Properly print parameters, which have no type (identifier lists).
[cparser] / type.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdio.h>
23 #include <assert.h>
24
25 #include "type_t.h"
26 #include "entity_t.h"
27 #include "symbol_t.h"
28 #include "type_hash.h"
29 #include "adt/error.h"
30 #include "lang_features.h"
31
32 static struct obstack   _type_obst;
33 static FILE            *out;
34 struct obstack         *type_obst                 = &_type_obst;
35 static int              type_visited              = 0;
36 static bool             print_implicit_array_size = false;
37
38 static void intern_print_type_pre(const type_t *type, bool top);
39 static void intern_print_type_post(const type_t *type, bool top);
40
41 typedef struct atomic_type_properties_t atomic_type_properties_t;
42 struct atomic_type_properties_t {
43         unsigned   size;              /**< type size in bytes */
44         unsigned   alignment;         /**< type alignment in bytes */
45         unsigned   flags;             /**< type flags from atomic_type_flag_t */
46 };
47
48 static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
49         //ATOMIC_TYPE_INVALID = 0,
50         [ATOMIC_TYPE_VOID] = {
51                 .size       = 0,
52                 .alignment  = 0,
53                 .flags      = ATOMIC_TYPE_FLAG_NONE
54         },
55         [ATOMIC_TYPE_CHAR] = {
56                 .size       = 1,
57                 .alignment  = 1,
58                 /* signed flag will be set when known */
59                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
60         },
61         [ATOMIC_TYPE_SCHAR] = {
62                 .size       = 1,
63                 .alignment  = 1,
64                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
65                               | ATOMIC_TYPE_FLAG_SIGNED,
66         },
67         [ATOMIC_TYPE_UCHAR] = {
68                 .size       = 1,
69                 .alignment  = 1,
70                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
71         },
72         [ATOMIC_TYPE_SHORT] = {
73                 .size       = 2,
74                 .alignment  = 2,
75                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
76                               | ATOMIC_TYPE_FLAG_SIGNED
77         },
78         [ATOMIC_TYPE_USHORT] = {
79                 .size       = 2,
80                 .alignment  = 2,
81                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
82         },
83         [ATOMIC_TYPE_INT] = {
84                 .size       = (unsigned) -1,
85                 .alignment  = (unsigned) -1,
86                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
87                               | ATOMIC_TYPE_FLAG_SIGNED,
88         },
89         [ATOMIC_TYPE_UINT] = {
90                 .size       = (unsigned) -1,
91                 .alignment  = (unsigned) -1,
92                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
93         },
94         [ATOMIC_TYPE_LONG] = {
95                 .size       = (unsigned) -1,
96                 .alignment  = (unsigned) -1,
97                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
98                               | ATOMIC_TYPE_FLAG_SIGNED,
99         },
100         [ATOMIC_TYPE_ULONG] = {
101                 .size       = (unsigned) -1,
102                 .alignment  = (unsigned) -1,
103                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
104         },
105         [ATOMIC_TYPE_LONGLONG] = {
106                 .size       = (unsigned) -1,
107                 .alignment  = (unsigned) -1,
108                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
109                               | ATOMIC_TYPE_FLAG_SIGNED,
110         },
111         [ATOMIC_TYPE_ULONGLONG] = {
112                 .size       = (unsigned) -1,
113                 .alignment  = (unsigned) -1,
114                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
115         },
116         [ATOMIC_TYPE_BOOL] = {
117                 .size       = (unsigned) -1,
118                 .alignment  = (unsigned) -1,
119                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
120         },
121         [ATOMIC_TYPE_FLOAT] = {
122                 .size       = 4,
123                 .alignment  = (unsigned) -1,
124                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
125                               | ATOMIC_TYPE_FLAG_SIGNED,
126         },
127         [ATOMIC_TYPE_DOUBLE] = {
128                 .size       = 8,
129                 .alignment  = (unsigned) -1,
130                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
131                               | ATOMIC_TYPE_FLAG_SIGNED,
132         },
133         [ATOMIC_TYPE_LONG_DOUBLE] = {
134                 .size       = 12,
135                 .alignment  = (unsigned) -1,
136                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
137                               | ATOMIC_TYPE_FLAG_SIGNED,
138         },
139         /* complex and imaginary types are set in init_types */
140 };
141
142 void init_types(void)
143 {
144         obstack_init(type_obst);
145
146         atomic_type_properties_t *props = atomic_type_properties;
147
148         if (char_is_signed) {
149                 props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED;
150         }
151
152         unsigned int_size   = machine_size < 32 ? 2 : 4;
153         unsigned long_size  = machine_size < 64 ? 4 : 8;
154         unsigned llong_size = machine_size < 32 ? 4 : 8;
155
156         props[ATOMIC_TYPE_INT].size            = int_size;
157         props[ATOMIC_TYPE_INT].alignment       = int_size;
158         props[ATOMIC_TYPE_UINT].size           = int_size;
159         props[ATOMIC_TYPE_UINT].alignment      = int_size;
160         props[ATOMIC_TYPE_LONG].size           = long_size;
161         props[ATOMIC_TYPE_LONG].alignment      = long_size;
162         props[ATOMIC_TYPE_ULONG].size          = long_size;
163         props[ATOMIC_TYPE_ULONG].alignment     = long_size;
164         props[ATOMIC_TYPE_LONGLONG].size       = llong_size;
165         props[ATOMIC_TYPE_LONGLONG].alignment  = llong_size;
166         props[ATOMIC_TYPE_ULONGLONG].size      = llong_size;
167         props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size;
168
169         /* TODO: backend specific, need a way to query the backend for this.
170          * The following are good settings for x86 */
171         props[ATOMIC_TYPE_FLOAT].alignment       = 4;
172         props[ATOMIC_TYPE_DOUBLE].alignment      = 4;
173         props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4;
174         props[ATOMIC_TYPE_LONGLONG].alignment    = 4;
175         props[ATOMIC_TYPE_ULONGLONG].alignment   = 4;
176
177         /* TODO: make this configurable for platforms which do not use byte sized
178          * bools. */
179         props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UCHAR];
180 }
181
182 void exit_types(void)
183 {
184         obstack_free(type_obst, NULL);
185 }
186
187 void type_set_output(FILE *stream)
188 {
189         out = stream;
190 }
191
192 void inc_type_visited(void)
193 {
194         type_visited++;
195 }
196
197 void print_type_qualifiers(type_qualifiers_t qualifiers)
198 {
199         int first = 1;
200         if (qualifiers & TYPE_QUALIFIER_CONST) {
201                 fputs(" const" + first,    out);
202                 first = 0;
203         }
204         if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
205                 fputs(" volatile" + first, out);
206                 first = 0;
207         }
208         if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
209                 fputs(" restrict" + first, out);
210                 first = 0;
211         }
212 }
213
214 const char *get_atomic_kind_name(atomic_type_kind_t kind)
215 {
216         switch(kind) {
217         case ATOMIC_TYPE_INVALID: break;
218         case ATOMIC_TYPE_VOID:        return "void";
219         case ATOMIC_TYPE_BOOL:        return c_mode & _CXX ? "bool" : "_Bool";
220         case ATOMIC_TYPE_CHAR:        return "char";
221         case ATOMIC_TYPE_SCHAR:       return "signed char";
222         case ATOMIC_TYPE_UCHAR:       return "unsigned char";
223         case ATOMIC_TYPE_INT:         return "int";
224         case ATOMIC_TYPE_UINT:        return "unsigned int";
225         case ATOMIC_TYPE_SHORT:       return "short";
226         case ATOMIC_TYPE_USHORT:      return "unsigned short";
227         case ATOMIC_TYPE_LONG:        return "long";
228         case ATOMIC_TYPE_ULONG:       return "unsigned long";
229         case ATOMIC_TYPE_LONGLONG:    return "long long";
230         case ATOMIC_TYPE_ULONGLONG:   return "unsigned long long";
231         case ATOMIC_TYPE_LONG_DOUBLE: return "long double";
232         case ATOMIC_TYPE_FLOAT:       return "float";
233         case ATOMIC_TYPE_DOUBLE:      return "double";
234         }
235         return "INVALIDATOMIC";
236 }
237
238 /**
239  * Prints the name of an atomic type kinds.
240  *
241  * @param kind  The type kind.
242  */
243 static void print_atomic_kinds(atomic_type_kind_t kind)
244 {
245         const char *s = get_atomic_kind_name(kind);
246         fputs(s, out);
247 }
248
249 /**
250  * Prints the name of an atomic type.
251  *
252  * @param type  The type.
253  */
254 static void print_atomic_type(const atomic_type_t *type)
255 {
256         print_type_qualifiers(type->base.qualifiers);
257         if (type->base.qualifiers != 0)
258                 fputc(' ', out);
259         print_atomic_kinds(type->akind);
260 }
261
262 /**
263  * Prints the name of a complex type.
264  *
265  * @param type  The type.
266  */
267 static
268 void print_complex_type(const complex_type_t *type)
269 {
270         int empty = type->base.qualifiers == 0;
271         print_type_qualifiers(type->base.qualifiers);
272         fputs(" _Complex " + empty, out);
273         print_atomic_kinds(type->akind);
274 }
275
276 /**
277  * Prints the name of an imaginary type.
278  *
279  * @param type  The type.
280  */
281 static
282 void print_imaginary_type(const imaginary_type_t *type)
283 {
284         int empty = type->base.qualifiers == 0;
285         print_type_qualifiers(type->base.qualifiers);
286         fputs(" _Imaginary " + empty, out);
287         print_atomic_kinds(type->akind);
288 }
289
290 /**
291  * Print the first part (the prefix) of a type.
292  *
293  * @param type   The type to print.
294  * @param top    true, if this is the top type, false if it's an embedded type.
295  */
296 static void print_function_type_pre(const function_type_t *type, bool top)
297 {
298         switch (type->linkage) {
299                 case LINKAGE_INVALID:
300                         break;
301
302                 case LINKAGE_C:
303                         if (c_mode & _CXX)
304                                 fputs("extern \"C\" ",   out);
305                         break;
306
307                 case LINKAGE_CXX:
308                         if (!(c_mode & _CXX))
309                                 fputs("extern \"C++\" ", out);
310                         break;
311         }
312
313         print_type_qualifiers(type->base.qualifiers);
314         if (type->base.qualifiers != 0)
315                 fputc(' ', out);
316
317         intern_print_type_pre(type->return_type, false);
318
319         switch (type->calling_convention) {
320         case CC_CDECL:    fputs("__cdecl ",    out); break;
321         case CC_STDCALL:  fputs("__stdcall ",  out); break;
322         case CC_FASTCALL: fputs("__fastcall ", out); break;
323         case CC_THISCALL: fputs("__thiscall ", out); break;
324         case CC_DEFAULT:  break;
325         }
326
327         /* don't emit parenthesis if we're the toplevel type... */
328         if (!top)
329                 fputc('(', out);
330 }
331
332 /**
333  * Print the second part (the postfix) of a type.
334  *
335  * @param type   The type to print.
336  * @param top    true, if this is the top type, false if it's an embedded type.
337  */
338 static void print_function_type_post(const function_type_t *type,
339                                      const scope_t *parameters, bool top)
340 {
341         /* don't emit parenthesis if we're the toplevel type... */
342         if (!top)
343                 fputc(')', out);
344
345         fputc('(', out);
346         bool first = true;
347         if (parameters == NULL) {
348                 function_parameter_t *parameter = type->parameters;
349                 for( ; parameter != NULL; parameter = parameter->next) {
350                         if (first) {
351                                 first = false;
352                         } else {
353                                 fputs(", ", out);
354                         }
355                         print_type(parameter->type);
356                 }
357         } else {
358                 entity_t *parameter = parameters->entities;
359                 for (; parameter != NULL; parameter = parameter->base.next) {
360                         if (first) {
361                                 first = false;
362                         } else {
363                                 fputs(", ", out);
364                         }
365                         assert(is_declaration(parameter));
366                         const type_t *const type = parameter->declaration.type;
367                         if (type == NULL) {
368                                 fputs(parameter->base.symbol->string, out);
369                         } else {
370                                 print_type_ext(type, parameter->base.symbol, NULL);
371                         }
372                 }
373         }
374         if (type->variadic) {
375                 if (first) {
376                         first = false;
377                 } else {
378                         fputs(", ", out);
379                 }
380                 fputs("...", out);
381         }
382         if (first && !type->unspecified_parameters) {
383                 fputs("void", out);
384         }
385         fputc(')', out);
386
387         intern_print_type_post(type->return_type, false);
388 }
389
390 /**
391  * Prints the prefix part of a pointer type.
392  *
393  * @param type   The pointer type.
394  */
395 static void print_pointer_type_pre(const pointer_type_t *type)
396 {
397         intern_print_type_pre(type->points_to, false);
398         variable_t *const variable = type->base_variable;
399         if (variable != NULL) {
400                 fputs(" __based(", out);
401                 fputs(variable->base.base.symbol->string, out);
402                 fputs(") ", out);
403         }
404         fputc('*', out);
405         print_type_qualifiers(type->base.qualifiers);
406         if (type->base.qualifiers != 0)
407                 fputc(' ', out);
408 }
409
410 /**
411  * Prints the prefix part of a reference type.
412  *
413  * @param type   The reference type.
414  */
415 static void print_reference_type_pre(const reference_type_t *type)
416 {
417         intern_print_type_pre(type->refers_to, false);
418         fputc('&', out);
419 }
420
421 /**
422  * Prints the postfix part of a pointer type.
423  *
424  * @param type   The pointer type.
425  */
426 static void print_pointer_type_post(const pointer_type_t *type)
427 {
428         intern_print_type_post(type->points_to, false);
429 }
430
431 /**
432  * Prints the postfix part of a reference type.
433  *
434  * @param type   The reference type.
435  */
436 static void print_reference_type_post(const reference_type_t *type)
437 {
438         intern_print_type_post(type->refers_to, false);
439 }
440
441 /**
442  * Prints the prefix part of an array type.
443  *
444  * @param type   The array type.
445  */
446 static void print_array_type_pre(const array_type_t *type)
447 {
448         intern_print_type_pre(type->element_type, false);
449 }
450
451 /**
452  * Prints the postfix part of an array type.
453  *
454  * @param type   The array type.
455  */
456 static void print_array_type_post(const array_type_t *type)
457 {
458         fputc('[', out);
459         if (type->is_static) {
460                 fputs("static ", out);
461         }
462         print_type_qualifiers(type->base.qualifiers);
463         if (type->base.qualifiers != 0)
464                 fputc(' ', out);
465         if (type->size_expression != NULL
466                         && (print_implicit_array_size || !type->has_implicit_size)) {
467                 print_expression(type->size_expression);
468         }
469         fputc(']', out);
470         intern_print_type_post(type->element_type, false);
471 }
472
473 /**
474  * Prints the postfix part of a bitfield type.
475  *
476  * @param type   The array type.
477  */
478 static void print_bitfield_type_post(const bitfield_type_t *type)
479 {
480         fputs(" : ", out);
481         print_expression(type->size_expression);
482         intern_print_type_post(type->base_type, false);
483 }
484
485 /**
486  * Prints an enum definition.
487  *
488  * @param declaration  The enum's type declaration.
489  */
490 void print_enum_definition(const enum_t *enume)
491 {
492         fputs("{\n", out);
493
494         change_indent(1);
495
496         entity_t *entry = enume->base.next;
497         for( ; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
498                entry = entry->base.next) {
499
500                 print_indent();
501                 fputs(entry->base.symbol->string, out);
502                 if (entry->enum_value.value != NULL) {
503                         fputs(" = ", out);
504
505                         /* skip the implicit cast */
506                         expression_t *expression = entry->enum_value.value;
507                         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
508                                 expression = expression->unary.value;
509                         }
510                         print_expression(expression);
511                 }
512                 fputs(",\n", out);
513         }
514
515         change_indent(-1);
516         print_indent();
517         fputc('}', out);
518 }
519
520 /**
521  * Prints an enum type.
522  *
523  * @param type  The enum type.
524  */
525 static void print_type_enum(const enum_type_t *type)
526 {
527         int empty = type->base.qualifiers == 0;
528         print_type_qualifiers(type->base.qualifiers);
529         fputs(" enum " + empty, out);
530
531         enum_t   *enume  = type->enume;
532         symbol_t *symbol = enume->base.symbol;
533         if (symbol != NULL) {
534                 fputs(symbol->string, out);
535         } else {
536                 print_enum_definition(enume);
537         }
538 }
539
540 /**
541  * Print the compound part of a compound type.
542  */
543 void print_compound_definition(const compound_t *compound)
544 {
545         fputs("{\n", out);
546         change_indent(1);
547
548         entity_t *entity = compound->members.entities;
549         for( ; entity != NULL; entity = entity->base.next) {
550                 if (entity->kind != ENTITY_COMPOUND_MEMBER)
551                         continue;
552
553                 print_indent();
554                 print_entity(entity);
555                 fputc('\n', out);
556         }
557
558         change_indent(-1);
559         print_indent();
560         fputc('}', out);
561         if (compound->modifiers & DM_TRANSPARENT_UNION) {
562                 fputs("__attribute__((__transparent_union__))", out);
563         }
564 }
565
566 /**
567  * Prints a compound type.
568  *
569  * @param type  The compound type.
570  */
571 static void print_compound_type(const compound_type_t *type)
572 {
573         int empty = type->base.qualifiers == 0;
574         print_type_qualifiers(type->base.qualifiers);
575
576         if (type->base.kind == TYPE_COMPOUND_STRUCT) {
577                 fputs(" struct " + empty, out);
578         } else {
579                 assert(type->base.kind == TYPE_COMPOUND_UNION);
580                 fputs(" union " + empty, out);
581         }
582
583         compound_t *compound = type->compound;
584         symbol_t   *symbol   = compound->base.symbol;
585         if (symbol != NULL) {
586                 fputs(symbol->string, out);
587         } else {
588                 print_compound_definition(compound);
589         }
590 }
591
592 /**
593  * Prints the prefix part of a typedef type.
594  *
595  * @param type   The typedef type.
596  */
597 static void print_typedef_type_pre(const typedef_type_t *const type)
598 {
599         print_type_qualifiers(type->base.qualifiers);
600         if (type->base.qualifiers != 0)
601                 fputc(' ', out);
602         fputs(type->typedefe->base.symbol->string, out);
603 }
604
605 /**
606  * Prints the prefix part of a typeof type.
607  *
608  * @param type   The typeof type.
609  */
610 static void print_typeof_type_pre(const typeof_type_t *const type)
611 {
612         fputs("typeof(", out);
613         if (type->expression != NULL) {
614                 assert(type->typeof_type == NULL);
615                 print_expression(type->expression);
616         } else {
617                 print_type(type->typeof_type);
618         }
619         fputc(')', out);
620 }
621
622 /**
623  * Prints the prefix part of a type.
624  *
625  * @param type   The type.
626  * @param top    true if we print the toplevel type, false else.
627  */
628 static void intern_print_type_pre(const type_t *const type, const bool top)
629 {
630         switch(type->kind) {
631         case TYPE_ERROR:
632                 fputs("<error>", out);
633                 return;
634         case TYPE_INVALID:
635                 fputs("<invalid>", out);
636                 return;
637         case TYPE_ENUM:
638                 print_type_enum(&type->enumt);
639                 return;
640         case TYPE_ATOMIC:
641                 print_atomic_type(&type->atomic);
642                 return;
643         case TYPE_COMPLEX:
644                 print_complex_type(&type->complex);
645                 return;
646         case TYPE_IMAGINARY:
647                 print_imaginary_type(&type->imaginary);
648                 return;
649         case TYPE_COMPOUND_STRUCT:
650         case TYPE_COMPOUND_UNION:
651                 print_compound_type(&type->compound);
652                 return;
653         case TYPE_BUILTIN:
654                 fputs(type->builtin.symbol->string, out);
655                 return;
656         case TYPE_FUNCTION:
657                 print_function_type_pre(&type->function, top);
658                 return;
659         case TYPE_POINTER:
660                 print_pointer_type_pre(&type->pointer);
661                 return;
662         case TYPE_REFERENCE:
663                 print_reference_type_pre(&type->reference);
664                 return;
665         case TYPE_BITFIELD:
666                 intern_print_type_pre(type->bitfield.base_type, top);
667                 return;
668         case TYPE_ARRAY:
669                 print_array_type_pre(&type->array);
670                 return;
671         case TYPE_TYPEDEF:
672                 print_typedef_type_pre(&type->typedeft);
673                 return;
674         case TYPE_TYPEOF:
675                 print_typeof_type_pre(&type->typeoft);
676                 return;
677         }
678         fputs("unknown", out);
679 }
680
681 /**
682  * Prints the postfix part of a type.
683  *
684  * @param type   The type.
685  * @param top    true if we print the toplevel type, false else.
686  */
687 static void intern_print_type_post(const type_t *const type, const bool top)
688 {
689         switch(type->kind) {
690         case TYPE_FUNCTION:
691                 print_function_type_post(&type->function, NULL, top);
692                 return;
693         case TYPE_POINTER:
694                 print_pointer_type_post(&type->pointer);
695                 return;
696         case TYPE_REFERENCE:
697                 print_reference_type_post(&type->reference);
698                 return;
699         case TYPE_ARRAY:
700                 print_array_type_post(&type->array);
701                 return;
702         case TYPE_BITFIELD:
703                 print_bitfield_type_post(&type->bitfield);
704                 return;
705         case TYPE_ERROR:
706         case TYPE_INVALID:
707         case TYPE_ATOMIC:
708         case TYPE_COMPLEX:
709         case TYPE_IMAGINARY:
710         case TYPE_ENUM:
711         case TYPE_COMPOUND_STRUCT:
712         case TYPE_COMPOUND_UNION:
713         case TYPE_BUILTIN:
714         case TYPE_TYPEOF:
715         case TYPE_TYPEDEF:
716                 break;
717         }
718
719         if (type->base.modifiers & DM_TRANSPARENT_UNION) {
720                 fputs("__attribute__((__transparent_union__))", out);
721         }
722 }
723
724 /**
725  * Prints a type.
726  *
727  * @param type   The type.
728  */
729 void print_type(const type_t *const type)
730 {
731         print_type_ext(type, NULL, NULL);
732 }
733
734 void print_type_ext(const type_t *const type, const symbol_t *symbol,
735                     const scope_t *parameters)
736 {
737         if (type == NULL) {
738                 fputs("nil type", out);
739                 return;
740         }
741
742         intern_print_type_pre(type, true);
743         if (symbol != NULL) {
744                 fputc(' ', out);
745                 fputs(symbol->string, out);
746         }
747         if (type->kind == TYPE_FUNCTION) {
748                 print_function_type_post(&type->function, parameters, true);
749         } else {
750                 intern_print_type_post(type, true);
751         }
752 }
753
754 /**
755  * Return the size of a type AST node.
756  *
757  * @param type  The type.
758  */
759 static size_t get_type_size(const type_t *type)
760 {
761         switch(type->kind) {
762         case TYPE_ATOMIC:          return sizeof(atomic_type_t);
763         case TYPE_COMPLEX:         return sizeof(complex_type_t);
764         case TYPE_IMAGINARY:       return sizeof(imaginary_type_t);
765         case TYPE_COMPOUND_STRUCT:
766         case TYPE_COMPOUND_UNION:  return sizeof(compound_type_t);
767         case TYPE_ENUM:            return sizeof(enum_type_t);
768         case TYPE_FUNCTION:        return sizeof(function_type_t);
769         case TYPE_POINTER:         return sizeof(pointer_type_t);
770         case TYPE_REFERENCE:       return sizeof(reference_type_t);
771         case TYPE_ARRAY:           return sizeof(array_type_t);
772         case TYPE_BUILTIN:         return sizeof(builtin_type_t);
773         case TYPE_TYPEDEF:         return sizeof(typedef_type_t);
774         case TYPE_TYPEOF:          return sizeof(typeof_type_t);
775         case TYPE_BITFIELD:        return sizeof(bitfield_type_t);
776         case TYPE_ERROR:           panic("error type found");
777         case TYPE_INVALID:         panic("invalid type found");
778         }
779         panic("unknown type found");
780 }
781
782 /**
783  * Duplicates a type.
784  *
785  * @param type  The type to copy.
786  * @return A copy of the type.
787  *
788  * @note This does not produce a deep copy!
789  */
790 type_t *duplicate_type(const type_t *type)
791 {
792         size_t size = get_type_size(type);
793
794         type_t *copy = obstack_alloc(type_obst, size);
795         memcpy(copy, type, size);
796
797         return copy;
798 }
799
800 /**
801  * Returns the unqualified type of a given type.
802  *
803  * @param type  The type.
804  * @returns The unqualified type.
805  */
806 type_t *get_unqualified_type(type_t *type)
807 {
808         assert(!is_typeref(type));
809
810         if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
811                 return type;
812
813         type_t *unqualified_type          = duplicate_type(type);
814         unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
815
816         type_t *result = typehash_insert(unqualified_type);
817         if (result != unqualified_type) {
818                 obstack_free(type_obst, unqualified_type);
819         }
820
821         return result;
822 }
823
824 type_t *get_qualified_type(type_t *orig_type, type_qualifiers_t const qual)
825 {
826         type_t *type = skip_typeref(orig_type);
827
828         type_t *copy;
829         if (is_type_array(type)) {
830                 /* For array types the element type has to be adjusted */
831                 type_t *element_type      = type->array.element_type;
832                 type_t *qual_element_type = get_qualified_type(element_type, qual);
833
834                 if (qual_element_type == element_type)
835                         return orig_type;
836
837                 copy                     = duplicate_type(type);
838                 copy->array.element_type = qual_element_type;
839         } else if (is_type_valid(type)) {
840                 if ((type->base.qualifiers & qual) == qual)
841                         return orig_type;
842
843                 copy                   = duplicate_type(type);
844                 copy->base.qualifiers |= qual;
845         } else {
846                 return type;
847         }
848
849         type = typehash_insert(copy);
850         if (type != copy)
851                 obstack_free(type_obst, copy);
852
853         return type;
854 }
855
856 /**
857  * Check if a type is valid.
858  *
859  * @param type  The type to check.
860  * @return true if type represents a valid type.
861  */
862 bool type_valid(const type_t *type)
863 {
864         return type->kind != TYPE_INVALID;
865 }
866
867 static bool test_atomic_type_flag(atomic_type_kind_t kind,
868                                   atomic_type_flag_t flag)
869 {
870         assert(kind <= ATOMIC_TYPE_LAST);
871         return (atomic_type_properties[kind].flags & flag) != 0;
872 }
873
874 /**
875  * Returns true if the given type is an integer type.
876  *
877  * @param type  The type to check.
878  * @return True if type is an integer type.
879  */
880 bool is_type_integer(const type_t *type)
881 {
882         assert(!is_typeref(type));
883
884         if (type->kind == TYPE_ENUM)
885                 return true;
886         if (type->kind == TYPE_BITFIELD)
887                 return true;
888
889         if (type->kind != TYPE_ATOMIC)
890                 return false;
891
892         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
893 }
894
895 /**
896  * Returns true if the given type is an enum type.
897  *
898  * @param type  The type to check.
899  * @return True if type is an enum type.
900  */
901 bool is_type_enum(const type_t *type)
902 {
903         assert(!is_typeref(type));
904         return type->kind == TYPE_ENUM;
905 }
906
907 /**
908  * Returns true if the given type is an floating point type.
909  *
910  * @param type  The type to check.
911  * @return True if type is a floating point type.
912  */
913 bool is_type_float(const type_t *type)
914 {
915         assert(!is_typeref(type));
916
917         if (type->kind != TYPE_ATOMIC)
918                 return false;
919
920         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
921 }
922
923 /**
924  * Returns true if the given type is an complex type.
925  *
926  * @param type  The type to check.
927  * @return True if type is a complex type.
928  */
929 bool is_type_complex(const type_t *type)
930 {
931         assert(!is_typeref(type));
932
933         if (type->kind != TYPE_ATOMIC)
934                 return false;
935
936         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
937 }
938
939 /**
940  * Returns true if the given type is a signed type.
941  *
942  * @param type  The type to check.
943  * @return True if type is a signed type.
944  */
945 bool is_type_signed(const type_t *type)
946 {
947         assert(!is_typeref(type));
948
949         /* enum types are int for now */
950         if (type->kind == TYPE_ENUM)
951                 return true;
952         if (type->kind == TYPE_BITFIELD)
953                 return is_type_signed(type->bitfield.base_type);
954
955         if (type->kind != TYPE_ATOMIC)
956                 return false;
957
958         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
959 }
960
961 /**
962  * Returns true if the given type represents an arithmetic type.
963  *
964  * @param type  The type to check.
965  * @return True if type represents an arithmetic type.
966  */
967 bool is_type_arithmetic(const type_t *type)
968 {
969         assert(!is_typeref(type));
970
971         switch(type->kind) {
972         case TYPE_BITFIELD:
973         case TYPE_ENUM:
974                 return true;
975         case TYPE_ATOMIC:
976                 return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
977         case TYPE_COMPLEX:
978                 return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
979         case TYPE_IMAGINARY:
980                 return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
981         default:
982                 return false;
983         }
984 }
985
986 /**
987  * Returns true if the given type is an integer or float type.
988  *
989  * @param type  The type to check.
990  * @return True if type is an integer or float type.
991  */
992 bool is_type_real(const type_t *type)
993 {
994         /* 6.2.5 (17) */
995         return is_type_integer(type) || is_type_float(type);
996 }
997
998 /**
999  * Returns true if the given type represents a scalar type.
1000  *
1001  * @param type  The type to check.
1002  * @return True if type represents a scalar type.
1003  */
1004 bool is_type_scalar(const type_t *type)
1005 {
1006         assert(!is_typeref(type));
1007
1008         switch (type->kind) {
1009                 case TYPE_POINTER: return true;
1010                 case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type);
1011                 default:           break;
1012         }
1013
1014         return is_type_arithmetic(type);
1015 }
1016
1017 /**
1018  * Check if a given type is incomplete.
1019  *
1020  * @param type  The type to check.
1021  * @return True if the given type is incomplete (ie. just forward).
1022  */
1023 bool is_type_incomplete(const type_t *type)
1024 {
1025         assert(!is_typeref(type));
1026
1027         switch(type->kind) {
1028         case TYPE_COMPOUND_STRUCT:
1029         case TYPE_COMPOUND_UNION: {
1030                 const compound_type_t *compound_type = &type->compound;
1031                 return !compound_type->compound->complete;
1032         }
1033         case TYPE_ENUM:
1034                 return false;
1035
1036         case TYPE_ARRAY:
1037                 return type->array.size_expression == NULL
1038                         && !type->array.size_constant;
1039
1040         case TYPE_ATOMIC:
1041                 return type->atomic.akind == ATOMIC_TYPE_VOID;
1042
1043         case TYPE_COMPLEX:
1044                 return type->complex.akind == ATOMIC_TYPE_VOID;
1045
1046         case TYPE_IMAGINARY:
1047                 return type->imaginary.akind == ATOMIC_TYPE_VOID;
1048
1049         case TYPE_BITFIELD:
1050         case TYPE_FUNCTION:
1051         case TYPE_POINTER:
1052         case TYPE_REFERENCE:
1053         case TYPE_BUILTIN:
1054         case TYPE_ERROR:
1055                 return false;
1056
1057         case TYPE_TYPEDEF:
1058         case TYPE_TYPEOF:
1059                 panic("is_type_incomplete called without typerefs skipped");
1060         case TYPE_INVALID:
1061                 break;
1062         }
1063
1064         panic("invalid type found");
1065 }
1066
1067 bool is_type_object(const type_t *type)
1068 {
1069         return !is_type_function(type) && !is_type_incomplete(type);
1070 }
1071
1072 /**
1073  * Check if two function types are compatible.
1074  */
1075 static bool function_types_compatible(const function_type_t *func1,
1076                                       const function_type_t *func2)
1077 {
1078         const type_t* const ret1 = skip_typeref(func1->return_type);
1079         const type_t* const ret2 = skip_typeref(func2->return_type);
1080         if (!types_compatible(ret1, ret2))
1081                 return false;
1082
1083         if (func1->linkage != func2->linkage)
1084                 return false;
1085
1086         if (func1->calling_convention != func2->calling_convention)
1087                 return false;
1088
1089         /* can parameters be compared? */
1090         if (func1->unspecified_parameters || func2->unspecified_parameters)
1091                 return true;
1092
1093         if (func1->variadic != func2->variadic)
1094                 return false;
1095
1096         /* TODO: handling of unspecified parameters not correct yet */
1097
1098         /* all argument types must be compatible */
1099         function_parameter_t *parameter1 = func1->parameters;
1100         function_parameter_t *parameter2 = func2->parameters;
1101         for ( ; parameter1 != NULL && parameter2 != NULL;
1102                         parameter1 = parameter1->next, parameter2 = parameter2->next) {
1103                 type_t *parameter1_type = skip_typeref(parameter1->type);
1104                 type_t *parameter2_type = skip_typeref(parameter2->type);
1105
1106                 parameter1_type = get_unqualified_type(parameter1_type);
1107                 parameter2_type = get_unqualified_type(parameter2_type);
1108
1109                 if (!types_compatible(parameter1_type, parameter2_type))
1110                         return false;
1111         }
1112         /* same number of arguments? */
1113         if (parameter1 != NULL || parameter2 != NULL)
1114                 return false;
1115
1116         return true;
1117 }
1118
1119 /**
1120  * Check if two array types are compatible.
1121  */
1122 static bool array_types_compatible(const array_type_t *array1,
1123                                    const array_type_t *array2)
1124 {
1125         type_t *element_type1 = skip_typeref(array1->element_type);
1126         type_t *element_type2 = skip_typeref(array2->element_type);
1127         if (!types_compatible(element_type1, element_type2))
1128                 return false;
1129
1130         if (!array1->size_constant || !array2->size_constant)
1131                 return true;
1132
1133         return array1->size == array2->size;
1134 }
1135
1136 /**
1137  * Check if two types are compatible.
1138  */
1139 bool types_compatible(const type_t *type1, const type_t *type2)
1140 {
1141         assert(!is_typeref(type1));
1142         assert(!is_typeref(type2));
1143
1144         /* shortcut: the same type is always compatible */
1145         if (type1 == type2)
1146                 return true;
1147
1148         if (!is_type_valid(type1) || !is_type_valid(type2))
1149                 return true;
1150
1151         if (type1->base.qualifiers != type2->base.qualifiers)
1152                 return false;
1153         if (type1->kind != type2->kind)
1154                 return false;
1155
1156         switch (type1->kind) {
1157         case TYPE_FUNCTION:
1158                 return function_types_compatible(&type1->function, &type2->function);
1159         case TYPE_ATOMIC:
1160                 return type1->atomic.akind == type2->atomic.akind;
1161         case TYPE_COMPLEX:
1162                 return type1->complex.akind == type2->complex.akind;
1163         case TYPE_IMAGINARY:
1164                 return type1->imaginary.akind == type2->imaginary.akind;
1165         case TYPE_ARRAY:
1166                 return array_types_compatible(&type1->array, &type2->array);
1167
1168         case TYPE_POINTER: {
1169                 const type_t *const to1 = skip_typeref(type1->pointer.points_to);
1170                 const type_t *const to2 = skip_typeref(type2->pointer.points_to);
1171                 return types_compatible(to1, to2);
1172         }
1173
1174         case TYPE_REFERENCE: {
1175                 const type_t *const to1 = skip_typeref(type1->reference.refers_to);
1176                 const type_t *const to2 = skip_typeref(type2->reference.refers_to);
1177                 return types_compatible(to1, to2);
1178         }
1179
1180         case TYPE_COMPOUND_STRUCT:
1181         case TYPE_COMPOUND_UNION:
1182         case TYPE_ENUM:
1183         case TYPE_BUILTIN:
1184                 /* TODO: not implemented */
1185                 break;
1186
1187         case TYPE_BITFIELD:
1188                 /* not sure if this makes sense or is even needed, implement it if you
1189                  * really need it! */
1190                 panic("type compatibility check for bitfield type");
1191
1192         case TYPE_ERROR:
1193                 /* Hmm, the error type should be compatible to all other types */
1194                 return true;
1195         case TYPE_INVALID:
1196                 panic("invalid type found in compatible types");
1197         case TYPE_TYPEDEF:
1198         case TYPE_TYPEOF:
1199                 panic("typerefs not skipped in compatible types?!?");
1200         }
1201
1202         /* TODO: incomplete */
1203         return false;
1204 }
1205
1206 /**
1207  * Skip all typerefs and return the underlying type.
1208  */
1209 type_t *skip_typeref(type_t *type)
1210 {
1211         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1212         type_modifiers_t  modifiers  = TYPE_MODIFIER_NONE;
1213
1214         while (true) {
1215                 switch (type->kind) {
1216                 case TYPE_ERROR:
1217                         return type;
1218                 case TYPE_TYPEDEF: {
1219                         qualifiers |= type->base.qualifiers;
1220                         modifiers  |= type->base.modifiers;
1221                         const typedef_type_t *typedef_type = &type->typedeft;
1222                         if (typedef_type->resolved_type != NULL) {
1223                                 type = typedef_type->resolved_type;
1224                                 break;
1225                         }
1226                         type = typedef_type->typedefe->type;
1227                         continue;
1228                 }
1229                 case TYPE_TYPEOF: {
1230                         const typeof_type_t *typeof_type = &type->typeoft;
1231                         if (typeof_type->typeof_type != NULL) {
1232                                 type = typeof_type->typeof_type;
1233                         } else {
1234                                 type = typeof_type->expression->base.type;
1235                         }
1236                         continue;
1237                 }
1238                 default:
1239                         break;
1240                 }
1241                 break;
1242         }
1243
1244         if (qualifiers != TYPE_QUALIFIER_NONE || modifiers != TYPE_MODIFIER_NONE) {
1245                 type_t *const copy = duplicate_type(type);
1246
1247                 /* for const with typedefed array type the element type has to be
1248                  * adjusted */
1249                 if (is_type_array(copy)) {
1250                         type_t *element_type           = copy->array.element_type;
1251                         element_type                   = duplicate_type(element_type);
1252                         element_type->base.qualifiers |= qualifiers;
1253                         element_type->base.modifiers  |= modifiers;
1254                         copy->array.element_type       = element_type;
1255                 } else {
1256                         copy->base.qualifiers |= qualifiers;
1257                         copy->base.modifiers  |= modifiers;
1258                 }
1259
1260                 type = typehash_insert(copy);
1261                 if (type != copy) {
1262                         obstack_free(type_obst, copy);
1263                 }
1264         }
1265
1266         return type;
1267 }
1268
1269 type_qualifiers_t get_type_qualifier(const type_t *type, bool skip_array_type) {
1270         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1271
1272         while (true) {
1273                 switch (type->base.kind) {
1274                 case TYPE_ERROR:
1275                         return TYPE_QUALIFIER_NONE;
1276                 case TYPE_TYPEDEF:
1277                         qualifiers |= type->base.qualifiers;
1278                         const typedef_type_t *typedef_type = &type->typedeft;
1279                         if (typedef_type->resolved_type != NULL)
1280                                 type = typedef_type->resolved_type;
1281                         else
1282                                 type = typedef_type->typedefe->type;
1283                         continue;
1284                 case TYPE_TYPEOF: {
1285                         const typeof_type_t *typeof_type = &type->typeoft;
1286                         if (typeof_type->typeof_type != NULL) {
1287                                 type = typeof_type->typeof_type;
1288                         } else {
1289                                 type = typeof_type->expression->base.type;
1290                         }
1291                         continue;
1292                 }
1293                 case TYPE_ARRAY:
1294                         if (skip_array_type) {
1295                                 type = type->array.element_type;
1296                                 continue;
1297                         }
1298                         break;
1299                 default:
1300                         break;
1301                 }
1302                 break;
1303         }
1304         return type->base.qualifiers | qualifiers;
1305 }
1306
1307 unsigned get_atomic_type_size(atomic_type_kind_t kind)
1308 {
1309         assert(kind <= ATOMIC_TYPE_LAST);
1310         return atomic_type_properties[kind].size;
1311 }
1312
1313 unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
1314 {
1315         assert(kind <= ATOMIC_TYPE_LAST);
1316         return atomic_type_properties[kind].alignment;
1317 }
1318
1319 unsigned get_atomic_type_flags(atomic_type_kind_t kind)
1320 {
1321         assert(kind <= ATOMIC_TYPE_LAST);
1322         return atomic_type_properties[kind].flags;
1323 }
1324
1325 atomic_type_kind_t get_intptr_kind(void)
1326 {
1327         if (machine_size <= 32)
1328                 return ATOMIC_TYPE_INT;
1329         else if (machine_size <= 64)
1330                 return ATOMIC_TYPE_LONG;
1331         else
1332                 return ATOMIC_TYPE_LONGLONG;
1333 }
1334
1335 atomic_type_kind_t get_uintptr_kind(void)
1336 {
1337         if (machine_size <= 32)
1338                 return ATOMIC_TYPE_UINT;
1339         else if (machine_size <= 64)
1340                 return ATOMIC_TYPE_ULONG;
1341         else
1342                 return ATOMIC_TYPE_ULONGLONG;
1343 }
1344
1345 /**
1346  * Find the atomic type kind representing a given size (signed).
1347  */
1348 atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) {
1349         static atomic_type_kind_t kinds[32];
1350
1351         assert(size < 32);
1352         atomic_type_kind_t kind = kinds[size];
1353         if (kind == ATOMIC_TYPE_INVALID) {
1354                 static const atomic_type_kind_t possible_kinds[] = {
1355                         ATOMIC_TYPE_SCHAR,
1356                         ATOMIC_TYPE_SHORT,
1357                         ATOMIC_TYPE_INT,
1358                         ATOMIC_TYPE_LONG,
1359                         ATOMIC_TYPE_LONGLONG
1360                 };
1361                 for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) {
1362                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1363                                 kind = possible_kinds[i];
1364                                 break;
1365                         }
1366                 }
1367                 kinds[size] = kind;
1368         }
1369         return kind;
1370 }
1371
1372 /**
1373  * Find the atomic type kind representing a given size (signed).
1374  */
1375 atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) {
1376         static atomic_type_kind_t kinds[32];
1377
1378         assert(size < 32);
1379         atomic_type_kind_t kind = kinds[size];
1380         if (kind == ATOMIC_TYPE_INVALID) {
1381                 static const atomic_type_kind_t possible_kinds[] = {
1382                         ATOMIC_TYPE_UCHAR,
1383                         ATOMIC_TYPE_USHORT,
1384                         ATOMIC_TYPE_UINT,
1385                         ATOMIC_TYPE_ULONG,
1386                         ATOMIC_TYPE_ULONGLONG
1387                 };
1388                 for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) {
1389                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1390                                 kind = possible_kinds[i];
1391                                 break;
1392                         }
1393                 }
1394                 kinds[size] = kind;
1395         }
1396         return kind;
1397 }
1398
1399 /**
1400  * Hash the given type and return the "singleton" version
1401  * of it.
1402  */
1403 static type_t *identify_new_type(type_t *type)
1404 {
1405         type_t *result = typehash_insert(type);
1406         if (result != type) {
1407                 obstack_free(type_obst, type);
1408         }
1409         return result;
1410 }
1411
1412 /**
1413  * Creates a new atomic type.
1414  *
1415  * @param akind       The kind of the atomic type.
1416  * @param qualifiers  Type qualifiers for the new type.
1417  */
1418 type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1419 {
1420         type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t));
1421         memset(type, 0, sizeof(atomic_type_t));
1422
1423         type->kind            = TYPE_ATOMIC;
1424         type->base.size       = get_atomic_type_size(akind);
1425         type->base.alignment  = get_atomic_type_alignment(akind);
1426         type->base.qualifiers = qualifiers;
1427         type->atomic.akind    = akind;
1428
1429         return identify_new_type(type);
1430 }
1431
1432 /**
1433  * Creates a new complex type.
1434  *
1435  * @param akind       The kind of the atomic type.
1436  * @param qualifiers  Type qualifiers for the new type.
1437  */
1438 type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1439 {
1440         type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t));
1441         memset(type, 0, sizeof(complex_type_t));
1442
1443         type->kind            = TYPE_COMPLEX;
1444         type->base.qualifiers = qualifiers;
1445         type->base.alignment  = get_atomic_type_alignment(akind);
1446         type->complex.akind   = akind;
1447
1448         return identify_new_type(type);
1449 }
1450
1451 /**
1452  * Creates a new imaginary type.
1453  *
1454  * @param akind       The kind of the atomic type.
1455  * @param qualifiers  Type qualifiers for the new type.
1456  */
1457 type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1458 {
1459         type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t));
1460         memset(type, 0, sizeof(imaginary_type_t));
1461
1462         type->kind            = TYPE_IMAGINARY;
1463         type->base.qualifiers = qualifiers;
1464         type->base.alignment  = get_atomic_type_alignment(akind);
1465         type->imaginary.akind = akind;
1466
1467         return identify_new_type(type);
1468 }
1469
1470 /**
1471  * Creates a new pointer type.
1472  *
1473  * @param points_to   The points-to type for the new type.
1474  * @param qualifiers  Type qualifiers for the new type.
1475  */
1476 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
1477 {
1478         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1479         memset(type, 0, sizeof(pointer_type_t));
1480
1481         type->kind                  = TYPE_POINTER;
1482         type->base.qualifiers       = qualifiers;
1483         type->base.alignment        = 0;
1484         type->pointer.points_to     = points_to;
1485         type->pointer.base_variable = NULL;
1486
1487         return identify_new_type(type);
1488 }
1489
1490 /**
1491  * Creates a new reference type.
1492  *
1493  * @param refers_to   The referred-to type for the new type.
1494  */
1495 type_t *make_reference_type(type_t *refers_to)
1496 {
1497         type_t *type = obstack_alloc(type_obst, sizeof(reference_type_t));
1498         memset(type, 0, sizeof(reference_type_t));
1499
1500         type->kind                = TYPE_REFERENCE;
1501         type->base.qualifiers     = 0;
1502         type->base.alignment      = 0;
1503         type->reference.refers_to = refers_to;
1504
1505         return identify_new_type(type);
1506 }
1507
1508 /**
1509  * Creates a new based pointer type.
1510  *
1511  * @param points_to   The points-to type for the new type.
1512  * @param qualifiers  Type qualifiers for the new type.
1513  * @param variable    The based variable
1514  */
1515 type_t *make_based_pointer_type(type_t *points_to,
1516                                                                 type_qualifiers_t qualifiers, variable_t *variable)
1517 {
1518         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1519         memset(type, 0, sizeof(pointer_type_t));
1520
1521         type->kind                  = TYPE_POINTER;
1522         type->base.qualifiers       = qualifiers;
1523         type->base.alignment        = 0;
1524         type->pointer.points_to     = points_to;
1525         type->pointer.base_variable = variable;
1526
1527         return identify_new_type(type);
1528 }
1529
1530
1531 type_t *make_array_type(type_t *element_type, size_t size,
1532                         type_qualifiers_t qualifiers)
1533 {
1534         type_t *type = obstack_alloc(type_obst, sizeof(array_type_t));
1535         memset(type, 0, sizeof(array_type_t));
1536
1537         type->kind                = TYPE_ARRAY;
1538         type->base.qualifiers     = qualifiers;
1539         type->base.alignment      = 0;
1540         type->array.element_type  = element_type;
1541         type->array.size          = size;
1542         type->array.size_constant = true;
1543
1544         return identify_new_type(type);
1545 }
1546
1547 /**
1548  * Debug helper. Prints the given type to stdout.
1549  */
1550 static __attribute__((unused))
1551 void dbg_type(const type_t *type)
1552 {
1553         FILE *old_out = out;
1554         out = stderr;
1555         print_type(type);
1556         puts("\n");
1557         fflush(stderr);
1558         out = old_out;
1559 }