remove pointless concept of a builtin-type
[cparser] / type_hash.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdbool.h>
23
24 #include "type_hash.h"
25
26 #include "adt/error.h"
27 #include "type_t.h"
28
29 #include <assert.h>
30
31 #define HashSet         type_hash_t
32 #define HashSetIterator type_hash_iterator_t
33 #define ValueType       type_t*
34 #include "adt/hashset.h"
35 #undef ValueType
36 #undef HashSetIterator
37 #undef HashSet
38
39 typedef struct type_hash_iterator_t  type_hash_iterator_t;
40 typedef struct type_hash_t           type_hash_t;
41
42 /* TODO: ^= is a bad way of combining hashes since most addresses are very
43  * similar */
44
45 static unsigned hash_ptr(const void *ptr)
46 {
47         unsigned ptr_int = ((char*) ptr - (char*) NULL);
48         return ptr_int >> 3;
49 }
50
51 static unsigned hash_atomic_type(const atomic_type_t *type)
52 {
53         unsigned some_prime = 27644437;
54         unsigned result     = type->akind * some_prime;
55
56         return result;
57 }
58
59 static unsigned hash_complex_type(const complex_type_t *type)
60 {
61         unsigned some_prime = 27644437;
62         unsigned result     = type->akind * some_prime;
63
64         return result;
65 }
66
67 static unsigned hash_imaginary_type(const imaginary_type_t *type)
68 {
69         unsigned some_prime = 27644437;
70         unsigned result     = type->akind * some_prime;
71
72         return result;
73 }
74
75 static unsigned hash_pointer_type(const pointer_type_t *type)
76 {
77         return hash_ptr(type->points_to) ^ hash_ptr(type->base_variable);
78 }
79
80 static unsigned hash_reference_type(const reference_type_t *type)
81 {
82         return hash_ptr(type->refers_to);
83 }
84
85 static unsigned hash_array_type(const array_type_t *type)
86 {
87         return hash_ptr(type->element_type);
88 }
89
90 static unsigned hash_compound_type(const compound_type_t *type)
91 {
92         return hash_ptr(type->compound);
93 }
94
95 static unsigned hash_function_type(const function_type_t *type)
96 {
97         unsigned result = hash_ptr(type->return_type);
98
99         function_parameter_t *parameter = type->parameters;
100         while (parameter != NULL) {
101                 result   ^= hash_ptr(parameter->type);
102                 parameter = parameter->next;
103         }
104         result += type->modifiers;
105         result += type->linkage;
106         result += type->calling_convention;
107
108         return result;
109 }
110
111 static unsigned hash_enum_type(const enum_type_t *type)
112 {
113         return hash_ptr(type->enume);
114 }
115
116 static unsigned hash_typeof_type(const typeof_type_t *type)
117 {
118         unsigned result = hash_ptr(type->expression);
119         result         ^= hash_ptr(type->typeof_type);
120
121         return result;
122 }
123
124 static unsigned hash_bitfield_type(const bitfield_type_t *type)
125 {
126         unsigned result  = hash_ptr(type->base_type);
127         result          ^= 27172145;
128
129         return result;
130 }
131
132 static unsigned hash_type(const type_t *type)
133 {
134         unsigned hash = 0;
135
136         switch (type->kind) {
137         case TYPE_INVALID:
138                 panic("internalizing void or invalid types not possible");
139         case TYPE_ERROR:
140                 return 0;
141         case TYPE_ATOMIC:
142                 hash = hash_atomic_type(&type->atomic);
143                 break;
144         case TYPE_COMPLEX:
145                 hash = hash_complex_type(&type->complex);
146                 break;
147         case TYPE_IMAGINARY:
148                 hash = hash_imaginary_type(&type->imaginary);
149                 break;
150         case TYPE_ENUM:
151                 hash = hash_enum_type(&type->enumt);
152                 break;
153         case TYPE_COMPOUND_STRUCT:
154         case TYPE_COMPOUND_UNION:
155                 hash = hash_compound_type(&type->compound);
156                 break;
157         case TYPE_FUNCTION:
158                 hash = hash_function_type(&type->function);
159                 break;
160         case TYPE_POINTER:
161                 hash = hash_pointer_type(&type->pointer);
162                 break;
163         case TYPE_REFERENCE:
164                 hash = hash_reference_type(&type->reference);
165                 break;
166         case TYPE_ARRAY:
167                 hash = hash_array_type(&type->array);
168                 break;
169         case TYPE_TYPEDEF:
170                 hash = hash_ptr(type->typedeft.typedefe);
171                 break;
172         case TYPE_TYPEOF:
173                 hash = hash_typeof_type(&type->typeoft);
174                 break;
175         case TYPE_BITFIELD:
176                 hash = hash_bitfield_type(&type->bitfield);
177                 break;
178         }
179
180         unsigned some_prime = 99991;
181         hash ^= some_prime * type->base.qualifiers;
182
183         return hash;
184 }
185
186 static bool atomic_types_equal(const atomic_type_t *type1,
187                                                            const atomic_type_t *type2)
188 {
189         return type1->akind == type2->akind;
190 }
191
192 static bool complex_types_equal(const complex_type_t *type1,
193                                                             const complex_type_t *type2)
194 {
195         return type1->akind == type2->akind;
196 }
197
198 static bool imaginary_types_equal(const imaginary_type_t *type1,
199                                                               const imaginary_type_t *type2)
200 {
201         return type1->akind == type2->akind;
202 }
203
204 static bool function_types_equal(const function_type_t *type1,
205                                  const function_type_t *type2)
206 {
207         if (type1->return_type != type2->return_type)
208                 return false;
209         if (type1->variadic != type2->variadic)
210                 return false;
211         if (type1->unspecified_parameters != type2->unspecified_parameters)
212                 return false;
213         if (type1->kr_style_parameters != type2->kr_style_parameters)
214                 return false;
215         if (type1->linkage != type2->linkage)
216                 return false;
217         if (type1->modifiers != type2->modifiers)
218                 return false;
219         if (type1->calling_convention != type2->calling_convention)
220                 return false;
221
222         function_parameter_t *param1 = type1->parameters;
223         function_parameter_t *param2 = type2->parameters;
224         while (param1 != NULL && param2 != NULL) {
225                 if (param1->type != param2->type)
226                         return false;
227                 param1 = param1->next;
228                 param2 = param2->next;
229         }
230         if (param1 != NULL || param2 != NULL)
231                 return false;
232
233         return true;
234 }
235
236 static bool pointer_types_equal(const pointer_type_t *type1,
237                                 const pointer_type_t *type2)
238 {
239         return type1->points_to     == type2->points_to &&
240                type1->base_variable == type2->base_variable;
241 }
242
243 static bool reference_types_equal(const reference_type_t *type1,
244                                   const reference_type_t *type2)
245 {
246         return type1->refers_to == type2->refers_to;
247 }
248
249 static bool array_types_equal(const array_type_t *type1,
250                               const array_type_t *type2)
251 {
252         if (type1->element_type != type2->element_type)
253                 return false;
254         if (type1->is_variable != type2->is_variable)
255                 return false;
256         if (type1->is_static != type2->is_static)
257                 return false;
258         if (type1->size_constant != type2->size_constant)
259                 return false;
260
261         /* never identify vla types, because we need them for caching calculated
262          * sizes later in ast2firm */
263         if (type1->is_vla || type2->is_vla)
264                 return false;
265
266         /* TODO: compare size expressions for equality... */
267
268         return false;
269 }
270
271 static bool compound_types_equal(const compound_type_t *type1,
272                                  const compound_type_t *type2)
273 {
274         return type1->compound == type2->compound;
275 }
276
277 static bool enum_types_equal(const enum_type_t *type1,
278                              const enum_type_t *type2)
279 {
280         return type1->enume == type2->enume;
281 }
282
283 static bool typedef_types_equal(const typedef_type_t *type1,
284                                 const typedef_type_t *type2)
285 {
286         return type1->typedefe == type2->typedefe;
287 }
288
289 static bool typeof_types_equal(const typeof_type_t *type1,
290                                const typeof_type_t *type2)
291 {
292         if (type1->expression != type2->expression)
293                 return false;
294         if (type1->typeof_type != type2->typeof_type)
295                 return false;
296
297         return true;
298 }
299
300 static bool bitfield_types_equal(const bitfield_type_t *type1,
301                                  const bitfield_type_t *type2)
302 {
303         if (type1->base_type != type2->base_type)
304                 return false;
305         /* TODO: compare size expression */
306         return false;
307 }
308
309 static bool types_equal(const type_t *type1, const type_t *type2)
310 {
311         if (type1 == type2)
312                 return true;
313         if (type1->kind != type2->kind)
314                 return false;
315         if (type1->base.qualifiers != type2->base.qualifiers)
316                 return false;
317
318         switch (type1->kind) {
319         case TYPE_ERROR:
320                 /* Hmm, the error type is never equal */
321                 return false;
322         case TYPE_INVALID:
323                 return false;
324         case TYPE_ATOMIC:
325                 return atomic_types_equal(&type1->atomic, &type2->atomic);
326         case TYPE_COMPLEX:
327                 return complex_types_equal(&type1->complex, &type2->complex);
328         case TYPE_IMAGINARY:
329                 return imaginary_types_equal(&type1->imaginary, &type2->imaginary);
330         case TYPE_ENUM:
331                 return enum_types_equal(&type1->enumt, &type2->enumt);
332         case TYPE_COMPOUND_STRUCT:
333         case TYPE_COMPOUND_UNION:
334                 return compound_types_equal(&type1->compound, &type2->compound);
335         case TYPE_FUNCTION:
336                 return function_types_equal(&type1->function, &type2->function);
337         case TYPE_POINTER:
338                 return pointer_types_equal(&type1->pointer, &type2->pointer);
339         case TYPE_REFERENCE:
340                 return reference_types_equal(&type1->reference, &type2->reference);
341         case TYPE_ARRAY:
342                 return array_types_equal(&type1->array, &type2->array);
343         case TYPE_TYPEOF:
344                 return typeof_types_equal(&type1->typeoft, &type2->typeoft);
345         case TYPE_TYPEDEF:
346                 return typedef_types_equal(&type1->typedeft, &type2->typedeft);
347         case TYPE_BITFIELD:
348                 return bitfield_types_equal(&type1->bitfield, &type2->bitfield);
349         }
350
351         abort();
352 }
353
354 #define HashSet                    type_hash_t
355 #define HashSetIterator            type_hash_iterator_t
356 #define ValueType                  type_t*
357 #define NullValue                  NULL
358 #define DeletedValue               ((type_t*)-1)
359 #define Hash(this, key)            hash_type(key)
360 #define KeysEqual(this,key1,key2)  types_equal(key1, key2)
361 #define SetRangeEmpty(ptr,size)    memset(ptr, 0, (size) * sizeof(*(ptr)))
362
363 #define hashset_init             _typehash_init
364 #define hashset_init_size        _typehash_init_size
365 #define hashset_destroy          _typehash_destroy
366 #define hashset_insert           _typehash_insert
367 #define hashset_remove           typehash_remove
368 #define hashset_find             typehash_find
369 #define hashset_size             typehash_size
370 #define hashset_iterator_init    typehash_iterator_init
371 #define hashset_iterator_next    typehash_iterator_next
372 #define hashset_remove_iterator  typehash_remove_iterator
373 #define SCALAR_RETURN
374
375 #include "adt/hashset.c"
376
377 static type_hash_t typehash;
378
379 void init_typehash(void)
380 {
381         _typehash_init(&typehash);
382 }
383
384 void exit_typehash(void)
385 {
386         _typehash_destroy(&typehash);
387 }
388
389 type_t *typehash_insert(type_t *type)
390 {
391         return _typehash_insert(&typehash, type);
392 }