Use semantic_assign() properly.
[cparser] / parser.c
index 6b04424..a42e169 100644 (file)
--- a/parser.c
+++ b/parser.c
@@ -138,7 +138,9 @@ static void *allocate_ast_zero(size_t size)
 
 static declaration_t *allocate_declaration_zero(void)
 {
-       return allocate_ast_zero(sizeof(*allocate_declaration_zero()));
+       declaration_t *declaration = allocate_ast_zero(sizeof(*allocate_declaration_zero()));
+       declaration->type = type_error_type;
+       return declaration;
 }
 
 /**
@@ -234,7 +236,8 @@ static expression_t *allocate_expression_zero(expression_kind_t kind)
        size_t        size = get_expression_struct_size(kind);
        expression_t *res  = allocate_ast_zero(size);
 
-       res->base.kind = kind;
+       res->base.kind     = kind;
+       res->base.datatype = type_error_type;
        return res;
 }
 
@@ -764,29 +767,34 @@ static expression_t *create_implicit_cast(expression_t *expression,
                                        expression->base.source_position, source_type, dest_type);
                        return expression;
 
+               case TYPE_COMPOUND_STRUCT:
+               case TYPE_COMPOUND_UNION:
+               case TYPE_ERROR:
+                       return expression;
+
                default:
                        panic("casting of non-atomic types not implemented yet");
        }
 }
 
 /** Implements the rules from § 6.5.16.1 */
-static void semantic_assign(type_t *orig_type_left, expression_t **right,
+static type_t *semantic_assign(type_t *orig_type_left,
+                            const expression_t *const right,
                             const char *context)
 {
-       type_t *orig_type_right = (*right)->base.datatype;
+       type_t *const orig_type_right = right->base.datatype;
 
-       if(orig_type_right == NULL)
-               return;
+       if (!is_type_valid(orig_type_right))
+               return orig_type_right;
 
        type_t *const type_left  = skip_typeref(orig_type_left);
        type_t *const type_right = skip_typeref(orig_type_right);
 
        if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
-           (is_type_pointer(type_left) && is_null_pointer_constant(*right)) ||
+           (is_type_pointer(type_left) && is_null_pointer_constant(right)) ||
            (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
                && is_type_pointer(type_right))) {
-               *right = create_implicit_cast(*right, type_left);
-               return;
+               return orig_type_left;
        }
 
        if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
@@ -803,7 +811,7 @@ static void semantic_assign(type_t *orig_type_left, expression_t **right,
                        = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
                if(missing_qualifiers != 0) {
                        errorf(HERE, "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointed-to type", type_left, context, type_right, missing_qualifiers);
-                       return;
+                       return orig_type_left;
                }
 
                points_to_left  = get_unqualified_type(points_to_left);
@@ -812,23 +820,21 @@ static void semantic_assign(type_t *orig_type_left, expression_t **right,
                if(!is_type_atomic(points_to_left, ATOMIC_TYPE_VOID)
                                && !is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)
                                && !types_compatible(points_to_left, points_to_right)) {
-                       goto incompatible_assign_types;
+                       return NULL;
                }
 
-               *right = create_implicit_cast(*right, type_left);
-               return;
+               return orig_type_left;
        }
 
-       if (is_type_compound(type_left)
-                       && types_compatible(type_left, type_right)) {
-               *right = create_implicit_cast(*right, type_left);
-               return;
+       if (is_type_compound(type_left)  && is_type_compound(type_right)) {
+               type_t *const unqual_type_left  = get_unqualified_type(type_left);
+               type_t *const unqual_type_right = get_unqualified_type(type_right);
+               if (types_compatible(unqual_type_left, unqual_type_right)) {
+                       return orig_type_left;
+               }
        }
 
-incompatible_assign_types:
-       /* TODO: improve error message */
-       errorf(HERE, "incompatible types in %s: '%T' <- '%T'",
-              context, orig_type_left, orig_type_right);
+       return NULL;
 }
 
 static expression_t *parse_constant_expression(void)
@@ -1036,17 +1042,14 @@ static initializer_t *initializer_from_expression(type_t *type,
                }
        }
 
-       type_t *expression_type = skip_typeref(expression->base.datatype);
-       if(is_type_scalar(type) || types_compatible(type, expression_type)) {
-               semantic_assign(type, &expression, "initializer");
-
-               initializer_t *result = allocate_initializer_zero(INITIALIZER_VALUE);
-               result->value.value   = expression;
+       type_t *const res_type = semantic_assign(type, expression, "initializer");
+       if (res_type == NULL)
+               return NULL;
 
-               return result;
-       }
+       initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
+       result->value.value = create_implicit_cast(expression, res_type);
 
-       return NULL;
+       return result;
 }
 
 static initializer_t *parse_sub_initializer(type_t *type,
@@ -1677,7 +1680,7 @@ static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
                        }
                        break;
 
-               /* TODO: if type != NULL for the following rules should issue
+               /* TODO: if is_type_valid(type) for the following rules should issue
                 * an error */
                case T_struct: {
                        type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
@@ -2375,7 +2378,7 @@ warn_redundant_declaration:
                                        errorf(declaration->source_position, "static declaration of '%Y' follows non-static declaration", symbol);
                                        errorf(previous_declaration->source_position, "previous declaration of '%Y' was here", symbol);
                                } else {
-                                       if (old_storage_class != STORAGE_CLASS_EXTERN) {
+                                       if (old_storage_class != STORAGE_CLASS_EXTERN && !is_function_definition) {
                                                goto warn_redundant_declaration;
                                        }
                                        if (new_storage_class == STORAGE_CLASS_NONE) {
@@ -2404,9 +2407,54 @@ warn_redundant_declaration:
        return append_declaration(declaration);
 }
 
+/**
+ * Check if a given type is a vilid array type.
+ */
+static bool is_valid_array_type(const type_t *type) {
+       if (type->kind == TYPE_ARRAY) {
+               const array_type_t *array = &type->array;
+               const type_t       *etype = skip_typeref(array->element_type);
+
+               if (! is_valid_array_type(etype))
+                       return false;
+
+               if (etype->kind == TYPE_ATOMIC) {
+                       const atomic_type_t *atype = &etype->atomic;
+
+                       if (atype->akind == ATOMIC_TYPE_VOID) {
+                               return false;
+                       }
+               }
+       }
+       return true;
+}
+
 static declaration_t *record_declaration(declaration_t *declaration)
 {
-       return internal_record_declaration(declaration, false);
+       declaration = internal_record_declaration(declaration, false);
+       const type_t *type = skip_typeref(declaration->type);
+
+       /* check the type here for several not allowed combinations */
+       if (type->kind == TYPE_FUNCTION) {
+               const function_type_t* function_type = &type->function;
+               const type_t*          ret_type      = skip_typeref(function_type->return_type);
+
+               if (ret_type->kind == TYPE_FUNCTION) {
+                       errorf(declaration->source_position, "'%Y' declared as function returning a function",
+                               declaration->symbol);
+                       declaration->type = type_error_type;
+               } else if (ret_type->kind == TYPE_ARRAY) {
+                       errorf(declaration->source_position, "'%Y' declared as function returning an array",
+                               declaration->symbol);
+                       declaration->type = type_error_type;
+               }
+       }
+       if (! is_valid_array_type(type)) {
+               errorf(declaration->source_position, "declaration of '%Y' as array of voids",
+                               declaration->symbol);
+               declaration->type = type_error_type;
+       }
+       return declaration;
 }
 
 static declaration_t *record_function_definition(declaration_t *const declaration)
@@ -2447,9 +2495,7 @@ static void parse_init_declarator_rest(declaration_t *declaration)
        eat('=');
 
        type_t *orig_type = declaration->type;
-       type_t *type      = NULL;
-       if(orig_type != NULL)
-               type = skip_typeref(orig_type);
+       type_t *type      = type = skip_typeref(orig_type);
 
        if(declaration->init.initializer != NULL) {
                parser_error_multiple_definition(declaration, token.source_position);
@@ -2459,7 +2505,7 @@ static void parse_init_declarator_rest(declaration_t *declaration)
 
        /* § 6.7.5 (22)  array initializers for arrays with unknown size determine
         * the array type size */
-       if(type != NULL && is_type_array(type) && initializer != NULL) {
+       if(is_type_array(type) && initializer != NULL) {
                array_type_t *array_type = &type->array;
 
                if(array_type->size == NULL) {
@@ -2494,7 +2540,7 @@ static void parse_init_declarator_rest(declaration_t *declaration)
                }
        }
 
-       if(type != NULL && is_type_function(type)) {
+       if(is_type_function(type)) {
                errorf(declaration->source_position,
                       "initializers not allowed for function types at declator '%Y' (type '%T')",
                       declaration->symbol, orig_type);
@@ -2551,7 +2597,8 @@ static void parse_declaration_rest(declaration_t *ndeclaration,
                type_t *orig_type = declaration->type;
                type_t *type      = skip_typeref(orig_type);
 
-               if(type->kind != TYPE_FUNCTION && declaration->is_inline) {
+               if(is_type_valid(type) &&
+                  type->kind != TYPE_FUNCTION && declaration->is_inline) {
                        warningf(declaration->source_position,
                                 "variable '%Y' declared 'inline'\n", declaration->symbol);
                }
@@ -3633,7 +3680,7 @@ static void check_for_char_index_type(const expression_t *expression) {
        type_t *base_type = skip_typeref(type);
 
        if (base_type->base.kind == TYPE_ATOMIC) {
-               if (base_type->atomic.akind == ATOMIC_TYPE_CHAR) {
+               switch (base_type->atomic.akind == ATOMIC_TYPE_CHAR) {
                        warningf(expression->base.source_position,
                                "array subscript has type '%T'", type);
                }
@@ -3818,7 +3865,7 @@ static expression_t *parse_call_expression(unsigned precedence,
 
        function_type_t *function_type = NULL;
        type_t          *orig_type     = expression->base.datatype;
-       if(orig_type != NULL) {
+       if(is_type_valid(orig_type)) {
                type_t *type  = skip_typeref(orig_type);
 
                if(is_type_pointer(type)) {
@@ -3942,9 +3989,9 @@ static expression_t *parse_conditional_expression(unsigned precedence,
 
        /* 6.5.15.2 */
        type_t *condition_type_orig = expression->base.datatype;
-       if(condition_type_orig != NULL) {
+       if(is_type_valid(condition_type_orig)) {
                type_t *condition_type = skip_typeref(condition_type_orig);
-               if(condition_type != NULL && !is_type_scalar(condition_type)) {
+               if(condition_type->kind != TYPE_ERROR && !is_type_scalar(condition_type)) {
                        type_error("expected a scalar type in conditional condition",
                                   expression->base.source_position, condition_type_orig);
                }
@@ -3959,7 +4006,7 @@ static expression_t *parse_conditional_expression(unsigned precedence,
 
        type_t *orig_true_type  = true_expression->base.datatype;
        type_t *orig_false_type = false_expression->base.datatype;
-       if(orig_true_type == NULL || orig_false_type == NULL)
+       if(!is_type_valid(orig_true_type) || !is_type_valid(orig_false_type))
                return result;
 
        type_t *true_type  = skip_typeref(orig_true_type);
@@ -4027,7 +4074,7 @@ static expression_t *parse_builtin_classify_type(const unsigned precedence)
 static void semantic_incdec(unary_expression_t *expression)
 {
        type_t *orig_type = expression->value->base.datatype;
-       if(orig_type == NULL)
+       if(!is_type_valid(orig_type))
                return;
 
        type_t *type = skip_typeref(orig_type);
@@ -4043,7 +4090,7 @@ static void semantic_incdec(unary_expression_t *expression)
 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
 {
        type_t *orig_type = expression->value->base.datatype;
-       if(orig_type == NULL)
+       if(!is_type_valid(orig_type))
                return;
 
        type_t *type = skip_typeref(orig_type);
@@ -4059,7 +4106,7 @@ static void semantic_unexpr_arithmetic(unary_expression_t *expression)
 static void semantic_unexpr_scalar(unary_expression_t *expression)
 {
        type_t *orig_type = expression->value->base.datatype;
-       if(orig_type == NULL)
+       if(!is_type_valid(orig_type))
                return;
 
        type_t *type = skip_typeref(orig_type);
@@ -4074,7 +4121,7 @@ static void semantic_unexpr_scalar(unary_expression_t *expression)
 static void semantic_unexpr_integer(unary_expression_t *expression)
 {
        type_t *orig_type = expression->value->base.datatype;
-       if(orig_type == NULL)
+       if(!is_type_valid(orig_type))
                return;
 
        type_t *type = skip_typeref(orig_type);
@@ -4089,7 +4136,7 @@ static void semantic_unexpr_integer(unary_expression_t *expression)
 static void semantic_dereference(unary_expression_t *expression)
 {
        type_t *orig_type = expression->value->base.datatype;
-       if(orig_type == NULL)
+       if(!is_type_valid(orig_type))
                return;
 
        type_t *type = skip_typeref(orig_type);
@@ -4114,7 +4161,7 @@ static void semantic_take_addr(unary_expression_t *expression)
        value->base.datatype = revert_automatic_type_conversion(value);
 
        type_t *orig_type = value->base.datatype;
-       if(orig_type == NULL)
+       if(!is_type_valid(orig_type))
                return;
 
        if(value->kind == EXPR_REFERENCE) {
@@ -4514,7 +4561,15 @@ static void semantic_binexpr_assign(binary_expression_t *expression)
                return;
        }
 
-       semantic_assign(orig_type_left, &expression->right, "assignment");
+       type_t *const res_type = semantic_assign(orig_type_left, expression->right,
+                                                "assignment");
+       if (res_type == NULL) {
+               errorf(expression->expression.source_position,
+                       "cannot assign to '%T' from '%T'",
+                       orig_type_left, expression->right->base.datatype);
+       } else {
+               expression->right = create_implicit_cast(expression->right, res_type);
+       }
 
        expression->expression.datatype = orig_type_left;
 }
@@ -5311,8 +5366,20 @@ static statement_t *parse_return(void)
                                "'return' with a value, in function returning void");
                        return_value = NULL;
                } else {
-                       if(return_type != NULL) {
-                               semantic_assign(return_type, &return_value, "'return'");
+                       if(is_type_valid(return_type)) {
+                               if (return_value->base.datatype == NULL)
+                                       return (statement_t*)statement;
+
+                               type_t *const res_type = semantic_assign(return_type,
+                                       return_value, "'return'");
+                               if (res_type == NULL) {
+                                       errorf(statement->statement.source_position,
+                                               "cannot assign to '%T' from '%T'",
+                                               "cannot return something of type '%T' in function returning '%T'",
+                                               return_value->base.datatype, return_type);
+                               } else {
+                                       return_value = create_implicit_cast(return_value, res_type);
+                               }
                        }
                }
                /* check for returning address of a local var */