ *
+ * @param kind  The type kind.
+ */
+static void print_atomic_kinds(atomic_type_kind_t kind)
+{
+       const char *s = get_atomic_kind_name(kind);
        fputs(s, out);
 }
 
-static void print_function_type_pre(const function_type_t *type, bool top)
+/**
+ * Prints the name of an atomic type.
+ *
+ * @param type  The type.
+ */
+static void print_atomic_type(const atomic_type_t *type)
+{
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
+       print_atomic_kinds(type->akind);
+}
+
+/**
+ * Prints the name of a complex type.
+ *
+ * @param type  The type.
+ */
+static
+void print_complex_type(const complex_type_t *type)
+{
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
+       fputs(" _Complex " + empty, out);
+       print_atomic_kinds(type->akind);
+}
+
+/**
+ * Prints the name of an imaginary type.
+ *
+ * @param type  The type.
+ */
+static
+void print_imaginary_type(const imaginary_type_t *type)
+{
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
+       fputs(" _Imaginary " + empty, out);
+       print_atomic_kinds(type->akind);
+}
+
+/**
+ * Print the first part (the prefix) of a type.
+ *
+ * @param type   The type to print.
+ */
+static void print_function_type_pre(const function_type_t *type)
 {
-       print_type_qualifiers(type->type.qualifiers);
+       switch (type->linkage) {
+               case LINKAGE_INVALID:
+                       break;
+
+               case LINKAGE_C:
+                       if (c_mode & _CXX)
+                               fputs("extern \"C\" ",   out);
+                       break;
+
+               case LINKAGE_CXX:
+                       if (!(c_mode & _CXX))
+                               fputs("extern \"C++\" ", out);
+                       break;
+       }
 
-       intern_print_type_pre(type->return_type, false);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
 
-       /* don't emit braces if we're the toplevel type... */
-       if(!top)
-               fputc('(', out);
+       intern_print_type_pre(type->return_type);
+
+       cc_kind_t cc = type->calling_convention;
+restart:
+       switch (cc) {
+       case CC_CDECL:    fputs(" __cdecl",    out); break;
+       case CC_STDCALL:  fputs(" __stdcall",  out); break;
+       case CC_FASTCALL: fputs(" __fastcall", out); break;
+       case CC_THISCALL: fputs(" __thiscall", out); break;
+       case CC_DEFAULT:
+               if (default_calling_convention != CC_CDECL) {
+                       /* show the default calling convention if its not cdecl */
+                       cc = default_calling_convention;
+                       goto restart;
+               }
+               break;
+       }
 }
 
+/**
+ * Print the second part (the postfix) of a type.
+ *
+ * @param type   The type to print.
+ */
 static void print_function_type_post(const function_type_t *type,
-                                     const context_t *context, bool top)
+                                     const scope_t *parameters)
 {
-       intern_print_type_post(type->return_type, false);
-       /* don't emit braces if we're the toplevel type... */
-       if(!top)
-               fputc(')', out);
-
        fputc('(', out);
-
-       int                 first     = 1;
-       if(context == NULL) {
+       bool first = true;
+       if (parameters == NULL) {
                function_parameter_t *parameter = type->parameters;
                for( ; parameter != NULL; parameter = parameter->next) {
-                       if(first) {
-                               first = 0;
+                       if (first) {
+                               first = false;
                        } else {
                                fputs(", ", out);
                        }
                        print_type(parameter->type);
                }
        } else {
-               declaration_t *parameter = context->declarations;
-               for( ; parameter != NULL; parameter = parameter->next) {
-                       if(first) {
-                               first = 0;
+               entity_t *parameter = parameters->entities;
+               for (; parameter != NULL; parameter = parameter->base.next) {
+                       if (parameter->kind != ENTITY_PARAMETER)
+                               continue;
+
+                       if (first) {
+                               first = false;
                        } else {
                                fputs(", ", out);
                        }
-                       print_type_ext(parameter->type, parameter->symbol,
-                                      &parameter->context);
+                       const type_t *const type = parameter->declaration.type;
+                       if (type == NULL) {
+                               fputs(parameter->base.symbol->string, out);
+                       } else {
+                               print_type_ext(type, parameter->base.symbol, NULL);
+                       }
                }
        }
-       if(type->variadic) {
-               if(first) {
-                       first = 0;
+       if (type->variadic) {
+               if (first) {
+                       first = false;
                } else {
                        fputs(", ", out);
                }
                fputs("...", out);
        }
-       if(first && !type->unspecified_parameters) {
+       if (first && !type->unspecified_parameters) {
                fputs("void", out);
        }
        fputc(')', out);
+
+       intern_print_type_post(type->return_type);
 }
 
+/**
+ * Prints the prefix part of a pointer type.
+ *
+ * @param type   The pointer type.
+ */
 static void print_pointer_type_pre(const pointer_type_t *type)
 {
-       intern_print_type_pre(type->points_to, false);
-       fputs("*", out);
-       print_type_qualifiers(type->type.qualifiers);
+       type_t const *const points_to = type->points_to;
+       intern_print_type_pre(points_to);
+       if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION)
+               fputs(" (", out);
+       variable_t *const variable = type->base_variable;
+       if (variable != NULL) {
+               fputs(" __based(", out);
+               fputs(variable->base.base.symbol->string, out);
+               fputs(") ", out);
+       }
+       fputc('*', out);
+       type_qualifiers_t const qual = type->base.qualifiers;
+       if (qual != 0)
+               fputc(' ', out);
+       print_type_qualifiers(qual);
 }
 
+/**
+ * Prints the postfix part of a pointer type.
+ *
+ * @param type   The pointer type.
+ */
 static void print_pointer_type_post(const pointer_type_t *type)
 {
-       intern_print_type_post(type->points_to, false);
+       type_t const *const points_to = type->points_to;
+       if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION)
+               fputc(')', out);
+       intern_print_type_post(points_to);
+}
+
+/**
+ * Prints the prefix part of a reference type.
+ *
+ * @param type   The reference type.
+ */
+static void print_reference_type_pre(const reference_type_t *type)
+{
+       type_t const *const refers_to = type->refers_to;
+       intern_print_type_pre(refers_to);
+       if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION)
+               fputs(" (", out);
+       fputc('&', out);
+}
+
+/**
+ * Prints the postfix part of a reference type.
+ *
+ * @param type   The reference type.
+ */
+static void print_reference_type_post(const reference_type_t *type)
+{
+       type_t const *const refers_to = type->refers_to;
+       if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION)
+               fputc(')', out);
+       intern_print_type_post(refers_to);
 }
 
+/**
+ * Prints the prefix part of an array type.
+ *
+ * @param type   The array type.
+ */
 static void print_array_type_pre(const array_type_t *type)
 {
-       intern_print_type_pre(type->element_type, false);
+       intern_print_type_pre(type->element_type);
 }
 
+/**
+ * Prints the postfix part of an array type.
+ *
+ * @param type   The array type.
+ */
 static void print_array_type_post(const array_type_t *type)
 {
        fputc('[', out);
-       if(type->is_static) {
+       if (type->is_static) {
                fputs("static ", out);
        }
-       print_type_qualifiers(type->type.qualifiers);
-       if(type->size != NULL) {
-               print_expression(type->size);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
+       if (type->size_expression != NULL
+                       && (print_implicit_array_size || !type->has_implicit_size)) {
+               print_expression(type->size_expression);
        }
        fputc(']', out);
-       intern_print_type_post(type->element_type, false);
+       intern_print_type_post(type->element_type);
 }
 
+/**
+ * Prints the postfix part of a bitfield type.
+ *
+ * @param type   The array type.
+ */
 static void print_bitfield_type_post(const bitfield_type_t *type)
 {
        fputs(" : ", out);
-       print_expression(type->size);
-       intern_print_type_post(type->base, false);
+       print_expression(type->size_expression);
+       intern_print_type_post(type->base_type);
 }
 
-void print_enum_definition(const declaration_t *declaration)
+/**
+ * Prints an enum definition.
+ *
+ * @param declaration  The enum's type declaration.
+ */
+void print_enum_definition(const enum_t *enume)
 {
        fputs("{\n", out);
 
        change_indent(1);
 
-       declaration_t *entry = declaration->next;
-       for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY;
-              entry = entry->next) {
+       entity_t *entry = enume->base.next;
+       for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
+              entry = entry->base.next) {
 
                print_indent();
-               fprintf(out, "%s", entry->symbol->string);
-               if(entry->init.initializer != NULL) {
-                       fprintf(out, " = ");
-                       print_expression(entry->init.enum_value);
+               fputs(entry->base.symbol->string, out);
+               if (entry->enum_value.value != NULL) {
+                       fputs(" = ", out);
+
+                       /* skip the implicit cast */
+                       expression_t *expression = entry->enum_value.value;
+                       if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
+                               expression = expression->unary.value;
+                       }
+                       print_expression(expression);
                }
-               fprintf(out, ",\n");
+               fputs(",\n", out);
        }
 
        change_indent(-1);
        print_indent();
-       fputs("}", out);
+       fputc('}', out);
 }
 
+/**
+ * Prints an enum type.
+ *
+ * @param type  The enum type.
+ */
 static void print_type_enum(const enum_type_t *type)
 {
-       print_type_qualifiers(type->type.qualifiers);
-       fputs("enum ", out);
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
+       fputs(" enum " + empty, out);
 
-       declaration_t *declaration = type->declaration;
-       symbol_t      *symbol      = declaration->symbol;
-       if(symbol != NULL) {
+       enum_t   *enume  = type->enume;
+       symbol_t *symbol = enume->base.symbol;
+       if (symbol != NULL) {
                fputs(symbol->string, out);
        } else {
-               print_enum_definition(declaration);
+               print_enum_definition(enume);
        }
 }
 
-void print_compound_definition(const declaration_t *declaration)
+/**
+ * Print the compound part of a compound type.
+ */
+void print_compound_definition(const compound_t *compound)
 {
        fputs("{\n", out);
        change_indent(1);
 
-       declaration_t *iter = declaration->context.declarations;
-       for( ; iter != NULL; iter = iter->next) {
+       entity_t *entity = compound->members.entities;
+       for( ; entity != NULL; entity = entity->base.next) {
+               if (entity->kind != ENTITY_COMPOUND_MEMBER)
+                       continue;
+
                print_indent();
-               print_declaration(iter);
+               print_entity(entity);
                fputc('\n', out);
        }
 
        change_indent(-1);
        print_indent();
-       fputs("}", out);
+       fputc('}', out);
+       if (compound->modifiers & DM_TRANSPARENT_UNION) {
+               fputs("__attribute__((__transparent_union__))", out);
+       }
 }
 
+/**
+ * Prints a compound type.
+ *
+ * @param type  The compound type.
+ */
 static void print_compound_type(const compound_type_t *type)
 {
-       print_type_qualifiers(type->type.qualifiers);
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
 
-       if(type->type.kind == TYPE_COMPOUND_STRUCT) {
-               fputs("struct ", out);
+       if (type->base.kind == TYPE_COMPOUND_STRUCT) {
+               fputs(" struct " + empty, out);
        } else {
-               assert(type->type.kind == TYPE_COMPOUND_UNION);
-               fputs("union ", out);
+               assert(type->base.kind == TYPE_COMPOUND_UNION);
+               fputs(" union " + empty, out);
        }
 
-       declaration_t *declaration = type->declaration;
-       symbol_t      *symbol      = declaration->symbol;
-       if(symbol != NULL) {
+       compound_t *compound = type->compound;
+       symbol_t   *symbol   = compound->base.symbol;
+       if (symbol != NULL) {
                fputs(symbol->string, out);
        } else {
-               print_compound_definition(declaration);
+               print_compound_definition(compound);
        }
 }
 
+/**
+ * Prints the prefix part of a typedef type.
+ *
+ * @param type   The typedef type.
+ */
 static void print_typedef_type_pre(const typedef_type_t *const type)
 {
-       print_type_qualifiers(type->type.qualifiers);
-       fputs(type->declaration->symbol->string, out);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
+       fputs(type->typedefe->base.symbol->string, out);
 }
 
+/**
+ * Prints the prefix part of a typeof type.
+ *
+ * @param type   The typeof type.
+ */
 static void print_typeof_type_pre(const typeof_type_t *const type)
 {
        fputs("typeof(", out);
-       if(type->expression != NULL) {
-               assert(type->typeof_type == NULL);
+       if (type->expression != NULL) {
                print_expression(type->expression);
        } else {
                print_type(type->typeof_type);
@@ -259,11 +649,17 @@ static void print_typeof_type_pre(const typeof_type_t *const type)
        fputc(')', out);
 }
 
-static void intern_print_type_pre(const type_t *const type, const bool top)
+/**
+ * Prints the prefix part of a type.
+ *
+ * @param type   The type.
+ */
+static void intern_print_type_pre(const type_t *const type)
 {
        switch(type->kind) {
        case TYPE_ERROR:
                fputs("<error>", out);
+               return;
        case TYPE_INVALID:
                fputs("<invalid>", out);
                return;
@@ -273,6 +669,12 @@ static void intern_print_type_pre(const type_t *const type, const bool top)
        case TYPE_ATOMIC:
                print_atomic_type(&type->atomic);
                return;
+       case TYPE_COMPLEX:
+               print_complex_type(&type->complex);
+               return;
+       case TYPE_IMAGINARY:
+               print_imaginary_type(&type->imaginary);
+               return;
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION:
                print_compound_type(&type->compound);
@@ -281,13 +683,16 @@ static void intern_print_type_pre(const type_t *const type, const bool top)
                fputs(type->builtin.symbol->string, out);
                return;
        case TYPE_FUNCTION:
-               print_function_type_pre(&type->function, top);
+               print_function_type_pre(&type->function);
                return;
        case TYPE_POINTER:
                print_pointer_type_pre(&type->pointer);
                return;
+       case TYPE_REFERENCE:
+               print_reference_type_pre(&type->reference);
+               return;
        case TYPE_BITFIELD:
-               intern_print_type_pre(type->bitfield.base, top);
+               intern_print_type_pre(type->bitfield.base_type);
                return;
        case TYPE_ARRAY:
                print_array_type_pre(&type->array);
@@ -302,15 +707,23 @@ static void intern_print_type_pre(const type_t *const type, const bool top)
        fputs("unknown", out);
 }
 
-static void intern_print_type_post(const type_t *const type, const bool top)
+/**
+ * Prints the postfix part of a type.
+ *
+ * @param type   The type.
+ */
+static void intern_print_type_post(const type_t *const type)
 {
        switch(type->kind) {
        case TYPE_FUNCTION:
-               print_function_type_post(&type->function, NULL, top);
+               print_function_type_post(&type->function, NULL);
                return;
        case TYPE_POINTER:
                print_pointer_type_post(&type->pointer);
                return;
+       case TYPE_REFERENCE:
+               print_reference_type_post(&type->reference);
+               return;
        case TYPE_ARRAY:
                print_array_type_post(&type->array);
                return;
@@ -320,6 +733,8 @@ static void intern_print_type_post(const type_t *const type, const bool top)
        case TYPE_ERROR:
        case TYPE_INVALID:
        case TYPE_ATOMIC:
+       case TYPE_COMPLEX:
+       case TYPE_IMAGINARY:
        case TYPE_ENUM:
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION:
@@ -330,40 +745,53 @@ static void intern_print_type_post(const type_t *const type, const bool top)
        }
 }
 
+/**
+ * Prints a type.
+ *
+ * @param type   The type.
+ */
 void print_type(const type_t *const type)
 {
        print_type_ext(type, NULL, NULL);
 }
 
 void print_type_ext(const type_t *const type, const symbol_t *symbol,
-                    const context_t *context)
+                    const scope_t *parameters)
 {
-       if(type == NULL) {
+       if (type == NULL) {
                fputs("nil type", out);
                return;
        }
 
-       intern_print_type_pre(type, true);
-       if(symbol != NULL) {
+       intern_print_type_pre(type);
+       if (symbol != NULL) {
                fputc(' ', out);
                fputs(symbol->string, out);
        }
-       if(type->kind == TYPE_FUNCTION) {
-               print_function_type_post(&type->function, context, true);
+       if (type->kind == TYPE_FUNCTION) {
+               print_function_type_post(&type->function, parameters);
        } else {
-               intern_print_type_post(type, true);
+               intern_print_type_post(type);
        }
 }
 
-static size_t get_type_size(type_t *type)
+/**
+ * Return the size of a type AST node.
+ *
+ * @param type  The type.
+ */
+static size_t get_type_struct_size(const type_t *type)
 {
        switch(type->kind) {
        case TYPE_ATOMIC:          return sizeof(atomic_type_t);
+       case TYPE_COMPLEX:         return sizeof(complex_type_t);
+       case TYPE_IMAGINARY:       return sizeof(imaginary_type_t);
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION:  return sizeof(compound_type_t);
        case TYPE_ENUM:            return sizeof(enum_type_t);
        case TYPE_FUNCTION:        return sizeof(function_type_t);
        case TYPE_POINTER:         return sizeof(pointer_type_t);
+       case TYPE_REFERENCE:       return sizeof(reference_type_t);
        case TYPE_ARRAY:           return sizeof(array_type_t);
        case TYPE_BUILTIN:         return sizeof(builtin_type_t);
        case TYPE_TYPEDEF:         return sizeof(typedef_type_t);
@@ -376,156 +804,219 @@ static size_t get_type_size(type_t *type)
 }
 
 /**
- * duplicates a type
- * note that this does not produce a deep copy!
+ * Duplicates a type.
+ *
+ * @param type  The type to copy.
+ * @return A copy of the type.
+ *
+ * @note This does not produce a deep copy!
  */
-type_t *duplicate_type(type_t *type)
+type_t *duplicate_type(const type_t *type)
 {
-       size_t size = get_type_size(type);
+       size_t size = get_type_struct_size(type);
 
        type_t *copy = obstack_alloc(type_obst, size);
        memcpy(copy, type, size);
+       copy->base.firm_type = NULL;
 
        return copy;
 }
 
+/**
+ * Returns the unqualified type of a given type.
+ *
+ * @param type  The type.
+ * @returns The unqualified type.
+ */
 type_t *get_unqualified_type(type_t *type)
 {
-       if(type->base.qualifiers == TYPE_QUALIFIER_NONE)
+       assert(!is_typeref(type));
+
+       if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
                return type;
 
        type_t *unqualified_type          = duplicate_type(type);
        unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
 
-       type_t *result = typehash_insert(unqualified_type);
-       if(result != unqualified_type) {
-               obstack_free(type_obst, unqualified_type);
+       return identify_new_type(unqualified_type);
+}
+
+type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual)
+{
+       type_t *type = skip_typeref(orig_type);
+
+       type_t *copy;
+       if (is_type_array(type)) {
+               /* For array types the element type has to be adjusted */
+               type_t *element_type      = type->array.element_type;
+               type_t *qual_element_type = get_qualified_type(element_type, qual);
+
+               if (qual_element_type == element_type)
+                       return orig_type;
+
+               copy                     = duplicate_type(type);
+               copy->array.element_type = qual_element_type;
+       } else if (is_type_valid(type)) {
+               if ((type->base.qualifiers & qual) == qual)
+                       return orig_type;
+
+               copy                   = duplicate_type(type);
+               copy->base.qualifiers |= qual;
+       } else {
+               return type;
        }
 
-       return result;
+       return identify_new_type(copy);
 }
 
+/**
+ * Check if a type is valid.
+ *
+ * @param type  The type to check.
+ * @return true if type represents a valid type.
+ */
 bool type_valid(const type_t *type)
 {
        return type->kind != TYPE_INVALID;
 }
 
+static bool test_atomic_type_flag(atomic_type_kind_t kind,
+                                  atomic_type_flag_t flag)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return (atomic_type_properties[kind].flags & flag) != 0;
+}
+
+/**
+ * Returns true if the given type is an integer type.
+ *
+ * @param type  The type to check.
+ * @return True if type is an integer type.
+ */
 bool is_type_integer(const type_t *type)
 {
        assert(!is_typeref(type));
 
-       if(type->kind == TYPE_ENUM)
+       if (type->kind == TYPE_ENUM)
+               return true;
+       if (type->kind == TYPE_BITFIELD)
                return true;
 
-       if(type->kind != TYPE_ATOMIC)
+       if (type->kind != TYPE_ATOMIC)
                return false;
 
-       switch(type->atomic.akind) {
-       case ATOMIC_TYPE_BOOL:
-       case ATOMIC_TYPE_CHAR:
-       case ATOMIC_TYPE_SCHAR:
-       case ATOMIC_TYPE_UCHAR:
-       case ATOMIC_TYPE_SHORT:
-       case ATOMIC_TYPE_USHORT:
-       case ATOMIC_TYPE_INT:
-       case ATOMIC_TYPE_UINT:
-       case ATOMIC_TYPE_LONG:
-       case ATOMIC_TYPE_ULONG:
-       case ATOMIC_TYPE_LONGLONG:
-       case ATOMIC_TYPE_ULONGLONG:
-               return true;
-       default:
-               return false;
-       }
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
+}
+
+/**
+ * Returns true if the given type is an enum type.
+ *
+ * @param type  The type to check.
+ * @return True if type is an enum type.
+ */
+bool is_type_enum(const type_t *type)
+{
+       assert(!is_typeref(type));
+       return type->kind == TYPE_ENUM;
 }
 
-bool is_type_floating(const type_t *type)
+/**
+ * Returns true if the given type is an floating point type.
+ *
+ * @param type  The type to check.
+ * @return True if type is a floating point type.
+ */
+bool is_type_float(const type_t *type)
 {
        assert(!is_typeref(type));
 
-       if(type->kind != TYPE_ATOMIC)
+       if (type->kind != TYPE_ATOMIC)
                return false;
 
-       switch(type->atomic.akind) {
-       case ATOMIC_TYPE_FLOAT:
-       case ATOMIC_TYPE_DOUBLE:
-       case ATOMIC_TYPE_LONG_DOUBLE:
-#ifdef PROVIDE_COMPLEX
-       case ATOMIC_TYPE_FLOAT_COMPLEX:
-       case ATOMIC_TYPE_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_FLOAT_IMAGINARY:
-       case ATOMIC_TYPE_DOUBLE_IMAGINARY:
-       case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY:
-#endif
-               return true;
-       default:
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
+}
+
+/**
+ * Returns true if the given type is an complex type.
+ *
+ * @param type  The type to check.
+ * @return True if type is a complex type.
+ */
+bool is_type_complex(const type_t *type)
+{
+       assert(!is_typeref(type));
+
+       if (type->kind != TYPE_ATOMIC)
                return false;
-       }
+
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
 }
 
+/**
+ * Returns true if the given type is a signed type.
+ *
+ * @param type  The type to check.
+ * @return True if type is a signed type.
+ */
 bool is_type_signed(const type_t *type)
 {
        assert(!is_typeref(type));
 
        /* enum types are int for now */
-       if(type->kind == TYPE_ENUM)
-               return true;
-
-       if(type->kind != TYPE_ATOMIC)
-               return false;
-
-       switch(type->atomic.akind) {
-       case ATOMIC_TYPE_CHAR:
-       case ATOMIC_TYPE_SCHAR:
-       case ATOMIC_TYPE_SHORT:
-       case ATOMIC_TYPE_INT:
-       case ATOMIC_TYPE_LONG:
-       case ATOMIC_TYPE_LONGLONG:
-       case ATOMIC_TYPE_FLOAT:
-       case ATOMIC_TYPE_DOUBLE:
-       case ATOMIC_TYPE_LONG_DOUBLE:
-#ifdef PROVIDE_COMPLEX
-       case ATOMIC_TYPE_FLOAT_COMPLEX:
-       case ATOMIC_TYPE_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_FLOAT_IMAGINARY:
-       case ATOMIC_TYPE_DOUBLE_IMAGINARY:
-       case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY:
-#endif
+       if (type->kind == TYPE_ENUM)
                return true;
+       if (type->kind == TYPE_BITFIELD)
+               return is_type_signed(type->bitfield.base_type);
 
-       case ATOMIC_TYPE_BOOL:
-       case ATOMIC_TYPE_UCHAR:
-       case ATOMIC_TYPE_USHORT:
-       case ATOMIC_TYPE_UINT:
-       case ATOMIC_TYPE_ULONG:
-       case ATOMIC_TYPE_ULONGLONG:
+       if (type->kind != TYPE_ATOMIC)
                return false;
 
-       case ATOMIC_TYPE_VOID:
-       case ATOMIC_TYPE_INVALID:
-       case ATOMIC_TYPE_LAST:
-               return false;
-       }
-
-       panic("invalid atomic type found");
-       return false;
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
 }
 
+/**
+ * Returns true if the given type represents an arithmetic type.
+ *
+ * @param type  The type to check.
+ * @return True if type represents an arithmetic type.
+ */
 bool is_type_arithmetic(const type_t *type)
 {
        assert(!is_typeref(type));
 
-       if(type->kind == TYPE_BITFIELD)
-               return true;
-
-       if(is_type_integer(type) || is_type_floating(type))
+       switch(type->kind) {
+       case TYPE_BITFIELD:
+       case TYPE_ENUM:
                return true;
+       case TYPE_ATOMIC:
+               return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
+       case TYPE_COMPLEX:
+               return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
+       case TYPE_IMAGINARY:
+               return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
+       default:
+               return false;
+       }
+}
 
-       return false;
+/**
+ * Returns true if the given type is an integer or float type.
+ *
+ * @param type  The type to check.
+ * @return True if type is an integer or float type.
+ */
+bool is_type_real(const type_t *type)
+{
+       /* 6.2.5 (17) */
+       return is_type_integer(type) || is_type_float(type);
 }
 
+/**
+ * Returns true if the given type represents a scalar type.
+ *
+ * @param type  The type to check.
+ * @return True if type represents a scalar type.
+ */
 bool is_type_scalar(const type_t *type)
 {
        assert(!is_typeref(type));
@@ -533,12 +1024,18 @@ bool is_type_scalar(const type_t *type)
        switch (type->kind) {
                case TYPE_POINTER: return true;
                case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type);
-               default:            break;
+               default:           break;
        }
 
        return is_type_arithmetic(type);
 }
 
+/**
+ * Check if a given type is incomplete.
+ *
+ * @param type  The type to check.
+ * @return True if the given type is incomplete (ie. just forward).
+ */
 bool is_type_incomplete(const type_t *type)
 {
        assert(!is_typeref(type));
@@ -547,29 +1044,35 @@ bool is_type_incomplete(const type_t *type)
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION: {
                const compound_type_t *compound_type = &type->compound;
-               declaration_t         *declaration   = compound_type->declaration;
-               return !declaration->init.is_defined;
+               return !compound_type->compound->complete;
        }
-       case TYPE_BITFIELD:
-       case TYPE_FUNCTION:
-               return true;
+       case TYPE_ENUM:
+               return false;
 
        case TYPE_ARRAY:
-               return type->array.size == NULL;
+               return type->array.size_expression == NULL
+                       && !type->array.size_constant;
 
        case TYPE_ATOMIC:
                return type->atomic.akind == ATOMIC_TYPE_VOID;
 
+       case TYPE_COMPLEX:
+               return type->complex.akind == ATOMIC_TYPE_VOID;
+
+       case TYPE_IMAGINARY:
+               return type->imaginary.akind == ATOMIC_TYPE_VOID;
+
+       case TYPE_BITFIELD:
+       case TYPE_FUNCTION:
        case TYPE_POINTER:
-       case TYPE_ENUM:
+       case TYPE_REFERENCE:
        case TYPE_BUILTIN:
+       case TYPE_ERROR:
                return false;
 
        case TYPE_TYPEDEF:
        case TYPE_TYPEOF:
                panic("is_type_incomplete called without typerefs skipped");
-       case TYPE_ERROR:
-               panic("error type found");
        case TYPE_INVALID:
                break;
        }
@@ -577,6 +1080,22 @@ bool is_type_incomplete(const type_t *type)
        panic("invalid type found");
 }
 
+bool is_type_object(const type_t *type)
+{
+       return !is_type_function(type) && !is_type_incomplete(type);
+}
+
+bool is_builtin_va_list(type_t *type)
+{
+       type_t *tp = skip_typeref(type);
+
+       return tp->kind == type_valist->kind &&
+              tp->builtin.symbol == type_valist->builtin.symbol;
+}
+
+/**
+ * Check if two function types are compatible.
+ */
 static bool function_types_compatible(const function_type_t *func1,
                                       const function_type_t *func2)
 {
@@ -585,11 +1104,24 @@ static bool function_types_compatible(const function_type_t *func1,
        if (!types_compatible(ret1, ret2))
                return false;
 
+       if (func1->linkage != func2->linkage)
+               return false;
+
+       cc_kind_t cc1 = func1->calling_convention;
+       if (cc1 == CC_DEFAULT)
+               cc1 = default_calling_convention;
+       cc_kind_t cc2 = func2->calling_convention;
+       if (cc2 == CC_DEFAULT)
+               cc2 = default_calling_convention;
+
+       if (cc1 != cc2)
+               return false;
+
        /* can parameters be compared? */
-       if(func1->unspecified_parameters || func2->unspecified_parameters)
+       if (func1->unspecified_parameters || func2->unspecified_parameters)
                return true;
 
-       if(func1->variadic != func2->variadic)
+       if (func1->variadic != func2->variadic)
                return false;
 
        /* TODO: handling of unspecified parameters not correct yet */
@@ -597,7 +1129,7 @@ static bool function_types_compatible(const function_type_t *func1,
        /* all argument types must be compatible */
        function_parameter_t *parameter1 = func1->parameters;
        function_parameter_t *parameter2 = func2->parameters;
-       for( ; parameter1 != NULL && parameter2 != NULL;
+       for ( ; parameter1 != NULL && parameter2 != NULL;
                        parameter1 = parameter1->next, parameter2 = parameter2->next) {
                type_t *parameter1_type = skip_typeref(parameter1->type);
                type_t *parameter2_type = skip_typeref(parameter2->type);
@@ -605,51 +1137,62 @@ static bool function_types_compatible(const function_type_t *func1,
                parameter1_type = get_unqualified_type(parameter1_type);
                parameter2_type = get_unqualified_type(parameter2_type);
 
-               if(!types_compatible(parameter1_type, parameter2_type))
+               if (!types_compatible(parameter1_type, parameter2_type))
                        return false;
        }
        /* same number of arguments? */
-       if(parameter1 != NULL || parameter2 != NULL)
+       if (parameter1 != NULL || parameter2 != NULL)
                return false;
 
        return true;
 }
 
+/**
+ * Check if two array types are compatible.
+ */
 static bool array_types_compatible(const array_type_t *array1,
                                    const array_type_t *array2)
 {
        type_t *element_type1 = skip_typeref(array1->element_type);
        type_t *element_type2 = skip_typeref(array2->element_type);
-       if(!types_compatible(element_type1, element_type2))
+       if (!types_compatible(element_type1, element_type2))
                return false;
 
-       if(array1->size != NULL && array2->size != NULL) {
-               /* TODO: check if size expression evaluate to the same value
-                * if they are constant */
-       }
+       if (!array1->size_constant || !array2->size_constant)
+               return true;
 
-       return true;
+       return array1->size == array2->size;
 }
 
+/**
+ * Check if two types are compatible.
+ */
 bool types_compatible(const type_t *type1, const type_t *type2)
 {
        assert(!is_typeref(type1));
        assert(!is_typeref(type2));
 
        /* shortcut: the same type is always compatible */
-       if(type1 == type2)
+       if (type1 == type2)
+               return true;
+
+       if (!is_type_valid(type1) || !is_type_valid(type2))
                return true;
 
-       if(type1->base.qualifiers != type2->base.qualifiers)
+       if (type1->base.qualifiers != type2->base.qualifiers)
                return false;
-       if(type1->kind != type2->kind)
+       if (type1->kind != type2->kind)
                return false;
 
-       switch(type1->kind) {
+       switch (type1->kind) {
        case TYPE_FUNCTION:
                return function_types_compatible(&type1->function, &type2->function);
        case TYPE_ATOMIC:
                return type1->atomic.akind == type2->atomic.akind;
+       case TYPE_COMPLEX:
+               return type1->complex.akind == type2->complex.akind;
+       case TYPE_IMAGINARY:
+               return type1->imaginary.akind == type2->imaginary.akind;
        case TYPE_ARRAY:
                return array_types_compatible(&type1->array, &type2->array);
 
@@ -659,8 +1202,18 @@ bool types_compatible(const type_t *type1, const type_t *type2)
                return types_compatible(to1, to2);
        }
 
+       case TYPE_REFERENCE: {
+               const type_t *const to1 = skip_typeref(type1->reference.refers_to);
+               const type_t *const to2 = skip_typeref(type2->reference.refers_to);
+               return types_compatible(to1, to2);
+       }
+
        case TYPE_COMPOUND_STRUCT:
-       case TYPE_COMPOUND_UNION:
+       case TYPE_COMPOUND_UNION: {
+
+
+               break;
+       }
        case TYPE_ENUM:
        case TYPE_BUILTIN:
                /* TODO: not implemented */
@@ -685,47 +1238,32 @@ bool types_compatible(const type_t *type1, const type_t *type2)
        return false;
 }
 
-bool pointers_compatible(const type_t *type1, const type_t *type2)
-{
-       assert(!is_typeref(type1));
-       assert(!is_typeref(type2));
-
-       assert(type1->kind == TYPE_POINTER);
-       assert(type2->kind == TYPE_POINTER);
-       /* TODO */
-       return true;
-}
-
 /**
  * Skip all typerefs and return the underlying type.
  */
 type_t *skip_typeref(type_t *type)
 {
-       unsigned qualifiers = TYPE_QUALIFIER_NONE;
+       type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
 
-       while(true) {
-               switch(type->kind) {
+       while (true) {
+               switch (type->kind) {
                case TYPE_ERROR:
                        return type;
                case TYPE_TYPEDEF: {
                        qualifiers |= type->base.qualifiers;
+
                        const typedef_type_t *typedef_type = &type->typedeft;
-                       if(typedef_type->resolved_type != NULL) {
+                       if (typedef_type->resolved_type != NULL) {
                                type = typedef_type->resolved_type;
                                break;
                        }
-                       type = typedef_type->declaration->type;
+                       type = typedef_type->typedefe->type;
                        continue;
                }
-               case TYPE_TYPEOF: {
-                       const typeof_type_t *typeof_type = &type->typeoft;
-                       if(typeof_type->typeof_type != NULL) {
-                               type = typeof_type->typeof_type;
-                       } else {
-                               type = typeof_type->expression->base.datatype;
-                       }
+               case TYPE_TYPEOF:
+                       qualifiers |= type->base.qualifiers;
+                       type        = type->typeoft.typeof_type;
                        continue;
-               }
                default:
                        break;
                }
@@ -733,55 +1271,605 @@ type_t *skip_typeref(type_t *type)
        }
 
        if (qualifiers != TYPE_QUALIFIER_NONE) {
-               type_t *const copy     = duplicate_type(type);
-               copy->base.qualifiers |= qualifiers;
-
-               type = typehash_insert(copy);
-               if (type != copy) {
-                       obstack_free(type_obst, copy);
+               type_t *const copy = duplicate_type(type);
+
+               /* for const with typedefed array type the element type has to be
+                * adjusted */
+               if (is_type_array(copy)) {
+                       type_t *element_type           = copy->array.element_type;
+                       element_type                   = duplicate_type(element_type);
+                       element_type->base.qualifiers |= qualifiers;
+                       copy->array.element_type       = element_type;
+               } else {
+                       copy->base.qualifiers |= qualifiers;
                }
+
+               type = identify_new_type(copy);
        }
 
        return type;
 }
 
+unsigned get_type_size(type_t *type)
+{
+       switch (type->kind) {
+       case TYPE_INVALID:
+               break;
+       case TYPE_ERROR:
+               return 0;
+       case TYPE_ATOMIC:
+               return get_atomic_type_size(type->atomic.akind);
+       case TYPE_COMPLEX:
+               return get_atomic_type_size(type->complex.akind) * 2;
+       case TYPE_IMAGINARY:
+               return get_atomic_type_size(type->imaginary.akind);
+       case TYPE_COMPOUND_UNION:
+               layout_union_type(&type->compound);
+               return type->compound.compound->size;
+       case TYPE_COMPOUND_STRUCT:
+               layout_struct_type(&type->compound);
+               return type->compound.compound->size;
+       case TYPE_ENUM:
+               return get_atomic_type_size(type->enumt.akind);
+       case TYPE_FUNCTION:
+               return 0; /* non-const (but "address-const") */
+       case TYPE_REFERENCE:
+       case TYPE_POINTER:
+               /* TODO: make configurable by backend */
+               return 4;
+       case TYPE_ARRAY: {
+               /* TODO: correct if element_type is aligned? */
+               il_size_t element_size = get_type_size(type->array.element_type);
+               return type->array.size * element_size;
+       }
+       case TYPE_BITFIELD:
+               return 0;
+       case TYPE_BUILTIN:
+               return get_type_size(type->builtin.real_type);
+       case TYPE_TYPEDEF:
+               return get_type_size(type->typedeft.typedefe->type);
+       case TYPE_TYPEOF:
+               if (type->typeoft.typeof_type) {
+                       return get_type_size(type->typeoft.typeof_type);
+               } else {
+                       return get_type_size(type->typeoft.expression->base.type);
+               }
+       }
+       panic("invalid type in get_type_size");
+}
+
+unsigned get_type_alignment(type_t *type)
+{
+       switch (type->kind) {
+       case TYPE_INVALID:
+               break;
+       case TYPE_ERROR:
+               return 0;
+       case TYPE_ATOMIC:
+               return get_atomic_type_alignment(type->atomic.akind);
+       case TYPE_COMPLEX:
+               return get_atomic_type_alignment(type->complex.akind);
+       case TYPE_IMAGINARY:
+               return get_atomic_type_alignment(type->imaginary.akind);
+       case TYPE_COMPOUND_UNION:
+               layout_union_type(&type->compound);
+               return type->compound.compound->alignment;
+       case TYPE_COMPOUND_STRUCT:
+               layout_struct_type(&type->compound);
+               return type->compound.compound->alignment;
+       case TYPE_ENUM:
+               return get_atomic_type_alignment(type->enumt.akind);
+       case TYPE_FUNCTION:
+               /* what is correct here? */
+               return 4;
+       case TYPE_REFERENCE:
+       case TYPE_POINTER:
+               /* TODO: make configurable by backend */
+               return 4;
+       case TYPE_ARRAY:
+               return get_type_alignment(type->array.element_type);
+       case TYPE_BITFIELD:
+               return 0;
+       case TYPE_BUILTIN:
+               return get_type_alignment(type->builtin.real_type);
+       case TYPE_TYPEDEF: {
+               il_alignment_t alignment
+                       = get_type_alignment(type->typedeft.typedefe->type);
+               if (type->typedeft.typedefe->alignment > alignment)
+                       alignment = type->typedeft.typedefe->alignment;
+
+               return alignment;
+       }
+       case TYPE_TYPEOF:
+               if (type->typeoft.typeof_type) {
+                       return get_type_alignment(type->typeoft.typeof_type);
+               } else {
+                       return get_type_alignment(type->typeoft.expression->base.type);
+               }
+       }
+       panic("invalid type in get_type_alignment");
+}
+
+decl_modifiers_t get_type_modifiers(const type_t *type)
+{
+       switch(type->kind) {
+       case TYPE_INVALID:
+       case TYPE_ERROR:
+               break;
+       case TYPE_COMPOUND_STRUCT:
+       case TYPE_COMPOUND_UNION:
+               return type->compound.compound->modifiers;
+       case TYPE_FUNCTION:
+               return type->function.modifiers;
+       case TYPE_ENUM:
+       case TYPE_ATOMIC:
+       case TYPE_COMPLEX:
+       case TYPE_IMAGINARY:
+       case TYPE_REFERENCE:
+       case TYPE_POINTER:
+       case TYPE_BITFIELD:
+       case TYPE_ARRAY:
+               return 0;
+       case TYPE_BUILTIN:
+               return get_type_modifiers(type->builtin.real_type);
+       case TYPE_TYPEDEF: {
+               decl_modifiers_t modifiers = type->typedeft.typedefe->modifiers;
+               modifiers |= get_type_modifiers(type->typedeft.typedefe->type);
+               return modifiers;
+       }
+       case TYPE_TYPEOF:
+               if (type->typeoft.typeof_type) {
+                       return get_type_modifiers(type->typeoft.typeof_type);
+               } else {
+                       return get_type_modifiers(type->typeoft.expression->base.type);
+               }
+       }
+       panic("invalid type found in get_type_modifiers");
+}
+
+type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type)
+{
+       type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
+
+       while (true) {
+               switch (type->base.kind) {
+               case TYPE_ERROR:
+                       return TYPE_QUALIFIER_NONE;
+               case TYPE_TYPEDEF:
+                       qualifiers |= type->base.qualifiers;
+                       const typedef_type_t *typedef_type = &type->typedeft;
+                       if (typedef_type->resolved_type != NULL)
+                               type = typedef_type->resolved_type;
+                       else
+                               type = typedef_type->typedefe->type;
+                       continue;
+               case TYPE_TYPEOF:
+                       type = type->typeoft.typeof_type;
+                       continue;
+               case TYPE_ARRAY:
+                       if (skip_array_type) {
+                               type = type->array.element_type;
+                               continue;
+                       }
+                       break;
+               default:
+                       break;
+               }
+               break;
+       }
+       return type->base.qualifiers | qualifiers;
+}
+
+unsigned get_atomic_type_size(atomic_type_kind_t kind)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return atomic_type_properties[kind].size;
+}
+
+unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return atomic_type_properties[kind].alignment;
+}
+
+unsigned get_atomic_type_flags(atomic_type_kind_t kind)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return atomic_type_properties[kind].flags;
+}
+
+atomic_type_kind_t get_intptr_kind(void)
+{
+       if (machine_size <= 32)
+               return ATOMIC_TYPE_INT;
+       else if (machine_size <= 64)
+               return ATOMIC_TYPE_LONG;
+       else
+               return ATOMIC_TYPE_LONGLONG;
+}
+
+atomic_type_kind_t get_uintptr_kind(void)
+{
+       if (machine_size <= 32)
+               return ATOMIC_TYPE_UINT;
+       else if (machine_size <= 64)
+               return ATOMIC_TYPE_ULONG;
+       else
+               return ATOMIC_TYPE_ULONGLONG;
+}
 
+/**
+ * Find the atomic type kind representing a given size (signed).
+ */
+atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size)
+{
+       static atomic_type_kind_t kinds[32];
+
+       assert(size < 32);
+       atomic_type_kind_t kind = kinds[size];
+       if (kind == ATOMIC_TYPE_INVALID) {
+               static const atomic_type_kind_t possible_kinds[] = {
+                       ATOMIC_TYPE_SCHAR,
+                       ATOMIC_TYPE_SHORT,
+                       ATOMIC_TYPE_INT,
+                       ATOMIC_TYPE_LONG,
+                       ATOMIC_TYPE_LONGLONG
+               };
+               for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
+                       if (get_atomic_type_size(possible_kinds[i]) == size) {
+                               kind = possible_kinds[i];
+                               break;
+                       }
+               }
+               kinds[size] = kind;
+       }
+       return kind;
+}
+
+/**
+ * Find the atomic type kind representing a given size (signed).
+ */
+atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size)
+{
+       static atomic_type_kind_t kinds[32];
+
+       assert(size < 32);
+       atomic_type_kind_t kind = kinds[size];
+       if (kind == ATOMIC_TYPE_INVALID) {
+               static const atomic_type_kind_t possible_kinds[] = {
+                       ATOMIC_TYPE_UCHAR,
+                       ATOMIC_TYPE_USHORT,
+                       ATOMIC_TYPE_UINT,
+                       ATOMIC_TYPE_ULONG,
+                       ATOMIC_TYPE_ULONGLONG
+               };
+               for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
+                       if (get_atomic_type_size(possible_kinds[i]) == size) {
+                               kind = possible_kinds[i];
+                               break;
+                       }
+               }
+               kinds[size] = kind;
+       }
+       return kind;
+}
 
-static type_t *identify_new_type(type_t *type)
+/**
+ * Hash the given type and return the "singleton" version
+ * of it.
+ */
+type_t *identify_new_type(type_t *type)
 {
        type_t *result = typehash_insert(type);
-       if(result != type) {
+       if (result != type) {
                obstack_free(type_obst, type);
        }
        return result;
 }
 
-type_t *make_atomic_type(atomic_type_kind_t atype, type_qualifiers_t qualifiers)
+/**
+ * Creates a new atomic type.
+ *
+ * @param akind       The kind of the atomic type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
+type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
 {
        type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t));
        memset(type, 0, sizeof(atomic_type_t));
 
        type->kind            = TYPE_ATOMIC;
        type->base.qualifiers = qualifiers;
-       type->atomic.akind    = atype;
+       type->atomic.akind    = akind;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Creates a new complex type.
+ *
+ * @param akind       The kind of the atomic type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
+type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t));
+       memset(type, 0, sizeof(complex_type_t));
+
+       type->kind            = TYPE_COMPLEX;
+       type->base.qualifiers = qualifiers;
+       type->complex.akind   = akind;
 
        return identify_new_type(type);
 }
 
+/**
+ * Creates a new imaginary type.
+ *
+ * @param akind       The kind of the atomic type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
+type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t));
+       memset(type, 0, sizeof(imaginary_type_t));
+
+       type->kind            = TYPE_IMAGINARY;
+       type->base.qualifiers = qualifiers;
+       type->imaginary.akind = akind;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Creates a new pointer type.
+ *
+ * @param points_to   The points-to type for the new type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
 {
        type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
        memset(type, 0, sizeof(pointer_type_t));
 
-       type->kind              = TYPE_POINTER;
-       type->base.qualifiers   = qualifiers;
-       type->pointer.points_to = points_to;
+       type->kind                  = TYPE_POINTER;
+       type->base.qualifiers       = qualifiers;
+       type->pointer.points_to     = points_to;
+       type->pointer.base_variable = NULL;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Creates a new reference type.
+ *
+ * @param refers_to   The referred-to type for the new type.
+ */
+type_t *make_reference_type(type_t *refers_to)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(reference_type_t));
+       memset(type, 0, sizeof(reference_type_t));
+
+       type->kind                = TYPE_REFERENCE;
+       type->base.qualifiers     = 0;
+       type->reference.refers_to = refers_to;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Creates a new based pointer type.
+ *
+ * @param points_to   The points-to type for the new type.
+ * @param qualifiers  Type qualifiers for the new type.
+ * @param variable    The based variable
+ */
+type_t *make_based_pointer_type(type_t *points_to,
+                                                               type_qualifiers_t qualifiers, variable_t *variable)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
+       memset(type, 0, sizeof(pointer_type_t));
+
+       type->kind                  = TYPE_POINTER;
+       type->base.qualifiers       = qualifiers;
+       type->pointer.points_to     = points_to;
+       type->pointer.base_variable = variable;
 
        return identify_new_type(type);
 }
 
+
+type_t *make_array_type(type_t *element_type, size_t size,
+                        type_qualifiers_t qualifiers)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(array_type_t));
+       memset(type, 0, sizeof(array_type_t));
+
+       type->kind                = TYPE_ARRAY;
+       type->base.qualifiers     = qualifiers;
+       type->array.element_type  = element_type;
+       type->array.size          = size;
+       type->array.size_constant = true;
+
+       return identify_new_type(type);
+}
+
+static entity_t *pack_bitfield_members(il_size_t *struct_offset,
+                                       il_alignment_t *struct_alignment,
+                                                                          bool packed, entity_t *first)
+{
+       il_size_t      offset     = *struct_offset;
+       il_alignment_t alignment  = *struct_alignment;
+       size_t         bit_offset = 0;
+
+       entity_t *member;
+       for (member = first; member != NULL; member = member->base.next) {
+               if (member->kind != ENTITY_COMPOUND_MEMBER)
+                       break;
+
+               type_t *type = member->declaration.type;
+               if (type->kind != TYPE_BITFIELD)
+                       break;
+
+               type_t *base_type = skip_typeref(type->bitfield.base_type);
+               il_alignment_t base_alignment = get_type_alignment(base_type);
+               il_alignment_t alignment_mask = base_alignment-1;
+               if (base_alignment > alignment)
+                       alignment = base_alignment;
+
+               size_t bit_size = type->bitfield.bit_size;
+               if (!packed) {
+                       bit_offset += (offset & alignment_mask) * BITS_PER_BYTE;
+                       offset     &= ~alignment_mask;
+                       size_t base_size = get_type_size(base_type) * BITS_PER_BYTE;
+
+                       if (bit_offset + bit_size > base_size || bit_size == 0) {
+                               offset    += (bit_offset+BITS_PER_BYTE-1) / BITS_PER_BYTE;
+                               offset     = (offset + base_alignment-1) & ~alignment_mask;
+                               bit_offset = 0;
+                       }
+               }
+
+               member->compound_member.offset     = offset;
+               member->compound_member.bit_offset = bit_offset;
+
+               bit_offset += bit_size;
+               offset     += bit_offset / BITS_PER_BYTE;
+               bit_offset %= BITS_PER_BYTE;
+       }
+
+       if (bit_offset > 0)
+               offset += 1;
+
+       *struct_offset    = offset;
+       *struct_alignment = alignment;
+
+       return member;
+}
+
+/**
+ * Finish the construction of a struct type by calculating its size, offsets,
+ * alignment.
+ */
+void layout_struct_type(compound_type_t *type)
+{
+       assert(type->compound != NULL);
+
+       compound_t *compound = type->compound;
+       if (!compound->complete)
+               return;
+       if (type->compound->layouted)
+               return;
+
+       il_size_t      offset    = 0;
+       il_alignment_t alignment = compound->alignment;
+       bool           need_pad  = false;
+
+       entity_t *entry = compound->members.entities;
+       while (entry != NULL) {
+               if (entry->kind != ENTITY_COMPOUND_MEMBER) {
+                       entry = entry->base.next;
+                       continue;
+               }
+
+               type_t *m_type  = entry->declaration.type;
+               type_t *skipped = skip_typeref(m_type);
+               if (! is_type_valid(skipped)) {
+                       entry = entry->base.next;
+                       continue;
+               }
+
+               if (skipped->kind == TYPE_BITFIELD) {
+                       entry = pack_bitfield_members(&offset, &alignment,
+                                                     compound->packed, entry);
+                       continue;
+               }
+
+               il_alignment_t m_alignment = get_type_alignment(m_type);
+               if (m_alignment > alignment)
+                       alignment = m_alignment;
+
+               if (!compound->packed) {
+                       il_size_t new_offset = (offset + m_alignment-1) & -m_alignment;
+
+                       if (new_offset > offset) {
+                               need_pad = true;
+                               offset   = new_offset;
+                       }
+               }
+
+               entry->compound_member.offset = offset;
+               offset += get_type_size(m_type);
+
+               entry = entry->base.next;
+       }
+
+       if (!compound->packed) {
+               il_size_t new_offset = (offset + alignment-1) & -alignment;
+               if (new_offset > offset) {
+                       need_pad = true;
+                       offset   = new_offset;
+               }
+       }
+
+       if (need_pad) {
+               if (warning.padded) {
+                       warningf(&compound->base.source_position, "'%T' needs padding",
+                                type);
+               }
+       } else if (compound->packed && warning.packed) {
+               warningf(&compound->base.source_position,
+                        "superfluous packed attribute on '%T'", type);
+       }
+
+       compound->size      = offset;
+       compound->alignment = alignment;
+       compound->layouted  = true;
+}
+
+/**
+ * Finish the construction of an union type by calculating
+ * its size and alignment.
+ */
+void layout_union_type(compound_type_t *type)
+{
+       assert(type->compound != NULL);
+
+       compound_t *compound = type->compound;
+       if (! compound->complete)
+               return;
+
+       il_size_t      size      = 0;
+       il_alignment_t alignment = compound->alignment;
+
+       entity_t *entry = compound->members.entities;
+       for (; entry != NULL; entry = entry->base.next) {
+               if (entry->kind != ENTITY_COMPOUND_MEMBER)
+                       continue;
+
+               type_t *m_type = entry->declaration.type;
+               if (! is_type_valid(skip_typeref(m_type)))
+                       continue;
+
+               entry->compound_member.offset = 0;
+               il_size_t m_size = get_type_size(m_type);
+               if (m_size > size)
+                       size = m_size;
+               il_alignment_t m_alignment = get_type_alignment(m_type);
+               if (m_alignment > alignment)
+                       alignment = m_alignment;
+       }
+       size = (size + alignment - 1) & -alignment;
+
+       compound->size      = size;
+       compound->alignment = alignment;
+}
+
+/**
+ * Debug helper. Prints the given type to stdout.
+ */
 static __attribute__((unused))
-void dbg_type(type_t *type)
+void dbg_type(const type_t *type)
 {
        FILE *old_out = out;
        out = stderr;