remove TYPE_INVALID, TYPE_ERROR is enough
[cparser] / type.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdio.h>
23 #include <assert.h>
24
25 #include "type_t.h"
26 #include "types.h"
27 #include "entity_t.h"
28 #include "symbol_t.h"
29 #include "type_hash.h"
30 #include "adt/error.h"
31 #include "adt/util.h"
32 #include "lang_features.h"
33 #include "warning.h"
34 #include "diagnostic.h"
35 #include "printer.h"
36
37 /** The default calling convention. */
38 cc_kind_t default_calling_convention = CC_CDECL;
39
40 static struct obstack type_obst;
41 static bool           print_implicit_array_size = false;
42
43 static void intern_print_type_pre(const type_t *type);
44 static void intern_print_type_post(const type_t *type);
45
46 /**
47  * Returns the size of a type node.
48  *
49  * @param kind  the type kind
50  */
51 static size_t get_type_struct_size(type_kind_t kind)
52 {
53         static const size_t sizes[] = {
54                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
55                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
56                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
57                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
58                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
59                 [TYPE_ENUM]            = sizeof(enum_type_t),
60                 [TYPE_FUNCTION]        = sizeof(function_type_t),
61                 [TYPE_POINTER]         = sizeof(pointer_type_t),
62                 [TYPE_REFERENCE]       = sizeof(reference_type_t),
63                 [TYPE_ARRAY]           = sizeof(array_type_t),
64                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
65                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
66         };
67         assert(lengthof(sizes) == (int)TYPE_TYPEOF + 1);
68         assert(kind <= TYPE_TYPEOF);
69         assert(sizes[kind] != 0);
70         return sizes[kind];
71 }
72
73 type_t *allocate_type_zero(type_kind_t kind)
74 {
75         size_t  const size = get_type_struct_size(kind);
76         type_t *const res  = obstack_alloc(&type_obst, size);
77         memset(res, 0, size);
78         res->base.kind = kind;
79
80         return res;
81 }
82
83 /**
84  * Properties of atomic types.
85  */
86 atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
87         [ATOMIC_TYPE_VOID] = {
88                 .size      = 0,
89                 .alignment = 0,
90                 .flags     = ATOMIC_TYPE_FLAG_NONE
91         },
92         [ATOMIC_TYPE_WCHAR_T] = {
93                 .size      = (unsigned)-1,
94                 .alignment = (unsigned)-1,
95                 .flags     = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
96         },
97         [ATOMIC_TYPE_CHAR] = {
98                 .size      = 1,
99                 .alignment = 1,
100                 .flags     = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
101         },
102         [ATOMIC_TYPE_SCHAR] = {
103                 .size      = 1,
104                 .alignment = 1,
105                 .flags     = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
106                            | ATOMIC_TYPE_FLAG_SIGNED,
107         },
108         [ATOMIC_TYPE_UCHAR] = {
109                 .size      = 1,
110                 .alignment = 1,
111                 .flags     = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
112         },
113         [ATOMIC_TYPE_SHORT] = {
114                 .size       = 2,
115                 .alignment  = 2,
116                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
117                               | ATOMIC_TYPE_FLAG_SIGNED
118         },
119         [ATOMIC_TYPE_USHORT] = {
120                 .size       = 2,
121                 .alignment  = 2,
122                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
123         },
124         [ATOMIC_TYPE_INT] = {
125                 .size       = (unsigned) -1,
126                 .alignment  = (unsigned) -1,
127                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
128                               | ATOMIC_TYPE_FLAG_SIGNED,
129         },
130         [ATOMIC_TYPE_UINT] = {
131                 .size       = (unsigned) -1,
132                 .alignment  = (unsigned) -1,
133                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
134         },
135         [ATOMIC_TYPE_LONG] = {
136                 .size       = (unsigned) -1,
137                 .alignment  = (unsigned) -1,
138                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
139                               | ATOMIC_TYPE_FLAG_SIGNED,
140         },
141         [ATOMIC_TYPE_ULONG] = {
142                 .size       = (unsigned) -1,
143                 .alignment  = (unsigned) -1,
144                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
145         },
146         [ATOMIC_TYPE_BOOL] = {
147                 .size       = 1,
148                 .alignment  = 1,
149                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
150         },
151         [ATOMIC_TYPE_FLOAT] = {
152                 .size       = 4,
153                 .alignment  = 4,
154                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
155                               | ATOMIC_TYPE_FLAG_SIGNED,
156         },
157         [ATOMIC_TYPE_DOUBLE] = {
158                 .size       = 8,
159                 .alignment  = 8,
160                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
161                               | ATOMIC_TYPE_FLAG_SIGNED,
162         },
163 };
164 atomic_type_properties_t pointer_properties = {
165         .size      = 4,
166         .alignment = 4,
167         .flags     = ATOMIC_TYPE_FLAG_NONE,
168 };
169
170 static inline bool is_po2(unsigned x)
171 {
172         return (x & (x-1)) == 0;
173 }
174
175 void init_types(unsigned machine_size)
176 {
177         obstack_init(&type_obst);
178
179         atomic_type_properties_t *props = atomic_type_properties;
180
181         /* atempt to set some sane defaults based on machine size */
182
183         unsigned int_size   = machine_size < 32 ? 2 : 4;
184         unsigned long_size  = machine_size < 64 ? 4 : 8;
185
186         props[ATOMIC_TYPE_INT].size        = int_size;
187         props[ATOMIC_TYPE_INT].alignment   = int_size;
188         props[ATOMIC_TYPE_UINT].size       = int_size;
189         props[ATOMIC_TYPE_UINT].alignment  = int_size;
190         props[ATOMIC_TYPE_LONG].size       = long_size;
191         props[ATOMIC_TYPE_LONG].alignment  = long_size;
192         props[ATOMIC_TYPE_ULONG].size      = long_size;
193         props[ATOMIC_TYPE_ULONG].alignment = long_size;
194
195         pointer_properties.size             = long_size;
196         pointer_properties.alignment        = long_size;
197         pointer_properties.struct_alignment = long_size;
198
199         props[ATOMIC_TYPE_LONGLONG]    = props[ATOMIC_TYPE_LONG];
200         props[ATOMIC_TYPE_ULONGLONG]   = props[ATOMIC_TYPE_ULONG];
201         props[ATOMIC_TYPE_LONG_DOUBLE] = props[ATOMIC_TYPE_DOUBLE];
202         props[ATOMIC_TYPE_WCHAR_T]     = props[ATOMIC_TYPE_INT];
203
204         /* set struct alignments to the same value as alignment */
205         for (size_t i = 0;
206              i < sizeof(atomic_type_properties)/sizeof(atomic_type_properties[0]);
207              ++i) {
208                 props[i].struct_alignment = props[i].alignment;
209         }
210 }
211
212 void exit_types(void)
213 {
214         obstack_free(&type_obst, NULL);
215 }
216
217 void print_type_qualifiers(type_qualifiers_t const qualifiers, QualifierSeparators const q)
218 {
219         size_t sep = q & QUAL_SEP_START ? 0 : 1;
220         if (qualifiers & TYPE_QUALIFIER_CONST) {
221                 print_string(" const" + sep);
222                 sep = 0;
223         }
224         if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
225                 print_string(" volatile" + sep);
226                 sep = 0;
227         }
228         if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
229                 print_string(" restrict" + sep);
230                 sep = 0;
231         }
232         if (sep == 0 && q & QUAL_SEP_END)
233                 print_char(' ');
234 }
235
236 const char *get_atomic_kind_name(atomic_type_kind_t kind)
237 {
238         switch(kind) {
239         case ATOMIC_TYPE_INVALID: break;
240         case ATOMIC_TYPE_VOID:        return "void";
241         case ATOMIC_TYPE_WCHAR_T:     return "wchar_t";
242         case ATOMIC_TYPE_BOOL:        return c_mode & _CXX ? "bool" : "_Bool";
243         case ATOMIC_TYPE_CHAR:        return "char";
244         case ATOMIC_TYPE_SCHAR:       return "signed char";
245         case ATOMIC_TYPE_UCHAR:       return "unsigned char";
246         case ATOMIC_TYPE_INT:         return "int";
247         case ATOMIC_TYPE_UINT:        return "unsigned int";
248         case ATOMIC_TYPE_SHORT:       return "short";
249         case ATOMIC_TYPE_USHORT:      return "unsigned short";
250         case ATOMIC_TYPE_LONG:        return "long";
251         case ATOMIC_TYPE_ULONG:       return "unsigned long";
252         case ATOMIC_TYPE_LONGLONG:    return "long long";
253         case ATOMIC_TYPE_ULONGLONG:   return "unsigned long long";
254         case ATOMIC_TYPE_LONG_DOUBLE: return "long double";
255         case ATOMIC_TYPE_FLOAT:       return "float";
256         case ATOMIC_TYPE_DOUBLE:      return "double";
257         }
258         return "INVALIDATOMIC";
259 }
260
261 /**
262  * Prints the name of an atomic type kinds.
263  *
264  * @param kind  The type kind.
265  */
266 static void print_atomic_kinds(atomic_type_kind_t kind)
267 {
268         const char *s = get_atomic_kind_name(kind);
269         print_string(s);
270 }
271
272 /**
273  * Prints the name of an atomic type.
274  *
275  * @param type  The type.
276  */
277 static void print_atomic_type(const atomic_type_t *type)
278 {
279         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
280         print_atomic_kinds(type->akind);
281 }
282
283 /**
284  * Prints the name of a complex type.
285  *
286  * @param type  The type.
287  */
288 static void print_complex_type(const complex_type_t *type)
289 {
290         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
291         print_string("_Complex");
292         print_atomic_kinds(type->akind);
293 }
294
295 /**
296  * Prints the name of an imaginary type.
297  *
298  * @param type  The type.
299  */
300 static void print_imaginary_type(const imaginary_type_t *type)
301 {
302         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
303         print_string("_Imaginary ");
304         print_atomic_kinds(type->akind);
305 }
306
307 /**
308  * Print the first part (the prefix) of a type.
309  *
310  * @param type   The type to print.
311  */
312 static void print_function_type_pre(const function_type_t *type)
313 {
314         switch (type->linkage) {
315                 case LINKAGE_INVALID:
316                         break;
317
318                 case LINKAGE_C:
319                         if (c_mode & _CXX)
320                                 print_string("extern \"C\" ");
321                         break;
322
323                 case LINKAGE_CXX:
324                         if (!(c_mode & _CXX))
325                                 print_string("extern \"C++\" ");
326                         break;
327         }
328
329         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
330
331         intern_print_type_pre(type->return_type);
332
333         cc_kind_t cc = type->calling_convention;
334 restart:
335         switch (cc) {
336         case CC_CDECL:    print_string(" __cdecl");    break;
337         case CC_STDCALL:  print_string(" __stdcall");  break;
338         case CC_FASTCALL: print_string(" __fastcall"); break;
339         case CC_THISCALL: print_string(" __thiscall"); break;
340         case CC_DEFAULT:
341                 if (default_calling_convention != CC_CDECL) {
342                         /* show the default calling convention if its not cdecl */
343                         cc = default_calling_convention;
344                         goto restart;
345                 }
346                 break;
347         }
348 }
349
350 /**
351  * Print the second part (the postfix) of a type.
352  *
353  * @param type   The type to print.
354  */
355 static void print_function_type_post(const function_type_t *type,
356                                      const scope_t *parameters)
357 {
358         print_string("(");
359         bool first = true;
360         if (parameters == NULL) {
361                 function_parameter_t *parameter = type->parameters;
362                 for( ; parameter != NULL; parameter = parameter->next) {
363                         if (first) {
364                                 first = false;
365                         } else {
366                                 print_string(", ");
367                         }
368                         print_type(parameter->type);
369                 }
370         } else {
371                 entity_t *parameter = parameters->entities;
372                 for (; parameter != NULL; parameter = parameter->base.next) {
373                         if (parameter->kind != ENTITY_PARAMETER)
374                                 continue;
375
376                         if (first) {
377                                 first = false;
378                         } else {
379                                 print_string(", ");
380                         }
381                         const type_t *const param_type = parameter->declaration.type;
382                         if (param_type == NULL) {
383                                 print_string(parameter->base.symbol->string);
384                         } else {
385                                 print_type_ext(param_type, parameter->base.symbol, NULL);
386                         }
387                 }
388         }
389         if (type->variadic) {
390                 if (first) {
391                         first = false;
392                 } else {
393                         print_string(", ");
394                 }
395                 print_string("...");
396         }
397         if (first && !type->unspecified_parameters) {
398                 print_string("void");
399         }
400         print_string(")");
401
402         intern_print_type_post(type->return_type);
403 }
404
405 /**
406  * Prints the prefix part of a pointer type.
407  *
408  * @param type   The pointer type.
409  */
410 static void print_pointer_type_pre(const pointer_type_t *type)
411 {
412         type_t const *const points_to = type->points_to;
413         intern_print_type_pre(points_to);
414         if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION)
415                 print_string(" (");
416         variable_t *const variable = type->base_variable;
417         if (variable != NULL) {
418                 print_string(" __based(");
419                 print_string(variable->base.base.symbol->string);
420                 print_string(") ");
421         }
422         print_string("*");
423         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_START);
424 }
425
426 /**
427  * Prints the postfix part of a pointer type.
428  *
429  * @param type   The pointer type.
430  */
431 static void print_pointer_type_post(const pointer_type_t *type)
432 {
433         type_t const *const points_to = type->points_to;
434         if (points_to->kind == TYPE_ARRAY || points_to->kind == TYPE_FUNCTION)
435                 print_string(")");
436         intern_print_type_post(points_to);
437 }
438
439 /**
440  * Prints the prefix part of a reference type.
441  *
442  * @param type   The reference type.
443  */
444 static void print_reference_type_pre(const reference_type_t *type)
445 {
446         type_t const *const refers_to = type->refers_to;
447         intern_print_type_pre(refers_to);
448         if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION)
449                 print_string(" (");
450         print_string("&");
451 }
452
453 /**
454  * Prints the postfix part of a reference type.
455  *
456  * @param type   The reference type.
457  */
458 static void print_reference_type_post(const reference_type_t *type)
459 {
460         type_t const *const refers_to = type->refers_to;
461         if (refers_to->kind == TYPE_ARRAY || refers_to->kind == TYPE_FUNCTION)
462                 print_string(")");
463         intern_print_type_post(refers_to);
464 }
465
466 /**
467  * Prints the prefix part of an array type.
468  *
469  * @param type   The array type.
470  */
471 static void print_array_type_pre(const array_type_t *type)
472 {
473         intern_print_type_pre(type->element_type);
474 }
475
476 /**
477  * Prints the postfix part of an array type.
478  *
479  * @param type   The array type.
480  */
481 static void print_array_type_post(const array_type_t *type)
482 {
483         print_string("[");
484         if (type->is_static) {
485                 print_string("static ");
486         }
487         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
488         if (type->size_expression != NULL
489                         && (print_implicit_array_size || !type->has_implicit_size)) {
490                 print_expression(type->size_expression);
491         }
492         print_string("]");
493         intern_print_type_post(type->element_type);
494 }
495
496 /**
497  * Prints an enum definition.
498  *
499  * @param declaration  The enum's type declaration.
500  */
501 void print_enum_definition(const enum_t *enume)
502 {
503         print_string("{\n");
504
505         change_indent(1);
506
507         entity_t *entry = enume->base.next;
508         for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
509                entry = entry->base.next) {
510
511                 print_indent();
512                 print_string(entry->base.symbol->string);
513                 if (entry->enum_value.value != NULL) {
514                         print_string(" = ");
515
516                         /* skip the implicit cast */
517                         expression_t *expression = entry->enum_value.value;
518                         print_expression(expression);
519                 }
520                 print_string(",\n");
521         }
522
523         change_indent(-1);
524         print_indent();
525         print_string("}");
526 }
527
528 /**
529  * Prints an enum type.
530  *
531  * @param type  The enum type.
532  */
533 static void print_type_enum(const enum_type_t *type)
534 {
535         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
536         print_string("enum ");
537
538         enum_t   *enume  = type->enume;
539         symbol_t *symbol = enume->base.symbol;
540         if (symbol != NULL) {
541                 print_string(symbol->string);
542         } else {
543                 print_enum_definition(enume);
544         }
545 }
546
547 /**
548  * Print the compound part of a compound type.
549  */
550 void print_compound_definition(const compound_t *compound)
551 {
552         print_string("{\n");
553         change_indent(1);
554
555         entity_t *entity = compound->members.entities;
556         for( ; entity != NULL; entity = entity->base.next) {
557                 if (entity->kind != ENTITY_COMPOUND_MEMBER)
558                         continue;
559
560                 print_indent();
561                 print_entity(entity);
562                 print_string("\n");
563         }
564
565         change_indent(-1);
566         print_indent();
567         print_string("}");
568         if (compound->modifiers & DM_TRANSPARENT_UNION) {
569                 print_string("__attribute__((__transparent_union__))");
570         }
571 }
572
573 /**
574  * Prints a compound type.
575  *
576  * @param type  The compound type.
577  */
578 static void print_compound_type(const compound_type_t *type)
579 {
580         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
581
582         if (type->base.kind == TYPE_COMPOUND_STRUCT) {
583                 print_string("struct ");
584         } else {
585                 assert(type->base.kind == TYPE_COMPOUND_UNION);
586                 print_string("union ");
587         }
588
589         compound_t *compound = type->compound;
590         symbol_t   *symbol   = compound->base.symbol;
591         if (symbol != NULL) {
592                 print_string(symbol->string);
593         } else {
594                 print_compound_definition(compound);
595         }
596 }
597
598 /**
599  * Prints the prefix part of a typedef type.
600  *
601  * @param type   The typedef type.
602  */
603 static void print_typedef_type_pre(const typedef_type_t *const type)
604 {
605         print_type_qualifiers(type->base.qualifiers, QUAL_SEP_END);
606         print_string(type->typedefe->base.symbol->string);
607 }
608
609 /**
610  * Prints the prefix part of a typeof type.
611  *
612  * @param type   The typeof type.
613  */
614 static void print_typeof_type_pre(const typeof_type_t *const type)
615 {
616         print_string("typeof(");
617         if (type->expression != NULL) {
618                 print_expression(type->expression);
619         } else {
620                 print_type(type->typeof_type);
621         }
622         print_string(")");
623 }
624
625 /**
626  * Prints the prefix part of a type.
627  *
628  * @param type   The type.
629  */
630 static void intern_print_type_pre(const type_t *const type)
631 {
632         switch(type->kind) {
633         case TYPE_ERROR:
634                 print_string("<error>");
635                 return;
636         case TYPE_ENUM:
637                 print_type_enum(&type->enumt);
638                 return;
639         case TYPE_ATOMIC:
640                 print_atomic_type(&type->atomic);
641                 return;
642         case TYPE_COMPLEX:
643                 print_complex_type(&type->complex);
644                 return;
645         case TYPE_IMAGINARY:
646                 print_imaginary_type(&type->imaginary);
647                 return;
648         case TYPE_COMPOUND_STRUCT:
649         case TYPE_COMPOUND_UNION:
650                 print_compound_type(&type->compound);
651                 return;
652         case TYPE_FUNCTION:
653                 print_function_type_pre(&type->function);
654                 return;
655         case TYPE_POINTER:
656                 print_pointer_type_pre(&type->pointer);
657                 return;
658         case TYPE_REFERENCE:
659                 print_reference_type_pre(&type->reference);
660                 return;
661         case TYPE_ARRAY:
662                 print_array_type_pre(&type->array);
663                 return;
664         case TYPE_TYPEDEF:
665                 print_typedef_type_pre(&type->typedeft);
666                 return;
667         case TYPE_TYPEOF:
668                 print_typeof_type_pre(&type->typeoft);
669                 return;
670         }
671         print_string("unknown");
672 }
673
674 /**
675  * Prints the postfix part of a type.
676  *
677  * @param type   The type.
678  */
679 static void intern_print_type_post(const type_t *const type)
680 {
681         switch(type->kind) {
682         case TYPE_FUNCTION:
683                 print_function_type_post(&type->function, NULL);
684                 return;
685         case TYPE_POINTER:
686                 print_pointer_type_post(&type->pointer);
687                 return;
688         case TYPE_REFERENCE:
689                 print_reference_type_post(&type->reference);
690                 return;
691         case TYPE_ARRAY:
692                 print_array_type_post(&type->array);
693                 return;
694         case TYPE_ERROR:
695         case TYPE_ATOMIC:
696         case TYPE_COMPLEX:
697         case TYPE_IMAGINARY:
698         case TYPE_ENUM:
699         case TYPE_COMPOUND_STRUCT:
700         case TYPE_COMPOUND_UNION:
701         case TYPE_TYPEOF:
702         case TYPE_TYPEDEF:
703                 break;
704         }
705 }
706
707 /**
708  * Prints a type.
709  *
710  * @param type   The type.
711  */
712 void print_type(const type_t *const type)
713 {
714         print_type_ext(type, NULL, NULL);
715 }
716
717 void print_type_ext(const type_t *const type, const symbol_t *symbol,
718                     const scope_t *parameters)
719 {
720         intern_print_type_pre(type);
721         if (symbol != NULL) {
722                 print_string(" ");
723                 print_string(symbol->string);
724         }
725         if (type->kind == TYPE_FUNCTION) {
726                 print_function_type_post(&type->function, parameters);
727         } else {
728                 intern_print_type_post(type);
729         }
730 }
731
732 /**
733  * Duplicates a type.
734  *
735  * @param type  The type to copy.
736  * @return A copy of the type.
737  *
738  * @note This does not produce a deep copy!
739  */
740 type_t *duplicate_type(const type_t *type)
741 {
742         size_t size = get_type_struct_size(type->kind);
743
744         type_t *const copy = obstack_alloc(&type_obst, size);
745         memcpy(copy, type, size);
746         copy->base.firm_type = NULL;
747
748         return copy;
749 }
750
751 /**
752  * Returns the unqualified type of a given type.
753  *
754  * @param type  The type.
755  * @returns The unqualified type.
756  */
757 type_t *get_unqualified_type(type_t *type)
758 {
759         assert(!is_typeref(type));
760
761         if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
762                 return type;
763
764         type_t *unqualified_type          = duplicate_type(type);
765         unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
766
767         return identify_new_type(unqualified_type);
768 }
769
770 type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual)
771 {
772         type_t *type = skip_typeref(orig_type);
773
774         type_t *copy;
775         if (is_type_array(type)) {
776                 /* For array types the element type has to be adjusted */
777                 type_t *element_type      = type->array.element_type;
778                 type_t *qual_element_type = get_qualified_type(element_type, qual);
779
780                 if (qual_element_type == element_type)
781                         return orig_type;
782
783                 copy                     = duplicate_type(type);
784                 copy->array.element_type = qual_element_type;
785         } else if (is_type_valid(type)) {
786                 if ((type->base.qualifiers & qual) == (int)qual)
787                         return orig_type;
788
789                 copy                   = duplicate_type(type);
790                 copy->base.qualifiers |= qual;
791         } else {
792                 return type;
793         }
794
795         return identify_new_type(copy);
796 }
797
798 static bool test_atomic_type_flag(atomic_type_kind_t kind,
799                                   atomic_type_flag_t flag)
800 {
801         assert(kind <= ATOMIC_TYPE_LAST);
802         return (atomic_type_properties[kind].flags & flag) != 0;
803 }
804
805 /**
806  * Returns true if the given type is an integer type.
807  *
808  * @param type  The type to check.
809  * @return True if type is an integer type.
810  */
811 bool is_type_integer(const type_t *type)
812 {
813         assert(!is_typeref(type));
814
815         if (type->kind == TYPE_ENUM)
816                 return true;
817         if (type->kind != TYPE_ATOMIC)
818                 return false;
819
820         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
821 }
822
823 /**
824  * Returns true if the given type is an enum type.
825  *
826  * @param type  The type to check.
827  * @return True if type is an enum type.
828  */
829 bool is_type_enum(const type_t *type)
830 {
831         assert(!is_typeref(type));
832         return type->kind == TYPE_ENUM;
833 }
834
835 /**
836  * Returns true if the given type is an floating point type.
837  *
838  * @param type  The type to check.
839  * @return True if type is a floating point type.
840  */
841 bool is_type_float(const type_t *type)
842 {
843         assert(!is_typeref(type));
844
845         if (type->kind != TYPE_ATOMIC)
846                 return false;
847
848         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
849 }
850
851 /**
852  * Returns true if the given type is an complex type.
853  *
854  * @param type  The type to check.
855  * @return True if type is a complex type.
856  */
857 bool is_type_complex(const type_t *type)
858 {
859         assert(!is_typeref(type));
860
861         if (type->kind != TYPE_ATOMIC)
862                 return false;
863
864         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
865 }
866
867 /**
868  * Returns true if the given type is a signed type.
869  *
870  * @param type  The type to check.
871  * @return True if type is a signed type.
872  */
873 bool is_type_signed(const type_t *type)
874 {
875         assert(!is_typeref(type));
876
877         /* enum types are int for now */
878         if (type->kind == TYPE_ENUM)
879                 return true;
880         if (type->kind != TYPE_ATOMIC)
881                 return false;
882
883         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
884 }
885
886 /**
887  * Returns true if the given type represents an arithmetic type.
888  *
889  * @param type  The type to check.
890  * @return True if type represents an arithmetic type.
891  */
892 bool is_type_arithmetic(const type_t *type)
893 {
894         assert(!is_typeref(type));
895
896         switch(type->kind) {
897         case TYPE_ENUM:
898                 return true;
899         case TYPE_ATOMIC:
900                 return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
901         case TYPE_COMPLEX:
902                 return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
903         case TYPE_IMAGINARY:
904                 return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
905         default:
906                 return false;
907         }
908 }
909
910 /**
911  * Returns true if the given type is an integer or float type.
912  *
913  * @param type  The type to check.
914  * @return True if type is an integer or float type.
915  */
916 bool is_type_real(const type_t *type)
917 {
918         /* 6.2.5 (17) */
919         return is_type_integer(type) || is_type_float(type);
920 }
921
922 /**
923  * Returns true if the given type represents a scalar type.
924  *
925  * @param type  The type to check.
926  * @return True if type represents a scalar type.
927  */
928 bool is_type_scalar(const type_t *type)
929 {
930         assert(!is_typeref(type));
931
932         if (type->kind == TYPE_POINTER)
933                 return true;
934
935         return is_type_arithmetic(type);
936 }
937
938 /**
939  * Check if a given type is incomplete.
940  *
941  * @param type  The type to check.
942  * @return True if the given type is incomplete (ie. just forward).
943  */
944 bool is_type_incomplete(const type_t *type)
945 {
946         assert(!is_typeref(type));
947
948         switch(type->kind) {
949         case TYPE_COMPOUND_STRUCT:
950         case TYPE_COMPOUND_UNION: {
951                 const compound_type_t *compound_type = &type->compound;
952                 return !compound_type->compound->complete;
953         }
954         case TYPE_ENUM:
955                 return false;
956
957         case TYPE_ARRAY:
958                 return type->array.size_expression == NULL
959                         && !type->array.size_constant;
960
961         case TYPE_ATOMIC:
962                 return type->atomic.akind == ATOMIC_TYPE_VOID;
963
964         case TYPE_COMPLEX:
965                 return type->complex.akind == ATOMIC_TYPE_VOID;
966
967         case TYPE_IMAGINARY:
968                 return type->imaginary.akind == ATOMIC_TYPE_VOID;
969
970         case TYPE_FUNCTION:
971         case TYPE_POINTER:
972         case TYPE_REFERENCE:
973         case TYPE_ERROR:
974                 return false;
975
976         case TYPE_TYPEDEF:
977         case TYPE_TYPEOF:
978                 panic("is_type_incomplete called without typerefs skipped");
979         }
980
981         panic("invalid type found");
982 }
983
984 bool is_type_object(const type_t *type)
985 {
986         return !is_type_function(type) && !is_type_incomplete(type);
987 }
988
989 /**
990  * Check if two function types are compatible.
991  */
992 static bool function_types_compatible(const function_type_t *func1,
993                                       const function_type_t *func2)
994 {
995         const type_t* const ret1 = skip_typeref(func1->return_type);
996         const type_t* const ret2 = skip_typeref(func2->return_type);
997         if (!types_compatible(ret1, ret2))
998                 return false;
999
1000         if (func1->linkage != func2->linkage)
1001                 return false;
1002
1003         cc_kind_t cc1 = func1->calling_convention;
1004         if (cc1 == CC_DEFAULT)
1005                 cc1 = default_calling_convention;
1006         cc_kind_t cc2 = func2->calling_convention;
1007         if (cc2 == CC_DEFAULT)
1008                 cc2 = default_calling_convention;
1009
1010         if (cc1 != cc2)
1011                 return false;
1012
1013         if (func1->variadic != func2->variadic)
1014                 return false;
1015
1016         /* can parameters be compared? */
1017         if ((func1->unspecified_parameters && !func1->kr_style_parameters)
1018                         || (func2->unspecified_parameters && !func2->kr_style_parameters))
1019                 return true;
1020
1021         /* TODO: handling of unspecified parameters not correct yet */
1022
1023         /* all argument types must be compatible */
1024         function_parameter_t *parameter1 = func1->parameters;
1025         function_parameter_t *parameter2 = func2->parameters;
1026         for ( ; parameter1 != NULL && parameter2 != NULL;
1027                         parameter1 = parameter1->next, parameter2 = parameter2->next) {
1028                 type_t *parameter1_type = skip_typeref(parameter1->type);
1029                 type_t *parameter2_type = skip_typeref(parameter2->type);
1030
1031                 parameter1_type = get_unqualified_type(parameter1_type);
1032                 parameter2_type = get_unqualified_type(parameter2_type);
1033
1034                 if (!types_compatible(parameter1_type, parameter2_type))
1035                         return false;
1036         }
1037         /* same number of arguments? */
1038         if (parameter1 != NULL || parameter2 != NULL)
1039                 return false;
1040
1041         return true;
1042 }
1043
1044 /**
1045  * Check if two array types are compatible.
1046  */
1047 static bool array_types_compatible(const array_type_t *array1,
1048                                    const array_type_t *array2)
1049 {
1050         type_t *element_type1 = skip_typeref(array1->element_type);
1051         type_t *element_type2 = skip_typeref(array2->element_type);
1052         if (!types_compatible(element_type1, element_type2))
1053                 return false;
1054
1055         if (!array1->size_constant || !array2->size_constant)
1056                 return true;
1057
1058         return array1->size == array2->size;
1059 }
1060
1061 /**
1062  * Check if two types are compatible.
1063  */
1064 bool types_compatible(const type_t *type1, const type_t *type2)
1065 {
1066         assert(!is_typeref(type1));
1067         assert(!is_typeref(type2));
1068
1069         /* shortcut: the same type is always compatible */
1070         if (type1 == type2)
1071                 return true;
1072
1073         if (!is_type_valid(type1) || !is_type_valid(type2))
1074                 return true;
1075
1076         if (type1->base.qualifiers != type2->base.qualifiers)
1077                 return false;
1078         if (type1->kind != type2->kind)
1079                 return false;
1080
1081         switch (type1->kind) {
1082         case TYPE_FUNCTION:
1083                 return function_types_compatible(&type1->function, &type2->function);
1084         case TYPE_ATOMIC:
1085                 return type1->atomic.akind == type2->atomic.akind;
1086         case TYPE_COMPLEX:
1087                 return type1->complex.akind == type2->complex.akind;
1088         case TYPE_IMAGINARY:
1089                 return type1->imaginary.akind == type2->imaginary.akind;
1090         case TYPE_ARRAY:
1091                 return array_types_compatible(&type1->array, &type2->array);
1092
1093         case TYPE_POINTER: {
1094                 const type_t *const to1 = skip_typeref(type1->pointer.points_to);
1095                 const type_t *const to2 = skip_typeref(type2->pointer.points_to);
1096                 return types_compatible(to1, to2);
1097         }
1098
1099         case TYPE_REFERENCE: {
1100                 const type_t *const to1 = skip_typeref(type1->reference.refers_to);
1101                 const type_t *const to2 = skip_typeref(type2->reference.refers_to);
1102                 return types_compatible(to1, to2);
1103         }
1104
1105         case TYPE_COMPOUND_STRUCT:
1106         case TYPE_COMPOUND_UNION: {
1107                 break;
1108         }
1109         case TYPE_ENUM:
1110                 /* TODO: not implemented */
1111                 break;
1112
1113         case TYPE_ERROR:
1114                 /* Hmm, the error type should be compatible to all other types */
1115                 return true;
1116         case TYPE_TYPEDEF:
1117         case TYPE_TYPEOF:
1118                 panic("typerefs not skipped in compatible types?!?");
1119         }
1120
1121         return false;
1122 }
1123
1124 /**
1125  * Skip all typerefs and return the underlying type.
1126  */
1127 type_t *skip_typeref(type_t *type)
1128 {
1129         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1130
1131         while (true) {
1132                 switch (type->kind) {
1133                 case TYPE_ERROR:
1134                         return type;
1135                 case TYPE_TYPEDEF: {
1136                         qualifiers |= type->base.qualifiers;
1137
1138                         const typedef_type_t *typedef_type = &type->typedeft;
1139                         if (typedef_type->resolved_type != NULL) {
1140                                 type = typedef_type->resolved_type;
1141                                 break;
1142                         }
1143                         type = typedef_type->typedefe->type;
1144                         continue;
1145                 }
1146                 case TYPE_TYPEOF:
1147                         qualifiers |= type->base.qualifiers;
1148                         type        = type->typeoft.typeof_type;
1149                         continue;
1150                 default:
1151                         break;
1152                 }
1153                 break;
1154         }
1155
1156         if (qualifiers != TYPE_QUALIFIER_NONE) {
1157                 type_t *const copy = duplicate_type(type);
1158
1159                 /* for const with typedefed array type the element type has to be
1160                  * adjusted */
1161                 if (is_type_array(copy)) {
1162                         type_t *element_type           = copy->array.element_type;
1163                         element_type                   = duplicate_type(element_type);
1164                         element_type->base.qualifiers |= qualifiers;
1165                         copy->array.element_type       = element_type;
1166                 } else {
1167                         copy->base.qualifiers |= qualifiers;
1168                 }
1169
1170                 type = identify_new_type(copy);
1171         }
1172
1173         return type;
1174 }
1175
1176 unsigned get_type_size(type_t *type)
1177 {
1178         switch (type->kind) {
1179         case TYPE_ERROR:
1180                 return 0;
1181         case TYPE_ATOMIC:
1182                 return get_atomic_type_size(type->atomic.akind);
1183         case TYPE_COMPLEX:
1184                 return get_atomic_type_size(type->complex.akind) * 2;
1185         case TYPE_IMAGINARY:
1186                 return get_atomic_type_size(type->imaginary.akind);
1187         case TYPE_COMPOUND_UNION:
1188                 layout_union_type(&type->compound);
1189                 return type->compound.compound->size;
1190         case TYPE_COMPOUND_STRUCT:
1191                 layout_struct_type(&type->compound);
1192                 return type->compound.compound->size;
1193         case TYPE_ENUM:
1194                 return get_atomic_type_size(type->enumt.akind);
1195         case TYPE_FUNCTION:
1196                 return 0; /* non-const (but "address-const") */
1197         case TYPE_REFERENCE:
1198         case TYPE_POINTER:
1199                 return pointer_properties.size;
1200         case TYPE_ARRAY: {
1201                 /* TODO: correct if element_type is aligned? */
1202                 il_size_t element_size = get_type_size(type->array.element_type);
1203                 return type->array.size * element_size;
1204         }
1205         case TYPE_TYPEDEF:
1206                 return get_type_size(type->typedeft.typedefe->type);
1207         case TYPE_TYPEOF:
1208                 if (type->typeoft.typeof_type) {
1209                         return get_type_size(type->typeoft.typeof_type);
1210                 } else {
1211                         return get_type_size(type->typeoft.expression->base.type);
1212                 }
1213         }
1214         panic("invalid type in get_type_size");
1215 }
1216
1217 unsigned get_type_alignment(type_t *type)
1218 {
1219         switch (type->kind) {
1220         case TYPE_ERROR:
1221                 return 0;
1222         case TYPE_ATOMIC:
1223                 return get_atomic_type_alignment(type->atomic.akind);
1224         case TYPE_COMPLEX:
1225                 return get_atomic_type_alignment(type->complex.akind);
1226         case TYPE_IMAGINARY:
1227                 return get_atomic_type_alignment(type->imaginary.akind);
1228         case TYPE_COMPOUND_UNION:
1229                 layout_union_type(&type->compound);
1230                 return type->compound.compound->alignment;
1231         case TYPE_COMPOUND_STRUCT:
1232                 layout_struct_type(&type->compound);
1233                 return type->compound.compound->alignment;
1234         case TYPE_ENUM:
1235                 return get_atomic_type_alignment(type->enumt.akind);
1236         case TYPE_FUNCTION:
1237                 /* gcc says 1 here... */
1238                 return 1;
1239         case TYPE_REFERENCE:
1240         case TYPE_POINTER:
1241                 return pointer_properties.alignment;
1242         case TYPE_ARRAY:
1243                 return get_type_alignment(type->array.element_type);
1244         case TYPE_TYPEDEF: {
1245                 il_alignment_t alignment
1246                         = get_type_alignment(type->typedeft.typedefe->type);
1247                 if (type->typedeft.typedefe->alignment > alignment)
1248                         alignment = type->typedeft.typedefe->alignment;
1249
1250                 return alignment;
1251         }
1252         case TYPE_TYPEOF:
1253                 if (type->typeoft.typeof_type) {
1254                         return get_type_alignment(type->typeoft.typeof_type);
1255                 } else {
1256                         return get_type_alignment(type->typeoft.expression->base.type);
1257                 }
1258         }
1259         panic("invalid type in get_type_alignment");
1260 }
1261
1262 unsigned get_type_alignment_compound(type_t *type)
1263 {
1264         if (type->kind == TYPE_ATOMIC)
1265                 return atomic_type_properties[type->atomic.akind].struct_alignment;
1266         return get_type_alignment(type);
1267 }
1268
1269 decl_modifiers_t get_type_modifiers(const type_t *type)
1270 {
1271         switch(type->kind) {
1272         case TYPE_ERROR:
1273                 break;
1274         case TYPE_COMPOUND_STRUCT:
1275         case TYPE_COMPOUND_UNION:
1276                 return type->compound.compound->modifiers;
1277         case TYPE_FUNCTION:
1278                 return type->function.modifiers;
1279         case TYPE_ENUM:
1280         case TYPE_ATOMIC:
1281         case TYPE_COMPLEX:
1282         case TYPE_IMAGINARY:
1283         case TYPE_REFERENCE:
1284         case TYPE_POINTER:
1285         case TYPE_ARRAY:
1286                 return 0;
1287         case TYPE_TYPEDEF: {
1288                 decl_modifiers_t modifiers = type->typedeft.typedefe->modifiers;
1289                 modifiers |= get_type_modifiers(type->typedeft.typedefe->type);
1290                 return modifiers;
1291         }
1292         case TYPE_TYPEOF:
1293                 if (type->typeoft.typeof_type) {
1294                         return get_type_modifiers(type->typeoft.typeof_type);
1295                 } else {
1296                         return get_type_modifiers(type->typeoft.expression->base.type);
1297                 }
1298         }
1299         panic("invalid type found in get_type_modifiers");
1300 }
1301
1302 type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type)
1303 {
1304         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1305
1306         while (true) {
1307                 switch (type->base.kind) {
1308                 case TYPE_ERROR:
1309                         return TYPE_QUALIFIER_NONE;
1310                 case TYPE_TYPEDEF:
1311                         qualifiers |= type->base.qualifiers;
1312                         const typedef_type_t *typedef_type = &type->typedeft;
1313                         if (typedef_type->resolved_type != NULL)
1314                                 type = typedef_type->resolved_type;
1315                         else
1316                                 type = typedef_type->typedefe->type;
1317                         continue;
1318                 case TYPE_TYPEOF:
1319                         type = type->typeoft.typeof_type;
1320                         continue;
1321                 case TYPE_ARRAY:
1322                         if (skip_array_type) {
1323                                 type = type->array.element_type;
1324                                 continue;
1325                         }
1326                         break;
1327                 default:
1328                         break;
1329                 }
1330                 break;
1331         }
1332         return type->base.qualifiers | qualifiers;
1333 }
1334
1335 unsigned get_atomic_type_size(atomic_type_kind_t kind)
1336 {
1337         assert(kind <= ATOMIC_TYPE_LAST);
1338         return atomic_type_properties[kind].size;
1339 }
1340
1341 unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
1342 {
1343         assert(kind <= ATOMIC_TYPE_LAST);
1344         return atomic_type_properties[kind].alignment;
1345 }
1346
1347 unsigned get_atomic_type_flags(atomic_type_kind_t kind)
1348 {
1349         assert(kind <= ATOMIC_TYPE_LAST);
1350         return atomic_type_properties[kind].flags;
1351 }
1352
1353 /**
1354  * Find the atomic type kind representing a given size (signed).
1355  */
1356 atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size)
1357 {
1358         static atomic_type_kind_t kinds[32];
1359
1360         assert(size < 32);
1361         atomic_type_kind_t kind = kinds[size];
1362         if (kind == ATOMIC_TYPE_INVALID) {
1363                 static const atomic_type_kind_t possible_kinds[] = {
1364                         ATOMIC_TYPE_SCHAR,
1365                         ATOMIC_TYPE_SHORT,
1366                         ATOMIC_TYPE_INT,
1367                         ATOMIC_TYPE_LONG,
1368                         ATOMIC_TYPE_LONGLONG
1369                 };
1370                 for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
1371                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1372                                 kind = possible_kinds[i];
1373                                 break;
1374                         }
1375                 }
1376                 kinds[size] = kind;
1377         }
1378         return kind;
1379 }
1380
1381 /**
1382  * Find the atomic type kind representing a given size (signed).
1383  */
1384 atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size)
1385 {
1386         static atomic_type_kind_t kinds[32];
1387
1388         assert(size < 32);
1389         atomic_type_kind_t kind = kinds[size];
1390         if (kind == ATOMIC_TYPE_INVALID) {
1391                 static const atomic_type_kind_t possible_kinds[] = {
1392                         ATOMIC_TYPE_UCHAR,
1393                         ATOMIC_TYPE_USHORT,
1394                         ATOMIC_TYPE_UINT,
1395                         ATOMIC_TYPE_ULONG,
1396                         ATOMIC_TYPE_ULONGLONG
1397                 };
1398                 for (size_t i = 0; i < lengthof(possible_kinds); ++i) {
1399                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1400                                 kind = possible_kinds[i];
1401                                 break;
1402                         }
1403                 }
1404                 kinds[size] = kind;
1405         }
1406         return kind;
1407 }
1408
1409 /**
1410  * Hash the given type and return the "singleton" version
1411  * of it.
1412  */
1413 type_t *identify_new_type(type_t *type)
1414 {
1415         type_t *result = typehash_insert(type);
1416         if (result != type) {
1417                 obstack_free(&type_obst, type);
1418         }
1419         return result;
1420 }
1421
1422 /**
1423  * Creates a new atomic type.
1424  *
1425  * @param akind       The kind of the atomic type.
1426  * @param qualifiers  Type qualifiers for the new type.
1427  */
1428 type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1429 {
1430         type_t *const type = allocate_type_zero(TYPE_ATOMIC);
1431         type->base.qualifiers = qualifiers;
1432         type->atomic.akind    = akind;
1433
1434         return identify_new_type(type);
1435 }
1436
1437 /**
1438  * Creates a new complex type.
1439  *
1440  * @param akind       The kind of the atomic type.
1441  * @param qualifiers  Type qualifiers for the new type.
1442  */
1443 type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1444 {
1445         type_t *const type = allocate_type_zero(TYPE_COMPLEX);
1446         type->base.qualifiers = qualifiers;
1447         type->complex.akind   = akind;
1448
1449         return identify_new_type(type);
1450 }
1451
1452 /**
1453  * Creates a new imaginary type.
1454  *
1455  * @param akind       The kind of the atomic type.
1456  * @param qualifiers  Type qualifiers for the new type.
1457  */
1458 type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1459 {
1460         type_t *const type = allocate_type_zero(TYPE_IMAGINARY);
1461         type->base.qualifiers = qualifiers;
1462         type->imaginary.akind = akind;
1463
1464         return identify_new_type(type);
1465 }
1466
1467 /**
1468  * Creates a new pointer type.
1469  *
1470  * @param points_to   The points-to type for the new type.
1471  * @param qualifiers  Type qualifiers for the new type.
1472  */
1473 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
1474 {
1475         type_t *const type = allocate_type_zero(TYPE_POINTER);
1476         type->base.qualifiers       = qualifiers;
1477         type->pointer.points_to     = points_to;
1478         type->pointer.base_variable = NULL;
1479
1480         return identify_new_type(type);
1481 }
1482
1483 /**
1484  * Creates a new reference type.
1485  *
1486  * @param refers_to   The referred-to type for the new type.
1487  */
1488 type_t *make_reference_type(type_t *refers_to)
1489 {
1490         type_t *const type = allocate_type_zero(TYPE_REFERENCE);
1491         type->base.qualifiers     = TYPE_QUALIFIER_NONE;
1492         type->reference.refers_to = refers_to;
1493
1494         return identify_new_type(type);
1495 }
1496
1497 /**
1498  * Creates a new based pointer type.
1499  *
1500  * @param points_to   The points-to type for the new type.
1501  * @param qualifiers  Type qualifiers for the new type.
1502  * @param variable    The based variable
1503  */
1504 type_t *make_based_pointer_type(type_t *points_to,
1505                                                                 type_qualifiers_t qualifiers, variable_t *variable)
1506 {
1507         type_t *const type = allocate_type_zero(TYPE_POINTER);
1508         type->base.qualifiers       = qualifiers;
1509         type->pointer.points_to     = points_to;
1510         type->pointer.base_variable = variable;
1511
1512         return identify_new_type(type);
1513 }
1514
1515
1516 type_t *make_array_type(type_t *element_type, size_t size,
1517                         type_qualifiers_t qualifiers)
1518 {
1519         type_t *const type = allocate_type_zero(TYPE_ARRAY);
1520         type->base.qualifiers     = qualifiers;
1521         type->array.element_type  = element_type;
1522         type->array.size          = size;
1523         type->array.size_constant = true;
1524
1525         return identify_new_type(type);
1526 }
1527
1528 static entity_t *pack_bitfield_members(il_size_t *struct_offset,
1529                                        il_alignment_t *struct_alignment,
1530                                                                            bool packed, entity_t *first)
1531 {
1532         il_size_t      offset     = *struct_offset;
1533         il_alignment_t alignment  = *struct_alignment;
1534         size_t         bit_offset = 0;
1535
1536         entity_t *member;
1537         for (member = first; member != NULL; member = member->base.next) {
1538                 if (member->kind != ENTITY_COMPOUND_MEMBER)
1539                         continue;
1540                 if (!member->compound_member.bitfield)
1541                         break;
1542
1543                 type_t *base_type = member->declaration.type;
1544                 il_alignment_t base_alignment = get_type_alignment_compound(base_type);
1545                 il_alignment_t alignment_mask = base_alignment-1;
1546                 if (base_alignment > alignment)
1547                         alignment = base_alignment;
1548
1549                 size_t bit_size = member->compound_member.bit_size;
1550                 if (!packed) {
1551                         bit_offset += (offset & alignment_mask) * BITS_PER_BYTE;
1552                         offset     &= ~alignment_mask;
1553                         size_t base_size = get_type_size(base_type) * BITS_PER_BYTE;
1554
1555                         if (bit_offset + bit_size > base_size || bit_size == 0) {
1556                                 offset    += (bit_offset+BITS_PER_BYTE-1) / BITS_PER_BYTE;
1557                                 offset     = (offset + base_alignment-1) & ~alignment_mask;
1558                                 bit_offset = 0;
1559                         }
1560                 }
1561
1562                 if (byte_order_big_endian) {
1563                         size_t base_size = get_type_size(base_type) * BITS_PER_BYTE;
1564                         member->compound_member.offset     = offset & ~alignment_mask;
1565                         member->compound_member.bit_offset = base_size - bit_offset - bit_size;
1566                 } else {
1567                         member->compound_member.offset     = offset;
1568                         member->compound_member.bit_offset = bit_offset;
1569                 }
1570
1571                 bit_offset += bit_size;
1572                 offset     += bit_offset / BITS_PER_BYTE;
1573                 bit_offset %= BITS_PER_BYTE;
1574         }
1575
1576         if (bit_offset > 0)
1577                 offset += 1;
1578
1579         *struct_offset    = offset;
1580         *struct_alignment = alignment;
1581         return member;
1582 }
1583
1584 void layout_struct_type(compound_type_t *type)
1585 {
1586         assert(type->compound != NULL);
1587
1588         compound_t *compound = type->compound;
1589         if (!compound->complete)
1590                 return;
1591         if (type->compound->layouted)
1592                 return;
1593
1594         il_size_t      offset    = 0;
1595         il_alignment_t alignment = compound->alignment;
1596         bool           need_pad  = false;
1597
1598         entity_t *entry = compound->members.entities;
1599         while (entry != NULL) {
1600                 if (entry->kind != ENTITY_COMPOUND_MEMBER) {
1601                         entry = entry->base.next;
1602                         continue;
1603                 }
1604
1605                 type_t *m_type  = entry->declaration.type;
1606                 type_t *skipped = skip_typeref(m_type);
1607                 if (! is_type_valid(skipped)) {
1608                         entry = entry->base.next;
1609                         continue;
1610                 }
1611
1612                 if (entry->compound_member.bitfield) {
1613                         entry = pack_bitfield_members(&offset, &alignment,
1614                                                       compound->packed, entry);
1615                         continue;
1616                 }
1617
1618                 il_alignment_t m_alignment = get_type_alignment_compound(m_type);
1619                 if (m_alignment > alignment)
1620                         alignment = m_alignment;
1621
1622                 if (!compound->packed) {
1623                         il_size_t new_offset = (offset + m_alignment-1) & -m_alignment;
1624
1625                         if (new_offset > offset) {
1626                                 need_pad = true;
1627                                 offset   = new_offset;
1628                         }
1629                 }
1630
1631                 entry->compound_member.offset = offset;
1632                 offset += get_type_size(m_type);
1633
1634                 entry = entry->base.next;
1635         }
1636
1637         if (!compound->packed) {
1638                 il_size_t new_offset = (offset + alignment-1) & -alignment;
1639                 if (new_offset > offset) {
1640                         need_pad = true;
1641                         offset   = new_offset;
1642                 }
1643         }
1644
1645         source_position_t const *const pos = &compound->base.source_position;
1646         if (need_pad) {
1647                 warningf(WARN_PADDED, pos, "'%T' needs padding", type);
1648         } else if (compound->packed) {
1649                 warningf(WARN_PACKED, pos, "superfluous packed attribute on '%T'", type);
1650         }
1651
1652         compound->size      = offset;
1653         compound->alignment = alignment;
1654         compound->layouted  = true;
1655 }
1656
1657 void layout_union_type(compound_type_t *type)
1658 {
1659         assert(type->compound != NULL);
1660
1661         compound_t *compound = type->compound;
1662         if (! compound->complete)
1663                 return;
1664
1665         il_size_t      size      = 0;
1666         il_alignment_t alignment = compound->alignment;
1667
1668         entity_t *entry = compound->members.entities;
1669         for (; entry != NULL; entry = entry->base.next) {
1670                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
1671                         continue;
1672
1673                 type_t *m_type = entry->declaration.type;
1674                 if (! is_type_valid(skip_typeref(m_type)))
1675                         continue;
1676
1677                 entry->compound_member.offset = 0;
1678                 il_size_t m_size = get_type_size(m_type);
1679                 if (m_size > size)
1680                         size = m_size;
1681                 il_alignment_t m_alignment = get_type_alignment_compound(m_type);
1682                 if (m_alignment > alignment)
1683                         alignment = m_alignment;
1684         }
1685         size = (size + alignment - 1) & -alignment;
1686
1687         compound->size      = size;
1688         compound->alignment = alignment;
1689 }
1690
1691 function_parameter_t *allocate_parameter(type_t *const type)
1692 {
1693         function_parameter_t *const param = obstack_alloc(&type_obst, sizeof(*param));
1694         memset(param, 0, sizeof(*param));
1695         param->type = type;
1696         return param;
1697 }
1698
1699 type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
1700                              type_t *argument_type2)
1701 {
1702         function_parameter_t *const parameter2 = allocate_parameter(argument_type2);
1703         function_parameter_t *const parameter1 = allocate_parameter(argument_type1);
1704         parameter1->next = parameter2;
1705
1706         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1707         type->function.return_type = return_type;
1708         type->function.parameters  = parameter1;
1709         type->function.linkage     = LINKAGE_C;
1710
1711         return identify_new_type(type);
1712 }
1713
1714 type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
1715 {
1716         function_parameter_t *const parameter = allocate_parameter(argument_type);
1717
1718         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1719         type->function.return_type = return_type;
1720         type->function.parameters  = parameter;
1721         type->function.linkage     = LINKAGE_C;
1722
1723         return identify_new_type(type);
1724 }
1725
1726 type_t *make_function_1_type_variadic(type_t *return_type,
1727                                       type_t *argument_type)
1728 {
1729         function_parameter_t *const parameter = allocate_parameter(argument_type);
1730
1731         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1732         type->function.return_type = return_type;
1733         type->function.parameters  = parameter;
1734         type->function.variadic    = true;
1735         type->function.linkage     = LINKAGE_C;
1736
1737         return identify_new_type(type);
1738 }
1739
1740 type_t *make_function_0_type(type_t *return_type)
1741 {
1742         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1743         type->function.return_type = return_type;
1744         type->function.parameters  = NULL;
1745         type->function.linkage     = LINKAGE_C;
1746
1747         return identify_new_type(type);
1748 }
1749
1750 type_t *make_function_type(type_t *return_type, int n_types,
1751                            type_t *const *argument_types,
1752                                                    decl_modifiers_t modifiers)
1753 {
1754         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
1755         type->function.return_type = return_type;
1756         type->function.modifiers  |= modifiers;
1757         type->function.linkage     = LINKAGE_C;
1758
1759         function_parameter_t **anchor = &type->function.parameters;
1760         for (int i = 0; i < n_types; ++i) {
1761                 function_parameter_t *parameter = allocate_parameter(argument_types[i]);
1762                 *anchor = parameter;
1763                 anchor  = &parameter->next;
1764         }
1765
1766         return identify_new_type(type);
1767 }
1768
1769 /**
1770  * Debug helper. Prints the given type to stdout.
1771  */
1772 static __attribute__((unused))
1773 void dbg_type(const type_t *type)
1774 {
1775         print_to_file(stderr);
1776         print_type(type);
1777         print_string("\n");
1778         fflush(stderr);
1779 }