Remove stale (since r21011) comment.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 /** if wchar_t is equal to unsigned short. */
43 bool opt_short_wchar_t =
44 #ifdef _WIN32
45         true;
46 #else
47         false;
48 #endif
49
50 //#define PRINT_TOKENS
51 #define MAX_LOOKAHEAD 2
52
53 typedef struct {
54         declaration_t *old_declaration;
55         symbol_t      *symbol;
56         unsigned short namespc;
57 } stack_entry_t;
58
59 typedef struct argument_list_t argument_list_t;
60 struct argument_list_t {
61         long              argument;
62         argument_list_t  *next;
63 };
64
65 typedef struct gnu_attribute_t gnu_attribute_t;
66 struct gnu_attribute_t {
67         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
68         gnu_attribute_t     *next;
69         bool                 invalid;        /**< Set if this attribute had argument errors, */
70         bool                 have_arguments; /**< True, if this attribute has arguments. */
71         union {
72                 size_t              value;
73                 string_t            string;
74                 atomic_type_kind_t  akind;
75                 long                argument;  /**< Single argument. */
76                 argument_list_t    *arguments; /**< List of argument expressions. */
77         } u;
78 };
79
80 typedef struct declaration_specifiers_t  declaration_specifiers_t;
81 struct declaration_specifiers_t {
82         source_position_t  source_position;
83         unsigned char      declared_storage_class;
84         unsigned char      alignment;         /**< Alignment, 0 if not set. */
85         unsigned int       is_inline : 1;
86         unsigned int       deprecated : 1;
87         decl_modifiers_t   modifiers;         /**< declaration modifiers */
88         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
89         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
90         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
91         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
92         type_t            *type;
93 };
94
95 /**
96  * An environment for parsing initializers (and compound literals).
97  */
98 typedef struct parse_initializer_env_t {
99         type_t        *type;        /**< the type of the initializer. In case of an
100                                          array type with unspecified size this gets
101                                          adjusted to the actual size. */
102         declaration_t *declaration; /**< the declaration that is initialized if any */
103         bool           must_be_constant;
104 } parse_initializer_env_t;
105
106 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration, bool is_definition);
107
108 /** The current token. */
109 static token_t             token;
110 /** The lookahead ring-buffer. */
111 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
112 /** Position of the next token in the lookahead buffer. */
113 static int                 lookahead_bufpos;
114 static stack_entry_t      *environment_stack = NULL;
115 static stack_entry_t      *label_stack       = NULL;
116 static stack_entry_t      *local_label_stack = NULL;
117 /** The global file scope. */
118 static scope_t            *file_scope        = NULL;
119 /** The current scope. */
120 static scope_t            *scope             = NULL;
121 static declaration_t      *last_declaration  = NULL;
122 /** Point to the current function declaration if inside a function. */
123 static declaration_t      *current_function  = NULL;
124 static declaration_t      *current_init_decl = NULL;
125 static switch_statement_t *current_switch    = NULL;
126 static statement_t        *current_loop      = NULL;
127 static statement_t        *current_parent    = NULL;
128 static ms_try_statement_t *current_try       = NULL;
129 static goto_statement_t   *goto_first        = NULL;
130 static goto_statement_t   *goto_last         = NULL;
131 static label_statement_t  *label_first       = NULL;
132 static label_statement_t  *label_last        = NULL;
133 /** current translation unit. */
134 static translation_unit_t *unit              = NULL;
135 /** true if we are in a type property context (evaluation only for type. */
136 static bool                in_type_prop      = false;
137 /** true in we are in a __extension__ context. */
138 static bool                in_gcc_extension  = false;
139 static struct obstack      temp_obst;
140
141
142 #define PUSH_PARENT(stmt)                          \
143         statement_t *const prev_parent = current_parent; \
144         ((void)(current_parent = (stmt)))
145 #define POP_PARENT ((void)(current_parent = prev_parent))
146
147 static source_position_t null_position = { NULL, 0 };
148
149 /** special symbol used for anonymous entities. */
150 static const symbol_t *sym_anonymous = NULL;
151
152 /* symbols for Microsoft extended-decl-modifier */
153 static const symbol_t *sym_align      = NULL;
154 static const symbol_t *sym_allocate   = NULL;
155 static const symbol_t *sym_dllimport  = NULL;
156 static const symbol_t *sym_dllexport  = NULL;
157 static const symbol_t *sym_naked      = NULL;
158 static const symbol_t *sym_noinline   = NULL;
159 static const symbol_t *sym_noreturn   = NULL;
160 static const symbol_t *sym_nothrow    = NULL;
161 static const symbol_t *sym_novtable   = NULL;
162 static const symbol_t *sym_property   = NULL;
163 static const symbol_t *sym_get        = NULL;
164 static const symbol_t *sym_put        = NULL;
165 static const symbol_t *sym_selectany  = NULL;
166 static const symbol_t *sym_thread     = NULL;
167 static const symbol_t *sym_uuid       = NULL;
168 static const symbol_t *sym_deprecated = NULL;
169 static const symbol_t *sym_restrict   = NULL;
170 static const symbol_t *sym_noalias    = NULL;
171
172 /** The token anchor set */
173 static unsigned char token_anchor_set[T_LAST_TOKEN];
174
175 /** The current source position. */
176 #define HERE (&token.source_position)
177
178 /** true if we are in GCC mode. */
179 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
180
181 static type_t *type_valist;
182
183 static statement_t *parse_compound_statement(bool inside_expression_statement);
184 static statement_t *parse_statement(void);
185
186 static expression_t *parse_sub_expression(unsigned precedence);
187 static expression_t *parse_expression(void);
188 static type_t       *parse_typename(void);
189
190 static void parse_compound_type_entries(declaration_t *compound_declaration);
191 static declaration_t *parse_declarator(
192                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
193 static declaration_t *record_declaration(declaration_t *declaration, bool is_definition);
194
195 static void semantic_comparison(binary_expression_t *expression);
196
197 #define STORAGE_CLASSES     \
198         case T_typedef:         \
199         case T_extern:          \
200         case T_static:          \
201         case T_auto:            \
202         case T_register:        \
203         case T___thread:
204
205 #define TYPE_QUALIFIERS     \
206         case T_const:           \
207         case T_restrict:        \
208         case T_volatile:        \
209         case T_inline:          \
210         case T__forceinline:    \
211         case T___attribute__:
212
213 #ifdef PROVIDE_COMPLEX
214 #define COMPLEX_SPECIFIERS  \
215         case T__Complex:
216 #define IMAGINARY_SPECIFIERS \
217         case T__Imaginary:
218 #else
219 #define COMPLEX_SPECIFIERS
220 #define IMAGINARY_SPECIFIERS
221 #endif
222
223 #define TYPE_SPECIFIERS       \
224         case T_void:              \
225         case T_char:              \
226         case T_short:             \
227         case T_int:               \
228         case T_long:              \
229         case T_float:             \
230         case T_double:            \
231         case T_signed:            \
232         case T_unsigned:          \
233         case T__Bool:             \
234         case T_struct:            \
235         case T_union:             \
236         case T_enum:              \
237         case T___typeof__:        \
238         case T___builtin_va_list: \
239         case T__declspec:         \
240         COMPLEX_SPECIFIERS        \
241         IMAGINARY_SPECIFIERS
242
243 #define DECLARATION_START   \
244         STORAGE_CLASSES         \
245         TYPE_QUALIFIERS         \
246         TYPE_SPECIFIERS
247
248 #define TYPENAME_START      \
249         TYPE_QUALIFIERS         \
250         TYPE_SPECIFIERS
251
252 /**
253  * Allocate an AST node with given size and
254  * initialize all fields with zero.
255  */
256 static void *allocate_ast_zero(size_t size)
257 {
258         void *res = allocate_ast(size);
259         memset(res, 0, size);
260         return res;
261 }
262
263 static declaration_t *allocate_declaration_zero(void)
264 {
265         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
266         declaration->type      = type_error_type;
267         declaration->alignment = 0;
268         return declaration;
269 }
270
271 /**
272  * Returns the size of a statement node.
273  *
274  * @param kind  the statement kind
275  */
276 static size_t get_statement_struct_size(statement_kind_t kind)
277 {
278         static const size_t sizes[] = {
279                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
280                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
281                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
282                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
283                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
284                 [STATEMENT_IF]          = sizeof(if_statement_t),
285                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
286                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
287                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
288                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
289                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
290                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
291                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
292                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
293                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
294                 [STATEMENT_FOR]         = sizeof(for_statement_t),
295                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
296                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
297                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
298         };
299         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
300         assert(sizes[kind] != 0);
301         return sizes[kind];
302 }
303
304 /**
305  * Returns the size of an expression node.
306  *
307  * @param kind  the expression kind
308  */
309 static size_t get_expression_struct_size(expression_kind_t kind)
310 {
311         static const size_t sizes[] = {
312                 [EXPR_INVALID]                 = sizeof(expression_base_t),
313                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
314                 [EXPR_CONST]                   = sizeof(const_expression_t),
315                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
316                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
317                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
318                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
319                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
320                 [EXPR_CALL]                    = sizeof(call_expression_t),
321                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
322                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
323                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
324                 [EXPR_SELECT]                  = sizeof(select_expression_t),
325                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
326                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
327                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
328                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
329                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
330                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
331                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
332                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
333                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
334                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
335                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
336                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
337                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
338         };
339         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
340                 return sizes[EXPR_UNARY_FIRST];
341         }
342         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
343                 return sizes[EXPR_BINARY_FIRST];
344         }
345         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
346         assert(sizes[kind] != 0);
347         return sizes[kind];
348 }
349
350 /**
351  * Allocate a statement node of given kind and initialize all
352  * fields with zero.
353  */
354 static statement_t *allocate_statement_zero(statement_kind_t kind)
355 {
356         size_t       size = get_statement_struct_size(kind);
357         statement_t *res  = allocate_ast_zero(size);
358
359         res->base.kind            = kind;
360         res->base.parent          = current_parent;
361         res->base.source_position = token.source_position;
362         return res;
363 }
364
365 /**
366  * Allocate an expression node of given kind and initialize all
367  * fields with zero.
368  */
369 static expression_t *allocate_expression_zero(expression_kind_t kind)
370 {
371         size_t        size = get_expression_struct_size(kind);
372         expression_t *res  = allocate_ast_zero(size);
373
374         res->base.kind = kind;
375         res->base.type = type_error_type;
376         return res;
377 }
378
379 /**
380  * Creates a new invalid expression.
381  */
382 static expression_t *create_invalid_expression(void)
383 {
384         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
385         expression->base.source_position = token.source_position;
386         return expression;
387 }
388
389 /**
390  * Creates a new invalid statement.
391  */
392 static statement_t *create_invalid_statement(void)
393 {
394         return allocate_statement_zero(STATEMENT_INVALID);
395 }
396
397 /**
398  * Allocate a new empty statement.
399  */
400 static statement_t *create_empty_statement(void)
401 {
402         return allocate_statement_zero(STATEMENT_EMPTY);
403 }
404
405 /**
406  * Returns the size of a type node.
407  *
408  * @param kind  the type kind
409  */
410 static size_t get_type_struct_size(type_kind_t kind)
411 {
412         static const size_t sizes[] = {
413                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
414                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
415                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
416                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
417                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
418                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
419                 [TYPE_ENUM]            = sizeof(enum_type_t),
420                 [TYPE_FUNCTION]        = sizeof(function_type_t),
421                 [TYPE_POINTER]         = sizeof(pointer_type_t),
422                 [TYPE_ARRAY]           = sizeof(array_type_t),
423                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
424                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
425                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
426         };
427         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
428         assert(kind <= TYPE_TYPEOF);
429         assert(sizes[kind] != 0);
430         return sizes[kind];
431 }
432
433 /**
434  * Allocate a type node of given kind and initialize all
435  * fields with zero.
436  *
437  * @param kind             type kind to allocate
438  * @param source_position  the source position of the type definition
439  */
440 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
441 {
442         size_t  size = get_type_struct_size(kind);
443         type_t *res  = obstack_alloc(type_obst, size);
444         memset(res, 0, size);
445
446         res->base.kind            = kind;
447         res->base.source_position = *source_position;
448         return res;
449 }
450
451 /**
452  * Returns the size of an initializer node.
453  *
454  * @param kind  the initializer kind
455  */
456 static size_t get_initializer_size(initializer_kind_t kind)
457 {
458         static const size_t sizes[] = {
459                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
460                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
461                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
462                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
463                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
464         };
465         assert(kind < sizeof(sizes) / sizeof(*sizes));
466         assert(sizes[kind] != 0);
467         return sizes[kind];
468 }
469
470 /**
471  * Allocate an initializer node of given kind and initialize all
472  * fields with zero.
473  */
474 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
475 {
476         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
477         result->kind          = kind;
478
479         return result;
480 }
481
482 /**
483  * Free a type from the type obstack.
484  */
485 static void free_type(void *type)
486 {
487         obstack_free(type_obst, type);
488 }
489
490 /**
491  * Returns the index of the top element of the environment stack.
492  */
493 static size_t environment_top(void)
494 {
495         return ARR_LEN(environment_stack);
496 }
497
498 /**
499  * Returns the index of the top element of the global label stack.
500  */
501 static size_t label_top(void)
502 {
503         return ARR_LEN(label_stack);
504 }
505
506 /**
507  * Returns the index of the top element of the local label stack.
508  */
509 static size_t local_label_top(void)
510 {
511         return ARR_LEN(local_label_stack);
512 }
513
514 /**
515  * Return the next token.
516  */
517 static inline void next_token(void)
518 {
519         token                              = lookahead_buffer[lookahead_bufpos];
520         lookahead_buffer[lookahead_bufpos] = lexer_token;
521         lexer_next_token();
522
523         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
524
525 #ifdef PRINT_TOKENS
526         print_token(stderr, &token);
527         fprintf(stderr, "\n");
528 #endif
529 }
530
531 /**
532  * Return the next token with a given lookahead.
533  */
534 static inline const token_t *look_ahead(int num)
535 {
536         assert(num > 0 && num <= MAX_LOOKAHEAD);
537         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
538         return &lookahead_buffer[pos];
539 }
540
541 /**
542  * Adds a token to the token anchor set (a multi-set).
543  */
544 static void add_anchor_token(int token_type)
545 {
546         assert(0 <= token_type && token_type < T_LAST_TOKEN);
547         ++token_anchor_set[token_type];
548 }
549
550 static int save_and_reset_anchor_state(int token_type)
551 {
552         assert(0 <= token_type && token_type < T_LAST_TOKEN);
553         int count = token_anchor_set[token_type];
554         token_anchor_set[token_type] = 0;
555         return count;
556 }
557
558 static void restore_anchor_state(int token_type, int count)
559 {
560         assert(0 <= token_type && token_type < T_LAST_TOKEN);
561         token_anchor_set[token_type] = count;
562 }
563
564 /**
565  * Remove a token from the token anchor set (a multi-set).
566  */
567 static void rem_anchor_token(int token_type)
568 {
569         assert(0 <= token_type && token_type < T_LAST_TOKEN);
570         assert(token_anchor_set[token_type] != 0);
571         --token_anchor_set[token_type];
572 }
573
574 static bool at_anchor(void)
575 {
576         if (token.type < 0)
577                 return false;
578         return token_anchor_set[token.type];
579 }
580
581 /**
582  * Eat tokens until a matching token is found.
583  */
584 static void eat_until_matching_token(int type)
585 {
586         int end_token;
587         switch (type) {
588                 case '(': end_token = ')';  break;
589                 case '{': end_token = '}';  break;
590                 case '[': end_token = ']';  break;
591                 default:  end_token = type; break;
592         }
593
594         unsigned parenthesis_count = 0;
595         unsigned brace_count       = 0;
596         unsigned bracket_count     = 0;
597         while (token.type        != end_token ||
598                parenthesis_count != 0         ||
599                brace_count       != 0         ||
600                bracket_count     != 0) {
601                 switch (token.type) {
602                 case T_EOF: return;
603                 case '(': ++parenthesis_count; break;
604                 case '{': ++brace_count;       break;
605                 case '[': ++bracket_count;     break;
606
607                 case ')':
608                         if (parenthesis_count > 0)
609                                 --parenthesis_count;
610                         goto check_stop;
611
612                 case '}':
613                         if (brace_count > 0)
614                                 --brace_count;
615                         goto check_stop;
616
617                 case ']':
618                         if (bracket_count > 0)
619                                 --bracket_count;
620 check_stop:
621                         if (token.type        == end_token &&
622                             parenthesis_count == 0         &&
623                             brace_count       == 0         &&
624                             bracket_count     == 0)
625                                 return;
626                         break;
627
628                 default:
629                         break;
630                 }
631                 next_token();
632         }
633 }
634
635 /**
636  * Eat input tokens until an anchor is found.
637  */
638 static void eat_until_anchor(void)
639 {
640         while (token_anchor_set[token.type] == 0) {
641                 if (token.type == '(' || token.type == '{' || token.type == '[')
642                         eat_until_matching_token(token.type);
643                 next_token();
644         }
645 }
646
647 static void eat_block(void)
648 {
649         eat_until_matching_token('{');
650         if (token.type == '}')
651                 next_token();
652 }
653
654 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
655
656 /**
657  * Report a parse error because an expected token was not found.
658  */
659 static
660 #if defined __GNUC__ && __GNUC__ >= 4
661 __attribute__((sentinel))
662 #endif
663 void parse_error_expected(const char *message, ...)
664 {
665         if (message != NULL) {
666                 errorf(HERE, "%s", message);
667         }
668         va_list ap;
669         va_start(ap, message);
670         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
671         va_end(ap);
672 }
673
674 /**
675  * Report a type error.
676  */
677 static void type_error(const char *msg, const source_position_t *source_position,
678                        type_t *type)
679 {
680         errorf(source_position, "%s, but found type '%T'", msg, type);
681 }
682
683 /**
684  * Report an incompatible type.
685  */
686 static void type_error_incompatible(const char *msg,
687                 const source_position_t *source_position, type_t *type1, type_t *type2)
688 {
689         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
690                msg, type1, type2);
691 }
692
693 /**
694  * Expect the the current token is the expected token.
695  * If not, generate an error, eat the current statement,
696  * and goto the end_error label.
697  */
698 #define expect(expected)                                  \
699         do {                                                  \
700                 if (UNLIKELY(token.type != (expected))) {         \
701                         parse_error_expected(NULL, (expected), NULL); \
702                         add_anchor_token(expected);                   \
703                         eat_until_anchor();                           \
704                         if (token.type == expected)                   \
705                                 next_token();                             \
706                         rem_anchor_token(expected);                   \
707                         goto end_error;                               \
708                 }                                                 \
709                 next_token();                                     \
710         } while (0)
711
712 static void scope_push(scope_t *new_scope)
713 {
714         if (scope != NULL) {
715                 scope->last_declaration = last_declaration;
716                 new_scope->depth        = scope->depth + 1;
717         }
718         new_scope->parent = scope;
719         scope             = new_scope;
720
721         last_declaration = new_scope->last_declaration;
722 }
723
724 static void scope_pop(void)
725 {
726         scope->last_declaration = last_declaration;
727         scope = scope->parent;
728         last_declaration = scope->last_declaration;
729 }
730
731 /**
732  * Search a symbol in a given namespace and returns its declaration or
733  * NULL if this symbol was not found.
734  */
735 static declaration_t *get_declaration(const symbol_t *const symbol,
736                                       const namespace_t namespc)
737 {
738         declaration_t *declaration = symbol->declaration;
739         for( ; declaration != NULL; declaration = declaration->symbol_next) {
740                 if (declaration->namespc == namespc)
741                         return declaration;
742         }
743
744         return NULL;
745 }
746
747 /**
748  * pushs an environment_entry on the environment stack and links the
749  * corresponding symbol to the new entry
750  */
751 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
752 {
753         symbol_t    *symbol  = declaration->symbol;
754         namespace_t  namespc = (namespace_t) declaration->namespc;
755
756         /* replace/add declaration into declaration list of the symbol */
757         declaration_t **anchor;
758         declaration_t  *iter;
759         for (anchor = &symbol->declaration;; anchor = &iter->symbol_next) {
760                 iter = *anchor;
761                 if (iter == NULL)
762                         break;
763
764                 /* replace an entry? */
765                 if (iter->namespc == namespc) {
766                         declaration->symbol_next = iter->symbol_next;
767                         break;
768                 }
769         }
770         *anchor = declaration;
771
772         /* remember old declaration */
773         stack_entry_t entry;
774         entry.symbol          = symbol;
775         entry.old_declaration = iter;
776         entry.namespc         = (unsigned short) namespc;
777         ARR_APP1(stack_entry_t, *stack_ptr, entry);
778 }
779
780 /**
781  * Push a declaration on the environment stack.
782  *
783  * @param declaration  the declaration
784  */
785 static void environment_push(declaration_t *declaration)
786 {
787         assert(declaration->source_position.input_name != NULL);
788         assert(declaration->parent_scope != NULL);
789         stack_push(&environment_stack, declaration);
790 }
791
792 /**
793  * Push a declaration on the global label stack.
794  *
795  * @param declaration  the declaration
796  */
797 static void label_push(declaration_t *declaration)
798 {
799         declaration->parent_scope = &current_function->scope;
800         stack_push(&label_stack, declaration);
801 }
802
803 /**
804  * Push a declaration of the local label stack.
805  *
806  * @param declaration  the declaration
807  */
808 static void local_label_push(declaration_t *declaration)
809 {
810         assert(declaration->parent_scope != NULL);
811         stack_push(&local_label_stack, declaration);
812 }
813
814 /**
815  * pops symbols from the environment stack until @p new_top is the top element
816  */
817 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
818 {
819         stack_entry_t *stack = *stack_ptr;
820         size_t         top   = ARR_LEN(stack);
821         size_t         i;
822
823         assert(new_top <= top);
824         if (new_top == top)
825                 return;
826
827         for(i = top; i > new_top; --i) {
828                 stack_entry_t *entry = &stack[i - 1];
829
830                 declaration_t *old_declaration = entry->old_declaration;
831                 symbol_t      *symbol          = entry->symbol;
832                 namespace_t    namespc         = (namespace_t)entry->namespc;
833
834                 /* replace/remove declaration */
835                 declaration_t **anchor;
836                 declaration_t  *iter;
837                 for (anchor = &symbol->declaration;; anchor = &iter->symbol_next) {
838                         iter = *anchor;
839                         assert(iter != NULL);
840                         /* replace an entry? */
841                         if (iter->namespc == namespc)
842                                 break;
843                 }
844
845                 /* Not all declarations adhere scopes (e.g. jump labels), so this
846                  * correction is necessary */
847                 if (old_declaration != NULL) {
848                         old_declaration->symbol_next = iter->symbol_next;
849                         *anchor = old_declaration;
850                 } else {
851                         *anchor = iter->symbol_next;
852                 }
853         }
854
855         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
856 }
857
858 /**
859  * Pop all entries from the environment stack until the new_top
860  * is reached.
861  *
862  * @param new_top  the new stack top
863  */
864 static void environment_pop_to(size_t new_top)
865 {
866         stack_pop_to(&environment_stack, new_top);
867 }
868
869 /**
870  * Pop all entries from the global label stack until the new_top
871  * is reached.
872  *
873  * @param new_top  the new stack top
874  */
875 static void label_pop_to(size_t new_top)
876 {
877         stack_pop_to(&label_stack, new_top);
878 }
879
880 /**
881  * Pop all entries from the local label stack until the new_top
882  * is reached.
883  *
884  * @param new_top  the new stack top
885  */
886 static void local_label_pop_to(size_t new_top)
887 {
888         stack_pop_to(&local_label_stack, new_top);
889 }
890
891
892 static int get_akind_rank(atomic_type_kind_t akind)
893 {
894         return (int) akind;
895 }
896
897 static int get_rank(const type_t *type)
898 {
899         assert(!is_typeref(type));
900         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
901          * and esp. footnote 108). However we can't fold constants (yet), so we
902          * can't decide whether unsigned int is possible, while int always works.
903          * (unsigned int would be preferable when possible... for stuff like
904          *  struct { enum { ... } bla : 4; } ) */
905         if (type->kind == TYPE_ENUM)
906                 return get_akind_rank(ATOMIC_TYPE_INT);
907
908         assert(type->kind == TYPE_ATOMIC);
909         return get_akind_rank(type->atomic.akind);
910 }
911
912 static type_t *promote_integer(type_t *type)
913 {
914         if (type->kind == TYPE_BITFIELD)
915                 type = type->bitfield.base_type;
916
917         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
918                 type = type_int;
919
920         return type;
921 }
922
923 /**
924  * Create a cast expression.
925  *
926  * @param expression  the expression to cast
927  * @param dest_type   the destination type
928  */
929 static expression_t *create_cast_expression(expression_t *expression,
930                                             type_t *dest_type)
931 {
932         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
933
934         cast->unary.value = expression;
935         cast->base.type   = dest_type;
936
937         return cast;
938 }
939
940 /**
941  * Check if a given expression represents the 0 pointer constant.
942  */
943 static bool is_null_pointer_constant(const expression_t *expression)
944 {
945         /* skip void* cast */
946         if (expression->kind == EXPR_UNARY_CAST
947                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
948                 expression = expression->unary.value;
949         }
950
951         /* TODO: not correct yet, should be any constant integer expression
952          * which evaluates to 0 */
953         if (expression->kind != EXPR_CONST)
954                 return false;
955
956         type_t *const type = skip_typeref(expression->base.type);
957         if (!is_type_integer(type))
958                 return false;
959
960         return expression->conste.v.int_value == 0;
961 }
962
963 /**
964  * Create an implicit cast expression.
965  *
966  * @param expression  the expression to cast
967  * @param dest_type   the destination type
968  */
969 static expression_t *create_implicit_cast(expression_t *expression,
970                                           type_t *dest_type)
971 {
972         type_t *const source_type = expression->base.type;
973
974         if (source_type == dest_type)
975                 return expression;
976
977         return create_cast_expression(expression, dest_type);
978 }
979
980 typedef enum assign_error_t {
981         ASSIGN_SUCCESS,
982         ASSIGN_ERROR_INCOMPATIBLE,
983         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
984         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
985         ASSIGN_WARNING_POINTER_FROM_INT,
986         ASSIGN_WARNING_INT_FROM_POINTER
987 } assign_error_t;
988
989 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
990                                 const expression_t *const right,
991                                 const char *context,
992                                 const source_position_t *source_position)
993 {
994         type_t *const orig_type_right = right->base.type;
995         type_t *const type_left       = skip_typeref(orig_type_left);
996         type_t *const type_right      = skip_typeref(orig_type_right);
997
998         switch (error) {
999         case ASSIGN_SUCCESS:
1000                 return;
1001         case ASSIGN_ERROR_INCOMPATIBLE:
1002                 errorf(source_position,
1003                        "destination type '%T' in %s is incompatible with type '%T'",
1004                        orig_type_left, context, orig_type_right);
1005                 return;
1006
1007         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1008                 type_t *points_to_left
1009                         = skip_typeref(type_left->pointer.points_to);
1010                 type_t *points_to_right
1011                         = skip_typeref(type_right->pointer.points_to);
1012
1013                 /* the left type has all qualifiers from the right type */
1014                 unsigned missing_qualifiers
1015                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1016                 warningf(source_position,
1017                          "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1018                          orig_type_left, context, orig_type_right, missing_qualifiers);
1019                 return;
1020         }
1021
1022         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1023                 warningf(source_position,
1024                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1025                                  orig_type_left, context, right, orig_type_right);
1026                 return;
1027
1028         case ASSIGN_WARNING_POINTER_FROM_INT:
1029                 warningf(source_position,
1030                          "%s makes pointer '%T' from integer '%T' without a cast",
1031                                  context, orig_type_left, orig_type_right);
1032                 return;
1033
1034         case ASSIGN_WARNING_INT_FROM_POINTER:
1035                 warningf(source_position,
1036                                 "%s makes integer '%T' from pointer '%T' without a cast",
1037                                 context, orig_type_left, orig_type_right);
1038                 return;
1039
1040         default:
1041                 panic("invalid error value");
1042         }
1043 }
1044
1045 /** Implements the rules from Â§ 6.5.16.1 */
1046 static assign_error_t semantic_assign(type_t *orig_type_left,
1047                                       const expression_t *const right)
1048 {
1049         type_t *const orig_type_right = right->base.type;
1050         type_t *const type_left       = skip_typeref(orig_type_left);
1051         type_t *const type_right      = skip_typeref(orig_type_right);
1052
1053         if (is_type_pointer(type_left)) {
1054                 if (is_null_pointer_constant(right)) {
1055                         return ASSIGN_SUCCESS;
1056                 } else if (is_type_pointer(type_right)) {
1057                         type_t *points_to_left
1058                                 = skip_typeref(type_left->pointer.points_to);
1059                         type_t *points_to_right
1060                                 = skip_typeref(type_right->pointer.points_to);
1061                         assign_error_t res = ASSIGN_SUCCESS;
1062
1063                         /* the left type has all qualifiers from the right type */
1064                         unsigned missing_qualifiers
1065                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1066                         if (missing_qualifiers != 0) {
1067                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1068                         }
1069
1070                         points_to_left  = get_unqualified_type(points_to_left);
1071                         points_to_right = get_unqualified_type(points_to_right);
1072
1073                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1074                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1075                                 return res;
1076                         }
1077
1078                         if (!types_compatible(points_to_left, points_to_right)) {
1079                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1080                         }
1081
1082                         return res;
1083                 } else if (is_type_integer(type_right)) {
1084                         return ASSIGN_WARNING_POINTER_FROM_INT;
1085                 }
1086         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1087             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1088                 && is_type_pointer(type_right))) {
1089                 return ASSIGN_SUCCESS;
1090         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1091                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1092                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1093                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1094                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1095                         return ASSIGN_SUCCESS;
1096                 }
1097         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1098                 return ASSIGN_WARNING_INT_FROM_POINTER;
1099         }
1100
1101         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1102                 return ASSIGN_SUCCESS;
1103
1104         return ASSIGN_ERROR_INCOMPATIBLE;
1105 }
1106
1107 static expression_t *parse_constant_expression(void)
1108 {
1109         /* start parsing at precedence 7 (conditional expression) */
1110         expression_t *result = parse_sub_expression(7);
1111
1112         if (!is_constant_expression(result)) {
1113                 errorf(&result->base.source_position,
1114                        "expression '%E' is not constant\n", result);
1115         }
1116
1117         return result;
1118 }
1119
1120 static expression_t *parse_assignment_expression(void)
1121 {
1122         /* start parsing at precedence 2 (assignment expression) */
1123         return parse_sub_expression(2);
1124 }
1125
1126 static type_t *make_global_typedef(const char *name, type_t *type)
1127 {
1128         symbol_t *const symbol       = symbol_table_insert(name);
1129
1130         declaration_t *const declaration = allocate_declaration_zero();
1131         declaration->namespc                = NAMESPACE_NORMAL;
1132         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1133         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1134         declaration->type                   = type;
1135         declaration->symbol                 = symbol;
1136         declaration->source_position        = builtin_source_position;
1137         declaration->implicit               = true;
1138
1139         record_declaration(declaration, false);
1140
1141         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1142         typedef_type->typedeft.declaration = declaration;
1143
1144         return typedef_type;
1145 }
1146
1147 static string_t parse_string_literals(void)
1148 {
1149         assert(token.type == T_STRING_LITERAL);
1150         string_t result = token.v.string;
1151
1152         next_token();
1153
1154         while (token.type == T_STRING_LITERAL) {
1155                 result = concat_strings(&result, &token.v.string);
1156                 next_token();
1157         }
1158
1159         return result;
1160 }
1161
1162 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1163         [GNU_AK_CONST]                  = "const",
1164         [GNU_AK_VOLATILE]               = "volatile",
1165         [GNU_AK_CDECL]                  = "cdecl",
1166         [GNU_AK_STDCALL]                = "stdcall",
1167         [GNU_AK_FASTCALL]               = "fastcall",
1168         [GNU_AK_DEPRECATED]             = "deprecated",
1169         [GNU_AK_NOINLINE]               = "noinline",
1170         [GNU_AK_NORETURN]               = "noreturn",
1171         [GNU_AK_NAKED]                  = "naked",
1172         [GNU_AK_PURE]                   = "pure",
1173         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1174         [GNU_AK_MALLOC]                 = "malloc",
1175         [GNU_AK_WEAK]                   = "weak",
1176         [GNU_AK_CONSTRUCTOR]            = "constructor",
1177         [GNU_AK_DESTRUCTOR]             = "destructor",
1178         [GNU_AK_NOTHROW]                = "nothrow",
1179         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1180         [GNU_AK_COMMON]                 = "common",
1181         [GNU_AK_NOCOMMON]               = "nocommon",
1182         [GNU_AK_PACKED]                 = "packed",
1183         [GNU_AK_SHARED]                 = "shared",
1184         [GNU_AK_NOTSHARED]              = "notshared",
1185         [GNU_AK_USED]                   = "used",
1186         [GNU_AK_UNUSED]                 = "unused",
1187         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1188         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1189         [GNU_AK_LONGCALL]               = "longcall",
1190         [GNU_AK_SHORTCALL]              = "shortcall",
1191         [GNU_AK_LONG_CALL]              = "long_call",
1192         [GNU_AK_SHORT_CALL]             = "short_call",
1193         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1194         [GNU_AK_INTERRUPT]              = "interrupt",
1195         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1196         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1197         [GNU_AK_NESTING]                = "nesting",
1198         [GNU_AK_NEAR]                   = "near",
1199         [GNU_AK_FAR]                    = "far",
1200         [GNU_AK_SIGNAL]                 = "signal",
1201         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1202         [GNU_AK_TINY_DATA]              = "tiny_data",
1203         [GNU_AK_SAVEALL]                = "saveall",
1204         [GNU_AK_FLATTEN]                = "flatten",
1205         [GNU_AK_SSEREGPARM]             = "sseregparm",
1206         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1207         [GNU_AK_RETURN_TWICE]           = "return_twice",
1208         [GNU_AK_MAY_ALIAS]              = "may_alias",
1209         [GNU_AK_MS_STRUCT]              = "ms_struct",
1210         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1211         [GNU_AK_DLLIMPORT]              = "dllimport",
1212         [GNU_AK_DLLEXPORT]              = "dllexport",
1213         [GNU_AK_ALIGNED]                = "aligned",
1214         [GNU_AK_ALIAS]                  = "alias",
1215         [GNU_AK_SECTION]                = "section",
1216         [GNU_AK_FORMAT]                 = "format",
1217         [GNU_AK_FORMAT_ARG]             = "format_arg",
1218         [GNU_AK_WEAKREF]                = "weakref",
1219         [GNU_AK_NONNULL]                = "nonnull",
1220         [GNU_AK_TLS_MODEL]              = "tls_model",
1221         [GNU_AK_VISIBILITY]             = "visibility",
1222         [GNU_AK_REGPARM]                = "regparm",
1223         [GNU_AK_MODE]                   = "mode",
1224         [GNU_AK_MODEL]                  = "model",
1225         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1226         [GNU_AK_SP_SWITCH]              = "sp_switch",
1227         [GNU_AK_SENTINEL]               = "sentinel"
1228 };
1229
1230 /**
1231  * compare two string, ignoring double underscores on the second.
1232  */
1233 static int strcmp_underscore(const char *s1, const char *s2)
1234 {
1235         if (s2[0] == '_' && s2[1] == '_') {
1236                 size_t len2 = strlen(s2);
1237                 size_t len1 = strlen(s1);
1238                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1239                         return strncmp(s1, s2+2, len2-4);
1240                 }
1241         }
1242
1243         return strcmp(s1, s2);
1244 }
1245
1246 /**
1247  * Allocate a new gnu temporal attribute.
1248  */
1249 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1250 {
1251         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1252         attribute->kind            = kind;
1253         attribute->next            = NULL;
1254         attribute->invalid         = false;
1255         attribute->have_arguments  = false;
1256
1257         return attribute;
1258 }
1259
1260 /**
1261  * parse one constant expression argument.
1262  */
1263 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1264 {
1265         expression_t *expression;
1266         add_anchor_token(')');
1267         expression = parse_constant_expression();
1268         rem_anchor_token(')');
1269         expect(')');
1270         attribute->u.argument = fold_constant(expression);
1271         return;
1272 end_error:
1273         attribute->invalid = true;
1274 }
1275
1276 /**
1277  * parse a list of constant expressions arguments.
1278  */
1279 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1280 {
1281         argument_list_t **list = &attribute->u.arguments;
1282         argument_list_t  *entry;
1283         expression_t     *expression;
1284         add_anchor_token(')');
1285         add_anchor_token(',');
1286         while (true) {
1287                 expression = parse_constant_expression();
1288                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1289                 entry->argument = fold_constant(expression);
1290                 entry->next     = NULL;
1291                 *list = entry;
1292                 list = &entry->next;
1293                 if (token.type != ',')
1294                         break;
1295                 next_token();
1296         }
1297         rem_anchor_token(',');
1298         rem_anchor_token(')');
1299         expect(')');
1300         return;
1301 end_error:
1302         attribute->invalid = true;
1303 }
1304
1305 /**
1306  * parse one string literal argument.
1307  */
1308 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1309                                            string_t *string)
1310 {
1311         add_anchor_token('(');
1312         if (token.type != T_STRING_LITERAL) {
1313                 parse_error_expected("while parsing attribute directive",
1314                                      T_STRING_LITERAL, NULL);
1315                 goto end_error;
1316         }
1317         *string = parse_string_literals();
1318         rem_anchor_token('(');
1319         expect(')');
1320         return;
1321 end_error:
1322         attribute->invalid = true;
1323 }
1324
1325 /**
1326  * parse one tls model.
1327  */
1328 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1329 {
1330         static const char *const tls_models[] = {
1331                 "global-dynamic",
1332                 "local-dynamic",
1333                 "initial-exec",
1334                 "local-exec"
1335         };
1336         string_t string = { NULL, 0 };
1337         parse_gnu_attribute_string_arg(attribute, &string);
1338         if (string.begin != NULL) {
1339                 for(size_t i = 0; i < 4; ++i) {
1340                         if (strcmp(tls_models[i], string.begin) == 0) {
1341                                 attribute->u.value = i;
1342                                 return;
1343                         }
1344                 }
1345                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1346         }
1347         attribute->invalid = true;
1348 }
1349
1350 /**
1351  * parse one tls model.
1352  */
1353 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1354 {
1355         static const char *const visibilities[] = {
1356                 "default",
1357                 "protected",
1358                 "hidden",
1359                 "internal"
1360         };
1361         string_t string = { NULL, 0 };
1362         parse_gnu_attribute_string_arg(attribute, &string);
1363         if (string.begin != NULL) {
1364                 for(size_t i = 0; i < 4; ++i) {
1365                         if (strcmp(visibilities[i], string.begin) == 0) {
1366                                 attribute->u.value = i;
1367                                 return;
1368                         }
1369                 }
1370                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1371         }
1372         attribute->invalid = true;
1373 }
1374
1375 /**
1376  * parse one (code) model.
1377  */
1378 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1379 {
1380         static const char *const visibilities[] = {
1381                 "small",
1382                 "medium",
1383                 "large"
1384         };
1385         string_t string = { NULL, 0 };
1386         parse_gnu_attribute_string_arg(attribute, &string);
1387         if (string.begin != NULL) {
1388                 for(int i = 0; i < 3; ++i) {
1389                         if (strcmp(visibilities[i], string.begin) == 0) {
1390                                 attribute->u.value = i;
1391                                 return;
1392                         }
1393                 }
1394                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1395         }
1396         attribute->invalid = true;
1397 }
1398
1399 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1400 {
1401         /* TODO: find out what is allowed here... */
1402
1403         /* at least: byte, word, pointer, list of machine modes
1404          * __XXX___ is interpreted as XXX */
1405         add_anchor_token(')');
1406
1407         if (token.type != T_IDENTIFIER) {
1408                 expect(T_IDENTIFIER);
1409         }
1410
1411         /* This isn't really correct, the backend should provide a list of machine
1412          * specific modes (according to gcc philosophy that is...) */
1413         const char *symbol_str = token.v.symbol->string;
1414         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1415             strcmp_underscore("byte", symbol_str) == 0) {
1416                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1417         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1418                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1419         } else if (strcmp_underscore("SI",      symbol_str) == 0
1420                 || strcmp_underscore("word",    symbol_str) == 0
1421                 || strcmp_underscore("pointer", symbol_str) == 0) {
1422                 attribute->u.akind = ATOMIC_TYPE_INT;
1423         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1424                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1425         } else {
1426                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1427                 attribute->invalid = true;
1428         }
1429         next_token();
1430
1431         rem_anchor_token(')');
1432         expect(')');
1433         return;
1434 end_error:
1435         attribute->invalid = true;
1436 }
1437
1438 /**
1439  * parse one interrupt argument.
1440  */
1441 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1442 {
1443         static const char *const interrupts[] = {
1444                 "IRQ",
1445                 "FIQ",
1446                 "SWI",
1447                 "ABORT",
1448                 "UNDEF"
1449         };
1450         string_t string = { NULL, 0 };
1451         parse_gnu_attribute_string_arg(attribute, &string);
1452         if (string.begin != NULL) {
1453                 for(size_t i = 0; i < 5; ++i) {
1454                         if (strcmp(interrupts[i], string.begin) == 0) {
1455                                 attribute->u.value = i;
1456                                 return;
1457                         }
1458                 }
1459                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1460         }
1461         attribute->invalid = true;
1462 }
1463
1464 /**
1465  * parse ( identifier, const expression, const expression )
1466  */
1467 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1468 {
1469         static const char *const format_names[] = {
1470                 "printf",
1471                 "scanf",
1472                 "strftime",
1473                 "strfmon"
1474         };
1475         int i;
1476
1477         if (token.type != T_IDENTIFIER) {
1478                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1479                 goto end_error;
1480         }
1481         const char *name = token.v.symbol->string;
1482         for(i = 0; i < 4; ++i) {
1483                 if (strcmp_underscore(format_names[i], name) == 0)
1484                         break;
1485         }
1486         if (i >= 4) {
1487                 if (warning.attribute)
1488                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1489         }
1490         next_token();
1491
1492         expect(',');
1493         add_anchor_token(')');
1494         add_anchor_token(',');
1495         parse_constant_expression();
1496         rem_anchor_token(',');
1497         rem_anchor_token(')');
1498
1499         expect(',');
1500         add_anchor_token(')');
1501         parse_constant_expression();
1502         rem_anchor_token(')');
1503         expect(')');
1504         return;
1505 end_error:
1506         attribute->u.value = true;
1507 }
1508
1509 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1510 {
1511         if (!attribute->have_arguments)
1512                 return;
1513
1514         /* should have no arguments */
1515         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1516         eat_until_matching_token('(');
1517         /* we have already consumed '(', so we stop before ')', eat it */
1518         eat(')');
1519         attribute->invalid = true;
1520 }
1521
1522 /**
1523  * Parse one GNU attribute.
1524  *
1525  * Note that attribute names can be specified WITH or WITHOUT
1526  * double underscores, ie const or __const__.
1527  *
1528  * The following attributes are parsed without arguments
1529  *  const
1530  *  volatile
1531  *  cdecl
1532  *  stdcall
1533  *  fastcall
1534  *  deprecated
1535  *  noinline
1536  *  noreturn
1537  *  naked
1538  *  pure
1539  *  always_inline
1540  *  malloc
1541  *  weak
1542  *  constructor
1543  *  destructor
1544  *  nothrow
1545  *  transparent_union
1546  *  common
1547  *  nocommon
1548  *  packed
1549  *  shared
1550  *  notshared
1551  *  used
1552  *  unused
1553  *  no_instrument_function
1554  *  warn_unused_result
1555  *  longcall
1556  *  shortcall
1557  *  long_call
1558  *  short_call
1559  *  function_vector
1560  *  interrupt_handler
1561  *  nmi_handler
1562  *  nesting
1563  *  near
1564  *  far
1565  *  signal
1566  *  eightbit_data
1567  *  tiny_data
1568  *  saveall
1569  *  flatten
1570  *  sseregparm
1571  *  externally_visible
1572  *  return_twice
1573  *  may_alias
1574  *  ms_struct
1575  *  gcc_struct
1576  *  dllimport
1577  *  dllexport
1578  *
1579  * The following attributes are parsed with arguments
1580  *  aligned( const expression )
1581  *  alias( string literal )
1582  *  section( string literal )
1583  *  format( identifier, const expression, const expression )
1584  *  format_arg( const expression )
1585  *  tls_model( string literal )
1586  *  visibility( string literal )
1587  *  regparm( const expression )
1588  *  model( string leteral )
1589  *  trap_exit( const expression )
1590  *  sp_switch( string literal )
1591  *
1592  * The following attributes might have arguments
1593  *  weak_ref( string literal )
1594  *  non_null( const expression // ',' )
1595  *  interrupt( string literal )
1596  *  sentinel( constant expression )
1597  */
1598 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1599 {
1600         gnu_attribute_t *head      = *attributes;
1601         gnu_attribute_t *last      = *attributes;
1602         decl_modifiers_t modifiers = 0;
1603         gnu_attribute_t *attribute;
1604
1605         eat(T___attribute__);
1606         expect('(');
1607         expect('(');
1608
1609         if (token.type != ')') {
1610                 /* find the end of the list */
1611                 if (last != NULL) {
1612                         while (last->next != NULL)
1613                                 last = last->next;
1614                 }
1615
1616                 /* non-empty attribute list */
1617                 while (true) {
1618                         const char *name;
1619                         if (token.type == T_const) {
1620                                 name = "const";
1621                         } else if (token.type == T_volatile) {
1622                                 name = "volatile";
1623                         } else if (token.type == T_cdecl) {
1624                                 /* __attribute__((cdecl)), WITH ms mode */
1625                                 name = "cdecl";
1626                         } else if (token.type == T_IDENTIFIER) {
1627                                 const symbol_t *sym = token.v.symbol;
1628                                 name = sym->string;
1629                         } else {
1630                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1631                                 break;
1632                         }
1633
1634                         next_token();
1635
1636                         int i;
1637                         for(i = 0; i < GNU_AK_LAST; ++i) {
1638                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1639                                         break;
1640                         }
1641                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1642
1643                         attribute = NULL;
1644                         if (kind == GNU_AK_LAST) {
1645                                 if (warning.attribute)
1646                                         warningf(HERE, "'%s' attribute directive ignored", name);
1647
1648                                 /* skip possible arguments */
1649                                 if (token.type == '(') {
1650                                         eat_until_matching_token(')');
1651                                 }
1652                         } else {
1653                                 /* check for arguments */
1654                                 attribute = allocate_gnu_attribute(kind);
1655                                 if (token.type == '(') {
1656                                         next_token();
1657                                         if (token.type == ')') {
1658                                                 /* empty args are allowed */
1659                                                 next_token();
1660                                         } else
1661                                                 attribute->have_arguments = true;
1662                                 }
1663
1664                                 switch(kind) {
1665                                 case GNU_AK_VOLATILE:
1666                                 case GNU_AK_NAKED:
1667                                 case GNU_AK_MALLOC:
1668                                 case GNU_AK_WEAK:
1669                                 case GNU_AK_COMMON:
1670                                 case GNU_AK_NOCOMMON:
1671                                 case GNU_AK_SHARED:
1672                                 case GNU_AK_NOTSHARED:
1673                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1674                                 case GNU_AK_WARN_UNUSED_RESULT:
1675                                 case GNU_AK_LONGCALL:
1676                                 case GNU_AK_SHORTCALL:
1677                                 case GNU_AK_LONG_CALL:
1678                                 case GNU_AK_SHORT_CALL:
1679                                 case GNU_AK_FUNCTION_VECTOR:
1680                                 case GNU_AK_INTERRUPT_HANDLER:
1681                                 case GNU_AK_NMI_HANDLER:
1682                                 case GNU_AK_NESTING:
1683                                 case GNU_AK_NEAR:
1684                                 case GNU_AK_FAR:
1685                                 case GNU_AK_SIGNAL:
1686                                 case GNU_AK_EIGTHBIT_DATA:
1687                                 case GNU_AK_TINY_DATA:
1688                                 case GNU_AK_SAVEALL:
1689                                 case GNU_AK_FLATTEN:
1690                                 case GNU_AK_SSEREGPARM:
1691                                 case GNU_AK_EXTERNALLY_VISIBLE:
1692                                 case GNU_AK_RETURN_TWICE:
1693                                 case GNU_AK_MAY_ALIAS:
1694                                 case GNU_AK_MS_STRUCT:
1695                                 case GNU_AK_GCC_STRUCT:
1696                                         goto no_arg;
1697
1698                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1699                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1700                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1701                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1702                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1703                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1704                                 case GNU_AK_CONST:             modifiers |= DM_CONST;             goto no_arg;
1705                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1706                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1707                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1708                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1709                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1710                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1711                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1712                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1713                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1714                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1715                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1716
1717                                 case GNU_AK_ALIGNED:
1718                                         /* __align__ may be used without an argument */
1719                                         if (attribute->have_arguments) {
1720                                                 parse_gnu_attribute_const_arg(attribute);
1721                                         }
1722                                         break;
1723
1724                                 case GNU_AK_FORMAT_ARG:
1725                                 case GNU_AK_REGPARM:
1726                                 case GNU_AK_TRAP_EXIT:
1727                                         if (!attribute->have_arguments) {
1728                                                 /* should have arguments */
1729                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1730                                                 attribute->invalid = true;
1731                                         } else
1732                                                 parse_gnu_attribute_const_arg(attribute);
1733                                         break;
1734                                 case GNU_AK_ALIAS:
1735                                 case GNU_AK_SECTION:
1736                                 case GNU_AK_SP_SWITCH:
1737                                         if (!attribute->have_arguments) {
1738                                                 /* should have arguments */
1739                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1740                                                 attribute->invalid = true;
1741                                         } else
1742                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1743                                         break;
1744                                 case GNU_AK_FORMAT:
1745                                         if (!attribute->have_arguments) {
1746                                                 /* should have arguments */
1747                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1748                                                 attribute->invalid = true;
1749                                         } else
1750                                                 parse_gnu_attribute_format_args(attribute);
1751                                         break;
1752                                 case GNU_AK_WEAKREF:
1753                                         /* may have one string argument */
1754                                         if (attribute->have_arguments)
1755                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1756                                         break;
1757                                 case GNU_AK_NONNULL:
1758                                         if (attribute->have_arguments)
1759                                                 parse_gnu_attribute_const_arg_list(attribute);
1760                                         break;
1761                                 case GNU_AK_TLS_MODEL:
1762                                         if (!attribute->have_arguments) {
1763                                                 /* should have arguments */
1764                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1765                                         } else
1766                                                 parse_gnu_attribute_tls_model_arg(attribute);
1767                                         break;
1768                                 case GNU_AK_VISIBILITY:
1769                                         if (!attribute->have_arguments) {
1770                                                 /* should have arguments */
1771                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1772                                         } else
1773                                                 parse_gnu_attribute_visibility_arg(attribute);
1774                                         break;
1775                                 case GNU_AK_MODEL:
1776                                         if (!attribute->have_arguments) {
1777                                                 /* should have arguments */
1778                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1779                                         } else {
1780                                                 parse_gnu_attribute_model_arg(attribute);
1781                                         }
1782                                         break;
1783                                 case GNU_AK_MODE:
1784                                         if (!attribute->have_arguments) {
1785                                                 /* should have arguments */
1786                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1787                                         } else {
1788                                                 parse_gnu_attribute_mode_arg(attribute);
1789                                         }
1790                                         break;
1791                                 case GNU_AK_INTERRUPT:
1792                                         /* may have one string argument */
1793                                         if (attribute->have_arguments)
1794                                                 parse_gnu_attribute_interrupt_arg(attribute);
1795                                         break;
1796                                 case GNU_AK_SENTINEL:
1797                                         /* may have one string argument */
1798                                         if (attribute->have_arguments)
1799                                                 parse_gnu_attribute_const_arg(attribute);
1800                                         break;
1801                                 case GNU_AK_LAST:
1802                                         /* already handled */
1803                                         break;
1804
1805 no_arg:
1806                                         check_no_argument(attribute, name);
1807                                 }
1808                         }
1809                         if (attribute != NULL) {
1810                                 if (last != NULL) {
1811                                         last->next = attribute;
1812                                         last       = attribute;
1813                                 } else {
1814                                         head = last = attribute;
1815                                 }
1816                         }
1817
1818                         if (token.type != ',')
1819                                 break;
1820                         next_token();
1821                 }
1822         }
1823         expect(')');
1824         expect(')');
1825 end_error:
1826         *attributes = head;
1827
1828         return modifiers;
1829 }
1830
1831 /**
1832  * Parse GNU attributes.
1833  */
1834 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1835 {
1836         decl_modifiers_t modifiers = 0;
1837
1838         while (true) {
1839                 switch(token.type) {
1840                 case T___attribute__:
1841                         modifiers |= parse_gnu_attribute(attributes);
1842                         continue;
1843
1844                 case T_asm:
1845                         next_token();
1846                         expect('(');
1847                         if (token.type != T_STRING_LITERAL) {
1848                                 parse_error_expected("while parsing assembler attribute",
1849                                                      T_STRING_LITERAL, NULL);
1850                                 eat_until_matching_token('(');
1851                                 break;
1852                         } else {
1853                                 parse_string_literals();
1854                         }
1855                         expect(')');
1856                         continue;
1857
1858                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1859                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1860                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1861
1862                 case T___thiscall:
1863                         /* TODO record modifier */
1864                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1865                         break;
1866
1867 end_error:
1868                 default: return modifiers;
1869                 }
1870
1871                 next_token();
1872         }
1873 }
1874
1875 static designator_t *parse_designation(void)
1876 {
1877         designator_t *result = NULL;
1878         designator_t *last   = NULL;
1879
1880         while (true) {
1881                 designator_t *designator;
1882                 switch(token.type) {
1883                 case '[':
1884                         designator = allocate_ast_zero(sizeof(designator[0]));
1885                         designator->source_position = token.source_position;
1886                         next_token();
1887                         add_anchor_token(']');
1888                         designator->array_index = parse_constant_expression();
1889                         rem_anchor_token(']');
1890                         expect(']');
1891                         break;
1892                 case '.':
1893                         designator = allocate_ast_zero(sizeof(designator[0]));
1894                         designator->source_position = token.source_position;
1895                         next_token();
1896                         if (token.type != T_IDENTIFIER) {
1897                                 parse_error_expected("while parsing designator",
1898                                                      T_IDENTIFIER, NULL);
1899                                 return NULL;
1900                         }
1901                         designator->symbol = token.v.symbol;
1902                         next_token();
1903                         break;
1904                 default:
1905                         expect('=');
1906                         return result;
1907                 }
1908
1909                 assert(designator != NULL);
1910                 if (last != NULL) {
1911                         last->next = designator;
1912                 } else {
1913                         result = designator;
1914                 }
1915                 last = designator;
1916         }
1917 end_error:
1918         return NULL;
1919 }
1920
1921 static initializer_t *initializer_from_string(array_type_t *type,
1922                                               const string_t *const string)
1923 {
1924         /* TODO: check len vs. size of array type */
1925         (void) type;
1926
1927         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1928         initializer->string.string = *string;
1929
1930         return initializer;
1931 }
1932
1933 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1934                                                    wide_string_t *const string)
1935 {
1936         /* TODO: check len vs. size of array type */
1937         (void) type;
1938
1939         initializer_t *const initializer =
1940                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1941         initializer->wide_string.string = *string;
1942
1943         return initializer;
1944 }
1945
1946 /**
1947  * Build an initializer from a given expression.
1948  */
1949 static initializer_t *initializer_from_expression(type_t *orig_type,
1950                                                   expression_t *expression)
1951 {
1952         /* TODO check that expression is a constant expression */
1953
1954         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1955         type_t *type           = skip_typeref(orig_type);
1956         type_t *expr_type_orig = expression->base.type;
1957         type_t *expr_type      = skip_typeref(expr_type_orig);
1958         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1959                 array_type_t *const array_type   = &type->array;
1960                 type_t       *const element_type = skip_typeref(array_type->element_type);
1961
1962                 if (element_type->kind == TYPE_ATOMIC) {
1963                         atomic_type_kind_t akind = element_type->atomic.akind;
1964                         switch (expression->kind) {
1965                                 case EXPR_STRING_LITERAL:
1966                                         if (akind == ATOMIC_TYPE_CHAR
1967                                                         || akind == ATOMIC_TYPE_SCHAR
1968                                                         || akind == ATOMIC_TYPE_UCHAR) {
1969                                                 return initializer_from_string(array_type,
1970                                                         &expression->string.value);
1971                                         }
1972
1973                                 case EXPR_WIDE_STRING_LITERAL: {
1974                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1975                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1976                                                 return initializer_from_wide_string(array_type,
1977                                                         &expression->wide_string.value);
1978                                         }
1979                                 }
1980
1981                                 default:
1982                                         break;
1983                         }
1984                 }
1985         }
1986
1987         assign_error_t error = semantic_assign(type, expression);
1988         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1989                 return NULL;
1990         report_assign_error(error, type, expression, "initializer",
1991                             &expression->base.source_position);
1992
1993         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1994 #if 0
1995         if (type->kind == TYPE_BITFIELD) {
1996                 type = type->bitfield.base_type;
1997         }
1998 #endif
1999         result->value.value = create_implicit_cast(expression, type);
2000
2001         return result;
2002 }
2003
2004 /**
2005  * Checks if a given expression can be used as an constant initializer.
2006  */
2007 static bool is_initializer_constant(const expression_t *expression)
2008 {
2009         return is_constant_expression(expression)
2010                 || is_address_constant(expression);
2011 }
2012
2013 /**
2014  * Parses an scalar initializer.
2015  *
2016  * Â§ 6.7.8.11; eat {} without warning
2017  */
2018 static initializer_t *parse_scalar_initializer(type_t *type,
2019                                                bool must_be_constant)
2020 {
2021         /* there might be extra {} hierarchies */
2022         int braces = 0;
2023         if (token.type == '{') {
2024                 warningf(HERE, "extra curly braces around scalar initializer");
2025                 do {
2026                         ++braces;
2027                         next_token();
2028                 } while (token.type == '{');
2029         }
2030
2031         expression_t *expression = parse_assignment_expression();
2032         if (must_be_constant && !is_initializer_constant(expression)) {
2033                 errorf(&expression->base.source_position,
2034                        "Initialisation expression '%E' is not constant\n",
2035                        expression);
2036         }
2037
2038         initializer_t *initializer = initializer_from_expression(type, expression);
2039
2040         if (initializer == NULL) {
2041                 errorf(&expression->base.source_position,
2042                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2043                        expression, expression->base.type, type);
2044                 /* TODO */
2045                 return NULL;
2046         }
2047
2048         bool additional_warning_displayed = false;
2049         while (braces > 0) {
2050                 if (token.type == ',') {
2051                         next_token();
2052                 }
2053                 if (token.type != '}') {
2054                         if (!additional_warning_displayed) {
2055                                 warningf(HERE, "additional elements in scalar initializer");
2056                                 additional_warning_displayed = true;
2057                         }
2058                 }
2059                 eat_block();
2060                 braces--;
2061         }
2062
2063         return initializer;
2064 }
2065
2066 /**
2067  * An entry in the type path.
2068  */
2069 typedef struct type_path_entry_t type_path_entry_t;
2070 struct type_path_entry_t {
2071         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2072         union {
2073                 size_t         index;          /**< For array types: the current index. */
2074                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2075         } v;
2076 };
2077
2078 /**
2079  * A type path expression a position inside compound or array types.
2080  */
2081 typedef struct type_path_t type_path_t;
2082 struct type_path_t {
2083         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2084         type_t            *top_type;     /**< type of the element the path points */
2085         size_t             max_index;    /**< largest index in outermost array */
2086 };
2087
2088 /**
2089  * Prints a type path for debugging.
2090  */
2091 static __attribute__((unused)) void debug_print_type_path(
2092                 const type_path_t *path)
2093 {
2094         size_t len = ARR_LEN(path->path);
2095
2096         for(size_t i = 0; i < len; ++i) {
2097                 const type_path_entry_t *entry = & path->path[i];
2098
2099                 type_t *type = skip_typeref(entry->type);
2100                 if (is_type_compound(type)) {
2101                         /* in gcc mode structs can have no members */
2102                         if (entry->v.compound_entry == NULL) {
2103                                 assert(i == len-1);
2104                                 continue;
2105                         }
2106                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2107                 } else if (is_type_array(type)) {
2108                         fprintf(stderr, "[%zu]", entry->v.index);
2109                 } else {
2110                         fprintf(stderr, "-INVALID-");
2111                 }
2112         }
2113         if (path->top_type != NULL) {
2114                 fprintf(stderr, "  (");
2115                 print_type(path->top_type);
2116                 fprintf(stderr, ")");
2117         }
2118 }
2119
2120 /**
2121  * Return the top type path entry, ie. in a path
2122  * (type).a.b returns the b.
2123  */
2124 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2125 {
2126         size_t len = ARR_LEN(path->path);
2127         assert(len > 0);
2128         return &path->path[len-1];
2129 }
2130
2131 /**
2132  * Enlarge the type path by an (empty) element.
2133  */
2134 static type_path_entry_t *append_to_type_path(type_path_t *path)
2135 {
2136         size_t len = ARR_LEN(path->path);
2137         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2138
2139         type_path_entry_t *result = & path->path[len];
2140         memset(result, 0, sizeof(result[0]));
2141         return result;
2142 }
2143
2144 /**
2145  * Descending into a sub-type. Enter the scope of the current
2146  * top_type.
2147  */
2148 static void descend_into_subtype(type_path_t *path)
2149 {
2150         type_t *orig_top_type = path->top_type;
2151         type_t *top_type      = skip_typeref(orig_top_type);
2152
2153         type_path_entry_t *top = append_to_type_path(path);
2154         top->type              = top_type;
2155
2156         if (is_type_compound(top_type)) {
2157                 declaration_t *declaration = top_type->compound.declaration;
2158                 declaration_t *entry       = declaration->scope.declarations;
2159                 top->v.compound_entry      = entry;
2160
2161                 if (entry != NULL) {
2162                         path->top_type         = entry->type;
2163                 } else {
2164                         path->top_type         = NULL;
2165                 }
2166         } else if (is_type_array(top_type)) {
2167                 top->v.index   = 0;
2168                 path->top_type = top_type->array.element_type;
2169         } else {
2170                 assert(!is_type_valid(top_type));
2171         }
2172 }
2173
2174 /**
2175  * Pop an entry from the given type path, ie. returning from
2176  * (type).a.b to (type).a
2177  */
2178 static void ascend_from_subtype(type_path_t *path)
2179 {
2180         type_path_entry_t *top = get_type_path_top(path);
2181
2182         path->top_type = top->type;
2183
2184         size_t len = ARR_LEN(path->path);
2185         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2186 }
2187
2188 /**
2189  * Pop entries from the given type path until the given
2190  * path level is reached.
2191  */
2192 static void ascend_to(type_path_t *path, size_t top_path_level)
2193 {
2194         size_t len = ARR_LEN(path->path);
2195
2196         while (len > top_path_level) {
2197                 ascend_from_subtype(path);
2198                 len = ARR_LEN(path->path);
2199         }
2200 }
2201
2202 static bool walk_designator(type_path_t *path, const designator_t *designator,
2203                             bool used_in_offsetof)
2204 {
2205         for( ; designator != NULL; designator = designator->next) {
2206                 type_path_entry_t *top       = get_type_path_top(path);
2207                 type_t            *orig_type = top->type;
2208
2209                 type_t *type = skip_typeref(orig_type);
2210
2211                 if (designator->symbol != NULL) {
2212                         symbol_t *symbol = designator->symbol;
2213                         if (!is_type_compound(type)) {
2214                                 if (is_type_valid(type)) {
2215                                         errorf(&designator->source_position,
2216                                                "'.%Y' designator used for non-compound type '%T'",
2217                                                symbol, orig_type);
2218                                 }
2219
2220                                 top->type             = type_error_type;
2221                                 top->v.compound_entry = NULL;
2222                                 orig_type             = type_error_type;
2223                         } else {
2224                                 declaration_t *declaration = type->compound.declaration;
2225                                 declaration_t *iter        = declaration->scope.declarations;
2226                                 for( ; iter != NULL; iter = iter->next) {
2227                                         if (iter->symbol == symbol) {
2228                                                 break;
2229                                         }
2230                                 }
2231                                 if (iter == NULL) {
2232                                         errorf(&designator->source_position,
2233                                                "'%T' has no member named '%Y'", orig_type, symbol);
2234                                         goto failed;
2235                                 }
2236                                 if (used_in_offsetof) {
2237                                         type_t *real_type = skip_typeref(iter->type);
2238                                         if (real_type->kind == TYPE_BITFIELD) {
2239                                                 errorf(&designator->source_position,
2240                                                        "offsetof designator '%Y' may not specify bitfield",
2241                                                        symbol);
2242                                                 goto failed;
2243                                         }
2244                                 }
2245
2246                                 top->type             = orig_type;
2247                                 top->v.compound_entry = iter;
2248                                 orig_type             = iter->type;
2249                         }
2250                 } else {
2251                         expression_t *array_index = designator->array_index;
2252                         assert(designator->array_index != NULL);
2253
2254                         if (!is_type_array(type)) {
2255                                 if (is_type_valid(type)) {
2256                                         errorf(&designator->source_position,
2257                                                "[%E] designator used for non-array type '%T'",
2258                                                array_index, orig_type);
2259                                 }
2260                                 goto failed;
2261                         }
2262
2263                         long index = fold_constant(array_index);
2264                         if (!used_in_offsetof) {
2265                                 if (index < 0) {
2266                                         errorf(&designator->source_position,
2267                                                "array index [%E] must be positive", array_index);
2268                                 } else if (type->array.size_constant) {
2269                                         long array_size = type->array.size;
2270                                         if (index >= array_size) {
2271                                                 errorf(&designator->source_position,
2272                                                        "designator [%E] (%d) exceeds array size %d",
2273                                                        array_index, index, array_size);
2274                                         }
2275                                 }
2276                         }
2277
2278                         top->type    = orig_type;
2279                         top->v.index = (size_t) index;
2280                         orig_type    = type->array.element_type;
2281                 }
2282                 path->top_type = orig_type;
2283
2284                 if (designator->next != NULL) {
2285                         descend_into_subtype(path);
2286                 }
2287         }
2288         return true;
2289
2290 failed:
2291         return false;
2292 }
2293
2294 static void advance_current_object(type_path_t *path, size_t top_path_level)
2295 {
2296         type_path_entry_t *top = get_type_path_top(path);
2297
2298         type_t *type = skip_typeref(top->type);
2299         if (is_type_union(type)) {
2300                 /* in unions only the first element is initialized */
2301                 top->v.compound_entry = NULL;
2302         } else if (is_type_struct(type)) {
2303                 declaration_t *entry = top->v.compound_entry;
2304
2305                 entry                 = entry->next;
2306                 top->v.compound_entry = entry;
2307                 if (entry != NULL) {
2308                         path->top_type = entry->type;
2309                         return;
2310                 }
2311         } else if (is_type_array(type)) {
2312                 assert(is_type_array(type));
2313
2314                 top->v.index++;
2315
2316                 if (!type->array.size_constant || top->v.index < type->array.size) {
2317                         return;
2318                 }
2319         } else {
2320                 assert(!is_type_valid(type));
2321                 return;
2322         }
2323
2324         /* we're past the last member of the current sub-aggregate, try if we
2325          * can ascend in the type hierarchy and continue with another subobject */
2326         size_t len = ARR_LEN(path->path);
2327
2328         if (len > top_path_level) {
2329                 ascend_from_subtype(path);
2330                 advance_current_object(path, top_path_level);
2331         } else {
2332                 path->top_type = NULL;
2333         }
2334 }
2335
2336 /**
2337  * skip until token is found.
2338  */
2339 static void skip_until(int type)
2340 {
2341         while (token.type != type) {
2342                 if (token.type == T_EOF)
2343                         return;
2344                 next_token();
2345         }
2346 }
2347
2348 /**
2349  * skip any {...} blocks until a closing bracket is reached.
2350  */
2351 static void skip_initializers(void)
2352 {
2353         if (token.type == '{')
2354                 next_token();
2355
2356         while (token.type != '}') {
2357                 if (token.type == T_EOF)
2358                         return;
2359                 if (token.type == '{') {
2360                         eat_block();
2361                         continue;
2362                 }
2363                 next_token();
2364         }
2365 }
2366
2367 static initializer_t *create_empty_initializer(void)
2368 {
2369         static initializer_t empty_initializer
2370                 = { .list = { { INITIALIZER_LIST }, 0 } };
2371         return &empty_initializer;
2372 }
2373
2374 /**
2375  * Parse a part of an initialiser for a struct or union,
2376  */
2377 static initializer_t *parse_sub_initializer(type_path_t *path,
2378                 type_t *outer_type, size_t top_path_level,
2379                 parse_initializer_env_t *env)
2380 {
2381         if (token.type == '}') {
2382                 /* empty initializer */
2383                 return create_empty_initializer();
2384         }
2385
2386         type_t *orig_type = path->top_type;
2387         type_t *type      = NULL;
2388
2389         if (orig_type == NULL) {
2390                 /* We are initializing an empty compound. */
2391         } else {
2392                 type = skip_typeref(orig_type);
2393         }
2394
2395         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2396
2397         while (true) {
2398                 designator_t *designator = NULL;
2399                 if (token.type == '.' || token.type == '[') {
2400                         designator = parse_designation();
2401                         goto finish_designator;
2402                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2403                         /* GNU-style designator ("identifier: value") */
2404                         designator = allocate_ast_zero(sizeof(designator[0]));
2405                         designator->source_position = token.source_position;
2406                         designator->symbol          = token.v.symbol;
2407                         eat(T_IDENTIFIER);
2408                         eat(':');
2409
2410 finish_designator:
2411                         /* reset path to toplevel, evaluate designator from there */
2412                         ascend_to(path, top_path_level);
2413                         if (!walk_designator(path, designator, false)) {
2414                                 /* can't continue after designation error */
2415                                 goto end_error;
2416                         }
2417
2418                         initializer_t *designator_initializer
2419                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2420                         designator_initializer->designator.designator = designator;
2421                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2422
2423                         orig_type = path->top_type;
2424                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2425                 }
2426
2427                 initializer_t *sub;
2428
2429                 if (token.type == '{') {
2430                         if (type != NULL && is_type_scalar(type)) {
2431                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2432                         } else {
2433                                 eat('{');
2434                                 if (type == NULL) {
2435                                         if (env->declaration != NULL) {
2436                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2437                                                        env->declaration->symbol);
2438                                         } else {
2439                                                 errorf(HERE, "extra brace group at end of initializer");
2440                                         }
2441                                 } else
2442                                         descend_into_subtype(path);
2443
2444                                 add_anchor_token('}');
2445                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2446                                                             env);
2447                                 rem_anchor_token('}');
2448
2449                                 if (type != NULL) {
2450                                         ascend_from_subtype(path);
2451                                         expect('}');
2452                                 } else {
2453                                         expect('}');
2454                                         goto error_parse_next;
2455                                 }
2456                         }
2457                 } else {
2458                         /* must be an expression */
2459                         expression_t *expression = parse_assignment_expression();
2460
2461                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2462                                 errorf(&expression->base.source_position,
2463                                        "Initialisation expression '%E' is not constant\n",
2464                                        expression);
2465                         }
2466
2467                         if (type == NULL) {
2468                                 /* we are already outside, ... */
2469                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2470                                 if (is_type_compound(outer_type_skip) &&
2471                                     !outer_type_skip->compound.declaration->init.complete) {
2472                                         goto error_parse_next;
2473                                 }
2474                                 goto error_excess;
2475                         }
2476
2477                         /* handle { "string" } special case */
2478                         if ((expression->kind == EXPR_STRING_LITERAL
2479                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2480                                         && outer_type != NULL) {
2481                                 sub = initializer_from_expression(outer_type, expression);
2482                                 if (sub != NULL) {
2483                                         if (token.type == ',') {
2484                                                 next_token();
2485                                         }
2486                                         if (token.type != '}') {
2487                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2488                                                                  orig_type);
2489                                         }
2490                                         /* TODO: eat , ... */
2491                                         return sub;
2492                                 }
2493                         }
2494
2495                         /* descend into subtypes until expression matches type */
2496                         while (true) {
2497                                 orig_type = path->top_type;
2498                                 type      = skip_typeref(orig_type);
2499
2500                                 sub = initializer_from_expression(orig_type, expression);
2501                                 if (sub != NULL) {
2502                                         break;
2503                                 }
2504                                 if (!is_type_valid(type)) {
2505                                         goto end_error;
2506                                 }
2507                                 if (is_type_scalar(type)) {
2508                                         errorf(&expression->base.source_position,
2509                                                         "expression '%E' doesn't match expected type '%T'",
2510                                                         expression, orig_type);
2511                                         goto end_error;
2512                                 }
2513
2514                                 descend_into_subtype(path);
2515                         }
2516                 }
2517
2518                 /* update largest index of top array */
2519                 const type_path_entry_t *first      = &path->path[0];
2520                 type_t                  *first_type = first->type;
2521                 first_type                          = skip_typeref(first_type);
2522                 if (is_type_array(first_type)) {
2523                         size_t index = first->v.index;
2524                         if (index > path->max_index)
2525                                 path->max_index = index;
2526                 }
2527
2528                 if (type != NULL) {
2529                         /* append to initializers list */
2530                         ARR_APP1(initializer_t*, initializers, sub);
2531                 } else {
2532 error_excess:
2533                         if (env->declaration != NULL)
2534                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2535                                  env->declaration->symbol);
2536                         else
2537                                 warningf(HERE, "excess elements in struct initializer");
2538                 }
2539
2540 error_parse_next:
2541                 if (token.type == '}') {
2542                         break;
2543                 }
2544                 expect(',');
2545                 if (token.type == '}') {
2546                         break;
2547                 }
2548
2549                 if (type != NULL) {
2550                         /* advance to the next declaration if we are not at the end */
2551                         advance_current_object(path, top_path_level);
2552                         orig_type = path->top_type;
2553                         if (orig_type != NULL)
2554                                 type = skip_typeref(orig_type);
2555                         else
2556                                 type = NULL;
2557                 }
2558         }
2559
2560         size_t len  = ARR_LEN(initializers);
2561         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2562         initializer_t *result = allocate_ast_zero(size);
2563         result->kind          = INITIALIZER_LIST;
2564         result->list.len      = len;
2565         memcpy(&result->list.initializers, initializers,
2566                len * sizeof(initializers[0]));
2567
2568         DEL_ARR_F(initializers);
2569         ascend_to(path, top_path_level+1);
2570
2571         return result;
2572
2573 end_error:
2574         skip_initializers();
2575         DEL_ARR_F(initializers);
2576         ascend_to(path, top_path_level+1);
2577         return NULL;
2578 }
2579
2580 /**
2581  * Parses an initializer. Parsers either a compound literal
2582  * (env->declaration == NULL) or an initializer of a declaration.
2583  */
2584 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2585 {
2586         type_t        *type   = skip_typeref(env->type);
2587         initializer_t *result = NULL;
2588         size_t         max_index;
2589
2590         if (is_type_scalar(type)) {
2591                 result = parse_scalar_initializer(type, env->must_be_constant);
2592         } else if (token.type == '{') {
2593                 eat('{');
2594
2595                 type_path_t path;
2596                 memset(&path, 0, sizeof(path));
2597                 path.top_type = env->type;
2598                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2599
2600                 descend_into_subtype(&path);
2601
2602                 add_anchor_token('}');
2603                 result = parse_sub_initializer(&path, env->type, 1, env);
2604                 rem_anchor_token('}');
2605
2606                 max_index = path.max_index;
2607                 DEL_ARR_F(path.path);
2608
2609                 expect('}');
2610         } else {
2611                 /* parse_scalar_initializer() also works in this case: we simply
2612                  * have an expression without {} around it */
2613                 result = parse_scalar_initializer(type, env->must_be_constant);
2614         }
2615
2616         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2617          * the array type size */
2618         if (is_type_array(type) && type->array.size_expression == NULL
2619                         && result != NULL) {
2620                 size_t size;
2621                 switch (result->kind) {
2622                 case INITIALIZER_LIST:
2623                         size = max_index + 1;
2624                         break;
2625
2626                 case INITIALIZER_STRING:
2627                         size = result->string.string.size;
2628                         break;
2629
2630                 case INITIALIZER_WIDE_STRING:
2631                         size = result->wide_string.string.size;
2632                         break;
2633
2634                 case INITIALIZER_DESIGNATOR:
2635                 case INITIALIZER_VALUE:
2636                         /* can happen for parse errors */
2637                         size = 0;
2638                         break;
2639
2640                 default:
2641                         internal_errorf(HERE, "invalid initializer type");
2642                 }
2643
2644                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2645                 cnst->base.type          = type_size_t;
2646                 cnst->conste.v.int_value = size;
2647
2648                 type_t *new_type = duplicate_type(type);
2649
2650                 new_type->array.size_expression = cnst;
2651                 new_type->array.size_constant   = true;
2652                 new_type->array.size            = size;
2653                 env->type = new_type;
2654         }
2655
2656         return result;
2657 end_error:
2658         return NULL;
2659 }
2660
2661 static declaration_t *append_declaration(declaration_t *declaration);
2662
2663 static declaration_t *parse_compound_type_specifier(bool is_struct)
2664 {
2665         gnu_attribute_t  *attributes = NULL;
2666         decl_modifiers_t  modifiers  = 0;
2667         if (is_struct) {
2668                 eat(T_struct);
2669         } else {
2670                 eat(T_union);
2671         }
2672
2673         symbol_t      *symbol      = NULL;
2674         declaration_t *declaration = NULL;
2675
2676         if (token.type == T___attribute__) {
2677                 modifiers |= parse_attributes(&attributes);
2678         }
2679
2680         if (token.type == T_IDENTIFIER) {
2681                 symbol = token.v.symbol;
2682                 next_token();
2683
2684                 namespace_t const namespc =
2685                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2686                 declaration = get_declaration(symbol, namespc);
2687                 if (declaration != NULL) {
2688                         if (declaration->parent_scope != scope &&
2689                             (token.type == '{' || token.type == ';')) {
2690                                 declaration = NULL;
2691                         } else if (declaration->init.complete &&
2692                                    token.type == '{') {
2693                                 assert(symbol != NULL);
2694                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2695                                        is_struct ? "struct" : "union", symbol,
2696                                        &declaration->source_position);
2697                                 declaration->scope.declarations = NULL;
2698                         }
2699                 }
2700         } else if (token.type != '{') {
2701                 if (is_struct) {
2702                         parse_error_expected("while parsing struct type specifier",
2703                                              T_IDENTIFIER, '{', NULL);
2704                 } else {
2705                         parse_error_expected("while parsing union type specifier",
2706                                              T_IDENTIFIER, '{', NULL);
2707                 }
2708
2709                 return NULL;
2710         }
2711
2712         if (declaration == NULL) {
2713                 declaration = allocate_declaration_zero();
2714                 declaration->namespc         =
2715                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2716                 declaration->source_position = token.source_position;
2717                 declaration->symbol          = symbol;
2718                 declaration->parent_scope    = scope;
2719                 if (symbol != NULL) {
2720                         environment_push(declaration);
2721                 }
2722                 append_declaration(declaration);
2723         }
2724
2725         if (token.type == '{') {
2726                 declaration->init.complete = true;
2727
2728                 parse_compound_type_entries(declaration);
2729                 modifiers |= parse_attributes(&attributes);
2730         }
2731
2732         declaration->modifiers |= modifiers;
2733         return declaration;
2734 }
2735
2736 static void parse_enum_entries(type_t *const enum_type)
2737 {
2738         eat('{');
2739
2740         if (token.type == '}') {
2741                 next_token();
2742                 errorf(HERE, "empty enum not allowed");
2743                 return;
2744         }
2745
2746         add_anchor_token('}');
2747         do {
2748                 if (token.type != T_IDENTIFIER) {
2749                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2750                         eat_block();
2751                         rem_anchor_token('}');
2752                         return;
2753                 }
2754
2755                 declaration_t *const entry = allocate_declaration_zero();
2756                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2757                 entry->type            = enum_type;
2758                 entry->symbol          = token.v.symbol;
2759                 entry->source_position = token.source_position;
2760                 next_token();
2761
2762                 if (token.type == '=') {
2763                         next_token();
2764                         expression_t *value = parse_constant_expression();
2765
2766                         value = create_implicit_cast(value, enum_type);
2767                         entry->init.enum_value = value;
2768
2769                         /* TODO semantic */
2770                 }
2771
2772                 record_declaration(entry, false);
2773
2774                 if (token.type != ',')
2775                         break;
2776                 next_token();
2777         } while (token.type != '}');
2778         rem_anchor_token('}');
2779
2780         expect('}');
2781
2782 end_error:
2783         ;
2784 }
2785
2786 static type_t *parse_enum_specifier(void)
2787 {
2788         gnu_attribute_t *attributes = NULL;
2789         declaration_t   *declaration;
2790         symbol_t        *symbol;
2791
2792         eat(T_enum);
2793         if (token.type == T_IDENTIFIER) {
2794                 symbol = token.v.symbol;
2795                 next_token();
2796
2797                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2798         } else if (token.type != '{') {
2799                 parse_error_expected("while parsing enum type specifier",
2800                                      T_IDENTIFIER, '{', NULL);
2801                 return NULL;
2802         } else {
2803                 declaration = NULL;
2804                 symbol      = NULL;
2805         }
2806
2807         if (declaration == NULL) {
2808                 declaration = allocate_declaration_zero();
2809                 declaration->namespc         = NAMESPACE_ENUM;
2810                 declaration->source_position = token.source_position;
2811                 declaration->symbol          = symbol;
2812                 declaration->parent_scope  = scope;
2813         }
2814
2815         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2816         type->enumt.declaration = declaration;
2817
2818         if (token.type == '{') {
2819                 if (declaration->init.complete) {
2820                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2821                 }
2822                 if (symbol != NULL) {
2823                         environment_push(declaration);
2824                 }
2825                 append_declaration(declaration);
2826                 declaration->init.complete = true;
2827
2828                 parse_enum_entries(type);
2829                 parse_attributes(&attributes);
2830         }
2831
2832         return type;
2833 }
2834
2835 /**
2836  * if a symbol is a typedef to another type, return true
2837  */
2838 static bool is_typedef_symbol(symbol_t *symbol)
2839 {
2840         const declaration_t *const declaration =
2841                 get_declaration(symbol, NAMESPACE_NORMAL);
2842         return
2843                 declaration != NULL &&
2844                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2845 }
2846
2847 static type_t *parse_typeof(void)
2848 {
2849         eat(T___typeof__);
2850
2851         type_t *type;
2852
2853         expect('(');
2854         add_anchor_token(')');
2855
2856         expression_t *expression  = NULL;
2857
2858         bool old_type_prop     = in_type_prop;
2859         bool old_gcc_extension = in_gcc_extension;
2860         in_type_prop           = true;
2861
2862         while (token.type == T___extension__) {
2863                 /* This can be a prefix to a typename or an expression. */
2864                 next_token();
2865                 in_gcc_extension = true;
2866         }
2867         switch (token.type) {
2868         case T_IDENTIFIER:
2869                 if (is_typedef_symbol(token.v.symbol)) {
2870                         type = parse_typename();
2871                 } else {
2872                         expression = parse_expression();
2873                         type       = expression->base.type;
2874                 }
2875                 break;
2876
2877         TYPENAME_START
2878                 type = parse_typename();
2879                 break;
2880
2881         default:
2882                 expression = parse_expression();
2883                 type       = expression->base.type;
2884                 break;
2885         }
2886         in_type_prop     = old_type_prop;
2887         in_gcc_extension = old_gcc_extension;
2888
2889         rem_anchor_token(')');
2890         expect(')');
2891
2892         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2893         typeof_type->typeoft.expression  = expression;
2894         typeof_type->typeoft.typeof_type = type;
2895
2896         return typeof_type;
2897 end_error:
2898         return NULL;
2899 }
2900
2901 typedef enum specifiers_t {
2902         SPECIFIER_SIGNED    = 1 << 0,
2903         SPECIFIER_UNSIGNED  = 1 << 1,
2904         SPECIFIER_LONG      = 1 << 2,
2905         SPECIFIER_INT       = 1 << 3,
2906         SPECIFIER_DOUBLE    = 1 << 4,
2907         SPECIFIER_CHAR      = 1 << 5,
2908         SPECIFIER_SHORT     = 1 << 6,
2909         SPECIFIER_LONG_LONG = 1 << 7,
2910         SPECIFIER_FLOAT     = 1 << 8,
2911         SPECIFIER_BOOL      = 1 << 9,
2912         SPECIFIER_VOID      = 1 << 10,
2913         SPECIFIER_INT8      = 1 << 11,
2914         SPECIFIER_INT16     = 1 << 12,
2915         SPECIFIER_INT32     = 1 << 13,
2916         SPECIFIER_INT64     = 1 << 14,
2917         SPECIFIER_INT128    = 1 << 15,
2918         SPECIFIER_COMPLEX   = 1 << 16,
2919         SPECIFIER_IMAGINARY = 1 << 17,
2920 } specifiers_t;
2921
2922 static type_t *create_builtin_type(symbol_t *const symbol,
2923                                    type_t *const real_type)
2924 {
2925         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2926         type->builtin.symbol    = symbol;
2927         type->builtin.real_type = real_type;
2928
2929         type_t *result = typehash_insert(type);
2930         if (type != result) {
2931                 free_type(type);
2932         }
2933
2934         return result;
2935 }
2936
2937 static type_t *get_typedef_type(symbol_t *symbol)
2938 {
2939         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2940         if (declaration == NULL ||
2941            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2942                 return NULL;
2943
2944         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2945         type->typedeft.declaration = declaration;
2946
2947         return type;
2948 }
2949
2950 /**
2951  * check for the allowed MS alignment values.
2952  */
2953 static bool check_alignment_value(long long intvalue)
2954 {
2955         if (intvalue < 1 || intvalue > 8192) {
2956                 errorf(HERE, "illegal alignment value");
2957                 return false;
2958         }
2959         unsigned v = (unsigned)intvalue;
2960         for (unsigned i = 1; i <= 8192; i += i) {
2961                 if (i == v)
2962                         return true;
2963         }
2964         errorf(HERE, "alignment must be power of two");
2965         return false;
2966 }
2967
2968 #define DET_MOD(name, tag) do { \
2969         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2970         *modifiers |= tag; \
2971 } while (0)
2972
2973 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2974 {
2975         decl_modifiers_t *modifiers = &specifiers->modifiers;
2976
2977         while (true) {
2978                 if (token.type == T_restrict) {
2979                         next_token();
2980                         DET_MOD(restrict, DM_RESTRICT);
2981                         goto end_loop;
2982                 } else if (token.type != T_IDENTIFIER)
2983                         break;
2984                 symbol_t *symbol = token.v.symbol;
2985                 if (symbol == sym_align) {
2986                         next_token();
2987                         expect('(');
2988                         if (token.type != T_INTEGER)
2989                                 goto end_error;
2990                         if (check_alignment_value(token.v.intvalue)) {
2991                                 if (specifiers->alignment != 0)
2992                                         warningf(HERE, "align used more than once");
2993                                 specifiers->alignment = (unsigned char)token.v.intvalue;
2994                         }
2995                         next_token();
2996                         expect(')');
2997                 } else if (symbol == sym_allocate) {
2998                         next_token();
2999                         expect('(');
3000                         if (token.type != T_IDENTIFIER)
3001                                 goto end_error;
3002                         (void)token.v.symbol;
3003                         expect(')');
3004                 } else if (symbol == sym_dllimport) {
3005                         next_token();
3006                         DET_MOD(dllimport, DM_DLLIMPORT);
3007                 } else if (symbol == sym_dllexport) {
3008                         next_token();
3009                         DET_MOD(dllexport, DM_DLLEXPORT);
3010                 } else if (symbol == sym_thread) {
3011                         next_token();
3012                         DET_MOD(thread, DM_THREAD);
3013                 } else if (symbol == sym_naked) {
3014                         next_token();
3015                         DET_MOD(naked, DM_NAKED);
3016                 } else if (symbol == sym_noinline) {
3017                         next_token();
3018                         DET_MOD(noinline, DM_NOINLINE);
3019                 } else if (symbol == sym_noreturn) {
3020                         next_token();
3021                         DET_MOD(noreturn, DM_NORETURN);
3022                 } else if (symbol == sym_nothrow) {
3023                         next_token();
3024                         DET_MOD(nothrow, DM_NOTHROW);
3025                 } else if (symbol == sym_novtable) {
3026                         next_token();
3027                         DET_MOD(novtable, DM_NOVTABLE);
3028                 } else if (symbol == sym_property) {
3029                         next_token();
3030                         expect('(');
3031                         for (;;) {
3032                                 bool is_get = false;
3033                                 if (token.type != T_IDENTIFIER)
3034                                         goto end_error;
3035                                 if (token.v.symbol == sym_get) {
3036                                         is_get = true;
3037                                 } else if (token.v.symbol == sym_put) {
3038                                 } else {
3039                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3040                                         goto end_error;
3041                                 }
3042                                 next_token();
3043                                 expect('=');
3044                                 if (token.type != T_IDENTIFIER)
3045                                         goto end_error;
3046                                 if (is_get) {
3047                                         if (specifiers->get_property_sym != NULL) {
3048                                                 errorf(HERE, "get property name already specified");
3049                                         } else {
3050                                                 specifiers->get_property_sym = token.v.symbol;
3051                                         }
3052                                 } else {
3053                                         if (specifiers->put_property_sym != NULL) {
3054                                                 errorf(HERE, "put property name already specified");
3055                                         } else {
3056                                                 specifiers->put_property_sym = token.v.symbol;
3057                                         }
3058                                 }
3059                                 next_token();
3060                                 if (token.type == ',') {
3061                                         next_token();
3062                                         continue;
3063                                 }
3064                                 break;
3065                         }
3066                         expect(')');
3067                 } else if (symbol == sym_selectany) {
3068                         next_token();
3069                         DET_MOD(selectany, DM_SELECTANY);
3070                 } else if (symbol == sym_uuid) {
3071                         next_token();
3072                         expect('(');
3073                         if (token.type != T_STRING_LITERAL)
3074                                 goto end_error;
3075                         next_token();
3076                         expect(')');
3077                 } else if (symbol == sym_deprecated) {
3078                         next_token();
3079                         if (specifiers->deprecated != 0)
3080                                 warningf(HERE, "deprecated used more than once");
3081                         specifiers->deprecated = 1;
3082                         if (token.type == '(') {
3083                                 next_token();
3084                                 if (token.type == T_STRING_LITERAL) {
3085                                         specifiers->deprecated_string = token.v.string.begin;
3086                                         next_token();
3087                                 } else {
3088                                         errorf(HERE, "string literal expected");
3089                                 }
3090                                 expect(')');
3091                         }
3092                 } else if (symbol == sym_noalias) {
3093                         next_token();
3094                         DET_MOD(noalias, DM_NOALIAS);
3095                 } else {
3096                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3097                         next_token();
3098                         if (token.type == '(')
3099                                 skip_until(')');
3100                 }
3101 end_loop:
3102                 if (token.type == ',')
3103                         next_token();
3104         }
3105 end_error:
3106         return;
3107 }
3108
3109 static declaration_t *create_error_declaration(symbol_t *symbol, storage_class_tag_t storage_class)
3110 {
3111         declaration_t *const decl    = allocate_declaration_zero();
3112         decl->source_position        = *HERE;
3113         decl->declared_storage_class = storage_class;
3114         decl->storage_class          =
3115                 storage_class != STORAGE_CLASS_NONE || scope == file_scope ?
3116                         storage_class : STORAGE_CLASS_AUTO;
3117         decl->symbol                 = symbol;
3118         decl->implicit               = true;
3119         record_declaration(decl, false);
3120         return decl;
3121 }
3122
3123 /**
3124  * Finish the construction of a struct type by calculating
3125  * its size, offsets, alignment.
3126  */
3127 static void finish_struct_type(compound_type_t *type) {
3128         if (type->declaration == NULL)
3129                 return;
3130         declaration_t *struct_decl = type->declaration;
3131         if (! struct_decl->init.complete)
3132                 return;
3133
3134         il_size_t      size           = 0;
3135         il_size_t      offset;
3136         il_alignment_t alignment      = 1;
3137         bool           need_pad       = false;
3138
3139         declaration_t *entry = struct_decl->scope.declarations;
3140         for (; entry != NULL; entry = entry->next) {
3141                 if (entry->namespc != NAMESPACE_NORMAL)
3142                         continue;
3143
3144                 type_t *m_type = skip_typeref(entry->type);
3145                 if (! is_type_valid(m_type)) {
3146                         /* simply ignore errors here */
3147                         continue;
3148                 }
3149                 il_alignment_t m_alignment = m_type->base.alignment;
3150                 if (m_alignment > alignment)
3151                         alignment = m_alignment;
3152
3153                 offset = (size + m_alignment - 1) & -m_alignment;
3154
3155                 if (offset > size)
3156                         need_pad = true;
3157                 entry->offset = offset;
3158                 size = offset + m_type->base.size;
3159         }
3160         if (type->base.alignment != 0) {
3161                 alignment = type->base.alignment;
3162         }
3163
3164         offset = (size + alignment - 1) & -alignment;
3165         if (offset > size)
3166                 need_pad = true;
3167
3168         if (warning.padded && need_pad) {
3169                 warningf(&struct_decl->source_position,
3170                         "'%#T' needs padding", type, struct_decl->symbol);
3171         }
3172         if (warning.packed && !need_pad) {
3173                 warningf(&struct_decl->source_position,
3174                         "superfluous packed attribute on '%#T'",
3175                         type, struct_decl->symbol);
3176         }
3177
3178         type->base.size      = offset;
3179         type->base.alignment = alignment;
3180 }
3181
3182 /**
3183  * Finish the construction of an union type by calculating
3184  * its size and alignment.
3185  */
3186 static void finish_union_type(compound_type_t *type) {
3187         if (type->declaration == NULL)
3188                 return;
3189         declaration_t *union_decl = type->declaration;
3190         if (! union_decl->init.complete)
3191                 return;
3192
3193         il_size_t      size      = 0;
3194         il_alignment_t alignment = 1;
3195
3196         declaration_t *entry = union_decl->scope.declarations;
3197         for (; entry != NULL; entry = entry->next) {
3198                 if (entry->namespc != NAMESPACE_NORMAL)
3199                         continue;
3200
3201                 type_t *m_type = skip_typeref(entry->type);
3202                 if (! is_type_valid(m_type))
3203                         continue;
3204
3205                 entry->offset = 0;
3206                 if (m_type->base.size > size)
3207                         size = m_type->base.size;
3208                 if (m_type->base.alignment > alignment)
3209                         alignment = m_type->base.alignment;
3210         }
3211         if (type->base.alignment != 0) {
3212                 alignment = type->base.alignment;
3213         }
3214         size = (size + alignment - 1) & -alignment;
3215         type->base.size      = size;
3216         type->base.alignment = alignment;
3217 }
3218
3219 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3220 {
3221         type_t            *type              = NULL;
3222         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3223         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3224         unsigned           type_specifiers   = 0;
3225         bool               newtype           = false;
3226         bool               saw_error         = false;
3227         bool               old_gcc_extension = in_gcc_extension;
3228
3229         specifiers->source_position = token.source_position;
3230
3231         while (true) {
3232                 specifiers->modifiers
3233                         |= parse_attributes(&specifiers->gnu_attributes);
3234                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3235                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3236
3237                 switch (token.type) {
3238
3239                 /* storage class */
3240 #define MATCH_STORAGE_CLASS(token, class)                                  \
3241                 case token:                                                        \
3242                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3243                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3244                         }                                                              \
3245                         specifiers->declared_storage_class = class;                    \
3246                         next_token();                                                  \
3247                         break;
3248
3249                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3250                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3251                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3252                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3253                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3254
3255                 case T__declspec:
3256                         next_token();
3257                         expect('(');
3258                         add_anchor_token(')');
3259                         parse_microsoft_extended_decl_modifier(specifiers);
3260                         rem_anchor_token(')');
3261                         expect(')');
3262                         break;
3263
3264                 case T___thread:
3265                         switch (specifiers->declared_storage_class) {
3266                         case STORAGE_CLASS_NONE:
3267                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3268                                 break;
3269
3270                         case STORAGE_CLASS_EXTERN:
3271                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3272                                 break;
3273
3274                         case STORAGE_CLASS_STATIC:
3275                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3276                                 break;
3277
3278                         default:
3279                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3280                                 break;
3281                         }
3282                         next_token();
3283                         break;
3284
3285                 /* type qualifiers */
3286 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3287                 case token:                                                     \
3288                         qualifiers |= qualifier;                                    \
3289                         next_token();                                               \
3290                         break
3291
3292                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3293                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3294                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3295                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3296                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3297                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3298                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3299                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3300
3301                 case T___extension__:
3302                         next_token();
3303                         in_gcc_extension = true;
3304                         break;
3305
3306                 /* type specifiers */
3307 #define MATCH_SPECIFIER(token, specifier, name)                         \
3308                 case token:                                                     \
3309                         next_token();                                               \
3310                         if (type_specifiers & specifier) {                           \
3311                                 errorf(HERE, "multiple " name " type specifiers given"); \
3312                         } else {                                                    \
3313                                 type_specifiers |= specifier;                           \
3314                         }                                                           \
3315                         break
3316
3317                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3318                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3319                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3320                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3321                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3322                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3323                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3324                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3325                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3326                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3327                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3328                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3329                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3330                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3331                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3332                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3333
3334                 case T__forceinline:
3335                         /* only in microsoft mode */
3336                         specifiers->modifiers |= DM_FORCEINLINE;
3337                         /* FALLTHROUGH */
3338
3339                 case T_inline:
3340                         next_token();
3341                         specifiers->is_inline = true;
3342                         break;
3343
3344                 case T_long:
3345                         next_token();
3346                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3347                                 errorf(HERE, "multiple type specifiers given");
3348                         } else if (type_specifiers & SPECIFIER_LONG) {
3349                                 type_specifiers |= SPECIFIER_LONG_LONG;
3350                         } else {
3351                                 type_specifiers |= SPECIFIER_LONG;
3352                         }
3353                         break;
3354
3355                 case T_struct: {
3356                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3357
3358                         type->compound.declaration = parse_compound_type_specifier(true);
3359                         finish_struct_type(&type->compound);
3360                         break;
3361                 }
3362                 case T_union: {
3363                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3364                         type->compound.declaration = parse_compound_type_specifier(false);
3365                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3366                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3367                         finish_union_type(&type->compound);
3368                         break;
3369                 }
3370                 case T_enum:
3371                         type = parse_enum_specifier();
3372                         break;
3373                 case T___typeof__:
3374                         type = parse_typeof();
3375                         break;
3376                 case T___builtin_va_list:
3377                         type = duplicate_type(type_valist);
3378                         next_token();
3379                         break;
3380
3381                 case T_IDENTIFIER: {
3382                         /* only parse identifier if we haven't found a type yet */
3383                         if (type != NULL || type_specifiers != 0) {
3384                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3385                                  * declaration, so it doesn't generate errors about expecting '(' or
3386                                  * '{' later on. */
3387                                 switch (look_ahead(1)->type) {
3388                                         STORAGE_CLASSES
3389                                         TYPE_SPECIFIERS
3390                                         case T_const:
3391                                         case T_restrict:
3392                                         case T_volatile:
3393                                         case T_inline:
3394                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3395                                         case T_IDENTIFIER:
3396                                         case '*':
3397                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3398                                                 next_token();
3399                                                 continue;
3400
3401                                         default:
3402                                                 goto finish_specifiers;
3403                                 }
3404                         }
3405
3406                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3407                         if (typedef_type == NULL) {
3408                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3409                                  * declaration, so it doesn't generate 'implicit int' followed by more
3410                                  * errors later on. */
3411                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3412                                 switch (la1_type) {
3413                                         DECLARATION_START
3414                                         case T_IDENTIFIER:
3415                                         case '*': {
3416                                                 errorf(HERE, "%K does not name a type", &token);
3417
3418                                                 declaration_t *const decl =
3419                                                         create_error_declaration(token.v.symbol, STORAGE_CLASS_TYPEDEF);
3420
3421                                                 type = allocate_type_zero(TYPE_TYPEDEF, HERE);
3422                                                 type->typedeft.declaration = decl;
3423
3424                                                 next_token();
3425                                                 saw_error = true;
3426                                                 if (la1_type == '*')
3427                                                         goto finish_specifiers;
3428                                                 continue;
3429                                         }
3430
3431                                         default:
3432                                                 goto finish_specifiers;
3433                                 }
3434                         }
3435
3436                         next_token();
3437                         type = typedef_type;
3438                         break;
3439                 }
3440
3441                 /* function specifier */
3442                 default:
3443                         goto finish_specifiers;
3444                 }
3445         }
3446
3447 finish_specifiers:
3448         in_gcc_extension = old_gcc_extension;
3449
3450         if (type == NULL || (saw_error && type_specifiers != 0)) {
3451                 atomic_type_kind_t atomic_type;
3452
3453                 /* match valid basic types */
3454                 switch(type_specifiers) {
3455                 case SPECIFIER_VOID:
3456                         atomic_type = ATOMIC_TYPE_VOID;
3457                         break;
3458                 case SPECIFIER_CHAR:
3459                         atomic_type = ATOMIC_TYPE_CHAR;
3460                         break;
3461                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3462                         atomic_type = ATOMIC_TYPE_SCHAR;
3463                         break;
3464                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3465                         atomic_type = ATOMIC_TYPE_UCHAR;
3466                         break;
3467                 case SPECIFIER_SHORT:
3468                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3469                 case SPECIFIER_SHORT | SPECIFIER_INT:
3470                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3471                         atomic_type = ATOMIC_TYPE_SHORT;
3472                         break;
3473                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3474                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3475                         atomic_type = ATOMIC_TYPE_USHORT;
3476                         break;
3477                 case SPECIFIER_INT:
3478                 case SPECIFIER_SIGNED:
3479                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3480                         atomic_type = ATOMIC_TYPE_INT;
3481                         break;
3482                 case SPECIFIER_UNSIGNED:
3483                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3484                         atomic_type = ATOMIC_TYPE_UINT;
3485                         break;
3486                 case SPECIFIER_LONG:
3487                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3488                 case SPECIFIER_LONG | SPECIFIER_INT:
3489                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3490                         atomic_type = ATOMIC_TYPE_LONG;
3491                         break;
3492                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3493                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3494                         atomic_type = ATOMIC_TYPE_ULONG;
3495                         break;
3496
3497                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3498                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3499                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3500                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3501                         | SPECIFIER_INT:
3502                         atomic_type = ATOMIC_TYPE_LONGLONG;
3503                         goto warn_about_long_long;
3504
3505                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3506                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3507                         | SPECIFIER_INT:
3508                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3509 warn_about_long_long:
3510                         if (warning.long_long) {
3511                                 warningf(&specifiers->source_position,
3512                                          "ISO C90 does not support 'long long'");
3513                         }
3514                         break;
3515
3516                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3517                         atomic_type = unsigned_int8_type_kind;
3518                         break;
3519
3520                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3521                         atomic_type = unsigned_int16_type_kind;
3522                         break;
3523
3524                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3525                         atomic_type = unsigned_int32_type_kind;
3526                         break;
3527
3528                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3529                         atomic_type = unsigned_int64_type_kind;
3530                         break;
3531
3532                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3533                         atomic_type = unsigned_int128_type_kind;
3534                         break;
3535
3536                 case SPECIFIER_INT8:
3537                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3538                         atomic_type = int8_type_kind;
3539                         break;
3540
3541                 case SPECIFIER_INT16:
3542                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3543                         atomic_type = int16_type_kind;
3544                         break;
3545
3546                 case SPECIFIER_INT32:
3547                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3548                         atomic_type = int32_type_kind;
3549                         break;
3550
3551                 case SPECIFIER_INT64:
3552                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3553                         atomic_type = int64_type_kind;
3554                         break;
3555
3556                 case SPECIFIER_INT128:
3557                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3558                         atomic_type = int128_type_kind;
3559                         break;
3560
3561                 case SPECIFIER_FLOAT:
3562                         atomic_type = ATOMIC_TYPE_FLOAT;
3563                         break;
3564                 case SPECIFIER_DOUBLE:
3565                         atomic_type = ATOMIC_TYPE_DOUBLE;
3566                         break;
3567                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3568                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3569                         break;
3570                 case SPECIFIER_BOOL:
3571                         atomic_type = ATOMIC_TYPE_BOOL;
3572                         break;
3573                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3574                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3575                         atomic_type = ATOMIC_TYPE_FLOAT;
3576                         break;
3577                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3578                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3579                         atomic_type = ATOMIC_TYPE_DOUBLE;
3580                         break;
3581                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3582                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3583                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3584                         break;
3585                 default:
3586                         /* invalid specifier combination, give an error message */
3587                         if (type_specifiers == 0) {
3588                                 if (saw_error)
3589                                         goto end_error;
3590
3591                                 if (!strict_mode) {
3592                                         if (warning.implicit_int) {
3593                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3594                                         }
3595                                         atomic_type = ATOMIC_TYPE_INT;
3596                                         break;
3597                                 } else {
3598                                         errorf(HERE, "no type specifiers given in declaration");
3599                                 }
3600                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3601                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3602                                 errorf(HERE, "signed and unsigned specifiers given");
3603                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3604                                 errorf(HERE, "only integer types can be signed or unsigned");
3605                         } else {
3606                                 errorf(HERE, "multiple datatypes in declaration");
3607                         }
3608                         goto end_error;
3609                 }
3610
3611                 if (type_specifiers & SPECIFIER_COMPLEX) {
3612                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3613                         type->complex.akind = atomic_type;
3614                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3615                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3616                         type->imaginary.akind = atomic_type;
3617                 } else {
3618                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3619                         type->atomic.akind = atomic_type;
3620                 }
3621                 newtype = true;
3622         } else if (type_specifiers != 0) {
3623                 errorf(HERE, "multiple datatypes in declaration");
3624         }
3625
3626         /* FIXME: check type qualifiers here */
3627
3628         type->base.qualifiers = qualifiers;
3629         type->base.modifiers  = modifiers;
3630
3631         type_t *result = typehash_insert(type);
3632         if (newtype && result != type) {
3633                 free_type(type);
3634         }
3635
3636         specifiers->type = result;
3637         return;
3638
3639 end_error:
3640         specifiers->type = type_error_type;
3641         return;
3642 }
3643
3644 static type_qualifiers_t parse_type_qualifiers(void)
3645 {
3646         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3647
3648         while (true) {
3649                 switch(token.type) {
3650                 /* type qualifiers */
3651                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3652                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3653                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3654                 /* microsoft extended type modifiers */
3655                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3656                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3657                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3658                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3659                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3660
3661                 default:
3662                         return qualifiers;
3663                 }
3664         }
3665 }
3666
3667 /**
3668  * Parses an K&R identifier list and return a list of declarations.
3669  *
3670  * @param last  points to the last declaration in the list
3671  * @return the list of declarations
3672  */
3673 static declaration_t *parse_identifier_list(declaration_t **last)
3674 {
3675         declaration_t *declarations     = NULL;
3676         declaration_t *last_declaration = NULL;
3677         do {
3678                 declaration_t *const declaration = allocate_declaration_zero();
3679                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3680                 declaration->source_position = token.source_position;
3681                 declaration->symbol          = token.v.symbol;
3682                 next_token();
3683
3684                 if (last_declaration != NULL) {
3685                         last_declaration->next = declaration;
3686                 } else {
3687                         declarations = declaration;
3688                 }
3689                 last_declaration = declaration;
3690
3691                 if (token.type != ',') {
3692                         break;
3693                 }
3694                 next_token();
3695         } while (token.type == T_IDENTIFIER);
3696
3697         *last = last_declaration;
3698         return declarations;
3699 }
3700
3701 static type_t *automatic_type_conversion(type_t *orig_type);
3702
3703 static void semantic_parameter(declaration_t *declaration)
3704 {
3705         /* TODO: improve error messages */
3706         source_position_t const* const pos = &declaration->source_position;
3707
3708         switch (declaration->declared_storage_class) {
3709                 case STORAGE_CLASS_TYPEDEF:
3710                         errorf(pos, "typedef not allowed in parameter list");
3711                         break;
3712
3713                 /* Allowed storage classes */
3714                 case STORAGE_CLASS_NONE:
3715                 case STORAGE_CLASS_REGISTER:
3716                         break;
3717
3718                 default:
3719                         errorf(pos, "parameter may only have none or register storage class");
3720                         break;
3721         }
3722
3723         type_t *const orig_type = declaration->type;
3724         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3725          * sugar.  Turn it into a pointer.
3726          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3727          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3728          */
3729         type_t *const type = automatic_type_conversion(orig_type);
3730         declaration->type = type;
3731
3732         if (is_type_incomplete(skip_typeref(type))) {
3733                 errorf(pos, "parameter '%#T' is of incomplete type",
3734                        orig_type, declaration->symbol);
3735         }
3736 }
3737
3738 static declaration_t *parse_parameter(void)
3739 {
3740         declaration_specifiers_t specifiers;
3741         memset(&specifiers, 0, sizeof(specifiers));
3742
3743         parse_declaration_specifiers(&specifiers);
3744
3745         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3746
3747         return declaration;
3748 }
3749
3750 /**
3751  * Parses a function type parameter list and return a list of declarations.
3752  *
3753  * @param last  point to the last element of the list
3754  * @return the parameter list
3755  */
3756 static declaration_t *parse_parameters(function_type_t *type, declaration_t **last)
3757 {
3758         declaration_t *declarations = NULL;
3759
3760         eat('(');
3761         add_anchor_token(')');
3762         int saved_comma_state = save_and_reset_anchor_state(',');
3763
3764         if (token.type == T_IDENTIFIER &&
3765             !is_typedef_symbol(token.v.symbol)) {
3766                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3767                 if (la1_type == ',' || la1_type == ')') {
3768                         type->kr_style_parameters = true;
3769                         declarations = parse_identifier_list(last);
3770                         goto parameters_finished;
3771                 }
3772         }
3773
3774         if (token.type == ')') {
3775                 type->unspecified_parameters = 1;
3776                 goto parameters_finished;
3777         }
3778
3779         declaration_t        *declaration;
3780         declaration_t        *last_declaration = NULL;
3781         function_parameter_t *parameter;
3782         function_parameter_t *last_parameter = NULL;
3783
3784         while (true) {
3785                 switch(token.type) {
3786                 case T_DOTDOTDOT:
3787                         next_token();
3788                         type->variadic = 1;
3789                         goto parameters_finished;
3790
3791                 case T_IDENTIFIER:
3792                 case T___extension__:
3793                 DECLARATION_START
3794                         declaration = parse_parameter();
3795
3796                         /* func(void) is not a parameter */
3797                         if (last_parameter == NULL
3798                                         && token.type == ')'
3799                                         && declaration->symbol == NULL
3800                                         && skip_typeref(declaration->type) == type_void) {
3801                                 goto parameters_finished;
3802                         }
3803                         semantic_parameter(declaration);
3804
3805                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3806                         memset(parameter, 0, sizeof(parameter[0]));
3807                         parameter->type = declaration->type;
3808
3809                         if (last_parameter != NULL) {
3810                                 last_declaration->next = declaration;
3811                                 last_parameter->next   = parameter;
3812                         } else {
3813                                 type->parameters = parameter;
3814                                 declarations     = declaration;
3815                         }
3816                         last_parameter   = parameter;
3817                         last_declaration = declaration;
3818                         break;
3819
3820                 default:
3821                         goto parameters_finished;
3822                 }
3823                 if (token.type != ',') {
3824                         goto parameters_finished;
3825                 }
3826                 next_token();
3827         }
3828
3829
3830 parameters_finished:
3831         rem_anchor_token(')');
3832         expect(')');
3833
3834         restore_anchor_state(',', saved_comma_state);
3835         *last = last_declaration;
3836         return declarations;
3837
3838 end_error:
3839         restore_anchor_state(',', saved_comma_state);
3840         *last = NULL;
3841         return NULL;
3842 }
3843
3844 typedef enum construct_type_kind_t {
3845         CONSTRUCT_INVALID,
3846         CONSTRUCT_POINTER,
3847         CONSTRUCT_FUNCTION,
3848         CONSTRUCT_ARRAY
3849 } construct_type_kind_t;
3850
3851 typedef struct construct_type_t construct_type_t;
3852 struct construct_type_t {
3853         construct_type_kind_t  kind;
3854         construct_type_t      *next;
3855 };
3856
3857 typedef struct parsed_pointer_t parsed_pointer_t;
3858 struct parsed_pointer_t {
3859         construct_type_t  construct_type;
3860         type_qualifiers_t type_qualifiers;
3861 };
3862
3863 typedef struct construct_function_type_t construct_function_type_t;
3864 struct construct_function_type_t {
3865         construct_type_t  construct_type;
3866         type_t           *function_type;
3867 };
3868
3869 typedef struct parsed_array_t parsed_array_t;
3870 struct parsed_array_t {
3871         construct_type_t  construct_type;
3872         type_qualifiers_t type_qualifiers;
3873         bool              is_static;
3874         bool              is_variable;
3875         expression_t     *size;
3876 };
3877
3878 typedef struct construct_base_type_t construct_base_type_t;
3879 struct construct_base_type_t {
3880         construct_type_t  construct_type;
3881         type_t           *type;
3882 };
3883
3884 static construct_type_t *parse_pointer_declarator(void)
3885 {
3886         eat('*');
3887
3888         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3889         memset(pointer, 0, sizeof(pointer[0]));
3890         pointer->construct_type.kind = CONSTRUCT_POINTER;
3891         pointer->type_qualifiers     = parse_type_qualifiers();
3892
3893         return (construct_type_t*) pointer;
3894 }
3895
3896 static construct_type_t *parse_array_declarator(void)
3897 {
3898         eat('[');
3899         add_anchor_token(']');
3900
3901         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3902         memset(array, 0, sizeof(array[0]));
3903         array->construct_type.kind = CONSTRUCT_ARRAY;
3904
3905         if (token.type == T_static) {
3906                 array->is_static = true;
3907                 next_token();
3908         }
3909
3910         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3911         if (type_qualifiers != 0) {
3912                 if (token.type == T_static) {
3913                         array->is_static = true;
3914                         next_token();
3915                 }
3916         }
3917         array->type_qualifiers = type_qualifiers;
3918
3919         if (token.type == '*' && look_ahead(1)->type == ']') {
3920                 array->is_variable = true;
3921                 next_token();
3922         } else if (token.type != ']') {
3923                 array->size = parse_assignment_expression();
3924         }
3925
3926         rem_anchor_token(']');
3927         expect(']');
3928
3929 end_error:
3930         return (construct_type_t*) array;
3931 }
3932
3933 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3934 {
3935         type_t *type;
3936         if (declaration != NULL) {
3937                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3938
3939                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3940
3941                 if (mask & (mask-1)) {
3942                         const char *first = NULL, *second = NULL;
3943
3944                         /* more than one calling convention set */
3945                         if (declaration->modifiers & DM_CDECL) {
3946                                 if (first == NULL)       first = "cdecl";
3947                                 else if (second == NULL) second = "cdecl";
3948                         }
3949                         if (declaration->modifiers & DM_STDCALL) {
3950                                 if (first == NULL)       first = "stdcall";
3951                                 else if (second == NULL) second = "stdcall";
3952                         }
3953                         if (declaration->modifiers & DM_FASTCALL) {
3954                                 if (first == NULL)       first = "fastcall";
3955                                 else if (second == NULL) second = "fastcall";
3956                         }
3957                         if (declaration->modifiers & DM_THISCALL) {
3958                                 if (first == NULL)       first = "thiscall";
3959                                 else if (second == NULL) second = "thiscall";
3960                         }
3961                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3962                 }
3963
3964                 if (declaration->modifiers & DM_CDECL)
3965                         type->function.calling_convention = CC_CDECL;
3966                 else if (declaration->modifiers & DM_STDCALL)
3967                         type->function.calling_convention = CC_STDCALL;
3968                 else if (declaration->modifiers & DM_FASTCALL)
3969                         type->function.calling_convention = CC_FASTCALL;
3970                 else if (declaration->modifiers & DM_THISCALL)
3971                         type->function.calling_convention = CC_THISCALL;
3972         } else {
3973                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3974         }
3975
3976         declaration_t *last;
3977         declaration_t *parameters = parse_parameters(&type->function, &last);
3978         if (declaration != NULL) {
3979                 declaration->scope.declarations     = parameters;
3980                 declaration->scope.last_declaration = last;
3981                 declaration->scope.is_parameter     = true;
3982         }
3983
3984         construct_function_type_t *construct_function_type =
3985                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3986         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3987         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3988         construct_function_type->function_type       = type;
3989
3990         return &construct_function_type->construct_type;
3991 }
3992
3993 static void fix_declaration_type(declaration_t *declaration)
3994 {
3995         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3996         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3997
3998         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3999                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4000
4001         if (declaration->type->base.modifiers == type_modifiers)
4002                 return;
4003
4004         type_t *copy = duplicate_type(declaration->type);
4005         copy->base.modifiers = type_modifiers;
4006
4007         type_t *result = typehash_insert(copy);
4008         if (result != copy) {
4009                 obstack_free(type_obst, copy);
4010         }
4011
4012         declaration->type = result;
4013 }
4014
4015 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
4016                 bool may_be_abstract)
4017 {
4018         /* construct a single linked list of construct_type_t's which describe
4019          * how to construct the final declarator type */
4020         construct_type_t *first = NULL;
4021         construct_type_t *last  = NULL;
4022         gnu_attribute_t  *attributes = NULL;
4023
4024         decl_modifiers_t modifiers = parse_attributes(&attributes);
4025
4026         /* pointers */
4027         while (token.type == '*') {
4028                 construct_type_t *type = parse_pointer_declarator();
4029
4030                 if (last == NULL) {
4031                         first = type;
4032                         last  = type;
4033                 } else {
4034                         last->next = type;
4035                         last       = type;
4036                 }
4037
4038                 /* TODO: find out if this is correct */
4039                 modifiers |= parse_attributes(&attributes);
4040         }
4041
4042         if (declaration != NULL)
4043                 declaration->modifiers |= modifiers;
4044
4045         construct_type_t *inner_types = NULL;
4046
4047         switch(token.type) {
4048         case T_IDENTIFIER:
4049                 if (declaration == NULL) {
4050                         errorf(HERE, "no identifier expected in typename");
4051                 } else {
4052                         declaration->symbol          = token.v.symbol;
4053                         declaration->source_position = token.source_position;
4054                 }
4055                 next_token();
4056                 break;
4057         case '(':
4058                 next_token();
4059                 add_anchor_token(')');
4060                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
4061                 if (inner_types != NULL) {
4062                         /* All later declarators only modify the return type, not declaration */
4063                         declaration = NULL;
4064                 }
4065                 rem_anchor_token(')');
4066                 expect(')');
4067                 break;
4068         default:
4069                 if (may_be_abstract)
4070                         break;
4071                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4072                 eat_until_anchor();
4073                 return NULL;
4074         }
4075
4076         construct_type_t *p = last;
4077
4078         while(true) {
4079                 construct_type_t *type;
4080                 switch(token.type) {
4081                 case '(':
4082                         type = parse_function_declarator(declaration);
4083                         break;
4084                 case '[':
4085                         type = parse_array_declarator();
4086                         break;
4087                 default:
4088                         goto declarator_finished;
4089                 }
4090
4091                 /* insert in the middle of the list (behind p) */
4092                 if (p != NULL) {
4093                         type->next = p->next;
4094                         p->next    = type;
4095                 } else {
4096                         type->next = first;
4097                         first      = type;
4098                 }
4099                 if (last == p) {
4100                         last = type;
4101                 }
4102         }
4103
4104 declarator_finished:
4105         /* append inner_types at the end of the list, we don't to set last anymore
4106          * as it's not needed anymore */
4107         if (last == NULL) {
4108                 assert(first == NULL);
4109                 first = inner_types;
4110         } else {
4111                 last->next = inner_types;
4112         }
4113
4114         return first;
4115 end_error:
4116         return NULL;
4117 }
4118
4119 static void parse_declaration_attributes(declaration_t *declaration)
4120 {
4121         gnu_attribute_t  *attributes = NULL;
4122         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4123
4124         if (declaration == NULL)
4125                 return;
4126
4127         declaration->modifiers |= modifiers;
4128         /* check if we have these stupid mode attributes... */
4129         type_t *old_type = declaration->type;
4130         if (old_type == NULL)
4131                 return;
4132
4133         gnu_attribute_t *attribute = attributes;
4134         for ( ; attribute != NULL; attribute = attribute->next) {
4135                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4136                         continue;
4137
4138                 atomic_type_kind_t  akind = attribute->u.akind;
4139                 if (!is_type_signed(old_type)) {
4140                         switch(akind) {
4141                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4142                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4143                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4144                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4145                         default:
4146                                 panic("invalid akind in mode attribute");
4147                         }
4148                 }
4149                 declaration->type
4150                         = make_atomic_type(akind, old_type->base.qualifiers);
4151         }
4152 }
4153
4154 static type_t *construct_declarator_type(construct_type_t *construct_list,
4155                                          type_t *type)
4156 {
4157         construct_type_t *iter = construct_list;
4158         for( ; iter != NULL; iter = iter->next) {
4159                 switch(iter->kind) {
4160                 case CONSTRUCT_INVALID:
4161                         internal_errorf(HERE, "invalid type construction found");
4162                 case CONSTRUCT_FUNCTION: {
4163                         construct_function_type_t *construct_function_type
4164                                 = (construct_function_type_t*) iter;
4165
4166                         type_t *function_type = construct_function_type->function_type;
4167
4168                         function_type->function.return_type = type;
4169
4170                         type_t *skipped_return_type = skip_typeref(type);
4171                         /* Â§6.7.5.3(1) */
4172                         if (is_type_function(skipped_return_type)) {
4173                                 errorf(HERE, "function returning function is not allowed");
4174                         } else if (is_type_array(skipped_return_type)) {
4175                                 errorf(HERE, "function returning array is not allowed");
4176                         } else {
4177                                 if (skipped_return_type->base.qualifiers != 0) {
4178                                         warningf(HERE,
4179                                                 "type qualifiers in return type of function type are meaningless");
4180                                 }
4181                         }
4182
4183                         type = function_type;
4184                         break;
4185                 }
4186
4187                 case CONSTRUCT_POINTER: {
4188                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4189                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
4190                         pointer_type->pointer.points_to  = type;
4191                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
4192
4193                         type = pointer_type;
4194                         break;
4195                 }
4196
4197                 case CONSTRUCT_ARRAY: {
4198                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4199                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
4200
4201                         expression_t *size_expression = parsed_array->size;
4202                         if (size_expression != NULL) {
4203                                 size_expression
4204                                         = create_implicit_cast(size_expression, type_size_t);
4205                         }
4206
4207                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4208                         array_type->array.element_type    = type;
4209                         array_type->array.is_static       = parsed_array->is_static;
4210                         array_type->array.is_variable     = parsed_array->is_variable;
4211                         array_type->array.size_expression = size_expression;
4212
4213                         if (size_expression != NULL) {
4214                                 if (is_constant_expression(size_expression)) {
4215                                         array_type->array.size_constant = true;
4216                                         array_type->array.size
4217                                                 = fold_constant(size_expression);
4218                                 } else {
4219                                         array_type->array.is_vla = true;
4220                                 }
4221                         }
4222
4223                         type_t *skipped_type = skip_typeref(type);
4224                         /* Â§6.7.5.2(1) */
4225                         if (is_type_incomplete(skipped_type)) {
4226                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4227                         } else if (is_type_function(skipped_type)) {
4228                                 errorf(HERE, "array of functions is not allowed");
4229                         }
4230                         type = array_type;
4231                         break;
4232                 }
4233                 }
4234
4235                 type_t *hashed_type = typehash_insert(type);
4236                 if (hashed_type != type) {
4237                         /* the function type was constructed earlier freeing it here will
4238                          * destroy other types... */
4239                         if (iter->kind != CONSTRUCT_FUNCTION) {
4240                                 free_type(type);
4241                         }
4242                         type = hashed_type;
4243                 }
4244         }
4245
4246         return type;
4247 }
4248
4249 static declaration_t *parse_declarator(
4250                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
4251 {
4252         declaration_t *const declaration    = allocate_declaration_zero();
4253         declaration->source_position        = specifiers->source_position;
4254         declaration->declared_storage_class = specifiers->declared_storage_class;
4255         declaration->modifiers              = specifiers->modifiers;
4256         declaration->deprecated_string      = specifiers->deprecated_string;
4257         declaration->get_property_sym       = specifiers->get_property_sym;
4258         declaration->put_property_sym       = specifiers->put_property_sym;
4259         declaration->is_inline              = specifiers->is_inline;
4260
4261         declaration->storage_class          = specifiers->declared_storage_class;
4262         if (declaration->storage_class == STORAGE_CLASS_NONE &&
4263             scope != file_scope) {
4264                 declaration->storage_class = STORAGE_CLASS_AUTO;
4265         }
4266
4267         if (specifiers->alignment != 0) {
4268                 /* TODO: add checks here */
4269                 declaration->alignment = specifiers->alignment;
4270         }
4271
4272         construct_type_t *construct_type
4273                 = parse_inner_declarator(declaration, may_be_abstract);
4274         type_t *const type = specifiers->type;
4275         declaration->type = construct_declarator_type(construct_type, type);
4276
4277         parse_declaration_attributes(declaration);
4278
4279         fix_declaration_type(declaration);
4280
4281         if (construct_type != NULL) {
4282                 obstack_free(&temp_obst, construct_type);
4283         }
4284
4285         return declaration;
4286 }
4287
4288 static type_t *parse_abstract_declarator(type_t *base_type)
4289 {
4290         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4291
4292         type_t *result = construct_declarator_type(construct_type, base_type);
4293         if (construct_type != NULL) {
4294                 obstack_free(&temp_obst, construct_type);
4295         }
4296
4297         return result;
4298 }
4299
4300 static declaration_t *append_declaration(declaration_t* const declaration)
4301 {
4302         if (last_declaration != NULL) {
4303                 last_declaration->next = declaration;
4304         } else {
4305                 scope->declarations = declaration;
4306         }
4307         last_declaration = declaration;
4308         return declaration;
4309 }
4310
4311 /**
4312  * Check if the declaration of main is suspicious.  main should be a
4313  * function with external linkage, returning int, taking either zero
4314  * arguments, two, or three arguments of appropriate types, ie.
4315  *
4316  * int main([ int argc, char **argv [, char **env ] ]).
4317  *
4318  * @param decl    the declaration to check
4319  * @param type    the function type of the declaration
4320  */
4321 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4322 {
4323         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4324                 warningf(&decl->source_position,
4325                          "'main' is normally a non-static function");
4326         }
4327         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4328                 warningf(&decl->source_position,
4329                          "return type of 'main' should be 'int', but is '%T'",
4330                          func_type->return_type);
4331         }
4332         const function_parameter_t *parm = func_type->parameters;
4333         if (parm != NULL) {
4334                 type_t *const first_type = parm->type;
4335                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4336                         warningf(&decl->source_position,
4337                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4338                 }
4339                 parm = parm->next;
4340                 if (parm != NULL) {
4341                         type_t *const second_type = parm->type;
4342                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4343                                 warningf(&decl->source_position,
4344                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4345                         }
4346                         parm = parm->next;
4347                         if (parm != NULL) {
4348                                 type_t *const third_type = parm->type;
4349                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4350                                         warningf(&decl->source_position,
4351                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4352                                 }
4353                                 parm = parm->next;
4354                                 if (parm != NULL)
4355                                         goto warn_arg_count;
4356                         }
4357                 } else {
4358 warn_arg_count:
4359                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4360                 }
4361         }
4362 }
4363
4364 /**
4365  * Check if a symbol is the equal to "main".
4366  */
4367 static bool is_sym_main(const symbol_t *const sym)
4368 {
4369         return strcmp(sym->string, "main") == 0;
4370 }
4371
4372 static declaration_t *record_declaration(
4373         declaration_t *const declaration,
4374         const bool is_definition)
4375 {
4376         const symbol_t *const symbol  = declaration->symbol;
4377         const namespace_t     namespc = (namespace_t)declaration->namespc;
4378
4379         assert(symbol != NULL);
4380         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4381
4382         type_t *const orig_type = declaration->type;
4383         type_t *const type      = skip_typeref(orig_type);
4384         if (is_type_function(type) &&
4385                         type->function.unspecified_parameters &&
4386                         warning.strict_prototypes &&
4387                         previous_declaration == NULL) {
4388                 warningf(&declaration->source_position,
4389                          "function declaration '%#T' is not a prototype",
4390                          orig_type, symbol);
4391         }
4392
4393         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4394                 check_type_of_main(declaration, &type->function);
4395         }
4396
4397         if (warning.nested_externs                             &&
4398             declaration->storage_class == STORAGE_CLASS_EXTERN &&
4399             scope                      != file_scope) {
4400                 warningf(&declaration->source_position,
4401                          "nested extern declaration of '%#T'", declaration->type, symbol);
4402         }
4403
4404         assert(declaration != previous_declaration);
4405         if (previous_declaration != NULL &&
4406             previous_declaration->parent_scope->is_parameter &&
4407             scope->depth == previous_declaration->parent_scope->depth + 1) {
4408                 errorf(&declaration->source_position,
4409                         "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4410                         orig_type, symbol, previous_declaration->type, symbol,
4411                         &previous_declaration->source_position);
4412                 goto finish;
4413         }
4414         if (previous_declaration != NULL &&
4415             previous_declaration->parent_scope == scope) {
4416                 /* can happen for K&R style declarations */
4417                 if (previous_declaration->type == NULL) {
4418                         previous_declaration->type = declaration->type;
4419                 }
4420
4421                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4422                 if (!types_compatible(type, prev_type)) {
4423                         errorf(&declaration->source_position,
4424                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4425                                    orig_type, symbol, previous_declaration->type, symbol,
4426                                    &previous_declaration->source_position);
4427                 } else {
4428                         unsigned old_storage_class = previous_declaration->storage_class;
4429                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4430                                 errorf(&declaration->source_position,
4431                                            "redeclaration of enum entry '%Y' (declared %P)",
4432                                            symbol, &previous_declaration->source_position);
4433                                 return previous_declaration;
4434                         }
4435
4436                         if (warning.redundant_decls                                     &&
4437                             is_definition                                               &&
4438                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4439                             !(previous_declaration->modifiers & DM_USED)                &&
4440                             !previous_declaration->used) {
4441                                 warningf(&previous_declaration->source_position,
4442                                          "unnecessary static forward declaration for '%#T'",
4443                                          previous_declaration->type, symbol);
4444                         }
4445
4446                         unsigned new_storage_class = declaration->storage_class;
4447
4448                         if (is_type_incomplete(prev_type)) {
4449                                 previous_declaration->type = type;
4450                                 prev_type                  = type;
4451                         }
4452
4453                         /* pretend no storage class means extern for function
4454                          * declarations (except if the previous declaration is neither
4455                          * none nor extern) */
4456                         if (is_type_function(type)) {
4457                                 if (prev_type->function.unspecified_parameters) {
4458                                         previous_declaration->type = type;
4459                                         prev_type                  = type;
4460                                 }
4461
4462                                 switch (old_storage_class) {
4463                                 case STORAGE_CLASS_NONE:
4464                                         old_storage_class = STORAGE_CLASS_EXTERN;
4465                                         /* FALLTHROUGH */
4466
4467                                 case STORAGE_CLASS_EXTERN:
4468                                         if (is_definition) {
4469                                                 if (warning.missing_prototypes &&
4470                                                     prev_type->function.unspecified_parameters &&
4471                                                     !is_sym_main(symbol)) {
4472                                                         warningf(&declaration->source_position,
4473                                                                          "no previous prototype for '%#T'",
4474                                                                          orig_type, symbol);
4475                                                 }
4476                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4477                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4478                                         }
4479                                         break;
4480
4481                                 default:
4482                                         break;
4483                                 }
4484                         }
4485
4486                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4487                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4488 warn_redundant_declaration:
4489                                 if (!is_definition           &&
4490                                     warning.redundant_decls  &&
4491                                     is_type_valid(prev_type) &&
4492                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4493                                         warningf(&declaration->source_position,
4494                                                  "redundant declaration for '%Y' (declared %P)",
4495                                                  symbol, &previous_declaration->source_position);
4496                                 }
4497                         } else if (current_function == NULL) {
4498                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4499                                     new_storage_class == STORAGE_CLASS_STATIC) {
4500                                         errorf(&declaration->source_position,
4501                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4502                                                symbol, &previous_declaration->source_position);
4503                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4504                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4505                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4506                                 } else {
4507                                         goto warn_redundant_declaration;
4508                                 }
4509                         } else if (is_type_valid(prev_type)) {
4510                                 if (old_storage_class == new_storage_class) {
4511                                         errorf(&declaration->source_position,
4512                                                "redeclaration of '%Y' (declared %P)",
4513                                                symbol, &previous_declaration->source_position);
4514                                 } else {
4515                                         errorf(&declaration->source_position,
4516                                                "redeclaration of '%Y' with different linkage (declared %P)",
4517                                                symbol, &previous_declaration->source_position);
4518                                 }
4519                         }
4520                 }
4521
4522                 previous_declaration->modifiers |= declaration->modifiers;
4523                 previous_declaration->is_inline |= declaration->is_inline;
4524                 return previous_declaration;
4525         } else if (is_type_function(type)) {
4526                 if (is_definition &&
4527                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4528                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4529                                 warningf(&declaration->source_position,
4530                                          "no previous prototype for '%#T'", orig_type, symbol);
4531                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4532                                 warningf(&declaration->source_position,
4533                                          "no previous declaration for '%#T'", orig_type,
4534                                          symbol);
4535                         }
4536                 }
4537         } else {
4538                 if (warning.missing_declarations &&
4539                     scope == file_scope && (
4540                       declaration->storage_class == STORAGE_CLASS_NONE ||
4541                       declaration->storage_class == STORAGE_CLASS_THREAD
4542                     )) {
4543                         warningf(&declaration->source_position,
4544                                  "no previous declaration for '%#T'", orig_type, symbol);
4545                 }
4546         }
4547 finish:
4548         assert(declaration->parent_scope == NULL);
4549         assert(scope != NULL);
4550
4551         declaration->parent_scope = scope;
4552
4553         environment_push(declaration);
4554         return append_declaration(declaration);
4555 }
4556
4557 static void parser_error_multiple_definition(declaration_t *declaration,
4558                 const source_position_t *source_position)
4559 {
4560         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4561                declaration->symbol, &declaration->source_position);
4562 }
4563
4564 static bool is_declaration_specifier(const token_t *token,
4565                                      bool only_specifiers_qualifiers)
4566 {
4567         switch (token->type) {
4568                 TYPE_SPECIFIERS
4569                 TYPE_QUALIFIERS
4570                         return true;
4571                 case T_IDENTIFIER:
4572                         return is_typedef_symbol(token->v.symbol);
4573
4574                 case T___extension__:
4575                 STORAGE_CLASSES
4576                         return !only_specifiers_qualifiers;
4577
4578                 default:
4579                         return false;
4580         }
4581 }
4582
4583 static void parse_init_declarator_rest(declaration_t *declaration)
4584 {
4585         eat('=');
4586
4587         type_t *orig_type = declaration->type;
4588         type_t *type      = skip_typeref(orig_type);
4589
4590         if (declaration->init.initializer != NULL) {
4591                 parser_error_multiple_definition(declaration, HERE);
4592         }
4593
4594         bool must_be_constant = false;
4595         if (declaration->storage_class == STORAGE_CLASS_STATIC        ||
4596             declaration->storage_class == STORAGE_CLASS_THREAD_STATIC ||
4597             declaration->parent_scope  == file_scope) {
4598                 must_be_constant = true;
4599         }
4600
4601         if (is_type_function(type)) {
4602                 errorf(&declaration->source_position,
4603                        "function '%#T' is initialized like a variable",
4604                        orig_type, declaration->symbol);
4605                 orig_type = type_error_type;
4606         }
4607
4608         parse_initializer_env_t env;
4609         env.type             = orig_type;
4610         env.must_be_constant = must_be_constant;
4611         env.declaration      = current_init_decl = declaration;
4612
4613         initializer_t *initializer = parse_initializer(&env);
4614         current_init_decl = NULL;
4615
4616         if (!is_type_function(type)) {
4617                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
4618                  * the array type size */
4619                 declaration->type             = env.type;
4620                 declaration->init.initializer = initializer;
4621         }
4622 }
4623
4624 /* parse rest of a declaration without any declarator */
4625 static void parse_anonymous_declaration_rest(
4626                 const declaration_specifiers_t *specifiers)
4627 {
4628         eat(';');
4629
4630         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) {
4631                 warningf(&specifiers->source_position,
4632                          "useless storage class in empty declaration");
4633         }
4634
4635         type_t *type = specifiers->type;
4636         switch (type->kind) {
4637                 case TYPE_COMPOUND_STRUCT:
4638                 case TYPE_COMPOUND_UNION: {
4639                         if (type->compound.declaration->symbol == NULL) {
4640                                 warningf(&specifiers->source_position,
4641                                          "unnamed struct/union that defines no instances");
4642                         }
4643                         break;
4644                 }
4645
4646                 case TYPE_ENUM:
4647                         break;
4648
4649                 default:
4650                         warningf(&specifiers->source_position, "empty declaration");
4651                         break;
4652         }
4653
4654 #ifdef RECORD_EMPTY_DECLARATIONS
4655         declaration_t *const declaration    = allocate_declaration_zero();
4656         declaration->type                   = specifiers->type;
4657         declaration->declared_storage_class = specifiers->declared_storage_class;
4658         declaration->source_position        = specifiers->source_position;
4659         declaration->modifiers              = specifiers->modifiers;
4660         declaration->storage_class          = STORAGE_CLASS_NONE;
4661
4662         append_declaration(declaration);
4663 #endif
4664 }
4665
4666 static void parse_declaration_rest(declaration_t *ndeclaration,
4667                 const declaration_specifiers_t *specifiers,
4668                 parsed_declaration_func finished_declaration)
4669 {
4670         add_anchor_token(';');
4671         add_anchor_token(',');
4672         while(true) {
4673                 declaration_t *declaration =
4674                         finished_declaration(ndeclaration, token.type == '=');
4675
4676                 type_t *orig_type = declaration->type;
4677                 type_t *type      = skip_typeref(orig_type);
4678
4679                 if (type->kind != TYPE_FUNCTION &&
4680                     declaration->is_inline &&
4681                     is_type_valid(type)) {
4682                         warningf(&declaration->source_position,
4683                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4684                 }
4685
4686                 if (token.type == '=') {
4687                         parse_init_declarator_rest(declaration);
4688                 }
4689
4690                 if (token.type != ',')
4691                         break;
4692                 eat(',');
4693
4694                 add_anchor_token('=');
4695                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4696                 rem_anchor_token('=');
4697         }
4698         expect(';');
4699
4700 end_error:
4701         rem_anchor_token(';');
4702         rem_anchor_token(',');
4703 }
4704
4705 static declaration_t *finished_kr_declaration(declaration_t *declaration, bool is_definition)
4706 {
4707         symbol_t *symbol  = declaration->symbol;
4708         if (symbol == NULL) {
4709                 errorf(HERE, "anonymous declaration not valid as function parameter");
4710                 return declaration;
4711         }
4712         namespace_t namespc = (namespace_t) declaration->namespc;
4713         if (namespc != NAMESPACE_NORMAL) {
4714                 return record_declaration(declaration, false);
4715         }
4716
4717         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4718         if (previous_declaration == NULL ||
4719                         previous_declaration->parent_scope != scope) {
4720                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4721                        symbol);
4722                 return declaration;
4723         }
4724
4725         if (is_definition) {
4726                 errorf(HERE, "parameter %Y is initialised", declaration->symbol);
4727         }
4728
4729         if (previous_declaration->type == NULL) {
4730                 previous_declaration->type          = declaration->type;
4731                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4732                 previous_declaration->storage_class = declaration->storage_class;
4733                 previous_declaration->parent_scope  = scope;
4734                 return previous_declaration;
4735         } else {
4736                 return record_declaration(declaration, false);
4737         }
4738 }
4739
4740 static void parse_declaration(parsed_declaration_func finished_declaration)
4741 {
4742         declaration_specifiers_t specifiers;
4743         memset(&specifiers, 0, sizeof(specifiers));
4744
4745         add_anchor_token(';');
4746         parse_declaration_specifiers(&specifiers);
4747         rem_anchor_token(';');
4748
4749         if (token.type == ';') {
4750                 parse_anonymous_declaration_rest(&specifiers);
4751         } else {
4752                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4753                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4754         }
4755 }
4756
4757 static type_t *get_default_promoted_type(type_t *orig_type)
4758 {
4759         type_t *result = orig_type;
4760
4761         type_t *type = skip_typeref(orig_type);
4762         if (is_type_integer(type)) {
4763                 result = promote_integer(type);
4764         } else if (type == type_float) {
4765                 result = type_double;
4766         }
4767
4768         return result;
4769 }
4770
4771 static void parse_kr_declaration_list(declaration_t *declaration)
4772 {
4773         type_t *type = skip_typeref(declaration->type);
4774         if (!is_type_function(type))
4775                 return;
4776
4777         if (!type->function.kr_style_parameters)
4778                 return;
4779
4780         add_anchor_token('{');
4781
4782         /* push function parameters */
4783         size_t const top = environment_top();
4784         scope_push(&declaration->scope);
4785
4786         declaration_t *parameter = declaration->scope.declarations;
4787         for ( ; parameter != NULL; parameter = parameter->next) {
4788                 assert(parameter->parent_scope == NULL);
4789                 parameter->parent_scope = scope;
4790                 environment_push(parameter);
4791         }
4792
4793         /* parse declaration list */
4794         while (is_declaration_specifier(&token, false)) {
4795                 parse_declaration(finished_kr_declaration);
4796         }
4797
4798         /* pop function parameters */
4799         assert(scope == &declaration->scope);
4800         scope_pop();
4801         environment_pop_to(top);
4802
4803         /* update function type */
4804         type_t *new_type = duplicate_type(type);
4805
4806         function_parameter_t *parameters     = NULL;
4807         function_parameter_t *last_parameter = NULL;
4808
4809         declaration_t *parameter_declaration = declaration->scope.declarations;
4810         for( ; parameter_declaration != NULL;
4811                         parameter_declaration = parameter_declaration->next) {
4812                 type_t *parameter_type = parameter_declaration->type;
4813                 if (parameter_type == NULL) {
4814                         if (strict_mode) {
4815                                 errorf(HERE, "no type specified for function parameter '%Y'",
4816                                        parameter_declaration->symbol);
4817                         } else {
4818                                 if (warning.implicit_int) {
4819                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4820                                                 parameter_declaration->symbol);
4821                                 }
4822                                 parameter_type              = type_int;
4823                                 parameter_declaration->type = parameter_type;
4824                         }
4825                 }
4826
4827                 semantic_parameter(parameter_declaration);
4828                 parameter_type = parameter_declaration->type;
4829
4830                 /*
4831                  * we need the default promoted types for the function type
4832                  */
4833                 parameter_type = get_default_promoted_type(parameter_type);
4834
4835                 function_parameter_t *function_parameter
4836                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4837                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4838
4839                 function_parameter->type = parameter_type;
4840                 if (last_parameter != NULL) {
4841                         last_parameter->next = function_parameter;
4842                 } else {
4843                         parameters = function_parameter;
4844                 }
4845                 last_parameter = function_parameter;
4846         }
4847
4848         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4849          * prototype */
4850         new_type->function.parameters             = parameters;
4851         new_type->function.unspecified_parameters = true;
4852
4853         type = typehash_insert(new_type);
4854         if (type != new_type) {
4855                 obstack_free(type_obst, new_type);
4856         }
4857
4858         declaration->type = type;
4859
4860         rem_anchor_token('{');
4861 }
4862
4863 static bool first_err = true;
4864
4865 /**
4866  * When called with first_err set, prints the name of the current function,
4867  * else does noting.
4868  */
4869 static void print_in_function(void)
4870 {
4871         if (first_err) {
4872                 first_err = false;
4873                 diagnosticf("%s: In function '%Y':\n",
4874                         current_function->source_position.input_name,
4875                         current_function->symbol);
4876         }
4877 }
4878
4879 /**
4880  * Check if all labels are defined in the current function.
4881  * Check if all labels are used in the current function.
4882  */
4883 static void check_labels(void)
4884 {
4885         for (const goto_statement_t *goto_statement = goto_first;
4886             goto_statement != NULL;
4887             goto_statement = goto_statement->next) {
4888                 /* skip computed gotos */
4889                 if (goto_statement->expression != NULL)
4890                         continue;
4891
4892                 declaration_t *label = goto_statement->label;
4893
4894                 label->used = true;
4895                 if (label->source_position.input_name == NULL) {
4896                         print_in_function();
4897                         errorf(&goto_statement->base.source_position,
4898                                "label '%Y' used but not defined", label->symbol);
4899                  }
4900         }
4901         goto_first = goto_last = NULL;
4902
4903         if (warning.unused_label) {
4904                 for (const label_statement_t *label_statement = label_first;
4905                          label_statement != NULL;
4906                          label_statement = label_statement->next) {
4907                         const declaration_t *label = label_statement->label;
4908
4909                         if (! label->used) {
4910                                 print_in_function();
4911                                 warningf(&label_statement->base.source_position,
4912                                         "label '%Y' defined but not used", label->symbol);
4913                         }
4914                 }
4915         }
4916         label_first = label_last = NULL;
4917 }
4918
4919 /**
4920  * Check declarations of current_function for unused entities.
4921  */
4922 static void check_declarations(void)
4923 {
4924         if (warning.unused_parameter) {
4925                 const scope_t *scope = &current_function->scope;
4926
4927                 if (is_sym_main(current_function->symbol)) {
4928                         /* do not issue unused warnings for main */
4929                         return;
4930                 }
4931                 const declaration_t *parameter = scope->declarations;
4932                 for (; parameter != NULL; parameter = parameter->next) {
4933                         if (! parameter->used) {
4934                                 print_in_function();
4935                                 warningf(&parameter->source_position,
4936                                          "unused parameter '%Y'", parameter->symbol);
4937                         }
4938                 }
4939         }
4940         if (warning.unused_variable) {
4941         }
4942 }
4943
4944 static int determine_truth(expression_t const* const cond)
4945 {
4946         return
4947                 !is_constant_expression(cond) ? 0 :
4948                 fold_constant(cond) != 0      ? 1 :
4949                 -1;
4950 }
4951
4952 static bool noreturn_candidate;
4953
4954 static void check_reachable(statement_t *const stmt)
4955 {
4956         if (stmt->base.reachable)
4957                 return;
4958         if (stmt->kind != STATEMENT_DO_WHILE)
4959                 stmt->base.reachable = true;
4960
4961         statement_t *last = stmt;
4962         statement_t *next;
4963         switch (stmt->kind) {
4964                 case STATEMENT_INVALID:
4965                 case STATEMENT_EMPTY:
4966                 case STATEMENT_DECLARATION:
4967                 case STATEMENT_ASM:
4968                         next = stmt->base.next;
4969                         break;
4970
4971                 case STATEMENT_COMPOUND:
4972                         next = stmt->compound.statements;
4973                         break;
4974
4975                 case STATEMENT_RETURN:
4976                         noreturn_candidate = false;
4977                         return;
4978
4979                 case STATEMENT_IF: {
4980                         if_statement_t const* const ifs = &stmt->ifs;
4981                         int            const        val = determine_truth(ifs->condition);
4982
4983                         if (val >= 0)
4984                                 check_reachable(ifs->true_statement);
4985
4986                         if (val > 0)
4987                                 return;
4988
4989                         if (ifs->false_statement != NULL) {
4990                                 check_reachable(ifs->false_statement);
4991                                 return;
4992                         }
4993
4994                         next = stmt->base.next;
4995                         break;
4996                 }
4997
4998                 case STATEMENT_SWITCH: {
4999                         switch_statement_t const *const switchs = &stmt->switchs;
5000                         expression_t       const *const expr    = switchs->expression;
5001
5002                         if (is_constant_expression(expr)) {
5003                                 long                    const val      = fold_constant(expr);
5004                                 case_label_statement_t *      defaults = NULL;
5005                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5006                                         if (i->expression == NULL) {
5007                                                 defaults = i;
5008                                                 continue;
5009                                         }
5010
5011                                         if (i->first_case <= val && val <= i->last_case) {
5012                                                 check_reachable((statement_t*)i);
5013                                                 return;
5014                                         }
5015                                 }
5016
5017                                 if (defaults != NULL) {
5018                                         check_reachable((statement_t*)defaults);
5019                                         return;
5020                                 }
5021                         } else {
5022                                 bool has_default = false;
5023                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5024                                         if (i->expression == NULL)
5025                                                 has_default = true;
5026
5027                                         check_reachable((statement_t*)i);
5028                                 }
5029
5030                                 if (has_default)
5031                                         return;
5032                         }
5033
5034                         next = stmt->base.next;
5035                         break;
5036                 }
5037
5038                 case STATEMENT_EXPRESSION: {
5039                         /* Check for noreturn function call */
5040                         expression_t const *const expr = stmt->expression.expression;
5041                         if (expr->kind == EXPR_CALL) {
5042                                 expression_t const *const func = expr->call.function;
5043                                 if (func->kind == EXPR_REFERENCE) {
5044                                         declaration_t const *const decl = func->reference.declaration;
5045                                         if (decl != NULL && decl->modifiers & DM_NORETURN) {
5046                                                 return;
5047                                         }
5048                                 }
5049                         }
5050
5051                         next = stmt->base.next;
5052                         break;
5053                 }
5054
5055                 case STATEMENT_CONTINUE: {
5056                         statement_t *parent = stmt;
5057                         for (;;) {
5058                                 parent = parent->base.parent;
5059                                 if (parent == NULL) /* continue not within loop */
5060                                         return;
5061
5062                                 next = parent;
5063                                 switch (parent->kind) {
5064                                         case STATEMENT_WHILE:    goto continue_while;
5065                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5066                                         case STATEMENT_FOR:      goto continue_for;
5067
5068                                         default: break;
5069                                 }
5070                         }
5071                 }
5072
5073                 case STATEMENT_BREAK: {
5074                         statement_t *parent = stmt;
5075                         for (;;) {
5076                                 parent = parent->base.parent;
5077                                 if (parent == NULL) /* break not within loop/switch */
5078                                         return;
5079
5080                                 switch (parent->kind) {
5081                                         case STATEMENT_SWITCH:
5082                                         case STATEMENT_WHILE:
5083                                         case STATEMENT_DO_WHILE:
5084                                         case STATEMENT_FOR:
5085                                                 last = parent;
5086                                                 next = parent->base.next;
5087                                                 goto found_break_parent;
5088
5089                                         default: break;
5090                                 }
5091                         }
5092 found_break_parent:
5093                         break;
5094                 }
5095
5096                 case STATEMENT_GOTO:
5097                         if (stmt->gotos.expression) {
5098                                 statement_t *parent = stmt->base.parent;
5099                                 if (parent == NULL) /* top level goto */
5100                                         return;
5101                                 next = parent;
5102                         } else {
5103                                 next = stmt->gotos.label->init.statement;
5104                                 if (next == NULL) /* missing label */
5105                                         return;
5106                         }
5107                         break;
5108
5109                 case STATEMENT_LABEL:
5110                         next = stmt->label.statement;
5111                         break;
5112
5113                 case STATEMENT_CASE_LABEL:
5114                         next = stmt->case_label.statement;
5115                         break;
5116
5117                 case STATEMENT_WHILE: {
5118                         while_statement_t const *const whiles = &stmt->whiles;
5119                         int                      const val    = determine_truth(whiles->condition);
5120
5121                         if (val >= 0)
5122                                 check_reachable(whiles->body);
5123
5124                         if (val > 0)
5125                                 return;
5126
5127                         next = stmt->base.next;
5128                         break;
5129                 }
5130
5131                 case STATEMENT_DO_WHILE:
5132                         next = stmt->do_while.body;
5133                         break;
5134
5135                 case STATEMENT_FOR: {
5136                         for_statement_t *const fors = &stmt->fors;
5137
5138                         if (fors->condition_reachable)
5139                                 return;
5140                         fors->condition_reachable = true;
5141
5142                         expression_t const *const cond = fors->condition;
5143                         int          const        val  =
5144                                 cond == NULL ? 1 : determine_truth(cond);
5145
5146                         if (val >= 0)
5147                                 check_reachable(fors->body);
5148
5149                         if (val > 0)
5150                                 return;
5151
5152                         next = stmt->base.next;
5153                         break;
5154                 }
5155
5156                 case STATEMENT_MS_TRY: {
5157                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5158                         check_reachable(ms_try->try_statement);
5159                         next = ms_try->final_statement;
5160                         break;
5161                 }
5162
5163                 case STATEMENT_LEAVE: {
5164                         statement_t *parent = stmt;
5165                         for (;;) {
5166                                 parent = parent->base.parent;
5167                                 if (parent == NULL) /* __leave not within __try */
5168                                         return;
5169
5170                                 if (parent->kind == STATEMENT_MS_TRY) {
5171                                         last = parent;
5172                                         next = parent->ms_try.final_statement;
5173                                         break;
5174                                 }
5175                         }
5176                         break;
5177                 }
5178         }
5179
5180         while (next == NULL) {
5181                 next = last->base.parent;
5182                 if (next == NULL) {
5183                         noreturn_candidate = false;
5184
5185                         type_t *const type = current_function->type;
5186                         assert(is_type_function(type));
5187                         type_t *const ret  = skip_typeref(type->function.return_type);
5188                         if (warning.return_type                    &&
5189                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5190                             is_type_valid(ret)                     &&
5191                             !is_sym_main(current_function->symbol)) {
5192                                 warningf(&stmt->base.source_position,
5193                                          "control reaches end of non-void function");
5194                         }
5195                         return;
5196                 }
5197
5198                 switch (next->kind) {
5199                         case STATEMENT_INVALID:
5200                         case STATEMENT_EMPTY:
5201                         case STATEMENT_DECLARATION:
5202                         case STATEMENT_EXPRESSION:
5203                         case STATEMENT_ASM:
5204                         case STATEMENT_RETURN:
5205                         case STATEMENT_CONTINUE:
5206                         case STATEMENT_BREAK:
5207                         case STATEMENT_GOTO:
5208                         case STATEMENT_LEAVE:
5209                                 panic("invalid control flow in function");
5210
5211                         case STATEMENT_COMPOUND:
5212                         case STATEMENT_IF:
5213                         case STATEMENT_SWITCH:
5214                         case STATEMENT_LABEL:
5215                         case STATEMENT_CASE_LABEL:
5216                                 last = next;
5217                                 next = next->base.next;
5218                                 break;
5219
5220                         case STATEMENT_WHILE: {
5221 continue_while:
5222                                 if (next->base.reachable)
5223                                         return;
5224                                 next->base.reachable = true;
5225
5226                                 while_statement_t const *const whiles = &next->whiles;
5227                                 int                      const val    = determine_truth(whiles->condition);
5228
5229                                 if (val >= 0)
5230                                         check_reachable(whiles->body);
5231
5232                                 if (val > 0)
5233                                         return;
5234
5235                                 last = next;
5236                                 next = next->base.next;
5237                                 break;
5238                         }
5239
5240                         case STATEMENT_DO_WHILE: {
5241 continue_do_while:
5242                                 if (next->base.reachable)
5243                                         return;
5244                                 next->base.reachable = true;
5245
5246                                 do_while_statement_t const *const dw  = &next->do_while;
5247                                 int                  const        val = determine_truth(dw->condition);
5248
5249                                 if (val >= 0)
5250                                         check_reachable(dw->body);
5251
5252                                 if (val > 0)
5253                                         return;
5254
5255                                 last = next;
5256                                 next = next->base.next;
5257                                 break;
5258                         }
5259
5260                         case STATEMENT_FOR: {
5261 continue_for:;
5262                                 for_statement_t *const fors = &next->fors;
5263
5264                                 fors->step_reachable = true;
5265
5266                                 if (fors->condition_reachable)
5267                                         return;
5268                                 fors->condition_reachable = true;
5269
5270                                 expression_t const *const cond = fors->condition;
5271                                 int          const        val  =
5272                                         cond == NULL ? 1 : determine_truth(cond);
5273
5274                                 if (val >= 0)
5275                                         check_reachable(fors->body);
5276
5277                                 if (val > 0)
5278                                         return;
5279
5280                                 last = next;
5281                                 next = next->base.next;
5282                                 break;
5283                         }
5284
5285                         case STATEMENT_MS_TRY:
5286                                 last = next;
5287                                 next = next->ms_try.final_statement;
5288                                 break;
5289                 }
5290         }
5291
5292         if (next == NULL) {
5293                 next = stmt->base.parent;
5294                 if (next == NULL) {
5295                         warningf(&stmt->base.source_position,
5296                                  "control reaches end of non-void function");
5297                 }
5298         }
5299
5300         check_reachable(next);
5301 }
5302
5303 static void check_unreachable(statement_t const* const stmt)
5304 {
5305         if (!stmt->base.reachable            &&
5306             stmt->kind != STATEMENT_DO_WHILE &&
5307             stmt->kind != STATEMENT_FOR      &&
5308             (stmt->kind != STATEMENT_COMPOUND || stmt->compound.statements == NULL)) {
5309                 warningf(&stmt->base.source_position, "statement is unreachable");
5310         }
5311
5312         switch (stmt->kind) {
5313                 case STATEMENT_INVALID:
5314                 case STATEMENT_EMPTY:
5315                 case STATEMENT_RETURN:
5316                 case STATEMENT_DECLARATION:
5317                 case STATEMENT_EXPRESSION:
5318                 case STATEMENT_CONTINUE:
5319                 case STATEMENT_BREAK:
5320                 case STATEMENT_GOTO:
5321                 case STATEMENT_ASM:
5322                 case STATEMENT_LEAVE:
5323                         break;
5324
5325                 case STATEMENT_COMPOUND:
5326                         if (stmt->compound.statements)
5327                                 check_unreachable(stmt->compound.statements);
5328                         break;
5329
5330                 case STATEMENT_IF:
5331                         check_unreachable(stmt->ifs.true_statement);
5332                         if (stmt->ifs.false_statement != NULL)
5333                                 check_unreachable(stmt->ifs.false_statement);
5334                         break;
5335
5336                 case STATEMENT_SWITCH:
5337                         check_unreachable(stmt->switchs.body);
5338                         break;
5339
5340                 case STATEMENT_LABEL:
5341                         check_unreachable(stmt->label.statement);
5342                         break;
5343
5344                 case STATEMENT_CASE_LABEL:
5345                         check_unreachable(stmt->case_label.statement);
5346                         break;
5347
5348                 case STATEMENT_WHILE:
5349                         check_unreachable(stmt->whiles.body);
5350                         break;
5351
5352                 case STATEMENT_DO_WHILE:
5353                         check_unreachable(stmt->do_while.body);
5354                         if (!stmt->base.reachable) {
5355                                 expression_t const *const cond = stmt->do_while.condition;
5356                                 if (determine_truth(cond) >= 0) {
5357                                         warningf(&cond->base.source_position,
5358                                                  "condition of do-while-loop is unreachable");
5359                                 }
5360                         }
5361                         break;
5362
5363                 case STATEMENT_FOR: {
5364                         for_statement_t const* const fors = &stmt->fors;
5365
5366                         // if init and step are unreachable, cond is unreachable, too
5367                         if (!stmt->base.reachable && !fors->step_reachable) {
5368                                 warningf(&stmt->base.source_position, "statement is unreachable");
5369                         } else {
5370                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5371                                         warningf(&fors->initialisation->base.source_position,
5372                                                  "initialisation of for-statement is unreachable");
5373                                 }
5374
5375                                 if (!fors->condition_reachable && fors->condition != NULL) {
5376                                         warningf(&fors->condition->base.source_position,
5377                                                  "condition of for-statement is unreachable");
5378                                 }
5379
5380                                 if (!fors->step_reachable && fors->step != NULL) {
5381                                         warningf(&fors->step->base.source_position,
5382                                                  "step of for-statement is unreachable");
5383                                 }
5384                         }
5385
5386                         check_unreachable(fors->body);
5387                         break;
5388                 }
5389
5390                 case STATEMENT_MS_TRY: {
5391                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5392                         check_unreachable(ms_try->try_statement);
5393                         check_unreachable(ms_try->final_statement);
5394                 }
5395         }
5396
5397         if (stmt->base.next)
5398                 check_unreachable(stmt->base.next);
5399 }
5400
5401 static void parse_external_declaration(void)
5402 {
5403         /* function-definitions and declarations both start with declaration
5404          * specifiers */
5405         declaration_specifiers_t specifiers;
5406         memset(&specifiers, 0, sizeof(specifiers));
5407
5408         add_anchor_token(';');
5409         parse_declaration_specifiers(&specifiers);
5410         rem_anchor_token(';');
5411
5412         /* must be a declaration */
5413         if (token.type == ';') {
5414                 parse_anonymous_declaration_rest(&specifiers);
5415                 return;
5416         }
5417
5418         add_anchor_token(',');
5419         add_anchor_token('=');
5420         add_anchor_token(';');
5421         add_anchor_token('{');
5422
5423         /* declarator is common to both function-definitions and declarations */
5424         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
5425
5426         rem_anchor_token('{');
5427         rem_anchor_token(';');
5428         rem_anchor_token('=');
5429         rem_anchor_token(',');
5430
5431         /* must be a declaration */
5432         switch (token.type) {
5433                 case ',':
5434                 case ';':
5435                 case '=':
5436                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
5437                         return;
5438         }
5439
5440         /* must be a function definition */
5441         parse_kr_declaration_list(ndeclaration);
5442
5443         if (token.type != '{') {
5444                 parse_error_expected("while parsing function definition", '{', NULL);
5445                 eat_until_matching_token(';');
5446                 return;
5447         }
5448
5449         type_t *type = ndeclaration->type;
5450
5451         /* note that we don't skip typerefs: the standard doesn't allow them here
5452          * (so we can't use is_type_function here) */
5453         if (type->kind != TYPE_FUNCTION) {
5454                 if (is_type_valid(type)) {
5455                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5456                                type, ndeclaration->symbol);
5457                 }
5458                 eat_block();
5459                 return;
5460         }
5461
5462         if (warning.aggregate_return &&
5463             is_type_compound(skip_typeref(type->function.return_type))) {
5464                 warningf(HERE, "function '%Y' returns an aggregate",
5465                          ndeclaration->symbol);
5466         }
5467         if (warning.traditional && !type->function.unspecified_parameters) {
5468                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5469                         ndeclaration->symbol);
5470         }
5471         if (warning.old_style_definition && type->function.unspecified_parameters) {
5472                 warningf(HERE, "old-style function definition '%Y'",
5473                         ndeclaration->symbol);
5474         }
5475
5476         /* Â§ 6.7.5.3 (14) a function definition with () means no
5477          * parameters (and not unspecified parameters) */
5478         if (type->function.unspecified_parameters
5479                         && type->function.parameters == NULL
5480                         && !type->function.kr_style_parameters) {
5481                 type_t *duplicate = duplicate_type(type);
5482                 duplicate->function.unspecified_parameters = false;
5483
5484                 type = typehash_insert(duplicate);
5485                 if (type != duplicate) {
5486                         obstack_free(type_obst, duplicate);
5487                 }
5488                 ndeclaration->type = type;
5489         }
5490
5491         declaration_t *const declaration = record_declaration(ndeclaration, true);
5492         if (ndeclaration != declaration) {
5493                 declaration->scope = ndeclaration->scope;
5494         }
5495         type = skip_typeref(declaration->type);
5496
5497         /* push function parameters and switch scope */
5498         size_t const top = environment_top();
5499         scope_push(&declaration->scope);
5500
5501         declaration_t *parameter = declaration->scope.declarations;
5502         for( ; parameter != NULL; parameter = parameter->next) {
5503                 if (parameter->parent_scope == &ndeclaration->scope) {
5504                         parameter->parent_scope = scope;
5505                 }
5506                 assert(parameter->parent_scope == NULL
5507                                 || parameter->parent_scope == scope);
5508                 parameter->parent_scope = scope;
5509                 if (parameter->symbol == NULL) {
5510                         errorf(&parameter->source_position, "parameter name omitted");
5511                         continue;
5512                 }
5513                 environment_push(parameter);
5514         }
5515
5516         if (declaration->init.statement != NULL) {
5517                 parser_error_multiple_definition(declaration, HERE);
5518                 eat_block();
5519         } else {
5520                 /* parse function body */
5521                 int            label_stack_top      = label_top();
5522                 declaration_t *old_current_function = current_function;
5523                 current_function                    = declaration;
5524                 current_parent                      = NULL;
5525
5526                 statement_t *const body = parse_compound_statement(false);
5527                 declaration->init.statement = body;
5528                 first_err = true;
5529                 check_labels();
5530                 check_declarations();
5531                 if (warning.return_type      ||
5532                     warning.unreachable_code ||
5533                     (warning.missing_noreturn && !(declaration->modifiers & DM_NORETURN))) {
5534                         noreturn_candidate = true;
5535                         check_reachable(body);
5536                         if (warning.unreachable_code)
5537                                 check_unreachable(body);
5538                         if (warning.missing_noreturn &&
5539                             noreturn_candidate       &&
5540                             !(declaration->modifiers & DM_NORETURN)) {
5541                                 warningf(&body->base.source_position,
5542                                          "function '%#T' is candidate for attribute 'noreturn'",
5543                                          type, declaration->symbol);
5544                         }
5545                 }
5546
5547                 assert(current_parent   == NULL);
5548                 assert(current_function == declaration);
5549                 current_function = old_current_function;
5550                 label_pop_to(label_stack_top);
5551         }
5552
5553         assert(scope == &declaration->scope);
5554         scope_pop();
5555         environment_pop_to(top);
5556 }
5557
5558 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5559                                   source_position_t *source_position,
5560                                   const symbol_t *symbol)
5561 {
5562         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
5563
5564         type->bitfield.base_type       = base_type;
5565         type->bitfield.size_expression = size;
5566
5567         il_size_t bit_size;
5568         type_t *skipped_type = skip_typeref(base_type);
5569         if (!is_type_integer(skipped_type)) {
5570                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5571                         base_type);
5572                 bit_size = 0;
5573         } else {
5574                 bit_size = skipped_type->base.size * 8;
5575         }
5576
5577         if (is_constant_expression(size)) {
5578                 long v = fold_constant(size);
5579
5580                 if (v < 0) {
5581                         errorf(source_position, "negative width in bit-field '%Y'",
5582                                 symbol);
5583                 } else if (v == 0) {
5584                         errorf(source_position, "zero width for bit-field '%Y'",
5585                                 symbol);
5586                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5587                         errorf(source_position, "width of '%Y' exceeds its type",
5588                                 symbol);
5589                 } else {
5590                         type->bitfield.bit_size = v;
5591                 }
5592         }
5593
5594         return type;
5595 }
5596
5597 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
5598                                           symbol_t *symbol)
5599 {
5600         declaration_t *iter = compound_declaration->scope.declarations;
5601         for( ; iter != NULL; iter = iter->next) {
5602                 if (iter->namespc != NAMESPACE_NORMAL)
5603                         continue;
5604
5605                 if (iter->symbol == NULL) {
5606                         type_t *type = skip_typeref(iter->type);
5607                         if (is_type_compound(type)) {
5608                                 declaration_t *result
5609                                         = find_compound_entry(type->compound.declaration, symbol);
5610                                 if (result != NULL)
5611                                         return result;
5612                         }
5613                         continue;
5614                 }
5615
5616                 if (iter->symbol == symbol) {
5617                         return iter;
5618                 }
5619         }
5620
5621         return NULL;
5622 }
5623
5624 static void parse_compound_declarators(declaration_t *struct_declaration,
5625                 const declaration_specifiers_t *specifiers)
5626 {
5627         declaration_t *last_declaration = struct_declaration->scope.declarations;
5628         if (last_declaration != NULL) {
5629                 while (last_declaration->next != NULL) {
5630                         last_declaration = last_declaration->next;
5631                 }
5632         }
5633
5634         while (true) {
5635                 declaration_t *declaration;
5636
5637                 if (token.type == ':') {
5638                         source_position_t source_position = *HERE;
5639                         next_token();
5640
5641                         type_t *base_type = specifiers->type;
5642                         expression_t *size = parse_constant_expression();
5643
5644                         type_t *type = make_bitfield_type(base_type, size,
5645                                         &source_position, sym_anonymous);
5646
5647                         declaration                         = allocate_declaration_zero();
5648                         declaration->namespc                = NAMESPACE_NORMAL;
5649                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
5650                         declaration->storage_class          = STORAGE_CLASS_NONE;
5651                         declaration->source_position        = source_position;
5652                         declaration->modifiers              = specifiers->modifiers;
5653                         declaration->type                   = type;
5654                 } else {
5655                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
5656
5657                         type_t *orig_type = declaration->type;
5658                         type_t *type      = skip_typeref(orig_type);
5659
5660                         if (token.type == ':') {
5661                                 source_position_t source_position = *HERE;
5662                                 next_token();
5663                                 expression_t *size = parse_constant_expression();
5664
5665                                 type_t *bitfield_type = make_bitfield_type(orig_type, size,
5666                                                 &source_position, declaration->symbol);
5667                                 declaration->type = bitfield_type;
5668                         } else {
5669                                 /* TODO we ignore arrays for now... what is missing is a check
5670                                  * that they're at the end of the struct */
5671                                 if (is_type_incomplete(type) && !is_type_array(type)) {
5672                                         errorf(HERE,
5673                                                "compound member '%Y' has incomplete type '%T'",
5674                                                declaration->symbol, orig_type);
5675                                 } else if (is_type_function(type)) {
5676                                         errorf(HERE, "compound member '%Y' must not have function type '%T'",
5677                                                declaration->symbol, orig_type);
5678                                 }
5679                         }
5680                 }
5681
5682                 /* make sure we don't define a symbol multiple times */
5683                 symbol_t *symbol = declaration->symbol;
5684                 if (symbol != NULL) {
5685                         declaration_t *prev_decl
5686                                 = find_compound_entry(struct_declaration, symbol);
5687
5688                         if (prev_decl != NULL) {
5689                                 assert(prev_decl->symbol == symbol);
5690                                 errorf(&declaration->source_position,
5691                                        "multiple declarations of symbol '%Y' (declared %P)",
5692                                        symbol, &prev_decl->source_position);
5693                         }
5694                 }
5695
5696                 /* append declaration */
5697                 if (last_declaration != NULL) {
5698                         last_declaration->next = declaration;
5699                 } else {
5700                         struct_declaration->scope.declarations = declaration;
5701                 }
5702                 last_declaration = declaration;
5703
5704                 if (token.type != ',')
5705                         break;
5706                 next_token();
5707         }
5708         expect(';');
5709
5710 end_error:
5711         ;
5712 }
5713
5714 static void parse_compound_type_entries(declaration_t *compound_declaration)
5715 {
5716         eat('{');
5717         add_anchor_token('}');
5718
5719         while (token.type != '}') {
5720                 if (token.type == T_EOF) {
5721                         errorf(HERE, "EOF while parsing struct");
5722                         break;
5723                 }
5724                 declaration_specifiers_t specifiers;
5725                 memset(&specifiers, 0, sizeof(specifiers));
5726                 parse_declaration_specifiers(&specifiers);
5727
5728                 parse_compound_declarators(compound_declaration, &specifiers);
5729         }
5730         rem_anchor_token('}');
5731         next_token();
5732 }
5733
5734 static type_t *parse_typename(void)
5735 {
5736         declaration_specifiers_t specifiers;
5737         memset(&specifiers, 0, sizeof(specifiers));
5738         parse_declaration_specifiers(&specifiers);
5739         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
5740                 /* TODO: improve error message, user does probably not know what a
5741                  * storage class is...
5742                  */
5743                 errorf(HERE, "typename may not have a storage class");
5744         }
5745
5746         type_t *result = parse_abstract_declarator(specifiers.type);
5747
5748         return result;
5749 }
5750
5751
5752
5753
5754 typedef expression_t* (*parse_expression_function) (unsigned precedence);
5755 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
5756                                                           expression_t *left);
5757
5758 typedef struct expression_parser_function_t expression_parser_function_t;
5759 struct expression_parser_function_t {
5760         unsigned                         precedence;
5761         parse_expression_function        parser;
5762         unsigned                         infix_precedence;
5763         parse_expression_infix_function  infix_parser;
5764 };
5765
5766 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5767
5768 /**
5769  * Prints an error message if an expression was expected but not read
5770  */
5771 static expression_t *expected_expression_error(void)
5772 {
5773         /* skip the error message if the error token was read */
5774         if (token.type != T_ERROR) {
5775                 errorf(HERE, "expected expression, got token '%K'", &token);
5776         }
5777         next_token();
5778
5779         return create_invalid_expression();
5780 }
5781
5782 /**
5783  * Parse a string constant.
5784  */
5785 static expression_t *parse_string_const(void)
5786 {
5787         wide_string_t wres;
5788         if (token.type == T_STRING_LITERAL) {
5789                 string_t res = token.v.string;
5790                 next_token();
5791                 while (token.type == T_STRING_LITERAL) {
5792                         res = concat_strings(&res, &token.v.string);
5793                         next_token();
5794                 }
5795                 if (token.type != T_WIDE_STRING_LITERAL) {
5796                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
5797                         /* note: that we use type_char_ptr here, which is already the
5798                          * automatic converted type. revert_automatic_type_conversion
5799                          * will construct the array type */
5800                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
5801                         cnst->string.value = res;
5802                         return cnst;
5803                 }
5804
5805                 wres = concat_string_wide_string(&res, &token.v.wide_string);
5806         } else {
5807                 wres = token.v.wide_string;
5808         }
5809         next_token();
5810
5811         for (;;) {
5812                 switch (token.type) {
5813                         case T_WIDE_STRING_LITERAL:
5814                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5815                                 break;
5816
5817                         case T_STRING_LITERAL:
5818                                 wres = concat_wide_string_string(&wres, &token.v.string);
5819                                 break;
5820
5821                         default: {
5822                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5823                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5824                                 cnst->wide_string.value = wres;
5825                                 return cnst;
5826                         }
5827                 }
5828                 next_token();
5829         }
5830 }
5831
5832 /**
5833  * Parse an integer constant.
5834  */
5835 static expression_t *parse_int_const(void)
5836 {
5837         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5838         cnst->base.source_position = *HERE;
5839         cnst->base.type            = token.datatype;
5840         cnst->conste.v.int_value   = token.v.intvalue;
5841
5842         next_token();
5843
5844         return cnst;
5845 }
5846
5847 /**
5848  * Parse a character constant.
5849  */
5850 static expression_t *parse_character_constant(void)
5851 {
5852         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5853
5854         cnst->base.source_position = *HERE;
5855         cnst->base.type            = token.datatype;
5856         cnst->conste.v.character   = token.v.string;
5857
5858         if (cnst->conste.v.character.size != 1) {
5859                 if (warning.multichar && GNU_MODE) {
5860                         warningf(HERE, "multi-character character constant");
5861                 } else {
5862                         errorf(HERE, "more than 1 characters in character constant");
5863                 }
5864         }
5865         next_token();
5866
5867         return cnst;
5868 }
5869
5870 /**
5871  * Parse a wide character constant.
5872  */
5873 static expression_t *parse_wide_character_constant(void)
5874 {
5875         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5876
5877         cnst->base.source_position    = *HERE;
5878         cnst->base.type               = token.datatype;
5879         cnst->conste.v.wide_character = token.v.wide_string;
5880
5881         if (cnst->conste.v.wide_character.size != 1) {
5882                 if (warning.multichar && GNU_MODE) {
5883                         warningf(HERE, "multi-character character constant");
5884                 } else {
5885                         errorf(HERE, "more than 1 characters in character constant");
5886                 }
5887         }
5888         next_token();
5889
5890         return cnst;
5891 }
5892
5893 /**
5894  * Parse a float constant.
5895  */
5896 static expression_t *parse_float_const(void)
5897 {
5898         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5899         cnst->base.type            = token.datatype;
5900         cnst->conste.v.float_value = token.v.floatvalue;
5901
5902         next_token();
5903
5904         return cnst;
5905 }
5906
5907 static declaration_t *create_implicit_function(symbol_t *symbol,
5908                 const source_position_t *source_position)
5909 {
5910         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5911         ntype->function.return_type            = type_int;
5912         ntype->function.unspecified_parameters = true;
5913
5914         type_t *type = typehash_insert(ntype);
5915         if (type != ntype) {
5916                 free_type(ntype);
5917         }
5918
5919         declaration_t *const declaration    = allocate_declaration_zero();
5920         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5921         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5922         declaration->type                   = type;
5923         declaration->symbol                 = symbol;
5924         declaration->source_position        = *source_position;
5925         declaration->implicit               = true;
5926
5927         bool strict_prototypes_old = warning.strict_prototypes;
5928         warning.strict_prototypes  = false;
5929         record_declaration(declaration, false);
5930         warning.strict_prototypes = strict_prototypes_old;
5931
5932         return declaration;
5933 }
5934
5935 /**
5936  * Creates a return_type (func)(argument_type) function type if not
5937  * already exists.
5938  */
5939 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5940                                     type_t *argument_type2)
5941 {
5942         function_parameter_t *parameter2
5943                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5944         memset(parameter2, 0, sizeof(parameter2[0]));
5945         parameter2->type = argument_type2;
5946
5947         function_parameter_t *parameter1
5948                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5949         memset(parameter1, 0, sizeof(parameter1[0]));
5950         parameter1->type = argument_type1;
5951         parameter1->next = parameter2;
5952
5953         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5954         type->function.return_type = return_type;
5955         type->function.parameters  = parameter1;
5956
5957         type_t *result = typehash_insert(type);
5958         if (result != type) {
5959                 free_type(type);
5960         }
5961
5962         return result;
5963 }
5964
5965 /**
5966  * Creates a return_type (func)(argument_type) function type if not
5967  * already exists.
5968  *
5969  * @param return_type    the return type
5970  * @param argument_type  the argument type
5971  */
5972 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5973 {
5974         function_parameter_t *parameter
5975                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5976         memset(parameter, 0, sizeof(parameter[0]));
5977         parameter->type = argument_type;
5978
5979         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5980         type->function.return_type = return_type;
5981         type->function.parameters  = parameter;
5982
5983         type_t *result = typehash_insert(type);
5984         if (result != type) {
5985                 free_type(type);
5986         }
5987
5988         return result;
5989 }
5990
5991 static type_t *make_function_0_type(type_t *return_type)
5992 {
5993         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5994         type->function.return_type = return_type;
5995         type->function.parameters  = NULL;
5996
5997         type_t *result = typehash_insert(type);
5998         if (result != type) {
5999                 free_type(type);
6000         }
6001
6002         return result;
6003 }
6004
6005 /**
6006  * Creates a function type for some function like builtins.
6007  *
6008  * @param symbol   the symbol describing the builtin
6009  */
6010 static type_t *get_builtin_symbol_type(symbol_t *symbol)
6011 {
6012         switch(symbol->ID) {
6013         case T___builtin_alloca:
6014                 return make_function_1_type(type_void_ptr, type_size_t);
6015         case T___builtin_huge_val:
6016                 return make_function_0_type(type_double);
6017         case T___builtin_inf:
6018                 return make_function_0_type(type_double);
6019         case T___builtin_inff:
6020                 return make_function_0_type(type_float);
6021         case T___builtin_infl:
6022                 return make_function_0_type(type_long_double);
6023         case T___builtin_nan:
6024                 return make_function_1_type(type_double, type_char_ptr);
6025         case T___builtin_nanf:
6026                 return make_function_1_type(type_float, type_char_ptr);
6027         case T___builtin_nanl:
6028                 return make_function_1_type(type_long_double, type_char_ptr);
6029         case T___builtin_va_end:
6030                 return make_function_1_type(type_void, type_valist);
6031         case T___builtin_expect:
6032                 return make_function_2_type(type_long, type_long, type_long);
6033         default:
6034                 internal_errorf(HERE, "not implemented builtin symbol found");
6035         }
6036 }
6037
6038 /**
6039  * Performs automatic type cast as described in Â§ 6.3.2.1.
6040  *
6041  * @param orig_type  the original type
6042  */
6043 static type_t *automatic_type_conversion(type_t *orig_type)
6044 {
6045         type_t *type = skip_typeref(orig_type);
6046         if (is_type_array(type)) {
6047                 array_type_t *array_type   = &type->array;
6048                 type_t       *element_type = array_type->element_type;
6049                 unsigned      qualifiers   = array_type->base.qualifiers;
6050
6051                 return make_pointer_type(element_type, qualifiers);
6052         }
6053
6054         if (is_type_function(type)) {
6055                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6056         }
6057
6058         return orig_type;
6059 }
6060
6061 /**
6062  * reverts the automatic casts of array to pointer types and function
6063  * to function-pointer types as defined Â§ 6.3.2.1
6064  */
6065 type_t *revert_automatic_type_conversion(const expression_t *expression)
6066 {
6067         switch (expression->kind) {
6068                 case EXPR_REFERENCE: return expression->reference.declaration->type;
6069
6070                 case EXPR_SELECT:
6071                         return get_qualified_type(expression->select.compound_entry->type,
6072                                                   expression->base.type->base.qualifiers);
6073
6074                 case EXPR_UNARY_DEREFERENCE: {
6075                         const expression_t *const value = expression->unary.value;
6076                         type_t             *const type  = skip_typeref(value->base.type);
6077                         assert(is_type_pointer(type));
6078                         return type->pointer.points_to;
6079                 }
6080
6081                 case EXPR_BUILTIN_SYMBOL:
6082                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6083
6084                 case EXPR_ARRAY_ACCESS: {
6085                         const expression_t *array_ref = expression->array_access.array_ref;
6086                         type_t             *type_left = skip_typeref(array_ref->base.type);
6087                         if (!is_type_valid(type_left))
6088                                 return type_left;
6089                         assert(is_type_pointer(type_left));
6090                         return type_left->pointer.points_to;
6091                 }
6092
6093                 case EXPR_STRING_LITERAL: {
6094                         size_t size = expression->string.value.size;
6095                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6096                 }
6097
6098                 case EXPR_WIDE_STRING_LITERAL: {
6099                         size_t size = expression->wide_string.value.size;
6100                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6101                 }
6102
6103                 case EXPR_COMPOUND_LITERAL:
6104                         return expression->compound_literal.type;
6105
6106                 default: break;
6107         }
6108
6109         return expression->base.type;
6110 }
6111
6112 static expression_t *parse_reference(void)
6113 {
6114         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
6115
6116         reference_expression_t *ref = &expression->reference;
6117         symbol_t *const symbol = token.v.symbol;
6118
6119         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
6120
6121         if (declaration == NULL) {
6122                 if (!strict_mode && look_ahead(1)->type == '(') {
6123                         /* an implicitly declared function */
6124                         if (warning.implicit_function_declaration) {
6125                                 warningf(HERE, "implicit declaration of function '%Y'",
6126                                         symbol);
6127                         }
6128
6129                         declaration = create_implicit_function(symbol, HERE);
6130                 } else {
6131                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6132                         declaration = create_error_declaration(symbol, STORAGE_CLASS_NONE);
6133                 }
6134         }
6135
6136         type_t *orig_type = declaration->type;
6137
6138         /* we always do the auto-type conversions; the & and sizeof parser contains
6139          * code to revert this! */
6140         type_t *type = automatic_type_conversion(orig_type);
6141
6142         ref->declaration = declaration;
6143         ref->base.type   = type;
6144
6145         /* this declaration is used */
6146         declaration->used = true;
6147
6148         if (declaration->parent_scope != file_scope                          &&
6149             declaration->parent_scope->depth < current_function->scope.depth &&
6150             is_type_valid(orig_type) && !is_type_function(orig_type)) {
6151                 /* access of a variable from an outer function */
6152                 declaration->address_taken     = true;
6153                 ref->is_outer_ref              = true;
6154                 current_function->need_closure = true;
6155         }
6156
6157         /* check for deprecated functions */
6158         if (warning.deprecated_declarations &&
6159             declaration->modifiers & DM_DEPRECATED) {
6160                 char const *const prefix = is_type_function(declaration->type) ?
6161                         "function" : "variable";
6162
6163                 if (declaration->deprecated_string != NULL) {
6164                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6165                                 prefix, declaration->symbol, &declaration->source_position,
6166                                 declaration->deprecated_string);
6167                 } else {
6168                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6169                                 declaration->symbol, &declaration->source_position);
6170                 }
6171         }
6172         if (warning.init_self && declaration == current_init_decl && !in_type_prop) {
6173                 current_init_decl = NULL;
6174                 warningf(HERE, "variable '%#T' is initialized by itself",
6175                         declaration->type, declaration->symbol);
6176         }
6177
6178         next_token();
6179         return expression;
6180 }
6181
6182 static bool semantic_cast(expression_t *cast)
6183 {
6184         expression_t            *expression      = cast->unary.value;
6185         type_t                  *orig_dest_type  = cast->base.type;
6186         type_t                  *orig_type_right = expression->base.type;
6187         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6188         type_t            const *src_type        = skip_typeref(orig_type_right);
6189         source_position_t const *pos             = &cast->base.source_position;
6190
6191         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6192         if (dst_type == type_void)
6193                 return true;
6194
6195         /* only integer and pointer can be casted to pointer */
6196         if (is_type_pointer(dst_type)  &&
6197             !is_type_pointer(src_type) &&
6198             !is_type_integer(src_type) &&
6199             is_type_valid(src_type)) {
6200                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6201                 return false;
6202         }
6203
6204         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6205                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6206                 return false;
6207         }
6208
6209         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6210                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6211                 return false;
6212         }
6213
6214         if (warning.cast_qual &&
6215             is_type_pointer(src_type) &&
6216             is_type_pointer(dst_type)) {
6217                 type_t *src = skip_typeref(src_type->pointer.points_to);
6218                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6219                 unsigned missing_qualifiers =
6220                         src->base.qualifiers & ~dst->base.qualifiers;
6221                 if (missing_qualifiers != 0) {
6222                         warningf(pos,
6223                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6224                                  missing_qualifiers, orig_type_right);
6225                 }
6226         }
6227         return true;
6228 }
6229
6230 static expression_t *parse_compound_literal(type_t *type)
6231 {
6232         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6233
6234         parse_initializer_env_t env;
6235         env.type             = type;
6236         env.declaration      = NULL;
6237         env.must_be_constant = false;
6238         initializer_t *initializer = parse_initializer(&env);
6239         type = env.type;
6240
6241         expression->compound_literal.initializer = initializer;
6242         expression->compound_literal.type        = type;
6243         expression->base.type                    = automatic_type_conversion(type);
6244
6245         return expression;
6246 }
6247
6248 /**
6249  * Parse a cast expression.
6250  */
6251 static expression_t *parse_cast(void)
6252 {
6253         add_anchor_token(')');
6254
6255         source_position_t source_position = token.source_position;
6256
6257         type_t *type  = parse_typename();
6258
6259         rem_anchor_token(')');
6260         expect(')');
6261
6262         if (token.type == '{') {
6263                 return parse_compound_literal(type);
6264         }
6265
6266         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6267         cast->base.source_position = source_position;
6268
6269         expression_t *value = parse_sub_expression(20);
6270         cast->base.type   = type;
6271         cast->unary.value = value;
6272
6273         if (! semantic_cast(cast)) {
6274                 /* TODO: record the error in the AST. else it is impossible to detect it */
6275         }
6276
6277         return cast;
6278 end_error:
6279         return create_invalid_expression();
6280 }
6281
6282 /**
6283  * Parse a statement expression.
6284  */
6285 static expression_t *parse_statement_expression(void)
6286 {
6287         add_anchor_token(')');
6288
6289         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6290
6291         statement_t *statement           = parse_compound_statement(true);
6292         expression->statement.statement  = statement;
6293         expression->base.source_position = statement->base.source_position;
6294
6295         /* find last statement and use its type */
6296         type_t *type = type_void;
6297         const statement_t *stmt = statement->compound.statements;
6298         if (stmt != NULL) {
6299                 while (stmt->base.next != NULL)
6300                         stmt = stmt->base.next;
6301
6302                 if (stmt->kind == STATEMENT_EXPRESSION) {
6303                         type = stmt->expression.expression->base.type;
6304                 }
6305         } else {
6306                 warningf(&expression->base.source_position, "empty statement expression ({})");
6307         }
6308         expression->base.type = type;
6309
6310         rem_anchor_token(')');
6311         expect(')');
6312
6313 end_error:
6314         return expression;
6315 }
6316
6317 /**
6318  * Parse a parenthesized expression.
6319  */
6320 static expression_t *parse_parenthesized_expression(void)
6321 {
6322         eat('(');
6323
6324         switch(token.type) {
6325         case '{':
6326                 /* gcc extension: a statement expression */
6327                 return parse_statement_expression();
6328
6329         TYPE_QUALIFIERS
6330         TYPE_SPECIFIERS
6331                 return parse_cast();
6332         case T_IDENTIFIER:
6333                 if (is_typedef_symbol(token.v.symbol)) {
6334                         return parse_cast();
6335                 }
6336         }
6337
6338         add_anchor_token(')');
6339         expression_t *result = parse_expression();
6340         rem_anchor_token(')');
6341         expect(')');
6342
6343 end_error:
6344         return result;
6345 }
6346
6347 static expression_t *parse_function_keyword(void)
6348 {
6349         next_token();
6350         /* TODO */
6351
6352         if (current_function == NULL) {
6353                 errorf(HERE, "'__func__' used outside of a function");
6354         }
6355
6356         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6357         expression->base.type     = type_char_ptr;
6358         expression->funcname.kind = FUNCNAME_FUNCTION;
6359
6360         return expression;
6361 }
6362
6363 static expression_t *parse_pretty_function_keyword(void)
6364 {
6365         eat(T___PRETTY_FUNCTION__);
6366
6367         if (current_function == NULL) {
6368                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6369         }
6370
6371         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6372         expression->base.type     = type_char_ptr;
6373         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6374
6375         return expression;
6376 }
6377
6378 static expression_t *parse_funcsig_keyword(void)
6379 {
6380         eat(T___FUNCSIG__);
6381
6382         if (current_function == NULL) {
6383                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6384         }
6385
6386         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6387         expression->base.type     = type_char_ptr;
6388         expression->funcname.kind = FUNCNAME_FUNCSIG;
6389
6390         return expression;
6391 }
6392
6393 static expression_t *parse_funcdname_keyword(void)
6394 {
6395         eat(T___FUNCDNAME__);
6396
6397         if (current_function == NULL) {
6398                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6399         }
6400
6401         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6402         expression->base.type     = type_char_ptr;
6403         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6404
6405         return expression;
6406 }
6407
6408 static designator_t *parse_designator(void)
6409 {
6410         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6411         result->source_position = *HERE;
6412
6413         if (token.type != T_IDENTIFIER) {
6414                 parse_error_expected("while parsing member designator",
6415                                      T_IDENTIFIER, NULL);
6416                 return NULL;
6417         }
6418         result->symbol = token.v.symbol;
6419         next_token();
6420
6421         designator_t *last_designator = result;
6422         while(true) {
6423                 if (token.type == '.') {
6424                         next_token();
6425                         if (token.type != T_IDENTIFIER) {
6426                                 parse_error_expected("while parsing member designator",
6427                                                      T_IDENTIFIER, NULL);
6428                                 return NULL;
6429                         }
6430                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6431                         designator->source_position = *HERE;
6432                         designator->symbol          = token.v.symbol;
6433                         next_token();
6434
6435                         last_designator->next = designator;
6436                         last_designator       = designator;
6437                         continue;
6438                 }
6439                 if (token.type == '[') {
6440                         next_token();
6441                         add_anchor_token(']');
6442                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6443                         designator->source_position = *HERE;
6444                         designator->array_index     = parse_expression();
6445                         rem_anchor_token(']');
6446                         expect(']');
6447                         if (designator->array_index == NULL) {
6448                                 return NULL;
6449                         }
6450
6451                         last_designator->next = designator;
6452                         last_designator       = designator;
6453                         continue;
6454                 }
6455                 break;
6456         }
6457
6458         return result;
6459 end_error:
6460         return NULL;
6461 }
6462
6463 /**
6464  * Parse the __builtin_offsetof() expression.
6465  */
6466 static expression_t *parse_offsetof(void)
6467 {
6468         eat(T___builtin_offsetof);
6469
6470         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6471         expression->base.type    = type_size_t;
6472
6473         expect('(');
6474         add_anchor_token(',');
6475         type_t *type = parse_typename();
6476         rem_anchor_token(',');
6477         expect(',');
6478         add_anchor_token(')');
6479         designator_t *designator = parse_designator();
6480         rem_anchor_token(')');
6481         expect(')');
6482
6483         expression->offsetofe.type       = type;
6484         expression->offsetofe.designator = designator;
6485
6486         type_path_t path;
6487         memset(&path, 0, sizeof(path));
6488         path.top_type = type;
6489         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6490
6491         descend_into_subtype(&path);
6492
6493         if (!walk_designator(&path, designator, true)) {
6494                 return create_invalid_expression();
6495         }
6496
6497         DEL_ARR_F(path.path);
6498
6499         return expression;
6500 end_error:
6501         return create_invalid_expression();
6502 }
6503
6504 /**
6505  * Parses a _builtin_va_start() expression.
6506  */
6507 static expression_t *parse_va_start(void)
6508 {
6509         eat(T___builtin_va_start);
6510
6511         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6512
6513         expect('(');
6514         add_anchor_token(',');
6515         expression->va_starte.ap = parse_assignment_expression();
6516         rem_anchor_token(',');
6517         expect(',');
6518         expression_t *const expr = parse_assignment_expression();
6519         if (expr->kind == EXPR_REFERENCE) {
6520                 declaration_t *const decl = expr->reference.declaration;
6521                 if (decl->parent_scope != &current_function->scope || decl->next != NULL) {
6522                         errorf(&expr->base.source_position,
6523                                "second argument of 'va_start' must be last parameter of the current function");
6524                 }
6525                 expression->va_starte.parameter = decl;
6526                 expect(')');
6527                 return expression;
6528         }
6529         expect(')');
6530 end_error:
6531         return create_invalid_expression();
6532 }
6533
6534 /**
6535  * Parses a _builtin_va_arg() expression.
6536  */
6537 static expression_t *parse_va_arg(void)
6538 {
6539         eat(T___builtin_va_arg);
6540
6541         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6542
6543         expect('(');
6544         expression->va_arge.ap = parse_assignment_expression();
6545         expect(',');
6546         expression->base.type = parse_typename();
6547         expect(')');
6548
6549         return expression;
6550 end_error:
6551         return create_invalid_expression();
6552 }
6553
6554 static expression_t *parse_builtin_symbol(void)
6555 {
6556         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
6557
6558         symbol_t *symbol = token.v.symbol;
6559
6560         expression->builtin_symbol.symbol = symbol;
6561         next_token();
6562
6563         type_t *type = get_builtin_symbol_type(symbol);
6564         type = automatic_type_conversion(type);
6565
6566         expression->base.type = type;
6567         return expression;
6568 }
6569
6570 /**
6571  * Parses a __builtin_constant() expression.
6572  */
6573 static expression_t *parse_builtin_constant(void)
6574 {
6575         eat(T___builtin_constant_p);
6576
6577         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6578
6579         expect('(');
6580         add_anchor_token(')');
6581         expression->builtin_constant.value = parse_assignment_expression();
6582         rem_anchor_token(')');
6583         expect(')');
6584         expression->base.type = type_int;
6585
6586         return expression;
6587 end_error:
6588         return create_invalid_expression();
6589 }
6590
6591 /**
6592  * Parses a __builtin_prefetch() expression.
6593  */
6594 static expression_t *parse_builtin_prefetch(void)
6595 {
6596         eat(T___builtin_prefetch);
6597
6598         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
6599
6600         expect('(');
6601         add_anchor_token(')');
6602         expression->builtin_prefetch.adr = parse_assignment_expression();
6603         if (token.type == ',') {
6604                 next_token();
6605                 expression->builtin_prefetch.rw = parse_assignment_expression();
6606         }
6607         if (token.type == ',') {
6608                 next_token();
6609                 expression->builtin_prefetch.locality = parse_assignment_expression();
6610         }
6611         rem_anchor_token(')');
6612         expect(')');
6613         expression->base.type = type_void;
6614
6615         return expression;
6616 end_error:
6617         return create_invalid_expression();
6618 }
6619
6620 /**
6621  * Parses a __builtin_is_*() compare expression.
6622  */
6623 static expression_t *parse_compare_builtin(void)
6624 {
6625         expression_t *expression;
6626
6627         switch(token.type) {
6628         case T___builtin_isgreater:
6629                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6630                 break;
6631         case T___builtin_isgreaterequal:
6632                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6633                 break;
6634         case T___builtin_isless:
6635                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6636                 break;
6637         case T___builtin_islessequal:
6638                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6639                 break;
6640         case T___builtin_islessgreater:
6641                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6642                 break;
6643         case T___builtin_isunordered:
6644                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6645                 break;
6646         default:
6647                 internal_errorf(HERE, "invalid compare builtin found");
6648         }
6649         expression->base.source_position = *HERE;
6650         next_token();
6651
6652         expect('(');
6653         expression->binary.left = parse_assignment_expression();
6654         expect(',');
6655         expression->binary.right = parse_assignment_expression();
6656         expect(')');
6657
6658         type_t *const orig_type_left  = expression->binary.left->base.type;
6659         type_t *const orig_type_right = expression->binary.right->base.type;
6660
6661         type_t *const type_left  = skip_typeref(orig_type_left);
6662         type_t *const type_right = skip_typeref(orig_type_right);
6663         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6664                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6665                         type_error_incompatible("invalid operands in comparison",
6666                                 &expression->base.source_position, orig_type_left, orig_type_right);
6667                 }
6668         } else {
6669                 semantic_comparison(&expression->binary);
6670         }
6671
6672         return expression;
6673 end_error:
6674         return create_invalid_expression();
6675 }
6676
6677 #if 0
6678 /**
6679  * Parses a __builtin_expect() expression.
6680  */
6681 static expression_t *parse_builtin_expect(void)
6682 {
6683         eat(T___builtin_expect);
6684
6685         expression_t *expression
6686                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
6687
6688         expect('(');
6689         expression->binary.left = parse_assignment_expression();
6690         expect(',');
6691         expression->binary.right = parse_constant_expression();
6692         expect(')');
6693
6694         expression->base.type = expression->binary.left->base.type;
6695
6696         return expression;
6697 end_error:
6698         return create_invalid_expression();
6699 }
6700 #endif
6701
6702 /**
6703  * Parses a MS assume() expression.
6704  */
6705 static expression_t *parse_assume(void)
6706 {
6707         eat(T__assume);
6708
6709         expression_t *expression
6710                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
6711
6712         expect('(');
6713         add_anchor_token(')');
6714         expression->unary.value = parse_assignment_expression();
6715         rem_anchor_token(')');
6716         expect(')');
6717
6718         expression->base.type = type_void;
6719         return expression;
6720 end_error:
6721         return create_invalid_expression();
6722 }
6723
6724 /**
6725  * Return the declaration for a given label symbol or create a new one.
6726  *
6727  * @param symbol  the symbol of the label
6728  */
6729 static declaration_t *get_label(symbol_t *symbol)
6730 {
6731         declaration_t *candidate;
6732         assert(current_function != NULL);
6733
6734         candidate = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
6735         /* if we found a local label, we already created the declaration */
6736         if (candidate != NULL) {
6737                 if (candidate->parent_scope != scope) {
6738                         assert(candidate->parent_scope->depth < scope->depth);
6739                         current_function->goto_to_outer = true;
6740                 }
6741                 return candidate;
6742         }
6743
6744         candidate = get_declaration(symbol, NAMESPACE_LABEL);
6745         /* if we found a label in the same function, then we already created the
6746          * declaration */
6747         if (candidate != NULL
6748                         && candidate->parent_scope == &current_function->scope) {
6749                 return candidate;
6750         }
6751
6752         /* otherwise we need to create a new one */
6753         declaration_t *const declaration = allocate_declaration_zero();
6754         declaration->namespc       = NAMESPACE_LABEL;
6755         declaration->symbol        = symbol;
6756
6757         label_push(declaration);
6758
6759         return declaration;
6760 }
6761
6762 /**
6763  * Parses a GNU && label address expression.
6764  */
6765 static expression_t *parse_label_address(void)
6766 {
6767         source_position_t source_position = token.source_position;
6768         eat(T_ANDAND);
6769         if (token.type != T_IDENTIFIER) {
6770                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6771                 goto end_error;
6772         }
6773         symbol_t *symbol = token.v.symbol;
6774         next_token();
6775
6776         declaration_t *label = get_label(symbol);
6777
6778         label->used          = true;
6779         label->address_taken = true;
6780
6781         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6782         expression->base.source_position = source_position;
6783
6784         /* label address is threaten as a void pointer */
6785         expression->base.type                 = type_void_ptr;
6786         expression->label_address.declaration = label;
6787         return expression;
6788 end_error:
6789         return create_invalid_expression();
6790 }
6791
6792 /**
6793  * Parse a microsoft __noop expression.
6794  */
6795 static expression_t *parse_noop_expression(void)
6796 {
6797         source_position_t source_position = *HERE;
6798         eat(T___noop);
6799
6800         if (token.type == '(') {
6801                 /* parse arguments */
6802                 eat('(');
6803                 add_anchor_token(')');
6804                 add_anchor_token(',');
6805
6806                 if (token.type != ')') {
6807                         while(true) {
6808                                 (void)parse_assignment_expression();
6809                                 if (token.type != ',')
6810                                         break;
6811                                 next_token();
6812                         }
6813                 }
6814         }
6815         rem_anchor_token(',');
6816         rem_anchor_token(')');
6817         expect(')');
6818
6819         /* the result is a (int)0 */
6820         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6821         cnst->base.source_position = source_position;
6822         cnst->base.type            = type_int;
6823         cnst->conste.v.int_value   = 0;
6824         cnst->conste.is_ms_noop    = true;
6825
6826         return cnst;
6827
6828 end_error:
6829         return create_invalid_expression();
6830 }
6831
6832 /**
6833  * Parses a primary expression.
6834  */
6835 static expression_t *parse_primary_expression(void)
6836 {
6837         switch (token.type) {
6838                 case T_INTEGER:                  return parse_int_const();
6839                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
6840                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
6841                 case T_FLOATINGPOINT:            return parse_float_const();
6842                 case T_STRING_LITERAL:
6843                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
6844                 case T_IDENTIFIER:               return parse_reference();
6845                 case T___FUNCTION__:
6846                 case T___func__:                 return parse_function_keyword();
6847                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
6848                 case T___FUNCSIG__:              return parse_funcsig_keyword();
6849                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
6850                 case T___builtin_offsetof:       return parse_offsetof();
6851                 case T___builtin_va_start:       return parse_va_start();
6852                 case T___builtin_va_arg:         return parse_va_arg();
6853                 case T___builtin_expect:
6854                 case T___builtin_alloca:
6855                 case T___builtin_inf:
6856                 case T___builtin_inff:
6857                 case T___builtin_infl:
6858                 case T___builtin_nan:
6859                 case T___builtin_nanf:
6860                 case T___builtin_nanl:
6861                 case T___builtin_huge_val:
6862                 case T___builtin_va_end:         return parse_builtin_symbol();
6863                 case T___builtin_isgreater:
6864                 case T___builtin_isgreaterequal:
6865                 case T___builtin_isless:
6866                 case T___builtin_islessequal:
6867                 case T___builtin_islessgreater:
6868                 case T___builtin_isunordered:    return parse_compare_builtin();
6869                 case T___builtin_constant_p:     return parse_builtin_constant();
6870                 case T___builtin_prefetch:       return parse_builtin_prefetch();
6871                 case T__assume:                  return parse_assume();
6872                 case T_ANDAND:
6873                         if (GNU_MODE)
6874                                 return parse_label_address();
6875                         break;
6876
6877                 case '(':                        return parse_parenthesized_expression();
6878                 case T___noop:                   return parse_noop_expression();
6879         }
6880
6881         errorf(HERE, "unexpected token %K, expected an expression", &token);
6882         return create_invalid_expression();
6883 }
6884
6885 /**
6886  * Check if the expression has the character type and issue a warning then.
6887  */
6888 static void check_for_char_index_type(const expression_t *expression)
6889 {
6890         type_t       *const type      = expression->base.type;
6891         const type_t *const base_type = skip_typeref(type);
6892
6893         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
6894                         warning.char_subscripts) {
6895                 warningf(&expression->base.source_position,
6896                          "array subscript has type '%T'", type);
6897         }
6898 }
6899
6900 static expression_t *parse_array_expression(unsigned precedence,
6901                                             expression_t *left)
6902 {
6903         (void) precedence;
6904
6905         eat('[');
6906         add_anchor_token(']');
6907
6908         expression_t *inside = parse_expression();
6909
6910         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6911
6912         array_access_expression_t *array_access = &expression->array_access;
6913
6914         type_t *const orig_type_left   = left->base.type;
6915         type_t *const orig_type_inside = inside->base.type;
6916
6917         type_t *const type_left   = skip_typeref(orig_type_left);
6918         type_t *const type_inside = skip_typeref(orig_type_inside);
6919
6920         type_t *return_type;
6921         if (is_type_pointer(type_left)) {
6922                 return_type             = type_left->pointer.points_to;
6923                 array_access->array_ref = left;
6924                 array_access->index     = inside;
6925                 check_for_char_index_type(inside);
6926         } else if (is_type_pointer(type_inside)) {
6927                 return_type             = type_inside->pointer.points_to;
6928                 array_access->array_ref = inside;
6929                 array_access->index     = left;
6930                 array_access->flipped   = true;
6931                 check_for_char_index_type(left);
6932         } else {
6933                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6934                         errorf(HERE,
6935                                 "array access on object with non-pointer types '%T', '%T'",
6936                                 orig_type_left, orig_type_inside);
6937                 }
6938                 return_type             = type_error_type;
6939                 array_access->array_ref = left;
6940                 array_access->index     = inside;
6941         }
6942
6943         expression->base.type = automatic_type_conversion(return_type);
6944
6945         rem_anchor_token(']');
6946         if (token.type == ']') {
6947                 next_token();
6948         } else {
6949                 parse_error_expected("Problem while parsing array access", ']', NULL);
6950         }
6951         return expression;
6952 }
6953
6954 static expression_t *parse_typeprop(expression_kind_t const kind,
6955                                     source_position_t const pos,
6956                                     unsigned const precedence)
6957 {
6958         expression_t  *tp_expression = allocate_expression_zero(kind);
6959         tp_expression->base.type            = type_size_t;
6960         tp_expression->base.source_position = pos;
6961
6962         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6963
6964         /* we only refer to a type property, mark this case */
6965         bool old     = in_type_prop;
6966         in_type_prop = true;
6967         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6968                 next_token();
6969                 add_anchor_token(')');
6970                 type_t* const orig_type = parse_typename();
6971                 tp_expression->typeprop.type = orig_type;
6972
6973                 type_t const* const type = skip_typeref(orig_type);
6974                 char const* const wrong_type =
6975                         is_type_incomplete(type)    ? "incomplete"          :
6976                         type->kind == TYPE_FUNCTION ? "function designator" :
6977                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6978                         NULL;
6979                 if (wrong_type != NULL) {
6980                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6981                                what, wrong_type, type);
6982                 }
6983
6984                 rem_anchor_token(')');
6985                 expect(')');
6986         } else {
6987                 expression_t *expression = parse_sub_expression(precedence);
6988
6989                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6990                 expression->base.type = orig_type;
6991
6992                 type_t const* const type = skip_typeref(orig_type);
6993                 char const* const wrong_type =
6994                         is_type_incomplete(type)    ? "incomplete"          :
6995                         type->kind == TYPE_FUNCTION ? "function designator" :
6996                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6997                         NULL;
6998                 if (wrong_type != NULL) {
6999                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
7000                 }
7001
7002                 tp_expression->typeprop.type          = expression->base.type;
7003                 tp_expression->typeprop.tp_expression = expression;
7004         }
7005
7006 end_error:
7007         in_type_prop = old;
7008         return tp_expression;
7009 }
7010
7011 static expression_t *parse_sizeof(unsigned precedence)
7012 {
7013         source_position_t pos = *HERE;
7014         eat(T_sizeof);
7015         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
7016 }
7017
7018 static expression_t *parse_alignof(unsigned precedence)
7019 {
7020         source_position_t pos = *HERE;
7021         eat(T___alignof__);
7022         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
7023 }
7024
7025 static expression_t *parse_select_expression(unsigned precedence,
7026                                              expression_t *compound)
7027 {
7028         (void) precedence;
7029         assert(token.type == '.' || token.type == T_MINUSGREATER);
7030
7031         bool is_pointer = (token.type == T_MINUSGREATER);
7032         next_token();
7033
7034         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
7035         select->select.compound = compound;
7036
7037         if (token.type != T_IDENTIFIER) {
7038                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7039                 return select;
7040         }
7041         symbol_t *symbol = token.v.symbol;
7042         next_token();
7043
7044         type_t *const orig_type = compound->base.type;
7045         type_t *const type      = skip_typeref(orig_type);
7046
7047         type_t *type_left;
7048         bool    saw_error = false;
7049         if (is_type_pointer(type)) {
7050                 if (!is_pointer) {
7051                         errorf(HERE,
7052                                "request for member '%Y' in something not a struct or union, but '%T'",
7053                                symbol, orig_type);
7054                         saw_error = true;
7055                 }
7056                 type_left = skip_typeref(type->pointer.points_to);
7057         } else {
7058                 if (is_pointer && is_type_valid(type)) {
7059                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7060                         saw_error = true;
7061                 }
7062                 type_left = type;
7063         }
7064
7065         declaration_t *entry;
7066         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7067             type_left->kind == TYPE_COMPOUND_UNION) {
7068                 declaration_t *const declaration = type_left->compound.declaration;
7069
7070                 if (!declaration->init.complete) {
7071                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7072                                symbol, type_left);
7073                         goto create_error_entry;
7074                 }
7075
7076                 entry = find_compound_entry(declaration, symbol);
7077                 if (entry == NULL) {
7078                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7079                         goto create_error_entry;
7080                 }
7081         } else {
7082                 if (is_type_valid(type_left) && !saw_error) {
7083                         errorf(HERE,
7084                                "request for member '%Y' in something not a struct or union, but '%T'",
7085                                symbol, type_left);
7086                 }
7087 create_error_entry:
7088                 entry         = allocate_declaration_zero();
7089                 entry->symbol = symbol;
7090         }
7091
7092         select->select.compound_entry = entry;
7093
7094         type_t *const res_type =
7095                 get_qualified_type(entry->type, type_left->base.qualifiers);
7096
7097         /* we always do the auto-type conversions; the & and sizeof parser contains
7098          * code to revert this! */
7099         select->base.type = automatic_type_conversion(res_type);
7100
7101         type_t *skipped = skip_typeref(res_type);
7102         if (skipped->kind == TYPE_BITFIELD) {
7103                 select->base.type = skipped->bitfield.base_type;
7104         }
7105
7106         return select;
7107 }
7108
7109 static void check_call_argument(const function_parameter_t *parameter,
7110                                 call_argument_t *argument, unsigned pos)
7111 {
7112         type_t         *expected_type      = parameter->type;
7113         type_t         *expected_type_skip = skip_typeref(expected_type);
7114         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7115         expression_t   *arg_expr           = argument->expression;
7116         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7117
7118         /* handle transparent union gnu extension */
7119         if (is_type_union(expected_type_skip)
7120                         && (expected_type_skip->base.modifiers
7121                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7122                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
7123
7124                 declaration_t *declaration = union_decl->scope.declarations;
7125                 type_t        *best_type   = NULL;
7126                 for ( ; declaration != NULL; declaration = declaration->next) {
7127                         type_t *decl_type = declaration->type;
7128                         error = semantic_assign(decl_type, arg_expr);
7129                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7130                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7131                                 continue;
7132
7133                         if (error == ASSIGN_SUCCESS) {
7134                                 best_type = decl_type;
7135                         } else if (best_type == NULL) {
7136                                 best_type = decl_type;
7137                         }
7138                 }
7139
7140                 if (best_type != NULL) {
7141                         expected_type = best_type;
7142                 }
7143         }
7144
7145         error                = semantic_assign(expected_type, arg_expr);
7146         argument->expression = create_implicit_cast(argument->expression,
7147                                                     expected_type);
7148
7149         if (error != ASSIGN_SUCCESS) {
7150                 /* report exact scope in error messages (like "in argument 3") */
7151                 char buf[64];
7152                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7153                 report_assign_error(error, expected_type, arg_expr,     buf,
7154                                                         &arg_expr->base.source_position);
7155         } else if (warning.traditional || warning.conversion) {
7156                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7157                 if (!types_compatible(expected_type_skip, promoted_type) &&
7158                     !types_compatible(expected_type_skip, type_void_ptr) &&
7159                     !types_compatible(type_void_ptr,      promoted_type)) {
7160                         /* Deliberately show the skipped types in this warning */
7161                         warningf(&arg_expr->base.source_position,
7162                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7163                                 pos, expected_type_skip, promoted_type);
7164                 }
7165         }
7166 }
7167
7168 /**
7169  * Parse a call expression, ie. expression '( ... )'.
7170  *
7171  * @param expression  the function address
7172  */
7173 static expression_t *parse_call_expression(unsigned precedence,
7174                                            expression_t *expression)
7175 {
7176         (void) precedence;
7177         expression_t *result = allocate_expression_zero(EXPR_CALL);
7178         result->base.source_position = expression->base.source_position;
7179
7180         call_expression_t *call = &result->call;
7181         call->function          = expression;
7182
7183         type_t *const orig_type = expression->base.type;
7184         type_t *const type      = skip_typeref(orig_type);
7185
7186         function_type_t *function_type = NULL;
7187         if (is_type_pointer(type)) {
7188                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7189
7190                 if (is_type_function(to_type)) {
7191                         function_type   = &to_type->function;
7192                         call->base.type = function_type->return_type;
7193                 }
7194         }
7195
7196         if (function_type == NULL && is_type_valid(type)) {
7197                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7198         }
7199
7200         /* parse arguments */
7201         eat('(');
7202         add_anchor_token(')');
7203         add_anchor_token(',');
7204
7205         if (token.type != ')') {
7206                 call_argument_t *last_argument = NULL;
7207
7208                 while (true) {
7209                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7210
7211                         argument->expression = parse_assignment_expression();
7212                         if (last_argument == NULL) {
7213                                 call->arguments = argument;
7214                         } else {
7215                                 last_argument->next = argument;
7216                         }
7217                         last_argument = argument;
7218
7219                         if (token.type != ',')
7220                                 break;
7221                         next_token();
7222                 }
7223         }
7224         rem_anchor_token(',');
7225         rem_anchor_token(')');
7226         expect(')');
7227
7228         if (function_type == NULL)
7229                 return result;
7230
7231         function_parameter_t *parameter = function_type->parameters;
7232         call_argument_t      *argument  = call->arguments;
7233         if (!function_type->unspecified_parameters) {
7234                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7235                                 parameter = parameter->next, argument = argument->next) {
7236                         check_call_argument(parameter, argument, ++pos);
7237                 }
7238
7239                 if (parameter != NULL) {
7240                         errorf(HERE, "too few arguments to function '%E'", expression);
7241                 } else if (argument != NULL && !function_type->variadic) {
7242                         errorf(HERE, "too many arguments to function '%E'", expression);
7243                 }
7244         }
7245
7246         /* do default promotion */
7247         for( ; argument != NULL; argument = argument->next) {
7248                 type_t *type = argument->expression->base.type;
7249
7250                 type = get_default_promoted_type(type);
7251
7252                 argument->expression
7253                         = create_implicit_cast(argument->expression, type);
7254         }
7255
7256         check_format(&result->call);
7257
7258         if (warning.aggregate_return &&
7259             is_type_compound(skip_typeref(function_type->return_type))) {
7260                 warningf(&result->base.source_position,
7261                          "function call has aggregate value");
7262         }
7263
7264 end_error:
7265         return result;
7266 }
7267
7268 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7269
7270 static bool same_compound_type(const type_t *type1, const type_t *type2)
7271 {
7272         return
7273                 is_type_compound(type1) &&
7274                 type1->kind == type2->kind &&
7275                 type1->compound.declaration == type2->compound.declaration;
7276 }
7277
7278 /**
7279  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7280  *
7281  * @param expression  the conditional expression
7282  */
7283 static expression_t *parse_conditional_expression(unsigned precedence,
7284                                                   expression_t *expression)
7285 {
7286         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7287
7288         conditional_expression_t *conditional = &result->conditional;
7289         conditional->base.source_position = *HERE;
7290         conditional->condition            = expression;
7291
7292         eat('?');
7293         add_anchor_token(':');
7294
7295         /* 6.5.15.2 */
7296         type_t *const condition_type_orig = expression->base.type;
7297         type_t *const condition_type      = skip_typeref(condition_type_orig);
7298         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7299                 type_error("expected a scalar type in conditional condition",
7300                            &expression->base.source_position, condition_type_orig);
7301         }
7302
7303         expression_t *true_expression = expression;
7304         bool          gnu_cond = false;
7305         if (GNU_MODE && token.type == ':') {
7306                 gnu_cond = true;
7307         } else
7308                 true_expression = parse_expression();
7309         rem_anchor_token(':');
7310         expect(':');
7311         expression_t *false_expression = parse_sub_expression(precedence);
7312
7313         type_t *const orig_true_type  = true_expression->base.type;
7314         type_t *const orig_false_type = false_expression->base.type;
7315         type_t *const true_type       = skip_typeref(orig_true_type);
7316         type_t *const false_type      = skip_typeref(orig_false_type);
7317
7318         /* 6.5.15.3 */
7319         type_t *result_type;
7320         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
7321                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7322                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
7323                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7324                         warningf(&conditional->base.source_position,
7325                                         "ISO C forbids conditional expression with only one void side");
7326                 }
7327                 result_type = type_void;
7328         } else if (is_type_arithmetic(true_type)
7329                    && is_type_arithmetic(false_type)) {
7330                 result_type = semantic_arithmetic(true_type, false_type);
7331
7332                 true_expression  = create_implicit_cast(true_expression, result_type);
7333                 false_expression = create_implicit_cast(false_expression, result_type);
7334
7335                 conditional->true_expression  = true_expression;
7336                 conditional->false_expression = false_expression;
7337                 conditional->base.type        = result_type;
7338         } else if (same_compound_type(true_type, false_type)) {
7339                 /* just take 1 of the 2 types */
7340                 result_type = true_type;
7341         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7342                 type_t *pointer_type;
7343                 type_t *other_type;
7344                 expression_t *other_expression;
7345                 if (is_type_pointer(true_type) &&
7346                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7347                         pointer_type     = true_type;
7348                         other_type       = false_type;
7349                         other_expression = false_expression;
7350                 } else {
7351                         pointer_type     = false_type;
7352                         other_type       = true_type;
7353                         other_expression = true_expression;
7354                 }
7355
7356                 if (is_null_pointer_constant(other_expression)) {
7357                         result_type = pointer_type;
7358                 } else if (is_type_pointer(other_type)) {
7359                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7360                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7361
7362                         type_t *to;
7363                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7364                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7365                                 to = type_void;
7366                         } else if (types_compatible(get_unqualified_type(to1),
7367                                                     get_unqualified_type(to2))) {
7368                                 to = to1;
7369                         } else {
7370                                 warningf(&conditional->base.source_position,
7371                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7372                                         true_type, false_type);
7373                                 to = type_void;
7374                         }
7375
7376                         type_t *const type =
7377                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7378                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7379                 } else if (is_type_integer(other_type)) {
7380                         warningf(&conditional->base.source_position,
7381                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7382                         result_type = pointer_type;
7383                 } else {
7384                         if (is_type_valid(other_type)) {
7385                                 type_error_incompatible("while parsing conditional",
7386                                                 &expression->base.source_position, true_type, false_type);
7387                         }
7388                         result_type = type_error_type;
7389                 }
7390         } else {
7391                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7392                         type_error_incompatible("while parsing conditional",
7393                                                 &conditional->base.source_position, true_type,
7394                                                 false_type);
7395                 }
7396                 result_type = type_error_type;
7397         }
7398
7399         conditional->true_expression
7400                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7401         conditional->false_expression
7402                 = create_implicit_cast(false_expression, result_type);
7403         conditional->base.type = result_type;
7404         return result;
7405 end_error:
7406         return create_invalid_expression();
7407 }
7408
7409 /**
7410  * Parse an extension expression.
7411  */
7412 static expression_t *parse_extension(unsigned precedence)
7413 {
7414         eat(T___extension__);
7415
7416         bool old_gcc_extension   = in_gcc_extension;
7417         in_gcc_extension         = true;
7418         expression_t *expression = parse_sub_expression(precedence);
7419         in_gcc_extension         = old_gcc_extension;
7420         return expression;
7421 }
7422
7423 /**
7424  * Parse a __builtin_classify_type() expression.
7425  */
7426 static expression_t *parse_builtin_classify_type(const unsigned precedence)
7427 {
7428         eat(T___builtin_classify_type);
7429
7430         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7431         result->base.type    = type_int;
7432
7433         expect('(');
7434         add_anchor_token(')');
7435         expression_t *expression = parse_sub_expression(precedence);
7436         rem_anchor_token(')');
7437         expect(')');
7438         result->classify_type.type_expression = expression;
7439
7440         return result;
7441 end_error:
7442         return create_invalid_expression();
7443 }
7444
7445 static bool check_pointer_arithmetic(const source_position_t *source_position,
7446                                      type_t *pointer_type,
7447                                      type_t *orig_pointer_type)
7448 {
7449         type_t *points_to = pointer_type->pointer.points_to;
7450         points_to = skip_typeref(points_to);
7451
7452         if (is_type_incomplete(points_to)) {
7453                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7454                         errorf(source_position,
7455                                "arithmetic with pointer to incomplete type '%T' not allowed",
7456                                orig_pointer_type);
7457                         return false;
7458                 } else if (warning.pointer_arith) {
7459                         warningf(source_position,
7460                                  "pointer of type '%T' used in arithmetic",
7461                                  orig_pointer_type);
7462                 }
7463         } else if (is_type_function(points_to)) {
7464                 if (!GNU_MODE) {
7465                         errorf(source_position,
7466                                "arithmetic with pointer to function type '%T' not allowed",
7467                                orig_pointer_type);
7468                         return false;
7469                 } else if (warning.pointer_arith) {
7470                         warningf(source_position,
7471                                  "pointer to a function '%T' used in arithmetic",
7472                                  orig_pointer_type);
7473                 }
7474         }
7475         return true;
7476 }
7477
7478 static bool is_lvalue(const expression_t *expression)
7479 {
7480         switch (expression->kind) {
7481         case EXPR_REFERENCE:
7482         case EXPR_ARRAY_ACCESS:
7483         case EXPR_SELECT:
7484         case EXPR_UNARY_DEREFERENCE:
7485                 return true;
7486
7487         default:
7488                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
7489                  * error before, which maybe prevented properly recognizing it as
7490                  * lvalue. */
7491                 return !is_type_valid(skip_typeref(expression->base.type));
7492         }
7493 }
7494
7495 static void semantic_incdec(unary_expression_t *expression)
7496 {
7497         type_t *const orig_type = expression->value->base.type;
7498         type_t *const type      = skip_typeref(orig_type);
7499         if (is_type_pointer(type)) {
7500                 if (!check_pointer_arithmetic(&expression->base.source_position,
7501                                               type, orig_type)) {
7502                         return;
7503                 }
7504         } else if (!is_type_real(type) && is_type_valid(type)) {
7505                 /* TODO: improve error message */
7506                 errorf(&expression->base.source_position,
7507                        "operation needs an arithmetic or pointer type");
7508                 return;
7509         }
7510         if (!is_lvalue(expression->value)) {
7511                 /* TODO: improve error message */
7512                 errorf(&expression->base.source_position, "lvalue required as operand");
7513         }
7514         expression->base.type = orig_type;
7515 }
7516
7517 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7518 {
7519         type_t *const orig_type = expression->value->base.type;
7520         type_t *const type      = skip_typeref(orig_type);
7521         if (!is_type_arithmetic(type)) {
7522                 if (is_type_valid(type)) {
7523                         /* TODO: improve error message */
7524                         errorf(&expression->base.source_position,
7525                                 "operation needs an arithmetic type");
7526                 }
7527                 return;
7528         }
7529
7530         expression->base.type = orig_type;
7531 }
7532
7533 static void semantic_unexpr_plus(unary_expression_t *expression)
7534 {
7535         semantic_unexpr_arithmetic(expression);
7536         if (warning.traditional)
7537                 warningf(&expression->base.source_position,
7538                         "traditional C rejects the unary plus operator");
7539 }
7540
7541 static expression_t const *get_reference_address(expression_t const *expr)
7542 {
7543         bool regular_take_address = true;
7544         for (;;) {
7545                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7546                         expr = expr->unary.value;
7547                 } else {
7548                         regular_take_address = false;
7549                 }
7550
7551                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7552                         break;
7553
7554                 expr = expr->unary.value;
7555         }
7556
7557         if (expr->kind != EXPR_REFERENCE)
7558                 return NULL;
7559
7560         if (!regular_take_address &&
7561             !is_type_function(skip_typeref(expr->reference.declaration->type))) {
7562                 return NULL;
7563         }
7564
7565         return expr;
7566 }
7567
7568 static void warn_function_address_as_bool(expression_t const* expr)
7569 {
7570         if (!warning.address)
7571                 return;
7572
7573         expr = get_reference_address(expr);
7574         if (expr != NULL) {
7575                 warningf(&expr->base.source_position,
7576                         "the address of '%Y' will always evaluate as 'true'",
7577                         expr->reference.declaration->symbol);
7578         }
7579 }
7580
7581 static void semantic_not(unary_expression_t *expression)
7582 {
7583         type_t *const orig_type = expression->value->base.type;
7584         type_t *const type      = skip_typeref(orig_type);
7585         if (!is_type_scalar(type) && is_type_valid(type)) {
7586                 errorf(&expression->base.source_position,
7587                        "operand of ! must be of scalar type");
7588         }
7589
7590         warn_function_address_as_bool(expression->value);
7591
7592         expression->base.type = type_int;
7593 }
7594
7595 static void semantic_unexpr_integer(unary_expression_t *expression)
7596 {
7597         type_t *const orig_type = expression->value->base.type;
7598         type_t *const type      = skip_typeref(orig_type);
7599         if (!is_type_integer(type)) {
7600                 if (is_type_valid(type)) {
7601                         errorf(&expression->base.source_position,
7602                                "operand of ~ must be of integer type");
7603                 }
7604                 return;
7605         }
7606
7607         expression->base.type = orig_type;
7608 }
7609
7610 static void semantic_dereference(unary_expression_t *expression)
7611 {
7612         type_t *const orig_type = expression->value->base.type;
7613         type_t *const type      = skip_typeref(orig_type);
7614         if (!is_type_pointer(type)) {
7615                 if (is_type_valid(type)) {
7616                         errorf(&expression->base.source_position,
7617                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7618                 }
7619                 return;
7620         }
7621
7622         type_t *result_type   = type->pointer.points_to;
7623         result_type           = automatic_type_conversion(result_type);
7624         expression->base.type = result_type;
7625 }
7626
7627 /**
7628  * Record that an address is taken (expression represents an lvalue).
7629  *
7630  * @param expression       the expression
7631  * @param may_be_register  if true, the expression might be an register
7632  */
7633 static void set_address_taken(expression_t *expression, bool may_be_register)
7634 {
7635         if (expression->kind != EXPR_REFERENCE)
7636                 return;
7637
7638         declaration_t *const declaration = expression->reference.declaration;
7639         /* happens for parse errors */
7640         if (declaration == NULL)
7641                 return;
7642
7643         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
7644                 errorf(&expression->base.source_position,
7645                                 "address of register variable '%Y' requested",
7646                                 declaration->symbol);
7647         } else {
7648                 declaration->address_taken = 1;
7649         }
7650 }
7651
7652 /**
7653  * Check the semantic of the address taken expression.
7654  */
7655 static void semantic_take_addr(unary_expression_t *expression)
7656 {
7657         expression_t *value = expression->value;
7658         value->base.type    = revert_automatic_type_conversion(value);
7659
7660         type_t *orig_type = value->base.type;
7661         if (!is_type_valid(skip_typeref(orig_type)))
7662                 return;
7663
7664         set_address_taken(value, false);
7665
7666         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7667 }
7668
7669 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
7670 static expression_t *parse_##unexpression_type(unsigned precedence)            \
7671 {                                                                              \
7672         expression_t *unary_expression                                             \
7673                 = allocate_expression_zero(unexpression_type);                         \
7674         unary_expression->base.source_position = *HERE;                            \
7675         eat(token_type);                                                           \
7676         unary_expression->unary.value = parse_sub_expression(precedence);          \
7677                                                                                    \
7678         sfunc(&unary_expression->unary);                                           \
7679                                                                                    \
7680         return unary_expression;                                                   \
7681 }
7682
7683 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7684                                semantic_unexpr_arithmetic)
7685 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7686                                semantic_unexpr_plus)
7687 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7688                                semantic_not)
7689 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7690                                semantic_dereference)
7691 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7692                                semantic_take_addr)
7693 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7694                                semantic_unexpr_integer)
7695 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7696                                semantic_incdec)
7697 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7698                                semantic_incdec)
7699
7700 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
7701                                                sfunc)                         \
7702 static expression_t *parse_##unexpression_type(unsigned precedence,           \
7703                                                expression_t *left)            \
7704 {                                                                             \
7705         (void) precedence;                                                        \
7706                                                                               \
7707         expression_t *unary_expression                                            \
7708                 = allocate_expression_zero(unexpression_type);                        \
7709         unary_expression->base.source_position = *HERE;                           \
7710         eat(token_type);                                                          \
7711         unary_expression->unary.value          = left;                            \
7712                                                                                   \
7713         sfunc(&unary_expression->unary);                                          \
7714                                                                               \
7715         return unary_expression;                                                  \
7716 }
7717
7718 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7719                                        EXPR_UNARY_POSTFIX_INCREMENT,
7720                                        semantic_incdec)
7721 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7722                                        EXPR_UNARY_POSTFIX_DECREMENT,
7723                                        semantic_incdec)
7724
7725 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7726 {
7727         /* TODO: handle complex + imaginary types */
7728
7729         type_left  = get_unqualified_type(type_left);
7730         type_right = get_unqualified_type(type_right);
7731
7732         /* Â§ 6.3.1.8 Usual arithmetic conversions */
7733         if (type_left == type_long_double || type_right == type_long_double) {
7734                 return type_long_double;
7735         } else if (type_left == type_double || type_right == type_double) {
7736                 return type_double;
7737         } else if (type_left == type_float || type_right == type_float) {
7738                 return type_float;
7739         }
7740
7741         type_left  = promote_integer(type_left);
7742         type_right = promote_integer(type_right);
7743
7744         if (type_left == type_right)
7745                 return type_left;
7746
7747         bool const signed_left  = is_type_signed(type_left);
7748         bool const signed_right = is_type_signed(type_right);
7749         int const  rank_left    = get_rank(type_left);
7750         int const  rank_right   = get_rank(type_right);
7751
7752         if (signed_left == signed_right)
7753                 return rank_left >= rank_right ? type_left : type_right;
7754
7755         int     s_rank;
7756         int     u_rank;
7757         type_t *s_type;
7758         type_t *u_type;
7759         if (signed_left) {
7760                 s_rank = rank_left;
7761                 s_type = type_left;
7762                 u_rank = rank_right;
7763                 u_type = type_right;
7764         } else {
7765                 s_rank = rank_right;
7766                 s_type = type_right;
7767                 u_rank = rank_left;
7768                 u_type = type_left;
7769         }
7770
7771         if (u_rank >= s_rank)
7772                 return u_type;
7773
7774         /* casting rank to atomic_type_kind is a bit hacky, but makes things
7775          * easier here... */
7776         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
7777                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
7778                 return s_type;
7779
7780         switch (s_rank) {
7781                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
7782                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7783                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7784
7785                 default: panic("invalid atomic type");
7786         }
7787 }
7788
7789 /**
7790  * Check the semantic restrictions for a binary expression.
7791  */
7792 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7793 {
7794         expression_t *const left            = expression->left;
7795         expression_t *const right           = expression->right;
7796         type_t       *const orig_type_left  = left->base.type;
7797         type_t       *const orig_type_right = right->base.type;
7798         type_t       *const type_left       = skip_typeref(orig_type_left);
7799         type_t       *const type_right      = skip_typeref(orig_type_right);
7800
7801         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7802                 /* TODO: improve error message */
7803                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7804                         errorf(&expression->base.source_position,
7805                                "operation needs arithmetic types");
7806                 }
7807                 return;
7808         }
7809
7810         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7811         expression->left      = create_implicit_cast(left, arithmetic_type);
7812         expression->right     = create_implicit_cast(right, arithmetic_type);
7813         expression->base.type = arithmetic_type;
7814 }
7815
7816 static void warn_div_by_zero(binary_expression_t const *const expression)
7817 {
7818         if (!warning.div_by_zero ||
7819             !is_type_integer(expression->base.type))
7820                 return;
7821
7822         expression_t const *const right = expression->right;
7823         /* The type of the right operand can be different for /= */
7824         if (is_type_integer(right->base.type) &&
7825             is_constant_expression(right)     &&
7826             fold_constant(right) == 0) {
7827                 warningf(&expression->base.source_position, "division by zero");
7828         }
7829 }
7830
7831 /**
7832  * Check the semantic restrictions for a div/mod expression.
7833  */
7834 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
7835         semantic_binexpr_arithmetic(expression);
7836         warn_div_by_zero(expression);
7837 }
7838
7839 static void semantic_shift_op(binary_expression_t *expression)
7840 {
7841         expression_t *const left            = expression->left;
7842         expression_t *const right           = expression->right;
7843         type_t       *const orig_type_left  = left->base.type;
7844         type_t       *const orig_type_right = right->base.type;
7845         type_t       *      type_left       = skip_typeref(orig_type_left);
7846         type_t       *      type_right      = skip_typeref(orig_type_right);
7847
7848         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7849                 /* TODO: improve error message */
7850                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7851                         errorf(&expression->base.source_position,
7852                                "operands of shift operation must have integer types");
7853                 }
7854                 return;
7855         }
7856
7857         type_left  = promote_integer(type_left);
7858         type_right = promote_integer(type_right);
7859
7860         expression->left      = create_implicit_cast(left, type_left);
7861         expression->right     = create_implicit_cast(right, type_right);
7862         expression->base.type = type_left;
7863 }
7864
7865 static void semantic_add(binary_expression_t *expression)
7866 {
7867         expression_t *const left            = expression->left;
7868         expression_t *const right           = expression->right;
7869         type_t       *const orig_type_left  = left->base.type;
7870         type_t       *const orig_type_right = right->base.type;
7871         type_t       *const type_left       = skip_typeref(orig_type_left);
7872         type_t       *const type_right      = skip_typeref(orig_type_right);
7873
7874         /* Â§ 6.5.6 */
7875         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7876                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7877                 expression->left  = create_implicit_cast(left, arithmetic_type);
7878                 expression->right = create_implicit_cast(right, arithmetic_type);
7879                 expression->base.type = arithmetic_type;
7880                 return;
7881         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7882                 check_pointer_arithmetic(&expression->base.source_position,
7883                                          type_left, orig_type_left);
7884                 expression->base.type = type_left;
7885         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
7886                 check_pointer_arithmetic(&expression->base.source_position,
7887                                          type_right, orig_type_right);
7888                 expression->base.type = type_right;
7889         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7890                 errorf(&expression->base.source_position,
7891                        "invalid operands to binary + ('%T', '%T')",
7892                        orig_type_left, orig_type_right);
7893         }
7894 }
7895
7896 static void semantic_sub(binary_expression_t *expression)
7897 {
7898         expression_t            *const left            = expression->left;
7899         expression_t            *const right           = expression->right;
7900         type_t                  *const orig_type_left  = left->base.type;
7901         type_t                  *const orig_type_right = right->base.type;
7902         type_t                  *const type_left       = skip_typeref(orig_type_left);
7903         type_t                  *const type_right      = skip_typeref(orig_type_right);
7904         source_position_t const *const pos             = &expression->base.source_position;
7905
7906         /* Â§ 5.6.5 */
7907         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7908                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7909                 expression->left        = create_implicit_cast(left, arithmetic_type);
7910                 expression->right       = create_implicit_cast(right, arithmetic_type);
7911                 expression->base.type =  arithmetic_type;
7912                 return;
7913         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7914                 check_pointer_arithmetic(&expression->base.source_position,
7915                                          type_left, orig_type_left);
7916                 expression->base.type = type_left;
7917         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7918                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
7919                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
7920                 if (!types_compatible(unqual_left, unqual_right)) {
7921                         errorf(pos,
7922                                "subtracting pointers to incompatible types '%T' and '%T'",
7923                                orig_type_left, orig_type_right);
7924                 } else if (!is_type_object(unqual_left)) {
7925                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
7926                                 warningf(pos, "subtracting pointers to void");
7927                         } else {
7928                                 errorf(pos, "subtracting pointers to non-object types '%T'",
7929                                        orig_type_left);
7930                         }
7931                 }
7932                 expression->base.type = type_ptrdiff_t;
7933         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7934                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
7935                        orig_type_left, orig_type_right);
7936         }
7937 }
7938
7939 static void warn_string_literal_address(expression_t const* expr)
7940 {
7941         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7942                 expr = expr->unary.value;
7943                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7944                         return;
7945                 expr = expr->unary.value;
7946         }
7947
7948         if (expr->kind == EXPR_STRING_LITERAL ||
7949             expr->kind == EXPR_WIDE_STRING_LITERAL) {
7950                 warningf(&expr->base.source_position,
7951                         "comparison with string literal results in unspecified behaviour");
7952         }
7953 }
7954
7955 /**
7956  * Check the semantics of comparison expressions.
7957  *
7958  * @param expression   The expression to check.
7959  */
7960 static void semantic_comparison(binary_expression_t *expression)
7961 {
7962         expression_t *left  = expression->left;
7963         expression_t *right = expression->right;
7964
7965         if (warning.address) {
7966                 warn_string_literal_address(left);
7967                 warn_string_literal_address(right);
7968
7969                 expression_t const* const func_left = get_reference_address(left);
7970                 if (func_left != NULL && is_null_pointer_constant(right)) {
7971                         warningf(&expression->base.source_position,
7972                                 "the address of '%Y' will never be NULL",
7973                                 func_left->reference.declaration->symbol);
7974                 }
7975
7976                 expression_t const* const func_right = get_reference_address(right);
7977                 if (func_right != NULL && is_null_pointer_constant(right)) {
7978                         warningf(&expression->base.source_position,
7979                                 "the address of '%Y' will never be NULL",
7980                                 func_right->reference.declaration->symbol);
7981                 }
7982         }
7983
7984         type_t *orig_type_left  = left->base.type;
7985         type_t *orig_type_right = right->base.type;
7986         type_t *type_left       = skip_typeref(orig_type_left);
7987         type_t *type_right      = skip_typeref(orig_type_right);
7988
7989         /* TODO non-arithmetic types */
7990         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7991                 /* test for signed vs unsigned compares */
7992                 if (warning.sign_compare &&
7993                     (expression->base.kind != EXPR_BINARY_EQUAL &&
7994                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
7995                     (is_type_signed(type_left) != is_type_signed(type_right))) {
7996
7997                         /* check if 1 of the operands is a constant, in this case we just
7998                          * check wether we can safely represent the resulting constant in
7999                          * the type of the other operand. */
8000                         expression_t *const_expr = NULL;
8001                         expression_t *other_expr = NULL;
8002
8003                         if (is_constant_expression(left)) {
8004                                 const_expr = left;
8005                                 other_expr = right;
8006                         } else if (is_constant_expression(right)) {
8007                                 const_expr = right;
8008                                 other_expr = left;
8009                         }
8010
8011                         if (const_expr != NULL) {
8012                                 type_t *other_type = skip_typeref(other_expr->base.type);
8013                                 long    val        = fold_constant(const_expr);
8014                                 /* TODO: check if val can be represented by other_type */
8015                                 (void) other_type;
8016                                 (void) val;
8017                         }
8018                         warningf(&expression->base.source_position,
8019                                  "comparison between signed and unsigned");
8020                 }
8021                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8022                 expression->left        = create_implicit_cast(left, arithmetic_type);
8023                 expression->right       = create_implicit_cast(right, arithmetic_type);
8024                 expression->base.type   = arithmetic_type;
8025                 if (warning.float_equal &&
8026                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8027                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8028                     is_type_float(arithmetic_type)) {
8029                         warningf(&expression->base.source_position,
8030                                  "comparing floating point with == or != is unsafe");
8031                 }
8032         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8033                 /* TODO check compatibility */
8034         } else if (is_type_pointer(type_left)) {
8035                 expression->right = create_implicit_cast(right, type_left);
8036         } else if (is_type_pointer(type_right)) {
8037                 expression->left = create_implicit_cast(left, type_right);
8038         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8039                 type_error_incompatible("invalid operands in comparison",
8040                                         &expression->base.source_position,
8041                                         type_left, type_right);
8042         }
8043         expression->base.type = type_int;
8044 }
8045
8046 /**
8047  * Checks if a compound type has constant fields.
8048  */
8049 static bool has_const_fields(const compound_type_t *type)
8050 {
8051         const scope_t       *scope       = &type->declaration->scope;
8052         const declaration_t *declaration = scope->declarations;
8053
8054         for (; declaration != NULL; declaration = declaration->next) {
8055                 if (declaration->namespc != NAMESPACE_NORMAL)
8056                         continue;
8057
8058                 const type_t *decl_type = skip_typeref(declaration->type);
8059                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8060                         return true;
8061         }
8062         /* TODO */
8063         return false;
8064 }
8065
8066 static bool is_valid_assignment_lhs(expression_t const* const left)
8067 {
8068         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8069         type_t *const type_left      = skip_typeref(orig_type_left);
8070
8071         if (!is_lvalue(left)) {
8072                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
8073                        left);
8074                 return false;
8075         }
8076
8077         if (is_type_array(type_left)) {
8078                 errorf(HERE, "cannot assign to arrays ('%E')", left);
8079                 return false;
8080         }
8081         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8082                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
8083                        orig_type_left);
8084                 return false;
8085         }
8086         if (is_type_incomplete(type_left)) {
8087                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
8088                        left, orig_type_left);
8089                 return false;
8090         }
8091         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8092                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
8093                        left, orig_type_left);
8094                 return false;
8095         }
8096
8097         return true;
8098 }
8099
8100 static void semantic_arithmetic_assign(binary_expression_t *expression)
8101 {
8102         expression_t *left            = expression->left;
8103         expression_t *right           = expression->right;
8104         type_t       *orig_type_left  = left->base.type;
8105         type_t       *orig_type_right = right->base.type;
8106
8107         if (!is_valid_assignment_lhs(left))
8108                 return;
8109
8110         type_t *type_left  = skip_typeref(orig_type_left);
8111         type_t *type_right = skip_typeref(orig_type_right);
8112
8113         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8114                 /* TODO: improve error message */
8115                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8116                         errorf(&expression->base.source_position,
8117                                "operation needs arithmetic types");
8118                 }
8119                 return;
8120         }
8121
8122         /* combined instructions are tricky. We can't create an implicit cast on
8123          * the left side, because we need the uncasted form for the store.
8124          * The ast2firm pass has to know that left_type must be right_type
8125          * for the arithmetic operation and create a cast by itself */
8126         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8127         expression->right       = create_implicit_cast(right, arithmetic_type);
8128         expression->base.type   = type_left;
8129 }
8130
8131 static void semantic_divmod_assign(binary_expression_t *expression)
8132 {
8133         semantic_arithmetic_assign(expression);
8134         warn_div_by_zero(expression);
8135 }
8136
8137 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8138 {
8139         expression_t *const left            = expression->left;
8140         expression_t *const right           = expression->right;
8141         type_t       *const orig_type_left  = left->base.type;
8142         type_t       *const orig_type_right = right->base.type;
8143         type_t       *const type_left       = skip_typeref(orig_type_left);
8144         type_t       *const type_right      = skip_typeref(orig_type_right);
8145
8146         if (!is_valid_assignment_lhs(left))
8147                 return;
8148
8149         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8150                 /* combined instructions are tricky. We can't create an implicit cast on
8151                  * the left side, because we need the uncasted form for the store.
8152                  * The ast2firm pass has to know that left_type must be right_type
8153                  * for the arithmetic operation and create a cast by itself */
8154                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8155                 expression->right     = create_implicit_cast(right, arithmetic_type);
8156                 expression->base.type = type_left;
8157         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8158                 check_pointer_arithmetic(&expression->base.source_position,
8159                                          type_left, orig_type_left);
8160                 expression->base.type = type_left;
8161         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8162                 errorf(&expression->base.source_position,
8163                        "incompatible types '%T' and '%T' in assignment",
8164                        orig_type_left, orig_type_right);
8165         }
8166 }
8167
8168 /**
8169  * Check the semantic restrictions of a logical expression.
8170  */
8171 static void semantic_logical_op(binary_expression_t *expression)
8172 {
8173         expression_t *const left            = expression->left;
8174         expression_t *const right           = expression->right;
8175         type_t       *const orig_type_left  = left->base.type;
8176         type_t       *const orig_type_right = right->base.type;
8177         type_t       *const type_left       = skip_typeref(orig_type_left);
8178         type_t       *const type_right      = skip_typeref(orig_type_right);
8179
8180         warn_function_address_as_bool(left);
8181         warn_function_address_as_bool(right);
8182
8183         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8184                 /* TODO: improve error message */
8185                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8186                         errorf(&expression->base.source_position,
8187                                "operation needs scalar types");
8188                 }
8189                 return;
8190         }
8191
8192         expression->base.type = type_int;
8193 }
8194
8195 /**
8196  * Check the semantic restrictions of a binary assign expression.
8197  */
8198 static void semantic_binexpr_assign(binary_expression_t *expression)
8199 {
8200         expression_t *left           = expression->left;
8201         type_t       *orig_type_left = left->base.type;
8202
8203         if (!is_valid_assignment_lhs(left))
8204                 return;
8205
8206         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8207         report_assign_error(error, orig_type_left, expression->right,
8208                         "assignment", &left->base.source_position);
8209         expression->right = create_implicit_cast(expression->right, orig_type_left);
8210         expression->base.type = orig_type_left;
8211 }
8212
8213 /**
8214  * Determine if the outermost operation (or parts thereof) of the given
8215  * expression has no effect in order to generate a warning about this fact.
8216  * Therefore in some cases this only examines some of the operands of the
8217  * expression (see comments in the function and examples below).
8218  * Examples:
8219  *   f() + 23;    // warning, because + has no effect
8220  *   x || f();    // no warning, because x controls execution of f()
8221  *   x ? y : f(); // warning, because y has no effect
8222  *   (void)x;     // no warning to be able to suppress the warning
8223  * This function can NOT be used for an "expression has definitely no effect"-
8224  * analysis. */
8225 static bool expression_has_effect(const expression_t *const expr)
8226 {
8227         switch (expr->kind) {
8228                 case EXPR_UNKNOWN:                   break;
8229                 case EXPR_INVALID:                   return true; /* do NOT warn */
8230                 case EXPR_REFERENCE:                 return false;
8231                 /* suppress the warning for microsoft __noop operations */
8232                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8233                 case EXPR_CHARACTER_CONSTANT:        return false;
8234                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8235                 case EXPR_STRING_LITERAL:            return false;
8236                 case EXPR_WIDE_STRING_LITERAL:       return false;
8237                 case EXPR_LABEL_ADDRESS:             return false;
8238
8239                 case EXPR_CALL: {
8240                         const call_expression_t *const call = &expr->call;
8241                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8242                                 return true;
8243
8244                         switch (call->function->builtin_symbol.symbol->ID) {
8245                                 case T___builtin_va_end: return true;
8246                                 default:                 return false;
8247                         }
8248                 }
8249
8250                 /* Generate the warning if either the left or right hand side of a
8251                  * conditional expression has no effect */
8252                 case EXPR_CONDITIONAL: {
8253                         const conditional_expression_t *const cond = &expr->conditional;
8254                         return
8255                                 expression_has_effect(cond->true_expression) &&
8256                                 expression_has_effect(cond->false_expression);
8257                 }
8258
8259                 case EXPR_SELECT:                    return false;
8260                 case EXPR_ARRAY_ACCESS:              return false;
8261                 case EXPR_SIZEOF:                    return false;
8262                 case EXPR_CLASSIFY_TYPE:             return false;
8263                 case EXPR_ALIGNOF:                   return false;
8264
8265                 case EXPR_FUNCNAME:                  return false;
8266                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8267                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8268                 case EXPR_BUILTIN_PREFETCH:          return true;
8269                 case EXPR_OFFSETOF:                  return false;
8270                 case EXPR_VA_START:                  return true;
8271                 case EXPR_VA_ARG:                    return true;
8272                 case EXPR_STATEMENT:                 return true; // TODO
8273                 case EXPR_COMPOUND_LITERAL:          return false;
8274
8275                 case EXPR_UNARY_NEGATE:              return false;
8276                 case EXPR_UNARY_PLUS:                return false;
8277                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8278                 case EXPR_UNARY_NOT:                 return false;
8279                 case EXPR_UNARY_DEREFERENCE:         return false;
8280                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8281                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8282                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8283                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8284                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8285
8286                 /* Treat void casts as if they have an effect in order to being able to
8287                  * suppress the warning */
8288                 case EXPR_UNARY_CAST: {
8289                         type_t *const type = skip_typeref(expr->base.type);
8290                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8291                 }
8292
8293                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8294                 case EXPR_UNARY_ASSUME:              return true;
8295
8296                 case EXPR_BINARY_ADD:                return false;
8297                 case EXPR_BINARY_SUB:                return false;
8298                 case EXPR_BINARY_MUL:                return false;
8299                 case EXPR_BINARY_DIV:                return false;
8300                 case EXPR_BINARY_MOD:                return false;
8301                 case EXPR_BINARY_EQUAL:              return false;
8302                 case EXPR_BINARY_NOTEQUAL:           return false;
8303                 case EXPR_BINARY_LESS:               return false;
8304                 case EXPR_BINARY_LESSEQUAL:          return false;
8305                 case EXPR_BINARY_GREATER:            return false;
8306                 case EXPR_BINARY_GREATEREQUAL:       return false;
8307                 case EXPR_BINARY_BITWISE_AND:        return false;
8308                 case EXPR_BINARY_BITWISE_OR:         return false;
8309                 case EXPR_BINARY_BITWISE_XOR:        return false;
8310                 case EXPR_BINARY_SHIFTLEFT:          return false;
8311                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8312                 case EXPR_BINARY_ASSIGN:             return true;
8313                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8314                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8315                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8316                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8317                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8318                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8319                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8320                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8321                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8322                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8323
8324                 /* Only examine the right hand side of && and ||, because the left hand
8325                  * side already has the effect of controlling the execution of the right
8326                  * hand side */
8327                 case EXPR_BINARY_LOGICAL_AND:
8328                 case EXPR_BINARY_LOGICAL_OR:
8329                 /* Only examine the right hand side of a comma expression, because the left
8330                  * hand side has a separate warning */
8331                 case EXPR_BINARY_COMMA:
8332                         return expression_has_effect(expr->binary.right);
8333
8334                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8335                 case EXPR_BINARY_ISGREATER:          return false;
8336                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8337                 case EXPR_BINARY_ISLESS:             return false;
8338                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8339                 case EXPR_BINARY_ISLESSGREATER:      return false;
8340                 case EXPR_BINARY_ISUNORDERED:        return false;
8341         }
8342
8343         internal_errorf(HERE, "unexpected expression");
8344 }
8345
8346 static void semantic_comma(binary_expression_t *expression)
8347 {
8348         if (warning.unused_value) {
8349                 const expression_t *const left = expression->left;
8350                 if (!expression_has_effect(left)) {
8351                         warningf(&left->base.source_position,
8352                                  "left-hand operand of comma expression has no effect");
8353                 }
8354         }
8355         expression->base.type = expression->right->base.type;
8356 }
8357
8358 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
8359 static expression_t *parse_##binexpression_type(unsigned precedence,      \
8360                                                 expression_t *left)       \
8361 {                                                                         \
8362         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
8363         binexpr->base.source_position = *HERE;                                \
8364         binexpr->binary.left          = left;                                 \
8365         eat(token_type);                                                      \
8366                                                                           \
8367         expression_t *right = parse_sub_expression(precedence + lr);          \
8368                                                                           \
8369         binexpr->binary.right = right;                                        \
8370         sfunc(&binexpr->binary);                                              \
8371                                                                           \
8372         return binexpr;                                                       \
8373 }
8374
8375 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
8376 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
8377 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_divmod_arithmetic, 1)
8378 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_divmod_arithmetic, 1)
8379 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
8380 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
8381 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
8382 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
8383 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
8384
8385 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
8386                       semantic_comparison, 1)
8387 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
8388                       semantic_comparison, 1)
8389 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
8390                       semantic_comparison, 1)
8391 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
8392                       semantic_comparison, 1)
8393
8394 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
8395                       semantic_binexpr_arithmetic, 1)
8396 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
8397                       semantic_binexpr_arithmetic, 1)
8398 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
8399                       semantic_binexpr_arithmetic, 1)
8400 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
8401                       semantic_logical_op, 1)
8402 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
8403                       semantic_logical_op, 1)
8404 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
8405                       semantic_shift_op, 1)
8406 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
8407                       semantic_shift_op, 1)
8408 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
8409                       semantic_arithmetic_addsubb_assign, 0)
8410 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
8411                       semantic_arithmetic_addsubb_assign, 0)
8412 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
8413                       semantic_arithmetic_assign, 0)
8414 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
8415                       semantic_divmod_assign, 0)
8416 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
8417                       semantic_divmod_assign, 0)
8418 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
8419                       semantic_arithmetic_assign, 0)
8420 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8421                       semantic_arithmetic_assign, 0)
8422 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
8423                       semantic_arithmetic_assign, 0)
8424 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
8425                       semantic_arithmetic_assign, 0)
8426 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
8427                       semantic_arithmetic_assign, 0)
8428
8429 static expression_t *parse_sub_expression(unsigned precedence)
8430 {
8431         if (token.type < 0) {
8432                 return expected_expression_error();
8433         }
8434
8435         expression_parser_function_t *parser
8436                 = &expression_parsers[token.type];
8437         source_position_t             source_position = token.source_position;
8438         expression_t                 *left;
8439
8440         if (parser->parser != NULL) {
8441                 left = parser->parser(parser->precedence);
8442         } else {
8443                 left = parse_primary_expression();
8444         }
8445         assert(left != NULL);
8446         left->base.source_position = source_position;
8447
8448         while(true) {
8449                 if (token.type < 0) {
8450                         return expected_expression_error();
8451                 }
8452
8453                 parser = &expression_parsers[token.type];
8454                 if (parser->infix_parser == NULL)
8455                         break;
8456                 if (parser->infix_precedence < precedence)
8457                         break;
8458
8459                 left = parser->infix_parser(parser->infix_precedence, left);
8460
8461                 assert(left != NULL);
8462                 assert(left->kind != EXPR_UNKNOWN);
8463                 left->base.source_position = source_position;
8464         }
8465
8466         return left;
8467 }
8468
8469 /**
8470  * Parse an expression.
8471  */
8472 static expression_t *parse_expression(void)
8473 {
8474         return parse_sub_expression(1);
8475 }
8476
8477 /**
8478  * Register a parser for a prefix-like operator with given precedence.
8479  *
8480  * @param parser      the parser function
8481  * @param token_type  the token type of the prefix token
8482  * @param precedence  the precedence of the operator
8483  */
8484 static void register_expression_parser(parse_expression_function parser,
8485                                        int token_type, unsigned precedence)
8486 {
8487         expression_parser_function_t *entry = &expression_parsers[token_type];
8488
8489         if (entry->parser != NULL) {
8490                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8491                 panic("trying to register multiple expression parsers for a token");
8492         }
8493         entry->parser     = parser;
8494         entry->precedence = precedence;
8495 }
8496
8497 /**
8498  * Register a parser for an infix operator with given precedence.
8499  *
8500  * @param parser      the parser function
8501  * @param token_type  the token type of the infix operator
8502  * @param precedence  the precedence of the operator
8503  */
8504 static void register_infix_parser(parse_expression_infix_function parser,
8505                 int token_type, unsigned precedence)
8506 {
8507         expression_parser_function_t *entry = &expression_parsers[token_type];
8508
8509         if (entry->infix_parser != NULL) {
8510                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8511                 panic("trying to register multiple infix expression parsers for a "
8512                       "token");
8513         }
8514         entry->infix_parser     = parser;
8515         entry->infix_precedence = precedence;
8516 }
8517
8518 /**
8519  * Initialize the expression parsers.
8520  */
8521 static void init_expression_parsers(void)
8522 {
8523         memset(&expression_parsers, 0, sizeof(expression_parsers));
8524
8525         register_infix_parser(parse_array_expression,         '[',              30);
8526         register_infix_parser(parse_call_expression,          '(',              30);
8527         register_infix_parser(parse_select_expression,        '.',              30);
8528         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
8529         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
8530                                                               T_PLUSPLUS,       30);
8531         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
8532                                                               T_MINUSMINUS,     30);
8533
8534         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
8535         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
8536         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
8537         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
8538         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
8539         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
8540         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
8541         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
8542         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
8543         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
8544         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
8545         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
8546         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
8547                                                     T_EXCLAMATIONMARKEQUAL, 13);
8548         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
8549         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
8550         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
8551         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
8552         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
8553         register_infix_parser(parse_conditional_expression,   '?',               7);
8554         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
8555         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
8556         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
8557         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
8558         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
8559         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
8560         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
8561                                                                 T_LESSLESSEQUAL, 2);
8562         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8563                                                           T_GREATERGREATEREQUAL, 2);
8564         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
8565                                                                      T_ANDEQUAL, 2);
8566         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
8567                                                                     T_PIPEEQUAL, 2);
8568         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
8569                                                                    T_CARETEQUAL, 2);
8570
8571         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
8572
8573         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
8574         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
8575         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
8576         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
8577         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
8578         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
8579         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
8580                                                                   T_PLUSPLUS,   25);
8581         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
8582                                                                   T_MINUSMINUS, 25);
8583         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
8584         register_expression_parser(parse_alignof,                T___alignof__, 25);
8585         register_expression_parser(parse_extension,            T___extension__, 25);
8586         register_expression_parser(parse_builtin_classify_type,
8587                                                      T___builtin_classify_type, 25);
8588 }
8589
8590 /**
8591  * Parse a asm statement arguments specification.
8592  */
8593 static asm_argument_t *parse_asm_arguments(bool is_out)
8594 {
8595         asm_argument_t *result = NULL;
8596         asm_argument_t *last   = NULL;
8597
8598         while (token.type == T_STRING_LITERAL || token.type == '[') {
8599                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8600                 memset(argument, 0, sizeof(argument[0]));
8601
8602                 if (token.type == '[') {
8603                         eat('[');
8604                         if (token.type != T_IDENTIFIER) {
8605                                 parse_error_expected("while parsing asm argument",
8606                                                      T_IDENTIFIER, NULL);
8607                                 return NULL;
8608                         }
8609                         argument->symbol = token.v.symbol;
8610
8611                         expect(']');
8612                 }
8613
8614                 argument->constraints = parse_string_literals();
8615                 expect('(');
8616                 add_anchor_token(')');
8617                 expression_t *expression = parse_expression();
8618                 rem_anchor_token(')');
8619                 if (is_out) {
8620                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8621                          * change size or type representation (e.g. int -> long is ok, but
8622                          * int -> float is not) */
8623                         if (expression->kind == EXPR_UNARY_CAST) {
8624                                 type_t      *const type = expression->base.type;
8625                                 type_kind_t  const kind = type->kind;
8626                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8627                                         unsigned flags;
8628                                         unsigned size;
8629                                         if (kind == TYPE_ATOMIC) {
8630                                                 atomic_type_kind_t const akind = type->atomic.akind;
8631                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8632                                                 size  = get_atomic_type_size(akind);
8633                                         } else {
8634                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8635                                                 size  = get_atomic_type_size(get_intptr_kind());
8636                                         }
8637
8638                                         do {
8639                                                 expression_t *const value      = expression->unary.value;
8640                                                 type_t       *const value_type = value->base.type;
8641                                                 type_kind_t   const value_kind = value_type->kind;
8642
8643                                                 unsigned value_flags;
8644                                                 unsigned value_size;
8645                                                 if (value_kind == TYPE_ATOMIC) {
8646                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8647                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8648                                                         value_size  = get_atomic_type_size(value_akind);
8649                                                 } else if (value_kind == TYPE_POINTER) {
8650                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8651                                                         value_size  = get_atomic_type_size(get_intptr_kind());
8652                                                 } else {
8653                                                         break;
8654                                                 }
8655
8656                                                 if (value_flags != flags || value_size != size)
8657                                                         break;
8658
8659                                                 expression = value;
8660                                         } while (expression->kind == EXPR_UNARY_CAST);
8661                                 }
8662                         }
8663
8664                         if (!is_lvalue(expression)) {
8665                                 errorf(&expression->base.source_position,
8666                                        "asm output argument is not an lvalue");
8667                         }
8668                 }
8669                 argument->expression = expression;
8670                 expect(')');
8671
8672                 set_address_taken(expression, true);
8673
8674                 if (last != NULL) {
8675                         last->next = argument;
8676                 } else {
8677                         result = argument;
8678                 }
8679                 last = argument;
8680
8681                 if (token.type != ',')
8682                         break;
8683                 eat(',');
8684         }
8685
8686         return result;
8687 end_error:
8688         return NULL;
8689 }
8690
8691 /**
8692  * Parse a asm statement clobber specification.
8693  */
8694 static asm_clobber_t *parse_asm_clobbers(void)
8695 {
8696         asm_clobber_t *result = NULL;
8697         asm_clobber_t *last   = NULL;
8698
8699         while(token.type == T_STRING_LITERAL) {
8700                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8701                 clobber->clobber       = parse_string_literals();
8702
8703                 if (last != NULL) {
8704                         last->next = clobber;
8705                 } else {
8706                         result = clobber;
8707                 }
8708                 last = clobber;
8709
8710                 if (token.type != ',')
8711                         break;
8712                 eat(',');
8713         }
8714
8715         return result;
8716 }
8717
8718 /**
8719  * Parse an asm statement.
8720  */
8721 static statement_t *parse_asm_statement(void)
8722 {
8723         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
8724         asm_statement_t *asm_statement = &statement->asms;
8725
8726         eat(T_asm);
8727
8728         if (token.type == T_volatile) {
8729                 next_token();
8730                 asm_statement->is_volatile = true;
8731         }
8732
8733         expect('(');
8734         add_anchor_token(')');
8735         add_anchor_token(':');
8736         asm_statement->asm_text = parse_string_literals();
8737
8738         if (token.type != ':') {
8739                 rem_anchor_token(':');
8740                 goto end_of_asm;
8741         }
8742         eat(':');
8743
8744         asm_statement->outputs = parse_asm_arguments(true);
8745         if (token.type != ':') {
8746                 rem_anchor_token(':');
8747                 goto end_of_asm;
8748         }
8749         eat(':');
8750
8751         asm_statement->inputs = parse_asm_arguments(false);
8752         if (token.type != ':') {
8753                 rem_anchor_token(':');
8754                 goto end_of_asm;
8755         }
8756         rem_anchor_token(':');
8757         eat(':');
8758
8759         asm_statement->clobbers = parse_asm_clobbers();
8760
8761 end_of_asm:
8762         rem_anchor_token(')');
8763         expect(')');
8764         expect(';');
8765
8766         if (asm_statement->outputs == NULL) {
8767                 /* GCC: An 'asm' instruction without any output operands will be treated
8768                  * identically to a volatile 'asm' instruction. */
8769                 asm_statement->is_volatile = true;
8770         }
8771
8772         return statement;
8773 end_error:
8774         return create_invalid_statement();
8775 }
8776
8777 /**
8778  * Parse a case statement.
8779  */
8780 static statement_t *parse_case_statement(void)
8781 {
8782         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8783         source_position_t *const pos       = &statement->base.source_position;
8784
8785         eat(T_case);
8786
8787         expression_t *const expression   = parse_expression();
8788         statement->case_label.expression = expression;
8789         if (!is_constant_expression(expression)) {
8790                 /* This check does not prevent the error message in all cases of an
8791                  * prior error while parsing the expression.  At least it catches the
8792                  * common case of a mistyped enum entry. */
8793                 if (is_type_valid(skip_typeref(expression->base.type))) {
8794                         errorf(pos, "case label does not reduce to an integer constant");
8795                 }
8796                 statement->case_label.is_bad = true;
8797         } else {
8798                 long const val = fold_constant(expression);
8799                 statement->case_label.first_case = val;
8800                 statement->case_label.last_case  = val;
8801         }
8802
8803         if (GNU_MODE) {
8804                 if (token.type == T_DOTDOTDOT) {
8805                         next_token();
8806                         expression_t *const end_range   = parse_expression();
8807                         statement->case_label.end_range = end_range;
8808                         if (!is_constant_expression(end_range)) {
8809                                 /* This check does not prevent the error message in all cases of an
8810                                  * prior error while parsing the expression.  At least it catches the
8811                                  * common case of a mistyped enum entry. */
8812                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
8813                                         errorf(pos, "case range does not reduce to an integer constant");
8814                                 }
8815                                 statement->case_label.is_bad = true;
8816                         } else {
8817                                 long const val = fold_constant(end_range);
8818                                 statement->case_label.last_case = val;
8819
8820                                 if (val < statement->case_label.first_case) {
8821                                         statement->case_label.is_empty_range = true;
8822                                         warningf(pos, "empty range specified");
8823                                 }
8824                         }
8825                 }
8826         }
8827
8828         PUSH_PARENT(statement);
8829
8830         expect(':');
8831
8832         if (current_switch != NULL) {
8833                 if (! statement->case_label.is_bad) {
8834                         /* Check for duplicate case values */
8835                         case_label_statement_t *c = &statement->case_label;
8836                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
8837                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
8838                                         continue;
8839
8840                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
8841                                         continue;
8842
8843                                 errorf(pos, "duplicate case value (previously used %P)",
8844                                        &l->base.source_position);
8845                                 break;
8846                         }
8847                 }
8848                 /* link all cases into the switch statement */
8849                 if (current_switch->last_case == NULL) {
8850                         current_switch->first_case      = &statement->case_label;
8851                 } else {
8852                         current_switch->last_case->next = &statement->case_label;
8853                 }
8854                 current_switch->last_case = &statement->case_label;
8855         } else {
8856                 errorf(pos, "case label not within a switch statement");
8857         }
8858
8859         statement_t *const inner_stmt = parse_statement();
8860         statement->case_label.statement = inner_stmt;
8861         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8862                 errorf(&inner_stmt->base.source_position, "declaration after case label");
8863         }
8864
8865         POP_PARENT;
8866         return statement;
8867 end_error:
8868         POP_PARENT;
8869         return create_invalid_statement();
8870 }
8871
8872 /**
8873  * Parse a default statement.
8874  */
8875 static statement_t *parse_default_statement(void)
8876 {
8877         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8878
8879         eat(T_default);
8880
8881         PUSH_PARENT(statement);
8882
8883         expect(':');
8884         if (current_switch != NULL) {
8885                 const case_label_statement_t *def_label = current_switch->default_label;
8886                 if (def_label != NULL) {
8887                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
8888                                &def_label->base.source_position);
8889                 } else {
8890                         current_switch->default_label = &statement->case_label;
8891
8892                         /* link all cases into the switch statement */
8893                         if (current_switch->last_case == NULL) {
8894                                 current_switch->first_case      = &statement->case_label;
8895                         } else {
8896                                 current_switch->last_case->next = &statement->case_label;
8897                         }
8898                         current_switch->last_case = &statement->case_label;
8899                 }
8900         } else {
8901                 errorf(&statement->base.source_position,
8902                         "'default' label not within a switch statement");
8903         }
8904
8905         statement_t *const inner_stmt = parse_statement();
8906         statement->case_label.statement = inner_stmt;
8907         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8908                 errorf(&inner_stmt->base.source_position, "declaration after default label");
8909         }
8910
8911         POP_PARENT;
8912         return statement;
8913 end_error:
8914         POP_PARENT;
8915         return create_invalid_statement();
8916 }
8917
8918 /**
8919  * Parse a label statement.
8920  */
8921 static statement_t *parse_label_statement(void)
8922 {
8923         assert(token.type == T_IDENTIFIER);
8924         symbol_t      *symbol = token.v.symbol;
8925         declaration_t *label  = get_label(symbol);
8926
8927         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
8928         statement->label.label       = label;
8929
8930         next_token();
8931
8932         PUSH_PARENT(statement);
8933
8934         /* if statement is already set then the label is defined twice,
8935          * otherwise it was just mentioned in a goto/local label declaration so far */
8936         if (label->init.statement != NULL) {
8937                 errorf(HERE, "duplicate label '%Y' (declared %P)",
8938                        symbol, &label->source_position);
8939         } else {
8940                 label->source_position = token.source_position;
8941                 label->init.statement  = statement;
8942         }
8943
8944         eat(':');
8945
8946         if (token.type == '}') {
8947                 /* TODO only warn? */
8948                 if (false) {
8949                         warningf(HERE, "label at end of compound statement");
8950                         statement->label.statement = create_empty_statement();
8951                 } else {
8952                         errorf(HERE, "label at end of compound statement");
8953                         statement->label.statement = create_invalid_statement();
8954                 }
8955         } else if (token.type == ';') {
8956                 /* Eat an empty statement here, to avoid the warning about an empty
8957                  * statement after a label.  label:; is commonly used to have a label
8958                  * before a closing brace. */
8959                 statement->label.statement = create_empty_statement();
8960                 next_token();
8961         } else {
8962                 statement_t *const inner_stmt = parse_statement();
8963                 statement->label.statement = inner_stmt;
8964                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
8965                         errorf(&inner_stmt->base.source_position, "declaration after label");
8966                 }
8967         }
8968
8969         /* remember the labels in a list for later checking */
8970         if (label_last == NULL) {
8971                 label_first = &statement->label;
8972         } else {
8973                 label_last->next = &statement->label;
8974         }
8975         label_last = &statement->label;
8976
8977         POP_PARENT;
8978         return statement;
8979 }
8980
8981 /**
8982  * Parse an if statement.
8983  */
8984 static statement_t *parse_if(void)
8985 {
8986         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
8987
8988         eat(T_if);
8989
8990         PUSH_PARENT(statement);
8991
8992         add_anchor_token('{');
8993
8994         expect('(');
8995         add_anchor_token(')');
8996         statement->ifs.condition = parse_expression();
8997         rem_anchor_token(')');
8998         expect(')');
8999
9000 end_error:
9001         rem_anchor_token('{');
9002
9003         add_anchor_token(T_else);
9004         statement->ifs.true_statement = parse_statement();
9005         rem_anchor_token(T_else);
9006
9007         if (token.type == T_else) {
9008                 next_token();
9009                 statement->ifs.false_statement = parse_statement();
9010         }
9011
9012         POP_PARENT;
9013         return statement;
9014 }
9015
9016 /**
9017  * Check that all enums are handled in a switch.
9018  *
9019  * @param statement  the switch statement to check
9020  */
9021 static void check_enum_cases(const switch_statement_t *statement) {
9022         const type_t *type = skip_typeref(statement->expression->base.type);
9023         if (! is_type_enum(type))
9024                 return;
9025         const enum_type_t *enumt = &type->enumt;
9026
9027         /* if we have a default, no warnings */
9028         if (statement->default_label != NULL)
9029                 return;
9030
9031         /* FIXME: calculation of value should be done while parsing */
9032         const declaration_t *declaration;
9033         long last_value = -1;
9034         for (declaration = enumt->declaration->next;
9035              declaration != NULL && declaration->storage_class == STORAGE_CLASS_ENUM_ENTRY;
9036                  declaration = declaration->next) {
9037                 const expression_t *expression = declaration->init.enum_value;
9038                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
9039                 bool                found      = false;
9040                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9041                         if (l->expression == NULL)
9042                                 continue;
9043                         if (l->first_case <= value && value <= l->last_case) {
9044                                 found = true;
9045                                 break;
9046                         }
9047                 }
9048                 if (! found) {
9049                         warningf(&statement->base.source_position,
9050                                 "enumeration value '%Y' not handled in switch", declaration->symbol);
9051                 }
9052                 last_value = value;
9053         }
9054 }
9055
9056 /**
9057  * Parse a switch statement.
9058  */
9059 static statement_t *parse_switch(void)
9060 {
9061         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9062
9063         eat(T_switch);
9064
9065         PUSH_PARENT(statement);
9066
9067         expect('(');
9068         add_anchor_token(')');
9069         expression_t *const expr = parse_expression();
9070         type_t       *      type = skip_typeref(expr->base.type);
9071         if (is_type_integer(type)) {
9072                 type = promote_integer(type);
9073                 if (warning.traditional) {
9074                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9075                                 warningf(&expr->base.source_position,
9076                                         "'%T' switch expression not converted to '%T' in ISO C",
9077                                         type, type_int);
9078                         }
9079                 }
9080         } else if (is_type_valid(type)) {
9081                 errorf(&expr->base.source_position,
9082                        "switch quantity is not an integer, but '%T'", type);
9083                 type = type_error_type;
9084         }
9085         statement->switchs.expression = create_implicit_cast(expr, type);
9086         expect(')');
9087         rem_anchor_token(')');
9088
9089         switch_statement_t *rem = current_switch;
9090         current_switch          = &statement->switchs;
9091         statement->switchs.body = parse_statement();
9092         current_switch          = rem;
9093
9094         if (warning.switch_default &&
9095             statement->switchs.default_label == NULL) {
9096                 warningf(&statement->base.source_position, "switch has no default case");
9097         }
9098         if (warning.switch_enum)
9099                 check_enum_cases(&statement->switchs);
9100
9101         POP_PARENT;
9102         return statement;
9103 end_error:
9104         POP_PARENT;
9105         return create_invalid_statement();
9106 }
9107
9108 static statement_t *parse_loop_body(statement_t *const loop)
9109 {
9110         statement_t *const rem = current_loop;
9111         current_loop = loop;
9112
9113         statement_t *const body = parse_statement();
9114
9115         current_loop = rem;
9116         return body;
9117 }
9118
9119 /**
9120  * Parse a while statement.
9121  */
9122 static statement_t *parse_while(void)
9123 {
9124         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9125
9126         eat(T_while);
9127
9128         PUSH_PARENT(statement);
9129
9130         expect('(');
9131         add_anchor_token(')');
9132         statement->whiles.condition = parse_expression();
9133         rem_anchor_token(')');
9134         expect(')');
9135
9136         statement->whiles.body = parse_loop_body(statement);
9137
9138         POP_PARENT;
9139         return statement;
9140 end_error:
9141         POP_PARENT;
9142         return create_invalid_statement();
9143 }
9144
9145 /**
9146  * Parse a do statement.
9147  */
9148 static statement_t *parse_do(void)
9149 {
9150         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9151
9152         eat(T_do);
9153
9154         PUSH_PARENT(statement);
9155
9156         add_anchor_token(T_while);
9157         statement->do_while.body = parse_loop_body(statement);
9158         rem_anchor_token(T_while);
9159
9160         expect(T_while);
9161         expect('(');
9162         add_anchor_token(')');
9163         statement->do_while.condition = parse_expression();
9164         rem_anchor_token(')');
9165         expect(')');
9166         expect(';');
9167
9168         POP_PARENT;
9169         return statement;
9170 end_error:
9171         POP_PARENT;
9172         return create_invalid_statement();
9173 }
9174
9175 /**
9176  * Parse a for statement.
9177  */
9178 static statement_t *parse_for(void)
9179 {
9180         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9181
9182         eat(T_for);
9183
9184         PUSH_PARENT(statement);
9185
9186         size_t const top = environment_top();
9187         scope_push(&statement->fors.scope);
9188
9189         expect('(');
9190         add_anchor_token(')');
9191
9192         if (token.type != ';') {
9193                 if (is_declaration_specifier(&token, false)) {
9194                         parse_declaration(record_declaration);
9195                 } else {
9196                         add_anchor_token(';');
9197                         expression_t *const init = parse_expression();
9198                         statement->fors.initialisation = init;
9199                         if (warning.unused_value && !expression_has_effect(init)) {
9200                                 warningf(&init->base.source_position,
9201                                          "initialisation of 'for'-statement has no effect");
9202                         }
9203                         rem_anchor_token(';');
9204                         expect(';');
9205                 }
9206         } else {
9207                 expect(';');
9208         }
9209
9210         if (token.type != ';') {
9211                 add_anchor_token(';');
9212                 statement->fors.condition = parse_expression();
9213                 rem_anchor_token(';');
9214         }
9215         expect(';');
9216         if (token.type != ')') {
9217                 expression_t *const step = parse_expression();
9218                 statement->fors.step = step;
9219                 if (warning.unused_value && !expression_has_effect(step)) {
9220                         warningf(&step->base.source_position,
9221                                  "step of 'for'-statement has no effect");
9222                 }
9223         }
9224         rem_anchor_token(')');
9225         expect(')');
9226         statement->fors.body = parse_loop_body(statement);
9227
9228         assert(scope == &statement->fors.scope);
9229         scope_pop();
9230         environment_pop_to(top);
9231
9232         POP_PARENT;
9233         return statement;
9234
9235 end_error:
9236         POP_PARENT;
9237         rem_anchor_token(')');
9238         assert(scope == &statement->fors.scope);
9239         scope_pop();
9240         environment_pop_to(top);
9241
9242         return create_invalid_statement();
9243 }
9244
9245 /**
9246  * Parse a goto statement.
9247  */
9248 static statement_t *parse_goto(void)
9249 {
9250         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
9251         eat(T_goto);
9252
9253         if (GNU_MODE && token.type == '*') {
9254                 next_token();
9255                 expression_t *expression = parse_expression();
9256
9257                 /* Argh: although documentation say the expression must be of type void *,
9258                  * gcc excepts anything that can be casted into void * without error */
9259                 type_t *type = expression->base.type;
9260
9261                 if (type != type_error_type) {
9262                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9263                                 errorf(&expression->base.source_position,
9264                                         "cannot convert to a pointer type");
9265                         } else if (type != type_void_ptr) {
9266                                 warningf(&expression->base.source_position,
9267                                         "type of computed goto expression should be 'void*' not '%T'", type);
9268                         }
9269                         expression = create_implicit_cast(expression, type_void_ptr);
9270                 }
9271
9272                 statement->gotos.expression = expression;
9273         } else {
9274                 if (token.type != T_IDENTIFIER) {
9275                         if (GNU_MODE)
9276                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9277                         else
9278                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9279                         eat_until_anchor();
9280                         goto end_error;
9281                 }
9282                 symbol_t *symbol = token.v.symbol;
9283                 next_token();
9284
9285                 statement->gotos.label = get_label(symbol);
9286
9287                 if (statement->gotos.label->parent_scope->depth < current_function->scope.depth) {
9288                         statement->gotos.outer_fkt_jmp = true;
9289                 }
9290         }
9291
9292         /* remember the goto's in a list for later checking */
9293         if (goto_last == NULL) {
9294                 goto_first = &statement->gotos;
9295         } else {
9296                 goto_last->next = &statement->gotos;
9297         }
9298         goto_last = &statement->gotos;
9299
9300         expect(';');
9301
9302         return statement;
9303 end_error:
9304         return create_invalid_statement();
9305 }
9306
9307 /**
9308  * Parse a continue statement.
9309  */
9310 static statement_t *parse_continue(void)
9311 {
9312         if (current_loop == NULL) {
9313                 errorf(HERE, "continue statement not within loop");
9314         }
9315
9316         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9317
9318         eat(T_continue);
9319         expect(';');
9320
9321 end_error:
9322         return statement;
9323 }
9324
9325 /**
9326  * Parse a break statement.
9327  */
9328 static statement_t *parse_break(void)
9329 {
9330         if (current_switch == NULL && current_loop == NULL) {
9331                 errorf(HERE, "break statement not within loop or switch");
9332         }
9333
9334         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9335
9336         eat(T_break);
9337         expect(';');
9338
9339 end_error:
9340         return statement;
9341 }
9342
9343 /**
9344  * Parse a __leave statement.
9345  */
9346 static statement_t *parse_leave_statement(void)
9347 {
9348         if (current_try == NULL) {
9349                 errorf(HERE, "__leave statement not within __try");
9350         }
9351
9352         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9353
9354         eat(T___leave);
9355         expect(';');
9356
9357 end_error:
9358         return statement;
9359 }
9360
9361 /**
9362  * Check if a given declaration represents a local variable.
9363  */
9364 static bool is_local_var_declaration(const declaration_t *declaration)
9365 {
9366         switch ((storage_class_tag_t) declaration->storage_class) {
9367         case STORAGE_CLASS_AUTO:
9368         case STORAGE_CLASS_REGISTER: {
9369                 const type_t *type = skip_typeref(declaration->type);
9370                 if (is_type_function(type)) {
9371                         return false;
9372                 } else {
9373                         return true;
9374                 }
9375         }
9376         default:
9377                 return false;
9378         }
9379 }
9380
9381 /**
9382  * Check if a given declaration represents a variable.
9383  */
9384 static bool is_var_declaration(const declaration_t *declaration)
9385 {
9386         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
9387                 return false;
9388
9389         const type_t *type = skip_typeref(declaration->type);
9390         return !is_type_function(type);
9391 }
9392
9393 /**
9394  * Check if a given expression represents a local variable.
9395  */
9396 static bool is_local_variable(const expression_t *expression)
9397 {
9398         if (expression->base.kind != EXPR_REFERENCE) {
9399                 return false;
9400         }
9401         const declaration_t *declaration = expression->reference.declaration;
9402         return is_local_var_declaration(declaration);
9403 }
9404
9405 /**
9406  * Check if a given expression represents a local variable and
9407  * return its declaration then, else return NULL.
9408  */
9409 declaration_t *expr_is_variable(const expression_t *expression)
9410 {
9411         if (expression->base.kind != EXPR_REFERENCE) {
9412                 return NULL;
9413         }
9414         declaration_t *declaration = expression->reference.declaration;
9415         if (is_var_declaration(declaration))
9416                 return declaration;
9417         return NULL;
9418 }
9419
9420 /**
9421  * Parse a return statement.
9422  */
9423 static statement_t *parse_return(void)
9424 {
9425         eat(T_return);
9426
9427         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9428
9429         expression_t *return_value = NULL;
9430         if (token.type != ';') {
9431                 return_value = parse_expression();
9432         }
9433
9434         const type_t *const func_type = current_function->type;
9435         assert(is_type_function(func_type));
9436         type_t *const return_type = skip_typeref(func_type->function.return_type);
9437
9438         if (return_value != NULL) {
9439                 type_t *return_value_type = skip_typeref(return_value->base.type);
9440
9441                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
9442                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9443                         warningf(&statement->base.source_position,
9444                                  "'return' with a value, in function returning void");
9445                         return_value = NULL;
9446                 } else {
9447                         assign_error_t error = semantic_assign(return_type, return_value);
9448                         report_assign_error(error, return_type, return_value, "'return'",
9449                                             &statement->base.source_position);
9450                         return_value = create_implicit_cast(return_value, return_type);
9451                 }
9452                 /* check for returning address of a local var */
9453                 if (return_value != NULL &&
9454                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9455                         const expression_t *expression = return_value->unary.value;
9456                         if (is_local_variable(expression)) {
9457                                 warningf(&statement->base.source_position,
9458                                          "function returns address of local variable");
9459                         }
9460                 }
9461         } else {
9462                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9463                         warningf(&statement->base.source_position,
9464                                  "'return' without value, in function returning non-void");
9465                 }
9466         }
9467         statement->returns.value = return_value;
9468
9469         expect(';');
9470
9471 end_error:
9472         return statement;
9473 }
9474
9475 /**
9476  * Parse a declaration statement.
9477  */
9478 static statement_t *parse_declaration_statement(void)
9479 {
9480         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9481
9482         declaration_t *before = last_declaration;
9483         if (GNU_MODE)
9484                 parse_external_declaration();
9485         else
9486                 parse_declaration(record_declaration);
9487
9488         if (before == NULL) {
9489                 statement->declaration.declarations_begin = scope->declarations;
9490         } else {
9491                 statement->declaration.declarations_begin = before->next;
9492         }
9493         statement->declaration.declarations_end = last_declaration;
9494
9495         return statement;
9496 }
9497
9498 /**
9499  * Parse an expression statement, ie. expr ';'.
9500  */
9501 static statement_t *parse_expression_statement(void)
9502 {
9503         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9504
9505         expression_t *const expr         = parse_expression();
9506         statement->expression.expression = expr;
9507
9508         expect(';');
9509
9510 end_error:
9511         return statement;
9512 }
9513
9514 /**
9515  * Parse a microsoft __try { } __finally { } or
9516  * __try{ } __except() { }
9517  */
9518 static statement_t *parse_ms_try_statment(void)
9519 {
9520         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9521         eat(T___try);
9522
9523         PUSH_PARENT(statement);
9524
9525         ms_try_statement_t *rem = current_try;
9526         current_try = &statement->ms_try;
9527         statement->ms_try.try_statement = parse_compound_statement(false);
9528         current_try = rem;
9529
9530         POP_PARENT;
9531
9532         if (token.type == T___except) {
9533                 eat(T___except);
9534                 expect('(');
9535                 add_anchor_token(')');
9536                 expression_t *const expr = parse_expression();
9537                 type_t       *      type = skip_typeref(expr->base.type);
9538                 if (is_type_integer(type)) {
9539                         type = promote_integer(type);
9540                 } else if (is_type_valid(type)) {
9541                         errorf(&expr->base.source_position,
9542                                "__expect expression is not an integer, but '%T'", type);
9543                         type = type_error_type;
9544                 }
9545                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9546                 rem_anchor_token(')');
9547                 expect(')');
9548                 statement->ms_try.final_statement = parse_compound_statement(false);
9549         } else if (token.type == T__finally) {
9550                 eat(T___finally);
9551                 statement->ms_try.final_statement = parse_compound_statement(false);
9552         } else {
9553                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9554                 return create_invalid_statement();
9555         }
9556         return statement;
9557 end_error:
9558         return create_invalid_statement();
9559 }
9560
9561 static statement_t *parse_empty_statement(void)
9562 {
9563         if (warning.empty_statement) {
9564                 warningf(HERE, "statement is empty");
9565         }
9566         statement_t *const statement = create_empty_statement();
9567         eat(';');
9568         return statement;
9569 }
9570
9571 static statement_t *parse_local_label_declaration(void) {
9572         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9573
9574         eat(T___label__);
9575
9576         declaration_t *begin = NULL, *end = NULL;
9577
9578         while (true) {
9579                 if (token.type != T_IDENTIFIER) {
9580                         parse_error_expected("while parsing local label declaration",
9581                                 T_IDENTIFIER, NULL);
9582                         goto end_error;
9583                 }
9584                 symbol_t      *symbol      = token.v.symbol;
9585                 declaration_t *declaration = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
9586                 if (declaration != NULL) {
9587                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition at %P)",
9588                                 symbol, &declaration->source_position);
9589                 } else {
9590                         declaration = allocate_declaration_zero();
9591                         declaration->namespc         = NAMESPACE_LOCAL_LABEL;
9592                         declaration->source_position = token.source_position;
9593                         declaration->symbol          = symbol;
9594                         declaration->parent_scope    = scope;
9595                         declaration->init.statement  = NULL;
9596
9597                         if (end != NULL)
9598                                 end->next = declaration;
9599                         end = declaration;
9600                         if (begin == NULL)
9601                                 begin = declaration;
9602
9603                         local_label_push(declaration);
9604                 }
9605                 next_token();
9606
9607                 if (token.type != ',')
9608                         break;
9609                 next_token();
9610         }
9611         eat(';');
9612 end_error:
9613         statement->declaration.declarations_begin = begin;
9614         statement->declaration.declarations_end   = end;
9615         return statement;
9616 }
9617
9618 /**
9619  * Parse a statement.
9620  * There's also parse_statement() which additionally checks for
9621  * "statement has no effect" warnings
9622  */
9623 static statement_t *intern_parse_statement(void)
9624 {
9625         statement_t *statement = NULL;
9626
9627         /* declaration or statement */
9628         add_anchor_token(';');
9629         switch (token.type) {
9630         case T_IDENTIFIER: {
9631                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
9632                 if (la1_type == ':') {
9633                         statement = parse_label_statement();
9634                 } else if (is_typedef_symbol(token.v.symbol)) {
9635                         statement = parse_declaration_statement();
9636                 } else switch (la1_type) {
9637                         case '*':
9638                                 if (get_declaration(token.v.symbol, NAMESPACE_NORMAL) != NULL)
9639                                         goto expression_statment;
9640                                 /* FALLTHROUGH */
9641
9642                         DECLARATION_START
9643                         case T_IDENTIFIER:
9644                                 statement = parse_declaration_statement();
9645                                 break;
9646
9647                         default:
9648 expression_statment:
9649                                 statement = parse_expression_statement();
9650                                 break;
9651                 }
9652                 break;
9653         }
9654
9655         case T___extension__:
9656                 /* This can be a prefix to a declaration or an expression statement.
9657                  * We simply eat it now and parse the rest with tail recursion. */
9658                 do {
9659                         next_token();
9660                 } while (token.type == T___extension__);
9661                 bool old_gcc_extension = in_gcc_extension;
9662                 in_gcc_extension       = true;
9663                 statement = parse_statement();
9664                 in_gcc_extension = old_gcc_extension;
9665                 break;
9666
9667         DECLARATION_START
9668                 statement = parse_declaration_statement();
9669                 break;
9670
9671         case T___label__:
9672                 statement = parse_local_label_declaration();
9673                 break;
9674
9675         case ';':        statement = parse_empty_statement();         break;
9676         case '{':        statement = parse_compound_statement(false); break;
9677         case T___leave:  statement = parse_leave_statement();         break;
9678         case T___try:    statement = parse_ms_try_statment();         break;
9679         case T_asm:      statement = parse_asm_statement();           break;
9680         case T_break:    statement = parse_break();                   break;
9681         case T_case:     statement = parse_case_statement();          break;
9682         case T_continue: statement = parse_continue();                break;
9683         case T_default:  statement = parse_default_statement();       break;
9684         case T_do:       statement = parse_do();                      break;
9685         case T_for:      statement = parse_for();                     break;
9686         case T_goto:     statement = parse_goto();                    break;
9687         case T_if:       statement = parse_if ();                     break;
9688         case T_return:   statement = parse_return();                  break;
9689         case T_switch:   statement = parse_switch();                  break;
9690         case T_while:    statement = parse_while();                   break;
9691
9692         case '!':
9693         case '&':
9694         case '(':
9695         case '*':
9696         case '+':
9697         case '-':
9698         case '~':
9699         case T_ANDAND:
9700         case T_CHARACTER_CONSTANT:
9701         case T_FLOATINGPOINT:
9702         case T_INTEGER:
9703         case T_MINUSMINUS:
9704         case T_PLUSPLUS:
9705         case T_STRING_LITERAL:
9706         case T_WIDE_CHARACTER_CONSTANT:
9707         case T_WIDE_STRING_LITERAL:
9708         case T___FUNCDNAME__:
9709         case T___FUNCSIG__:
9710         case T___FUNCTION__:
9711         case T___PRETTY_FUNCTION__:
9712         case T___builtin_alloca:
9713         case T___builtin_classify_type:
9714         case T___builtin_constant_p:
9715         case T___builtin_expect:
9716         case T___builtin_huge_val:
9717         case T___builtin_isgreater:
9718         case T___builtin_isgreaterequal:
9719         case T___builtin_isless:
9720         case T___builtin_islessequal:
9721         case T___builtin_islessgreater:
9722         case T___builtin_isunordered:
9723         case T___builtin_inf:
9724         case T___builtin_inff:
9725         case T___builtin_infl:
9726         case T___builtin_nan:
9727         case T___builtin_nanf:
9728         case T___builtin_nanl:
9729         case T___builtin_offsetof:
9730         case T___builtin_prefetch:
9731         case T___builtin_va_arg:
9732         case T___builtin_va_end:
9733         case T___builtin_va_start:
9734         case T___func__:
9735         case T___noop:
9736         case T__assume:
9737                 statement = parse_expression_statement();
9738                 break;
9739
9740         default:
9741                 errorf(HERE, "unexpected token %K while parsing statement", &token);
9742                 statement = create_invalid_statement();
9743                 if (!at_anchor())
9744                         next_token();
9745                 break;
9746         }
9747         rem_anchor_token(';');
9748
9749         assert(statement != NULL
9750                         && statement->base.source_position.input_name != NULL);
9751
9752         return statement;
9753 }
9754
9755 /**
9756  * parse a statement and emits "statement has no effect" warning if needed
9757  * (This is really a wrapper around intern_parse_statement with check for 1
9758  *  single warning. It is needed, because for statement expressions we have
9759  *  to avoid the warning on the last statement)
9760  */
9761 static statement_t *parse_statement(void)
9762 {
9763         statement_t *statement = intern_parse_statement();
9764
9765         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
9766                 expression_t *expression = statement->expression.expression;
9767                 if (!expression_has_effect(expression)) {
9768                         warningf(&expression->base.source_position,
9769                                         "statement has no effect");
9770                 }
9771         }
9772
9773         return statement;
9774 }
9775
9776 /**
9777  * Parse a compound statement.
9778  */
9779 static statement_t *parse_compound_statement(bool inside_expression_statement)
9780 {
9781         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
9782
9783         PUSH_PARENT(statement);
9784
9785         eat('{');
9786         add_anchor_token('}');
9787
9788         size_t const top       = environment_top();
9789         size_t const top_local = local_label_top();
9790         scope_push(&statement->compound.scope);
9791
9792         statement_t **anchor            = &statement->compound.statements;
9793         bool          only_decls_so_far = true;
9794         while (token.type != '}') {
9795                 if (token.type == T_EOF) {
9796                         errorf(&statement->base.source_position,
9797                                "EOF while parsing compound statement");
9798                         break;
9799                 }
9800                 statement_t *sub_statement = intern_parse_statement();
9801                 if (is_invalid_statement(sub_statement)) {
9802                         /* an error occurred. if we are at an anchor, return */
9803                         if (at_anchor())
9804                                 goto end_error;
9805                         continue;
9806                 }
9807
9808                 if (warning.declaration_after_statement) {
9809                         if (sub_statement->kind != STATEMENT_DECLARATION) {
9810                                 only_decls_so_far = false;
9811                         } else if (!only_decls_so_far) {
9812                                 warningf(&sub_statement->base.source_position,
9813                                          "ISO C90 forbids mixed declarations and code");
9814                         }
9815                 }
9816
9817                 *anchor = sub_statement;
9818
9819                 while (sub_statement->base.next != NULL)
9820                         sub_statement = sub_statement->base.next;
9821
9822                 anchor = &sub_statement->base.next;
9823         }
9824         next_token();
9825
9826         /* look over all statements again to produce no effect warnings */
9827         if (warning.unused_value) {
9828                 statement_t *sub_statement = statement->compound.statements;
9829                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
9830                         if (sub_statement->kind != STATEMENT_EXPRESSION)
9831                                 continue;
9832                         /* don't emit a warning for the last expression in an expression
9833                          * statement as it has always an effect */
9834                         if (inside_expression_statement && sub_statement->base.next == NULL)
9835                                 continue;
9836
9837                         expression_t *expression = sub_statement->expression.expression;
9838                         if (!expression_has_effect(expression)) {
9839                                 warningf(&expression->base.source_position,
9840                                          "statement has no effect");
9841                         }
9842                 }
9843         }
9844
9845 end_error:
9846         rem_anchor_token('}');
9847         assert(scope == &statement->compound.scope);
9848         scope_pop();
9849         environment_pop_to(top);
9850         local_label_pop_to(top_local);
9851
9852         POP_PARENT;
9853         return statement;
9854 }
9855
9856 /**
9857  * Initialize builtin types.
9858  */
9859 static void initialize_builtin_types(void)
9860 {
9861         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
9862         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
9863         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
9864         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
9865         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
9866         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
9867         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
9868         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
9869
9870         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
9871         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
9872         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
9873         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
9874
9875         /* const version of wchar_t */
9876         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
9877         type_const_wchar_t->typedeft.declaration  = type_wchar_t->typedeft.declaration;
9878         type_const_wchar_t->base.qualifiers      |= TYPE_QUALIFIER_CONST;
9879
9880         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
9881 }
9882
9883 /**
9884  * Check for unused global static functions and variables
9885  */
9886 static void check_unused_globals(void)
9887 {
9888         if (!warning.unused_function && !warning.unused_variable)
9889                 return;
9890
9891         for (const declaration_t *decl = file_scope->declarations; decl != NULL; decl = decl->next) {
9892                 if (decl->used                  ||
9893                     decl->modifiers & DM_UNUSED ||
9894                     decl->modifiers & DM_USED   ||
9895                     decl->storage_class != STORAGE_CLASS_STATIC)
9896                         continue;
9897
9898                 type_t *const type = decl->type;
9899                 const char *s;
9900                 if (is_type_function(skip_typeref(type))) {
9901                         if (!warning.unused_function || decl->is_inline)
9902                                 continue;
9903
9904                         s = (decl->init.statement != NULL ? "defined" : "declared");
9905                 } else {
9906                         if (!warning.unused_variable)
9907                                 continue;
9908
9909                         s = "defined";
9910                 }
9911
9912                 warningf(&decl->source_position, "'%#T' %s but not used",
9913                         type, decl->symbol, s);
9914         }
9915 }
9916
9917 static void parse_global_asm(void)
9918 {
9919         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
9920
9921         eat(T_asm);
9922         expect('(');
9923
9924         statement->asms.asm_text = parse_string_literals();
9925         statement->base.next     = unit->global_asm;
9926         unit->global_asm         = statement;
9927
9928         expect(')');
9929         expect(';');
9930
9931 end_error:;
9932 }
9933
9934 /**
9935  * Parse a translation unit.
9936  */
9937 static void parse_translation_unit(void)
9938 {
9939         add_anchor_token(T_EOF);
9940
9941 #ifndef NDEBUG
9942         unsigned char token_anchor_copy[T_LAST_TOKEN];
9943         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
9944 #endif
9945         for (;;) {
9946 #ifndef NDEBUG
9947                 bool anchor_leak = false;
9948                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
9949                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
9950                         if (count != 0) {
9951                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
9952                                 anchor_leak = true;
9953                         }
9954                 }
9955                 if (in_gcc_extension) {
9956                         errorf(HERE, "Leaked __extension__");
9957                         anchor_leak = true;
9958                 }
9959
9960                 if (anchor_leak)
9961                         abort();
9962 #endif
9963
9964                 switch (token.type) {
9965                         DECLARATION_START
9966                         case T_IDENTIFIER:
9967                         case T___extension__:
9968                                 parse_external_declaration();
9969                                 break;
9970
9971                         case T_asm:
9972                                 parse_global_asm();
9973                                 break;
9974
9975                         case T_EOF:
9976                                 rem_anchor_token(T_EOF);
9977                                 return;
9978
9979                         case ';':
9980                                 if (!strict_mode) {
9981                                         warningf(HERE, "stray ';' outside of function");
9982                                         next_token();
9983                                         break;
9984                                 }
9985                                 /* FALLTHROUGH */
9986
9987                         default:
9988                                 errorf(HERE, "stray %K outside of function", &token);
9989                                 if (token.type == '(' || token.type == '{' || token.type == '[')
9990                                         eat_until_matching_token(token.type);
9991                                 next_token();
9992                                 break;
9993                 }
9994         }
9995 }
9996
9997 /**
9998  * Parse the input.
9999  *
10000  * @return  the translation unit or NULL if errors occurred.
10001  */
10002 void start_parsing(void)
10003 {
10004         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10005         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10006         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
10007         diagnostic_count  = 0;
10008         error_count       = 0;
10009         warning_count     = 0;
10010
10011         type_set_output(stderr);
10012         ast_set_output(stderr);
10013
10014         assert(unit == NULL);
10015         unit = allocate_ast_zero(sizeof(unit[0]));
10016
10017         assert(file_scope == NULL);
10018         file_scope = &unit->scope;
10019
10020         assert(scope == NULL);
10021         scope_push(&unit->scope);
10022
10023         initialize_builtin_types();
10024 }
10025
10026 translation_unit_t *finish_parsing(void)
10027 {
10028         /* do NOT use scope_pop() here, this will crash, will it by hand */
10029         assert(scope == &unit->scope);
10030         scope            = NULL;
10031         last_declaration = NULL;
10032
10033         assert(file_scope == &unit->scope);
10034         check_unused_globals();
10035         file_scope = NULL;
10036
10037         DEL_ARR_F(environment_stack);
10038         DEL_ARR_F(label_stack);
10039         DEL_ARR_F(local_label_stack);
10040
10041         translation_unit_t *result = unit;
10042         unit = NULL;
10043         return result;
10044 }
10045
10046 void parse(void)
10047 {
10048         lookahead_bufpos = 0;
10049         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10050                 next_token();
10051         }
10052         parse_translation_unit();
10053 }
10054
10055 /**
10056  * Initialize the parser.
10057  */
10058 void init_parser(void)
10059 {
10060         sym_anonymous = symbol_table_insert("<anonymous>");
10061
10062         if (c_mode & _MS) {
10063                 /* add predefined symbols for extended-decl-modifier */
10064                 sym_align      = symbol_table_insert("align");
10065                 sym_allocate   = symbol_table_insert("allocate");
10066                 sym_dllimport  = symbol_table_insert("dllimport");
10067                 sym_dllexport  = symbol_table_insert("dllexport");
10068                 sym_naked      = symbol_table_insert("naked");
10069                 sym_noinline   = symbol_table_insert("noinline");
10070                 sym_noreturn   = symbol_table_insert("noreturn");
10071                 sym_nothrow    = symbol_table_insert("nothrow");
10072                 sym_novtable   = symbol_table_insert("novtable");
10073                 sym_property   = symbol_table_insert("property");
10074                 sym_get        = symbol_table_insert("get");
10075                 sym_put        = symbol_table_insert("put");
10076                 sym_selectany  = symbol_table_insert("selectany");
10077                 sym_thread     = symbol_table_insert("thread");
10078                 sym_uuid       = symbol_table_insert("uuid");
10079                 sym_deprecated = symbol_table_insert("deprecated");
10080                 sym_restrict   = symbol_table_insert("restrict");
10081                 sym_noalias    = symbol_table_insert("noalias");
10082         }
10083         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10084
10085         init_expression_parsers();
10086         obstack_init(&temp_obst);
10087
10088         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
10089         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
10090 }
10091
10092 /**
10093  * Terminate the parser.
10094  */
10095 void exit_parser(void)
10096 {
10097         obstack_free(&temp_obst, NULL);
10098 }