Do not check for a null pointer in the type printer, because we stopped using null...
[cparser] / type.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdio.h>
23 #include <assert.h>
24
25 #include "type_t.h"
26 #include "types.h"
27 #include "entity_t.h"
28 #include "symbol_t.h"
29 #include "type_hash.h"
30 #include "adt/error.h"
31 #include "adt/util.h"
32 #include "lang_features.h"
33 #include "warning.h"
34 #include "diagnostic.h"
35 #include "printer.h"
36 #include "driver/firm_cmdline.h"
37
38 /** The default calling convention. */
39 cc_kind_t default_calling_convention = CC_CDECL;
40
41 static struct obstack   _type_obst;
42 struct obstack         *type_obst                 = &_type_obst;
43 static bool             print_implicit_array_size = false;
44
45 static void intern_print_type_pre(const type_t *type);
46 static void intern_print_type_post(const type_t *type);
47
48 typedef struct atomic_type_properties_t atomic_type_properties_t;
49 struct atomic_type_properties_t {
50         unsigned   size;              /**< type size in bytes */
51         unsigned   alignment;         /**< type alignment in bytes */
52         unsigned   flags;             /**< type flags from atomic_type_flag_t */
53 };
54
55 /**
56  * Returns the size of a type node.
57  *
58  * @param kind  the type kind
59  */
60 static size_t get_type_struct_size(type_kind_t kind)
61 {
62         static const size_t sizes[] = {
63                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
64                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
65                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
66                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
67                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
68                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
69                 [TYPE_ENUM]            = sizeof(enum_type_t),
70                 [TYPE_FUNCTION]        = sizeof(function_type_t),
71                 [TYPE_POINTER]         = sizeof(pointer_type_t),
72                 [TYPE_ARRAY]           = sizeof(array_type_t),
73                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
74                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
75                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
76         };
77         assert(lengthof(sizes) == (int)TYPE_TYPEOF + 1);
78         assert(kind <= TYPE_TYPEOF);
79         assert(sizes[kind] != 0);
80         return sizes[kind];
81 }
82
83 type_t *allocate_type_zero(type_kind_t kind)
84 {
85         size_t  size = get_type_struct_size(kind);
86         type_t *res  = obstack_alloc(type_obst, size);
87         memset(res, 0, size);
88         res->base.kind = kind;
89
90         return res;
91 }
92
93 /**
94  * Properties of atomic types.
95  */
96 static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
97         //ATOMIC_TYPE_INVALID = 0,
98         [ATOMIC_TYPE_VOID] = {
99                 .size       = 0,
100                 .alignment  = 0,
101                 .flags      = ATOMIC_TYPE_FLAG_NONE
102         },
103         [ATOMIC_TYPE_WCHAR_T] = {
104                 .size       = (unsigned)-1,
105                 .alignment  = (unsigned)-1,
106                 /* signed flag will be set when known */
107                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
108         },
109         [ATOMIC_TYPE_CHAR] = {
110                 .size       = 1,
111                 .alignment  = 1,
112                 /* signed flag will be set when known */
113                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
114         },
115         [ATOMIC_TYPE_SCHAR] = {
116                 .size       = 1,
117                 .alignment  = 1,
118                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
119                               | ATOMIC_TYPE_FLAG_SIGNED,
120         },
121         [ATOMIC_TYPE_UCHAR] = {
122                 .size       = 1,
123                 .alignment  = 1,
124                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
125         },
126         [ATOMIC_TYPE_SHORT] = {
127                 .size       = 2,
128                 .alignment  = 2,
129                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
130                               | ATOMIC_TYPE_FLAG_SIGNED
131         },
132         [ATOMIC_TYPE_USHORT] = {
133                 .size       = 2,
134                 .alignment  = 2,
135                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
136         },
137         [ATOMIC_TYPE_INT] = {
138                 .size       = (unsigned) -1,
139                 .alignment  = (unsigned) -1,
140                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
141                               | ATOMIC_TYPE_FLAG_SIGNED,
142         },
143         [ATOMIC_TYPE_UINT] = {
144                 .size       = (unsigned) -1,
145                 .alignment  = (unsigned) -1,
146                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
147         },
148         [ATOMIC_TYPE_LONG] = {
149                 .size       = (unsigned) -1,
150                 .alignment  = (unsigned) -1,
151                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
152                               | ATOMIC_TYPE_FLAG_SIGNED,
153         },
154         [ATOMIC_TYPE_ULONG] = {
155                 .size       = (unsigned) -1,
156                 .alignment  = (unsigned) -1,
157                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
158         },
159         [ATOMIC_TYPE_LONGLONG] = {
160                 .size       = (unsigned) -1,
161                 .alignment  = (unsigned) -1,
162                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
163                               | ATOMIC_TYPE_FLAG_SIGNED,
164         },
165         [ATOMIC_TYPE_ULONGLONG] = {
166                 .size       = (unsigned) -1,
167                 .alignment  = (unsigned) -1,
168                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
169         },
170         [ATOMIC_TYPE_BOOL] = {
171                 .size       = (unsigned) -1,
172                 .alignment  = (unsigned) -1,
173                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
174         },
175         [ATOMIC_TYPE_FLOAT] = {
176                 .size       = 4,
177                 .alignment  = (unsigned) -1,
178                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
179                               | ATOMIC_TYPE_FLAG_SIGNED,
180         },
181         [ATOMIC_TYPE_DOUBLE] = {
182                 .size       = 8,
183                 .alignment  = (unsigned) -1,
184                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
185                               | ATOMIC_TYPE_FLAG_SIGNED,
186         },
187         [ATOMIC_TYPE_LONG_DOUBLE] = {
188                 .size       = 12,
189                 .alignment  = (unsigned) -1,
190                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
191                               | ATOMIC_TYPE_FLAG_SIGNED,
192         },
193         /* complex and imaginary types are set in init_types */
194 };
195
196 void init_types(void)
197 {
198         obstack_init(type_obst);
199
200         atomic_type_properties_t *props = atomic_type_properties;
201
202         if (char_is_signed) {
203                 props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED;
204         }
205
206         unsigned int_size   = machine_size < 32 ? 2 : 4;
207         /* long is always 32bit on windows */
208         unsigned long_size  = c_mode & _MS ? 4 : (machine_size < 64 ? 4 : 8);
209         unsigned llong_size = machine_size < 32 ? 4 : 8;
210
211         props[ATOMIC_TYPE_INT].size            = int_size;
212         props[ATOMIC_TYPE_INT].alignment       = int_size;
213         props[ATOMIC_TYPE_UINT].size           = int_size;
214         props[ATOMIC_TYPE_UINT].alignment      = int_size;
215         props[ATOMIC_TYPE_LONG].size           = long_size;
216         props[ATOMIC_TYPE_LONG].alignment      = long_size;
217         props[ATOMIC_TYPE_ULONG].size          = long_size;
218         props[ATOMIC_TYPE_ULONG].alignment     = long_size;
219         props[ATOMIC_TYPE_LONGLONG].size       = llong_size;
220         props[ATOMIC_TYPE_LONGLONG].alignment  = llong_size;
221         props[ATOMIC_TYPE_ULONGLONG].size      = llong_size;
222         props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size;
223
224         /* TODO: backend specific, need a way to query the backend for this.
225          * The following are good settings for x86 */
226         if (machine_size <= 32) {
227                 props[ATOMIC_TYPE_FLOAT].alignment       = 4;
228                 props[ATOMIC_TYPE_DOUBLE].alignment      = 4;
229                 props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4;
230                 props[ATOMIC_TYPE_LONGLONG].alignment    = 4;
231                 props[ATOMIC_TYPE_ULONGLONG].alignment   = 4;
232         } else {
233                 props[ATOMIC_TYPE_FLOAT].alignment       = 4;
234                 props[ATOMIC_TYPE_DOUBLE].alignment      = 8;
235                 props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 8;
236                 props[ATOMIC_TYPE_LONGLONG].alignment    = 8;
237                 props[ATOMIC_TYPE_ULONGLONG].alignment   = 8;
238         }
239         if (force_long_double_size > 0) {
240                 props[ATOMIC_TYPE_LONG_DOUBLE].size      = force_long_double_size;
241                 props[ATOMIC_TYPE_LONG_DOUBLE].alignment = force_long_double_size;
242         }
243
244         /* TODO: make this configurable for platforms which do not use byte sized
245          * bools. */
246         props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR];
247
248         props[ATOMIC_TYPE_WCHAR_T] = props[wchar_atomic_kind];
249 }
250
251 void exit_types(void)
252 {
253         obstack_free(type_obst, NULL);
254 }
255
256 void print_type_qualifiers(type_qualifiers_t qualifiers)
257 {
258         if (qualifiers & TYPE_QUALIFIER_CONST) {
259                 print_string("const ");
260         }
261         if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
262                 print_string("volatile ");
263         }
264         if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
265                 print_string("restrict ");
266         }
267 }
268
269 const char *get_atomic_kind_name(atomic_type_kind_t kind)
270 {
271         switch(kind) {
272         case ATOMIC_TYPE_INVALID: break;
273         case ATOMIC_TYPE_VOID:        return "void";
274         case ATOMIC_TYPE_WCHAR_T:     return "wchar_t";
275         case ATOMIC_TYPE_BOOL:        return c_mode & _CXX ? "bool" : "_Bool";
276         case ATOMIC_TYPE_CHAR:        return "char";
277         case ATOMIC_TYPE_SCHAR:       return "signed char";
278         case ATOMIC_TYPE_UCHAR:       return "unsigned char";
279         case ATOMIC_TYPE_INT:         return "int";
280         case ATOMIC_TYPE_UINT:        return "unsigned int";
281         case ATOMIC_TYPE_SHORT:       return "short";
282         case ATOMIC_TYPE_USHORT:      return "unsigned short";
283         case ATOMIC_TYPE_LONG:        return "long";
284         case ATOMIC_TYPE_ULONG:       return "unsigned long";
285         case ATOMIC_TYPE_LONGLONG:    return "long long";
286         case ATOMIC_TYPE_ULONGLONG:   return "unsigned long long";
287         case ATOMIC_TYPE_LONG_DOUBLE: return "long double";
288         case ATOMIC_TYPE_FLOAT:       return "float";
289         case ATOMIC_TYPE_DOUBLE:      return "double";
290         }
291         return "INVALIDATOMIC";
292 }
293
294 /**
295  * Prints the name of an atomic type kinds.
296  *
297  * @param kind  The type kind.
298  */
299 static void print_atomic_kinds(atomic_type_kind_t kind)
300 {
301         const char *s = get_atomic_kind_name(kind);
302         print_string(s);
303 }
304
305 /**
306  * Prints the name of an atomic type.
307  *
308  * @param type  The type.
309  */
310 static void print_atomic_type(const atomic_type_t *type)
311 {
312         print_type_qualifiers(type->base.qualifiers);
313         print_atomic_kinds(type->akind);
314 }
315
316 /**
317  * Prints the name of a complex type.
318  *
319  * @param type  The type.
320  */
321 static void print_complex_type(const complex_type_t *type)
322 {
323         print_type_qualifiers(type->base.qualifiers);
324         print_string("_Complex");
325         print_atomic_kinds(type->akind);
326 }
327
328 /**
329  * Prints the name of an imaginary type.
330  *
331  * @param type  The type.
332  */
333 static void print_imaginary_type(const imaginary_type_t *type)
334 {
335         print_type_qualifiers(type->base.qualifiers);
336         print_string("_Imaginary ");
337         print_atomic_kinds(type->akind);
338 }
339
340 /**
341  * Print the first part (the prefix) of a type.
342  *
343  * @param type   The type to print.
344  */
345 static void print_function_type_pre(const function_type_t *type)
346 {
347         switch (type->linkage) {
348                 case LINKAGE_INVALID:
349                         break;
350
351                 case LINKAGE_C:
352                         if (c_mode & _CXX)
353                                 print_string("extern \"C\" ");
354                         break;
355
356                 case LINKAGE_CXX:
357                         if (!(c_mode & _CXX))
358                                 print_string("extern \"C++\" ");
359                         break;
360         }
361
362         print_type_qualifiers(type->base.qualifiers);
363
364         intern_print_type_pre(type->return_type);
365
366         cc_kind_t cc = type->calling_convention;
367 restart:
368         switch (cc) {
369         case CC_CDECL:    print_string(" __cdecl");    break;
370         case CC_STDCALL:  print_string(" __stdcall");  break;
371         case CC_FASTCALL: print_string(" __fastcall"); break;
372         case CC_THISCALL: print_string(" __thiscall"); break;
373         case CC_DEFAULT:
374                 if (default_calling_convention != CC_CDECL) {
375                         /* show the default calling convention if its not cdecl */
376                         cc = default_calling_convention;
377                         goto restart;
378                 }
379                 break;
380         }
381 }
382
383 /**
384  * Print the second part (the postfix) of a type.
385  *
386  * @param type   The type to print.
387  */
388 static void print_function_type_post(const function_type_t *type,
389                                      const scope_t *parameters)
390 {
391         print_string("(");
392         bool first = true;
393         if (parameters == NULL) {
394                 function_parameter_t *parameter = type->parameters;
395                 for( ; parameter != NULL; parameter = parameter->next) {
396                         if (first) {
397                                 first = false;
398                         } else {
399                                 print_string(", ");
400                         }
401                         print_type(parameter->type);
402                 }
403         } else {
404                 entity_t *parameter = parameters->entities;
405                 for (; parameter != NULL; parameter = parameter->base.next) {
406                         if (parameter->kind != ENTITY_PARAMETER)
407                                 continue;
408
409                         if (first) {
410                                 first = false;
411                         } else {
412                                 print_string(", ");
413                         }
414                         const type_t *const type = parameter->declaration.type;
415                         if (type == NULL) {
416                                 print_string(parameter->base.symbol->string);
417                         } else {
418                                 print_type_ext(type, parameter->base.symbol, NULL);
419                         }
420                 }
421         }
422         if (type->variadic) {
423                 if (first) {
424                         first = false;
425                 } else {
426                         print_string(", ");
427                 }
428                 print_string("...");
429         }
430         if (first && !type->unspecified_parameters) {
431                 print_string("void");
432         }
433         print_string(")");
434
435         intern_print_type_post(type->return_type);
436 }
437
438 /**
439  * Prints the prefix part of a pointer type.
440  *
441  * @param type   The pointer type.
442  */
443 static void print_pointer_type_pre(const pointer_type_t *type)
444 {
445         type_t const *const points_to = type->points_to;
446         intern_print_type_pre(points_to);
447         if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION)
448                 print_string(" (");
449         variable_t *const variable = type->base_variable;
450         if (variable != NULL) {
451                 print_string(" __based(");
452                 print_string(variable->base.base.symbol->string);
453                 print_string(") ");
454         }
455         print_string("*");
456         type_qualifiers_t const qual = type->base.qualifiers;
457         if (qual != 0)
458                 print_string(" ");
459         print_type_qualifiers(qual);
460 }
461
462 /**
463  * Prints the postfix part of a pointer type.
464  *
465  * @param type   The pointer type.
466  */
467 static void print_pointer_type_post(const pointer_type_t *type)
468 {
469         type_t const *const points_to = type->points_to;
470         if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION)
471                 print_string(")");
472         intern_print_type_post(points_to);
473 }
474
475 /**
476  * Prints the prefix part of a reference type.
477  *
478  * @param type   The reference type.
479  */
480 static void print_reference_type_pre(const reference_type_t *type)
481 {
482         type_t const *const refers_to = type->refers_to;
483         intern_print_type_pre(refers_to);
484         if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION)
485                 print_string(" (");
486         print_string("&");
487 }
488
489 /**
490  * Prints the postfix part of a reference type.
491  *
492  * @param type   The reference type.
493  */
494 static void print_reference_type_post(const reference_type_t *type)
495 {
496         type_t const *const refers_to = type->refers_to;
497         if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION)
498                 print_string(")");
499         intern_print_type_post(refers_to);
500 }
501
502 /**
503  * Prints the prefix part of an array type.
504  *
505  * @param type   The array type.
506  */
507 static void print_array_type_pre(const array_type_t *type)
508 {
509         intern_print_type_pre(type->element_type);
510 }
511
512 /**
513  * Prints the postfix part of an array type.
514  *
515  * @param type   The array type.
516  */
517 static void print_array_type_post(const array_type_t *type)
518 {
519         print_string("[");
520         if (type->is_static) {
521                 print_string("static ");
522         }
523         print_type_qualifiers(type->base.qualifiers);
524         if (type->size_expression != NULL
525                         && (print_implicit_array_size || !type->has_implicit_size)) {
526                 print_expression(type->size_expression);
527         }
528         print_string("]");
529         intern_print_type_post(type->element_type);
530 }
531
532 /**
533  * Prints the postfix part of a bitfield type.
534  *
535  * @param type   The array type.
536  */
537 static void print_bitfield_type_post(const bitfield_type_t *type)
538 {
539         print_string(" : ");
540         print_expression(type->size_expression);
541         intern_print_type_post(type->base_type);
542 }
543
544 /**
545  * Prints an enum definition.
546  *
547  * @param declaration  The enum's type declaration.
548  */
549 void print_enum_definition(const enum_t *enume)
550 {
551         print_string("{\n");
552
553         change_indent(1);
554
555         entity_t *entry = enume->base.next;
556         for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
557                entry = entry->base.next) {
558
559                 print_indent();
560                 print_string(entry->base.symbol->string);
561                 if (entry->enum_value.value != NULL) {
562                         print_string(" = ");
563
564                         /* skip the implicit cast */
565                         expression_t *expression = entry->enum_value.value;
566                         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
567                                 expression = expression->unary.value;
568                         }
569                         print_expression(expression);
570                 }
571                 print_string(",\n");
572         }
573
574         change_indent(-1);
575         print_indent();
576         print_string("}");
577 }
578
579 /**
580  * Prints an enum type.
581  *
582  * @param type  The enum type.
583  */
584 static void print_type_enum(const enum_type_t *type)
585 {
586         print_type_qualifiers(type->base.qualifiers);
587         print_string("enum ");
588
589         enum_t   *enume  = type->enume;
590         symbol_t *symbol = enume->base.symbol;
591         if (symbol != NULL) {
592                 print_string(symbol->string);
593         } else {
594                 print_enum_definition(enume);
595         }
596 }
597
598 /**
599  * Print the compound part of a compound type.
600  */
601 void print_compound_definition(const compound_t *compound)
602 {
603         print_string("{\n");
604         change_indent(1);
605
606         entity_t *entity = compound->members.entities;
607         for( ; entity != NULL; entity = entity->base.next) {
608                 if (entity->kind != ENTITY_COMPOUND_MEMBER)
609                         continue;
610
611                 print_indent();
612                 print_entity(entity);
613                 print_string("\n");
614         }
615
616         change_indent(-1);
617         print_indent();
618         print_string("}");
619         if (compound->modifiers & DM_TRANSPARENT_UNION) {
620                 print_string("__attribute__((__transparent_union__))");
621         }
622 }
623
624 /**
625  * Prints a compound type.
626  *
627  * @param type  The compound type.
628  */
629 static void print_compound_type(const compound_type_t *type)
630 {
631         print_type_qualifiers(type->base.qualifiers);
632
633         if (type->base.kind == TYPE_COMPOUND_STRUCT) {
634                 print_string("struct ");
635         } else {
636                 assert(type->base.kind == TYPE_COMPOUND_UNION);
637                 print_string("union ");
638         }
639
640         compound_t *compound = type->compound;
641         symbol_t   *symbol   = compound->base.symbol;
642         if (symbol != NULL) {
643                 print_string(symbol->string);
644         } else {
645                 print_compound_definition(compound);
646         }
647 }
648
649 /**
650  * Prints the prefix part of a typedef type.
651  *
652  * @param type   The typedef type.
653  */
654 static void print_typedef_type_pre(const typedef_type_t *const type)
655 {
656         print_type_qualifiers(type->base.qualifiers);
657         print_string(type->typedefe->base.symbol->string);
658 }
659
660 /**
661  * Prints the prefix part of a typeof type.
662  *
663  * @param type   The typeof type.
664  */
665 static void print_typeof_type_pre(const typeof_type_t *const type)
666 {
667         print_string("typeof(");
668         if (type->expression != NULL) {
669                 print_expression(type->expression);
670         } else {
671                 print_type(type->typeof_type);
672         }
673         print_string(")");
674 }
675
676 /**
677  * Prints the prefix part of a type.
678  *
679  * @param type   The type.
680  */
681 static void intern_print_type_pre(const type_t *const type)
682 {
683         switch(type->kind) {
684         case TYPE_ERROR:
685                 print_string("<error>");
686                 return;
687         case TYPE_INVALID:
688                 print_string("<invalid>");
689                 return;
690         case TYPE_ENUM:
691                 print_type_enum(&type->enumt);
692                 return;
693         case TYPE_ATOMIC:
694                 print_atomic_type(&type->atomic);
695                 return;
696         case TYPE_COMPLEX:
697                 print_complex_type(&type->complex);
698                 return;
699         case TYPE_IMAGINARY:
700                 print_imaginary_type(&type->imaginary);
701                 return;
702         case TYPE_COMPOUND_STRUCT:
703         case TYPE_COMPOUND_UNION:
704                 print_compound_type(&type->compound);
705                 return;
706         case TYPE_BUILTIN:
707                 print_string(type->builtin.symbol->string);
708                 return;
709         case TYPE_FUNCTION:
710                 print_function_type_pre(&type->function);
711                 return;
712         case TYPE_POINTER:
713                 print_pointer_type_pre(&type->pointer);
714                 return;
715         case TYPE_REFERENCE:
716                 print_reference_type_pre(&type->reference);
717                 return;
718         case TYPE_BITFIELD:
719                 intern_print_type_pre(type->bitfield.base_type);
720                 return;
721         case TYPE_ARRAY:
722                 print_array_type_pre(&type->array);
723                 return;
724         case TYPE_TYPEDEF:
725                 print_typedef_type_pre(&type->typedeft);
726                 return;
727         case TYPE_TYPEOF:
728                 print_typeof_type_pre(&type->typeoft);
729                 return;
730         }
731         print_string("unknown");
732 }
733
734 /**
735  * Prints the postfix part of a type.
736  *
737  * @param type   The type.
738  */
739 static void intern_print_type_post(const type_t *const type)
740 {
741         switch(type->kind) {
742         case TYPE_FUNCTION:
743                 print_function_type_post(&type->function, NULL);
744                 return;
745         case TYPE_POINTER:
746                 print_pointer_type_post(&type->pointer);
747                 return;
748         case TYPE_REFERENCE:
749                 print_reference_type_post(&type->reference);
750                 return;
751         case TYPE_ARRAY:
752                 print_array_type_post(&type->array);
753                 return;
754         case TYPE_BITFIELD:
755                 print_bitfield_type_post(&type->bitfield);
756                 return;
757         case TYPE_ERROR:
758         case TYPE_INVALID:
759         case TYPE_ATOMIC:
760         case TYPE_COMPLEX:
761         case TYPE_IMAGINARY:
762         case TYPE_ENUM:
763         case TYPE_COMPOUND_STRUCT:
764         case TYPE_COMPOUND_UNION:
765         case TYPE_BUILTIN:
766         case TYPE_TYPEOF:
767         case TYPE_TYPEDEF:
768                 break;
769         }
770 }
771
772 /**
773  * Prints a type.
774  *
775  * @param type   The type.
776  */
777 void print_type(const type_t *const type)
778 {
779         print_type_ext(type, NULL, NULL);
780 }
781
782 void print_type_ext(const type_t *const type, const symbol_t *symbol,
783                     const scope_t *parameters)
784 {
785         intern_print_type_pre(type);
786         if (symbol != NULL) {
787                 print_string(" ");
788                 print_string(symbol->string);
789         }
790         if (type->kind == TYPE_FUNCTION) {
791                 print_function_type_post(&type->function, parameters);
792         } else {
793                 intern_print_type_post(type);
794         }
795 }
796
797 /**
798  * Duplicates a type.
799  *
800  * @param type  The type to copy.
801  * @return A copy of the type.
802  *
803  * @note This does not produce a deep copy!
804  */
805 type_t *duplicate_type(const type_t *type)
806 {
807         size_t size = get_type_struct_size(type->kind);
808
809         type_t *copy = obstack_alloc(type_obst, size);
810         memcpy(copy, type, size);
811         copy->base.firm_type = NULL;
812
813         return copy;
814 }
815
816 /**
817  * Returns the unqualified type of a given type.
818  *
819  * @param type  The type.
820  * @returns The unqualified type.
821  */
822 type_t *get_unqualified_type(type_t *type)
823 {
824         assert(!is_typeref(type));
825
826         if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
827                 return type;
828
829         type_t *unqualified_type          = duplicate_type(type);
830         unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
831
832         return identify_new_type(unqualified_type);
833 }
834
835 type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual)
836 {
837         type_t *type = skip_typeref(orig_type);
838
839         type_t *copy;
840         if (is_type_array(type)) {
841                 /* For array types the element type has to be adjusted */
842                 type_t *element_type      = type->array.element_type;
843                 type_t *qual_element_type = get_qualified_type(element_type, qual);
844
845                 if (qual_element_type == element_type)
846                         return orig_type;
847
848                 copy                     = duplicate_type(type);
849                 copy->array.element_type = qual_element_type;
850         } else if (is_type_valid(type)) {
851                 if ((type->base.qualifiers & qual) == qual)
852                         return orig_type;
853
854                 copy                   = duplicate_type(type);
855                 copy->base.qualifiers |= qual;
856         } else {
857                 return type;
858         }
859
860         return identify_new_type(copy);
861 }
862
863 /**
864  * Check if a type is valid.
865  *
866  * @param type  The type to check.
867  * @return true if type represents a valid type.
868  */
869 bool type_valid(const type_t *type)
870 {
871         return type->kind != TYPE_INVALID;
872 }
873
874 static bool test_atomic_type_flag(atomic_type_kind_t kind,
875                                   atomic_type_flag_t flag)
876 {
877         assert(kind <= ATOMIC_TYPE_LAST);
878         return (atomic_type_properties[kind].flags & flag) != 0;
879 }
880
881 /**
882  * Returns true if the given type is an integer type.
883  *
884  * @param type  The type to check.
885  * @return True if type is an integer type.
886  */
887 bool is_type_integer(const type_t *type)
888 {
889         assert(!is_typeref(type));
890
891         if (type->kind == TYPE_ENUM)
892                 return true;
893         if (type->kind == TYPE_BITFIELD)
894                 return true;
895
896         if (type->kind != TYPE_ATOMIC)
897                 return false;
898
899         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
900 }
901
902 /**
903  * Returns true if the given type is an enum type.
904  *
905  * @param type  The type to check.
906  * @return True if type is an enum type.
907  */
908 bool is_type_enum(const type_t *type)
909 {
910         assert(!is_typeref(type));
911         return type->kind == TYPE_ENUM;
912 }
913
914 /**
915  * Returns true if the given type is an floating point type.
916  *
917  * @param type  The type to check.
918  * @return True if type is a floating point type.
919  */
920 bool is_type_float(const type_t *type)
921 {
922         assert(!is_typeref(type));
923
924         if (type->kind != TYPE_ATOMIC)
925                 return false;
926
927         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
928 }
929
930 /**
931  * Returns true if the given type is an complex type.
932  *
933  * @param type  The type to check.
934  * @return True if type is a complex type.
935  */
936 bool is_type_complex(const type_t *type)
937 {
938         assert(!is_typeref(type));
939
940         if (type->kind != TYPE_ATOMIC)
941                 return false;
942
943         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
944 }
945
946 /**
947  * Returns true if the given type is a signed type.
948  *
949  * @param type  The type to check.
950  * @return True if type is a signed type.
951  */
952 bool is_type_signed(const type_t *type)
953 {
954         assert(!is_typeref(type));
955
956         /* enum types are int for now */
957         if (type->kind == TYPE_ENUM)
958                 return true;
959         if (type->kind == TYPE_BITFIELD)
960                 return is_type_signed(type->bitfield.base_type);
961
962         if (type->kind != TYPE_ATOMIC)
963                 return false;
964
965         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
966 }
967
968 /**
969  * Returns true if the given type represents an arithmetic type.
970  *
971  * @param type  The type to check.
972  * @return True if type represents an arithmetic type.
973  */
974 bool is_type_arithmetic(const type_t *type)
975 {
976         assert(!is_typeref(type));
977
978         switch(type->kind) {
979         case TYPE_BITFIELD:
980         case TYPE_ENUM:
981                 return true;
982         case TYPE_ATOMIC:
983                 return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
984         case TYPE_COMPLEX:
985                 return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
986         case TYPE_IMAGINARY:
987                 return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
988         default:
989                 return false;
990         }
991 }
992
993 /**
994  * Returns true if the given type is an integer or float type.
995  *
996  * @param type  The type to check.
997  * @return True if type is an integer or float type.
998  */
999 bool is_type_real(const type_t *type)
1000 {
1001         /* 6.2.5 (17) */
1002         return is_type_integer(type) || is_type_float(type);
1003 }
1004
1005 /**
1006  * Returns true if the given type represents a scalar type.
1007  *
1008  * @param type  The type to check.
1009  * @return True if type represents a scalar type.
1010  */
1011 bool is_type_scalar(const type_t *type)
1012 {
1013         assert(!is_typeref(type));
1014
1015         switch (type->kind) {
1016         case TYPE_POINTER: return true;
1017         case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type);
1018         default:           break;
1019         }
1020
1021         return is_type_arithmetic(type);
1022 }
1023
1024 /**
1025  * Check if a given type is incomplete.
1026  *
1027  * @param type  The type to check.
1028  * @return True if the given type is incomplete (ie. just forward).
1029  */
1030 bool is_type_incomplete(const type_t *type)
1031 {
1032         assert(!is_typeref(type));
1033
1034         switch(type->kind) {
1035         case TYPE_COMPOUND_STRUCT:
1036         case TYPE_COMPOUND_UNION: {
1037                 const compound_type_t *compound_type = &type->compound;
1038                 return !compound_type->compound->complete;
1039         }
1040         case TYPE_ENUM:
1041                 return false;
1042
1043         case TYPE_ARRAY:
1044                 return type->array.size_expression == NULL
1045                         && !type->array.size_constant;
1046
1047         case TYPE_ATOMIC:
1048                 return type->atomic.akind == ATOMIC_TYPE_VOID;
1049
1050         case TYPE_COMPLEX:
1051                 return type->complex.akind == ATOMIC_TYPE_VOID;
1052
1053         case TYPE_IMAGINARY:
1054                 return type->imaginary.akind == ATOMIC_TYPE_VOID;
1055
1056         case TYPE_BITFIELD:
1057         case TYPE_FUNCTION:
1058         case TYPE_POINTER:
1059         case TYPE_REFERENCE:
1060         case TYPE_BUILTIN:
1061         case TYPE_ERROR:
1062                 return false;
1063
1064         case TYPE_TYPEDEF:
1065         case TYPE_TYPEOF:
1066                 panic("is_type_incomplete called without typerefs skipped");
1067         case TYPE_INVALID:
1068                 break;
1069         }
1070
1071         panic("invalid type found");
1072 }
1073
1074 bool is_type_object(const type_t *type)
1075 {
1076         return !is_type_function(type) && !is_type_incomplete(type);
1077 }
1078
1079 bool is_builtin_va_list(type_t *type)
1080 {
1081         type_t *tp = skip_typeref(type);
1082
1083         return tp->kind == type_valist->kind &&
1084                tp->builtin.symbol == type_valist->builtin.symbol;
1085 }
1086
1087 /**
1088  * Check if two function types are compatible.
1089  */
1090 static bool function_types_compatible(const function_type_t *func1,
1091                                       const function_type_t *func2)
1092 {
1093         const type_t* const ret1 = skip_typeref(func1->return_type);
1094         const type_t* const ret2 = skip_typeref(func2->return_type);
1095         if (!types_compatible(ret1, ret2))
1096                 return false;
1097
1098         if (func1->linkage != func2->linkage)
1099                 return false;
1100
1101         cc_kind_t cc1 = func1->calling_convention;
1102         if (cc1 == CC_DEFAULT)
1103                 cc1 = default_calling_convention;
1104         cc_kind_t cc2 = func2->calling_convention;
1105         if (cc2 == CC_DEFAULT)
1106                 cc2 = default_calling_convention;
1107
1108         if (cc1 != cc2)
1109                 return false;
1110
1111         if (func1->variadic != func2->variadic)
1112                 return false;
1113
1114         /* can parameters be compared? */
1115         if ((func1->unspecified_parameters && !func1->kr_style_parameters)
1116                         || (func2->unspecified_parameters && !func2->kr_style_parameters))
1117                 return true;
1118
1119         /* TODO: handling of unspecified parameters not correct yet */
1120
1121         /* all argument types must be compatible */
1122         function_parameter_t *parameter1 = func1->parameters;
1123         function_parameter_t *parameter2 = func2->parameters;
1124         for ( ; parameter1 != NULL && parameter2 != NULL;
1125                         parameter1 = parameter1->next, parameter2 = parameter2->next) {
1126                 type_t *parameter1_type = skip_typeref(parameter1->type);
1127                 type_t *parameter2_type = skip_typeref(parameter2->type);
1128
1129                 parameter1_type = get_unqualified_type(parameter1_type);
1130                 parameter2_type = get_unqualified_type(parameter2_type);
1131
1132                 if (!types_compatible(parameter1_type, parameter2_type))
1133                         return false;
1134         }
1135         /* same number of arguments? */
1136         if (parameter1 != NULL || parameter2 != NULL)
1137                 return false;
1138
1139         return true;
1140 }
1141
1142 /**
1143  * Check if two array types are compatible.
1144  */
1145 static bool array_types_compatible(const array_type_t *array1,
1146                                    const array_type_t *array2)
1147 {
1148         type_t *element_type1 = skip_typeref(array1->element_type);
1149         type_t *element_type2 = skip_typeref(array2->element_type);
1150         if (!types_compatible(element_type1, element_type2))
1151                 return false;
1152
1153         if (!array1->size_constant || !array2->size_constant)
1154                 return true;
1155
1156         return array1->size == array2->size;
1157 }
1158
1159 /**
1160  * Check if two types are compatible.
1161  */
1162 bool types_compatible(const type_t *type1, const type_t *type2)
1163 {
1164         assert(!is_typeref(type1));
1165         assert(!is_typeref(type2));
1166
1167         /* shortcut: the same type is always compatible */
1168         if (type1 == type2)
1169                 return true;
1170
1171         if (!is_type_valid(type1) || !is_type_valid(type2))
1172                 return true;
1173
1174         if (type1->base.qualifiers != type2->base.qualifiers)
1175                 return false;
1176         if (type1->kind != type2->kind)
1177                 return false;
1178
1179         switch (type1->kind) {
1180         case TYPE_FUNCTION:
1181                 return function_types_compatible(&type1->function, &type2->function);
1182         case TYPE_ATOMIC:
1183                 return type1->atomic.akind == type2->atomic.akind;
1184         case TYPE_COMPLEX:
1185                 return type1->complex.akind == type2->complex.akind;
1186         case TYPE_IMAGINARY:
1187                 return type1->imaginary.akind == type2->imaginary.akind;
1188         case TYPE_ARRAY:
1189                 return array_types_compatible(&type1->array, &type2->array);
1190
1191         case TYPE_POINTER: {
1192                 const type_t *const to1 = skip_typeref(type1->pointer.points_to);
1193                 const type_t *const to2 = skip_typeref(type2->pointer.points_to);
1194                 return types_compatible(to1, to2);
1195         }
1196
1197         case TYPE_REFERENCE: {
1198                 const type_t *const to1 = skip_typeref(type1->reference.refers_to);
1199                 const type_t *const to2 = skip_typeref(type2->reference.refers_to);
1200                 return types_compatible(to1, to2);
1201         }
1202
1203         case TYPE_COMPOUND_STRUCT:
1204         case TYPE_COMPOUND_UNION: {
1205
1206
1207                 break;
1208         }
1209         case TYPE_ENUM:
1210         case TYPE_BUILTIN:
1211                 /* TODO: not implemented */
1212                 break;
1213
1214         case TYPE_BITFIELD:
1215                 /* not sure if this makes sense or is even needed, implement it if you
1216                  * really need it! */
1217                 panic("type compatibility check for bitfield type");
1218
1219         case TYPE_ERROR:
1220                 /* Hmm, the error type should be compatible to all other types */
1221                 return true;
1222         case TYPE_INVALID:
1223                 panic("invalid type found in compatible types");
1224         case TYPE_TYPEDEF:
1225         case TYPE_TYPEOF:
1226                 panic("typerefs not skipped in compatible types?!?");
1227         }
1228
1229         /* TODO: incomplete */
1230         return false;
1231 }
1232
1233 /**
1234  * Skip all typerefs and return the underlying type.
1235  */
1236 type_t *skip_typeref(type_t *type)
1237 {
1238         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1239
1240         while (true) {
1241                 switch (type->kind) {
1242                 case TYPE_ERROR:
1243                         return type;
1244                 case TYPE_TYPEDEF: {
1245                         qualifiers |= type->base.qualifiers;
1246
1247                         const typedef_type_t *typedef_type = &type->typedeft;
1248                         if (typedef_type->resolved_type != NULL) {
1249                                 type = typedef_type->resolved_type;
1250                                 break;
1251                         }
1252                         type = typedef_type->typedefe->type;
1253                         continue;
1254                 }
1255                 case TYPE_TYPEOF:
1256                         qualifiers |= type->base.qualifiers;
1257                         type        = type->typeoft.typeof_type;
1258                         continue;
1259                 default:
1260                         break;
1261                 }
1262                 break;
1263         }
1264
1265         if (qualifiers != TYPE_QUALIFIER_NONE) {
1266                 type_t *const copy = duplicate_type(type);
1267
1268                 /* for const with typedefed array type the element type has to be
1269                  * adjusted */
1270                 if (is_type_array(copy)) {
1271                         type_t *element_type           = copy->array.element_type;
1272                         element_type                   = duplicate_type(element_type);
1273                         element_type->base.qualifiers |= qualifiers;
1274                         copy->array.element_type       = element_type;
1275                 } else {
1276                         copy->base.qualifiers |= qualifiers;
1277                 }
1278
1279                 type = identify_new_type(copy);
1280         }
1281
1282         return type;
1283 }
1284
1285 unsigned get_type_size(type_t *type)
1286 {
1287         switch (type->kind) {
1288         case TYPE_INVALID:
1289                 break;
1290         case TYPE_ERROR:
1291                 return 0;
1292         case TYPE_ATOMIC:
1293                 return get_atomic_type_size(type->atomic.akind);
1294         case TYPE_COMPLEX:
1295                 return get_atomic_type_size(type->complex.akind) * 2;
1296         case TYPE_IMAGINARY:
1297                 return get_atomic_type_size(type->imaginary.akind);
1298         case TYPE_COMPOUND_UNION:
1299                 layout_union_type(&type->compound);
1300                 return type->compound.compound->size;
1301         case TYPE_COMPOUND_STRUCT:
1302                 layout_struct_type(&type->compound);
1303                 return type->compound.compound->size;
1304         case TYPE_ENUM:
1305                 return get_atomic_type_size(type->enumt.akind);
1306         case TYPE_FUNCTION:
1307                 return 0; /* non-const (but "address-const") */
1308         case TYPE_REFERENCE:
1309         case TYPE_POINTER:
1310                 /* TODO: make configurable by backend */
1311                 return 4;
1312         case TYPE_ARRAY: {
1313                 /* TODO: correct if element_type is aligned? */
1314                 il_size_t element_size = get_type_size(type->array.element_type);
1315                 return type->array.size * element_size;
1316         }
1317         case TYPE_BITFIELD:
1318                 return 0;
1319         case TYPE_BUILTIN:
1320                 return get_type_size(type->builtin.real_type);
1321         case TYPE_TYPEDEF:
1322                 return get_type_size(type->typedeft.typedefe->type);
1323         case TYPE_TYPEOF:
1324                 if (type->typeoft.typeof_type) {
1325                         return get_type_size(type->typeoft.typeof_type);
1326                 } else {
1327                         return get_type_size(type->typeoft.expression->base.type);
1328                 }
1329         }
1330         panic("invalid type in get_type_size");
1331 }
1332
1333 unsigned get_type_alignment(type_t *type)
1334 {
1335         switch (type->kind) {
1336         case TYPE_INVALID:
1337                 break;
1338         case TYPE_ERROR:
1339                 return 0;
1340         case TYPE_ATOMIC:
1341                 return get_atomic_type_alignment(type->atomic.akind);
1342         case TYPE_COMPLEX:
1343                 return get_atomic_type_alignment(type->complex.akind);
1344         case TYPE_IMAGINARY:
1345                 return get_atomic_type_alignment(type->imaginary.akind);
1346         case TYPE_COMPOUND_UNION:
1347                 layout_union_type(&type->compound);
1348                 return type->compound.compound->alignment;
1349         case TYPE_COMPOUND_STRUCT:
1350                 layout_struct_type(&type->compound);
1351                 return type->compound.compound->alignment;
1352         case TYPE_ENUM:
1353                 return get_atomic_type_alignment(type->enumt.akind);
1354         case TYPE_FUNCTION:
1355                 /* what is correct here? */
1356                 return 4;
1357         case TYPE_REFERENCE:
1358         case TYPE_POINTER:
1359                 /* TODO: make configurable by backend */
1360                 return 4;
1361         case TYPE_ARRAY:
1362                 return get_type_alignment(type->array.element_type);
1363         case TYPE_BITFIELD:
1364                 return 0;
1365         case TYPE_BUILTIN:
1366                 return get_type_alignment(type->builtin.real_type);
1367         case TYPE_TYPEDEF: {
1368                 il_alignment_t alignment
1369                         = get_type_alignment(type->typedeft.typedefe->type);
1370                 if (type->typedeft.typedefe->alignment > alignment)
1371                         alignment = type->typedeft.typedefe->alignment;
1372
1373                 return alignment;
1374         }
1375         case TYPE_TYPEOF:
1376                 if (type->typeoft.typeof_type) {
1377                         return get_type_alignment(type->typeoft.typeof_type);
1378                 } else {
1379                         return get_type_alignment(type->typeoft.expression->base.type);
1380                 }
1381         }
1382         panic("invalid type in get_type_alignment");
1383 }
1384
1385 decl_modifiers_t get_type_modifiers(const type_t *type)
1386 {
1387         switch(type->kind) {
1388         case TYPE_INVALID:
1389         case TYPE_ERROR:
1390                 break;
1391         case TYPE_COMPOUND_STRUCT:
1392         case TYPE_COMPOUND_UNION:
1393                 return type->compound.compound->modifiers;
1394         case TYPE_FUNCTION:
1395                 return type->function.modifiers;
1396         case TYPE_ENUM:
1397         case TYPE_ATOMIC:
1398         case TYPE_COMPLEX:
1399         case TYPE_IMAGINARY:
1400         case TYPE_REFERENCE:
1401         case TYPE_POINTER:
1402         case TYPE_BITFIELD:
1403         case TYPE_ARRAY:
1404                 return 0;
1405         case TYPE_BUILTIN:
1406                 return get_type_modifiers(type->builtin.real_type);
1407         case TYPE_TYPEDEF: {
1408                 decl_modifiers_t modifiers = type->typedeft.typedefe->modifiers;
1409                 modifiers |= get_type_modifiers(type->typedeft.typedefe->type);
1410                 return modifiers;
1411         }
1412         case TYPE_TYPEOF:
1413                 if (type->typeoft.typeof_type) {
1414                         return get_type_modifiers(type->typeoft.typeof_type);
1415                 } else {
1416                         return get_type_modifiers(type->typeoft.expression->base.type);
1417                 }
1418         }
1419         panic("invalid type found in get_type_modifiers");
1420 }
1421
1422 type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type)
1423 {
1424         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1425
1426         while (true) {
1427                 switch (type->base.kind) {
1428                 case TYPE_ERROR:
1429                         return TYPE_QUALIFIER_NONE;
1430                 case TYPE_TYPEDEF:
1431                         qualifiers |= type->base.qualifiers;
1432                         const typedef_type_t *typedef_type = &type->typedeft;
1433                         if (typedef_type->resolved_type != NULL)
1434                                 type = typedef_type->resolved_type;
1435                         else
1436                                 type = typedef_type->typedefe->type;
1437                         continue;
1438                 case TYPE_TYPEOF:
1439                         type = type->typeoft.typeof_type;
1440                         continue;
1441                 case TYPE_ARRAY:
1442                         if (skip_array_type) {
1443                                 type = type->array.element_type;
1444                                 continue;
1445                         }
1446                         break;
1447                 default:
1448                         break;
1449                 }
1450                 break;
1451         }
1452         return type->base.qualifiers | qualifiers;
1453 }
1454
1455 unsigned get_atomic_type_size(atomic_type_kind_t kind)
1456 {
1457         assert(kind <= ATOMIC_TYPE_LAST);
1458         return atomic_type_properties[kind].size;
1459 }
1460
1461 unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
1462 {
1463         assert(kind <= ATOMIC_TYPE_LAST);
1464         return atomic_type_properties[kind].alignment;
1465 }
1466
1467 unsigned get_atomic_type_flags(atomic_type_kind_t kind)
1468 {
1469         assert(kind <= ATOMIC_TYPE_LAST);
1470         return atomic_type_properties[kind].flags;
1471 }
1472
1473 atomic_type_kind_t get_intptr_kind(void)
1474 {
1475         if (machine_size <= 32)
1476                 return ATOMIC_TYPE_INT;
1477         else if (machine_size <= 64)
1478                 return ATOMIC_TYPE_LONG;
1479         else
1480                 return ATOMIC_TYPE_LONGLONG;
1481 }
1482
1483 atomic_type_kind_t get_uintptr_kind(void)
1484 {
1485         if (machine_size <= 32)
1486                 return ATOMIC_TYPE_UINT;
1487         else if (machine_size <= 64)
1488                 return ATOMIC_TYPE_ULONG;
1489         else
1490                 return ATOMIC_TYPE_ULONGLONG;
1491 }
1492
1493 /**
1494  * Find the atomic type kind representing a given size (signed).
1495  */
1496 atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size)
1497 {
1498         static atomic_type_kind_t kinds[32];
1499
1500         assert(size < 32);
1501         atomic_type_kind_t kind = kinds[size];
1502         if (kind == ATOMIC_TYPE_INVALID) {
1503                 static const atomic_type_kind_t possible_kinds[] = {
1504                         ATOMIC_TYPE_SCHAR,
1505                         ATOMIC_TYPE_SHORT,
1506                         ATOMIC_TYPE_INT,
1507                         ATOMIC_TYPE_LONG,
1508                         ATOMIC_TYPE_LONGLONG
1509                 };
1510                 for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
1511                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1512                                 kind = possible_kinds[i];
1513                                 break;
1514                         }
1515                 }
1516                 kinds[size] = kind;
1517         }
1518         return kind;
1519 }
1520
1521 /**
1522  * Find the atomic type kind representing a given size (signed).
1523  */
1524 atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size)
1525 {
1526         static atomic_type_kind_t kinds[32];
1527
1528         assert(size < 32);
1529         atomic_type_kind_t kind = kinds[size];
1530         if (kind == ATOMIC_TYPE_INVALID) {
1531                 static const atomic_type_kind_t possible_kinds[] = {
1532                         ATOMIC_TYPE_UCHAR,
1533                         ATOMIC_TYPE_USHORT,
1534                         ATOMIC_TYPE_UINT,
1535                         ATOMIC_TYPE_ULONG,
1536                         ATOMIC_TYPE_ULONGLONG
1537                 };
1538                 for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
1539                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1540                                 kind = possible_kinds[i];
1541                                 break;
1542                         }
1543                 }
1544                 kinds[size] = kind;
1545         }
1546         return kind;
1547 }
1548
1549 /**
1550  * Hash the given type and return the "singleton" version
1551  * of it.
1552  */
1553 type_t *identify_new_type(type_t *type)
1554 {
1555         type_t *result = typehash_insert(type);
1556         if (result != type) {
1557                 obstack_free(type_obst, type);
1558         }
1559         return result;
1560 }
1561
1562 /**
1563  * Creates a new atomic type.
1564  *
1565  * @param akind       The kind of the atomic type.
1566  * @param qualifiers  Type qualifiers for the new type.
1567  */
1568 type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1569 {
1570         type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t));
1571         memset(type, 0, sizeof(atomic_type_t));
1572
1573         type->kind            = TYPE_ATOMIC;
1574         type->base.qualifiers = qualifiers;
1575         type->atomic.akind    = akind;
1576
1577         return identify_new_type(type);
1578 }
1579
1580 /**
1581  * Creates a new complex type.
1582  *
1583  * @param akind       The kind of the atomic type.
1584  * @param qualifiers  Type qualifiers for the new type.
1585  */
1586 type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1587 {
1588         type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t));
1589         memset(type, 0, sizeof(complex_type_t));
1590
1591         type->kind            = TYPE_COMPLEX;
1592         type->base.qualifiers = qualifiers;
1593         type->complex.akind   = akind;
1594
1595         return identify_new_type(type);
1596 }
1597
1598 /**
1599  * Creates a new imaginary type.
1600  *
1601  * @param akind       The kind of the atomic type.
1602  * @param qualifiers  Type qualifiers for the new type.
1603  */
1604 type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1605 {
1606         type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t));
1607         memset(type, 0, sizeof(imaginary_type_t));
1608
1609         type->kind            = TYPE_IMAGINARY;
1610         type->base.qualifiers = qualifiers;
1611         type->imaginary.akind = akind;
1612
1613         return identify_new_type(type);
1614 }
1615
1616 /**
1617  * Creates a new pointer type.
1618  *
1619  * @param points_to   The points-to type for the new type.
1620  * @param qualifiers  Type qualifiers for the new type.
1621  */
1622 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
1623 {
1624         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1625         memset(type, 0, sizeof(pointer_type_t));
1626
1627         type->kind                  = TYPE_POINTER;
1628         type->base.qualifiers       = qualifiers;
1629         type->pointer.points_to     = points_to;
1630         type->pointer.base_variable = NULL;
1631
1632         return identify_new_type(type);
1633 }
1634
1635 /**
1636  * Creates a new reference type.
1637  *
1638  * @param refers_to   The referred-to type for the new type.
1639  */
1640 type_t *make_reference_type(type_t *refers_to)
1641 {
1642         type_t *type = obstack_alloc(type_obst, sizeof(reference_type_t));
1643         memset(type, 0, sizeof(reference_type_t));
1644
1645         type->kind                = TYPE_REFERENCE;
1646         type->base.qualifiers     = 0;
1647         type->reference.refers_to = refers_to;
1648
1649         return identify_new_type(type);
1650 }
1651
1652 /**
1653  * Creates a new based pointer type.
1654  *
1655  * @param points_to   The points-to type for the new type.
1656  * @param qualifiers  Type qualifiers for the new type.
1657  * @param variable    The based variable
1658  */
1659 type_t *make_based_pointer_type(type_t *points_to,
1660                                                                 type_qualifiers_t qualifiers, variable_t *variable)
1661 {
1662         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1663         memset(type, 0, sizeof(pointer_type_t));
1664
1665         type->kind                  = TYPE_POINTER;
1666         type->base.qualifiers       = qualifiers;
1667         type->pointer.points_to     = points_to;
1668         type->pointer.base_variable = variable;
1669
1670         return identify_new_type(type);
1671 }
1672
1673
1674 type_t *make_array_type(type_t *element_type, size_t size,
1675                         type_qualifiers_t qualifiers)
1676 {
1677         type_t *type = obstack_alloc(type_obst, sizeof(array_type_t));
1678         memset(type, 0, sizeof(array_type_t));
1679
1680         type->kind                = TYPE_ARRAY;
1681         type->base.qualifiers     = qualifiers;
1682         type->array.element_type  = element_type;
1683         type->array.size          = size;
1684         type->array.size_constant = true;
1685
1686         return identify_new_type(type);
1687 }
1688
1689 static entity_t *pack_bitfield_members_big_endian(il_size_t *struct_offset,
1690                 il_alignment_t *struct_alignment, bool packed, entity_t *first)
1691 {
1692         type_t        *current_base_type = NULL;
1693         il_size_t      offset            = *struct_offset;
1694         il_alignment_t alignment         = *struct_alignment;
1695         size_t         bit_offset        = 0;
1696
1697         if (packed)
1698                 panic("packed bitfields on big-endian arch not supported yet");
1699
1700         entity_t *member;
1701         for (member = first; member != NULL; member = member->base.next) {
1702                 if (member->kind != ENTITY_COMPOUND_MEMBER)
1703                         continue;
1704
1705                 type_t *type = member->declaration.type;
1706                 if (type->kind != TYPE_BITFIELD)
1707                         break;
1708
1709                 size_t  bit_size  = type->bitfield.bit_size;
1710                 type_t *base_type = skip_typeref(type->bitfield.base_type);
1711
1712                 /* see if we need to start a new "bucket" */
1713                 if (base_type != current_base_type || bit_size > bit_offset) {
1714                         if (current_base_type != NULL)
1715                                 offset += get_type_size(current_base_type);
1716
1717                         current_base_type = base_type;
1718                         il_alignment_t base_alignment = get_type_alignment(base_type);
1719                         il_alignment_t alignment_mask = base_alignment-1;
1720                         if (base_alignment > alignment)
1721                                 alignment = base_alignment;
1722                         offset     = (offset + base_alignment-1) & ~alignment_mask;
1723                         bit_offset = get_type_size(base_type) * BITS_PER_BYTE;
1724                         assert(bit_offset >= bit_size);
1725                 }
1726
1727                 bit_offset -= bit_size;
1728                 member->compound_member.offset     = offset;
1729                 member->compound_member.bit_offset = bit_offset;
1730         }
1731
1732         if (current_base_type != NULL)
1733                 offset += get_type_size(current_base_type);
1734
1735         *struct_offset    = offset;
1736         *struct_alignment = alignment;
1737         return member;
1738 }
1739
1740 static entity_t *pack_bitfield_members(il_size_t *struct_offset,
1741                                        il_alignment_t *struct_alignment,
1742                                                                            bool packed, entity_t *first)
1743 {
1744         il_size_t      offset     = *struct_offset;
1745         il_alignment_t alignment  = *struct_alignment;
1746         size_t         bit_offset = 0;
1747
1748         entity_t *member;
1749         for (member = first; member != NULL; member = member->base.next) {
1750                 if (member->kind != ENTITY_COMPOUND_MEMBER)
1751                         continue;
1752
1753                 type_t *type = member->declaration.type;
1754                 if (type->kind != TYPE_BITFIELD)
1755                         break;
1756
1757                 type_t *base_type = skip_typeref(type->bitfield.base_type);
1758                 il_alignment_t base_alignment = get_type_alignment(base_type);
1759                 il_alignment_t alignment_mask = base_alignment-1;
1760                 if (base_alignment > alignment)
1761                         alignment = base_alignment;
1762
1763                 size_t bit_size = type->bitfield.bit_size;
1764                 if (!packed) {
1765                         bit_offset += (offset & alignment_mask) * BITS_PER_BYTE;
1766                         offset     &= ~alignment_mask;
1767                         size_t base_size = get_type_size(base_type) * BITS_PER_BYTE;
1768
1769                         if (bit_offset + bit_size > base_size || bit_size == 0) {
1770                                 offset    += (bit_offset+BITS_PER_BYTE-1) / BITS_PER_BYTE;
1771                                 offset     = (offset + base_alignment-1) & ~alignment_mask;
1772                                 bit_offset = 0;
1773                         }
1774                 }
1775
1776                 member->compound_member.offset     = offset;
1777                 member->compound_member.bit_offset = bit_offset;
1778
1779                 bit_offset += bit_size;
1780                 offset     += bit_offset / BITS_PER_BYTE;
1781                 bit_offset %= BITS_PER_BYTE;
1782         }
1783
1784         if (bit_offset > 0)
1785                 offset += 1;
1786
1787         *struct_offset    = offset;
1788         *struct_alignment = alignment;
1789         return member;
1790 }
1791
1792 void layout_struct_type(compound_type_t *type)
1793 {
1794         assert(type->compound != NULL);
1795
1796         compound_t *compound = type->compound;
1797         if (!compound->complete)
1798                 return;
1799         if (type->compound->layouted)
1800                 return;
1801
1802         il_size_t      offset    = 0;
1803         il_alignment_t alignment = compound->alignment;
1804         bool           need_pad  = false;
1805
1806         entity_t *entry = compound->members.entities;
1807         while (entry != NULL) {
1808                 if (entry->kind != ENTITY_COMPOUND_MEMBER) {
1809                         entry = entry->base.next;
1810                         continue;
1811                 }
1812
1813                 type_t *m_type  = entry->declaration.type;
1814                 type_t *skipped = skip_typeref(m_type);
1815                 if (! is_type_valid(skipped)) {
1816                         entry = entry->base.next;
1817                         continue;
1818                 }
1819
1820                 if (skipped->kind == TYPE_BITFIELD) {
1821                         if (byte_order_big_endian) {
1822                                 entry = pack_bitfield_members_big_endian(&offset, &alignment,
1823                                                                          compound->packed,
1824                                                                          entry);
1825                         } else {
1826                                 entry = pack_bitfield_members(&offset, &alignment,
1827                                                               compound->packed, entry);
1828                         }
1829                         continue;
1830                 }
1831
1832                 il_alignment_t m_alignment = get_type_alignment(m_type);
1833                 if (m_alignment > alignment)
1834                         alignment = m_alignment;
1835
1836                 if (!compound->packed) {
1837                         il_size_t new_offset = (offset + m_alignment-1) & -m_alignment;
1838
1839                         if (new_offset > offset) {
1840                                 need_pad = true;
1841                                 offset   = new_offset;
1842                         }
1843                 }
1844
1845                 entry->compound_member.offset = offset;
1846                 offset += get_type_size(m_type);
1847
1848                 entry = entry->base.next;
1849         }
1850
1851         if (!compound->packed) {
1852                 il_size_t new_offset = (offset + alignment-1) & -alignment;
1853                 if (new_offset > offset) {
1854                         need_pad = true;
1855                         offset   = new_offset;
1856                 }
1857         }
1858
1859         if (need_pad) {
1860                 if (warning.padded) {
1861                         warningf(&compound->base.source_position, "'%T' needs padding",
1862                                  type);
1863                 }
1864         } else if (compound->packed && warning.packed) {
1865                 warningf(&compound->base.source_position,
1866                          "superfluous packed attribute on '%T'", type);
1867         }
1868
1869         compound->size      = offset;
1870         compound->alignment = alignment;
1871         compound->layouted  = true;
1872 }
1873
1874 void layout_union_type(compound_type_t *type)
1875 {
1876         assert(type->compound != NULL);
1877
1878         compound_t *compound = type->compound;
1879         if (! compound->complete)
1880                 return;
1881
1882         il_size_t      size      = 0;
1883         il_alignment_t alignment = compound->alignment;
1884
1885         entity_t *entry = compound->members.entities;
1886         for (; entry != NULL; entry = entry->base.next) {
1887                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
1888                         continue;
1889
1890                 type_t *m_type = entry->declaration.type;
1891                 if (! is_type_valid(skip_typeref(m_type)))
1892                         continue;
1893
1894                 entry->compound_member.offset = 0;
1895                 il_size_t m_size = get_type_size(m_type);
1896                 if (m_size > size)
1897                         size = m_size;
1898                 il_alignment_t m_alignment = get_type_alignment(m_type);
1899                 if (m_alignment > alignment)
1900                         alignment = m_alignment;
1901         }
1902         size = (size + alignment - 1) & -alignment;
1903
1904         compound->size      = size;
1905         compound->alignment = alignment;
1906 }
1907
1908 static function_parameter_t *allocate_parameter(type_t *const type)
1909 {
1910         function_parameter_t *const param
1911                 = obstack_alloc(type_obst, sizeof(*param));
1912         memset(param, 0, sizeof(*param));
1913         param->type = type;
1914         return param;
1915 }
1916
1917 type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
1918                              type_t *argument_type2)
1919 {
1920         function_parameter_t *const parameter2 = allocate_parameter(argument_type2);
1921         function_parameter_t *const parameter1 = allocate_parameter(argument_type1);
1922         parameter1->next = parameter2;
1923
1924         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1925         type->function.return_type = return_type;
1926         type->function.parameters  = parameter1;
1927         type->function.linkage     = LINKAGE_C;
1928
1929         return identify_new_type(type);
1930 }
1931
1932 type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
1933 {
1934         function_parameter_t *const parameter = allocate_parameter(argument_type);
1935
1936         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1937         type->function.return_type = return_type;
1938         type->function.parameters  = parameter;
1939         type->function.linkage     = LINKAGE_C;
1940
1941         return identify_new_type(type);
1942 }
1943
1944 type_t *make_function_1_type_variadic(type_t *return_type,
1945                                       type_t *argument_type)
1946 {
1947         function_parameter_t *const parameter = allocate_parameter(argument_type);
1948
1949         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1950         type->function.return_type = return_type;
1951         type->function.parameters  = parameter;
1952         type->function.variadic    = true;
1953         type->function.linkage     = LINKAGE_C;
1954
1955         return identify_new_type(type);
1956 }
1957
1958 type_t *make_function_0_type(type_t *return_type)
1959 {
1960         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1961         type->function.return_type = return_type;
1962         type->function.parameters  = NULL;
1963         type->function.linkage     = LINKAGE_C;
1964
1965         return identify_new_type(type);
1966 }
1967
1968 type_t *make_function_type(type_t *return_type, int n_types,
1969                            type_t *const *argument_types,
1970                                                    decl_modifiers_t modifiers)
1971 {
1972         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1973         type->function.return_type = return_type;
1974         type->function.modifiers  |= modifiers;
1975         type->function.linkage     = LINKAGE_C;
1976
1977         function_parameter_t *last  = NULL;
1978         for (int i = 0; i < n_types; ++i) {
1979                 function_parameter_t *parameter = allocate_parameter(argument_types[i]);
1980                 if (last == NULL) {
1981                         type->function.parameters = parameter;
1982                 } else {
1983                         last->next = parameter;
1984                 }
1985                 last = parameter;
1986         }
1987
1988         return identify_new_type(type);
1989 }
1990
1991 /**
1992  * Debug helper. Prints the given type to stdout.
1993  */
1994 static __attribute__((unused))
1995 void dbg_type(const type_t *type)
1996 {
1997         print_to_file(stderr);
1998         print_type(type);
1999         print_string("\n");
2000         fflush(stderr);
2001 }