- parsing of __based implemented (more semantic in assignment might be needed)
[cparser] / type_hash.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdbool.h>
23
24 #include "type_hash.h"
25
26 #include "adt/error.h"
27 #include "type_t.h"
28
29 #include <assert.h>
30
31 #define HashSet         type_hash_t
32 #define HashSetIterator type_hash_iterator_t
33 #define ValueType       type_t*
34 #include "adt/hashset.h"
35 #undef ValueType
36 #undef HashSetIterator
37 #undef HashSet
38
39 typedef struct type_hash_iterator_t  type_hash_iterator_t;
40 typedef struct type_hash_t           type_hash_t;
41
42 /* TODO: ^= is a bad way of combining hashes since most addresses are very
43  * similar */
44
45 static unsigned hash_ptr(const void *ptr)
46 {
47         unsigned ptr_int = ((char*) ptr - (char*) NULL);
48         return ptr_int >> 3;
49 }
50
51 static unsigned hash_atomic_type(const atomic_type_t *type)
52 {
53         unsigned some_prime = 27644437;
54         unsigned result     = type->akind * some_prime;
55
56         return result;
57 }
58
59 static unsigned hash_complex_type(const complex_type_t *type)
60 {
61         unsigned some_prime = 27644437;
62         unsigned result     = type->akind * some_prime;
63
64         return result;
65 }
66
67 static unsigned hash_imaginary_type(const imaginary_type_t *type)
68 {
69         unsigned some_prime = 27644437;
70         unsigned result     = type->akind * some_prime;
71
72         return result;
73 }
74
75 static unsigned hash_pointer_type(const pointer_type_t *type)
76 {
77         return hash_ptr(type->points_to);
78 }
79
80 static unsigned hash_array_type(const array_type_t *type)
81 {
82         return hash_ptr(type->element_type);
83 }
84
85 static unsigned hash_compound_type(const compound_type_t *type)
86 {
87         return hash_ptr(type->compound);
88 }
89
90 static unsigned hash_type(const type_t *type);
91
92 static unsigned hash_function_type(const function_type_t *type)
93 {
94         unsigned result = hash_ptr(type->return_type);
95
96         function_parameter_t *parameter = type->parameters;
97         while (parameter != NULL) {
98                 result   ^= hash_ptr(parameter->type);
99                 parameter = parameter->next;
100         }
101         result += type->linkage;
102         result += type->calling_convention;
103
104         return result;
105 }
106
107 static unsigned hash_enum_type(const enum_type_t *type)
108 {
109         return hash_ptr(type->enume);
110 }
111
112 static unsigned hash_typeof_type(const typeof_type_t *type)
113 {
114         unsigned result = hash_ptr(type->expression);
115         result         ^= hash_ptr(type->typeof_type);
116
117         return result;
118 }
119
120 static unsigned hash_bitfield_type(const bitfield_type_t *type)
121 {
122         unsigned result  = hash_ptr(type->base_type);
123         result          ^= 27172145;
124
125         return result;
126 }
127
128 static unsigned hash_type(const type_t *type)
129 {
130         unsigned hash = 0;
131
132         switch (type->kind) {
133         case TYPE_INVALID:
134                 panic("internalizing void or invalid types not possible");
135                 return 0;
136         case TYPE_ERROR:
137                 return 0;
138         case TYPE_ATOMIC:
139                 hash = hash_atomic_type(&type->atomic);
140                 break;
141         case TYPE_COMPLEX:
142                 hash = hash_complex_type(&type->complex);
143                 break;
144         case TYPE_IMAGINARY:
145                 hash = hash_imaginary_type(&type->imaginary);
146                 break;
147         case TYPE_ENUM:
148                 hash = hash_enum_type(&type->enumt);
149                 break;
150         case TYPE_COMPOUND_STRUCT:
151         case TYPE_COMPOUND_UNION:
152                 hash = hash_compound_type(&type->compound);
153                 break;
154         case TYPE_FUNCTION:
155                 hash = hash_function_type(&type->function);
156                 break;
157         case TYPE_POINTER:
158                 hash = hash_pointer_type(&type->pointer);
159                 break;
160         case TYPE_ARRAY:
161                 hash = hash_array_type(&type->array);
162                 break;
163         case TYPE_BUILTIN:
164                 hash = hash_ptr(type->builtin.symbol);
165                 break;
166         case TYPE_TYPEDEF:
167                 hash = hash_ptr(type->typedeft.typedefe);
168                 break;
169         case TYPE_TYPEOF:
170                 hash = hash_typeof_type(&type->typeoft);
171                 break;
172         case TYPE_BITFIELD:
173                 hash = hash_bitfield_type(&type->bitfield);
174                 break;
175         }
176
177         unsigned some_prime = 99991;
178         hash ^= some_prime * type->base.qualifiers;
179
180         return hash;
181 }
182
183 static bool atomic_types_equal(const atomic_type_t *type1,
184                                                            const atomic_type_t *type2)
185 {
186         return type1->akind == type2->akind;
187 }
188
189 static bool complex_types_equal(const complex_type_t *type1,
190                                                             const complex_type_t *type2)
191 {
192         return type1->akind == type2->akind;
193 }
194
195 static bool imaginary_types_equal(const imaginary_type_t *type1,
196                                                               const imaginary_type_t *type2)
197 {
198         return type1->akind == type2->akind;
199 }
200
201 static bool function_types_equal(const function_type_t *type1,
202                                  const function_type_t *type2)
203 {
204         if (type1->return_type != type2->return_type)
205                 return false;
206         if (type1->variadic != type2->variadic)
207                 return false;
208         if (type1->unspecified_parameters != type2->unspecified_parameters)
209                 return false;
210         if (type1->kr_style_parameters != type2->kr_style_parameters)
211                 return false;
212         if (type1->linkage != type2->linkage)
213                 return false;
214         if (type1->calling_convention != type2->calling_convention)
215                 return false;
216
217         function_parameter_t *param1 = type1->parameters;
218         function_parameter_t *param2 = type2->parameters;
219         while (param1 != NULL && param2 != NULL) {
220                 if (param1->type != param2->type)
221                         return false;
222                 param1 = param1->next;
223                 param2 = param2->next;
224         }
225         if (param1 != NULL || param2 != NULL)
226                 return false;
227
228         return true;
229 }
230
231 static bool pointer_types_equal(const pointer_type_t *type1,
232                                 const pointer_type_t *type2)
233 {
234         return type1->points_to     == type2->points_to &&
235                type1->base_variable == type2->base_variable;
236 }
237
238 static bool array_types_equal(const array_type_t *type1,
239                               const array_type_t *type2)
240 {
241         if (type1->element_type != type2->element_type)
242                 return false;
243         if (type1->is_variable != type2->is_variable)
244                 return false;
245         if (type1->is_static != type2->is_static)
246                 return false;
247         if (type1->size_constant != type2->size_constant)
248                 return false;
249
250         /* never identify vla types, because we need them for caching calculated
251          * sizes later in ast2firm */
252         if (type1->is_vla || type2->is_vla)
253                 return false;
254
255         /* TODO: compare size expressions for equality... */
256
257         return false;
258 }
259
260 static bool builtin_types_equal(const builtin_type_t *type1,
261                                 const builtin_type_t *type2)
262 {
263         return type1->symbol == type2->symbol;
264 }
265
266 static bool compound_types_equal(const compound_type_t *type1,
267                                  const compound_type_t *type2)
268 {
269         return type1->compound == type2->compound;
270 }
271
272 static bool enum_types_equal(const enum_type_t *type1,
273                              const enum_type_t *type2)
274 {
275         return type1->enume == type2->enume;
276 }
277
278 static bool typedef_types_equal(const typedef_type_t *type1,
279                                 const typedef_type_t *type2)
280 {
281         return type1->typedefe == type2->typedefe;
282 }
283
284 static bool typeof_types_equal(const typeof_type_t *type1,
285                                const typeof_type_t *type2)
286 {
287         if (type1->expression != type2->expression)
288                 return false;
289         if (type1->typeof_type != type2->typeof_type)
290                 return false;
291
292         return true;
293 }
294
295 static bool bitfield_types_equal(const bitfield_type_t *type1,
296                                  const bitfield_type_t *type2)
297 {
298         if (type1->base_type != type2->base_type)
299                 return false;
300         /* TODO: compare size expression */
301         return false;
302 }
303
304 static bool types_equal(const type_t *type1, const type_t *type2)
305 {
306         if (type1 == type2)
307                 return true;
308         if (type1->kind != type2->kind)
309                 return false;
310         if (type1->base.qualifiers != type2->base.qualifiers)
311                 return false;
312         if (type1->base.modifiers != type2->base.modifiers)
313                 return false;
314
315         switch (type1->kind) {
316         case TYPE_ERROR:
317                 /* Hmm, the error type is never equal */
318                 return false;
319         case TYPE_INVALID:
320                 return false;
321         case TYPE_ATOMIC:
322                 return atomic_types_equal(&type1->atomic, &type2->atomic);
323         case TYPE_COMPLEX:
324                 return complex_types_equal(&type1->complex, &type2->complex);
325         case TYPE_IMAGINARY:
326                 return imaginary_types_equal(&type1->imaginary, &type2->imaginary);
327         case TYPE_ENUM:
328                 return enum_types_equal(&type1->enumt, &type2->enumt);
329         case TYPE_COMPOUND_STRUCT:
330         case TYPE_COMPOUND_UNION:
331                 return compound_types_equal(&type1->compound, &type2->compound);
332         case TYPE_FUNCTION:
333                 return function_types_equal(&type1->function, &type2->function);
334         case TYPE_POINTER:
335                 return pointer_types_equal(&type1->pointer, &type2->pointer);
336         case TYPE_ARRAY:
337                 return array_types_equal(&type1->array, &type2->array);
338         case TYPE_BUILTIN:
339                 return builtin_types_equal(&type1->builtin, &type2->builtin);
340         case TYPE_TYPEOF:
341                 return typeof_types_equal(&type1->typeoft, &type2->typeoft);
342         case TYPE_TYPEDEF:
343                 return typedef_types_equal(&type1->typedeft, &type2->typedeft);
344         case TYPE_BITFIELD:
345                 return bitfield_types_equal(&type1->bitfield, &type2->bitfield);
346         }
347
348         abort();
349 }
350
351 #define HashSet                    type_hash_t
352 #define HashSetIterator            type_hash_iterator_t
353 #define ValueType                  type_t*
354 #define NullValue                  NULL
355 #define DeletedValue               ((type_t*)-1)
356 #define Hash(this, key)            hash_type(key)
357 #define KeysEqual(this,key1,key2)  types_equal(key1, key2)
358 #define SetRangeEmpty(ptr,size)    memset(ptr, 0, (size) * sizeof(*(ptr)))
359
360 #define hashset_init             _typehash_init
361 #define hashset_init_size        _typehash_init_size
362 #define hashset_destroy          _typehash_destroy
363 #define hashset_insert           _typehash_insert
364 #define hashset_remove           typehash_remove
365 #define hashset_find             typehash_find
366 #define hashset_size             typehash_size
367 #define hashset_iterator_init    typehash_iterator_init
368 #define hashset_iterator_next    typehash_iterator_next
369 #define hashset_remove_iterator  typehash_remove_iterator
370 #define SCALAR_RETURN
371
372 #include "adt/hashset.c"
373
374 static type_hash_t typehash;
375
376 void init_typehash(void)
377 {
378         _typehash_init(&typehash);
379 }
380
381 void exit_typehash(void)
382 {
383         _typehash_destroy(&typehash);
384 }
385
386 type_t *typehash_insert(type_t *type)
387 {
388         return _typehash_insert(&typehash, type);
389 }