Fix printing of function types, which return function pointers: The parameter lists...
[cparser] / type.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <stdio.h>
23 #include <assert.h>
24
25 #include "type_t.h"
26 #include "symbol_t.h"
27 #include "type_hash.h"
28 #include "adt/error.h"
29 #include "lang_features.h"
30
31 static struct obstack   _type_obst;
32 static FILE            *out;
33 struct obstack         *type_obst                 = &_type_obst;
34 static int              type_visited              = 0;
35 static bool             print_implicit_array_size = false;
36
37 static void intern_print_type_pre(const type_t *type, bool top);
38 static void intern_print_type_post(const type_t *type, bool top);
39
40 typedef struct atomic_type_properties_t atomic_type_properties_t;
41 struct atomic_type_properties_t {
42         unsigned   size;              /**< type size in bytes */
43         unsigned   alignment;         /**< type alignment in bytes */
44         unsigned   flags;             /**< type flags from atomic_type_flag_t */
45 };
46
47 static atomic_type_properties_t atomic_type_properties[ATOMIC_TYPE_LAST+1] = {
48         //ATOMIC_TYPE_INVALID = 0,
49         [ATOMIC_TYPE_VOID] = {
50                 .size       = 0,
51                 .alignment  = 0,
52                 .flags      = ATOMIC_TYPE_FLAG_NONE
53         },
54         [ATOMIC_TYPE_CHAR] = {
55                 .size       = 1,
56                 .alignment  = 1,
57                 /* signed flag will be set when known */
58                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
59         },
60         [ATOMIC_TYPE_SCHAR] = {
61                 .size       = 1,
62                 .alignment  = 1,
63                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
64                               | ATOMIC_TYPE_FLAG_SIGNED,
65         },
66         [ATOMIC_TYPE_UCHAR] = {
67                 .size       = 1,
68                 .alignment  = 1,
69                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
70         },
71         [ATOMIC_TYPE_SHORT] = {
72                 .size       = 2,
73                 .alignment  = 2,
74                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
75                               | ATOMIC_TYPE_FLAG_SIGNED
76         },
77         [ATOMIC_TYPE_USHORT] = {
78                 .size       = 2,
79                 .alignment  = 2,
80                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
81         },
82         [ATOMIC_TYPE_INT] = {
83                 .size       = (unsigned) -1,
84                 .alignment  = (unsigned) -1,
85                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
86                               | ATOMIC_TYPE_FLAG_SIGNED,
87         },
88         [ATOMIC_TYPE_UINT] = {
89                 .size       = (unsigned) -1,
90                 .alignment  = (unsigned) -1,
91                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
92         },
93         [ATOMIC_TYPE_LONG] = {
94                 .size       = (unsigned) -1,
95                 .alignment  = (unsigned) -1,
96                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
97                               | ATOMIC_TYPE_FLAG_SIGNED,
98         },
99         [ATOMIC_TYPE_ULONG] = {
100                 .size       = (unsigned) -1,
101                 .alignment  = (unsigned) -1,
102                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
103         },
104         [ATOMIC_TYPE_LONGLONG] = {
105                 .size       = (unsigned) -1,
106                 .alignment  = (unsigned) -1,
107                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC
108                               | ATOMIC_TYPE_FLAG_SIGNED,
109         },
110         [ATOMIC_TYPE_ULONGLONG] = {
111                 .size       = (unsigned) -1,
112                 .alignment  = (unsigned) -1,
113                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
114         },
115         [ATOMIC_TYPE_BOOL] = {
116                 .size       = (unsigned) -1,
117                 .alignment  = (unsigned) -1,
118                 .flags      = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC,
119         },
120         [ATOMIC_TYPE_FLOAT] = {
121                 .size       = 4,
122                 .alignment  = (unsigned) -1,
123                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
124                               | ATOMIC_TYPE_FLAG_SIGNED,
125         },
126         [ATOMIC_TYPE_DOUBLE] = {
127                 .size       = 8,
128                 .alignment  = (unsigned) -1,
129                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
130                               | ATOMIC_TYPE_FLAG_SIGNED,
131         },
132         [ATOMIC_TYPE_LONG_DOUBLE] = {
133                 .size       = 12,
134                 .alignment  = (unsigned) -1,
135                 .flags      = ATOMIC_TYPE_FLAG_FLOAT | ATOMIC_TYPE_FLAG_ARITHMETIC
136                               | ATOMIC_TYPE_FLAG_SIGNED,
137         },
138         /* complex and imaginary types are set in init_types */
139 };
140
141 void init_types(void)
142 {
143         obstack_init(type_obst);
144
145         atomic_type_properties_t *props = atomic_type_properties;
146
147         if (char_is_signed) {
148                 props[ATOMIC_TYPE_CHAR].flags |= ATOMIC_TYPE_FLAG_SIGNED;
149         }
150
151         unsigned int_size   = machine_size < 32 ? 2 : 4;
152         unsigned long_size  = machine_size < 64 ? 4 : 8;
153         unsigned llong_size = machine_size < 32 ? 4 : 8;
154
155         props[ATOMIC_TYPE_INT].size            = int_size;
156         props[ATOMIC_TYPE_INT].alignment       = int_size;
157         props[ATOMIC_TYPE_UINT].size           = int_size;
158         props[ATOMIC_TYPE_UINT].alignment      = int_size;
159         props[ATOMIC_TYPE_LONG].size           = long_size;
160         props[ATOMIC_TYPE_LONG].alignment      = long_size;
161         props[ATOMIC_TYPE_ULONG].size          = long_size;
162         props[ATOMIC_TYPE_ULONG].alignment     = long_size;
163         props[ATOMIC_TYPE_LONGLONG].size       = llong_size;
164         props[ATOMIC_TYPE_LONGLONG].alignment  = llong_size;
165         props[ATOMIC_TYPE_ULONGLONG].size      = llong_size;
166         props[ATOMIC_TYPE_ULONGLONG].alignment = llong_size;
167
168         /* TODO: backend specific, need a way to query the backend for this.
169          * The following are good settings for x86 */
170         props[ATOMIC_TYPE_FLOAT].alignment       = 4;
171         props[ATOMIC_TYPE_DOUBLE].alignment      = 4;
172         props[ATOMIC_TYPE_LONG_DOUBLE].alignment = 4;
173         props[ATOMIC_TYPE_LONGLONG].alignment    = 4;
174         props[ATOMIC_TYPE_ULONGLONG].alignment   = 4;
175
176         props[ATOMIC_TYPE_BOOL] = props[ATOMIC_TYPE_UINT];
177 }
178
179 void exit_types(void)
180 {
181         obstack_free(type_obst, NULL);
182 }
183
184 void type_set_output(FILE *stream)
185 {
186         out = stream;
187 }
188
189 void inc_type_visited(void)
190 {
191         type_visited++;
192 }
193
194 void print_type_qualifiers(type_qualifiers_t qualifiers)
195 {
196         int first = 1;
197         if (qualifiers & TYPE_QUALIFIER_CONST) {
198                 fputs(" const" + first,    out);
199                 first = 0;
200         }
201         if (qualifiers & TYPE_QUALIFIER_VOLATILE) {
202                 fputs(" volatile" + first, out);
203                 first = 0;
204         }
205         if (qualifiers & TYPE_QUALIFIER_RESTRICT) {
206                 fputs(" restrict" + first, out);
207                 first = 0;
208         }
209 }
210
211 /**
212  * Prints the name of an atomic type kinds.
213  *
214  * @param kind  The type kind.
215  */
216 static
217 void print_atomic_kinds(atomic_type_kind_t kind)
218 {
219         const char *s = "INVALIDATOMIC";
220         switch(kind) {
221         case ATOMIC_TYPE_INVALID:                               break;
222         case ATOMIC_TYPE_VOID:        s = "void";               break;
223         case ATOMIC_TYPE_BOOL:        s = "_Bool";              break;
224         case ATOMIC_TYPE_CHAR:        s = "char";               break;
225         case ATOMIC_TYPE_SCHAR:       s = "signed char";        break;
226         case ATOMIC_TYPE_UCHAR:       s = "unsigned char";      break;
227         case ATOMIC_TYPE_INT:         s = "int";                break;
228         case ATOMIC_TYPE_UINT:        s = "unsigned int";       break;
229         case ATOMIC_TYPE_SHORT:       s = "short";              break;
230         case ATOMIC_TYPE_USHORT:      s = "unsigned short";     break;
231         case ATOMIC_TYPE_LONG:        s = "long";               break;
232         case ATOMIC_TYPE_ULONG:       s = "unsigned long";      break;
233         case ATOMIC_TYPE_LONGLONG:    s = "long long";          break;
234         case ATOMIC_TYPE_ULONGLONG:   s = "unsigned long long"; break;
235         case ATOMIC_TYPE_LONG_DOUBLE: s = "long double";        break;
236         case ATOMIC_TYPE_FLOAT:       s = "float";              break;
237         case ATOMIC_TYPE_DOUBLE:      s = "double";             break;
238         }
239         fputs(s, out);
240 }
241
242 /**
243  * Prints the name of an atomic type.
244  *
245  * @param type  The type.
246  */
247 static
248 void print_atomic_type(const atomic_type_t *type)
249 {
250         print_type_qualifiers(type->base.qualifiers);
251         if (type->base.qualifiers != 0)
252                 fputc(' ', out);
253         print_atomic_kinds(type->akind);
254 }
255
256 /**
257  * Prints the name of a complex type.
258  *
259  * @param type  The type.
260  */
261 static
262 void print_complex_type(const complex_type_t *type)
263 {
264         int empty = type->base.qualifiers == 0;
265         print_type_qualifiers(type->base.qualifiers);
266         fputs(" _Complex " + empty, out);
267         print_atomic_kinds(type->akind);
268 }
269
270 /**
271  * Prints the name of an imaginary type.
272  *
273  * @param type  The type.
274  */
275 static
276 void print_imaginary_type(const imaginary_type_t *type)
277 {
278         int empty = type->base.qualifiers == 0;
279         print_type_qualifiers(type->base.qualifiers);
280         fputs(" _Imaginary " + empty, out);
281         print_atomic_kinds(type->akind);
282 }
283
284 /**
285  * Print the first part (the prefix) of a type.
286  *
287  * @param type   The type to print.
288  * @param top    true, if this is the top type, false if it's an embedded type.
289  */
290 static void print_function_type_pre(const function_type_t *type, bool top)
291 {
292         print_type_qualifiers(type->base.qualifiers);
293         if (type->base.qualifiers != 0)
294                 fputc(' ', out);
295
296
297         intern_print_type_pre(type->return_type, false);
298
299         switch (type->calling_convention) {
300         case CC_CDECL:
301                 fputs("__cdecl ", out);
302                 break;
303         case CC_STDCALL:
304                 fputs("__stdcall ", out);
305                 break;
306         case CC_FASTCALL:
307                 fputs("__fastcall ", out);
308                 break;
309         case CC_THISCALL:
310                 fputs("__thiscall ", out);
311                 break;
312         case CC_DEFAULT:
313                 break;
314         }
315
316         /* don't emit parenthesis if we're the toplevel type... */
317         if (!top)
318                 fputc('(', out);
319 }
320
321 /**
322  * Print the second part (the postfix) of a type.
323  *
324  * @param type   The type to print.
325  * @param top    true, if this is the top type, false if it's an embedded type.
326  */
327 static void print_function_type_post(const function_type_t *type,
328                                      const scope_t *scope, bool top)
329 {
330         /* don't emit parenthesis if we're the toplevel type... */
331         if (!top)
332                 fputc(')', out);
333
334         fputc('(', out);
335         bool first = true;
336         if (scope == NULL) {
337                 function_parameter_t *parameter = type->parameters;
338                 for( ; parameter != NULL; parameter = parameter->next) {
339                         if (first) {
340                                 first = false;
341                         } else {
342                                 fputs(", ", out);
343                         }
344                         print_type(parameter->type);
345                 }
346         } else {
347                 declaration_t *parameter = scope->declarations;
348                 for( ; parameter != NULL; parameter = parameter->next) {
349                         if (first) {
350                                 first = false;
351                         } else {
352                                 fputs(", ", out);
353                         }
354                         print_type_ext(parameter->type, parameter->symbol,
355                                        &parameter->scope);
356                 }
357         }
358         if (type->variadic) {
359                 if (first) {
360                         first = false;
361                 } else {
362                         fputs(", ", out);
363                 }
364                 fputs("...", out);
365         }
366         if (first && !type->unspecified_parameters) {
367                 fputs("void", out);
368         }
369         fputc(')', out);
370
371         intern_print_type_post(type->return_type, false);
372 }
373
374 /**
375  * Prints the prefix part of a pointer type.
376  *
377  * @param type   The pointer type.
378  */
379 static void print_pointer_type_pre(const pointer_type_t *type)
380 {
381         intern_print_type_pre(type->points_to, false);
382         fputs("*", out);
383         print_type_qualifiers(type->base.qualifiers);
384         if (type->base.qualifiers != 0)
385                 fputc(' ', out);
386 }
387
388 /**
389  * Prints the postfix part of a pointer type.
390  *
391  * @param type   The pointer type.
392  */
393 static void print_pointer_type_post(const pointer_type_t *type)
394 {
395         intern_print_type_post(type->points_to, false);
396 }
397
398 /**
399  * Prints the prefix part of an array type.
400  *
401  * @param type   The array type.
402  */
403 static void print_array_type_pre(const array_type_t *type)
404 {
405         intern_print_type_pre(type->element_type, false);
406 }
407
408 /**
409  * Prints the postfix part of an array type.
410  *
411  * @param type   The array type.
412  */
413 static void print_array_type_post(const array_type_t *type)
414 {
415         fputc('[', out);
416         if (type->is_static) {
417                 fputs("static ", out);
418         }
419         print_type_qualifiers(type->base.qualifiers);
420         if (type->base.qualifiers != 0)
421                 fputc(' ', out);
422         if (type->size_expression != NULL
423                         && (print_implicit_array_size || !type->has_implicit_size)) {
424                 print_expression(type->size_expression);
425         }
426         fputc(']', out);
427         intern_print_type_post(type->element_type, false);
428 }
429
430 /**
431  * Prints the postfix part of a bitfield type.
432  *
433  * @param type   The array type.
434  */
435 static void print_bitfield_type_post(const bitfield_type_t *type)
436 {
437         fputs(" : ", out);
438         print_expression(type->size);
439         intern_print_type_post(type->base_type, false);
440 }
441
442 /**
443  * Prints an enum definition.
444  *
445  * @param declaration  The enum's type declaration.
446  */
447 void print_enum_definition(const declaration_t *declaration)
448 {
449         fputs("{\n", out);
450
451         change_indent(1);
452
453         declaration_t *entry = declaration->next;
454         for( ; entry != NULL && entry->storage_class == STORAGE_CLASS_ENUM_ENTRY;
455                entry = entry->next) {
456
457                 print_indent();
458                 fprintf(out, "%s", entry->symbol->string);
459                 if (entry->init.initializer != NULL) {
460                         fprintf(out, " = ");
461
462                         /* skip the implicit cast */
463                         expression_t *expression = entry->init.enum_value;
464                         if (expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
465                                 expression = expression->unary.value;
466                         }
467                         print_expression(expression);
468                 }
469                 fprintf(out, ",\n");
470         }
471
472         change_indent(-1);
473         print_indent();
474         fputs("}", out);
475 }
476
477 /**
478  * Prints an enum type.
479  *
480  * @param type  The enum type.
481  */
482 static void print_type_enum(const enum_type_t *type)
483 {
484         int empty = type->base.qualifiers == 0;
485         print_type_qualifiers(type->base.qualifiers);
486         fputs(" enum " + empty, out);
487
488         declaration_t *declaration = type->declaration;
489         symbol_t      *symbol      = declaration->symbol;
490         if (symbol != NULL) {
491                 fputs(symbol->string, out);
492         } else {
493                 print_enum_definition(declaration);
494         }
495 }
496
497 /**
498  * Print the compound part of a compound type.
499  *
500  * @param declaration  The declaration of the compound type.
501  */
502 void print_compound_definition(const declaration_t *declaration)
503 {
504         fputs("{\n", out);
505         change_indent(1);
506
507         declaration_t *iter = declaration->scope.declarations;
508         for( ; iter != NULL; iter = iter->next) {
509                 print_indent();
510                 print_declaration(iter);
511                 fputc('\n', out);
512         }
513
514         change_indent(-1);
515         print_indent();
516         fputs("}", out);
517 }
518
519 /**
520  * Prints a compound type.
521  *
522  * @param type  The compound type.
523  */
524 static void print_compound_type(const compound_type_t *type)
525 {
526         int empty = type->base.qualifiers == 0;
527         print_type_qualifiers(type->base.qualifiers);
528
529         if (type->base.kind == TYPE_COMPOUND_STRUCT) {
530                 fputs(" struct " + empty, out);
531         } else {
532                 assert(type->base.kind == TYPE_COMPOUND_UNION);
533                 fputs(" union " + empty, out);
534         }
535
536         declaration_t *declaration = type->declaration;
537         symbol_t      *symbol      = declaration->symbol;
538         if (symbol != NULL) {
539                 fputs(symbol->string, out);
540         } else {
541                 print_compound_definition(declaration);
542         }
543 }
544
545 /**
546  * Prints the prefix part of a typedef type.
547  *
548  * @param type   The typedef type.
549  */
550 static void print_typedef_type_pre(const typedef_type_t *const type)
551 {
552         print_type_qualifiers(type->base.qualifiers);
553         if (type->base.qualifiers != 0)
554                 fputc(' ', out);
555         fputs(type->declaration->symbol->string, out);
556 }
557
558 /**
559  * Prints the prefix part of a typeof type.
560  *
561  * @param type   The typeof type.
562  */
563 static void print_typeof_type_pre(const typeof_type_t *const type)
564 {
565         fputs("typeof(", out);
566         if (type->expression != NULL) {
567                 assert(type->typeof_type == NULL);
568                 print_expression(type->expression);
569         } else {
570                 print_type(type->typeof_type);
571         }
572         fputc(')', out);
573 }
574
575 /**
576  * Prints the prefix part of a type.
577  *
578  * @param type   The type.
579  * @param top    true if we print the toplevel type, false else.
580  */
581 static void intern_print_type_pre(const type_t *const type, const bool top)
582 {
583         switch(type->kind) {
584         case TYPE_ERROR:
585                 fputs("<error>", out);
586                 return;
587         case TYPE_INVALID:
588                 fputs("<invalid>", out);
589                 return;
590         case TYPE_ENUM:
591                 print_type_enum(&type->enumt);
592                 return;
593         case TYPE_ATOMIC:
594                 print_atomic_type(&type->atomic);
595                 return;
596         case TYPE_COMPLEX:
597                 print_complex_type(&type->complex);
598                 return;
599         case TYPE_IMAGINARY:
600                 print_imaginary_type(&type->imaginary);
601                 return;
602         case TYPE_COMPOUND_STRUCT:
603         case TYPE_COMPOUND_UNION:
604                 print_compound_type(&type->compound);
605                 return;
606         case TYPE_BUILTIN:
607                 fputs(type->builtin.symbol->string, out);
608                 return;
609         case TYPE_FUNCTION:
610                 print_function_type_pre(&type->function, top);
611                 return;
612         case TYPE_POINTER:
613                 print_pointer_type_pre(&type->pointer);
614                 return;
615         case TYPE_BITFIELD:
616                 intern_print_type_pre(type->bitfield.base_type, top);
617                 return;
618         case TYPE_ARRAY:
619                 print_array_type_pre(&type->array);
620                 return;
621         case TYPE_TYPEDEF:
622                 print_typedef_type_pre(&type->typedeft);
623                 return;
624         case TYPE_TYPEOF:
625                 print_typeof_type_pre(&type->typeoft);
626                 return;
627         }
628         fputs("unknown", out);
629 }
630
631 /**
632  * Prints the postfix part of a type.
633  *
634  * @param type   The type.
635  * @param top    true if we print the toplevel type, false else.
636  */
637 static void intern_print_type_post(const type_t *const type, const bool top)
638 {
639         switch(type->kind) {
640         case TYPE_FUNCTION:
641                 print_function_type_post(&type->function, NULL, top);
642                 return;
643         case TYPE_POINTER:
644                 print_pointer_type_post(&type->pointer);
645                 return;
646         case TYPE_ARRAY:
647                 print_array_type_post(&type->array);
648                 return;
649         case TYPE_BITFIELD:
650                 print_bitfield_type_post(&type->bitfield);
651                 return;
652         case TYPE_ERROR:
653         case TYPE_INVALID:
654         case TYPE_ATOMIC:
655         case TYPE_COMPLEX:
656         case TYPE_IMAGINARY:
657         case TYPE_ENUM:
658         case TYPE_COMPOUND_STRUCT:
659         case TYPE_COMPOUND_UNION:
660         case TYPE_BUILTIN:
661         case TYPE_TYPEOF:
662         case TYPE_TYPEDEF:
663                 break;
664         }
665 }
666
667 /**
668  * Prints a type.
669  *
670  * @param type   The type.
671  */
672 void print_type(const type_t *const type)
673 {
674         print_type_ext(type, NULL, NULL);
675 }
676
677 void print_type_ext(const type_t *const type, const symbol_t *symbol,
678                     const scope_t *scope)
679 {
680         if (type == NULL) {
681                 fputs("nil type", out);
682                 return;
683         }
684
685         intern_print_type_pre(type, true);
686         if (symbol != NULL) {
687                 fputc(' ', out);
688                 fputs(symbol->string, out);
689         }
690         if (type->kind == TYPE_FUNCTION) {
691                 print_function_type_post(&type->function, scope, true);
692         } else {
693                 intern_print_type_post(type, true);
694         }
695 }
696
697 /**
698  * Return the size of a type AST node.
699  *
700  * @param type  The type.
701  */
702 static size_t get_type_size(const type_t *type)
703 {
704         switch(type->kind) {
705         case TYPE_ATOMIC:          return sizeof(atomic_type_t);
706         case TYPE_COMPLEX:         return sizeof(complex_type_t);
707         case TYPE_IMAGINARY:       return sizeof(imaginary_type_t);
708         case TYPE_COMPOUND_STRUCT:
709         case TYPE_COMPOUND_UNION:  return sizeof(compound_type_t);
710         case TYPE_ENUM:            return sizeof(enum_type_t);
711         case TYPE_FUNCTION:        return sizeof(function_type_t);
712         case TYPE_POINTER:         return sizeof(pointer_type_t);
713         case TYPE_ARRAY:           return sizeof(array_type_t);
714         case TYPE_BUILTIN:         return sizeof(builtin_type_t);
715         case TYPE_TYPEDEF:         return sizeof(typedef_type_t);
716         case TYPE_TYPEOF:          return sizeof(typeof_type_t);
717         case TYPE_BITFIELD:        return sizeof(bitfield_type_t);
718         case TYPE_ERROR:           panic("error type found");
719         case TYPE_INVALID:         panic("invalid type found");
720         }
721         panic("unknown type found");
722 }
723
724 /**
725  * Duplicates a type.
726  *
727  * @param type  The type to copy.
728  * @return A copy of the type.
729  *
730  * @note This does not produce a deep copy!
731  */
732 type_t *duplicate_type(const type_t *type)
733 {
734         size_t size = get_type_size(type);
735
736         type_t *copy = obstack_alloc(type_obst, size);
737         memcpy(copy, type, size);
738
739         return copy;
740 }
741
742 /**
743  * Returns the unqualified type of a given type.
744  *
745  * @param type  The type.
746  * @returns The unqualified type.
747  */
748 type_t *get_unqualified_type(type_t *type)
749 {
750         if (type->base.qualifiers == TYPE_QUALIFIER_NONE)
751                 return type;
752
753         type_t *unqualified_type          = duplicate_type(type);
754         unqualified_type->base.qualifiers = TYPE_QUALIFIER_NONE;
755
756         type_t *result = typehash_insert(unqualified_type);
757         if (result != unqualified_type) {
758                 obstack_free(type_obst, unqualified_type);
759         }
760
761         return result;
762 }
763
764 type_t *get_qualified_type(type_t *type, type_qualifiers_t const qual)
765 {
766         assert(!is_typeref(type));
767
768         type_t *copy;
769         if (is_type_array(type)) {
770                 /* For array types the element type has to be adjusted */
771                 type_t *element_type      = type->array.element_type;
772                 type_t *qual_element_type = get_qualified_type(element_type, qual);
773
774                 if (qual_element_type == element_type)
775                         return type;
776
777                 copy                     = duplicate_type(type);
778                 copy->array.element_type = qual_element_type;
779         } else {
780                 if ((type->base.qualifiers & qual) == qual)
781                         return type;
782
783                 copy                   = duplicate_type(type);
784                 copy->base.qualifiers |= qual;
785         }
786
787         type = typehash_insert(copy);
788         if (type != copy)
789                 obstack_free(type_obst, copy);
790
791         return type;
792 }
793
794 /**
795  * Check if a type is valid.
796  *
797  * @param type  The type to check.
798  * @return true if type represents a valid type.
799  */
800 bool type_valid(const type_t *type)
801 {
802         return type->kind != TYPE_INVALID;
803 }
804
805 static bool test_atomic_type_flag(atomic_type_kind_t kind,
806                                   atomic_type_flag_t flag)
807 {
808         assert(kind <= ATOMIC_TYPE_LAST);
809         return (atomic_type_properties[kind].flags & flag) != 0;
810 }
811
812 /**
813  * Returns true if the given type is an integer type.
814  *
815  * @param type  The type to check.
816  * @return True if type is an integer type.
817  */
818 bool is_type_integer(const type_t *type)
819 {
820         assert(!is_typeref(type));
821
822         if (type->kind == TYPE_ENUM)
823                 return true;
824         if (type->kind == TYPE_BITFIELD)
825                 return true;
826
827         if (type->kind != TYPE_ATOMIC)
828                 return false;
829
830         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_INTEGER);
831 }
832
833 /**
834  * Returns true if the given type is an enum type.
835  *
836  * @param type  The type to check.
837  * @return True if type is an enum type.
838  */
839 bool is_type_enum(const type_t *type)
840 {
841         assert(!is_typeref(type));
842         return type->kind == TYPE_ENUM;
843 }
844
845 /**
846  * Returns true if the given type is an floating point type.
847  *
848  * @param type  The type to check.
849  * @return True if type is a floating point type.
850  */
851 bool is_type_float(const type_t *type)
852 {
853         assert(!is_typeref(type));
854
855         if (type->kind != TYPE_ATOMIC)
856                 return false;
857
858         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_FLOAT);
859 }
860
861 /**
862  * Returns true if the given type is an complex type.
863  *
864  * @param type  The type to check.
865  * @return True if type is a complex type.
866  */
867 bool is_type_complex(const type_t *type)
868 {
869         assert(!is_typeref(type));
870
871         if (type->kind != TYPE_ATOMIC)
872                 return false;
873
874         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_COMPLEX);
875 }
876
877 /**
878  * Returns true if the given type is a signed type.
879  *
880  * @param type  The type to check.
881  * @return True if type is a signed type.
882  */
883 bool is_type_signed(const type_t *type)
884 {
885         assert(!is_typeref(type));
886
887         /* enum types are int for now */
888         if (type->kind == TYPE_ENUM)
889                 return true;
890         if (type->kind == TYPE_BITFIELD)
891                 return is_type_signed(type->bitfield.base_type);
892
893         if (type->kind != TYPE_ATOMIC)
894                 return false;
895
896         return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_SIGNED);
897 }
898
899 /**
900  * Returns true if the given type represents an arithmetic type.
901  *
902  * @param type  The type to check.
903  * @return True if type represents an arithmetic type.
904  */
905 bool is_type_arithmetic(const type_t *type)
906 {
907         assert(!is_typeref(type));
908
909         switch(type->kind) {
910         case TYPE_BITFIELD:
911         case TYPE_ENUM:
912                 return true;
913         case TYPE_ATOMIC:
914                 return test_atomic_type_flag(type->atomic.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
915         case TYPE_COMPLEX:
916                 return test_atomic_type_flag(type->complex.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
917         case TYPE_IMAGINARY:
918                 return test_atomic_type_flag(type->imaginary.akind, ATOMIC_TYPE_FLAG_ARITHMETIC);
919         default:
920                 return false;
921         }
922 }
923
924 /**
925  * Returns true if the given type is an integer or float type.
926  *
927  * @param type  The type to check.
928  * @return True if type is an integer or float type.
929  */
930 bool is_type_real(const type_t *type)
931 {
932         /* 6.2.5.17 */
933         return is_type_integer(type)
934                 || (type->kind == TYPE_ATOMIC && is_type_float(type));
935 }
936
937 /**
938  * Returns true if the given type represents a scalar type.
939  *
940  * @param type  The type to check.
941  * @return True if type represents a scalar type.
942  */
943 bool is_type_scalar(const type_t *type)
944 {
945         assert(!is_typeref(type));
946
947         switch (type->kind) {
948                 case TYPE_POINTER: return true;
949                 case TYPE_BUILTIN: return is_type_scalar(type->builtin.real_type);
950                 default:           break;
951         }
952
953         return is_type_arithmetic(type);
954 }
955
956 /**
957  * Check if a given type is incomplete.
958  *
959  * @param type  The type to check.
960  * @return True if the given type is incomplete (ie. just forward).
961  */
962 bool is_type_incomplete(const type_t *type)
963 {
964         assert(!is_typeref(type));
965
966         switch(type->kind) {
967         case TYPE_COMPOUND_STRUCT:
968         case TYPE_COMPOUND_UNION: {
969                 const compound_type_t *compound_type = &type->compound;
970                 declaration_t         *declaration   = compound_type->declaration;
971                 return !declaration->init.complete;
972         }
973         case TYPE_ENUM: {
974                 const enum_type_t *enum_type   = &type->enumt;
975                 declaration_t     *declaration = enum_type->declaration;
976                 return !declaration->init.complete;
977         }
978
979         case TYPE_ARRAY:
980                 return type->array.size_expression == NULL
981                         && !type->array.size_constant;
982
983         case TYPE_ATOMIC:
984                 return type->atomic.akind == ATOMIC_TYPE_VOID;
985
986         case TYPE_COMPLEX:
987                 return type->complex.akind == ATOMIC_TYPE_VOID;
988
989         case TYPE_IMAGINARY:
990                 return type->imaginary.akind == ATOMIC_TYPE_VOID;
991
992         case TYPE_BITFIELD:
993         case TYPE_FUNCTION:
994         case TYPE_POINTER:
995         case TYPE_BUILTIN:
996         case TYPE_ERROR:
997                 return false;
998
999         case TYPE_TYPEDEF:
1000         case TYPE_TYPEOF:
1001                 panic("is_type_incomplete called without typerefs skipped");
1002         case TYPE_INVALID:
1003                 break;
1004         }
1005
1006         panic("invalid type found");
1007 }
1008
1009 bool is_type_object(const type_t *type)
1010 {
1011         return !is_type_function(type) && !is_type_incomplete(type);
1012 }
1013
1014 /**
1015  * Check if two function types are compatible.
1016  */
1017 static bool function_types_compatible(const function_type_t *func1,
1018                                       const function_type_t *func2)
1019 {
1020         const type_t* const ret1 = skip_typeref(func1->return_type);
1021         const type_t* const ret2 = skip_typeref(func2->return_type);
1022         if (!types_compatible(ret1, ret2))
1023                 return false;
1024
1025         /* can parameters be compared? */
1026         if (func1->unspecified_parameters || func2->unspecified_parameters)
1027                 return true;
1028
1029         if (func1->variadic != func2->variadic)
1030                 return false;
1031
1032         if (func1->calling_convention != func2->calling_convention)
1033                 return false;
1034
1035         /* TODO: handling of unspecified parameters not correct yet */
1036
1037         /* all argument types must be compatible */
1038         function_parameter_t *parameter1 = func1->parameters;
1039         function_parameter_t *parameter2 = func2->parameters;
1040         for ( ; parameter1 != NULL && parameter2 != NULL;
1041                         parameter1 = parameter1->next, parameter2 = parameter2->next) {
1042                 type_t *parameter1_type = skip_typeref(parameter1->type);
1043                 type_t *parameter2_type = skip_typeref(parameter2->type);
1044
1045                 parameter1_type = get_unqualified_type(parameter1_type);
1046                 parameter2_type = get_unqualified_type(parameter2_type);
1047
1048                 if (!types_compatible(parameter1_type, parameter2_type))
1049                         return false;
1050         }
1051         /* same number of arguments? */
1052         if (parameter1 != NULL || parameter2 != NULL)
1053                 return false;
1054
1055         return true;
1056 }
1057
1058 /**
1059  * Check if two array types are compatible.
1060  */
1061 static bool array_types_compatible(const array_type_t *array1,
1062                                    const array_type_t *array2)
1063 {
1064         type_t *element_type1 = skip_typeref(array1->element_type);
1065         type_t *element_type2 = skip_typeref(array2->element_type);
1066         if (!types_compatible(element_type1, element_type2))
1067                 return false;
1068
1069         if (!array1->size_constant || !array2->size_constant)
1070                 return true;
1071
1072         return array1->size == array2->size;
1073 }
1074
1075 /**
1076  * Check if two types are compatible.
1077  */
1078 bool types_compatible(const type_t *type1, const type_t *type2)
1079 {
1080         assert(!is_typeref(type1));
1081         assert(!is_typeref(type2));
1082
1083         /* shortcut: the same type is always compatible */
1084         if (type1 == type2)
1085                 return true;
1086
1087         if (type1->base.qualifiers != type2->base.qualifiers)
1088                 return false;
1089         if (type1->kind != type2->kind)
1090                 return false;
1091
1092         switch (type1->kind) {
1093         case TYPE_FUNCTION:
1094                 return function_types_compatible(&type1->function, &type2->function);
1095         case TYPE_ATOMIC:
1096                 return type1->atomic.akind == type2->atomic.akind;
1097         case TYPE_COMPLEX:
1098                 return type1->complex.akind == type2->complex.akind;
1099         case TYPE_IMAGINARY:
1100                 return type1->imaginary.akind == type2->imaginary.akind;
1101         case TYPE_ARRAY:
1102                 return array_types_compatible(&type1->array, &type2->array);
1103
1104         case TYPE_POINTER: {
1105                 const type_t *const to1 = skip_typeref(type1->pointer.points_to);
1106                 const type_t *const to2 = skip_typeref(type2->pointer.points_to);
1107                 return types_compatible(to1, to2);
1108         }
1109
1110         case TYPE_COMPOUND_STRUCT:
1111         case TYPE_COMPOUND_UNION:
1112         case TYPE_ENUM:
1113         case TYPE_BUILTIN:
1114                 /* TODO: not implemented */
1115                 break;
1116
1117         case TYPE_BITFIELD:
1118                 /* not sure if this makes sense or is even needed, implement it if you
1119                  * really need it! */
1120                 panic("type compatibility check for bitfield type");
1121
1122         case TYPE_ERROR:
1123                 /* Hmm, the error type should be compatible to all other types */
1124                 return true;
1125         case TYPE_INVALID:
1126                 panic("invalid type found in compatible types");
1127         case TYPE_TYPEDEF:
1128         case TYPE_TYPEOF:
1129                 panic("typerefs not skipped in compatible types?!?");
1130         }
1131
1132         /* TODO: incomplete */
1133         return false;
1134 }
1135
1136 /**
1137  * Skip all typerefs and return the underlying type.
1138  */
1139 type_t *skip_typeref(type_t *type)
1140 {
1141         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
1142         type_modifiers_t  modifiers  = TYPE_MODIFIER_NONE;
1143
1144         while (true) {
1145                 switch (type->kind) {
1146                 case TYPE_ERROR:
1147                         return type;
1148                 case TYPE_TYPEDEF: {
1149                         qualifiers |= type->base.qualifiers;
1150                         modifiers  |= type->base.modifiers;
1151                         const typedef_type_t *typedef_type = &type->typedeft;
1152                         if (typedef_type->resolved_type != NULL) {
1153                                 type = typedef_type->resolved_type;
1154                                 break;
1155                         }
1156                         type = typedef_type->declaration->type;
1157                         continue;
1158                 }
1159                 case TYPE_TYPEOF: {
1160                         const typeof_type_t *typeof_type = &type->typeoft;
1161                         if (typeof_type->typeof_type != NULL) {
1162                                 type = typeof_type->typeof_type;
1163                         } else {
1164                                 type = typeof_type->expression->base.type;
1165                         }
1166                         continue;
1167                 }
1168                 default:
1169                         break;
1170                 }
1171                 break;
1172         }
1173
1174         if (qualifiers != TYPE_QUALIFIER_NONE || modifiers != TYPE_MODIFIER_NONE) {
1175                 type_t *const copy = duplicate_type(type);
1176
1177                 /* for const with typedefed array type the element type has to be
1178                  * adjusted */
1179                 if (is_type_array(copy)) {
1180                         type_t *element_type           = copy->array.element_type;
1181                         element_type                   = duplicate_type(element_type);
1182                         element_type->base.qualifiers |= qualifiers;
1183                         element_type->base.modifiers  |= modifiers;
1184                         copy->array.element_type       = element_type;
1185                 } else {
1186                         copy->base.qualifiers |= qualifiers;
1187                         copy->base.modifiers  |= modifiers;
1188                 }
1189
1190                 type = typehash_insert(copy);
1191                 if (type != copy) {
1192                         obstack_free(type_obst, copy);
1193                 }
1194         }
1195
1196         return type;
1197 }
1198
1199 unsigned get_atomic_type_size(atomic_type_kind_t kind)
1200 {
1201         assert(kind <= ATOMIC_TYPE_LAST);
1202         return atomic_type_properties[kind].size;
1203 }
1204
1205 unsigned get_atomic_type_alignment(atomic_type_kind_t kind)
1206 {
1207         assert(kind <= ATOMIC_TYPE_LAST);
1208         return atomic_type_properties[kind].alignment;
1209 }
1210
1211 unsigned get_atomic_type_flags(atomic_type_kind_t kind)
1212 {
1213         assert(kind <= ATOMIC_TYPE_LAST);
1214         return atomic_type_properties[kind].flags;
1215 }
1216
1217 atomic_type_kind_t get_intptr_kind(void)
1218 {
1219         if (machine_size <= 32)
1220                 return ATOMIC_TYPE_INT;
1221         else if (machine_size <= 64)
1222                 return ATOMIC_TYPE_LONG;
1223         else
1224                 return ATOMIC_TYPE_LONGLONG;
1225 }
1226
1227 atomic_type_kind_t get_uintptr_kind(void)
1228 {
1229         if (machine_size <= 32)
1230                 return ATOMIC_TYPE_UINT;
1231         else if (machine_size <= 64)
1232                 return ATOMIC_TYPE_ULONG;
1233         else
1234                 return ATOMIC_TYPE_ULONGLONG;
1235 }
1236
1237 /**
1238  * Find the atomic type kind representing a given size (signed).
1239  */
1240 atomic_type_kind_t find_signed_int_atomic_type_kind_for_size(unsigned size) {
1241         static atomic_type_kind_t kinds[32];
1242
1243         assert(size < 32);
1244         atomic_type_kind_t kind = kinds[size];
1245         if (kind == ATOMIC_TYPE_INVALID) {
1246                 static const atomic_type_kind_t possible_kinds[] = {
1247                         ATOMIC_TYPE_SCHAR,
1248                         ATOMIC_TYPE_SHORT,
1249                         ATOMIC_TYPE_INT,
1250                         ATOMIC_TYPE_LONG,
1251                         ATOMIC_TYPE_LONGLONG
1252                 };
1253                 for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) {
1254                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1255                                 kind = possible_kinds[i];
1256                                 break;
1257                         }
1258                 }
1259                 kinds[size] = kind;
1260         }
1261         return kind;
1262 }
1263
1264 /**
1265  * Find the atomic type kind representing a given size (signed).
1266  */
1267 atomic_type_kind_t find_unsigned_int_atomic_type_kind_for_size(unsigned size) {
1268         static atomic_type_kind_t kinds[32];
1269
1270         assert(size < 32);
1271         atomic_type_kind_t kind = kinds[size];
1272         if (kind == ATOMIC_TYPE_INVALID) {
1273                 static const atomic_type_kind_t possible_kinds[] = {
1274                         ATOMIC_TYPE_UCHAR,
1275                         ATOMIC_TYPE_USHORT,
1276                         ATOMIC_TYPE_UINT,
1277                         ATOMIC_TYPE_ULONG,
1278                         ATOMIC_TYPE_ULONGLONG
1279                 };
1280                 for(unsigned i = 0; i < sizeof(possible_kinds)/sizeof(possible_kinds[0]); ++i) {
1281                         if (get_atomic_type_size(possible_kinds[i]) == size) {
1282                                 kind = possible_kinds[i];
1283                                 break;
1284                         }
1285                 }
1286                 kinds[size] = kind;
1287         }
1288         return kind;
1289 }
1290
1291 /**
1292  * Hash the given type and return the "singleton" version
1293  * of it.
1294  */
1295 static type_t *identify_new_type(type_t *type)
1296 {
1297         type_t *result = typehash_insert(type);
1298         if (result != type) {
1299                 obstack_free(type_obst, type);
1300         }
1301         return result;
1302 }
1303
1304 /**
1305  * Creates a new atomic type.
1306  *
1307  * @param akind       The kind of the atomic type.
1308  * @param qualifiers  Type qualifiers for the new type.
1309  */
1310 type_t *make_atomic_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1311 {
1312         type_t *type = obstack_alloc(type_obst, sizeof(atomic_type_t));
1313         memset(type, 0, sizeof(atomic_type_t));
1314
1315         type->kind            = TYPE_ATOMIC;
1316         type->base.size       = get_atomic_type_size(akind);
1317         type->base.alignment  = get_atomic_type_alignment(akind);
1318         type->base.qualifiers = qualifiers;
1319         type->atomic.akind    = akind;
1320
1321         return identify_new_type(type);
1322 }
1323
1324 /**
1325  * Creates a new complex type.
1326  *
1327  * @param akind       The kind of the atomic type.
1328  * @param qualifiers  Type qualifiers for the new type.
1329  */
1330 type_t *make_complex_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1331 {
1332         type_t *type = obstack_alloc(type_obst, sizeof(complex_type_t));
1333         memset(type, 0, sizeof(complex_type_t));
1334
1335         type->kind            = TYPE_COMPLEX;
1336         type->base.qualifiers = qualifiers;
1337         type->base.alignment  = get_atomic_type_alignment(akind);
1338         type->complex.akind   = akind;
1339
1340         return identify_new_type(type);
1341 }
1342
1343 /**
1344  * Creates a new imaginary type.
1345  *
1346  * @param akind       The kind of the atomic type.
1347  * @param qualifiers  Type qualifiers for the new type.
1348  */
1349 type_t *make_imaginary_type(atomic_type_kind_t akind, type_qualifiers_t qualifiers)
1350 {
1351         type_t *type = obstack_alloc(type_obst, sizeof(imaginary_type_t));
1352         memset(type, 0, sizeof(imaginary_type_t));
1353
1354         type->kind            = TYPE_IMAGINARY;
1355         type->base.qualifiers = qualifiers;
1356         type->base.alignment  = get_atomic_type_alignment(akind);
1357         type->imaginary.akind = akind;
1358
1359         return identify_new_type(type);
1360 }
1361
1362 /**
1363  * Creates a new pointer type.
1364  *
1365  * @param points_to   The points-to type for the new type.
1366  * @param qualifiers  Type qualifiers for the new type.
1367  */
1368 type_t *make_pointer_type(type_t *points_to, type_qualifiers_t qualifiers)
1369 {
1370         type_t *type = obstack_alloc(type_obst, sizeof(pointer_type_t));
1371         memset(type, 0, sizeof(pointer_type_t));
1372
1373         type->kind              = TYPE_POINTER;
1374         type->base.qualifiers   = qualifiers;
1375         type->base.alignment    = 0;
1376         type->pointer.points_to = points_to;
1377
1378         return identify_new_type(type);
1379 }
1380
1381 type_t *make_array_type(type_t *element_type, size_t size,
1382                         type_qualifiers_t qualifiers)
1383 {
1384         type_t *type = obstack_alloc(type_obst, sizeof(array_type_t));
1385         memset(type, 0, sizeof(array_type_t));
1386
1387         type->kind                = TYPE_ARRAY;
1388         type->base.qualifiers     = qualifiers;
1389         type->base.alignment      = 0;
1390         type->array.element_type  = element_type;
1391         type->array.size          = size;
1392         type->array.size_constant = true;
1393
1394         return identify_new_type(type);
1395 }
1396
1397 /**
1398  * Debug helper. Prints the given type to stdout.
1399  */
1400 static __attribute__((unused))
1401 void dbg_type(const type_t *type)
1402 {
1403         FILE *old_out = out;
1404         out = stderr;
1405         print_type(type);
1406         puts("\n");
1407         fflush(stderr);
1408         out = old_out;
1409 }