Skip non-parameter entities in parameter lists. This happens when a struct/union...
[cparser] / type.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdio.h>
23 #include <assert.h>
24
25 #include "type_t.h"
26 #include "entity_t.h"
27 #include "symbol_t.h"
28 #include "type_hash.h"
29 #include "adt/error.h"
30 #include "adt/util.h"
31 #include "lang_features.h"
32
33 static struct obstack   _type_obst;
34 static FILE            *out;
35 struct obstack         *type_obst                 = &_type_obst;
36 static int              type_visited              = 0;
37 static bool             print_implicit_array_size = false;
38
39 static void intern_print_type_pre(const type_t *type, bool top);
40 static void intern_print_type_post(const type_t *type, bool top);
41
42 typedef struct atomic_type_properties_t atomic_type_properties_t;
43 struct atomic_type_properties_t {
44         unsigned   size;              /**< type size in bytes */
45         unsigned   alignment;         /**< type alignment in bytes */
46         unsigned   flags;             /**< type flags from atomic_type_flag_t */
47 };
48
49 static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
50         //ATOMIC_TYPE_INVALID = 0,
51         [ATOMIC_TYPE_VOID] = {
52                 .size       = 0,
53                 .alignment  = 0,
54                 .flags      = ATOMIC_TYPE_FLAG_NONE
55         },
56         [ATOMIC_TYPE_WCHAR_T] = {
57                 .size       = (unsigned)-1,
58                 .alignment  = (unsigned)-1,
59                 /* signed flag will be set when known */
60                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
61         },
62         [ATOMIC_TYPE_CHAR] = {
63                 .size       = 1,
64                 .alignment  = 1,
65                 /* signed flag will be set when known */
66                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
67         },
68         [ATOMIC_TYPE_SCHAR] = {
69                 .size       = 1,
70                 .alignment  = 1,
71                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
72                               | ATOMIC_TYPE_FLAG_SIGNED,
73         },
74         [ATOMIC_TYPE_UCHAR] = {
75                 .size       = 1,
76                 .alignment  = 1,
77                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
78         },
79         [ATOMIC_TYPE_SHORT] = {
80                 .size       = 2,
81                 .alignment  = 2,
82                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
83                               | ATOMIC_TYPE_FLAG_SIGNED
84         },
85         [ATOMIC_TYPE_USHORT] = {
86                 .size       = 2,
87                 .alignment  = 2,
88                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
89         },
90         [ATOMIC_TYPE_INT] = {
91                 .size       = (unsigned) -1,
92                 .alignment  = (unsigned) -1,
93                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
94                               | ATOMIC_TYPE_FLAG_SIGNED,
95         },
96         [ATOMIC_TYPE_UINT] = {
97                 .size       = (unsigned) -1,
98                 .alignment  = (unsigned) -1,
99                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
100         },
101         [ATOMIC_TYPE_LONG] = {
102                 .size       = (unsigned) -1,
103                 .alignment  = (unsigned) -1,
104                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
105                               | ATOMIC_TYPE_FLAG_SIGNED,
106         },
107         [ATOMIC_TYPE_ULONG] = {
108                 .size       = (unsigned) -1,
109                 .alignment  = (unsigned) -1,
110                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
111         },
112         [ATOMIC_TYPE_LONGLONG] = {
113                 .size       = (unsigned) -1,
114                 .alignment  = (unsigned) -1,
115                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
116                               | ATOMIC_TYPE_FLAG_SIGNED,
117         },
118         [ATOMIC_TYPE_ULONGLONG] = {
119                 .size       = (unsigned) -1,
120                 .alignment  = (unsigned) -1,
121                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
122         },
123         [ATOMIC_TYPE_BOOL] = {
124                 .size       = (unsigned) -1,
125                 .alignment  = (unsigned) -1,
126                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
127         },
128         [ATOMIC_TYPE_FLOAT] = {
129                 .size       = 4,
130                 .alignment  = (unsigned) -1,
131                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
132                               | ATOMIC_TYPE_FLAG_SIGNED,
133         },
134         [ATOMIC_TYPE_DOUBLE] = {
135                 .size       = 8,
136                 .alignment  = (unsigned) -1,
137                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
138                               | ATOMIC_TYPE_FLAG_SIGNED,
139         },
140         [ATOMIC_TYPE_LONG_DOUBLE] = {
141                 .size       = 12,
142                 .alignment  = (unsigned) -1,
143                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
144                               | ATOMIC_TYPE_FLAG_SIGNED,
145         },
146         /* complex and imaginary types are set in init_types */
147 };
148
149 void init_types(void)
150 {
151         obstack_init(type_obst);
152
153         atomic_type_properties_t *props = atomic_type_properties;
154
155         if (char_is_signed) {
156                 props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED;
157         }
158
159         unsigned int_size   = machine_size < 32 ? 2 : 4;
160         unsigned long_size  = machine_size < 64 ? 4 : 8;
161         unsigned llong_size = machine_size < 32 ? 4 : 8;
162
163         props[ATOMIC_TYPE_INT].size            = int_size;
164         props[ATOMIC_TYPE_INT].alignment       = int_size;
165         props[ATOMIC_TYPE_UINT].size           = int_size;
166         props[ATOMIC_TYPE_UINT].alignment      = int_size;
167         props[ATOMIC_TYPE_LONG].size           = long_size;
168         props[ATOMIC_TYPE_LONG].alignment      = long_size;
169         props[ATOMIC_TYPE_ULONG].size          = long_size;
170         props[ATOMIC_TYPE_ULONG].alignment     = long_size;
171         props[ATOMIC_TYPE_LONGLONG].size       = llong_size;
172         props[ATOMIC_TYPE_LONGLONG].alignment  = llong_size;
173         props[ATOMIC_TYPE_ULONGLONG].size      = llong_size;
174         props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size;
175
176         /* TODO: backend specific, need a way to query the backend for this.
177          * The following are good settings for x86 */
178         props[ATOMIC_TYPE_FLOAT].alignment       = 4;
179         props[ATOMIC_TYPE_DOUBLE].alignment      = 4;
180         props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4;
181         props[ATOMIC_TYPE_LONGLONG].alignment    = 4;
182         props[ATOMIC_TYPE_ULONGLONG].alignment   = 4;
183
184         /* TODO: make this configurable for platforms which do not use byte sized
185          * bools. */
186         props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR];
187
188         props[ATOMIC_TYPE_WCHAR_T] = props[wchar_atomic_kind];
189 }
190
191 void exit_types(void)
192 {
193         obstack_free(type_obst, NULL);
194 }
195
196 void type_set_output(FILE *stream)
197 {
198         out = stream;
199 }
200
201 void inc_type_visited(void)
202 {
203         type_visited++;
204 }
205
206 void print_type_qualifiers(type_qualifiers_t qualifiers)
207 {
208         int first = 1;
209         if (qualifiers & TYPE_QUALIFIER_CONST) {
210                 fputs(" const" + first,    out);
211                 first = 0;
212         }
213         if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
214                 fputs(" volatile" + first, out);
215                 first = 0;
216         }
217         if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
218                 fputs(" restrict" + first, out);
219                 first = 0;
220         }
221 }
222
223 const char *get_atomic_kind_name(atomic_type_kind_t kind)
224 {
225         switch(kind) {
226         case ATOMIC_TYPE_INVALID: break;
227         case ATOMIC_TYPE_VOID:        return "void";
228         case ATOMIC_TYPE_WCHAR_T:     return "wchar_t";
229         case ATOMIC_TYPE_BOOL:        return c_mode & _CXX ? "bool" : "_Bool";
230         case ATOMIC_TYPE_CHAR:        return "char";
231         case ATOMIC_TYPE_SCHAR:       return "signed char";
232         case ATOMIC_TYPE_UCHAR:       return "unsigned char";
233         case ATOMIC_TYPE_INT:         return "int";
234         case ATOMIC_TYPE_UINT:        return "unsigned int";
235         case ATOMIC_TYPE_SHORT:       return "short";
236         case ATOMIC_TYPE_USHORT:      return "unsigned short";
237         case ATOMIC_TYPE_LONG:        return "long";
238         case ATOMIC_TYPE_ULONG:       return "unsigned long";
239         case ATOMIC_TYPE_LONGLONG:    return "long long";
240         case ATOMIC_TYPE_ULONGLONG:   return "unsigned long long";
241         case ATOMIC_TYPE_LONG_DOUBLE: return "long double";
242         case ATOMIC_TYPE_FLOAT:       return "float";
243         case ATOMIC_TYPE_DOUBLE:      return "double";
244         }
245         return "INVALIDATOMIC";
246 }
247
248 /**
249  * Prints the name of an atomic type kinds.
250  *
251  * @param kind  The type kind.
252  */
253 static void print_atomic_kinds(atomic_type_kind_t kind)
254 {
255         const char *s = get_atomic_kind_name(kind);
256         fputs(s, out);
257 }
258
259 /**
260  * Prints the name of an atomic type.
261  *
262  * @param type  The type.
263  */
264 static void print_atomic_type(const atomic_type_t *type)
265 {
266         print_type_qualifiers(type->base.qualifiers);
267         if (type->base.qualifiers != 0)
268                 fputc(' ', out);
269         print_atomic_kinds(type->akind);
270 }
271
272 /**
273  * Prints the name of a complex type.
274  *
275  * @param type  The type.
276  */
277 static
278 void print_complex_type(const complex_type_t *type)
279 {
280         int empty = type->base.qualifiers == 0;
281         print_type_qualifiers(type->base.qualifiers);
282         fputs(" _Complex " + empty, out);
283         print_atomic_kinds(type->akind);
284 }
285
286 /**
287  * Prints the name of an imaginary type.
288  *
289  * @param type  The type.
290  */
291 static
292 void print_imaginary_type(const imaginary_type_t *type)
293 {
294         int empty = type->base.qualifiers == 0;
295         print_type_qualifiers(type->base.qualifiers);
296         fputs(" _Imaginary " + empty, out);
297         print_atomic_kinds(type->akind);
298 }
299
300 /**
301  * Print the first part (the prefix) of a type.
302  *
303  * @param type   The type to print.
304  * @param top    true, if this is the top type, false if it's an embedded type.
305  */
306 static void print_function_type_pre(const function_type_t *type, bool top)
307 {
308         switch (type->linkage) {
309                 case LINKAGE_INVALID:
310                         break;
311
312                 case LINKAGE_C:
313                         if (c_mode & _CXX)
314                                 fputs("extern \"C\" ",   out);
315                         break;
316
317                 case LINKAGE_CXX:
318                         if (!(c_mode & _CXX))
319                                 fputs("extern \"C++\" ", out);
320                         break;
321         }
322
323         print_type_qualifiers(type->base.qualifiers);
324         if (type->base.qualifiers != 0)
325                 fputc(' ', out);
326
327         intern_print_type_pre(type->return_type, false);
328
329         switch (type->calling_convention) {
330         case CC_CDECL:    fputs("__cdecl ",    out); break;
331         case CC_STDCALL:  fputs("__stdcall ",  out); break;
332         case CC_FASTCALL: fputs("__fastcall ", out); break;
333         case CC_THISCALL: fputs("__thiscall ", out); break;
334         case CC_DEFAULT:  break;
335         }
336
337         /* don't emit parenthesis if we're the toplevel type... */
338         if (!top)
339                 fputc('(', out);
340 }
341
342 /**
343  * Print the second part (the postfix) of a type.
344  *
345  * @param type   The type to print.
346  * @param top    true, if this is the top type, false if it's an embedded type.
347  */
348 static void print_function_type_post(const function_type_t *type,
349                                      const scope_t *parameters, bool top)
350 {
351         /* don't emit parenthesis if we're the toplevel type... */
352         if (!top)
353                 fputc(')', out);
354
355         fputc('(', out);
356         bool first = true;
357         if (parameters == NULL) {
358                 function_parameter_t *parameter = type->parameters;
359                 for( ; parameter != NULL; parameter = parameter->next) {
360                         if (first) {
361                                 first = false;
362                         } else {
363                                 fputs(", ", out);
364                         }
365                         print_type(parameter->type);
366                 }
367         } else {
368                 entity_t *parameter = parameters->entities;
369                 for (; parameter != NULL; parameter = parameter->base.next) {
370                         if (parameter->kind != ENTITY_PARAMETER)
371                                 continue;
372
373                         if (first) {
374                                 first = false;
375                         } else {
376                                 fputs(", ", out);
377                         }
378                         const type_t *const type = parameter->declaration.type;
379                         if (type == NULL) {
380                                 fputs(parameter->base.symbol->string, out);
381                         } else {
382                                 print_type_ext(type, parameter->base.symbol, NULL);
383                         }
384                 }
385         }
386         if (type->variadic) {
387                 if (first) {
388                         first = false;
389                 } else {
390                         fputs(", ", out);
391                 }
392                 fputs("...", out);
393         }
394         if (first && !type->unspecified_parameters) {
395                 fputs("void", out);
396         }
397         fputc(')', out);
398
399         intern_print_type_post(type->return_type, false);
400 }
401
402 /**
403  * Prints the prefix part of a pointer type.
404  *
405  * @param type   The pointer type.
406  */
407 static void print_pointer_type_pre(const pointer_type_t *type)
408 {
409         intern_print_type_pre(type->points_to, false);
410         variable_t *const variable = type->base_variable;
411         if (variable != NULL) {
412                 fputs(" __based(", out);
413                 fputs(variable->base.base.symbol->string, out);
414                 fputs(") ", out);
415         }
416         fputc('*', out);
417         type_qualifiers_t const qual = type->base.qualifiers;
418         if (qual != 0)
419                 fputc(' ', out);
420         print_type_qualifiers(qual);
421 }
422
423 /**
424  * Prints the prefix part of a reference type.
425  *
426  * @param type   The reference type.
427  */
428 static void print_reference_type_pre(const reference_type_t *type)
429 {
430         intern_print_type_pre(type->refers_to, false);
431         fputc('&', out);
432 }
433
434 /**
435  * Prints the postfix part of a pointer type.
436  *
437  * @param type   The pointer type.
438  */
439 static void print_pointer_type_post(const pointer_type_t *type)
440 {
441         intern_print_type_post(type->points_to, false);
442 }
443
444 /**
445  * Prints the postfix part of a reference type.
446  *
447  * @param type   The reference type.
448  */
449 static void print_reference_type_post(const reference_type_t *type)
450 {
451         intern_print_type_post(type->refers_to, false);
452 }
453
454 /**
455  * Prints the prefix part of an array type.
456  *
457  * @param type   The array type.
458  */
459 static void print_array_type_pre(const array_type_t *type)
460 {
461         intern_print_type_pre(type->element_type, false);
462 }
463
464 /**
465  * Prints the postfix part of an array type.
466  *
467  * @param type   The array type.
468  */
469 static void print_array_type_post(const array_type_t *type)
470 {
471         fputc('[', out);
472         if (type->is_static) {
473                 fputs("static ", out);
474         }
475         print_type_qualifiers(type->base.qualifiers);
476         if (type->base.qualifiers != 0)
477                 fputc(' ', out);
478         if (type->size_expression != NULL
479                         && (print_implicit_array_size || !type->has_implicit_size)) {
480                 print_expression(type->size_expression);
481         }
482         fputc(']', out);
483         intern_print_type_post(type->element_type, false);
484 }
485
486 /**
487  * Prints the postfix part of a bitfield type.
488  *
489  * @param type   The array type.
490  */
491 static void print_bitfield_type_post(const bitfield_type_t *type)
492 {
493         fputs(" : ", out);
494         print_expression(type->size_expression);
495         intern_print_type_post(type->base_type, false);
496 }
497
498 /**
499  * Prints an enum definition.
500  *
501  * @param declaration  The enum's type declaration.
502  */
503 void print_enum_definition(const enum_t *enume)
504 {
505         fputs("{\n", out);
506
507         change_indent(1);
508
509         entity_t *entry = enume->base.next;
510         for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
511                entry = entry->base.next) {
512
513                 print_indent();
514                 fputs(entry->base.symbol->string, out);
515                 if (entry->enum_value.value != NULL) {
516                         fputs(" = ", out);
517
518                         /* skip the implicit cast */
519                         expression_t *expression = entry->enum_value.value;
520                         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
521                                 expression = expression->unary.value;
522                         }
523                         print_expression(expression);
524                 }
525                 fputs(",\n", out);
526         }
527
528         change_indent(-1);
529         print_indent();
530         fputc('}', out);
531 }
532
533 /**
534  * Prints an enum type.
535  *
536  * @param type  The enum type.
537  */
538 static void print_type_enum(const enum_type_t *type)
539 {
540         int empty = type->base.qualifiers == 0;
541         print_type_qualifiers(type->base.qualifiers);
542         fputs(" enum " + empty, out);
543
544         enum_t   *enume  = type->enume;
545         symbol_t *symbol = enume->base.symbol;
546         if (symbol != NULL) {
547                 fputs(symbol->string, out);
548         } else {
549                 print_enum_definition(enume);
550         }
551 }
552
553 /**
554  * Print the compound part of a compound type.
555  */
556 void print_compound_definition(const compound_t *compound)
557 {
558         fputs("{\n", out);
559         change_indent(1);
560
561         entity_t *entity = compound->members.entities;
562         for( ; entity != NULL; entity = entity->base.next) {
563                 if (entity->kind != ENTITY_COMPOUND_MEMBER)
564                         continue;
565
566                 print_indent();
567                 print_entity(entity);
568                 fputc('\n', out);
569         }
570
571         change_indent(-1);
572         print_indent();
573         fputc('}', out);
574         if (compound->modifiers & DM_TRANSPARENT_UNION) {
575                 fputs("__attribute__((__transparent_union__))", out);
576         }
577 }
578
579 /**
580  * Prints a compound type.
581  *
582  * @param type  The compound type.
583  */
584 static void print_compound_type(const compound_type_t *type)
585 {
586         int empty = type->base.qualifiers == 0;
587         print_type_qualifiers(type->base.qualifiers);
588
589         if (type->base.kind == TYPE_COMPOUND_STRUCT) {
590                 fputs(" struct " + empty, out);
591         } else {
592                 assert(type->base.kind == TYPE_COMPOUND_UNION);
593                 fputs(" union " + empty, out);
594         }
595
596         compound_t *compound = type->compound;
597         symbol_t   *symbol   = compound->base.symbol;
598         if (symbol != NULL) {
599                 fputs(symbol->string, out);
600         } else {
601                 print_compound_definition(compound);
602         }
603 }
604
605 /**
606  * Prints the prefix part of a typedef type.
607  *
608  * @param type   The typedef type.
609  */
610 static void print_typedef_type_pre(const typedef_type_t *const type)
611 {
612         print_type_qualifiers(type->base.qualifiers);
613         if (type->base.qualifiers != 0)
614                 fputc(' ', out);
615         fputs(type->typedefe->base.symbol->string, out);
616 }
617
618 /**
619  * Prints the prefix part of a typeof type.
620  *
621  * @param type   The typeof type.
622  */
623 static void print_typeof_type_pre(const typeof_type_t *const type)
624 {
625         fputs("typeof(", out);
626         if (type->expression != NULL) {
627                 print_expression(type->expression);
628         } else {
629                 print_type(type->typeof_type);
630         }
631         fputc(')', out);
632 }
633
634 /**
635  * Prints the prefix part of a type.
636  *
637  * @param type   The type.
638  * @param top    true if we print the toplevel type, false else.
639  */
640 static void intern_print_type_pre(const type_t *const type, const bool top)
641 {
642         switch(type->kind) {
643         case TYPE_ERROR:
644                 fputs("<error>", out);
645                 return;
646         case TYPE_INVALID:
647                 fputs("<invalid>", out);
648                 return;
649         case TYPE_ENUM:
650                 print_type_enum(&type->enumt);
651                 return;
652         case TYPE_ATOMIC:
653                 print_atomic_type(&type->atomic);
654                 return;
655         case TYPE_COMPLEX:
656                 print_complex_type(&type->complex);
657                 return;
658         case TYPE_IMAGINARY:
659                 print_imaginary_type(&type->imaginary);
660                 return;
661         case TYPE_COMPOUND_STRUCT:
662         case TYPE_COMPOUND_UNION:
663                 print_compound_type(&type->compound);
664                 return;
665         case TYPE_BUILTIN:
666                 fputs(type->builtin.symbol->string, out);
667                 return;
668         case TYPE_FUNCTION:
669                 print_function_type_pre(&type->function, top);
670                 return;
671         case TYPE_POINTER:
672                 print_pointer_type_pre(&type->pointer);
673                 return;
674         case TYPE_REFERENCE:
675                 print_reference_type_pre(&type->reference);
676                 return;
677         case TYPE_BITFIELD:
678                 intern_print_type_pre(type->bitfield.base_type, top);
679                 return;
680         case TYPE_ARRAY:
681                 print_array_type_pre(&type->array);
682                 return;
683         case TYPE_TYPEDEF:
684                 print_typedef_type_pre(&type->typedeft);
685                 return;
686         case TYPE_TYPEOF:
687                 print_typeof_type_pre(&type->typeoft);
688                 return;
689         }
690         fputs("unknown", out);
691 }
692
693 /**
694  * Prints the postfix part of a type.
695  *
696  * @param type   The type.
697  * @param top    true if we print the toplevel type, false else.
698  */
699 static void intern_print_type_post(const type_t *const type, const bool top)
700 {
701         switch(type->kind) {
702         case TYPE_FUNCTION:
703                 print_function_type_post(&type->function, NULL, top);
704                 return;
705         case TYPE_POINTER:
706                 print_pointer_type_post(&type->pointer);
707                 return;
708         case TYPE_REFERENCE:
709                 print_reference_type_post(&type->reference);
710                 return;
711         case TYPE_ARRAY:
712                 print_array_type_post(&type->array);
713                 return;
714         case TYPE_BITFIELD:
715                 print_bitfield_type_post(&type->bitfield);
716                 return;
717         case TYPE_ERROR:
718         case TYPE_INVALID:
719         case TYPE_ATOMIC:
720         case TYPE_COMPLEX:
721         case TYPE_IMAGINARY:
722         case TYPE_ENUM:
723         case TYPE_COMPOUND_STRUCT:
724         case TYPE_COMPOUND_UNION:
725         case TYPE_BUILTIN:
726         case TYPE_TYPEOF:
727         case TYPE_TYPEDEF:
728                 break;
729         }
730
731         if (type->base.modifiers & DM_TRANSPARENT_UNION) {
732                 fputs("__attribute__((__transparent_union__))", out);
733         }
734 }
735
736 /**
737  * Prints a type.
738  *
739  * @param type   The type.
740  */
741 void print_type(const type_t *const type)
742 {
743         print_type_ext(type, NULL, NULL);
744 }
745
746 void print_type_ext(const type_t *const type, const symbol_t *symbol,
747                     const scope_t *parameters)
748 {
749         if (type == NULL) {
750                 fputs("nil type", out);
751                 return;
752         }
753
754         intern_print_type_pre(type, true);
755         if (symbol != NULL) {
756                 fputc(' ', out);
757                 fputs(symbol->string, out);
758         }
759         if (type->kind == TYPE_FUNCTION) {
760                 print_function_type_post(&type->function, parameters, true);
761         } else {
762                 intern_print_type_post(type, true);
763         }
764 }
765
766 /**
767  * Return the size of a type AST node.
768  *
769  * @param type  The type.
770  */
771 static size_t get_type_size(const type_t *type)
772 {
773         switch(type->kind) {
774         case TYPE_ATOMIC:          return sizeof(atomic_type_t);
775         case TYPE_COMPLEX:         return sizeof(complex_type_t);
776         case TYPE_IMAGINARY:       return sizeof(imaginary_type_t);
777         case TYPE_COMPOUND_STRUCT:
778         case TYPE_COMPOUND_UNION:  return sizeof(compound_type_t);
779         case TYPE_ENUM:            return sizeof(enum_type_t);
780         case TYPE_FUNCTION:        return sizeof(function_type_t);
781         case TYPE_POINTER:         return sizeof(pointer_type_t);
782         case TYPE_REFERENCE:       return sizeof(reference_type_t);
783         case TYPE_ARRAY:           return sizeof(array_type_t);
784         case TYPE_BUILTIN:         return sizeof(builtin_type_t);
785         case TYPE_TYPEDEF:         return sizeof(typedef_type_t);
786         case TYPE_TYPEOF:          return sizeof(typeof_type_t);
787         case TYPE_BITFIELD:        return sizeof(bitfield_type_t);
788         case TYPE_ERROR:           panic("error type found");
789         case TYPE_INVALID:         panic("invalid type found");
790         }
791         panic("unknown type found");
792 }
793
794 /**
795  * Duplicates a type.
796  *
797  * @param type  The type to copy.
798  * @return A copy of the type.
799  *
800  * @note This does not produce a deep copy!
801  */
802 type_t *duplicate_type(const type_t *type)
803 {
804         size_t size = get_type_size(type);
805
806         type_t *copy = obstack_alloc(type_obst, size);
807         memcpy(copy, type, size);
808         copy->base.firm_type = NULL;
809
810         return copy;
811 }
812
813 /**
814  * Returns the unqualified type of a given type.
815  *
816  * @param type  The type.
817  * @returns The unqualified type.
818  */
819 type_t *get_unqualified_type(type_t *type)
820 {
821         assert(!is_typeref(type));
822
823         if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
824                 return type;
825
826         type_t *unqualified_type          = duplicate_type(type);
827         unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
828
829         return identify_new_type(unqualified_type);
830 }
831
832 type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual)
833 {
834         type_t *type = skip_typeref(orig_type);
835
836         type_t *copy;
837         if (is_type_array(type)) {
838                 /* For array types the element type has to be adjusted */
839                 type_t *element_type      = type->array.element_type;
840                 type_t *qual_element_type = get_qualified_type(element_type, qual);
841
842                 if (qual_element_type == element_type)
843                         return orig_type;
844
845                 copy                     = duplicate_type(type);
846                 copy->array.element_type = qual_element_type;
847         } else if (is_type_valid(type)) {
848                 if ((type->base.qualifiers & qual) == qual)
849                         return orig_type;
850
851                 copy                   = duplicate_type(type);
852                 copy->base.qualifiers |= qual;
853         } else {
854                 return type;
855         }
856
857         return identify_new_type(copy);
858 }
859
860 /**
861  * Check if a type is valid.
862  *
863  * @param type  The type to check.
864  * @return true if type represents a valid type.
865  */
866 bool type_valid(const type_t *type)
867 {
868         return type->kind != TYPE_INVALID;
869 }
870
871 static bool test_atomic_type_flag(atomic_type_kind_t kind,
872                                   atomic_type_flag_t flag)
873 {
874         assert(kind <= ATOMIC_TYPE_LAST);
875         return (atomic_type_properties[kind].flags & flag) != 0;
876 }
877
878 /**
879  * Returns true if the given type is an integer type.
880  *
881  * @param type  The type to check.
882  * @return True if type is an integer type.
883  */
884 bool is_type_integer(const type_t *type)
885 {
886         assert(!is_typeref(type));
887
888         if (type->kind == TYPE_ENUM)
889                 return true;
890         if (type->kind == TYPE_BITFIELD)
891                 return true;
892
893         if (type->kind != TYPE_ATOMIC)
894                 return false;
895
896         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
897 }
898
899 /**
900  * Returns true if the given type is an enum type.
901  *
902  * @param type  The type to check.
903  * @return True if type is an enum type.
904  */
905 bool is_type_enum(const type_t *type)
906 {
907         assert(!is_typeref(type));
908         return type->kind == TYPE_ENUM;
909 }
910
911 /**
912  * Returns true if the given type is an floating point type.
913  *
914  * @param type  The type to check.
915  * @return True if type is a floating point type.
916  */
917 bool is_type_float(const type_t *type)
918 {
919         assert(!is_typeref(type));
920
921         if (type->kind != TYPE_ATOMIC)
922                 return false;
923
924         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
925 }
926
927 /**
928  * Returns true if the given type is an complex type.
929  *
930  * @param type  The type to check.
931  * @return True if type is a complex type.
932  */
933 bool is_type_complex(const type_t *type)
934 {
935         assert(!is_typeref(type));
936
937         if (type->kind != TYPE_ATOMIC)
938                 return false;
939
940         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
941 }
942
943 /**
944  * Returns true if the given type is a signed type.
945  *
946  * @param type  The type to check.
947  * @return True if type is a signed type.
948  */
949 bool is_type_signed(const type_t *type)
950 {
951         assert(!is_typeref(type));
952
953         /* enum types are int for now */
954         if (type->kind == TYPE_ENUM)
955                 return true;
956         if (type->kind == TYPE_BITFIELD)
957                 return is_type_signed(type->bitfield.base_type);
958
959         if (type->kind != TYPE_ATOMIC)
960                 return false;
961
962         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
963 }
964
965 /**
966  * Returns true if the given type represents an arithmetic type.
967  *
968  * @param type  The type to check.
969  * @return True if type represents an arithmetic type.
970  */
971 bool is_type_arithmetic(const type_t *type)
972 {
973         assert(!is_typeref(type));
974
975         switch(type->kind) {
976         case TYPE_BITFIELD:
977         case TYPE_ENUM:
978                 return true;
979         case TYPE_ATOMIC:
980                 return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
981         case TYPE_COMPLEX:
982                 return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
983         case TYPE_IMAGINARY:
984                 return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
985         default:
986                 return false;
987         }
988 }
989
990 /**
991  * Returns true if the given type is an integer or float type.
992  *
993  * @param type  The type to check.
994  * @return True if type is an integer or float type.
995  */
996 bool is_type_real(const type_t *type)
997 {
998         /* 6.2.5 (17) */
999         return is_type_integer(type) || is_type_float(type);
1000 }
1001
1002 /**
1003  * Returns true if the given type represents a scalar type.
1004  *
1005  * @param type  The type to check.
1006  * @return True if type represents a scalar type.
1007  */
1008 bool is_type_scalar(const type_t *type)
1009 {
1010         assert(!is_typeref(type));
1011
1012         switch (type->kind) {
1013                 case TYPE_POINTER: return true;
1014                 case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type);
1015                 default:           break;
1016         }
1017
1018         return is_type_arithmetic(type);
1019 }
1020
1021 /**
1022  * Check if a given type is incomplete.
1023  *
1024  * @param type  The type to check.
1025  * @return True if the given type is incomplete (ie. just forward).
1026  */
1027 bool is_type_incomplete(const type_t *type)
1028 {
1029         assert(!is_typeref(type));
1030
1031         switch(type->kind) {
1032         case TYPE_COMPOUND_STRUCT:
1033         case TYPE_COMPOUND_UNION: {
1034                 const compound_type_t *compound_type = &type->compound;
1035                 return !compound_type->compound->complete;
1036         }
1037         case TYPE_ENUM:
1038                 return false;
1039
1040         case TYPE_ARRAY:
1041                 return type->array.size_expression == NULL
1042                         && !type->array.size_constant;
1043
1044         case TYPE_ATOMIC:
1045                 return type->atomic.akind == ATOMIC_TYPE_VOID;
1046
1047         case TYPE_COMPLEX:
1048                 return type->complex.akind == ATOMIC_TYPE_VOID;
1049
1050         case TYPE_IMAGINARY:
1051                 return type->imaginary.akind == ATOMIC_TYPE_VOID;
1052
1053         case TYPE_BITFIELD:
1054         case TYPE_FUNCTION:
1055         case TYPE_POINTER:
1056         case TYPE_REFERENCE:
1057         case TYPE_BUILTIN:
1058         case TYPE_ERROR:
1059                 return false;
1060
1061         case TYPE_TYPEDEF:
1062         case TYPE_TYPEOF:
1063                 panic("is_type_incomplete called without typerefs skipped");
1064         case TYPE_INVALID:
1065                 break;
1066         }
1067
1068         panic("invalid type found");
1069 }
1070
1071 bool is_type_object(const type_t *type)
1072 {
1073         return !is_type_function(type) && !is_type_incomplete(type);
1074 }
1075
1076 /**
1077  * Check if two function types are compatible.
1078  */
1079 static bool function_types_compatible(const function_type_t *func1,
1080                                       const function_type_t *func2)
1081 {
1082         const type_t* const ret1 = skip_typeref(func1->return_type);
1083         const type_t* const ret2 = skip_typeref(func2->return_type);
1084         if (!types_compatible(ret1, ret2))
1085                 return false;
1086
1087         if (func1->linkage != func2->linkage)
1088                 return false;
1089
1090         if (func1->calling_convention != func2->calling_convention)
1091                 return false;
1092
1093         /* can parameters be compared? */
1094         if (func1->unspecified_parameters || func2->unspecified_parameters)
1095                 return true;
1096
1097         if (func1->variadic != func2->variadic)
1098                 return false;
1099
1100         /* TODO: handling of unspecified parameters not correct yet */
1101
1102         /* all argument types must be compatible */
1103         function_parameter_t *parameter1 = func1->parameters;
1104         function_parameter_t *parameter2 = func2->parameters;
1105         for ( ; parameter1 != NULL && parameter2 != NULL;
1106                         parameter1 = parameter1->next, parameter2 = parameter2->next) {
1107                 type_t *parameter1_type = skip_typeref(parameter1->type);
1108                 type_t *parameter2_type = skip_typeref(parameter2->type);
1109
1110                 parameter1_type = get_unqualified_type(parameter1_type);
1111                 parameter2_type = get_unqualified_type(parameter2_type);
1112
1113                 if (!types_compatible(parameter1_type, parameter2_type))
1114                         return false;
1115         }
1116         /* same number of arguments? */
1117         if (parameter1 != NULL || parameter2 != NULL)
1118                 return false;
1119
1120         return true;
1121 }
1122
1123 /**
1124  * Check if two array types are compatible.
1125  */
1126 static bool array_types_compatible(const array_type_t *array1,
1127                                    const array_type_t *array2)
1128 {
1129         type_t *element_type1 = skip_typeref(array1->element_type);
1130         type_t *element_type2 = skip_typeref(array2->element_type);
1131         if (!types_compatible(element_type1, element_type2))
1132                 return false;
1133
1134         if (!array1->size_constant || !array2->size_constant)
1135                 return true;
1136
1137         return array1->size == array2->size;
1138 }
1139
1140 /**
1141  * Check if two types are compatible.
1142  */
1143 bool types_compatible(const type_t *type1, const type_t *type2)
1144 {
1145         assert(!is_typeref(type1));
1146         assert(!is_typeref(type2));
1147
1148         /* shortcut: the same type is always compatible */
1149         if (type1 == type2)
1150                 return true;
1151
1152         if (!is_type_valid(type1) || !is_type_valid(type2))
1153                 return true;
1154
1155         if (type1->base.qualifiers != type2->base.qualifiers)
1156                 return false;
1157         if (type1->kind != type2->kind)
1158                 return false;
1159
1160         switch (type1->kind) {
1161         case TYPE_FUNCTION:
1162                 return function_types_compatible(&type1->function, &type2->function);
1163         case TYPE_ATOMIC:
1164                 return type1->atomic.akind == type2->atomic.akind;
1165         case TYPE_COMPLEX:
1166                 return type1->complex.akind == type2->complex.akind;
1167         case TYPE_IMAGINARY:
1168                 return type1->imaginary.akind == type2->imaginary.akind;
1169         case TYPE_ARRAY:
1170                 return array_types_compatible(&type1->array, &type2->array);
1171
1172         case TYPE_POINTER: {
1173                 const type_t *const to1 = skip_typeref(type1->pointer.points_to);
1174                 const type_t *const to2 = skip_typeref(type2->pointer.points_to);
1175                 return types_compatible(to1, to2);
1176         }
1177
1178         case TYPE_REFERENCE: {
1179                 const type_t *const to1 = skip_typeref(type1->reference.refers_to);
1180                 const type_t *const to2 = skip_typeref(type2->reference.refers_to);
1181                 return types_compatible(to1, to2);
1182         }
1183
1184         case TYPE_COMPOUND_STRUCT:
1185         case TYPE_COMPOUND_UNION:
1186         case TYPE_ENUM:
1187         case TYPE_BUILTIN:
1188                 /* TODO: not implemented */
1189                 break;
1190
1191         case TYPE_BITFIELD:
1192                 /* not sure if this makes sense or is even needed, implement it if you
1193                  * really need it! */
1194                 panic("type compatibility check for bitfield type");
1195
1196         case TYPE_ERROR:
1197                 /* Hmm, the error type should be compatible to all other types */
1198                 return true;
1199         case TYPE_INVALID:
1200                 panic("invalid type found in compatible types");
1201         case TYPE_TYPEDEF:
1202         case TYPE_TYPEOF:
1203                 panic("typerefs not skipped in compatible types?!?");
1204         }
1205
1206         /* TODO: incomplete */
1207         return false;
1208 }
1209
1210 /**
1211  * Skip all typerefs and return the underlying type.
1212  */
1213 type_t *skip_typeref(type_t *type)
1214 {
1215         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1216         type_modifiers_t  modifiers  = TYPE_MODIFIER_NONE;
1217         il_alignment_t    alignment  = 0;
1218
1219         while (true) {
1220                 if (alignment < type->base.alignment)
1221                         alignment = type->base.alignment;
1222
1223                 switch (type->kind) {
1224                 case TYPE_ERROR:
1225                         return type;
1226                 case TYPE_TYPEDEF: {
1227                         qualifiers |= type->base.qualifiers;
1228                         modifiers  |= type->base.modifiers;
1229
1230                         const typedef_type_t *typedef_type = &type->typedeft;
1231                         if (typedef_type->resolved_type != NULL) {
1232                                 type = typedef_type->resolved_type;
1233                                 break;
1234                         }
1235                         type = typedef_type->typedefe->type;
1236                         continue;
1237                 }
1238                 case TYPE_TYPEOF: {
1239                         qualifiers |= type->base.qualifiers;
1240                         modifiers  |= type->base.modifiers;
1241
1242                         const typeof_type_t *typeof_type = &type->typeoft;
1243                         if (typeof_type->typeof_type != NULL) {
1244                                 type = typeof_type->typeof_type;
1245                         } else {
1246                                 type = typeof_type->expression->base.type;
1247                         }
1248                         continue;
1249                 }
1250                 default:
1251                         break;
1252                 }
1253                 break;
1254         }
1255
1256         if (qualifiers != TYPE_QUALIFIER_NONE ||
1257                         modifiers  != TYPE_MODIFIER_NONE  ||
1258                         alignment  >  type->base.alignment) {
1259                 type_t *const copy = duplicate_type(type);
1260
1261                 /* for const with typedefed array type the element type has to be
1262                  * adjusted */
1263                 if (is_type_array(copy)) {
1264                         type_t *element_type           = copy->array.element_type;
1265                         element_type                   = duplicate_type(element_type);
1266                         element_type->base.qualifiers |= qualifiers;
1267                         element_type->base.modifiers  |= modifiers;
1268                         element_type->base.alignment   = alignment;
1269                         copy->array.element_type       = element_type;
1270                 } else {
1271                         copy->base.qualifiers |= qualifiers;
1272                         copy->base.modifiers  |= modifiers;
1273                         copy->base.alignment   = alignment;
1274                 }
1275
1276                 type = identify_new_type(copy);
1277         }
1278
1279         return type;
1280 }
1281
1282 type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type)
1283 {
1284         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1285
1286         while (true) {
1287                 switch (type->base.kind) {
1288                 case TYPE_ERROR:
1289                         return TYPE_QUALIFIER_NONE;
1290                 case TYPE_TYPEDEF:
1291                         qualifiers |= type->base.qualifiers;
1292                         const typedef_type_t *typedef_type = &type->typedeft;
1293                         if (typedef_type->resolved_type != NULL)
1294                                 type = typedef_type->resolved_type;
1295                         else
1296                                 type = typedef_type->typedefe->type;
1297                         continue;
1298                 case TYPE_TYPEOF: {
1299                         const typeof_type_t *typeof_type = &type->typeoft;
1300                         if (typeof_type->typeof_type != NULL) {
1301                                 type = typeof_type->typeof_type;
1302                         } else {
1303                                 type = typeof_type->expression->base.type;
1304                         }
1305                         continue;
1306                 }
1307                 case TYPE_ARRAY:
1308                         if (skip_array_type) {
1309                                 type = type->array.element_type;
1310                                 continue;
1311                         }
1312                         break;
1313                 default:
1314                         break;
1315                 }
1316                 break;
1317         }
1318         return type->base.qualifiers | qualifiers;
1319 }
1320
1321 unsigned get_atomic_type_size(atomic_type_kind_t kind)
1322 {
1323         assert(kind <= ATOMIC_TYPE_LAST);
1324         return atomic_type_properties[kind].size;
1325 }
1326
1327 unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
1328 {
1329         assert(kind <= ATOMIC_TYPE_LAST);
1330         return atomic_type_properties[kind].alignment;
1331 }
1332
1333 unsigned get_atomic_type_flags(atomic_type_kind_t kind)
1334 {
1335         assert(kind <= ATOMIC_TYPE_LAST);
1336         return atomic_type_properties[kind].flags;
1337 }
1338
1339 atomic_type_kind_t get_intptr_kind(void)
1340 {
1341         if (machine_size <= 32)
1342                 return ATOMIC_TYPE_INT;
1343         else if (machine_size <= 64)
1344                 return ATOMIC_TYPE_LONG;
1345         else
1346                 return ATOMIC_TYPE_LONGLONG;
1347 }
1348
1349 atomic_type_kind_t get_uintptr_kind(void)
1350 {
1351         if (machine_size <= 32)
1352                 return ATOMIC_TYPE_UINT;
1353         else if (machine_size <= 64)
1354                 return ATOMIC_TYPE_ULONG;
1355         else
1356                 return ATOMIC_TYPE_ULONGLONG;
1357 }
1358
1359 /**
1360  * Find the atomic type kind representing a given size (signed).
1361  */
1362 atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size)
1363 {
1364         static atomic_type_kind_t kinds[32];
1365
1366         assert(size < 32);
1367         atomic_type_kind_t kind = kinds[size];
1368         if (kind == ATOMIC_TYPE_INVALID) {
1369                 static const atomic_type_kind_t possible_kinds[] = {
1370                         ATOMIC_TYPE_SCHAR,
1371                         ATOMIC_TYPE_SHORT,
1372                         ATOMIC_TYPE_INT,
1373                         ATOMIC_TYPE_LONG,
1374                         ATOMIC_TYPE_LONGLONG
1375                 };
1376                 for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
1377                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1378                                 kind = possible_kinds[i];
1379                                 break;
1380                         }
1381                 }
1382                 kinds[size] = kind;
1383         }
1384         return kind;
1385 }
1386
1387 /**
1388  * Find the atomic type kind representing a given size (signed).
1389  */
1390 atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size)
1391 {
1392         static atomic_type_kind_t kinds[32];
1393
1394         assert(size < 32);
1395         atomic_type_kind_t kind = kinds[size];
1396         if (kind == ATOMIC_TYPE_INVALID) {
1397                 static const atomic_type_kind_t possible_kinds[] = {
1398                         ATOMIC_TYPE_UCHAR,
1399                         ATOMIC_TYPE_USHORT,
1400                         ATOMIC_TYPE_UINT,
1401                         ATOMIC_TYPE_ULONG,
1402                         ATOMIC_TYPE_ULONGLONG
1403                 };
1404                 for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
1405                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1406                                 kind = possible_kinds[i];
1407                                 break;
1408                         }
1409                 }
1410                 kinds[size] = kind;
1411         }
1412         return kind;
1413 }
1414
1415 /**
1416  * Hash the given type and return the "singleton" version
1417  * of it.
1418  */
1419 type_t *identify_new_type(type_t *type)
1420 {
1421         type_t *result = typehash_insert(type);
1422         if (result != type) {
1423                 obstack_free(type_obst, type);
1424         }
1425         return result;
1426 }
1427
1428 /**
1429  * Creates a new atomic type.
1430  *
1431  * @param akind       The kind of the atomic type.
1432  * @param qualifiers  Type qualifiers for the new type.
1433  */
1434 type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1435 {
1436         type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t));
1437         memset(type, 0, sizeof(atomic_type_t));
1438
1439         type->kind            = TYPE_ATOMIC;
1440         type->base.size       = get_atomic_type_size(akind);
1441         type->base.alignment  = get_atomic_type_alignment(akind);
1442         type->base.qualifiers = qualifiers;
1443         type->atomic.akind    = akind;
1444
1445         return identify_new_type(type);
1446 }
1447
1448 /**
1449  * Creates a new complex type.
1450  *
1451  * @param akind       The kind of the atomic type.
1452  * @param qualifiers  Type qualifiers for the new type.
1453  */
1454 type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1455 {
1456         type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t));
1457         memset(type, 0, sizeof(complex_type_t));
1458
1459         type->kind            = TYPE_COMPLEX;
1460         type->base.qualifiers = qualifiers;
1461         type->base.alignment  = get_atomic_type_alignment(akind);
1462         type->complex.akind   = akind;
1463
1464         return identify_new_type(type);
1465 }
1466
1467 /**
1468  * Creates a new imaginary type.
1469  *
1470  * @param akind       The kind of the atomic type.
1471  * @param qualifiers  Type qualifiers for the new type.
1472  */
1473 type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1474 {
1475         type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t));
1476         memset(type, 0, sizeof(imaginary_type_t));
1477
1478         type->kind            = TYPE_IMAGINARY;
1479         type->base.qualifiers = qualifiers;
1480         type->base.alignment  = get_atomic_type_alignment(akind);
1481         type->imaginary.akind = akind;
1482
1483         return identify_new_type(type);
1484 }
1485
1486 /**
1487  * Creates a new pointer type.
1488  *
1489  * @param points_to   The points-to type for the new type.
1490  * @param qualifiers  Type qualifiers for the new type.
1491  */
1492 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
1493 {
1494         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1495         memset(type, 0, sizeof(pointer_type_t));
1496
1497         type->kind                  = TYPE_POINTER;
1498         type->base.qualifiers       = qualifiers;
1499         type->base.alignment        = 0;
1500         type->pointer.points_to     = points_to;
1501         type->pointer.base_variable = NULL;
1502
1503         return identify_new_type(type);
1504 }
1505
1506 /**
1507  * Creates a new reference type.
1508  *
1509  * @param refers_to   The referred-to type for the new type.
1510  */
1511 type_t *make_reference_type(type_t *refers_to)
1512 {
1513         type_t *type = obstack_alloc(type_obst, sizeof(reference_type_t));
1514         memset(type, 0, sizeof(reference_type_t));
1515
1516         type->kind                = TYPE_REFERENCE;
1517         type->base.qualifiers     = 0;
1518         type->base.alignment      = 0;
1519         type->reference.refers_to = refers_to;
1520
1521         return identify_new_type(type);
1522 }
1523
1524 /**
1525  * Creates a new based pointer type.
1526  *
1527  * @param points_to   The points-to type for the new type.
1528  * @param qualifiers  Type qualifiers for the new type.
1529  * @param variable    The based variable
1530  */
1531 type_t *make_based_pointer_type(type_t *points_to,
1532                                                                 type_qualifiers_t qualifiers, variable_t *variable)
1533 {
1534         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1535         memset(type, 0, sizeof(pointer_type_t));
1536
1537         type->kind                  = TYPE_POINTER;
1538         type->base.qualifiers       = qualifiers;
1539         type->base.alignment        = 0;
1540         type->pointer.points_to     = points_to;
1541         type->pointer.base_variable = variable;
1542
1543         return identify_new_type(type);
1544 }
1545
1546
1547 type_t *make_array_type(type_t *element_type, size_t size,
1548                         type_qualifiers_t qualifiers)
1549 {
1550         type_t *type = obstack_alloc(type_obst, sizeof(array_type_t));
1551         memset(type, 0, sizeof(array_type_t));
1552
1553         type->kind                = TYPE_ARRAY;
1554         type->base.qualifiers     = qualifiers;
1555         type->base.alignment      = 0;
1556         type->array.element_type  = element_type;
1557         type->array.size          = size;
1558         type->array.size_constant = true;
1559
1560         return identify_new_type(type);
1561 }
1562
1563 /**
1564  * Debug helper. Prints the given type to stdout.
1565  */
1566 static __attribute__((unused))
1567 void dbg_type(const type_t *type)
1568 {
1569         FILE *old_out = out;
1570         out = stderr;
1571         print_type(type);
1572         puts("\n");
1573         fflush(stderr);
1574         out = old_out;
1575 }