More work for C++ mode:
[cparser] / type.c
diff --git a/type.c b/type.c
index c6c0801..204d6f0 100644 (file)
--- a/type.c
+++ b/type.c
+/*
+ * This file is part of cparser.
+ * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+ * 02111-1307, USA.
+ */
 #include <config.h>
 
 #include <stdio.h>
 #include <assert.h>
+
 #include "type_t.h"
+#include "entity_t.h"
+#include "symbol_t.h"
 #include "type_hash.h"
 #include "adt/error.h"
+#include "lang_features.h"
 
 static struct obstack   _type_obst;
-struct obstack         *type_obst = &_type_obst;
 static FILE            *out;
-static int              type_visited = 0;
-static bool             print_compound_entries;
-
-static void intern_print_type_pre(type_t *type);
-static void intern_print_type_post(type_t *type);
+struct obstack         *type_obst                 = &_type_obst;
+static int              type_visited              = 0;
+static bool             print_implicit_array_size = false;
+
+static void intern_print_type_pre(const type_t *type, bool top);
+static void intern_print_type_post(const type_t *type, bool top);
+
+typedef struct atomic_type_properties_t atomic_type_properties_t;
+struct atomic_type_properties_t {
+       unsigned   size;              /**< type size in bytes */
+       unsigned   alignment;         /**< type alignment in bytes */
+       unsigned   flags;             /**< type flags from atomic_type_flag_t */
+};
+
+static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
+       //ATOMIC_TYPE_INVALID = 0,
+       [ATOMIC_TYPE_VOID] = {
+               .size       = 0,
+               .alignment  = 0,
+               .flags      = ATOMIC_TYPE_FLAG_NONE
+       },
+       [ATOMIC_TYPE_CHAR] = {
+               .size       = 1,
+               .alignment  = 1,
+               /* signed flag will be set when known */
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_SCHAR] = {
+               .size       = 1,
+               .alignment  = 1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_UCHAR] = {
+               .size       = 1,
+               .alignment  = 1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_SHORT] = {
+               .size       = 2,
+               .alignment  = 2,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED
+       },
+       [ATOMIC_TYPE_USHORT] = {
+               .size       = 2,
+               .alignment  = 2,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_INT] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_UINT] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_LONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_ULONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_LONGLONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_ULONGLONG] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_BOOL] = {
+               .size       = (unsigned) -1,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
+       },
+       [ATOMIC_TYPE_FLOAT] = {
+               .size       = 4,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_DOUBLE] = {
+               .size       = 8,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       [ATOMIC_TYPE_LONG_DOUBLE] = {
+               .size       = 12,
+               .alignment  = (unsigned) -1,
+               .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
+                             | ATOMIC_TYPE_FLAG_SIGNED,
+       },
+       /* complex and imaginary types are set in init_types */
+};
 
 void init_types(void)
 {
        obstack_init(type_obst);
+
+       atomic_type_properties_t *props = atomic_type_properties;
+
+       if (char_is_signed) {
+               props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED;
+       }
+
+       unsigned int_size   = machine_size < 32 ? 2 : 4;
+       unsigned long_size  = machine_size < 64 ? 4 : 8;
+       unsigned llong_size = machine_size < 32 ? 4 : 8;
+
+       props[ATOMIC_TYPE_INT].size            = int_size;
+       props[ATOMIC_TYPE_INT].alignment       = int_size;
+       props[ATOMIC_TYPE_UINT].size           = int_size;
+       props[ATOMIC_TYPE_UINT].alignment      = int_size;
+       props[ATOMIC_TYPE_LONG].size           = long_size;
+       props[ATOMIC_TYPE_LONG].alignment      = long_size;
+       props[ATOMIC_TYPE_ULONG].size          = long_size;
+       props[ATOMIC_TYPE_ULONG].alignment     = long_size;
+       props[ATOMIC_TYPE_LONGLONG].size       = llong_size;
+       props[ATOMIC_TYPE_LONGLONG].alignment  = llong_size;
+       props[ATOMIC_TYPE_ULONGLONG].size      = llong_size;
+       props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size;
+
+       /* TODO: backend specific, need a way to query the backend for this.
+        * The following are good settings for x86 */
+       props[ATOMIC_TYPE_FLOAT].alignment       = 4;
+       props[ATOMIC_TYPE_DOUBLE].alignment      = 4;
+       props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4;
+       props[ATOMIC_TYPE_LONGLONG].alignment    = 4;
+       props[ATOMIC_TYPE_ULONGLONG].alignment   = 4;
+
+       /* TODO: make this configurable for platforms which do not use byte sized
+        * bools. */
+       props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR];
 }
 
 void exit_types(void)
@@ -30,154 +189,297 @@ void type_set_output(FILE *stream)
        out = stream;
 }
 
-void set_print_compound_entries(bool enabled)
-{
-       print_compound_entries = enabled;
-}
-
 void inc_type_visited(void)
 {
        type_visited++;
 }
 
-void print_type_qualifiers(unsigned qualifiers)
+void print_type_qualifiers(type_qualifiers_t qualifiers)
 {
-       if(qualifiers & TYPE_QUALIFIER_CONST)    fputs("const ",    out);
-       if(qualifiers & TYPE_QUALIFIER_VOLATILE) fputs("volatile ", out);
-       if(qualifiers & TYPE_QUALIFIER_RESTRICT) fputs("restrict ", out);
+       int first = 1;
+       if (qualifiers & TYPE_QUALIFIER_CONST) {
+               fputs(" const" + first,    out);
+               first = 0;
+       }
+       if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
+               fputs(" volatile" + first, out);
+               first = 0;
+       }
+       if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
+               fputs(" restrict" + first, out);
+               first = 0;
+       }
 }
 
-static
-void print_atomic_type(const type_t *type)
-{
-       print_type_qualifiers(type->qualifiers);
-
-       const char *s;
-       switch(type->v.atomic_type.atype) {
-       case ATOMIC_TYPE_INVALID:     s = "INVALIDATOMIC";      break;
-       case ATOMIC_TYPE_VOID:        s = "void";               break;
-       case ATOMIC_TYPE_BOOL:        s = "_Bool";              break;
-       case ATOMIC_TYPE_CHAR:        s = "char";               break;
-       case ATOMIC_TYPE_SCHAR:       s = "signed char";        break;
-       case ATOMIC_TYPE_UCHAR:       s = "unsigned char";      break;
-       case ATOMIC_TYPE_INT:         s = "int";                break;
-       case ATOMIC_TYPE_UINT:        s = "unsigned int";       break;
-       case ATOMIC_TYPE_SHORT:       s = "short";              break;
-       case ATOMIC_TYPE_USHORT:      s = "unsigned short";     break;
-       case ATOMIC_TYPE_LONG:        s = "long";               break;
-       case ATOMIC_TYPE_ULONG:       s = "unsigned long";      break;
-       case ATOMIC_TYPE_LONGLONG:    s = "long long";          break;
-       case ATOMIC_TYPE_ULONGLONG:   s = "unsigned long long"; break;
-       case ATOMIC_TYPE_LONG_DOUBLE: s = "long double";        break;
-       case ATOMIC_TYPE_FLOAT:       s = "float";              break;
-       case ATOMIC_TYPE_DOUBLE:      s = "double";             break;
-       default:                      s = "UNKNOWNATOMIC";      break;
+const char *get_atomic_kind_name(atomic_type_kind_t kind)
+{
+       switch(kind) {
+       case ATOMIC_TYPE_INVALID: break;
+       case ATOMIC_TYPE_VOID:        return "void";
+       case ATOMIC_TYPE_BOOL:        return c_mode & _CXX ? "bool" : "_Bool";
+       case ATOMIC_TYPE_CHAR:        return "char";
+       case ATOMIC_TYPE_SCHAR:       return "signed char";
+       case ATOMIC_TYPE_UCHAR:       return "unsigned char";
+       case ATOMIC_TYPE_INT:         return "int";
+       case ATOMIC_TYPE_UINT:        return "unsigned int";
+       case ATOMIC_TYPE_SHORT:       return "short";
+       case ATOMIC_TYPE_USHORT:      return "unsigned short";
+       case ATOMIC_TYPE_LONG:        return "long";
+       case ATOMIC_TYPE_ULONG:       return "unsigned long";
+       case ATOMIC_TYPE_LONGLONG:    return "long long";
+       case ATOMIC_TYPE_ULONGLONG:   return "unsigned long long";
+       case ATOMIC_TYPE_LONG_DOUBLE: return "long double";
+       case ATOMIC_TYPE_FLOAT:       return "float";
+       case ATOMIC_TYPE_DOUBLE:      return "double";
        }
+       return "INVALIDATOMIC";
+}
+
+/**
+ * Prints the name of an atomic type kinds.
+ *
+ * @param kind  The type kind.
+ */
+static void print_atomic_kinds(atomic_type_kind_t kind)
+{
+       const char *s = get_atomic_kind_name(kind);
        fputs(s, out);
 }
 
-static void print_function_type_pre(const type_t *type)
+/**
+ * Prints the name of an atomic type.
+ *
+ * @param type  The type.
+ */
+static void print_atomic_type(const atomic_type_t *type)
 {
-       print_type_qualifiers(type->qualifiers);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
+       print_atomic_kinds(type->akind);
+}
 
-       intern_print_type_pre(type->v.function_type.result_type);
+/**
+ * Prints the name of a complex type.
+ *
+ * @param type  The type.
+ */
+static
+void print_complex_type(const complex_type_t *type)
+{
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
+       fputs(" _Complex " + empty, out);
+       print_atomic_kinds(type->akind);
+}
 
-       /* TODO: don't emit braces if we're the toplevel type... */
-       fputc('(', out);
+/**
+ * Prints the name of an imaginary type.
+ *
+ * @param type  The type.
+ */
+static
+void print_imaginary_type(const imaginary_type_t *type)
+{
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
+       fputs(" _Imaginary " + empty, out);
+       print_atomic_kinds(type->akind);
 }
 
-static void print_function_type_post(const type_t *type,
-                                     const context_t *context)
+/**
+ * Print the first part (the prefix) of a type.
+ *
+ * @param type   The type to print.
+ * @param top    true, if this is the top type, false if it's an embedded type.
+ */
+static void print_function_type_pre(const function_type_t *type, bool top)
 {
-       /* TODO: don't emit braces if we're the toplevel type... */
-       intern_print_type_post(type->v.function_type.result_type);
-       fputc(')', out);
+       if (type->linkage != NULL) {
+               fputs("extern \"", out);
+               fputs(type->linkage->string, out);
+               fputs("\" ", out);
+       }
 
-       fputc('(', out);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
 
-       int                 first     = 1;
-       if(context == NULL) {
-               function_parameter_t *parameter = type->v.function_type.parameters;
+       intern_print_type_pre(type->return_type, false);
+
+#if 0
+       /* TODO: revive with linkage */
+       switch (type->linkage) {
+       case CC_CDECL:
+               fputs("__cdecl ", out);
+               break;
+       case CC_STDCALL:
+               fputs("__stdcall ", out);
+               break;
+       case CC_FASTCALL:
+               fputs("__fastcall ", out);
+               break;
+       case CC_THISCALL:
+               fputs("__thiscall ", out);
+               break;
+       case CC_DEFAULT:
+               break;
+       }
+#endif
+
+       /* don't emit parenthesis if we're the toplevel type... */
+       if (!top)
+               fputc('(', out);
+}
+
+/**
+ * Print the second part (the postfix) of a type.
+ *
+ * @param type   The type to print.
+ * @param top    true, if this is the top type, false if it's an embedded type.
+ */
+static void print_function_type_post(const function_type_t *type,
+                                     const scope_t *parameters, bool top)
+{
+       /* don't emit parenthesis if we're the toplevel type... */
+       if (!top)
+               fputc(')', out);
+
+       fputc('(', out);
+       bool first = true;
+       if (parameters == NULL) {
+               function_parameter_t *parameter = type->parameters;
                for( ; parameter != NULL; parameter = parameter->next) {
-                       if(first) {
-                               first = 0;
+                       if (first) {
+                               first = false;
                        } else {
                                fputs(", ", out);
                        }
                        print_type(parameter->type);
                }
        } else {
-               declaration_t *parameter = context->declarations;
-               for( ; parameter != NULL; parameter = parameter->next) {
-                       if(first) {
-                               first = 0;
+               entity_t *parameter = parameters->entities;
+               for( ; parameter != NULL; parameter = parameter->base.next) {
+                       if (first) {
+                               first = false;
                        } else {
                                fputs(", ", out);
                        }
-                       print_type_ext(parameter->type, parameter->symbol,
-                                      &parameter->context);
+                       assert(is_declaration(parameter));
+                       print_type_ext(parameter->declaration.type, parameter->base.symbol,
+                                      NULL);
                }
        }
-       if(type->v.function_type.variadic) {
-               if(first) {
-                       first = 0;
+       if (type->variadic) {
+               if (first) {
+                       first = false;
                } else {
                        fputs(", ", out);
                }
                fputs("...", out);
        }
-       if(first && !type->v.function_type.unspecified_parameters) {
+       if (first && !type->unspecified_parameters) {
                fputs("void", out);
        }
        fputc(')', out);
+
+       intern_print_type_post(type->return_type, false);
 }
 
-static void print_pointer_type_pre(const type_t *type)
+/**
+ * Prints the prefix part of a pointer type.
+ *
+ * @param type   The pointer type.
+ */
+static void print_pointer_type_pre(const pointer_type_t *type)
 {
-       intern_print_type_pre(type->v.pointer_type.points_to);
+       intern_print_type_pre(type->points_to, false);
        fputs("*", out);
-       print_type_qualifiers(type->qualifiers);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
 }
 
-static void print_pointer_type_post(const type_t *type)
+/**
+ * Prints the postfix part of a pointer type.
+ *
+ * @param type   The pointer type.
+ */
+static void print_pointer_type_post(const pointer_type_t *type)
 {
-       intern_print_type_post(type->v.pointer_type.points_to);
+       intern_print_type_post(type->points_to, false);
 }
 
-static void print_array_type_pre(const type_t *type)
+/**
+ * Prints the prefix part of an array type.
+ *
+ * @param type   The array type.
+ */
+static void print_array_type_pre(const array_type_t *type)
 {
-       intern_print_type_pre(type->v.array_type.element_type);
+       intern_print_type_pre(type->element_type, false);
 }
 
-static void print_array_type_post(const type_t *type)
+/**
+ * Prints the postfix part of an array type.
+ *
+ * @param type   The array type.
+ */
+static void print_array_type_post(const array_type_t *type)
 {
        fputc('[', out);
-       if(type->v.array_type.is_static) {
+       if (type->is_static) {
                fputs("static ", out);
        }
-       print_type_qualifiers(type->qualifiers);
-       if(type->v.array_type.size != NULL) {
-               print_expression(type->v.array_type.size);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
+       if (type->size_expression != NULL
+                       && (print_implicit_array_size || !type->has_implicit_size)) {
+               print_expression(type->size_expression);
        }
        fputc(']', out);
-       intern_print_type_post(type->v.array_type.element_type);
+       intern_print_type_post(type->element_type, false);
 }
 
-void print_enum_definition(const declaration_t *declaration)
+/**
+ * Prints the postfix part of a bitfield type.
+ *
+ * @param type   The array type.
+ */
+static void print_bitfield_type_post(const bitfield_type_t *type)
+{
+       fputs(" : ", out);
+       print_expression(type->size_expression);
+       intern_print_type_post(type->base_type, false);
+}
+
+/**
+ * Prints an enum definition.
+ *
+ * @param declaration  The enum's type declaration.
+ */
+void print_enum_definition(const enum_t *enume)
 {
        fputs("{\n", out);
 
        change_indent(1);
 
-       declaration_t *entry = declaration->next;
-       for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY;
-              entry = entry->next) {
+       entity_t *entry = enume->base.next;
+       for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
+              entry = entry->base.next) {
 
                print_indent();
-               fprintf(out, "%s", entry->symbol->string);
-               if(entry->init.initializer != NULL) {
+               fprintf(out, "%s", entry->base.symbol->string);
+               if (entry->enum_value.value != NULL) {
                        fprintf(out, " = ");
-                       print_expression(entry->init.enum_value);
+
+                       /* skip the implicit cast */
+                       expression_t *expression = entry->enum_value.value;
+                       if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
+                               expression = expression->unary.value;
+                       }
+                       print_expression(expression);
                }
                fprintf(out, ",\n");
        }
@@ -187,29 +489,41 @@ void print_enum_definition(const declaration_t *declaration)
        fputs("}", out);
 }
 
-static void print_type_enum(const type_t *type)
+/**
+ * Prints an enum type.
+ *
+ * @param type  The enum type.
+ */
+static void print_type_enum(const enum_type_t *type)
 {
-       print_type_qualifiers(type->qualifiers);
-       fputs("enum ", out);
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
+       fputs(" enum " + empty, out);
 
-       declaration_t *declaration = type->v.enum_type.declaration;
-       symbol_t      *symbol      = declaration->symbol;
-       if(symbol != NULL) {
+       enum_t   *enume  = type->enume;
+       symbol_t *symbol = enume->base.symbol;
+       if (symbol != NULL) {
                fputs(symbol->string, out);
        } else {
-               print_enum_definition(declaration);
+               print_enum_definition(enume);
        }
 }
 
-void print_compound_definition(const declaration_t *declaration)
+/**
+ * Print the compound part of a compound type.
+ */
+void print_compound_definition(const compound_t *compound)
 {
        fputs("{\n", out);
        change_indent(1);
 
-       declaration_t *iter = declaration->context.declarations;
-       for( ; iter != NULL; iter = iter->next) {
+       entity_t *entity = compound->members.entities;
+       for( ; entity != NULL; entity = entity->base.next) {
+               if (entity->kind != ENTITY_COMPOUND_MEMBER)
+                       continue;
+
                print_indent();
-               print_declaration(iter);
+               print_entity(entity);
                fputc('\n', out);
        }
 
@@ -218,95 +532,144 @@ void print_compound_definition(const declaration_t *declaration)
        fputs("}", out);
 }
 
-static void print_compound_type(const type_t *type)
+/**
+ * Prints a compound type.
+ *
+ * @param type  The compound type.
+ */
+static void print_compound_type(const compound_type_t *type)
 {
-       print_type_qualifiers(type->qualifiers);
+       int empty = type->base.qualifiers == 0;
+       print_type_qualifiers(type->base.qualifiers);
 
-       if(type->type == TYPE_COMPOUND_STRUCT) {
-               fputs("struct ", out);
+       if (type->base.kind == TYPE_COMPOUND_STRUCT) {
+               fputs(" struct " + empty, out);
        } else {
-               assert(type->type == TYPE_COMPOUND_UNION);
-               fputs("union ", out);
+               assert(type->base.kind == TYPE_COMPOUND_UNION);
+               fputs(" union " + empty, out);
        }
 
-       declaration_t *declaration = type->v.compound_type.declaration;
-       symbol_t      *symbol      = declaration->symbol;
-       if(symbol != NULL) {
+       compound_t *compound = type->compound;
+       symbol_t   *symbol   = compound->base.symbol;
+       if (symbol != NULL) {
                fputs(symbol->string, out);
        } else {
-               print_compound_definition(declaration);
+               print_compound_definition(compound);
        }
 }
 
-static void print_typedef_type_pre(type_t *type)
+/**
+ * Prints the prefix part of a typedef type.
+ *
+ * @param type   The typedef type.
+ */
+static void print_typedef_type_pre(const typedef_type_t *const type)
 {
-       fputs(type->v.typedef_type.declaration->symbol->string, out);
+       print_type_qualifiers(type->base.qualifiers);
+       if (type->base.qualifiers != 0)
+               fputc(' ', out);
+       fputs(type->typedefe->base.symbol->string, out);
 }
 
-static void print_typeof_type_pre(type_t *type)
+/**
+ * Prints the prefix part of a typeof type.
+ *
+ * @param type   The typeof type.
+ */
+static void print_typeof_type_pre(const typeof_type_t *const type)
 {
        fputs("typeof(", out);
-       if(type->v.typeof_type.expression != NULL) {
-               assert(type->v.typeof_type.typeof_type == NULL);
-               print_expression(type->v.typeof_type.expression);
+       if (type->expression != NULL) {
+               assert(type->typeof_type == NULL);
+               print_expression(type->expression);
        } else {
-               print_type(type->v.typeof_type.typeof_type);
+               print_type(type->typeof_type);
        }
        fputc(')', out);
 }
 
-static void intern_print_type_pre(type_t *type)
+/**
+ * Prints the prefix part of a type.
+ *
+ * @param type   The type.
+ * @param top    true if we print the toplevel type, false else.
+ */
+static void intern_print_type_pre(const type_t *const type, const bool top)
 {
-       switch(type->type) {
+       switch(type->kind) {
+       case TYPE_ERROR:
+               fputs("<error>", out);
+               return;
        case TYPE_INVALID:
-               fputs("invalid", out);
+               fputs("<invalid>", out);
                return;
        case TYPE_ENUM:
-               print_type_enum(type);
+               print_type_enum(&type->enumt);
                return;
        case TYPE_ATOMIC:
-               print_atomic_type(type);
+               print_atomic_type(&type->atomic);
+               return;
+       case TYPE_COMPLEX:
+               print_complex_type(&type->complex);
+               return;
+       case TYPE_IMAGINARY:
+               print_imaginary_type(&type->imaginary);
                return;
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION:
-               print_compound_type(type);
+               print_compound_type(&type->compound);
                return;
        case TYPE_BUILTIN:
-               fputs(type->v.builtin_type.symbol->string, out);
+               fputs(type->builtin.symbol->string, out);
                return;
        case TYPE_FUNCTION:
-               print_function_type_pre(type);
+               print_function_type_pre(&type->function, top);
                return;
        case TYPE_POINTER:
-               print_pointer_type_pre(type);
+               print_pointer_type_pre(&type->pointer);
+               return;
+       case TYPE_BITFIELD:
+               intern_print_type_pre(type->bitfield.base_type, top);
                return;
        case TYPE_ARRAY:
-               print_array_type_pre(type);
+               print_array_type_pre(&type->array);
                return;
        case TYPE_TYPEDEF:
-               print_typedef_type_pre(type);
+               print_typedef_type_pre(&type->typedeft);
                return;
        case TYPE_TYPEOF:
-               print_typeof_type_pre(type);
+               print_typeof_type_pre(&type->typeoft);
                return;
        }
        fputs("unknown", out);
 }
 
-static void intern_print_type_post(type_t *type)
+/**
+ * Prints the postfix part of a type.
+ *
+ * @param type   The type.
+ * @param top    true if we print the toplevel type, false else.
+ */
+static void intern_print_type_post(const type_t *const type, const bool top)
 {
-       switch(type->type) {
+       switch(type->kind) {
        case TYPE_FUNCTION:
-               print_function_type_post(type, NULL);
+               print_function_type_post(&type->function, NULL, top);
                return;
        case TYPE_POINTER:
-               print_pointer_type_post(type);
+               print_pointer_type_post(&type->pointer);
                return;
        case TYPE_ARRAY:
-               print_array_type_post(type);
+               print_array_type_post(&type->array);
+               return;
+       case TYPE_BITFIELD:
+               print_bitfield_type_post(&type->bitfield);
                return;
+       case TYPE_ERROR:
        case TYPE_INVALID:
        case TYPE_ATOMIC:
+       case TYPE_COMPLEX:
+       case TYPE_IMAGINARY:
        case TYPE_ENUM:
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION:
@@ -317,170 +680,339 @@ static void intern_print_type_post(type_t *type)
        }
 }
 
-void print_type(type_t *type)
+/**
+ * Prints a type.
+ *
+ * @param type   The type.
+ */
+void print_type(const type_t *const type)
 {
        print_type_ext(type, NULL, NULL);
 }
 
-void print_type_ext(type_t *type, const symbol_t *symbol,
-                    const context_t *context)
+void print_type_ext(const type_t *const type, const symbol_t *symbol,
+                    const scope_t *parameters)
 {
-       if(type == NULL) {
+       if (type == NULL) {
                fputs("nil type", out);
                return;
        }
 
-       intern_print_type_pre(type);
-       if(symbol != NULL) {
+       intern_print_type_pre(type, true);
+       if (symbol != NULL) {
                fputc(' ', out);
                fputs(symbol->string, out);
        }
-       if(type->type == TYPE_FUNCTION) {
-               print_function_type_post(type, context);
+       if (type->kind == TYPE_FUNCTION) {
+               print_function_type_post(&type->function, parameters, true);
+       } else {
+               intern_print_type_post(type, true);
+       }
+}
+
+/**
+ * Return the size of a type AST node.
+ *
+ * @param type  The type.
+ */
+static size_t get_type_size(const type_t *type)
+{
+       switch(type->kind) {
+       case TYPE_ATOMIC:          return sizeof(atomic_type_t);
+       case TYPE_COMPLEX:         return sizeof(complex_type_t);
+       case TYPE_IMAGINARY:       return sizeof(imaginary_type_t);
+       case TYPE_COMPOUND_STRUCT:
+       case TYPE_COMPOUND_UNION:  return sizeof(compound_type_t);
+       case TYPE_ENUM:            return sizeof(enum_type_t);
+       case TYPE_FUNCTION:        return sizeof(function_type_t);
+       case TYPE_POINTER:         return sizeof(pointer_type_t);
+       case TYPE_ARRAY:           return sizeof(array_type_t);
+       case TYPE_BUILTIN:         return sizeof(builtin_type_t);
+       case TYPE_TYPEDEF:         return sizeof(typedef_type_t);
+       case TYPE_TYPEOF:          return sizeof(typeof_type_t);
+       case TYPE_BITFIELD:        return sizeof(bitfield_type_t);
+       case TYPE_ERROR:           panic("error type found");
+       case TYPE_INVALID:         panic("invalid type found");
+       }
+       panic("unknown type found");
+}
+
+/**
+ * Duplicates a type.
+ *
+ * @param type  The type to copy.
+ * @return A copy of the type.
+ *
+ * @note This does not produce a deep copy!
+ */
+type_t *duplicate_type(const type_t *type)
+{
+       size_t size = get_type_size(type);
+
+       type_t *copy = obstack_alloc(type_obst, size);
+       memcpy(copy, type, size);
+
+       return copy;
+}
+
+/**
+ * Returns the unqualified type of a given type.
+ *
+ * @param type  The type.
+ * @returns The unqualified type.
+ */
+type_t *get_unqualified_type(type_t *type)
+{
+       assert(!is_typeref(type));
+
+       if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
+               return type;
+
+       type_t *unqualified_type          = duplicate_type(type);
+       unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
+
+       type_t *result = typehash_insert(unqualified_type);
+       if (result != unqualified_type) {
+               obstack_free(type_obst, unqualified_type);
+       }
+
+       return result;
+}
+
+type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual)
+{
+       type_t *type = skip_typeref(orig_type);
+
+       type_t *copy;
+       if (is_type_array(type)) {
+               /* For array types the element type has to be adjusted */
+               type_t *element_type      = type->array.element_type;
+               type_t *qual_element_type = get_qualified_type(element_type, qual);
+
+               if (qual_element_type == element_type)
+                       return orig_type;
+
+               copy                     = duplicate_type(type);
+               copy->array.element_type = qual_element_type;
+       } else if (is_type_valid(type)) {
+               if ((type->base.qualifiers & qual) == qual)
+                       return orig_type;
+
+               copy                   = duplicate_type(type);
+               copy->base.qualifiers |= qual;
        } else {
-               intern_print_type_post(type);
+               return type;
        }
+
+       type = typehash_insert(copy);
+       if (type != copy)
+               obstack_free(type_obst, copy);
+
+       return type;
 }
 
+/**
+ * Check if a type is valid.
+ *
+ * @param type  The type to check.
+ * @return true if type represents a valid type.
+ */
 bool type_valid(const type_t *type)
 {
-       return type->type != TYPE_INVALID;
+       return type->kind != TYPE_INVALID;
+}
+
+static bool test_atomic_type_flag(atomic_type_kind_t kind,
+                                  atomic_type_flag_t flag)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return (atomic_type_properties[kind].flags & flag) != 0;
 }
 
+/**
+ * Returns true if the given type is an integer type.
+ *
+ * @param type  The type to check.
+ * @return True if type is an integer type.
+ */
 bool is_type_integer(const type_t *type)
 {
-       if(type->type == TYPE_ENUM)
+       assert(!is_typeref(type));
+
+       if (type->kind == TYPE_ENUM)
+               return true;
+       if (type->kind == TYPE_BITFIELD)
                return true;
 
-       if(type->type != TYPE_ATOMIC)
+       if (type->kind != TYPE_ATOMIC)
                return false;
 
-       switch(type->v.atomic_type.atype) {
-       case ATOMIC_TYPE_BOOL:
-       case ATOMIC_TYPE_CHAR:
-       case ATOMIC_TYPE_SCHAR:
-       case ATOMIC_TYPE_UCHAR:
-       case ATOMIC_TYPE_SHORT:
-       case ATOMIC_TYPE_USHORT:
-       case ATOMIC_TYPE_INT:
-       case ATOMIC_TYPE_UINT:
-       case ATOMIC_TYPE_LONG:
-       case ATOMIC_TYPE_ULONG:
-       case ATOMIC_TYPE_LONGLONG:
-       case ATOMIC_TYPE_ULONGLONG:
-               return true;
-       default:
-               return false;
-       }
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
+}
+
+/**
+ * Returns true if the given type is an enum type.
+ *
+ * @param type  The type to check.
+ * @return True if type is an enum type.
+ */
+bool is_type_enum(const type_t *type)
+{
+       assert(!is_typeref(type));
+       return type->kind == TYPE_ENUM;
 }
 
-bool is_type_floating(const type_t *type)
+/**
+ * Returns true if the given type is an floating point type.
+ *
+ * @param type  The type to check.
+ * @return True if type is a floating point type.
+ */
+bool is_type_float(const type_t *type)
 {
-       if(type->type != TYPE_ATOMIC)
+       assert(!is_typeref(type));
+
+       if (type->kind != TYPE_ATOMIC)
                return false;
 
-       switch(type->v.atomic_type.atype) {
-       case ATOMIC_TYPE_FLOAT:
-       case ATOMIC_TYPE_DOUBLE:
-       case ATOMIC_TYPE_LONG_DOUBLE:
-#ifdef PROVIDE_COMPLEX
-       case ATOMIC_TYPE_FLOAT_COMPLEX:
-       case ATOMIC_TYPE_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_FLOAT_IMAGINARY:
-       case ATOMIC_TYPE_DOUBLE_IMAGINARY:
-       case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY:
-#endif
-               return true;
-       default:
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
+}
+
+/**
+ * Returns true if the given type is an complex type.
+ *
+ * @param type  The type to check.
+ * @return True if type is a complex type.
+ */
+bool is_type_complex(const type_t *type)
+{
+       assert(!is_typeref(type));
+
+       if (type->kind != TYPE_ATOMIC)
                return false;
-       }
+
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
 }
 
+/**
+ * Returns true if the given type is a signed type.
+ *
+ * @param type  The type to check.
+ * @return True if type is a signed type.
+ */
 bool is_type_signed(const type_t *type)
 {
+       assert(!is_typeref(type));
+
        /* enum types are int for now */
-       if(type->type == TYPE_ENUM)
+       if (type->kind == TYPE_ENUM)
                return true;
+       if (type->kind == TYPE_BITFIELD)
+               return is_type_signed(type->bitfield.base_type);
 
-       if(type->type != TYPE_ATOMIC)
+       if (type->kind != TYPE_ATOMIC)
                return false;
 
-       switch(type->v.atomic_type.atype) {
-       case ATOMIC_TYPE_CHAR:
-       case ATOMIC_TYPE_SCHAR:
-       case ATOMIC_TYPE_SHORT:
-       case ATOMIC_TYPE_INT:
-       case ATOMIC_TYPE_LONG:
-       case ATOMIC_TYPE_LONGLONG:
-       case ATOMIC_TYPE_FLOAT:
-       case ATOMIC_TYPE_DOUBLE:
-       case ATOMIC_TYPE_LONG_DOUBLE:
-#ifdef PROVIDE_COMPLEX
-       case ATOMIC_TYPE_FLOAT_COMPLEX:
-       case ATOMIC_TYPE_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_LONG_DOUBLE_COMPLEX:
-       case ATOMIC_TYPE_FLOAT_IMAGINARY:
-       case ATOMIC_TYPE_DOUBLE_IMAGINARY:
-       case ATOMIC_TYPE_LONG_DOUBLE_IMAGINARY:
-#endif
-               return true;
+       return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
+}
 
-       case ATOMIC_TYPE_BOOL:
-       case ATOMIC_TYPE_UCHAR:
-       case ATOMIC_TYPE_USHORT:
-       case ATOMIC_TYPE_UINT:
-       case ATOMIC_TYPE_ULONG:
-       case ATOMIC_TYPE_ULONGLONG:
-               return false;
+/**
+ * Returns true if the given type represents an arithmetic type.
+ *
+ * @param type  The type to check.
+ * @return True if type represents an arithmetic type.
+ */
+bool is_type_arithmetic(const type_t *type)
+{
+       assert(!is_typeref(type));
 
-       case ATOMIC_TYPE_INVALID:
-       case ATOMIC_TYPE_VOID:
+       switch(type->kind) {
+       case TYPE_BITFIELD:
+       case TYPE_ENUM:
+               return true;
+       case TYPE_ATOMIC:
+               return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
+       case TYPE_COMPLEX:
+               return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
+       case TYPE_IMAGINARY:
+               return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
+       default:
                return false;
        }
-
-       panic("invalid atomic type found");
-       return false;
 }
 
-bool is_type_arithmetic(const type_t *type)
+/**
+ * Returns true if the given type is an integer or float type.
+ *
+ * @param type  The type to check.
+ * @return True if type is an integer or float type.
+ */
+bool is_type_real(const type_t *type)
 {
-       if(is_type_integer(type) || is_type_floating(type))
-               return 1;
-
-       return 0;
+       /* 6.2.5 (17) */
+       return is_type_integer(type) || is_type_float(type);
 }
 
+/**
+ * Returns true if the given type represents a scalar type.
+ *
+ * @param type  The type to check.
+ * @return True if type represents a scalar type.
+ */
 bool is_type_scalar(const type_t *type)
 {
-       if(type->type == TYPE_POINTER)
-               return 1;
+       assert(!is_typeref(type));
+
+       switch (type->kind) {
+               case TYPE_POINTER: return true;
+               case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type);
+               default:           break;
+       }
 
        return is_type_arithmetic(type);
 }
 
+/**
+ * Check if a given type is incomplete.
+ *
+ * @param type  The type to check.
+ * @return True if the given type is incomplete (ie. just forward).
+ */
 bool is_type_incomplete(const type_t *type)
 {
-       switch(type->type) {
+       assert(!is_typeref(type));
+
+       switch(type->kind) {
        case TYPE_COMPOUND_STRUCT:
        case TYPE_COMPOUND_UNION: {
-               declaration_t *declaration = type->v.compound_type.declaration;
-               return !declaration->init.is_defined;
+               const compound_type_t *compound_type = &type->compound;
+               return !compound_type->compound->complete;
        }
-       case TYPE_FUNCTION:
-               return true;
+       case TYPE_ENUM:
+               return false;
 
        case TYPE_ARRAY:
-               return type->v.array_type.size == NULL;
+               return type->array.size_expression == NULL
+                       && !type->array.size_constant;
 
        case TYPE_ATOMIC:
+               return type->atomic.akind == ATOMIC_TYPE_VOID;
+
+       case TYPE_COMPLEX:
+               return type->complex.akind == ATOMIC_TYPE_VOID;
+
+       case TYPE_IMAGINARY:
+               return type->imaginary.akind == ATOMIC_TYPE_VOID;
+
+       case TYPE_BITFIELD:
+       case TYPE_FUNCTION:
        case TYPE_POINTER:
-       case TYPE_ENUM:
+       case TYPE_BUILTIN:
+       case TYPE_ERROR:
                return false;
 
        case TYPE_TYPEDEF:
        case TYPE_TYPEOF:
-       case TYPE_BUILTIN:
                panic("is_type_incomplete called without typerefs skipped");
        case TYPE_INVALID:
                break;
@@ -489,111 +1021,440 @@ bool is_type_incomplete(const type_t *type)
        panic("invalid type found");
 }
 
-bool types_compatible(const type_t *type1, const type_t *type2)
+bool is_type_object(const type_t *type)
+{
+       return !is_type_function(type) && !is_type_incomplete(type);
+}
+
+/**
+ * Check if two function types are compatible.
+ */
+static bool function_types_compatible(const function_type_t *func1,
+                                      const function_type_t *func2)
 {
-       /* TODO: really incomplete */
-       if(type1 == type2)
+       const type_t* const ret1 = skip_typeref(func1->return_type);
+       const type_t* const ret2 = skip_typeref(func2->return_type);
+       if (!types_compatible(ret1, ret2))
+               return false;
+
+       if (func1->linkage != func2->linkage)
+               return false;
+
+       /* can parameters be compared? */
+       if (func1->unspecified_parameters || func2->unspecified_parameters)
                return true;
 
-       if(type1->type == TYPE_ATOMIC && type2->type == TYPE_ATOMIC)
-               return type1->v.atomic_type.atype == type2->v.atomic_type.atype;
+       if (func1->variadic != func2->variadic)
+               return false;
+
+       /* TODO: handling of unspecified parameters not correct yet */
 
-       return false;
+       /* all argument types must be compatible */
+       function_parameter_t *parameter1 = func1->parameters;
+       function_parameter_t *parameter2 = func2->parameters;
+       for ( ; parameter1 != NULL && parameter2 != NULL;
+                       parameter1 = parameter1->next, parameter2 = parameter2->next) {
+               type_t *parameter1_type = skip_typeref(parameter1->type);
+               type_t *parameter2_type = skip_typeref(parameter2->type);
+
+               parameter1_type = get_unqualified_type(parameter1_type);
+               parameter2_type = get_unqualified_type(parameter2_type);
+
+               if (!types_compatible(parameter1_type, parameter2_type))
+                       return false;
+       }
+       /* same number of arguments? */
+       if (parameter1 != NULL || parameter2 != NULL)
+               return false;
+
+       return true;
 }
 
-bool pointers_compatible(const type_t *type1, const type_t *type2)
+/**
+ * Check if two array types are compatible.
+ */
+static bool array_types_compatible(const array_type_t *array1,
+                                   const array_type_t *array2)
 {
-       assert(type1->type == TYPE_POINTER);
-       assert(type2->type == TYPE_POINTER);
-#if 0
-       return types_compatible(type1->v.pointer_type.points_to,
-                               type2->v.pointer_type.points_to);
-#endif
-       return true;
+       type_t *element_type1 = skip_typeref(array1->element_type);
+       type_t *element_type2 = skip_typeref(array2->element_type);
+       if (!types_compatible(element_type1, element_type2))
+               return false;
+
+       if (!array1->size_constant || !array2->size_constant)
+               return true;
+
+       return array1->size == array2->size;
 }
 
 /**
- * duplicates a type
- * note that this does not produce a deep copy!
+ * Check if two types are compatible.
  */
-static type_t *duplicate_type(type_t *type)
+bool types_compatible(const type_t *type1, const type_t *type2)
 {
-       type_t *copy = obstack_alloc(type_obst, sizeof(*copy));
-       memcpy(copy, type, sizeof(*copy));
+       assert(!is_typeref(type1));
+       assert(!is_typeref(type2));
 
-       (void) duplicate_type;
+       /* shortcut: the same type is always compatible */
+       if (type1 == type2)
+               return true;
 
-       return type;
+       if (!is_type_valid(type1) || !is_type_valid(type2))
+               return true;
+
+       if (type1->base.qualifiers != type2->base.qualifiers)
+               return false;
+       if (type1->kind != type2->kind)
+               return false;
+
+       switch (type1->kind) {
+       case TYPE_FUNCTION:
+               return function_types_compatible(&type1->function, &type2->function);
+       case TYPE_ATOMIC:
+               return type1->atomic.akind == type2->atomic.akind;
+       case TYPE_COMPLEX:
+               return type1->complex.akind == type2->complex.akind;
+       case TYPE_IMAGINARY:
+               return type1->imaginary.akind == type2->imaginary.akind;
+       case TYPE_ARRAY:
+               return array_types_compatible(&type1->array, &type2->array);
+
+       case TYPE_POINTER: {
+               const type_t *const to1 = skip_typeref(type1->pointer.points_to);
+               const type_t *const to2 = skip_typeref(type2->pointer.points_to);
+               return types_compatible(to1, to2);
+       }
+
+       case TYPE_COMPOUND_STRUCT:
+       case TYPE_COMPOUND_UNION:
+       case TYPE_ENUM:
+       case TYPE_BUILTIN:
+               /* TODO: not implemented */
+               break;
+
+       case TYPE_BITFIELD:
+               /* not sure if this makes sense or is even needed, implement it if you
+                * really need it! */
+               panic("type compatibility check for bitfield type");
+
+       case TYPE_ERROR:
+               /* Hmm, the error type should be compatible to all other types */
+               return true;
+       case TYPE_INVALID:
+               panic("invalid type found in compatible types");
+       case TYPE_TYPEDEF:
+       case TYPE_TYPEOF:
+               panic("typerefs not skipped in compatible types?!?");
+       }
+
+       /* TODO: incomplete */
+       return false;
 }
 
+/**
+ * Skip all typerefs and return the underlying type.
+ */
 type_t *skip_typeref(type_t *type)
 {
-       unsigned qualifiers = type->qualifiers;
-
-       while(1) {
-               switch(type->type) {
-               case TYPE_TYPEDEF:
-                       qualifiers |= type->qualifiers;
-                       if(type->v.typedef_type.resolved_type != NULL) {
-                               type = type->v.typedef_type.resolved_type;
+       type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
+       type_modifiers_t  modifiers  = TYPE_MODIFIER_NONE;
+
+       while (true) {
+               switch (type->kind) {
+               case TYPE_ERROR:
+                       return type;
+               case TYPE_TYPEDEF: {
+                       qualifiers |= type->base.qualifiers;
+                       modifiers  |= type->base.modifiers;
+                       const typedef_type_t *typedef_type = &type->typedeft;
+                       if (typedef_type->resolved_type != NULL) {
+                               type = typedef_type->resolved_type;
                                break;
                        }
-                       type = type->v.typedef_type.declaration->type;
+                       type = typedef_type->typedefe->type;
                        continue;
-               case TYPE_TYPEOF:
-                       if(type->v.typeof_type.typeof_type != NULL) {
-                               type = type->v.typeof_type.typeof_type;
+               }
+               case TYPE_TYPEOF: {
+                       const typeof_type_t *typeof_type = &type->typeoft;
+                       if (typeof_type->typeof_type != NULL) {
+                               type = typeof_type->typeof_type;
                        } else {
-                               type = type->v.typeof_type.expression->datatype;
+                               type = typeof_type->expression->base.type;
                        }
                        continue;
-               case TYPE_BUILTIN:
-                       type = type->v.builtin_type.real_type;
-                       continue;
+               }
                default:
                        break;
                }
                break;
        }
 
+       if (qualifiers != TYPE_QUALIFIER_NONE || modifiers != TYPE_MODIFIER_NONE) {
+               type_t *const copy = duplicate_type(type);
+
+               /* for const with typedefed array type the element type has to be
+                * adjusted */
+               if (is_type_array(copy)) {
+                       type_t *element_type           = copy->array.element_type;
+                       element_type                   = duplicate_type(element_type);
+                       element_type->base.qualifiers |= qualifiers;
+                       element_type->base.modifiers  |= modifiers;
+                       copy->array.element_type       = element_type;
+               } else {
+                       copy->base.qualifiers |= qualifiers;
+                       copy->base.modifiers  |= modifiers;
+               }
+
+               type = typehash_insert(copy);
+               if (type != copy) {
+                       obstack_free(type_obst, copy);
+               }
+       }
+
        return type;
 }
 
+type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type) {
+       type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
+
+       while (true) {
+               switch (type->base.kind) {
+               case TYPE_ERROR:
+                       return TYPE_QUALIFIER_NONE;
+               case TYPE_TYPEDEF:
+                       qualifiers |= type->base.qualifiers;
+                       const typedef_type_t *typedef_type = &type->typedeft;
+                       if (typedef_type->resolved_type != NULL)
+                               type = typedef_type->resolved_type;
+                       else
+                               type = typedef_type->typedefe->type;
+                       continue;
+               case TYPE_TYPEOF: {
+                       const typeof_type_t *typeof_type = &type->typeoft;
+                       if (typeof_type->typeof_type != NULL) {
+                               type = typeof_type->typeof_type;
+                       } else {
+                               type = typeof_type->expression->base.type;
+                       }
+                       continue;
+               }
+               case TYPE_ARRAY:
+                       if (skip_array_type) {
+                               type = type->array.element_type;
+                               continue;
+                       }
+                       break;
+               default:
+                       break;
+               }
+               break;
+       }
+       return type->base.qualifiers | qualifiers;
+}
+
+unsigned get_atomic_type_size(atomic_type_kind_t kind)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return atomic_type_properties[kind].size;
+}
+
+unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return atomic_type_properties[kind].alignment;
+}
+
+unsigned get_atomic_type_flags(atomic_type_kind_t kind)
+{
+       assert(kind <= ATOMIC_TYPE_LAST);
+       return atomic_type_properties[kind].flags;
+}
+
+atomic_type_kind_t get_intptr_kind(void)
+{
+       if (machine_size <= 32)
+               return ATOMIC_TYPE_INT;
+       else if (machine_size <= 64)
+               return ATOMIC_TYPE_LONG;
+       else
+               return ATOMIC_TYPE_LONGLONG;
+}
+
+atomic_type_kind_t get_uintptr_kind(void)
+{
+       if (machine_size <= 32)
+               return ATOMIC_TYPE_UINT;
+       else if (machine_size <= 64)
+               return ATOMIC_TYPE_ULONG;
+       else
+               return ATOMIC_TYPE_ULONGLONG;
+}
+
+/**
+ * Find the atomic type kind representing a given size (signed).
+ */
+atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) {
+       static atomic_type_kind_t kinds[32];
+
+       assert(size < 32);
+       atomic_type_kind_t kind = kinds[size];
+       if (kind == ATOMIC_TYPE_INVALID) {
+               static const atomic_type_kind_t possible_kinds[] = {
+                       ATOMIC_TYPE_SCHAR,
+                       ATOMIC_TYPE_SHORT,
+                       ATOMIC_TYPE_INT,
+                       ATOMIC_TYPE_LONG,
+                       ATOMIC_TYPE_LONGLONG
+               };
+               for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) {
+                       if (get_atomic_type_size(possible_kinds[i]) == size) {
+                               kind = possible_kinds[i];
+                               break;
+                       }
+               }
+               kinds[size] = kind;
+       }
+       return kind;
+}
 
+/**
+ * Find the atomic type kind representing a given size (signed).
+ */
+atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) {
+       static atomic_type_kind_t kinds[32];
+
+       assert(size < 32);
+       atomic_type_kind_t kind = kinds[size];
+       if (kind == ATOMIC_TYPE_INVALID) {
+               static const atomic_type_kind_t possible_kinds[] = {
+                       ATOMIC_TYPE_UCHAR,
+                       ATOMIC_TYPE_USHORT,
+                       ATOMIC_TYPE_UINT,
+                       ATOMIC_TYPE_ULONG,
+                       ATOMIC_TYPE_ULONGLONG
+               };
+               for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) {
+                       if (get_atomic_type_size(possible_kinds[i]) == size) {
+                               kind = possible_kinds[i];
+                               break;
+                       }
+               }
+               kinds[size] = kind;
+       }
+       return kind;
+}
 
+/**
+ * Hash the given type and return the "singleton" version
+ * of it.
+ */
 static type_t *identify_new_type(type_t *type)
 {
        type_t *result = typehash_insert(type);
-       if(result != type) {
+       if (result != type) {
                obstack_free(type_obst, type);
        }
        return result;
 }
 
-type_t *make_atomic_type(atomic_type_type_t type, type_qualifiers_t qualifiers)
+/**
+ * Creates a new atomic type.
+ *
+ * @param akind       The kind of the atomic type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
+type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t));
+       memset(type, 0, sizeof(atomic_type_t));
+
+       type->kind            = TYPE_ATOMIC;
+       type->base.size       = get_atomic_type_size(akind);
+       type->base.alignment  = get_atomic_type_alignment(akind);
+       type->base.qualifiers = qualifiers;
+       type->atomic.akind    = akind;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Creates a new complex type.
+ *
+ * @param akind       The kind of the atomic type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
+type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t));
+       memset(type, 0, sizeof(complex_type_t));
+
+       type->kind            = TYPE_COMPLEX;
+       type->base.qualifiers = qualifiers;
+       type->base.alignment  = get_atomic_type_alignment(akind);
+       type->complex.akind   = akind;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Creates a new imaginary type.
+ *
+ * @param akind       The kind of the atomic type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
+type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
 {
-       type_t *atomic_type = obstack_alloc(type_obst, sizeof(atomic_type[0]));
-       memset(atomic_type, 0, sizeof(atomic_type[0]));
-       atomic_type->type                = TYPE_ATOMIC;
-       atomic_type->qualifiers          = qualifiers;
-       atomic_type->v.atomic_type.atype = type;
+       type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t));
+       memset(type, 0, sizeof(imaginary_type_t));
 
-       return identify_new_type(atomic_type);
+       type->kind            = TYPE_IMAGINARY;
+       type->base.qualifiers = qualifiers;
+       type->base.alignment  = get_atomic_type_alignment(akind);
+       type->imaginary.akind = akind;
+
+       return identify_new_type(type);
 }
 
+/**
+ * Creates a new pointer type.
+ *
+ * @param points_to   The points-to type for the new type.
+ * @param qualifiers  Type qualifiers for the new type.
+ */
 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
 {
-       type_t *pointer_type = obstack_alloc(type_obst, sizeof(pointer_type[0]));
-       memset(pointer_type, 0, sizeof(pointer_type[0]));
-       pointer_type->type                     = TYPE_POINTER;
-       pointer_type->qualifiers               = qualifiers;
-       pointer_type->v.pointer_type.points_to = points_to;
+       type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
+       memset(type, 0, sizeof(pointer_type_t));
 
-       return identify_new_type(pointer_type);
+       type->kind              = TYPE_POINTER;
+       type->base.qualifiers   = qualifiers;
+       type->base.alignment    = 0;
+       type->pointer.points_to = points_to;
+
+       return identify_new_type(type);
 }
 
+type_t *make_array_type(type_t *element_type, size_t size,
+                        type_qualifiers_t qualifiers)
+{
+       type_t *type = obstack_alloc(type_obst, sizeof(array_type_t));
+       memset(type, 0, sizeof(array_type_t));
+
+       type->kind                = TYPE_ARRAY;
+       type->base.qualifiers     = qualifiers;
+       type->base.alignment      = 0;
+       type->array.element_type  = element_type;
+       type->array.size          = size;
+       type->array.size_constant = true;
+
+       return identify_new_type(type);
+}
+
+/**
+ * Debug helper. Prints the given type to stdout.
+ */
 static __attribute__((unused))
-void dbg_type(type_t *type)
+void dbg_type(const type_t *type)
 {
        FILE *old_out = out;
        out = stderr;