be robust against unclosed strings
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 //#define PRINT_TOKENS
43 #define MAX_LOOKAHEAD 2
44
45 typedef struct {
46         declaration_t *old_declaration;
47         symbol_t      *symbol;
48         unsigned short namespc;
49 } stack_entry_t;
50
51 typedef struct gnu_attribute_t gnu_attribute_t;
52 struct gnu_attribute_t {
53         gnu_attribute_kind_t kind;
54         gnu_attribute_t     *next;
55         bool                 invalid;
56         bool                 have_arguments;
57         union {
58                 size_t   value;
59                 string_t string;
60         } u;
61 };
62
63 typedef struct declaration_specifiers_t  declaration_specifiers_t;
64 struct declaration_specifiers_t {
65         source_position_t  source_position;
66         unsigned char      declared_storage_class;
67         unsigned char      alignment;         /**< Alignment, 0 if not set. */
68         unsigned int       is_inline : 1;
69         unsigned int       deprecated : 1;
70         decl_modifiers_t   modifiers;         /**< declaration modifiers */
71         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
72         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
73         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
74         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
75         type_t            *type;
76 };
77
78 /**
79  * An environment for parsing initializers (and compound literals).
80  */
81 typedef struct parse_initializer_env_t {
82         type_t        *type;        /**< the type of the initializer. In case of an
83                                          array type with unspecified size this gets
84                                          adjusted to the actual size. */
85         declaration_t *declaration; /**< the declaration that is initialized if any */
86         bool           must_be_constant;
87 } parse_initializer_env_t;
88
89 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration);
90
91 static token_t             token;
92 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
93 static int                 lookahead_bufpos;
94 static stack_entry_t      *environment_stack = NULL;
95 static stack_entry_t      *label_stack       = NULL;
96 static scope_t            *global_scope      = NULL;
97 static scope_t            *scope             = NULL;
98 static declaration_t      *last_declaration  = NULL;
99 static declaration_t      *current_function  = NULL;
100 static switch_statement_t *current_switch    = NULL;
101 static statement_t        *current_loop      = NULL;
102 static ms_try_statement_t *current_try       = NULL;
103 static goto_statement_t   *goto_first        = NULL;
104 static goto_statement_t   *goto_last         = NULL;
105 static label_statement_t  *label_first       = NULL;
106 static label_statement_t  *label_last        = NULL;
107 static translation_unit_t *unit              = NULL;
108 static struct obstack      temp_obst;
109
110 static source_position_t null_position = { NULL, 0 };
111
112 /* symbols for Microsoft extended-decl-modifier */
113 static const symbol_t *sym_align      = NULL;
114 static const symbol_t *sym_allocate   = NULL;
115 static const symbol_t *sym_dllimport  = NULL;
116 static const symbol_t *sym_dllexport  = NULL;
117 static const symbol_t *sym_naked      = NULL;
118 static const symbol_t *sym_noinline   = NULL;
119 static const symbol_t *sym_noreturn   = NULL;
120 static const symbol_t *sym_nothrow    = NULL;
121 static const symbol_t *sym_novtable   = NULL;
122 static const symbol_t *sym_property   = NULL;
123 static const symbol_t *sym_get        = NULL;
124 static const symbol_t *sym_put        = NULL;
125 static const symbol_t *sym_selectany  = NULL;
126 static const symbol_t *sym_thread     = NULL;
127 static const symbol_t *sym_uuid       = NULL;
128 static const symbol_t *sym_deprecated = NULL;
129 static const symbol_t *sym_restrict   = NULL;
130 static const symbol_t *sym_noalias    = NULL;
131
132 /** The token anchor set */
133 static unsigned char token_anchor_set[T_LAST_TOKEN];
134
135 /** The current source position. */
136 #define HERE (&token.source_position)
137
138 static type_t *type_valist;
139
140 static statement_t *parse_compound_statement(bool inside_expression_statement);
141 static statement_t *parse_statement(void);
142
143 static expression_t *parse_sub_expression(unsigned precedence);
144 static expression_t *parse_expression(void);
145 static type_t       *parse_typename(void);
146
147 static void parse_compound_type_entries(declaration_t *compound_declaration);
148 static declaration_t *parse_declarator(
149                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
150 static declaration_t *record_declaration(declaration_t *declaration);
151
152 static void semantic_comparison(binary_expression_t *expression);
153
154 #define STORAGE_CLASSES     \
155         case T_typedef:         \
156         case T_extern:          \
157         case T_static:          \
158         case T_auto:            \
159         case T_register:
160
161 #define TYPE_QUALIFIERS     \
162         case T_const:           \
163         case T_restrict:        \
164         case T_volatile:        \
165         case T_inline:          \
166         case T__forceinline:
167
168 #ifdef PROVIDE_COMPLEX
169 #define COMPLEX_SPECIFIERS  \
170         case T__Complex:
171 #define IMAGINARY_SPECIFIERS \
172         case T__Imaginary:
173 #else
174 #define COMPLEX_SPECIFIERS
175 #define IMAGINARY_SPECIFIERS
176 #endif
177
178 #define TYPE_SPECIFIERS       \
179         case T_void:              \
180         case T_char:              \
181         case T_short:             \
182         case T_int:               \
183         case T_long:              \
184         case T_float:             \
185         case T_double:            \
186         case T_signed:            \
187         case T_unsigned:          \
188         case T__Bool:             \
189         case T_struct:            \
190         case T_union:             \
191         case T_enum:              \
192         case T___typeof__:        \
193         case T___builtin_va_list: \
194         case T__declspec:         \
195         COMPLEX_SPECIFIERS        \
196         IMAGINARY_SPECIFIERS
197
198 #define DECLARATION_START   \
199         STORAGE_CLASSES         \
200         TYPE_QUALIFIERS         \
201         TYPE_SPECIFIERS
202
203 #define TYPENAME_START      \
204         TYPE_QUALIFIERS         \
205         TYPE_SPECIFIERS
206
207 /**
208  * Allocate an AST node with given size and
209  * initialize all fields with zero.
210  */
211 static void *allocate_ast_zero(size_t size)
212 {
213         void *res = allocate_ast(size);
214         memset(res, 0, size);
215         return res;
216 }
217
218 static declaration_t *allocate_declaration_zero(void)
219 {
220         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
221         declaration->type      = type_error_type;
222         declaration->alignment = 0;
223         return declaration;
224 }
225
226 /**
227  * Returns the size of a statement node.
228  *
229  * @param kind  the statement kind
230  */
231 static size_t get_statement_struct_size(statement_kind_t kind)
232 {
233         static const size_t sizes[] = {
234                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
235                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
236                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
237                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
238                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
239                 [STATEMENT_IF]          = sizeof(if_statement_t),
240                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
241                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
242                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
243                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
244                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
245                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
246                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
247                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
248                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
249                 [STATEMENT_FOR]         = sizeof(for_statement_t),
250                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
251                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
252                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
253         };
254         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
255         assert(sizes[kind] != 0);
256         return sizes[kind];
257 }
258
259 /**
260  * Returns the size of an expression node.
261  *
262  * @param kind  the expression kind
263  */
264 static size_t get_expression_struct_size(expression_kind_t kind)
265 {
266         static const size_t sizes[] = {
267                 [EXPR_INVALID]                 = sizeof(expression_base_t),
268                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
269                 [EXPR_CONST]                   = sizeof(const_expression_t),
270                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
271                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
272                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
273                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
274                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
275                 [EXPR_CALL]                    = sizeof(call_expression_t),
276                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
277                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
278                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
279                 [EXPR_SELECT]                  = sizeof(select_expression_t),
280                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
281                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
282                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
283                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
284                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
285                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
286                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
287                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
288                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
289                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
290                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
291                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
292         };
293         if(kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
294                 return sizes[EXPR_UNARY_FIRST];
295         }
296         if(kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
297                 return sizes[EXPR_BINARY_FIRST];
298         }
299         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
300         assert(sizes[kind] != 0);
301         return sizes[kind];
302 }
303
304 /**
305  * Allocate a statement node of given kind and initialize all
306  * fields with zero.
307  */
308 static statement_t *allocate_statement_zero(statement_kind_t kind)
309 {
310         size_t       size = get_statement_struct_size(kind);
311         statement_t *res  = allocate_ast_zero(size);
312
313         res->base.kind = kind;
314         return res;
315 }
316
317 /**
318  * Allocate an expression node of given kind and initialize all
319  * fields with zero.
320  */
321 static expression_t *allocate_expression_zero(expression_kind_t kind)
322 {
323         size_t        size = get_expression_struct_size(kind);
324         expression_t *res  = allocate_ast_zero(size);
325
326         res->base.kind = kind;
327         res->base.type = type_error_type;
328         return res;
329 }
330
331 /**
332  * Creates a new invalid expression.
333  */
334 static expression_t *create_invalid_expression(void)
335 {
336         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
337         expression->base.source_position = token.source_position;
338         return expression;
339 }
340
341 /**
342  * Creates a new invalid statement.
343  */
344 static statement_t *create_invalid_statement(void)
345 {
346         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
347         statement->base.source_position = token.source_position;
348         return statement;
349 }
350
351 /**
352  * Allocate a new empty statement.
353  */
354 static statement_t *create_empty_statement(void)
355 {
356         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
357         statement->base.source_position = token.source_position;
358         return statement;
359 }
360
361 /**
362  * Returns the size of a type node.
363  *
364  * @param kind  the type kind
365  */
366 static size_t get_type_struct_size(type_kind_t kind)
367 {
368         static const size_t sizes[] = {
369                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
370                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
371                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
372                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
373                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
374                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
375                 [TYPE_ENUM]            = sizeof(enum_type_t),
376                 [TYPE_FUNCTION]        = sizeof(function_type_t),
377                 [TYPE_POINTER]         = sizeof(pointer_type_t),
378                 [TYPE_ARRAY]           = sizeof(array_type_t),
379                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
380                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
381                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
382         };
383         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
384         assert(kind <= TYPE_TYPEOF);
385         assert(sizes[kind] != 0);
386         return sizes[kind];
387 }
388
389 /**
390  * Allocate a type node of given kind and initialize all
391  * fields with zero.
392  */
393 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
394 {
395         size_t  size = get_type_struct_size(kind);
396         type_t *res  = obstack_alloc(type_obst, size);
397         memset(res, 0, size);
398
399         res->base.kind            = kind;
400         res->base.source_position = *source_position;
401         return res;
402 }
403
404 /**
405  * Returns the size of an initializer node.
406  *
407  * @param kind  the initializer kind
408  */
409 static size_t get_initializer_size(initializer_kind_t kind)
410 {
411         static const size_t sizes[] = {
412                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
413                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
414                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
415                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
416                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
417         };
418         assert(kind < sizeof(sizes) / sizeof(*sizes));
419         assert(sizes[kind] != 0);
420         return sizes[kind];
421 }
422
423 /**
424  * Allocate an initializer node of given kind and initialize all
425  * fields with zero.
426  */
427 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
428 {
429         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
430         result->kind          = kind;
431
432         return result;
433 }
434
435 /**
436  * Free a type from the type obstack.
437  */
438 static void free_type(void *type)
439 {
440         obstack_free(type_obst, type);
441 }
442
443 /**
444  * Returns the index of the top element of the environment stack.
445  */
446 static size_t environment_top(void)
447 {
448         return ARR_LEN(environment_stack);
449 }
450
451 /**
452  * Returns the index of the top element of the label stack.
453  */
454 static size_t label_top(void)
455 {
456         return ARR_LEN(label_stack);
457 }
458
459 /**
460  * Return the next token.
461  */
462 static inline void next_token(void)
463 {
464         token                              = lookahead_buffer[lookahead_bufpos];
465         lookahead_buffer[lookahead_bufpos] = lexer_token;
466         lexer_next_token();
467
468         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
469
470 #ifdef PRINT_TOKENS
471         print_token(stderr, &token);
472         fprintf(stderr, "\n");
473 #endif
474 }
475
476 /**
477  * Return the next token with a given lookahead.
478  */
479 static inline const token_t *look_ahead(int num)
480 {
481         assert(num > 0 && num <= MAX_LOOKAHEAD);
482         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
483         return &lookahead_buffer[pos];
484 }
485
486 /**
487  * Adds a token to the token anchor set (a multi-set).
488  */
489 static void add_anchor_token(int token_type) {
490         assert(0 <= token_type && token_type < T_LAST_TOKEN);
491         ++token_anchor_set[token_type];
492 }
493
494 static int save_and_reset_anchor_state(int token_type) {
495         assert(0 <= token_type && token_type < T_LAST_TOKEN);
496         int count = token_anchor_set[token_type];
497         token_anchor_set[token_type] = 0;
498         return count;
499 }
500
501 static void restore_anchor_state(int token_type, int count) {
502         assert(0 <= token_type && token_type < T_LAST_TOKEN);
503         token_anchor_set[token_type] = count;
504 }
505
506 /**
507  * Remove a token from the token anchor set (a multi-set).
508  */
509 static void rem_anchor_token(int token_type) {
510         assert(0 <= token_type && token_type < T_LAST_TOKEN);
511         --token_anchor_set[token_type];
512 }
513
514 static bool at_anchor(void) {
515         if(token.type < 0)
516                 return false;
517         return token_anchor_set[token.type];
518 }
519
520 /**
521  * Eat tokens until a matching token is found.
522  */
523 static void eat_until_matching_token(int type) {
524         unsigned parenthesis_count = 0;
525         unsigned brace_count = 0;
526         unsigned bracket_count = 0;
527         int end_token = type;
528
529         if(type == '(')
530                 end_token = ')';
531         else if(type == '{')
532                 end_token = '}';
533         else if(type == '[')
534                 end_token = ']';
535
536         while(token.type != end_token ||
537               (parenthesis_count > 0 || brace_count > 0 || bracket_count > 0)) {
538
539                 switch(token.type) {
540                 case T_EOF: return;
541                 case '(': ++parenthesis_count; break;
542                 case '{': ++brace_count;       break;
543                 case '[': ++bracket_count;     break;
544                 case ')':
545                         if(parenthesis_count > 0)
546                                 --parenthesis_count;
547                         break;
548                 case '}':
549                         if(brace_count > 0)
550                                 --brace_count;
551                         break;
552                 case ']':
553                         if(bracket_count > 0)
554                                 --bracket_count;
555                         break;
556                 default:
557                         break;
558                 }
559                 next_token();
560         }
561 }
562
563 /**
564  * Eat input tokens until an anchor is found.
565  */
566 static void eat_until_anchor(void) {
567         if(token.type == T_EOF)
568                 return;
569         while(token_anchor_set[token.type] == 0) {
570                 if(token.type == '(' || token.type == '{' || token.type == '[')
571                         eat_until_matching_token(token.type);
572                 if(token.type == T_EOF)
573                         break;
574                 next_token();
575         }
576 }
577
578 static void eat_block(void) {
579         eat_until_matching_token('{');
580         if(token.type == '}')
581                 next_token();
582 }
583
584 /**
585  * eat all token until a ';' is reached or a stop token is found.
586  */
587 static void eat_statement(void) {
588         eat_until_matching_token(';');
589         if(token.type == ';')
590                 next_token();
591 }
592
593 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while(0)
594
595 /**
596  * Report a parse error because an expected token was not found.
597  */
598 static
599 #if defined __GNUC__ && __GNUC__ >= 4
600 __attribute__((sentinel))
601 #endif
602 void parse_error_expected(const char *message, ...)
603 {
604         if(message != NULL) {
605                 errorf(HERE, "%s", message);
606         }
607         va_list ap;
608         va_start(ap, message);
609         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
610         va_end(ap);
611 }
612
613 /**
614  * Report a type error.
615  */
616 static void type_error(const char *msg, const source_position_t *source_position,
617                        type_t *type)
618 {
619         errorf(source_position, "%s, but found type '%T'", msg, type);
620 }
621
622 /**
623  * Report an incompatible type.
624  */
625 static void type_error_incompatible(const char *msg,
626                 const source_position_t *source_position, type_t *type1, type_t *type2)
627 {
628         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
629                msg, type1, type2);
630 }
631
632 /**
633  * Expect the the current token is the expected token.
634  * If not, generate an error, eat the current statement,
635  * and goto the end_error label.
636  */
637 #define expect(expected)                              \
638         do {                                              \
639     if(UNLIKELY(token.type != (expected))) {          \
640         parse_error_expected(NULL, (expected), NULL); \
641                 add_anchor_token(expected);                   \
642         eat_until_anchor();                           \
643         if (token.type == expected)                   \
644                 next_token();                             \
645                 rem_anchor_token(expected);                   \
646         goto end_error;                               \
647     }                                                 \
648     next_token();                                     \
649         } while(0)
650
651 static void set_scope(scope_t *new_scope)
652 {
653         if(scope != NULL) {
654                 scope->last_declaration = last_declaration;
655         }
656         scope = new_scope;
657
658         last_declaration = new_scope->last_declaration;
659 }
660
661 /**
662  * Search a symbol in a given namespace and returns its declaration or
663  * NULL if this symbol was not found.
664  */
665 static declaration_t *get_declaration(const symbol_t *const symbol,
666                                       const namespace_t namespc)
667 {
668         declaration_t *declaration = symbol->declaration;
669         for( ; declaration != NULL; declaration = declaration->symbol_next) {
670                 if(declaration->namespc == namespc)
671                         return declaration;
672         }
673
674         return NULL;
675 }
676
677 /**
678  * pushs an environment_entry on the environment stack and links the
679  * corresponding symbol to the new entry
680  */
681 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
682 {
683         symbol_t    *symbol  = declaration->symbol;
684         namespace_t  namespc = (namespace_t) declaration->namespc;
685
686         /* replace/add declaration into declaration list of the symbol */
687         declaration_t *iter = symbol->declaration;
688         if (iter == NULL) {
689                 symbol->declaration = declaration;
690         } else {
691                 declaration_t *iter_last = NULL;
692                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
693                         /* replace an entry? */
694                         if(iter->namespc == namespc) {
695                                 if(iter_last == NULL) {
696                                         symbol->declaration = declaration;
697                                 } else {
698                                         iter_last->symbol_next = declaration;
699                                 }
700                                 declaration->symbol_next = iter->symbol_next;
701                                 break;
702                         }
703                 }
704                 if(iter == NULL) {
705                         assert(iter_last->symbol_next == NULL);
706                         iter_last->symbol_next = declaration;
707                 }
708         }
709
710         /* remember old declaration */
711         stack_entry_t entry;
712         entry.symbol          = symbol;
713         entry.old_declaration = iter;
714         entry.namespc         = (unsigned short) namespc;
715         ARR_APP1(stack_entry_t, *stack_ptr, entry);
716 }
717
718 static void environment_push(declaration_t *declaration)
719 {
720         assert(declaration->source_position.input_name != NULL);
721         assert(declaration->parent_scope != NULL);
722         stack_push(&environment_stack, declaration);
723 }
724
725 static void label_push(declaration_t *declaration)
726 {
727         declaration->parent_scope = &current_function->scope;
728         stack_push(&label_stack, declaration);
729 }
730
731 /**
732  * pops symbols from the environment stack until @p new_top is the top element
733  */
734 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
735 {
736         stack_entry_t *stack = *stack_ptr;
737         size_t         top   = ARR_LEN(stack);
738         size_t         i;
739
740         assert(new_top <= top);
741         if(new_top == top)
742                 return;
743
744         for(i = top; i > new_top; --i) {
745                 stack_entry_t *entry = &stack[i - 1];
746
747                 declaration_t *old_declaration = entry->old_declaration;
748                 symbol_t      *symbol          = entry->symbol;
749                 namespace_t    namespc         = (namespace_t)entry->namespc;
750
751                 /* replace/remove declaration */
752                 declaration_t *declaration = symbol->declaration;
753                 assert(declaration != NULL);
754                 if(declaration->namespc == namespc) {
755                         if(old_declaration == NULL) {
756                                 symbol->declaration = declaration->symbol_next;
757                         } else {
758                                 symbol->declaration = old_declaration;
759                         }
760                 } else {
761                         declaration_t *iter_last = declaration;
762                         declaration_t *iter      = declaration->symbol_next;
763                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
764                                 /* replace an entry? */
765                                 if(iter->namespc == namespc) {
766                                         assert(iter_last != NULL);
767                                         iter_last->symbol_next = old_declaration;
768                                         if(old_declaration != NULL) {
769                                                 old_declaration->symbol_next = iter->symbol_next;
770                                         }
771                                         break;
772                                 }
773                         }
774                         assert(iter != NULL);
775                 }
776         }
777
778         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
779 }
780
781 static void environment_pop_to(size_t new_top)
782 {
783         stack_pop_to(&environment_stack, new_top);
784 }
785
786 static void label_pop_to(size_t new_top)
787 {
788         stack_pop_to(&label_stack, new_top);
789 }
790
791
792 static int get_rank(const type_t *type)
793 {
794         assert(!is_typeref(type));
795         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
796          * and esp. footnote 108). However we can't fold constants (yet), so we
797          * can't decide whether unsigned int is possible, while int always works.
798          * (unsigned int would be preferable when possible... for stuff like
799          *  struct { enum { ... } bla : 4; } ) */
800         if(type->kind == TYPE_ENUM)
801                 return ATOMIC_TYPE_INT;
802
803         assert(type->kind == TYPE_ATOMIC);
804         return type->atomic.akind;
805 }
806
807 static type_t *promote_integer(type_t *type)
808 {
809         if(type->kind == TYPE_BITFIELD)
810                 type = type->bitfield.base_type;
811
812         if(get_rank(type) < ATOMIC_TYPE_INT)
813                 type = type_int;
814
815         return type;
816 }
817
818 /**
819  * Create a cast expression.
820  *
821  * @param expression  the expression to cast
822  * @param dest_type   the destination type
823  */
824 static expression_t *create_cast_expression(expression_t *expression,
825                                             type_t *dest_type)
826 {
827         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
828
829         cast->unary.value = expression;
830         cast->base.type   = dest_type;
831
832         return cast;
833 }
834
835 /**
836  * Check if a given expression represents the 0 pointer constant.
837  */
838 static bool is_null_pointer_constant(const expression_t *expression)
839 {
840         /* skip void* cast */
841         if(expression->kind == EXPR_UNARY_CAST
842                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
843                 expression = expression->unary.value;
844         }
845
846         /* TODO: not correct yet, should be any constant integer expression
847          * which evaluates to 0 */
848         if (expression->kind != EXPR_CONST)
849                 return false;
850
851         type_t *const type = skip_typeref(expression->base.type);
852         if (!is_type_integer(type))
853                 return false;
854
855         return expression->conste.v.int_value == 0;
856 }
857
858 /**
859  * Create an implicit cast expression.
860  *
861  * @param expression  the expression to cast
862  * @param dest_type   the destination type
863  */
864 static expression_t *create_implicit_cast(expression_t *expression,
865                                           type_t *dest_type)
866 {
867         type_t *const source_type = expression->base.type;
868
869         if (source_type == dest_type)
870                 return expression;
871
872         return create_cast_expression(expression, dest_type);
873 }
874
875 /** Implements the rules from Â§ 6.5.16.1 */
876 static type_t *semantic_assign(type_t *orig_type_left,
877                             const expression_t *const right,
878                             const char *context,
879                             const source_position_t *source_position)
880 {
881         type_t *const orig_type_right = right->base.type;
882         type_t *const type_left       = skip_typeref(orig_type_left);
883         type_t *const type_right      = skip_typeref(orig_type_right);
884
885         if(is_type_pointer(type_left)) {
886                 if(is_null_pointer_constant(right)) {
887                         return orig_type_left;
888                 } else if(is_type_pointer(type_right)) {
889                         type_t *points_to_left
890                                 = skip_typeref(type_left->pointer.points_to);
891                         type_t *points_to_right
892                                 = skip_typeref(type_right->pointer.points_to);
893
894                         /* the left type has all qualifiers from the right type */
895                         unsigned missing_qualifiers
896                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
897                         if(missing_qualifiers != 0) {
898                                 errorf(source_position,
899                                                 "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointed-to type", type_left, context, type_right, missing_qualifiers);
900                                 return orig_type_left;
901                         }
902
903                         points_to_left  = get_unqualified_type(points_to_left);
904                         points_to_right = get_unqualified_type(points_to_right);
905
906                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
907                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
908                                 return orig_type_left;
909                         }
910
911                         if (!types_compatible(points_to_left, points_to_right)) {
912                                 warningf(source_position,
913                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
914                                         orig_type_left, context, right, orig_type_right);
915                         }
916
917                         return orig_type_left;
918                 } else if(is_type_integer(type_right)) {
919                         warningf(source_position,
920                                         "%s makes pointer '%T' from integer '%T' without a cast",
921                                         context, orig_type_left, orig_type_right);
922                         return orig_type_left;
923                 }
924         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
925             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
926                 && is_type_pointer(type_right))) {
927                 return orig_type_left;
928         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
929                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
930                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
931                 type_t *const unqual_type_right = get_unqualified_type(type_right);
932                 if (types_compatible(unqual_type_left, unqual_type_right)) {
933                         return orig_type_left;
934                 }
935         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
936                 warningf(source_position,
937                                 "%s makes integer '%T' from pointer '%T' without a cast",
938                                 context, orig_type_left, orig_type_right);
939                 return orig_type_left;
940         }
941
942         if (!is_type_valid(type_left))
943                 return type_left;
944
945         if (!is_type_valid(type_right))
946                 return orig_type_right;
947
948         return NULL;
949 }
950
951 static expression_t *parse_constant_expression(void)
952 {
953         /* start parsing at precedence 7 (conditional expression) */
954         expression_t *result = parse_sub_expression(7);
955
956         if(!is_constant_expression(result)) {
957                 errorf(&result->base.source_position,
958                        "expression '%E' is not constant\n", result);
959         }
960
961         return result;
962 }
963
964 static expression_t *parse_assignment_expression(void)
965 {
966         /* start parsing at precedence 2 (assignment expression) */
967         return parse_sub_expression(2);
968 }
969
970 static type_t *make_global_typedef(const char *name, type_t *type)
971 {
972         symbol_t *const symbol       = symbol_table_insert(name);
973
974         declaration_t *const declaration = allocate_declaration_zero();
975         declaration->namespc                = NAMESPACE_NORMAL;
976         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
977         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
978         declaration->type                   = type;
979         declaration->symbol                 = symbol;
980         declaration->source_position        = builtin_source_position;
981
982         record_declaration(declaration);
983
984         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
985         typedef_type->typedeft.declaration = declaration;
986
987         return typedef_type;
988 }
989
990 static string_t parse_string_literals(void)
991 {
992         assert(token.type == T_STRING_LITERAL);
993         string_t result = token.v.string;
994
995         next_token();
996
997         while (token.type == T_STRING_LITERAL) {
998                 result = concat_strings(&result, &token.v.string);
999                 next_token();
1000         }
1001
1002         return result;
1003 }
1004
1005 static const char *gnu_attribute_names[GNU_AK_LAST] = {
1006         [GNU_AK_CONST]                  = "const",
1007         [GNU_AK_VOLATILE]               = "volatile",
1008         [GNU_AK_CDECL]                  = "cdecl",
1009         [GNU_AK_STDCALL]                = "stdcall",
1010         [GNU_AK_FASTCALL]               = "fastcall",
1011         [GNU_AK_DEPRECATED]             = "deprecated",
1012         [GNU_AK_NOINLINE]               = "noinline",
1013         [GNU_AK_NORETURN]               = "noreturn",
1014         [GNU_AK_NAKED]                  = "naked",
1015         [GNU_AK_PURE]                   = "pure",
1016         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1017         [GNU_AK_MALLOC]                 = "malloc",
1018         [GNU_AK_WEAK]                   = "weak",
1019         [GNU_AK_CONSTRUCTOR]            = "constructor",
1020         [GNU_AK_DESTRUCTOR]             = "destructor",
1021         [GNU_AK_NOTHROW]                = "nothrow",
1022         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1023         [GNU_AK_COMMON]                 = "coommon",
1024         [GNU_AK_NOCOMMON]               = "nocommon",
1025         [GNU_AK_PACKED]                 = "packed",
1026         [GNU_AK_SHARED]                 = "shared",
1027         [GNU_AK_NOTSHARED]              = "notshared",
1028         [GNU_AK_USED]                   = "used",
1029         [GNU_AK_UNUSED]                 = "unused",
1030         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1031         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1032         [GNU_AK_LONGCALL]               = "longcall",
1033         [GNU_AK_SHORTCALL]              = "shortcall",
1034         [GNU_AK_LONG_CALL]              = "long_call",
1035         [GNU_AK_SHORT_CALL]             = "short_call",
1036         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1037         [GNU_AK_INTERRUPT]                              = "interrupt",
1038         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1039         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1040         [GNU_AK_NESTING]                = "nesting",
1041         [GNU_AK_NEAR]                   = "near",
1042         [GNU_AK_FAR]                    = "far",
1043         [GNU_AK_SIGNAL]                 = "signal",
1044         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1045         [GNU_AK_TINY_DATA]              = "tiny_data",
1046         [GNU_AK_SAVEALL]                = "saveall",
1047         [GNU_AK_FLATTEN]                = "flatten",
1048         [GNU_AK_SSEREGPARM]             = "sseregparm",
1049         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1050         [GNU_AK_RETURN_TWICE]           = "return_twice",
1051         [GNU_AK_MAY_ALIAS]              = "may_alias",
1052         [GNU_AK_MS_STRUCT]              = "ms_struct",
1053         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1054         [GNU_AK_DLLIMPORT]              = "dllimport",
1055         [GNU_AK_DLLEXPORT]              = "dllexport",
1056         [GNU_AK_ALIGNED]                = "aligned",
1057         [GNU_AK_ALIAS]                  = "alias",
1058         [GNU_AK_SECTION]                = "section",
1059         [GNU_AK_FORMAT]                 = "format",
1060         [GNU_AK_FORMAT_ARG]             = "format_arg",
1061         [GNU_AK_WEAKREF]                = "weakref",
1062         [GNU_AK_NONNULL]                = "nonnull",
1063         [GNU_AK_TLS_MODEL]              = "tls_model",
1064         [GNU_AK_VISIBILITY]             = "visibility",
1065         [GNU_AK_REGPARM]                = "regparm",
1066         [GNU_AK_MODE]                   = "mode",
1067         [GNU_AK_MODEL]                  = "model",
1068         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1069         [GNU_AK_SP_SWITCH]              = "sp_switch",
1070         [GNU_AK_SENTINEL]               = "sentinel"
1071 };
1072
1073 /**
1074  * compare two string, ignoring double underscores on the second.
1075  */
1076 static int strcmp_underscore(const char *s1, const char *s2) {
1077         if(s2[0] == '_' && s2[1] == '_') {
1078                 s2 += 2;
1079                 size_t l1 = strlen(s1);
1080                 if(l1 + 2 != strlen(s2)) {
1081                         /* not equal */
1082                         return 1;
1083                 }
1084                 return strncmp(s1, s2, l1);
1085         }
1086         return strcmp(s1, s2);
1087 }
1088
1089 /**
1090  * Allocate a new gnu temporal attribute.
1091  */
1092 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind) {
1093         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1094         attribute->kind            = kind;
1095         attribute->next            = NULL;
1096         attribute->invalid         = false;
1097         attribute->have_arguments  = false;
1098
1099         return attribute;
1100 }
1101
1102 /**
1103  * parse one constant expression argument.
1104  */
1105 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute) {
1106         expression_t *expression;
1107         add_anchor_token(')');
1108         expression = parse_constant_expression();
1109         rem_anchor_token(')');
1110         expect(')');
1111         (void)expression;
1112         return;
1113 end_error:
1114         attribute->invalid = true;
1115 }
1116
1117 /**
1118  * parse a list of constant expressions arguments.
1119  */
1120 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute) {
1121         expression_t *expression;
1122         add_anchor_token(')');
1123         add_anchor_token(',');
1124         while(true){
1125                 expression = parse_constant_expression();
1126                 if(token.type != ',')
1127                         break;
1128                 next_token();
1129         }
1130         rem_anchor_token(',');
1131         rem_anchor_token(')');
1132         expect(')');
1133         (void)expression;
1134         return;
1135 end_error:
1136         attribute->invalid = true;
1137 }
1138
1139 /**
1140  * parse one string literal argument.
1141  */
1142 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1143                                            string_t *string)
1144 {
1145         add_anchor_token('(');
1146         if(token.type != T_STRING_LITERAL) {
1147                 parse_error_expected("while parsing attribute directive",
1148                                      T_STRING_LITERAL, NULL);
1149                 goto end_error;
1150         }
1151         *string = parse_string_literals();
1152         rem_anchor_token('(');
1153         expect(')');
1154         return;
1155 end_error:
1156         attribute->invalid = true;
1157 }
1158
1159 /**
1160  * parse one tls model.
1161  */
1162 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute) {
1163         static const char *tls_models[] = {
1164                 "global-dynamic",
1165                 "local-dynamic",
1166                 "initial-exec",
1167                 "local-exec"
1168         };
1169         string_t string = { NULL, 0 };
1170         parse_gnu_attribute_string_arg(attribute, &string);
1171         if(string.begin != NULL) {
1172                 for(size_t i = 0; i < 4; ++i) {
1173                         if(strcmp(tls_models[i], string.begin) == 0) {
1174                                 attribute->u.value = i;
1175                                 return;
1176                         }
1177                 }
1178         }
1179         errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1180         attribute->invalid = true;
1181 }
1182
1183 /**
1184  * parse one tls model.
1185  */
1186 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute) {
1187         static const char *visibilities[] = {
1188                 "default",
1189                 "protected",
1190                 "hidden",
1191                 "internal"
1192         };
1193         string_t string = { NULL, 0 };
1194         parse_gnu_attribute_string_arg(attribute, &string);
1195         if(string.begin != NULL) {
1196                 for(size_t i = 0; i < 4; ++i) {
1197                         if(strcmp(visibilities[i], string.begin) == 0) {
1198                                 attribute->u.value = i;
1199                                 return;
1200                         }
1201                 }
1202         }
1203         errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1204         attribute->invalid = true;
1205 }
1206
1207 /**
1208  * parse one (code) model.
1209  */
1210 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute) {
1211         static const char *visibilities[] = {
1212                 "small",
1213                 "medium",
1214                 "large"
1215         };
1216         string_t string = { NULL, 0 };
1217         parse_gnu_attribute_string_arg(attribute, &string);
1218         if(string.begin != NULL) {
1219                 for(int i = 0; i < 3; ++i) {
1220                         if(strcmp(visibilities[i], string.begin) == 0) {
1221                                 attribute->u.value = i;
1222                                 return;
1223                         }
1224                 }
1225         }
1226         errorf(HERE, "'%s' is an unrecognized model", string.begin);
1227         attribute->invalid = true;
1228 }
1229
1230 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1231 {
1232         /* TODO: find out what is allowed here... */
1233
1234         /* at least: byte, word, pointer, list of machine modes
1235          * __XXX___ is interpreted as XXX */
1236         add_anchor_token(')');
1237         expect(T_IDENTIFIER);
1238         rem_anchor_token(')');
1239         expect(')');
1240         return;
1241 end_error:
1242         attribute->invalid = true;
1243 }
1244
1245 /**
1246  * parse one interrupt argument.
1247  */
1248 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute) {
1249         static const char *interrupts[] = {
1250                 "IRQ",
1251                 "FIQ",
1252                 "SWI",
1253                 "ABORT",
1254                 "UNDEF"
1255         };
1256         string_t string = { NULL, 0 };
1257         parse_gnu_attribute_string_arg(attribute, &string);
1258         if(string.begin != NULL) {
1259                 for(size_t i = 0; i < 5; ++i) {
1260                         if(strcmp(interrupts[i], string.begin) == 0) {
1261                                 attribute->u.value = i;
1262                                 return;
1263                         }
1264                 }
1265         }
1266         errorf(HERE, "'%s' is an interrupt", string.begin);
1267         attribute->invalid = true;
1268 }
1269
1270 /**
1271  * parse ( identifier, const expression, const expression )
1272  */
1273 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute) {
1274         static const char *format_names[] = {
1275                 "printf",
1276                 "scanf",
1277                 "strftime",
1278                 "strfmon"
1279         };
1280         int i;
1281
1282         if(token.type != T_IDENTIFIER) {
1283                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1284                 goto end_error;
1285         }
1286         const char *name = token.v.symbol->string;
1287         for(i = 0; i < 4; ++i) {
1288                 if(strcmp_underscore(format_names[i], name) == 0)
1289                         break;
1290         }
1291         if(i >= 4) {
1292                 if(warning.attribute)
1293                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1294         }
1295         next_token();
1296
1297         expect(',');
1298         add_anchor_token(')');
1299         add_anchor_token(',');
1300         parse_constant_expression();
1301         rem_anchor_token(',');
1302         rem_anchor_token('(');
1303
1304         expect(',');
1305         add_anchor_token(')');
1306         parse_constant_expression();
1307         rem_anchor_token('(');
1308         expect(')');
1309         return;
1310 end_error:
1311         attribute->u.value = true;
1312 }
1313
1314 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1315 {
1316         if(!attribute->have_arguments)
1317                 return;
1318
1319         /* should have no arguments */
1320         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1321         eat_until_matching_token('(');
1322         /* we have already consumed '(', so we stop before ')', eat it */
1323         eat(')');
1324         attribute->invalid = true;
1325 }
1326
1327 /**
1328  * Parse one GNU attribute.
1329  *
1330  * Note that attribute names can be specified WITH or WITHOUT
1331  * double underscores, ie const or __const__.
1332  *
1333  * The following attributes are parsed without arguments
1334  *  const
1335  *  volatile
1336  *  cdecl
1337  *  stdcall
1338  *  fastcall
1339  *  deprecated
1340  *  noinline
1341  *  noreturn
1342  *  naked
1343  *  pure
1344  *  always_inline
1345  *  malloc
1346  *  weak
1347  *  constructor
1348  *  destructor
1349  *  nothrow
1350  *  transparent_union
1351  *  common
1352  *  nocommon
1353  *  packed
1354  *  shared
1355  *  notshared
1356  *  used
1357  *  unused
1358  *  no_instrument_function
1359  *  warn_unused_result
1360  *  longcall
1361  *  shortcall
1362  *  long_call
1363  *  short_call
1364  *  function_vector
1365  *  interrupt_handler
1366  *  nmi_handler
1367  *  nesting
1368  *  near
1369  *  far
1370  *  signal
1371  *  eightbit_data
1372  *  tiny_data
1373  *  saveall
1374  *  flatten
1375  *  sseregparm
1376  *  externally_visible
1377  *  return_twice
1378  *  may_alias
1379  *  ms_struct
1380  *  gcc_struct
1381  *  dllimport
1382  *  dllexport
1383  *
1384  * The following attributes are parsed with arguments
1385  *  aligned( const expression )
1386  *  alias( string literal )
1387  *  section( string literal )
1388  *  format( identifier, const expression, const expression )
1389  *  format_arg( const expression )
1390  *  tls_model( string literal )
1391  *  visibility( string literal )
1392  *  regparm( const expression )
1393  *  model( string leteral )
1394  *  trap_exit( const expression )
1395  *  sp_switch( string literal )
1396  *
1397  * The following attributes might have arguments
1398  *  weak_ref( string literal )
1399  *  non_null( const expression // ',' )
1400  *  interrupt( string literal )
1401  *  sentinel( constant expression )
1402  */
1403 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1404 {
1405         gnu_attribute_t *head      = *attributes;
1406         gnu_attribute_t *last      = *attributes;
1407         decl_modifiers_t modifiers = 0;
1408         gnu_attribute_t *attribute;
1409
1410         eat(T___attribute__);
1411         expect('(');
1412         expect('(');
1413
1414         if(token.type != ')') {
1415                 /* find the end of the list */
1416                 if(last != NULL) {
1417                         while(last->next != NULL)
1418                                 last = last->next;
1419                 }
1420
1421                 /* non-empty attribute list */
1422                 while(true) {
1423                         const char *name;
1424                         if(token.type == T_const) {
1425                                 name = "const";
1426                         } else if(token.type == T_volatile) {
1427                                 name = "volatile";
1428                         } else if(token.type == T_cdecl) {
1429                                 /* __attribute__((cdecl)), WITH ms mode */
1430                                 name = "cdecl";
1431                         } else if(token.type != T_IDENTIFIER) {
1432                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1433                                 break;
1434                         }
1435                         const symbol_t *sym = token.v.symbol;
1436                         name = sym->string;
1437                         next_token();
1438
1439                         int i;
1440                         for(i = 0; i < GNU_AK_LAST; ++i) {
1441                                 if(strcmp_underscore(gnu_attribute_names[i], name) == 0)
1442                                         break;
1443                         }
1444                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1445
1446                         attribute = NULL;
1447                         if(kind == GNU_AK_LAST) {
1448                                 if(warning.attribute)
1449                                         warningf(HERE, "'%s' attribute directive ignored", name);
1450
1451                                 /* skip possible arguments */
1452                                 if(token.type == '(') {
1453                                         eat_until_matching_token(')');
1454                                 }
1455                         } else {
1456                                 /* check for arguments */
1457                                 attribute = allocate_gnu_attribute(kind);
1458                                 if(token.type == '(') {
1459                                         next_token();
1460                                         if(token.type == ')') {
1461                                                 /* empty args are allowed */
1462                                                 next_token();
1463                                         } else
1464                                                 attribute->have_arguments = true;
1465                                 }
1466
1467                                 switch(kind) {
1468                                 case GNU_AK_CONST:
1469                                 case GNU_AK_VOLATILE:
1470                                 case GNU_AK_CDECL:
1471                                 case GNU_AK_STDCALL:
1472                                 case GNU_AK_FASTCALL:
1473                                 case GNU_AK_DEPRECATED:
1474                                 case GNU_AK_NAKED:
1475                                 case GNU_AK_MALLOC:
1476                                 case GNU_AK_WEAK:
1477                                 case GNU_AK_COMMON:
1478                                 case GNU_AK_NOCOMMON:
1479                                 case GNU_AK_SHARED:
1480                                 case GNU_AK_NOTSHARED:
1481                                 case GNU_AK_USED:
1482                                 case GNU_AK_UNUSED:
1483                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1484                                 case GNU_AK_WARN_UNUSED_RESULT:
1485                                 case GNU_AK_LONGCALL:
1486                                 case GNU_AK_SHORTCALL:
1487                                 case GNU_AK_LONG_CALL:
1488                                 case GNU_AK_SHORT_CALL:
1489                                 case GNU_AK_FUNCTION_VECTOR:
1490                                 case GNU_AK_INTERRUPT_HANDLER:
1491                                 case GNU_AK_NMI_HANDLER:
1492                                 case GNU_AK_NESTING:
1493                                 case GNU_AK_NEAR:
1494                                 case GNU_AK_FAR:
1495                                 case GNU_AK_SIGNAL:
1496                                 case GNU_AK_EIGTHBIT_DATA:
1497                                 case GNU_AK_TINY_DATA:
1498                                 case GNU_AK_SAVEALL:
1499                                 case GNU_AK_FLATTEN:
1500                                 case GNU_AK_SSEREGPARM:
1501                                 case GNU_AK_EXTERNALLY_VISIBLE:
1502                                 case GNU_AK_RETURN_TWICE:
1503                                 case GNU_AK_MAY_ALIAS:
1504                                 case GNU_AK_MS_STRUCT:
1505                                 case GNU_AK_GCC_STRUCT:
1506                                         check_no_argument(attribute, name);
1507                                         break;
1508
1509                                 case GNU_AK_PURE:
1510                                         check_no_argument(attribute, name);
1511                                         modifiers |= DM_PURE;
1512                                         break;
1513
1514                                 case GNU_AK_ALWAYS_INLINE:
1515                                         check_no_argument(attribute, name);
1516                                         modifiers |= DM_FORCEINLINE;
1517                                         break;
1518
1519                                 case GNU_AK_DLLIMPORT:
1520                                         check_no_argument(attribute, name);
1521                                         modifiers |= DM_DLLIMPORT;
1522                                         break;
1523
1524                                 case GNU_AK_DLLEXPORT:
1525                                         check_no_argument(attribute, name);
1526                                         modifiers |= DM_DLLEXPORT;
1527                                         break;
1528
1529                                 case GNU_AK_PACKED:
1530                                         check_no_argument(attribute, name);
1531                                         modifiers |= DM_PACKED;
1532                                         break;
1533
1534                                 case GNU_AK_NOINLINE:
1535                                         check_no_argument(attribute, name);
1536                                         modifiers |= DM_NOINLINE;
1537                                         break;
1538
1539                                 case GNU_AK_NORETURN:
1540                                         check_no_argument(attribute, name);
1541                                         modifiers |= DM_NORETURN;
1542                                         break;
1543
1544                                 case GNU_AK_NOTHROW:
1545                                         check_no_argument(attribute, name);
1546                                         modifiers |= DM_NOTHROW;
1547                                         break;
1548
1549                                 case GNU_AK_TRANSPARENT_UNION:
1550                                         check_no_argument(attribute, name);
1551                                         modifiers |= DM_TRANSPARENT_UNION;
1552                                         break;
1553
1554                                 case GNU_AK_CONSTRUCTOR:
1555                                         check_no_argument(attribute, name);
1556                                         modifiers |= DM_CONSTRUCTOR;
1557                                         break;
1558
1559                                 case GNU_AK_DESTRUCTOR:
1560                                         check_no_argument(attribute, name);
1561                                         modifiers |= DM_DESTRUCTOR;
1562                                         break;
1563
1564                                 case GNU_AK_ALIGNED:
1565                                 case GNU_AK_FORMAT_ARG:
1566                                 case GNU_AK_REGPARM:
1567                                 case GNU_AK_TRAP_EXIT:
1568                                         if(!attribute->have_arguments) {
1569                                                 /* should have arguments */
1570                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1571                                                 attribute->invalid = true;
1572                                         } else
1573                                                 parse_gnu_attribute_const_arg(attribute);
1574                                         break;
1575                                 case GNU_AK_ALIAS:
1576                                 case GNU_AK_SECTION:
1577                                 case GNU_AK_SP_SWITCH:
1578                                         if(!attribute->have_arguments) {
1579                                                 /* should have arguments */
1580                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1581                                                 attribute->invalid = true;
1582                                         } else
1583                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1584                                         break;
1585                                 case GNU_AK_FORMAT:
1586                                         if(!attribute->have_arguments) {
1587                                                 /* should have arguments */
1588                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1589                                                 attribute->invalid = true;
1590                                         } else
1591                                                 parse_gnu_attribute_format_args(attribute);
1592                                         break;
1593                                 case GNU_AK_WEAKREF:
1594                                         /* may have one string argument */
1595                                         if(attribute->have_arguments)
1596                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1597                                         break;
1598                                 case GNU_AK_NONNULL:
1599                                         if(attribute->have_arguments)
1600                                                 parse_gnu_attribute_const_arg_list(attribute);
1601                                         break;
1602                                 case GNU_AK_TLS_MODEL:
1603                                         if(!attribute->have_arguments) {
1604                                                 /* should have arguments */
1605                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1606                                         } else
1607                                                 parse_gnu_attribute_tls_model_arg(attribute);
1608                                         break;
1609                                 case GNU_AK_VISIBILITY:
1610                                         if(!attribute->have_arguments) {
1611                                                 /* should have arguments */
1612                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1613                                         } else
1614                                                 parse_gnu_attribute_visibility_arg(attribute);
1615                                         break;
1616                                 case GNU_AK_MODEL:
1617                                         if(!attribute->have_arguments) {
1618                                                 /* should have arguments */
1619                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1620                                         } else {
1621                                                 parse_gnu_attribute_model_arg(attribute);
1622                                         }
1623                                         break;
1624                                 case GNU_AK_MODE:
1625                                         if(!attribute->have_arguments) {
1626                                                 /* should have arguments */
1627                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1628                                         } else {
1629                                                 parse_gnu_attribute_mode_arg(attribute);
1630                                         }
1631                                         break;
1632                                 case GNU_AK_INTERRUPT:
1633                                         /* may have one string argument */
1634                                         if(attribute->have_arguments)
1635                                                 parse_gnu_attribute_interrupt_arg(attribute);
1636                                         break;
1637                                 case GNU_AK_SENTINEL:
1638                                         /* may have one string argument */
1639                                         if(attribute->have_arguments)
1640                                                 parse_gnu_attribute_const_arg(attribute);
1641                                         break;
1642                                 case GNU_AK_LAST:
1643                                         /* already handled */
1644                                         break;
1645                                 }
1646                         }
1647                         if(attribute != NULL) {
1648                                 if(last != NULL) {
1649                                         last->next = attribute;
1650                                         last       = attribute;
1651                                 } else {
1652                                         head = last = attribute;
1653                                 }
1654                         }
1655
1656                         if(token.type != ',')
1657                                 break;
1658                         next_token();
1659                 }
1660         }
1661         expect(')');
1662         expect(')');
1663 end_error:
1664         *attributes = head;
1665
1666         return modifiers;
1667 }
1668
1669 /**
1670  * Parse GNU attributes.
1671  */
1672 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1673 {
1674         decl_modifiers_t modifiers = 0;
1675
1676         while(true) {
1677                 switch(token.type) {
1678                 case T___attribute__: {
1679                         modifiers |= parse_gnu_attribute(attributes);
1680                         break;
1681                 }
1682                 case T_asm:
1683                         next_token();
1684                         expect('(');
1685                         if(token.type != T_STRING_LITERAL) {
1686                                 parse_error_expected("while parsing assembler attribute",
1687                                                      T_STRING_LITERAL, NULL);
1688                                 eat_until_matching_token('(');
1689                                 break;
1690                         } else {
1691                                 parse_string_literals();
1692                         }
1693                         expect(')');
1694                         break;
1695                 default:
1696                         goto attributes_finished;
1697                 }
1698         }
1699
1700 attributes_finished:
1701 end_error:
1702         return modifiers;
1703 }
1704
1705 static designator_t *parse_designation(void)
1706 {
1707         designator_t *result = NULL;
1708         designator_t *last   = NULL;
1709
1710         while(true) {
1711                 designator_t *designator;
1712                 switch(token.type) {
1713                 case '[':
1714                         designator = allocate_ast_zero(sizeof(designator[0]));
1715                         designator->source_position = token.source_position;
1716                         next_token();
1717                         add_anchor_token(']');
1718                         designator->array_index = parse_constant_expression();
1719                         rem_anchor_token(']');
1720                         expect(']');
1721                         break;
1722                 case '.':
1723                         designator = allocate_ast_zero(sizeof(designator[0]));
1724                         designator->source_position = token.source_position;
1725                         next_token();
1726                         if(token.type != T_IDENTIFIER) {
1727                                 parse_error_expected("while parsing designator",
1728                                                      T_IDENTIFIER, NULL);
1729                                 return NULL;
1730                         }
1731                         designator->symbol = token.v.symbol;
1732                         next_token();
1733                         break;
1734                 default:
1735                         expect('=');
1736                         return result;
1737                 }
1738
1739                 assert(designator != NULL);
1740                 if(last != NULL) {
1741                         last->next = designator;
1742                 } else {
1743                         result = designator;
1744                 }
1745                 last = designator;
1746         }
1747 end_error:
1748         return NULL;
1749 }
1750
1751 static initializer_t *initializer_from_string(array_type_t *type,
1752                                               const string_t *const string)
1753 {
1754         /* TODO: check len vs. size of array type */
1755         (void) type;
1756
1757         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1758         initializer->string.string = *string;
1759
1760         return initializer;
1761 }
1762
1763 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1764                                                    wide_string_t *const string)
1765 {
1766         /* TODO: check len vs. size of array type */
1767         (void) type;
1768
1769         initializer_t *const initializer =
1770                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1771         initializer->wide_string.string = *string;
1772
1773         return initializer;
1774 }
1775
1776 /**
1777  * Build an initializer from a given expression.
1778  */
1779 static initializer_t *initializer_from_expression(type_t *orig_type,
1780                                                   expression_t *expression)
1781 {
1782         /* TODO check that expression is a constant expression */
1783
1784         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1785         type_t *type           = skip_typeref(orig_type);
1786         type_t *expr_type_orig = expression->base.type;
1787         type_t *expr_type      = skip_typeref(expr_type_orig);
1788         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1789                 array_type_t *const array_type   = &type->array;
1790                 type_t       *const element_type = skip_typeref(array_type->element_type);
1791
1792                 if (element_type->kind == TYPE_ATOMIC) {
1793                         atomic_type_kind_t akind = element_type->atomic.akind;
1794                         switch (expression->kind) {
1795                                 case EXPR_STRING_LITERAL:
1796                                         if (akind == ATOMIC_TYPE_CHAR
1797                                                         || akind == ATOMIC_TYPE_SCHAR
1798                                                         || akind == ATOMIC_TYPE_UCHAR) {
1799                                                 return initializer_from_string(array_type,
1800                                                         &expression->string.value);
1801                                         }
1802
1803                                 case EXPR_WIDE_STRING_LITERAL: {
1804                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1805                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1806                                                 return initializer_from_wide_string(array_type,
1807                                                         &expression->wide_string.value);
1808                                         }
1809                                 }
1810
1811                                 default:
1812                                         break;
1813                         }
1814                 }
1815         }
1816
1817         type_t *const res_type = semantic_assign(type, expression, "initializer",
1818                                                  &expression->base.source_position);
1819         if (res_type == NULL)
1820                 return NULL;
1821
1822         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1823         result->value.value = create_implicit_cast(expression, res_type);
1824
1825         return result;
1826 }
1827
1828 /**
1829  * Checks if a given expression can be used as an constant initializer.
1830  */
1831 static bool is_initializer_constant(const expression_t *expression)
1832 {
1833         return is_constant_expression(expression)
1834                 || is_address_constant(expression);
1835 }
1836
1837 /**
1838  * Parses an scalar initializer.
1839  *
1840  * Â§ 6.7.8.11; eat {} without warning
1841  */
1842 static initializer_t *parse_scalar_initializer(type_t *type,
1843                                                bool must_be_constant)
1844 {
1845         /* there might be extra {} hierarchies */
1846         int braces = 0;
1847         while(token.type == '{') {
1848                 next_token();
1849                 if(braces == 0) {
1850                         warningf(HERE, "extra curly braces around scalar initializer");
1851                 }
1852                 braces++;
1853         }
1854
1855         expression_t *expression = parse_assignment_expression();
1856         if(must_be_constant && !is_initializer_constant(expression)) {
1857                 errorf(&expression->base.source_position,
1858                        "Initialisation expression '%E' is not constant\n",
1859                        expression);
1860         }
1861
1862         initializer_t *initializer = initializer_from_expression(type, expression);
1863
1864         if(initializer == NULL) {
1865                 errorf(&expression->base.source_position,
1866                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1867                        expression, expression->base.type, type);
1868                 /* TODO */
1869                 return NULL;
1870         }
1871
1872         bool additional_warning_displayed = false;
1873         while(braces > 0) {
1874                 if(token.type == ',') {
1875                         next_token();
1876                 }
1877                 if(token.type != '}') {
1878                         if(!additional_warning_displayed) {
1879                                 warningf(HERE, "additional elements in scalar initializer");
1880                                 additional_warning_displayed = true;
1881                         }
1882                 }
1883                 eat_block();
1884                 braces--;
1885         }
1886
1887         return initializer;
1888 }
1889
1890 /**
1891  * An entry in the type path.
1892  */
1893 typedef struct type_path_entry_t type_path_entry_t;
1894 struct type_path_entry_t {
1895         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
1896         union {
1897                 size_t         index;          /**< For array types: the current index. */
1898                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
1899         } v;
1900 };
1901
1902 /**
1903  * A type path expression a position inside compound or array types.
1904  */
1905 typedef struct type_path_t type_path_t;
1906 struct type_path_t {
1907         type_path_entry_t *path;         /**< An flexible array containing the current path. */
1908         type_t            *top_type;     /**< type of the element the path points */
1909         size_t             max_index;    /**< largest index in outermost array */
1910 };
1911
1912 /**
1913  * Prints a type path for debugging.
1914  */
1915 static __attribute__((unused)) void debug_print_type_path(
1916                 const type_path_t *path)
1917 {
1918         size_t len = ARR_LEN(path->path);
1919
1920         for(size_t i = 0; i < len; ++i) {
1921                 const type_path_entry_t *entry = & path->path[i];
1922
1923                 type_t *type = skip_typeref(entry->type);
1924                 if(is_type_compound(type)) {
1925                         /* in gcc mode structs can have no members */
1926                         if(entry->v.compound_entry == NULL) {
1927                                 assert(i == len-1);
1928                                 continue;
1929                         }
1930                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
1931                 } else if(is_type_array(type)) {
1932                         fprintf(stderr, "[%zd]", entry->v.index);
1933                 } else {
1934                         fprintf(stderr, "-INVALID-");
1935                 }
1936         }
1937         if(path->top_type != NULL) {
1938                 fprintf(stderr, "  (");
1939                 print_type(path->top_type);
1940                 fprintf(stderr, ")");
1941         }
1942 }
1943
1944 /**
1945  * Return the top type path entry, ie. in a path
1946  * (type).a.b returns the b.
1947  */
1948 static type_path_entry_t *get_type_path_top(const type_path_t *path)
1949 {
1950         size_t len = ARR_LEN(path->path);
1951         assert(len > 0);
1952         return &path->path[len-1];
1953 }
1954
1955 /**
1956  * Enlarge the type path by an (empty) element.
1957  */
1958 static type_path_entry_t *append_to_type_path(type_path_t *path)
1959 {
1960         size_t len = ARR_LEN(path->path);
1961         ARR_RESIZE(type_path_entry_t, path->path, len+1);
1962
1963         type_path_entry_t *result = & path->path[len];
1964         memset(result, 0, sizeof(result[0]));
1965         return result;
1966 }
1967
1968 /**
1969  * Descending into a sub-type. Enter the scope of the current
1970  * top_type.
1971  */
1972 static void descend_into_subtype(type_path_t *path)
1973 {
1974         type_t *orig_top_type = path->top_type;
1975         type_t *top_type      = skip_typeref(orig_top_type);
1976
1977         assert(is_type_compound(top_type) || is_type_array(top_type));
1978
1979         type_path_entry_t *top = append_to_type_path(path);
1980         top->type              = top_type;
1981
1982         if(is_type_compound(top_type)) {
1983                 declaration_t *declaration = top_type->compound.declaration;
1984                 declaration_t *entry       = declaration->scope.declarations;
1985                 top->v.compound_entry      = entry;
1986
1987                 if(entry != NULL) {
1988                         path->top_type         = entry->type;
1989                 } else {
1990                         path->top_type         = NULL;
1991                 }
1992         } else {
1993                 assert(is_type_array(top_type));
1994
1995                 top->v.index   = 0;
1996                 path->top_type = top_type->array.element_type;
1997         }
1998 }
1999
2000 /**
2001  * Pop an entry from the given type path, ie. returning from
2002  * (type).a.b to (type).a
2003  */
2004 static void ascend_from_subtype(type_path_t *path)
2005 {
2006         type_path_entry_t *top = get_type_path_top(path);
2007
2008         path->top_type = top->type;
2009
2010         size_t len = ARR_LEN(path->path);
2011         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2012 }
2013
2014 /**
2015  * Pop entries from the given type path until the given
2016  * path level is reached.
2017  */
2018 static void ascend_to(type_path_t *path, size_t top_path_level)
2019 {
2020         size_t len = ARR_LEN(path->path);
2021
2022         while(len > top_path_level) {
2023                 ascend_from_subtype(path);
2024                 len = ARR_LEN(path->path);
2025         }
2026 }
2027
2028 static bool walk_designator(type_path_t *path, const designator_t *designator,
2029                             bool used_in_offsetof)
2030 {
2031         for( ; designator != NULL; designator = designator->next) {
2032                 type_path_entry_t *top       = get_type_path_top(path);
2033                 type_t            *orig_type = top->type;
2034
2035                 type_t *type = skip_typeref(orig_type);
2036
2037                 if(designator->symbol != NULL) {
2038                         symbol_t *symbol = designator->symbol;
2039                         if(!is_type_compound(type)) {
2040                                 if(is_type_valid(type)) {
2041                                         errorf(&designator->source_position,
2042                                                "'.%Y' designator used for non-compound type '%T'",
2043                                                symbol, orig_type);
2044                                 }
2045                                 goto failed;
2046                         }
2047
2048                         declaration_t *declaration = type->compound.declaration;
2049                         declaration_t *iter        = declaration->scope.declarations;
2050                         for( ; iter != NULL; iter = iter->next) {
2051                                 if(iter->symbol == symbol) {
2052                                         break;
2053                                 }
2054                         }
2055                         if(iter == NULL) {
2056                                 errorf(&designator->source_position,
2057                                        "'%T' has no member named '%Y'", orig_type, symbol);
2058                                 goto failed;
2059                         }
2060                         if(used_in_offsetof) {
2061                                 type_t *real_type = skip_typeref(iter->type);
2062                                 if(real_type->kind == TYPE_BITFIELD) {
2063                                         errorf(&designator->source_position,
2064                                                "offsetof designator '%Y' may not specify bitfield",
2065                                                symbol);
2066                                         goto failed;
2067                                 }
2068                         }
2069
2070                         top->type             = orig_type;
2071                         top->v.compound_entry = iter;
2072                         orig_type             = iter->type;
2073                 } else {
2074                         expression_t *array_index = designator->array_index;
2075                         assert(designator->array_index != NULL);
2076
2077                         if(!is_type_array(type)) {
2078                                 if(is_type_valid(type)) {
2079                                         errorf(&designator->source_position,
2080                                                "[%E] designator used for non-array type '%T'",
2081                                                array_index, orig_type);
2082                                 }
2083                                 goto failed;
2084                         }
2085                         if(!is_type_valid(array_index->base.type)) {
2086                                 goto failed;
2087                         }
2088
2089                         long index = fold_constant(array_index);
2090                         if(!used_in_offsetof) {
2091                                 if(index < 0) {
2092                                         errorf(&designator->source_position,
2093                                                "array index [%E] must be positive", array_index);
2094                                         goto failed;
2095                                 }
2096                                 if(type->array.size_constant == true) {
2097                                         long array_size = type->array.size;
2098                                         if(index >= array_size) {
2099                                                 errorf(&designator->source_position,
2100                                                        "designator [%E] (%d) exceeds array size %d",
2101                                                        array_index, index, array_size);
2102                                                 goto failed;
2103                                         }
2104                                 }
2105                         }
2106
2107                         top->type    = orig_type;
2108                         top->v.index = (size_t) index;
2109                         orig_type    = type->array.element_type;
2110                 }
2111                 path->top_type = orig_type;
2112
2113                 if(designator->next != NULL) {
2114                         descend_into_subtype(path);
2115                 }
2116         }
2117         return true;
2118
2119 failed:
2120         return false;
2121 }
2122
2123 static void advance_current_object(type_path_t *path, size_t top_path_level)
2124 {
2125         type_path_entry_t *top = get_type_path_top(path);
2126
2127         type_t *type = skip_typeref(top->type);
2128         if(is_type_union(type)) {
2129                 /* in unions only the first element is initialized */
2130                 top->v.compound_entry = NULL;
2131         } else if(is_type_struct(type)) {
2132                 declaration_t *entry = top->v.compound_entry;
2133
2134                 entry                 = entry->next;
2135                 top->v.compound_entry = entry;
2136                 if(entry != NULL) {
2137                         path->top_type = entry->type;
2138                         return;
2139                 }
2140         } else {
2141                 assert(is_type_array(type));
2142
2143                 top->v.index++;
2144
2145                 if(!type->array.size_constant || top->v.index < type->array.size) {
2146                         return;
2147                 }
2148         }
2149
2150         /* we're past the last member of the current sub-aggregate, try if we
2151          * can ascend in the type hierarchy and continue with another subobject */
2152         size_t len = ARR_LEN(path->path);
2153
2154         if(len > top_path_level) {
2155                 ascend_from_subtype(path);
2156                 advance_current_object(path, top_path_level);
2157         } else {
2158                 path->top_type = NULL;
2159         }
2160 }
2161
2162 /**
2163  * skip until token is found.
2164  */
2165 static void skip_until(int type) {
2166         while(token.type != type) {
2167                 if(token.type == T_EOF)
2168                         return;
2169                 next_token();
2170         }
2171 }
2172
2173 /**
2174  * skip any {...} blocks until a closing bracket is reached.
2175  */
2176 static void skip_initializers(void)
2177 {
2178         if(token.type == '{')
2179                 next_token();
2180
2181         while(token.type != '}') {
2182                 if(token.type == T_EOF)
2183                         return;
2184                 if(token.type == '{') {
2185                         eat_block();
2186                         continue;
2187                 }
2188                 next_token();
2189         }
2190 }
2191
2192 static initializer_t *create_empty_initializer(void)
2193 {
2194         static initializer_t empty_initializer
2195                 = { .list = { { INITIALIZER_LIST }, 0 } };
2196         return &empty_initializer;
2197 }
2198
2199 /**
2200  * Parse a part of an initialiser for a struct or union,
2201  */
2202 static initializer_t *parse_sub_initializer(type_path_t *path,
2203                 type_t *outer_type, size_t top_path_level,
2204                 parse_initializer_env_t *env)
2205 {
2206         if(token.type == '}') {
2207                 /* empty initializer */
2208                 return create_empty_initializer();
2209         }
2210
2211         type_t *orig_type = path->top_type;
2212         type_t *type      = NULL;
2213
2214         if (orig_type == NULL) {
2215                 /* We are initializing an empty compound. */
2216         } else {
2217                 type = skip_typeref(orig_type);
2218
2219                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2220                  * initializers in this case. */
2221                 if(!is_type_valid(type)) {
2222                         skip_initializers();
2223                         return create_empty_initializer();
2224                 }
2225         }
2226
2227         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2228
2229         while(true) {
2230                 designator_t *designator = NULL;
2231                 if(token.type == '.' || token.type == '[') {
2232                         designator = parse_designation();
2233
2234                         /* reset path to toplevel, evaluate designator from there */
2235                         ascend_to(path, top_path_level);
2236                         if(!walk_designator(path, designator, false)) {
2237                                 /* can't continue after designation error */
2238                                 goto end_error;
2239                         }
2240
2241                         initializer_t *designator_initializer
2242                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2243                         designator_initializer->designator.designator = designator;
2244                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2245
2246                         orig_type = path->top_type;
2247                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2248                 }
2249
2250                 initializer_t *sub;
2251
2252                 if(token.type == '{') {
2253                         if(type != NULL && is_type_scalar(type)) {
2254                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2255                         } else {
2256                                 eat('{');
2257                                 if(type == NULL) {
2258                                         if (env->declaration != NULL)
2259                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2260                                                 env->declaration->symbol);
2261                                 else
2262                                                 errorf(HERE, "extra brace group at end of initializer");
2263                                 } else
2264                                         descend_into_subtype(path);
2265
2266                                 add_anchor_token('}');
2267                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2268                                                             env);
2269                                 rem_anchor_token('}');
2270
2271                                 if(type != NULL) {
2272                                         ascend_from_subtype(path);
2273                                         expect('}');
2274                                 } else {
2275                                         expect('}');
2276                                         goto error_parse_next;
2277                                 }
2278                         }
2279                 } else {
2280                         /* must be an expression */
2281                         expression_t *expression = parse_assignment_expression();
2282
2283                         if(env->must_be_constant && !is_initializer_constant(expression)) {
2284                                 errorf(&expression->base.source_position,
2285                                        "Initialisation expression '%E' is not constant\n",
2286                                        expression);
2287                         }
2288
2289                         if(type == NULL) {
2290                                 /* we are already outside, ... */
2291                                 goto error_excess;
2292                         }
2293
2294                         /* handle { "string" } special case */
2295                         if((expression->kind == EXPR_STRING_LITERAL
2296                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2297                                         && outer_type != NULL) {
2298                                 sub = initializer_from_expression(outer_type, expression);
2299                                 if(sub != NULL) {
2300                                         if(token.type == ',') {
2301                                                 next_token();
2302                                         }
2303                                         if(token.type != '}') {
2304                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2305                                                                  orig_type);
2306                                         }
2307                                         /* TODO: eat , ... */
2308                                         return sub;
2309                                 }
2310                         }
2311
2312                         /* descend into subtypes until expression matches type */
2313                         while(true) {
2314                                 orig_type = path->top_type;
2315                                 type      = skip_typeref(orig_type);
2316
2317                                 sub = initializer_from_expression(orig_type, expression);
2318                                 if(sub != NULL) {
2319                                         break;
2320                                 }
2321                                 if(!is_type_valid(type)) {
2322                                         goto end_error;
2323                                 }
2324                                 if(is_type_scalar(type)) {
2325                                         errorf(&expression->base.source_position,
2326                                                         "expression '%E' doesn't match expected type '%T'",
2327                                                         expression, orig_type);
2328                                         goto end_error;
2329                                 }
2330
2331                                 descend_into_subtype(path);
2332                         }
2333                 }
2334
2335                 /* update largest index of top array */
2336                 const type_path_entry_t *first      = &path->path[0];
2337                 type_t                  *first_type = first->type;
2338                 first_type                          = skip_typeref(first_type);
2339                 if(is_type_array(first_type)) {
2340                         size_t index = first->v.index;
2341                         if(index > path->max_index)
2342                                 path->max_index = index;
2343                 }
2344
2345                 if(type != NULL) {
2346                         /* append to initializers list */
2347                         ARR_APP1(initializer_t*, initializers, sub);
2348                 } else {
2349 error_excess:
2350                         if(env->declaration != NULL)
2351                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2352                                  env->declaration->symbol);
2353                         else
2354                                 warningf(HERE, "excess elements in struct initializer");
2355                 }
2356
2357 error_parse_next:
2358                 if(token.type == '}') {
2359                         break;
2360                 }
2361                 expect(',');
2362                 if(token.type == '}') {
2363                         break;
2364                 }
2365
2366                 if(type != NULL) {
2367                         /* advance to the next declaration if we are not at the end */
2368                         advance_current_object(path, top_path_level);
2369                         orig_type = path->top_type;
2370                         if(orig_type != NULL)
2371                                 type = skip_typeref(orig_type);
2372                         else
2373                                 type = NULL;
2374                 }
2375         }
2376
2377         size_t len  = ARR_LEN(initializers);
2378         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2379         initializer_t *result = allocate_ast_zero(size);
2380         result->kind          = INITIALIZER_LIST;
2381         result->list.len      = len;
2382         memcpy(&result->list.initializers, initializers,
2383                len * sizeof(initializers[0]));
2384
2385         DEL_ARR_F(initializers);
2386         ascend_to(path, top_path_level+1);
2387
2388         return result;
2389
2390 end_error:
2391         skip_initializers();
2392         DEL_ARR_F(initializers);
2393         ascend_to(path, top_path_level+1);
2394         return NULL;
2395 }
2396
2397 /**
2398  * Parses an initializer. Parsers either a compound literal
2399  * (env->declaration == NULL) or an initializer of a declaration.
2400  */
2401 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2402 {
2403         type_t        *type   = skip_typeref(env->type);
2404         initializer_t *result = NULL;
2405         size_t         max_index;
2406
2407         if(is_type_scalar(type)) {
2408                 result = parse_scalar_initializer(type, env->must_be_constant);
2409         } else if(token.type == '{') {
2410                 eat('{');
2411
2412                 type_path_t path;
2413                 memset(&path, 0, sizeof(path));
2414                 path.top_type = env->type;
2415                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2416
2417                 descend_into_subtype(&path);
2418
2419                 add_anchor_token('}');
2420                 result = parse_sub_initializer(&path, env->type, 1, env);
2421                 rem_anchor_token('}');
2422
2423                 max_index = path.max_index;
2424                 DEL_ARR_F(path.path);
2425
2426                 expect('}');
2427         } else {
2428                 /* parse_scalar_initializer() also works in this case: we simply
2429                  * have an expression without {} around it */
2430                 result = parse_scalar_initializer(type, env->must_be_constant);
2431         }
2432
2433         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2434          * the array type size */
2435         if(is_type_array(type) && type->array.size_expression == NULL
2436                         && result != NULL) {
2437                 size_t size;
2438                 switch (result->kind) {
2439                 case INITIALIZER_LIST:
2440                         size = max_index + 1;
2441                         break;
2442
2443                 case INITIALIZER_STRING:
2444                         size = result->string.string.size;
2445                         break;
2446
2447                 case INITIALIZER_WIDE_STRING:
2448                         size = result->wide_string.string.size;
2449                         break;
2450
2451                 case INITIALIZER_DESIGNATOR:
2452                 case INITIALIZER_VALUE:
2453                         /* can happen for parse errors */
2454                         size = 0;
2455                         break;
2456
2457                 default:
2458                         internal_errorf(HERE, "invalid initializer type");
2459                 }
2460
2461                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2462                 cnst->base.type          = type_size_t;
2463                 cnst->conste.v.int_value = size;
2464
2465                 type_t *new_type = duplicate_type(type);
2466
2467                 new_type->array.size_expression = cnst;
2468                 new_type->array.size_constant   = true;
2469                 new_type->array.size            = size;
2470                 env->type = new_type;
2471         }
2472
2473         return result;
2474 end_error:
2475         return NULL;
2476 }
2477
2478 static declaration_t *append_declaration(declaration_t *declaration);
2479
2480 static declaration_t *parse_compound_type_specifier(bool is_struct)
2481 {
2482         gnu_attribute_t  *attributes = NULL;
2483         decl_modifiers_t  modifiers  = 0;
2484         if(is_struct) {
2485                 eat(T_struct);
2486         } else {
2487                 eat(T_union);
2488         }
2489
2490         symbol_t      *symbol      = NULL;
2491         declaration_t *declaration = NULL;
2492
2493         if (token.type == T___attribute__) {
2494                 modifiers |= parse_attributes(&attributes);
2495         }
2496
2497         if(token.type == T_IDENTIFIER) {
2498                 symbol = token.v.symbol;
2499                 next_token();
2500
2501                 if(is_struct) {
2502                         declaration = get_declaration(symbol, NAMESPACE_STRUCT);
2503                 } else {
2504                         declaration = get_declaration(symbol, NAMESPACE_UNION);
2505                 }
2506         } else if(token.type != '{') {
2507                 if(is_struct) {
2508                         parse_error_expected("while parsing struct type specifier",
2509                                              T_IDENTIFIER, '{', NULL);
2510                 } else {
2511                         parse_error_expected("while parsing union type specifier",
2512                                              T_IDENTIFIER, '{', NULL);
2513                 }
2514
2515                 return NULL;
2516         }
2517
2518         if(declaration == NULL) {
2519                 declaration = allocate_declaration_zero();
2520                 declaration->namespc         =
2521                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2522                 declaration->source_position = token.source_position;
2523                 declaration->symbol          = symbol;
2524                 declaration->parent_scope    = scope;
2525                 if (symbol != NULL) {
2526                         environment_push(declaration);
2527                 }
2528                 append_declaration(declaration);
2529         }
2530
2531         if(token.type == '{') {
2532                 if (declaration->init.complete) {
2533                         assert(symbol != NULL);
2534                         errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2535                                is_struct ? "struct" : "union", symbol,
2536                                &declaration->source_position);
2537                         declaration->scope.declarations = NULL;
2538                 }
2539                 declaration->init.complete = true;
2540
2541                 parse_compound_type_entries(declaration);
2542                 modifiers |= parse_attributes(&attributes);
2543         }
2544
2545         declaration->modifiers |= modifiers;
2546         return declaration;
2547 }
2548
2549 static void parse_enum_entries(type_t *const enum_type)
2550 {
2551         eat('{');
2552
2553         if(token.type == '}') {
2554                 next_token();
2555                 errorf(HERE, "empty enum not allowed");
2556                 return;
2557         }
2558
2559         add_anchor_token('}');
2560         do {
2561                 if(token.type != T_IDENTIFIER) {
2562                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2563                         eat_block();
2564                         rem_anchor_token('}');
2565                         return;
2566                 }
2567
2568                 declaration_t *const entry = allocate_declaration_zero();
2569                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2570                 entry->type            = enum_type;
2571                 entry->symbol          = token.v.symbol;
2572                 entry->source_position = token.source_position;
2573                 next_token();
2574
2575                 if(token.type == '=') {
2576                         next_token();
2577                         expression_t *value = parse_constant_expression();
2578
2579                         value = create_implicit_cast(value, enum_type);
2580                         entry->init.enum_value = value;
2581
2582                         /* TODO semantic */
2583                 }
2584
2585                 record_declaration(entry);
2586
2587                 if(token.type != ',')
2588                         break;
2589                 next_token();
2590         } while(token.type != '}');
2591         rem_anchor_token('}');
2592
2593         expect('}');
2594
2595 end_error:
2596         ;
2597 }
2598
2599 static type_t *parse_enum_specifier(void)
2600 {
2601         gnu_attribute_t *attributes = NULL;
2602         declaration_t   *declaration;
2603         symbol_t        *symbol;
2604
2605         eat(T_enum);
2606         if(token.type == T_IDENTIFIER) {
2607                 symbol = token.v.symbol;
2608                 next_token();
2609
2610                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2611         } else if(token.type != '{') {
2612                 parse_error_expected("while parsing enum type specifier",
2613                                      T_IDENTIFIER, '{', NULL);
2614                 return NULL;
2615         } else {
2616                 declaration = NULL;
2617                 symbol      = NULL;
2618         }
2619
2620         if(declaration == NULL) {
2621                 declaration = allocate_declaration_zero();
2622                 declaration->namespc         = NAMESPACE_ENUM;
2623                 declaration->source_position = token.source_position;
2624                 declaration->symbol          = symbol;
2625                 declaration->parent_scope  = scope;
2626         }
2627
2628         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2629         type->enumt.declaration = declaration;
2630
2631         if(token.type == '{') {
2632                 if(declaration->init.complete) {
2633                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2634                 }
2635                 if (symbol != NULL) {
2636                         environment_push(declaration);
2637                 }
2638                 append_declaration(declaration);
2639                 declaration->init.complete = true;
2640
2641                 parse_enum_entries(type);
2642                 parse_attributes(&attributes);
2643         }
2644
2645         return type;
2646 }
2647
2648 /**
2649  * if a symbol is a typedef to another type, return true
2650  */
2651 static bool is_typedef_symbol(symbol_t *symbol)
2652 {
2653         const declaration_t *const declaration =
2654                 get_declaration(symbol, NAMESPACE_NORMAL);
2655         return
2656                 declaration != NULL &&
2657                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2658 }
2659
2660 static type_t *parse_typeof(void)
2661 {
2662         eat(T___typeof__);
2663
2664         type_t *type;
2665
2666         expect('(');
2667         add_anchor_token(')');
2668
2669         expression_t *expression  = NULL;
2670
2671 restart:
2672         switch(token.type) {
2673         case T___extension__:
2674                 /* this can be a prefix to a typename or an expression */
2675                 /* we simply eat it now. */
2676                 do {
2677                         next_token();
2678                 } while(token.type == T___extension__);
2679                 goto restart;
2680
2681         case T_IDENTIFIER:
2682                 if(is_typedef_symbol(token.v.symbol)) {
2683                         type = parse_typename();
2684                 } else {
2685                         expression = parse_expression();
2686                         type       = expression->base.type;
2687                 }
2688                 break;
2689
2690         TYPENAME_START
2691                 type = parse_typename();
2692                 break;
2693
2694         default:
2695                 expression = parse_expression();
2696                 type       = expression->base.type;
2697                 break;
2698         }
2699
2700         rem_anchor_token(')');
2701         expect(')');
2702
2703         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2704         typeof_type->typeoft.expression  = expression;
2705         typeof_type->typeoft.typeof_type = type;
2706
2707         return typeof_type;
2708 end_error:
2709         return NULL;
2710 }
2711
2712 typedef enum {
2713         SPECIFIER_SIGNED    = 1 << 0,
2714         SPECIFIER_UNSIGNED  = 1 << 1,
2715         SPECIFIER_LONG      = 1 << 2,
2716         SPECIFIER_INT       = 1 << 3,
2717         SPECIFIER_DOUBLE    = 1 << 4,
2718         SPECIFIER_CHAR      = 1 << 5,
2719         SPECIFIER_SHORT     = 1 << 6,
2720         SPECIFIER_LONG_LONG = 1 << 7,
2721         SPECIFIER_FLOAT     = 1 << 8,
2722         SPECIFIER_BOOL      = 1 << 9,
2723         SPECIFIER_VOID      = 1 << 10,
2724         SPECIFIER_INT8      = 1 << 11,
2725         SPECIFIER_INT16     = 1 << 12,
2726         SPECIFIER_INT32     = 1 << 13,
2727         SPECIFIER_INT64     = 1 << 14,
2728         SPECIFIER_INT128    = 1 << 15,
2729         SPECIFIER_COMPLEX   = 1 << 16,
2730         SPECIFIER_IMAGINARY = 1 << 17,
2731 } specifiers_t;
2732
2733 static type_t *create_builtin_type(symbol_t *const symbol,
2734                                    type_t *const real_type)
2735 {
2736         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2737         type->builtin.symbol    = symbol;
2738         type->builtin.real_type = real_type;
2739
2740         type_t *result = typehash_insert(type);
2741         if(type != result) {
2742                 free_type(type);
2743         }
2744
2745         return result;
2746 }
2747
2748 static type_t *get_typedef_type(symbol_t *symbol)
2749 {
2750         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2751         if(declaration == NULL ||
2752            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2753                 return NULL;
2754
2755         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2756         type->typedeft.declaration = declaration;
2757
2758         return type;
2759 }
2760
2761 /**
2762  * check for the allowed MS alignment values.
2763  */
2764 static bool check_elignment_value(long long intvalue) {
2765         if(intvalue < 1 || intvalue > 8192) {
2766                 errorf(HERE, "illegal alignment value");
2767                 return false;
2768         }
2769         unsigned v = (unsigned)intvalue;
2770         for(unsigned i = 1; i <= 8192; i += i) {
2771                 if (i == v)
2772                         return true;
2773         }
2774         errorf(HERE, "alignment must be power of two");
2775         return false;
2776 }
2777
2778 #define DET_MOD(name, tag) do { \
2779         if(*modifiers & tag) warningf(HERE, #name " used more than once"); \
2780         *modifiers |= tag; \
2781 } while(0)
2782
2783 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2784 {
2785         decl_modifiers_t *modifiers = &specifiers->modifiers;
2786
2787         while(true) {
2788                 if(token.type == T_restrict) {
2789                         next_token();
2790                         DET_MOD(restrict, DM_RESTRICT);
2791                         goto end_loop;
2792                 } else if(token.type != T_IDENTIFIER)
2793                         break;
2794                 symbol_t *symbol = token.v.symbol;
2795                 if(symbol == sym_align) {
2796                         next_token();
2797                         expect('(');
2798                         if(token.type != T_INTEGER)
2799                                 goto end_error;
2800                         if(check_elignment_value(token.v.intvalue)) {
2801                                 if(specifiers->alignment != 0)
2802                                         warningf(HERE, "align used more than once");
2803                                 specifiers->alignment = (unsigned char)token.v.intvalue;
2804                         }
2805                         next_token();
2806                         expect(')');
2807                 } else if(symbol == sym_allocate) {
2808                         next_token();
2809                         expect('(');
2810                         if(token.type != T_IDENTIFIER)
2811                                 goto end_error;
2812                         (void)token.v.symbol;
2813                         expect(')');
2814                 } else if(symbol == sym_dllimport) {
2815                         next_token();
2816                         DET_MOD(dllimport, DM_DLLIMPORT);
2817                 } else if(symbol == sym_dllexport) {
2818                         next_token();
2819                         DET_MOD(dllexport, DM_DLLEXPORT);
2820                 } else if(symbol == sym_thread) {
2821                         next_token();
2822                         DET_MOD(thread, DM_THREAD);
2823                 } else if(symbol == sym_naked) {
2824                         next_token();
2825                         DET_MOD(naked, DM_NAKED);
2826                 } else if(symbol == sym_noinline) {
2827                         next_token();
2828                         DET_MOD(noinline, DM_NOINLINE);
2829                 } else if(symbol == sym_noreturn) {
2830                         next_token();
2831                         DET_MOD(noreturn, DM_NORETURN);
2832                 } else if(symbol == sym_nothrow) {
2833                         next_token();
2834                         DET_MOD(nothrow, DM_NOTHROW);
2835                 } else if(symbol == sym_novtable) {
2836                         next_token();
2837                         DET_MOD(novtable, DM_NOVTABLE);
2838                 } else if(symbol == sym_property) {
2839                         next_token();
2840                         expect('(');
2841                         for(;;) {
2842                                 bool is_get = false;
2843                                 if(token.type != T_IDENTIFIER)
2844                                         goto end_error;
2845                                 if(token.v.symbol == sym_get) {
2846                                         is_get = true;
2847                                 } else if(token.v.symbol == sym_put) {
2848                                 } else {
2849                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
2850                                         goto end_error;
2851                                 }
2852                                 next_token();
2853                                 expect('=');
2854                                 if(token.type != T_IDENTIFIER)
2855                                         goto end_error;
2856                                 if(is_get) {
2857                                         if(specifiers->get_property_sym != NULL) {
2858                                                 errorf(HERE, "get property name already specified");
2859                                         } else {
2860                                                 specifiers->get_property_sym = token.v.symbol;
2861                                         }
2862                                 } else {
2863                                         if(specifiers->put_property_sym != NULL) {
2864                                                 errorf(HERE, "put property name already specified");
2865                                         } else {
2866                                                 specifiers->put_property_sym = token.v.symbol;
2867                                         }
2868                                 }
2869                                 next_token();
2870                                 if(token.type == ',') {
2871                                         next_token();
2872                                         continue;
2873                                 }
2874                                 break;
2875                         }
2876                         expect(')');
2877                 } else if(symbol == sym_selectany) {
2878                         next_token();
2879                         DET_MOD(selectany, DM_SELECTANY);
2880                 } else if(symbol == sym_uuid) {
2881                         next_token();
2882                         expect('(');
2883                         if(token.type != T_STRING_LITERAL)
2884                                 goto end_error;
2885                         next_token();
2886                         expect(')');
2887                 } else if(symbol == sym_deprecated) {
2888                         next_token();
2889                         if(specifiers->deprecated != 0)
2890                                 warningf(HERE, "deprecated used more than once");
2891                         specifiers->deprecated = 1;
2892                         if(token.type == '(') {
2893                                 next_token();
2894                                 if(token.type == T_STRING_LITERAL) {
2895                                         specifiers->deprecated_string = token.v.string.begin;
2896                                         next_token();
2897                                 } else {
2898                                         errorf(HERE, "string literal expected");
2899                                 }
2900                                 expect(')');
2901                         }
2902                 } else if(symbol == sym_noalias) {
2903                         next_token();
2904                         DET_MOD(noalias, DM_NOALIAS);
2905                 } else {
2906                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
2907                         next_token();
2908                         if(token.type == '(')
2909                                 skip_until(')');
2910                 }
2911 end_loop:
2912                 if (token.type == ',')
2913                         next_token();
2914         }
2915 end_error:
2916         return;
2917 }
2918
2919 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
2920 {
2921         type_t   *type            = NULL;
2922         unsigned  type_qualifiers = 0;
2923         unsigned  type_specifiers = 0;
2924         int       newtype         = 0;
2925
2926         specifiers->source_position = token.source_position;
2927
2928         while(true) {
2929                 switch(token.type) {
2930
2931                 /* storage class */
2932 #define MATCH_STORAGE_CLASS(token, class)                                  \
2933                 case token:                                                        \
2934                         if(specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
2935                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
2936                         }                                                              \
2937                         specifiers->declared_storage_class = class;                    \
2938                         next_token();                                                  \
2939                         break;
2940
2941                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
2942                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
2943                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
2944                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
2945                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
2946
2947                 case T__declspec:
2948                         next_token();
2949                         expect('(');
2950                         add_anchor_token(')');
2951                         parse_microsoft_extended_decl_modifier(specifiers);
2952                         rem_anchor_token(')');
2953                         expect(')');
2954                         break;
2955
2956                 case T___thread:
2957                         switch (specifiers->declared_storage_class) {
2958                         case STORAGE_CLASS_NONE:
2959                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
2960                                 break;
2961
2962                         case STORAGE_CLASS_EXTERN:
2963                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
2964                                 break;
2965
2966                         case STORAGE_CLASS_STATIC:
2967                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
2968                                 break;
2969
2970                         default:
2971                                 errorf(HERE, "multiple storage classes in declaration specifiers");
2972                                 break;
2973                         }
2974                         next_token();
2975                         break;
2976
2977                 /* type qualifiers */
2978 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
2979                 case token:                                                     \
2980                         type_qualifiers |= qualifier;                               \
2981                         next_token();                                               \
2982                         break;
2983
2984                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
2985                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
2986                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
2987                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
2988                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
2989                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
2990                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
2991                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
2992
2993                 case T___extension__:
2994                         /* TODO */
2995                         next_token();
2996                         break;
2997
2998                 /* type specifiers */
2999 #define MATCH_SPECIFIER(token, specifier, name)                         \
3000                 case token:                                                     \
3001                         next_token();                                               \
3002                         if(type_specifiers & specifier) {                           \
3003                                 errorf(HERE, "multiple " name " type specifiers given"); \
3004                         } else {                                                    \
3005                                 type_specifiers |= specifier;                           \
3006                         }                                                           \
3007                         break;
3008
3009                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void")
3010                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char")
3011                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short")
3012                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int")
3013                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float")
3014                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double")
3015                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed")
3016                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned")
3017                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool")
3018                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8")
3019                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16")
3020                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32")
3021                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64")
3022                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128")
3023                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex")
3024                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary")
3025
3026                 case T__forceinline:
3027                         /* only in microsoft mode */
3028                         specifiers->modifiers |= DM_FORCEINLINE;
3029
3030                 case T_inline:
3031                         next_token();
3032                         specifiers->is_inline = true;
3033                         break;
3034
3035                 case T_long:
3036                         next_token();
3037                         if(type_specifiers & SPECIFIER_LONG_LONG) {
3038                                 errorf(HERE, "multiple type specifiers given");
3039                         } else if(type_specifiers & SPECIFIER_LONG) {
3040                                 type_specifiers |= SPECIFIER_LONG_LONG;
3041                         } else {
3042                                 type_specifiers |= SPECIFIER_LONG;
3043                         }
3044                         break;
3045
3046                 case T_struct: {
3047                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3048
3049                         type->compound.declaration = parse_compound_type_specifier(true);
3050                         break;
3051                 }
3052                 case T_union: {
3053                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3054
3055                         type->compound.declaration = parse_compound_type_specifier(false);
3056                         break;
3057                 }
3058                 case T_enum:
3059                         type = parse_enum_specifier();
3060                         break;
3061                 case T___typeof__:
3062                         type = parse_typeof();
3063                         break;
3064                 case T___builtin_va_list:
3065                         type = duplicate_type(type_valist);
3066                         next_token();
3067                         break;
3068
3069                 case T___attribute__:
3070                         specifiers->modifiers
3071                                 |= parse_attributes(&specifiers->gnu_attributes);
3072                         break;
3073
3074                 case T_IDENTIFIER: {
3075                         /* only parse identifier if we haven't found a type yet */
3076                         if(type != NULL || type_specifiers != 0)
3077                                 goto finish_specifiers;
3078
3079                         type_t *typedef_type = get_typedef_type(token.v.symbol);
3080
3081                         if(typedef_type == NULL)
3082                                 goto finish_specifiers;
3083
3084                         next_token();
3085                         type = typedef_type;
3086                         break;
3087                 }
3088
3089                 /* function specifier */
3090                 default:
3091                         goto finish_specifiers;
3092                 }
3093         }
3094
3095 finish_specifiers:
3096
3097         if(type == NULL) {
3098                 atomic_type_kind_t atomic_type;
3099
3100                 /* match valid basic types */
3101                 switch(type_specifiers) {
3102                 case SPECIFIER_VOID:
3103                         atomic_type = ATOMIC_TYPE_VOID;
3104                         break;
3105                 case SPECIFIER_CHAR:
3106                         atomic_type = ATOMIC_TYPE_CHAR;
3107                         break;
3108                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3109                         atomic_type = ATOMIC_TYPE_SCHAR;
3110                         break;
3111                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3112                         atomic_type = ATOMIC_TYPE_UCHAR;
3113                         break;
3114                 case SPECIFIER_SHORT:
3115                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3116                 case SPECIFIER_SHORT | SPECIFIER_INT:
3117                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3118                         atomic_type = ATOMIC_TYPE_SHORT;
3119                         break;
3120                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3121                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3122                         atomic_type = ATOMIC_TYPE_USHORT;
3123                         break;
3124                 case SPECIFIER_INT:
3125                 case SPECIFIER_SIGNED:
3126                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3127                         atomic_type = ATOMIC_TYPE_INT;
3128                         break;
3129                 case SPECIFIER_UNSIGNED:
3130                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3131                         atomic_type = ATOMIC_TYPE_UINT;
3132                         break;
3133                 case SPECIFIER_LONG:
3134                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3135                 case SPECIFIER_LONG | SPECIFIER_INT:
3136                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3137                         atomic_type = ATOMIC_TYPE_LONG;
3138                         break;
3139                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3140                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3141                         atomic_type = ATOMIC_TYPE_ULONG;
3142                         break;
3143                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3144                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3145                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3146                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3147                         | SPECIFIER_INT:
3148                         atomic_type = ATOMIC_TYPE_LONGLONG;
3149                         break;
3150                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3151                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3152                         | SPECIFIER_INT:
3153                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3154                         break;
3155
3156                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3157                         atomic_type = unsigned_int8_type_kind;
3158                         break;
3159
3160                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3161                         atomic_type = unsigned_int16_type_kind;
3162                         break;
3163
3164                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3165                         atomic_type = unsigned_int32_type_kind;
3166                         break;
3167
3168                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3169                         atomic_type = unsigned_int64_type_kind;
3170                         break;
3171
3172                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3173                         atomic_type = unsigned_int128_type_kind;
3174                         break;
3175
3176                 case SPECIFIER_INT8:
3177                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3178                         atomic_type = int8_type_kind;
3179                         break;
3180
3181                 case SPECIFIER_INT16:
3182                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3183                         atomic_type = int16_type_kind;
3184                         break;
3185
3186                 case SPECIFIER_INT32:
3187                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3188                         atomic_type = int32_type_kind;
3189                         break;
3190
3191                 case SPECIFIER_INT64:
3192                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3193                         atomic_type = int64_type_kind;
3194                         break;
3195
3196                 case SPECIFIER_INT128:
3197                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3198                         atomic_type = int128_type_kind;
3199                         break;
3200
3201                 case SPECIFIER_FLOAT:
3202                         atomic_type = ATOMIC_TYPE_FLOAT;
3203                         break;
3204                 case SPECIFIER_DOUBLE:
3205                         atomic_type = ATOMIC_TYPE_DOUBLE;
3206                         break;
3207                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3208                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3209                         break;
3210                 case SPECIFIER_BOOL:
3211                         atomic_type = ATOMIC_TYPE_BOOL;
3212                         break;
3213                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3214                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3215                         atomic_type = ATOMIC_TYPE_FLOAT;
3216                         break;
3217                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3218                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3219                         atomic_type = ATOMIC_TYPE_DOUBLE;
3220                         break;
3221                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3222                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3223                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3224                         break;
3225                 default:
3226                         /* invalid specifier combination, give an error message */
3227                         if(type_specifiers == 0) {
3228                                 if (! strict_mode) {
3229                                         if (warning.implicit_int) {
3230                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3231                                         }
3232                                         atomic_type = ATOMIC_TYPE_INT;
3233                                         break;
3234                                 } else {
3235                                         errorf(HERE, "no type specifiers given in declaration");
3236                                 }
3237                         } else if((type_specifiers & SPECIFIER_SIGNED) &&
3238                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3239                                 errorf(HERE, "signed and unsigned specifiers gives");
3240                         } else if(type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3241                                 errorf(HERE, "only integer types can be signed or unsigned");
3242                         } else {
3243                                 errorf(HERE, "multiple datatypes in declaration");
3244                         }
3245                         atomic_type = ATOMIC_TYPE_INVALID;
3246                 }
3247
3248                 if(type_specifiers & SPECIFIER_COMPLEX &&
3249                    atomic_type != ATOMIC_TYPE_INVALID) {
3250                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3251                         type->complex.akind = atomic_type;
3252                 } else if(type_specifiers & SPECIFIER_IMAGINARY &&
3253                           atomic_type != ATOMIC_TYPE_INVALID) {
3254                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3255                         type->imaginary.akind = atomic_type;
3256                 } else {
3257                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3258                         type->atomic.akind = atomic_type;
3259                 }
3260                 newtype = 1;
3261         } else {
3262                 if(type_specifiers != 0) {
3263                         errorf(HERE, "multiple datatypes in declaration");
3264                 }
3265         }
3266
3267         type->base.qualifiers = type_qualifiers;
3268         /* FIXME: check type qualifiers here */
3269
3270         type_t *result = typehash_insert(type);
3271         if(newtype && result != type) {
3272                 free_type(type);
3273         }
3274
3275         specifiers->type = result;
3276 end_error:
3277         return;
3278 }
3279
3280 static type_qualifiers_t parse_type_qualifiers(void)
3281 {
3282         type_qualifiers_t type_qualifiers = TYPE_QUALIFIER_NONE;
3283
3284         while(true) {
3285                 switch(token.type) {
3286                 /* type qualifiers */
3287                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3288                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3289                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3290                 /* microsoft extended type modifiers */
3291                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3292                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3293                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3294                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3295                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3296
3297                 default:
3298                         return type_qualifiers;
3299                 }
3300         }
3301 }
3302
3303 static declaration_t *parse_identifier_list(void)
3304 {
3305         declaration_t *declarations     = NULL;
3306         declaration_t *last_declaration = NULL;
3307         do {
3308                 declaration_t *const declaration = allocate_declaration_zero();
3309                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3310                 declaration->source_position = token.source_position;
3311                 declaration->symbol          = token.v.symbol;
3312                 next_token();
3313
3314                 if(last_declaration != NULL) {
3315                         last_declaration->next = declaration;
3316                 } else {
3317                         declarations = declaration;
3318                 }
3319                 last_declaration = declaration;
3320
3321                 if (token.type != ',') {
3322                         break;
3323                 }
3324                 next_token();
3325         } while(token.type == T_IDENTIFIER);
3326
3327         return declarations;
3328 }
3329
3330 static void semantic_parameter(declaration_t *declaration)
3331 {
3332         /* TODO: improve error messages */
3333
3334         if(declaration->declared_storage_class == STORAGE_CLASS_TYPEDEF) {
3335                 errorf(HERE, "typedef not allowed in parameter list");
3336         } else if(declaration->declared_storage_class != STORAGE_CLASS_NONE
3337                         && declaration->declared_storage_class != STORAGE_CLASS_REGISTER) {
3338                 errorf(HERE, "parameter may only have none or register storage class");
3339         }
3340
3341         type_t *const orig_type = declaration->type;
3342         type_t *      type      = skip_typeref(orig_type);
3343
3344         /* Array as last part of a parameter type is just syntactic sugar.  Turn it
3345          * into a pointer. Â§ 6.7.5.3 (7) */
3346         if (is_type_array(type)) {
3347                 type_t *const element_type = type->array.element_type;
3348
3349                 type = make_pointer_type(element_type, type->base.qualifiers);
3350
3351                 declaration->type = type;
3352         }
3353
3354         if(is_type_incomplete(type)) {
3355                 errorf(HERE, "incomplete type '%T' not allowed for parameter '%Y'",
3356                        orig_type, declaration->symbol);
3357         }
3358 }
3359
3360 static declaration_t *parse_parameter(void)
3361 {
3362         declaration_specifiers_t specifiers;
3363         memset(&specifiers, 0, sizeof(specifiers));
3364
3365         parse_declaration_specifiers(&specifiers);
3366
3367         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3368
3369         semantic_parameter(declaration);
3370
3371         return declaration;
3372 }
3373
3374 static declaration_t *parse_parameters(function_type_t *type)
3375 {
3376         declaration_t *declarations = NULL;
3377
3378         eat('(');
3379         add_anchor_token(')');
3380         int saved_comma_state = save_and_reset_anchor_state(',');
3381
3382         if(token.type == T_IDENTIFIER) {
3383                 symbol_t *symbol = token.v.symbol;
3384                 if(!is_typedef_symbol(symbol)) {
3385                         type->kr_style_parameters = true;
3386                         declarations = parse_identifier_list();
3387                         goto parameters_finished;
3388                 }
3389         }
3390
3391         if(token.type == ')') {
3392                 type->unspecified_parameters = 1;
3393                 goto parameters_finished;
3394         }
3395         if(token.type == T_void && look_ahead(1)->type == ')') {
3396                 next_token();
3397                 goto parameters_finished;
3398         }
3399
3400         declaration_t        *declaration;
3401         declaration_t        *last_declaration = NULL;
3402         function_parameter_t *parameter;
3403         function_parameter_t *last_parameter = NULL;
3404
3405         while(true) {
3406                 switch(token.type) {
3407                 case T_DOTDOTDOT:
3408                         next_token();
3409                         type->variadic = 1;
3410                         goto parameters_finished;
3411
3412                 case T_IDENTIFIER:
3413                 case T___extension__:
3414                 DECLARATION_START
3415                         declaration = parse_parameter();
3416
3417                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3418                         memset(parameter, 0, sizeof(parameter[0]));
3419                         parameter->type = declaration->type;
3420
3421                         if(last_parameter != NULL) {
3422                                 last_declaration->next = declaration;
3423                                 last_parameter->next   = parameter;
3424                         } else {
3425                                 type->parameters = parameter;
3426                                 declarations     = declaration;
3427                         }
3428                         last_parameter   = parameter;
3429                         last_declaration = declaration;
3430                         break;
3431
3432                 default:
3433                         goto parameters_finished;
3434                 }
3435                 if (token.type != ',') {
3436                         goto parameters_finished;
3437                 }
3438                 next_token();
3439         }
3440
3441
3442 parameters_finished:
3443         rem_anchor_token(')');
3444         expect(')');
3445
3446         restore_anchor_state(',', saved_comma_state);
3447         return declarations;
3448
3449 end_error:
3450         restore_anchor_state(',', saved_comma_state);
3451         return NULL;
3452 }
3453
3454 typedef enum {
3455         CONSTRUCT_INVALID,
3456         CONSTRUCT_POINTER,
3457         CONSTRUCT_FUNCTION,
3458         CONSTRUCT_ARRAY
3459 } construct_type_kind_t;
3460
3461 typedef struct construct_type_t construct_type_t;
3462 struct construct_type_t {
3463         construct_type_kind_t  kind;
3464         construct_type_t      *next;
3465 };
3466
3467 typedef struct parsed_pointer_t parsed_pointer_t;
3468 struct parsed_pointer_t {
3469         construct_type_t  construct_type;
3470         type_qualifiers_t type_qualifiers;
3471 };
3472
3473 typedef struct construct_function_type_t construct_function_type_t;
3474 struct construct_function_type_t {
3475         construct_type_t  construct_type;
3476         type_t           *function_type;
3477 };
3478
3479 typedef struct parsed_array_t parsed_array_t;
3480 struct parsed_array_t {
3481         construct_type_t  construct_type;
3482         type_qualifiers_t type_qualifiers;
3483         bool              is_static;
3484         bool              is_variable;
3485         expression_t     *size;
3486 };
3487
3488 typedef struct construct_base_type_t construct_base_type_t;
3489 struct construct_base_type_t {
3490         construct_type_t  construct_type;
3491         type_t           *type;
3492 };
3493
3494 static construct_type_t *parse_pointer_declarator(void)
3495 {
3496         eat('*');
3497
3498         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3499         memset(pointer, 0, sizeof(pointer[0]));
3500         pointer->construct_type.kind = CONSTRUCT_POINTER;
3501         pointer->type_qualifiers     = parse_type_qualifiers();
3502
3503         return (construct_type_t*) pointer;
3504 }
3505
3506 static construct_type_t *parse_array_declarator(void)
3507 {
3508         eat('[');
3509         add_anchor_token(']');
3510
3511         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3512         memset(array, 0, sizeof(array[0]));
3513         array->construct_type.kind = CONSTRUCT_ARRAY;
3514
3515         if(token.type == T_static) {
3516                 array->is_static = true;
3517                 next_token();
3518         }
3519
3520         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3521         if(type_qualifiers != 0) {
3522                 if(token.type == T_static) {
3523                         array->is_static = true;
3524                         next_token();
3525                 }
3526         }
3527         array->type_qualifiers = type_qualifiers;
3528
3529         if(token.type == '*' && look_ahead(1)->type == ']') {
3530                 array->is_variable = true;
3531                 next_token();
3532         } else if(token.type != ']') {
3533                 array->size = parse_assignment_expression();
3534         }
3535
3536         rem_anchor_token(']');
3537         expect(']');
3538
3539         return (construct_type_t*) array;
3540 end_error:
3541         return NULL;
3542 }
3543
3544 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3545 {
3546         type_t *type;
3547         if(declaration != NULL) {
3548                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3549         } else {
3550                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3551         }
3552
3553         declaration_t *parameters = parse_parameters(&type->function);
3554         if(declaration != NULL) {
3555                 declaration->scope.declarations = parameters;
3556         }
3557
3558         construct_function_type_t *construct_function_type =
3559                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3560         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3561         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3562         construct_function_type->function_type       = type;
3563
3564         return (construct_type_t*) construct_function_type;
3565 }
3566
3567 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
3568                 bool may_be_abstract)
3569 {
3570         /* construct a single linked list of construct_type_t's which describe
3571          * how to construct the final declarator type */
3572         construct_type_t *first = NULL;
3573         construct_type_t *last  = NULL;
3574         gnu_attribute_t  *attributes = NULL;
3575
3576         /* pointers */
3577         while(token.type == '*') {
3578                 construct_type_t *type = parse_pointer_declarator();
3579
3580                 if(last == NULL) {
3581                         first = type;
3582                         last  = type;
3583                 } else {
3584                         last->next = type;
3585                         last       = type;
3586                 }
3587         }
3588
3589         /* TODO: find out if this is correct */
3590         decl_modifiers_t modifiers = parse_attributes(&attributes);
3591         if (declaration != NULL)
3592                 declaration->modifiers |= modifiers;
3593
3594         construct_type_t *inner_types = NULL;
3595
3596         switch(token.type) {
3597         case T_IDENTIFIER:
3598                 if(declaration == NULL) {
3599                         errorf(HERE, "no identifier expected in typename");
3600                 } else {
3601                         declaration->symbol          = token.v.symbol;
3602                         declaration->source_position = token.source_position;
3603                 }
3604                 next_token();
3605                 break;
3606         case '(':
3607                 next_token();
3608                 add_anchor_token(')');
3609                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
3610                 rem_anchor_token(')');
3611                 expect(')');
3612                 break;
3613         default:
3614                 if(may_be_abstract)
3615                         break;
3616                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3617                 /* avoid a loop in the outermost scope, because eat_statement doesn't
3618                  * eat '}' */
3619                 if(token.type == '}' && current_function == NULL) {
3620                         next_token();
3621                 } else {
3622                         eat_statement();
3623                 }
3624                 return NULL;
3625         }
3626
3627         construct_type_t *p = last;
3628
3629         while(true) {
3630                 construct_type_t *type;
3631                 switch(token.type) {
3632                 case '(':
3633                         type = parse_function_declarator(declaration);
3634                         break;
3635                 case '[':
3636                         type = parse_array_declarator();
3637                         break;
3638                 default:
3639                         goto declarator_finished;
3640                 }
3641
3642                 /* insert in the middle of the list (behind p) */
3643                 if(p != NULL) {
3644                         type->next = p->next;
3645                         p->next    = type;
3646                 } else {
3647                         type->next = first;
3648                         first      = type;
3649                 }
3650                 if(last == p) {
3651                         last = type;
3652                 }
3653         }
3654
3655 declarator_finished:
3656         modifiers = parse_attributes(&attributes);
3657         if (declaration != NULL)
3658                 declaration->modifiers |= modifiers;
3659
3660         /* append inner_types at the end of the list, we don't to set last anymore
3661          * as it's not needed anymore */
3662         if(last == NULL) {
3663                 assert(first == NULL);
3664                 first = inner_types;
3665         } else {
3666                 last->next = inner_types;
3667         }
3668
3669         return first;
3670 end_error:
3671         return NULL;
3672 }
3673
3674 static type_t *construct_declarator_type(construct_type_t *construct_list,
3675                                          type_t *type)
3676 {
3677         construct_type_t *iter = construct_list;
3678         for( ; iter != NULL; iter = iter->next) {
3679                 switch(iter->kind) {
3680                 case CONSTRUCT_INVALID:
3681                         internal_errorf(HERE, "invalid type construction found");
3682                 case CONSTRUCT_FUNCTION: {
3683                         construct_function_type_t *construct_function_type
3684                                 = (construct_function_type_t*) iter;
3685
3686                         type_t *function_type = construct_function_type->function_type;
3687
3688                         function_type->function.return_type = type;
3689
3690                         type_t *skipped_return_type = skip_typeref(type);
3691                         if (is_type_function(skipped_return_type)) {
3692                                 errorf(HERE, "function returning function is not allowed");
3693                                 type = type_error_type;
3694                         } else if (is_type_array(skipped_return_type)) {
3695                                 errorf(HERE, "function returning array is not allowed");
3696                                 type = type_error_type;
3697                         } else {
3698                                 type = function_type;
3699                         }
3700                         break;
3701                 }
3702
3703                 case CONSTRUCT_POINTER: {
3704                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
3705                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
3706                         pointer_type->pointer.points_to  = type;
3707                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
3708
3709                         type = pointer_type;
3710                         break;
3711                 }
3712
3713                 case CONSTRUCT_ARRAY: {
3714                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
3715                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
3716
3717                         expression_t *size_expression = parsed_array->size;
3718                         if(size_expression != NULL) {
3719                                 size_expression
3720                                         = create_implicit_cast(size_expression, type_size_t);
3721                         }
3722
3723                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
3724                         array_type->array.element_type    = type;
3725                         array_type->array.is_static       = parsed_array->is_static;
3726                         array_type->array.is_variable     = parsed_array->is_variable;
3727                         array_type->array.size_expression = size_expression;
3728
3729                         if(size_expression != NULL) {
3730                                 if(is_constant_expression(size_expression)) {
3731                                         array_type->array.size_constant = true;
3732                                         array_type->array.size
3733                                                 = fold_constant(size_expression);
3734                                 } else {
3735                                         array_type->array.is_vla = true;
3736                                 }
3737                         }
3738
3739                         type_t *skipped_type = skip_typeref(type);
3740                         if (is_type_atomic(skipped_type, ATOMIC_TYPE_VOID)) {
3741                                 errorf(HERE, "array of void is not allowed");
3742                                 type = type_error_type;
3743                         } else {
3744                                 type = array_type;
3745                         }
3746                         break;
3747                 }
3748                 }
3749
3750                 type_t *hashed_type = typehash_insert(type);
3751                 if(hashed_type != type) {
3752                         /* the function type was constructed earlier freeing it here will
3753                          * destroy other types... */
3754                         if(iter->kind != CONSTRUCT_FUNCTION) {
3755                                 free_type(type);
3756                         }
3757                         type = hashed_type;
3758                 }
3759         }
3760
3761         return type;
3762 }
3763
3764 static declaration_t *parse_declarator(
3765                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
3766 {
3767         declaration_t *const declaration    = allocate_declaration_zero();
3768         declaration->declared_storage_class = specifiers->declared_storage_class;
3769         declaration->modifiers              = specifiers->modifiers;
3770         declaration->deprecated             = specifiers->deprecated;
3771         declaration->deprecated_string      = specifiers->deprecated_string;
3772         declaration->get_property_sym       = specifiers->get_property_sym;
3773         declaration->put_property_sym       = specifiers->put_property_sym;
3774         declaration->is_inline              = specifiers->is_inline;
3775
3776         declaration->storage_class          = specifiers->declared_storage_class;
3777         if(declaration->storage_class == STORAGE_CLASS_NONE
3778                         && scope != global_scope) {
3779                 declaration->storage_class = STORAGE_CLASS_AUTO;
3780         }
3781
3782         if(specifiers->alignment != 0) {
3783                 /* TODO: add checks here */
3784                 declaration->alignment = specifiers->alignment;
3785         }
3786
3787         construct_type_t *construct_type
3788                 = parse_inner_declarator(declaration, may_be_abstract);
3789         type_t *const type = specifiers->type;
3790         declaration->type = construct_declarator_type(construct_type, type);
3791
3792         if(construct_type != NULL) {
3793                 obstack_free(&temp_obst, construct_type);
3794         }
3795
3796         return declaration;
3797 }
3798
3799 static type_t *parse_abstract_declarator(type_t *base_type)
3800 {
3801         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
3802
3803         type_t *result = construct_declarator_type(construct_type, base_type);
3804         if(construct_type != NULL) {
3805                 obstack_free(&temp_obst, construct_type);
3806         }
3807
3808         return result;
3809 }
3810
3811 static declaration_t *append_declaration(declaration_t* const declaration)
3812 {
3813         if (last_declaration != NULL) {
3814                 last_declaration->next = declaration;
3815         } else {
3816                 scope->declarations = declaration;
3817         }
3818         last_declaration = declaration;
3819         return declaration;
3820 }
3821
3822 /**
3823  * Check if the declaration of main is suspicious.  main should be a
3824  * function with external linkage, returning int, taking either zero
3825  * arguments, two, or three arguments of appropriate types, ie.
3826  *
3827  * int main([ int argc, char **argv [, char **env ] ]).
3828  *
3829  * @param decl    the declaration to check
3830  * @param type    the function type of the declaration
3831  */
3832 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
3833 {
3834         if (decl->storage_class == STORAGE_CLASS_STATIC) {
3835                 warningf(&decl->source_position,
3836                          "'main' is normally a non-static function");
3837         }
3838         if (skip_typeref(func_type->return_type) != type_int) {
3839                 warningf(&decl->source_position,
3840                          "return type of 'main' should be 'int', but is '%T'",
3841                          func_type->return_type);
3842         }
3843         const function_parameter_t *parm = func_type->parameters;
3844         if (parm != NULL) {
3845                 type_t *const first_type = parm->type;
3846                 if (!types_compatible(skip_typeref(first_type), type_int)) {
3847                         warningf(&decl->source_position,
3848                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
3849                 }
3850                 parm = parm->next;
3851                 if (parm != NULL) {
3852                         type_t *const second_type = parm->type;
3853                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
3854                                 warningf(&decl->source_position,
3855                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
3856                         }
3857                         parm = parm->next;
3858                         if (parm != NULL) {
3859                                 type_t *const third_type = parm->type;
3860                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
3861                                         warningf(&decl->source_position,
3862                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
3863                                 }
3864                                 parm = parm->next;
3865                                 if (parm != NULL) {
3866                                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
3867                                 }
3868                         }
3869                 } else {
3870                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
3871                 }
3872         }
3873 }
3874
3875 /**
3876  * Check if a symbol is the equal to "main".
3877  */
3878 static bool is_sym_main(const symbol_t *const sym)
3879 {
3880         return strcmp(sym->string, "main") == 0;
3881 }
3882
3883 static declaration_t *internal_record_declaration(
3884         declaration_t *const declaration,
3885         const bool is_function_definition)
3886 {
3887         const symbol_t *const symbol  = declaration->symbol;
3888         const namespace_t     namespc = (namespace_t)declaration->namespc;
3889
3890         assert(declaration->symbol != NULL);
3891         declaration_t *previous_declaration = get_declaration(symbol, namespc);
3892
3893         type_t *const orig_type = declaration->type;
3894         type_t *const type      = skip_typeref(orig_type);
3895         if (is_type_function(type) &&
3896                         type->function.unspecified_parameters &&
3897                         warning.strict_prototypes &&
3898                         previous_declaration == NULL) {
3899                 warningf(&declaration->source_position,
3900                          "function declaration '%#T' is not a prototype",
3901                          orig_type, declaration->symbol);
3902         }
3903
3904         if (is_function_definition && warning.main && is_sym_main(symbol)) {
3905                 check_type_of_main(declaration, &type->function);
3906         }
3907
3908         assert(declaration != previous_declaration);
3909         if (previous_declaration != NULL
3910                         && previous_declaration->parent_scope == scope) {
3911                 /* can happen for K&R style declarations */
3912                 if (previous_declaration->type == NULL) {
3913                         previous_declaration->type = declaration->type;
3914                 }
3915
3916                 const type_t *prev_type = skip_typeref(previous_declaration->type);
3917                 if (!types_compatible(type, prev_type)) {
3918                         errorf(&declaration->source_position,
3919                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
3920                                    orig_type, symbol, previous_declaration->type, symbol,
3921                                    &previous_declaration->source_position);
3922                 } else {
3923                         unsigned old_storage_class = previous_declaration->storage_class;
3924                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
3925                                 errorf(&declaration->source_position,
3926                                            "redeclaration of enum entry '%Y' (declared %P)",
3927                                            symbol, &previous_declaration->source_position);
3928                                 return previous_declaration;
3929                         }
3930
3931                         unsigned new_storage_class = declaration->storage_class;
3932
3933                         if (is_type_incomplete(prev_type)) {
3934                                 previous_declaration->type = type;
3935                                 prev_type                  = type;
3936                         }
3937
3938                         /* pretend no storage class means extern for function
3939                          * declarations (except if the previous declaration is neither
3940                          * none nor extern) */
3941                         if (is_type_function(type)) {
3942                                 if (prev_type->function.unspecified_parameters) {
3943                                         previous_declaration->type = type;
3944                                         prev_type                  = type;
3945                                 }
3946
3947                                 switch (old_storage_class) {
3948                                 case STORAGE_CLASS_NONE:
3949                                         old_storage_class = STORAGE_CLASS_EXTERN;
3950
3951                                 case STORAGE_CLASS_EXTERN:
3952                                         if (is_function_definition) {
3953                                                 if (warning.missing_prototypes &&
3954                                                         prev_type->function.unspecified_parameters &&
3955                                                         !is_sym_main(symbol)) {
3956                                                         warningf(&declaration->source_position,
3957                                                                          "no previous prototype for '%#T'",
3958                                                                          orig_type, symbol);
3959                                                 }
3960                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
3961                                                 new_storage_class = STORAGE_CLASS_EXTERN;
3962                                         }
3963                                         break;
3964
3965                                 default:
3966                                         break;
3967                                 }
3968                         }
3969
3970                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
3971                                         new_storage_class == STORAGE_CLASS_EXTERN) {
3972 warn_redundant_declaration:
3973                                 if (warning.redundant_decls && strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
3974                                         warningf(&declaration->source_position,
3975                                                          "redundant declaration for '%Y' (declared %P)",
3976                                                          symbol, &previous_declaration->source_position);
3977                                 }
3978                         } else if (current_function == NULL) {
3979                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
3980                                                 new_storage_class == STORAGE_CLASS_STATIC) {
3981                                         errorf(&declaration->source_position,
3982                                                    "static declaration of '%Y' follows non-static declaration (declared %P)",
3983                                                    symbol, &previous_declaration->source_position);
3984                                 } else if (old_storage_class != STORAGE_CLASS_EXTERN
3985                                                 && !is_function_definition) {
3986                                         goto warn_redundant_declaration;
3987                                 } else if (new_storage_class == STORAGE_CLASS_NONE) {
3988                                                 previous_declaration->storage_class = STORAGE_CLASS_NONE;
3989                                                 previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
3990                                 }
3991                         } else if (old_storage_class == new_storage_class) {
3992                                 errorf(&declaration->source_position,
3993                                            "redeclaration of '%Y' (declared %P)",
3994                                            symbol, &previous_declaration->source_position);
3995                         } else {
3996                                 errorf(&declaration->source_position,
3997                                            "redeclaration of '%Y' with different linkage (declared %P)",
3998                                            symbol, &previous_declaration->source_position);
3999                         }
4000                 }
4001
4002                 if (declaration->is_inline)
4003                         previous_declaration->is_inline = true;
4004                 return previous_declaration;
4005         } else if (is_function_definition) {
4006                 if (declaration->storage_class != STORAGE_CLASS_STATIC) {
4007                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4008                                 warningf(&declaration->source_position,
4009                                          "no previous prototype for '%#T'", orig_type, symbol);
4010                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4011                                 warningf(&declaration->source_position,
4012                                          "no previous declaration for '%#T'", orig_type,
4013                                          symbol);
4014                         }
4015                 }
4016         } else if (warning.missing_declarations &&
4017             scope == global_scope &&
4018             !is_type_function(type) && (
4019               declaration->storage_class == STORAGE_CLASS_NONE ||
4020               declaration->storage_class == STORAGE_CLASS_THREAD
4021             )) {
4022                 warningf(&declaration->source_position,
4023                          "no previous declaration for '%#T'", orig_type, symbol);
4024         }
4025
4026         assert(declaration->parent_scope == NULL);
4027         assert(scope != NULL);
4028
4029         declaration->parent_scope = scope;
4030
4031         environment_push(declaration);
4032         return append_declaration(declaration);
4033 }
4034
4035 static declaration_t *record_declaration(declaration_t *declaration)
4036 {
4037         return internal_record_declaration(declaration, false);
4038 }
4039
4040 static declaration_t *record_function_definition(declaration_t *declaration)
4041 {
4042         return internal_record_declaration(declaration, true);
4043 }
4044
4045 static void parser_error_multiple_definition(declaration_t *declaration,
4046                 const source_position_t *source_position)
4047 {
4048         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4049                declaration->symbol, &declaration->source_position);
4050 }
4051
4052 static bool is_declaration_specifier(const token_t *token,
4053                                      bool only_specifiers_qualifiers)
4054 {
4055         switch(token->type) {
4056                 TYPE_SPECIFIERS
4057                 TYPE_QUALIFIERS
4058                         return true;
4059                 case T_IDENTIFIER:
4060                         return is_typedef_symbol(token->v.symbol);
4061
4062                 case T___extension__:
4063                 STORAGE_CLASSES
4064                         return !only_specifiers_qualifiers;
4065
4066                 default:
4067                         return false;
4068         }
4069 }
4070
4071 static void parse_init_declarator_rest(declaration_t *declaration)
4072 {
4073         eat('=');
4074
4075         type_t *orig_type = declaration->type;
4076         type_t *type      = skip_typeref(orig_type);
4077
4078         if(declaration->init.initializer != NULL) {
4079                 parser_error_multiple_definition(declaration, HERE);
4080         }
4081
4082         bool must_be_constant = false;
4083         if(declaration->storage_class == STORAGE_CLASS_STATIC
4084                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4085                         || declaration->parent_scope == global_scope) {
4086                 must_be_constant = true;
4087         }
4088
4089         parse_initializer_env_t env;
4090         env.type             = orig_type;
4091         env.must_be_constant = must_be_constant;
4092         env.declaration      = declaration;
4093
4094         initializer_t *initializer = parse_initializer(&env);
4095
4096         if(env.type != orig_type) {
4097                 orig_type         = env.type;
4098                 type              = skip_typeref(orig_type);
4099                 declaration->type = env.type;
4100         }
4101
4102         if(is_type_function(type)) {
4103                 errorf(&declaration->source_position,
4104                        "initializers not allowed for function types at declator '%Y' (type '%T')",
4105                        declaration->symbol, orig_type);
4106         } else {
4107                 declaration->init.initializer = initializer;
4108         }
4109 }
4110
4111 /* parse rest of a declaration without any declarator */
4112 static void parse_anonymous_declaration_rest(
4113                 const declaration_specifiers_t *specifiers,
4114                 parsed_declaration_func finished_declaration)
4115 {
4116         eat(';');
4117
4118         declaration_t *const declaration    = allocate_declaration_zero();
4119         declaration->type                   = specifiers->type;
4120         declaration->declared_storage_class = specifiers->declared_storage_class;
4121         declaration->source_position        = specifiers->source_position;
4122         declaration->modifiers              = specifiers->modifiers;
4123
4124         if (declaration->declared_storage_class != STORAGE_CLASS_NONE) {
4125                 warningf(&declaration->source_position,
4126                          "useless storage class in empty declaration");
4127         }
4128         declaration->storage_class = STORAGE_CLASS_NONE;
4129
4130         type_t *type = declaration->type;
4131         switch (type->kind) {
4132                 case TYPE_COMPOUND_STRUCT:
4133                 case TYPE_COMPOUND_UNION: {
4134                         if (type->compound.declaration->symbol == NULL) {
4135                                 warningf(&declaration->source_position,
4136                                          "unnamed struct/union that defines no instances");
4137                         }
4138                         break;
4139                 }
4140
4141                 case TYPE_ENUM:
4142                         break;
4143
4144                 default:
4145                         warningf(&declaration->source_position, "empty declaration");
4146                         break;
4147         }
4148
4149         finished_declaration(declaration);
4150 }
4151
4152 static void parse_declaration_rest(declaration_t *ndeclaration,
4153                 const declaration_specifiers_t *specifiers,
4154                 parsed_declaration_func finished_declaration)
4155 {
4156         add_anchor_token(';');
4157         add_anchor_token('=');
4158         add_anchor_token(',');
4159         while(true) {
4160                 declaration_t *declaration = finished_declaration(ndeclaration);
4161
4162                 type_t *orig_type = declaration->type;
4163                 type_t *type      = skip_typeref(orig_type);
4164
4165                 if (type->kind != TYPE_FUNCTION &&
4166                     declaration->is_inline &&
4167                     is_type_valid(type)) {
4168                         warningf(&declaration->source_position,
4169                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4170                 }
4171
4172                 if(token.type == '=') {
4173                         parse_init_declarator_rest(declaration);
4174                 }
4175
4176                 if(token.type != ',')
4177                         break;
4178                 eat(',');
4179
4180                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4181         }
4182         expect(';');
4183
4184 end_error:
4185         rem_anchor_token(';');
4186         rem_anchor_token('=');
4187         rem_anchor_token(',');
4188 }
4189
4190 static declaration_t *finished_kr_declaration(declaration_t *declaration)
4191 {
4192         symbol_t *symbol  = declaration->symbol;
4193         if(symbol == NULL) {
4194                 errorf(HERE, "anonymous declaration not valid as function parameter");
4195                 return declaration;
4196         }
4197         namespace_t namespc = (namespace_t) declaration->namespc;
4198         if(namespc != NAMESPACE_NORMAL) {
4199                 return record_declaration(declaration);
4200         }
4201
4202         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4203         if(previous_declaration == NULL ||
4204                         previous_declaration->parent_scope != scope) {
4205                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4206                        symbol);
4207                 return declaration;
4208         }
4209
4210         if(previous_declaration->type == NULL) {
4211                 previous_declaration->type          = declaration->type;
4212                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4213                 previous_declaration->storage_class = declaration->storage_class;
4214                 previous_declaration->parent_scope  = scope;
4215                 return previous_declaration;
4216         } else {
4217                 return record_declaration(declaration);
4218         }
4219 }
4220
4221 static void parse_declaration(parsed_declaration_func finished_declaration)
4222 {
4223         declaration_specifiers_t specifiers;
4224         memset(&specifiers, 0, sizeof(specifiers));
4225         parse_declaration_specifiers(&specifiers);
4226
4227         if(token.type == ';') {
4228                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4229         } else {
4230                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4231                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4232         }
4233 }
4234
4235 static type_t *get_default_promoted_type(type_t *orig_type)
4236 {
4237         type_t *result = orig_type;
4238
4239         type_t *type = skip_typeref(orig_type);
4240         if(is_type_integer(type)) {
4241                 result = promote_integer(type);
4242         } else if(type == type_float) {
4243                 result = type_double;
4244         }
4245
4246         return result;
4247 }
4248
4249 static void parse_kr_declaration_list(declaration_t *declaration)
4250 {
4251         type_t *type = skip_typeref(declaration->type);
4252         if (!is_type_function(type))
4253                 return;
4254
4255         if (!type->function.kr_style_parameters)
4256                 return;
4257
4258         /* push function parameters */
4259         int       top        = environment_top();
4260         scope_t  *last_scope = scope;
4261         set_scope(&declaration->scope);
4262
4263         declaration_t *parameter = declaration->scope.declarations;
4264         for ( ; parameter != NULL; parameter = parameter->next) {
4265                 assert(parameter->parent_scope == NULL);
4266                 parameter->parent_scope = scope;
4267                 environment_push(parameter);
4268         }
4269
4270         /* parse declaration list */
4271         while (is_declaration_specifier(&token, false)) {
4272                 parse_declaration(finished_kr_declaration);
4273         }
4274
4275         /* pop function parameters */
4276         assert(scope == &declaration->scope);
4277         set_scope(last_scope);
4278         environment_pop_to(top);
4279
4280         /* update function type */
4281         type_t *new_type = duplicate_type(type);
4282
4283         function_parameter_t *parameters     = NULL;
4284         function_parameter_t *last_parameter = NULL;
4285
4286         declaration_t *parameter_declaration = declaration->scope.declarations;
4287         for( ; parameter_declaration != NULL;
4288                         parameter_declaration = parameter_declaration->next) {
4289                 type_t *parameter_type = parameter_declaration->type;
4290                 if(parameter_type == NULL) {
4291                         if (strict_mode) {
4292                                 errorf(HERE, "no type specified for function parameter '%Y'",
4293                                        parameter_declaration->symbol);
4294                         } else {
4295                                 if (warning.implicit_int) {
4296                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4297                                                 parameter_declaration->symbol);
4298                                 }
4299                                 parameter_type              = type_int;
4300                                 parameter_declaration->type = parameter_type;
4301                         }
4302                 }
4303
4304                 semantic_parameter(parameter_declaration);
4305                 parameter_type = parameter_declaration->type;
4306
4307                 /*
4308                  * we need the default promoted types for the function type
4309                  */
4310                 parameter_type = get_default_promoted_type(parameter_type);
4311
4312                 function_parameter_t *function_parameter
4313                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4314                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4315
4316                 function_parameter->type = parameter_type;
4317                 if(last_parameter != NULL) {
4318                         last_parameter->next = function_parameter;
4319                 } else {
4320                         parameters = function_parameter;
4321                 }
4322                 last_parameter = function_parameter;
4323         }
4324
4325         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4326          * prototype */
4327         new_type->function.parameters             = parameters;
4328         new_type->function.unspecified_parameters = true;
4329
4330         type = typehash_insert(new_type);
4331         if(type != new_type) {
4332                 obstack_free(type_obst, new_type);
4333         }
4334
4335         declaration->type = type;
4336 }
4337
4338 static bool first_err = true;
4339
4340 /**
4341  * When called with first_err set, prints the name of the current function,
4342  * else does noting.
4343  */
4344 static void print_in_function(void) {
4345         if (first_err) {
4346                 first_err = false;
4347                 diagnosticf("%s: In function '%Y':\n",
4348                         current_function->source_position.input_name,
4349                         current_function->symbol);
4350         }
4351 }
4352
4353 /**
4354  * Check if all labels are defined in the current function.
4355  * Check if all labels are used in the current function.
4356  */
4357 static void check_labels(void)
4358 {
4359         for (const goto_statement_t *goto_statement = goto_first;
4360             goto_statement != NULL;
4361             goto_statement = goto_statement->next) {
4362                 declaration_t *label = goto_statement->label;
4363
4364                 label->used = true;
4365                 if (label->source_position.input_name == NULL) {
4366                         print_in_function();
4367                         errorf(&goto_statement->base.source_position,
4368                                "label '%Y' used but not defined", label->symbol);
4369                  }
4370         }
4371         goto_first = goto_last = NULL;
4372
4373         if (warning.unused_label) {
4374                 for (const label_statement_t *label_statement = label_first;
4375                          label_statement != NULL;
4376                          label_statement = label_statement->next) {
4377                         const declaration_t *label = label_statement->label;
4378
4379                         if (! label->used) {
4380                                 print_in_function();
4381                                 warningf(&label_statement->base.source_position,
4382                                         "label '%Y' defined but not used", label->symbol);
4383                         }
4384                 }
4385         }
4386         label_first = label_last = NULL;
4387 }
4388
4389 /**
4390  * Check declarations of current_function for unused entities.
4391  */
4392 static void check_declarations(void)
4393 {
4394         if (warning.unused_parameter) {
4395                 const scope_t *scope = &current_function->scope;
4396
4397                 const declaration_t *parameter = scope->declarations;
4398                 for (; parameter != NULL; parameter = parameter->next) {
4399                         if (! parameter->used) {
4400                                 print_in_function();
4401                                 warningf(&parameter->source_position,
4402                                          "unused parameter '%Y'", parameter->symbol);
4403                         }
4404                 }
4405         }
4406         if (warning.unused_variable) {
4407         }
4408 }
4409
4410 static void parse_external_declaration(void)
4411 {
4412         /* function-definitions and declarations both start with declaration
4413          * specifiers */
4414         declaration_specifiers_t specifiers;
4415         memset(&specifiers, 0, sizeof(specifiers));
4416
4417         add_anchor_token(';');
4418         parse_declaration_specifiers(&specifiers);
4419         rem_anchor_token(';');
4420
4421         /* must be a declaration */
4422         if(token.type == ';') {
4423                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4424                 return;
4425         }
4426
4427         add_anchor_token(',');
4428         add_anchor_token('=');
4429         rem_anchor_token(';');
4430
4431         /* declarator is common to both function-definitions and declarations */
4432         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4433
4434         rem_anchor_token(',');
4435         rem_anchor_token('=');
4436         rem_anchor_token(';');
4437
4438         /* must be a declaration */
4439         if(token.type == ',' || token.type == '=' || token.type == ';') {
4440                 parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
4441                 return;
4442         }
4443
4444         /* must be a function definition */
4445         parse_kr_declaration_list(ndeclaration);
4446
4447         if(token.type != '{') {
4448                 parse_error_expected("while parsing function definition", '{', NULL);
4449                 eat_until_matching_token(';');
4450                 return;
4451         }
4452
4453         type_t *type = ndeclaration->type;
4454
4455         /* note that we don't skip typerefs: the standard doesn't allow them here
4456          * (so we can't use is_type_function here) */
4457         if(type->kind != TYPE_FUNCTION) {
4458                 if (is_type_valid(type)) {
4459                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
4460                                type, ndeclaration->symbol);
4461                 }
4462                 eat_block();
4463                 return;
4464         }
4465
4466         /* Â§ 6.7.5.3 (14) a function definition with () means no
4467          * parameters (and not unspecified parameters) */
4468         if(type->function.unspecified_parameters
4469                         && type->function.parameters == NULL
4470                         && !type->function.kr_style_parameters) {
4471                 type_t *duplicate = duplicate_type(type);
4472                 duplicate->function.unspecified_parameters = false;
4473
4474                 type = typehash_insert(duplicate);
4475                 if(type != duplicate) {
4476                         obstack_free(type_obst, duplicate);
4477                 }
4478                 ndeclaration->type = type;
4479         }
4480
4481         declaration_t *const declaration = record_function_definition(ndeclaration);
4482         if(ndeclaration != declaration) {
4483                 declaration->scope = ndeclaration->scope;
4484         }
4485         type = skip_typeref(declaration->type);
4486
4487         /* push function parameters and switch scope */
4488         int       top        = environment_top();
4489         scope_t  *last_scope = scope;
4490         set_scope(&declaration->scope);
4491
4492         declaration_t *parameter = declaration->scope.declarations;
4493         for( ; parameter != NULL; parameter = parameter->next) {
4494                 if(parameter->parent_scope == &ndeclaration->scope) {
4495                         parameter->parent_scope = scope;
4496                 }
4497                 assert(parameter->parent_scope == NULL
4498                                 || parameter->parent_scope == scope);
4499                 parameter->parent_scope = scope;
4500                 environment_push(parameter);
4501         }
4502
4503         if(declaration->init.statement != NULL) {
4504                 parser_error_multiple_definition(declaration, HERE);
4505                 eat_block();
4506                 goto end_of_parse_external_declaration;
4507         } else {
4508                 /* parse function body */
4509                 int            label_stack_top      = label_top();
4510                 declaration_t *old_current_function = current_function;
4511                 current_function                    = declaration;
4512
4513                 declaration->init.statement = parse_compound_statement(false);
4514                 first_err = true;
4515                 check_labels();
4516                 check_declarations();
4517
4518                 assert(current_function == declaration);
4519                 current_function = old_current_function;
4520                 label_pop_to(label_stack_top);
4521         }
4522
4523 end_of_parse_external_declaration:
4524         assert(scope == &declaration->scope);
4525         set_scope(last_scope);
4526         environment_pop_to(top);
4527 }
4528
4529 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
4530                                   source_position_t *source_position)
4531 {
4532         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
4533
4534         type->bitfield.base_type = base_type;
4535         type->bitfield.size      = size;
4536
4537         return type;
4538 }
4539
4540 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
4541                                           symbol_t *symbol)
4542 {
4543         declaration_t *iter = compound_declaration->scope.declarations;
4544         for( ; iter != NULL; iter = iter->next) {
4545                 if(iter->namespc != NAMESPACE_NORMAL)
4546                         continue;
4547
4548                 if(iter->symbol == NULL) {
4549                         type_t *type = skip_typeref(iter->type);
4550                         if(is_type_compound(type)) {
4551                                 declaration_t *result
4552                                         = find_compound_entry(type->compound.declaration, symbol);
4553                                 if(result != NULL)
4554                                         return result;
4555                         }
4556                         continue;
4557                 }
4558
4559                 if(iter->symbol == symbol) {
4560                         return iter;
4561                 }
4562         }
4563
4564         return NULL;
4565 }
4566
4567 static void parse_compound_declarators(declaration_t *struct_declaration,
4568                 const declaration_specifiers_t *specifiers)
4569 {
4570         declaration_t *last_declaration = struct_declaration->scope.declarations;
4571         if(last_declaration != NULL) {
4572                 while(last_declaration->next != NULL) {
4573                         last_declaration = last_declaration->next;
4574                 }
4575         }
4576
4577         while(1) {
4578                 declaration_t *declaration;
4579
4580                 if(token.type == ':') {
4581                         source_position_t source_position = *HERE;
4582                         next_token();
4583
4584                         type_t *base_type = specifiers->type;
4585                         expression_t *size = parse_constant_expression();
4586
4587                         if(!is_type_integer(skip_typeref(base_type))) {
4588                                 errorf(HERE, "bitfield base type '%T' is not an integer type",
4589                                        base_type);
4590                         }
4591
4592                         type_t *type = make_bitfield_type(base_type, size, &source_position);
4593
4594                         declaration                         = allocate_declaration_zero();
4595                         declaration->namespc                = NAMESPACE_NORMAL;
4596                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
4597                         declaration->storage_class          = STORAGE_CLASS_NONE;
4598                         declaration->source_position        = source_position;
4599                         declaration->modifiers              = specifiers->modifiers;
4600                         declaration->type                   = type;
4601                 } else {
4602                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
4603
4604                         type_t *orig_type = declaration->type;
4605                         type_t *type      = skip_typeref(orig_type);
4606
4607                         if(token.type == ':') {
4608                                 source_position_t source_position = *HERE;
4609                                 next_token();
4610                                 expression_t *size = parse_constant_expression();
4611
4612                                 if(!is_type_integer(type)) {
4613                                         errorf(HERE, "bitfield base type '%T' is not an "
4614                                                "integer type", orig_type);
4615                                 }
4616
4617                                 type_t *bitfield_type = make_bitfield_type(orig_type, size, &source_position);
4618                                 declaration->type = bitfield_type;
4619                         } else {
4620                                 /* TODO we ignore arrays for now... what is missing is a check
4621                                  * that they're at the end of the struct */
4622                                 if(is_type_incomplete(type) && !is_type_array(type)) {
4623                                         errorf(HERE,
4624                                                "compound member '%Y' has incomplete type '%T'",
4625                                                declaration->symbol, orig_type);
4626                                 } else if(is_type_function(type)) {
4627                                         errorf(HERE, "compound member '%Y' must not have function "
4628                                                "type '%T'", declaration->symbol, orig_type);
4629                                 }
4630                         }
4631                 }
4632
4633                 /* make sure we don't define a symbol multiple times */
4634                 symbol_t *symbol = declaration->symbol;
4635                 if(symbol != NULL) {
4636                         declaration_t *prev_decl
4637                                 = find_compound_entry(struct_declaration, symbol);
4638
4639                         if(prev_decl != NULL) {
4640                                 assert(prev_decl->symbol == symbol);
4641                                 errorf(&declaration->source_position,
4642                                        "multiple declarations of symbol '%Y' (declared %P)",
4643                                        symbol, &prev_decl->source_position);
4644                         }
4645                 }
4646
4647                 /* append declaration */
4648                 if(last_declaration != NULL) {
4649                         last_declaration->next = declaration;
4650                 } else {
4651                         struct_declaration->scope.declarations = declaration;
4652                 }
4653                 last_declaration = declaration;
4654
4655                 if(token.type != ',')
4656                         break;
4657                 next_token();
4658         }
4659         expect(';');
4660
4661 end_error:
4662         ;
4663 }
4664
4665 static void parse_compound_type_entries(declaration_t *compound_declaration)
4666 {
4667         eat('{');
4668         add_anchor_token('}');
4669
4670         while(token.type != '}' && token.type != T_EOF) {
4671                 declaration_specifiers_t specifiers;
4672                 memset(&specifiers, 0, sizeof(specifiers));
4673                 parse_declaration_specifiers(&specifiers);
4674
4675                 parse_compound_declarators(compound_declaration, &specifiers);
4676         }
4677         rem_anchor_token('}');
4678
4679         if(token.type == T_EOF) {
4680                 errorf(HERE, "EOF while parsing struct");
4681         }
4682         next_token();
4683 }
4684
4685 static type_t *parse_typename(void)
4686 {
4687         declaration_specifiers_t specifiers;
4688         memset(&specifiers, 0, sizeof(specifiers));
4689         parse_declaration_specifiers(&specifiers);
4690         if(specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
4691                 /* TODO: improve error message, user does probably not know what a
4692                  * storage class is...
4693                  */
4694                 errorf(HERE, "typename may not have a storage class");
4695         }
4696
4697         type_t *result = parse_abstract_declarator(specifiers.type);
4698
4699         return result;
4700 }
4701
4702
4703
4704
4705 typedef expression_t* (*parse_expression_function) (unsigned precedence);
4706 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
4707                                                           expression_t *left);
4708
4709 typedef struct expression_parser_function_t expression_parser_function_t;
4710 struct expression_parser_function_t {
4711         unsigned                         precedence;
4712         parse_expression_function        parser;
4713         unsigned                         infix_precedence;
4714         parse_expression_infix_function  infix_parser;
4715 };
4716
4717 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
4718
4719 /**
4720  * Prints an error message if an expression was expected but not read
4721  */
4722 static expression_t *expected_expression_error(void)
4723 {
4724         /* skip the error message if the error token was read */
4725         if (token.type != T_ERROR) {
4726                 errorf(HERE, "expected expression, got token '%K'", &token);
4727         }
4728         next_token();
4729
4730         return create_invalid_expression();
4731 }
4732
4733 /**
4734  * Parse a string constant.
4735  */
4736 static expression_t *parse_string_const(void)
4737 {
4738         wide_string_t wres;
4739         if (token.type == T_STRING_LITERAL) {
4740                 string_t res = token.v.string;
4741                 next_token();
4742                 while (token.type == T_STRING_LITERAL) {
4743                         res = concat_strings(&res, &token.v.string);
4744                         next_token();
4745                 }
4746                 if (token.type != T_WIDE_STRING_LITERAL) {
4747                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
4748                         /* note: that we use type_char_ptr here, which is already the
4749                          * automatic converted type. revert_automatic_type_conversion
4750                          * will construct the array type */
4751                         cnst->base.type    = type_char_ptr;
4752                         cnst->string.value = res;
4753                         return cnst;
4754                 }
4755
4756                 wres = concat_string_wide_string(&res, &token.v.wide_string);
4757         } else {
4758                 wres = token.v.wide_string;
4759         }
4760         next_token();
4761
4762         for (;;) {
4763                 switch (token.type) {
4764                         case T_WIDE_STRING_LITERAL:
4765                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
4766                                 break;
4767
4768                         case T_STRING_LITERAL:
4769                                 wres = concat_wide_string_string(&wres, &token.v.string);
4770                                 break;
4771
4772                         default: {
4773                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
4774                                 cnst->base.type         = type_wchar_t_ptr;
4775                                 cnst->wide_string.value = wres;
4776                                 return cnst;
4777                         }
4778                 }
4779                 next_token();
4780         }
4781 }
4782
4783 /**
4784  * Parse an integer constant.
4785  */
4786 static expression_t *parse_int_const(void)
4787 {
4788         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
4789         cnst->base.source_position = *HERE;
4790         cnst->base.type            = token.datatype;
4791         cnst->conste.v.int_value   = token.v.intvalue;
4792
4793         next_token();
4794
4795         return cnst;
4796 }
4797
4798 /**
4799  * Parse a character constant.
4800  */
4801 static expression_t *parse_character_constant(void)
4802 {
4803         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
4804
4805         cnst->base.source_position = *HERE;
4806         cnst->base.type            = token.datatype;
4807         cnst->conste.v.character   = token.v.string;
4808
4809         if (cnst->conste.v.character.size != 1) {
4810                 if (warning.multichar && (c_mode & _GNUC)) {
4811                         /* TODO */
4812                         warningf(HERE, "multi-character character constant");
4813                 } else {
4814                         errorf(HERE, "more than 1 characters in character constant");
4815                 }
4816         }
4817         next_token();
4818
4819         return cnst;
4820 }
4821
4822 /**
4823  * Parse a wide character constant.
4824  */
4825 static expression_t *parse_wide_character_constant(void)
4826 {
4827         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
4828
4829         cnst->base.source_position    = *HERE;
4830         cnst->base.type               = token.datatype;
4831         cnst->conste.v.wide_character = token.v.wide_string;
4832
4833         if (cnst->conste.v.wide_character.size != 1) {
4834                 if (warning.multichar && (c_mode & _GNUC)) {
4835                         /* TODO */
4836                         warningf(HERE, "multi-character character constant");
4837                 } else {
4838                         errorf(HERE, "more than 1 characters in character constant");
4839                 }
4840         }
4841         next_token();
4842
4843         return cnst;
4844 }
4845
4846 /**
4847  * Parse a float constant.
4848  */
4849 static expression_t *parse_float_const(void)
4850 {
4851         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
4852         cnst->base.type            = token.datatype;
4853         cnst->conste.v.float_value = token.v.floatvalue;
4854
4855         next_token();
4856
4857         return cnst;
4858 }
4859
4860 static declaration_t *create_implicit_function(symbol_t *symbol,
4861                 const source_position_t *source_position)
4862 {
4863         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
4864         ntype->function.return_type            = type_int;
4865         ntype->function.unspecified_parameters = true;
4866
4867         type_t *type = typehash_insert(ntype);
4868         if(type != ntype) {
4869                 free_type(ntype);
4870         }
4871
4872         declaration_t *const declaration    = allocate_declaration_zero();
4873         declaration->storage_class          = STORAGE_CLASS_EXTERN;
4874         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
4875         declaration->type                   = type;
4876         declaration->symbol                 = symbol;
4877         declaration->source_position        = *source_position;
4878
4879         bool strict_prototypes_old = warning.strict_prototypes;
4880         warning.strict_prototypes  = false;
4881         record_declaration(declaration);
4882         warning.strict_prototypes = strict_prototypes_old;
4883
4884         return declaration;
4885 }
4886
4887 /**
4888  * Creates a return_type (func)(argument_type) function type if not
4889  * already exists.
4890  *
4891  * @param return_type    the return type
4892  * @param argument_type  the argument type
4893  */
4894 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
4895 {
4896         function_parameter_t *parameter
4897                 = obstack_alloc(type_obst, sizeof(parameter[0]));
4898         memset(parameter, 0, sizeof(parameter[0]));
4899         parameter->type = argument_type;
4900
4901         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
4902         type->function.return_type = return_type;
4903         type->function.parameters  = parameter;
4904
4905         type_t *result = typehash_insert(type);
4906         if(result != type) {
4907                 free_type(type);
4908         }
4909
4910         return result;
4911 }
4912
4913 static type_t *make_function_0_type(type_t *return_type)
4914 {
4915         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
4916         type->function.return_type = return_type;
4917         type->function.parameters  = NULL;
4918
4919         type_t *result = typehash_insert(type);
4920         if(result != type) {
4921                 free_type(type);
4922         }
4923
4924         return result;
4925 }
4926
4927 /**
4928  * Creates a function type for some function like builtins.
4929  *
4930  * @param symbol   the symbol describing the builtin
4931  */
4932 static type_t *get_builtin_symbol_type(symbol_t *symbol)
4933 {
4934         switch(symbol->ID) {
4935         case T___builtin_alloca:
4936                 return make_function_1_type(type_void_ptr, type_size_t);
4937         case T___builtin_huge_val:
4938                 return make_function_0_type(type_double);
4939         case T___builtin_nan:
4940                 return make_function_1_type(type_double, type_char_ptr);
4941         case T___builtin_nanf:
4942                 return make_function_1_type(type_float, type_char_ptr);
4943         case T___builtin_nand:
4944                 return make_function_1_type(type_long_double, type_char_ptr);
4945         case T___builtin_va_end:
4946                 return make_function_1_type(type_void, type_valist);
4947         default:
4948                 internal_errorf(HERE, "not implemented builtin symbol found");
4949         }
4950 }
4951
4952 /**
4953  * Performs automatic type cast as described in Â§ 6.3.2.1.
4954  *
4955  * @param orig_type  the original type
4956  */
4957 static type_t *automatic_type_conversion(type_t *orig_type)
4958 {
4959         type_t *type = skip_typeref(orig_type);
4960         if(is_type_array(type)) {
4961                 array_type_t *array_type   = &type->array;
4962                 type_t       *element_type = array_type->element_type;
4963                 unsigned      qualifiers   = array_type->base.qualifiers;
4964
4965                 return make_pointer_type(element_type, qualifiers);
4966         }
4967
4968         if(is_type_function(type)) {
4969                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
4970         }
4971
4972         return orig_type;
4973 }
4974
4975 /**
4976  * reverts the automatic casts of array to pointer types and function
4977  * to function-pointer types as defined Â§ 6.3.2.1
4978  */
4979 type_t *revert_automatic_type_conversion(const expression_t *expression)
4980 {
4981         switch (expression->kind) {
4982                 case EXPR_REFERENCE: return expression->reference.declaration->type;
4983                 case EXPR_SELECT:    return expression->select.compound_entry->type;
4984
4985                 case EXPR_UNARY_DEREFERENCE: {
4986                         const expression_t *const value = expression->unary.value;
4987                         type_t             *const type  = skip_typeref(value->base.type);
4988                         assert(is_type_pointer(type));
4989                         return type->pointer.points_to;
4990                 }
4991
4992                 case EXPR_BUILTIN_SYMBOL:
4993                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
4994
4995                 case EXPR_ARRAY_ACCESS: {
4996                         const expression_t *array_ref = expression->array_access.array_ref;
4997                         type_t             *type_left = skip_typeref(array_ref->base.type);
4998                         if (!is_type_valid(type_left))
4999                                 return type_left;
5000                         assert(is_type_pointer(type_left));
5001                         return type_left->pointer.points_to;
5002                 }
5003
5004                 case EXPR_STRING_LITERAL: {
5005                         size_t size = expression->string.value.size;
5006                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
5007                 }
5008
5009                 case EXPR_WIDE_STRING_LITERAL: {
5010                         size_t size = expression->wide_string.value.size;
5011                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
5012                 }
5013
5014                 case EXPR_COMPOUND_LITERAL:
5015                         return expression->compound_literal.type;
5016
5017                 default: break;
5018         }
5019
5020         return expression->base.type;
5021 }
5022
5023 static expression_t *parse_reference(void)
5024 {
5025         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
5026
5027         reference_expression_t *ref = &expression->reference;
5028         symbol_t *const symbol = token.v.symbol;
5029
5030         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
5031
5032         source_position_t source_position = token.source_position;
5033         next_token();
5034
5035         if(declaration == NULL) {
5036                 if (! strict_mode && token.type == '(') {
5037                         /* an implicitly defined function */
5038                         if (warning.implicit_function_declaration) {
5039                                 warningf(HERE, "implicit declaration of function '%Y'",
5040                                         symbol);
5041                         }
5042
5043                         declaration = create_implicit_function(symbol,
5044                                                                &source_position);
5045                 } else {
5046                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
5047                         return create_invalid_expression();
5048                 }
5049         }
5050
5051         type_t *type         = declaration->type;
5052
5053         /* we always do the auto-type conversions; the & and sizeof parser contains
5054          * code to revert this! */
5055         type = automatic_type_conversion(type);
5056
5057         ref->declaration = declaration;
5058         ref->base.type   = type;
5059
5060         /* this declaration is used */
5061         declaration->used = true;
5062
5063         /* check for deprecated functions */
5064         if(declaration->deprecated != 0) {
5065                 const char *prefix = "";
5066                 if (is_type_function(declaration->type))
5067                         prefix = "function ";
5068
5069                 if (declaration->deprecated_string != NULL) {
5070                         warningf(&source_position,
5071                                 "%s'%Y' was declared 'deprecated(\"%s\")'", prefix, declaration->symbol,
5072                                 declaration->deprecated_string);
5073                 } else {
5074                         warningf(&source_position,
5075                                 "%s'%Y' was declared 'deprecated'", prefix, declaration->symbol);
5076                 }
5077         }
5078
5079         return expression;
5080 }
5081
5082 static void check_cast_allowed(expression_t *expression, type_t *dest_type)
5083 {
5084         (void) expression;
5085         (void) dest_type;
5086         /* TODO check if explicit cast is allowed and issue warnings/errors */
5087 }
5088
5089 static expression_t *parse_compound_literal(type_t *type)
5090 {
5091         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
5092
5093         parse_initializer_env_t env;
5094         env.type             = type;
5095         env.declaration      = NULL;
5096         env.must_be_constant = false;
5097         initializer_t *initializer = parse_initializer(&env);
5098         type = env.type;
5099
5100         expression->compound_literal.initializer = initializer;
5101         expression->compound_literal.type        = type;
5102         expression->base.type                    = automatic_type_conversion(type);
5103
5104         return expression;
5105 }
5106
5107 /**
5108  * Parse a cast expression.
5109  */
5110 static expression_t *parse_cast(void)
5111 {
5112         source_position_t source_position = token.source_position;
5113
5114         type_t *type  = parse_typename();
5115
5116         /* matching add_anchor_token() is at call site */
5117         rem_anchor_token(')');
5118         expect(')');
5119
5120         if(token.type == '{') {
5121                 return parse_compound_literal(type);
5122         }
5123
5124         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
5125         cast->base.source_position = source_position;
5126
5127         expression_t *value = parse_sub_expression(20);
5128
5129         check_cast_allowed(value, type);
5130
5131         cast->base.type   = type;
5132         cast->unary.value = value;
5133
5134         return cast;
5135 end_error:
5136         return create_invalid_expression();
5137 }
5138
5139 /**
5140  * Parse a statement expression.
5141  */
5142 static expression_t *parse_statement_expression(void)
5143 {
5144         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
5145
5146         statement_t *statement           = parse_compound_statement(true);
5147         expression->statement.statement  = statement;
5148         expression->base.source_position = statement->base.source_position;
5149
5150         /* find last statement and use its type */
5151         type_t *type = type_void;
5152         const statement_t *stmt = statement->compound.statements;
5153         if (stmt != NULL) {
5154                 while (stmt->base.next != NULL)
5155                         stmt = stmt->base.next;
5156
5157                 if (stmt->kind == STATEMENT_EXPRESSION) {
5158                         type = stmt->expression.expression->base.type;
5159                 }
5160         } else {
5161                 warningf(&expression->base.source_position, "empty statement expression ({})");
5162         }
5163         expression->base.type = type;
5164
5165         expect(')');
5166
5167         return expression;
5168 end_error:
5169         return create_invalid_expression();
5170 }
5171
5172 /**
5173  * Parse a braced expression.
5174  */
5175 static expression_t *parse_brace_expression(void)
5176 {
5177         eat('(');
5178         add_anchor_token(')');
5179
5180         switch(token.type) {
5181         case '{':
5182                 /* gcc extension: a statement expression */
5183                 return parse_statement_expression();
5184
5185         TYPE_QUALIFIERS
5186         TYPE_SPECIFIERS
5187                 return parse_cast();
5188         case T_IDENTIFIER:
5189                 if(is_typedef_symbol(token.v.symbol)) {
5190                         return parse_cast();
5191                 }
5192         }
5193
5194         expression_t *result = parse_expression();
5195         rem_anchor_token(')');
5196         expect(')');
5197
5198         return result;
5199 end_error:
5200         return create_invalid_expression();
5201 }
5202
5203 static expression_t *parse_function_keyword(void)
5204 {
5205         next_token();
5206         /* TODO */
5207
5208         if (current_function == NULL) {
5209                 errorf(HERE, "'__func__' used outside of a function");
5210         }
5211
5212         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5213         expression->base.type     = type_char_ptr;
5214         expression->funcname.kind = FUNCNAME_FUNCTION;
5215
5216         return expression;
5217 }
5218
5219 static expression_t *parse_pretty_function_keyword(void)
5220 {
5221         eat(T___PRETTY_FUNCTION__);
5222
5223         if (current_function == NULL) {
5224                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
5225         }
5226
5227         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5228         expression->base.type     = type_char_ptr;
5229         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
5230
5231         return expression;
5232 }
5233
5234 static expression_t *parse_funcsig_keyword(void)
5235 {
5236         eat(T___FUNCSIG__);
5237
5238         if (current_function == NULL) {
5239                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
5240         }
5241
5242         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5243         expression->base.type     = type_char_ptr;
5244         expression->funcname.kind = FUNCNAME_FUNCSIG;
5245
5246         return expression;
5247 }
5248
5249 static expression_t *parse_funcdname_keyword(void)
5250 {
5251         eat(T___FUNCDNAME__);
5252
5253         if (current_function == NULL) {
5254                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
5255         }
5256
5257         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5258         expression->base.type     = type_char_ptr;
5259         expression->funcname.kind = FUNCNAME_FUNCDNAME;
5260
5261         return expression;
5262 }
5263
5264 static designator_t *parse_designator(void)
5265 {
5266         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
5267         result->source_position = *HERE;
5268
5269         if(token.type != T_IDENTIFIER) {
5270                 parse_error_expected("while parsing member designator",
5271                                      T_IDENTIFIER, NULL);
5272                 return NULL;
5273         }
5274         result->symbol = token.v.symbol;
5275         next_token();
5276
5277         designator_t *last_designator = result;
5278         while(true) {
5279                 if(token.type == '.') {
5280                         next_token();
5281                         if(token.type != T_IDENTIFIER) {
5282                                 parse_error_expected("while parsing member designator",
5283                                                      T_IDENTIFIER, NULL);
5284                                 return NULL;
5285                         }
5286                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
5287                         designator->source_position = *HERE;
5288                         designator->symbol          = token.v.symbol;
5289                         next_token();
5290
5291                         last_designator->next = designator;
5292                         last_designator       = designator;
5293                         continue;
5294                 }
5295                 if(token.type == '[') {
5296                         next_token();
5297                         add_anchor_token(']');
5298                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
5299                         designator->source_position = *HERE;
5300                         designator->array_index     = parse_expression();
5301                         rem_anchor_token(']');
5302                         expect(']');
5303                         if(designator->array_index == NULL) {
5304                                 return NULL;
5305                         }
5306
5307                         last_designator->next = designator;
5308                         last_designator       = designator;
5309                         continue;
5310                 }
5311                 break;
5312         }
5313
5314         return result;
5315 end_error:
5316         return NULL;
5317 }
5318
5319 /**
5320  * Parse the __builtin_offsetof() expression.
5321  */
5322 static expression_t *parse_offsetof(void)
5323 {
5324         eat(T___builtin_offsetof);
5325
5326         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
5327         expression->base.type    = type_size_t;
5328
5329         expect('(');
5330         add_anchor_token(',');
5331         type_t *type = parse_typename();
5332         rem_anchor_token(',');
5333         expect(',');
5334         add_anchor_token(')');
5335         designator_t *designator = parse_designator();
5336         rem_anchor_token(')');
5337         expect(')');
5338
5339         expression->offsetofe.type       = type;
5340         expression->offsetofe.designator = designator;
5341
5342         type_path_t path;
5343         memset(&path, 0, sizeof(path));
5344         path.top_type = type;
5345         path.path     = NEW_ARR_F(type_path_entry_t, 0);
5346
5347         descend_into_subtype(&path);
5348
5349         if(!walk_designator(&path, designator, true)) {
5350                 return create_invalid_expression();
5351         }
5352
5353         DEL_ARR_F(path.path);
5354
5355         return expression;
5356 end_error:
5357         return create_invalid_expression();
5358 }
5359
5360 /**
5361  * Parses a _builtin_va_start() expression.
5362  */
5363 static expression_t *parse_va_start(void)
5364 {
5365         eat(T___builtin_va_start);
5366
5367         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
5368
5369         expect('(');
5370         add_anchor_token(',');
5371         expression->va_starte.ap = parse_assignment_expression();
5372         rem_anchor_token(',');
5373         expect(',');
5374         expression_t *const expr = parse_assignment_expression();
5375         if (expr->kind == EXPR_REFERENCE) {
5376                 declaration_t *const decl = expr->reference.declaration;
5377                 if (decl == NULL)
5378                         return create_invalid_expression();
5379                 if (decl->parent_scope == &current_function->scope &&
5380                     decl->next == NULL) {
5381                         expression->va_starte.parameter = decl;
5382                         expect(')');
5383                         return expression;
5384                 }
5385         }
5386         errorf(&expr->base.source_position,
5387                "second argument of 'va_start' must be last parameter of the current function");
5388 end_error:
5389         return create_invalid_expression();
5390 }
5391
5392 /**
5393  * Parses a _builtin_va_arg() expression.
5394  */
5395 static expression_t *parse_va_arg(void)
5396 {
5397         eat(T___builtin_va_arg);
5398
5399         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
5400
5401         expect('(');
5402         expression->va_arge.ap = parse_assignment_expression();
5403         expect(',');
5404         expression->base.type = parse_typename();
5405         expect(')');
5406
5407         return expression;
5408 end_error:
5409         return create_invalid_expression();
5410 }
5411
5412 static expression_t *parse_builtin_symbol(void)
5413 {
5414         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
5415
5416         symbol_t *symbol = token.v.symbol;
5417
5418         expression->builtin_symbol.symbol = symbol;
5419         next_token();
5420
5421         type_t *type = get_builtin_symbol_type(symbol);
5422         type = automatic_type_conversion(type);
5423
5424         expression->base.type = type;
5425         return expression;
5426 }
5427
5428 /**
5429  * Parses a __builtin_constant() expression.
5430  */
5431 static expression_t *parse_builtin_constant(void)
5432 {
5433         eat(T___builtin_constant_p);
5434
5435         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
5436
5437         expect('(');
5438         add_anchor_token(')');
5439         expression->builtin_constant.value = parse_assignment_expression();
5440         rem_anchor_token(')');
5441         expect(')');
5442         expression->base.type = type_int;
5443
5444         return expression;
5445 end_error:
5446         return create_invalid_expression();
5447 }
5448
5449 /**
5450  * Parses a __builtin_prefetch() expression.
5451  */
5452 static expression_t *parse_builtin_prefetch(void)
5453 {
5454         eat(T___builtin_prefetch);
5455
5456         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
5457
5458         expect('(');
5459         add_anchor_token(')');
5460         expression->builtin_prefetch.adr = parse_assignment_expression();
5461         if (token.type == ',') {
5462                 next_token();
5463                 expression->builtin_prefetch.rw = parse_assignment_expression();
5464         }
5465         if (token.type == ',') {
5466                 next_token();
5467                 expression->builtin_prefetch.locality = parse_assignment_expression();
5468         }
5469         rem_anchor_token(')');
5470         expect(')');
5471         expression->base.type = type_void;
5472
5473         return expression;
5474 end_error:
5475         return create_invalid_expression();
5476 }
5477
5478 /**
5479  * Parses a __builtin_is_*() compare expression.
5480  */
5481 static expression_t *parse_compare_builtin(void)
5482 {
5483         expression_t *expression;
5484
5485         switch(token.type) {
5486         case T___builtin_isgreater:
5487                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
5488                 break;
5489         case T___builtin_isgreaterequal:
5490                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
5491                 break;
5492         case T___builtin_isless:
5493                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
5494                 break;
5495         case T___builtin_islessequal:
5496                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
5497                 break;
5498         case T___builtin_islessgreater:
5499                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
5500                 break;
5501         case T___builtin_isunordered:
5502                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
5503                 break;
5504         default:
5505                 internal_errorf(HERE, "invalid compare builtin found");
5506                 break;
5507         }
5508         expression->base.source_position = *HERE;
5509         next_token();
5510
5511         expect('(');
5512         expression->binary.left = parse_assignment_expression();
5513         expect(',');
5514         expression->binary.right = parse_assignment_expression();
5515         expect(')');
5516
5517         type_t *const orig_type_left  = expression->binary.left->base.type;
5518         type_t *const orig_type_right = expression->binary.right->base.type;
5519
5520         type_t *const type_left  = skip_typeref(orig_type_left);
5521         type_t *const type_right = skip_typeref(orig_type_right);
5522         if(!is_type_float(type_left) && !is_type_float(type_right)) {
5523                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
5524                         type_error_incompatible("invalid operands in comparison",
5525                                 &expression->base.source_position, orig_type_left, orig_type_right);
5526                 }
5527         } else {
5528                 semantic_comparison(&expression->binary);
5529         }
5530
5531         return expression;
5532 end_error:
5533         return create_invalid_expression();
5534 }
5535
5536 /**
5537  * Parses a __builtin_expect() expression.
5538  */
5539 static expression_t *parse_builtin_expect(void)
5540 {
5541         eat(T___builtin_expect);
5542
5543         expression_t *expression
5544                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
5545
5546         expect('(');
5547         expression->binary.left = parse_assignment_expression();
5548         expect(',');
5549         expression->binary.right = parse_constant_expression();
5550         expect(')');
5551
5552         expression->base.type = expression->binary.left->base.type;
5553
5554         return expression;
5555 end_error:
5556         return create_invalid_expression();
5557 }
5558
5559 /**
5560  * Parses a MS assume() expression.
5561  */
5562 static expression_t *parse_assume(void) {
5563         eat(T__assume);
5564
5565         expression_t *expression
5566                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
5567
5568         expect('(');
5569         add_anchor_token(')');
5570         expression->unary.value = parse_assignment_expression();
5571         rem_anchor_token(')');
5572         expect(')');
5573
5574         expression->base.type = type_void;
5575         return expression;
5576 end_error:
5577         return create_invalid_expression();
5578 }
5579
5580 /**
5581  * Parse a microsoft __noop expression.
5582  */
5583 static expression_t *parse_noop_expression(void) {
5584         source_position_t source_position = *HERE;
5585         eat(T___noop);
5586
5587         if (token.type == '(') {
5588                 /* parse arguments */
5589                 eat('(');
5590                 add_anchor_token(')');
5591                 add_anchor_token(',');
5592
5593                 if(token.type != ')') {
5594                         while(true) {
5595                                 (void)parse_assignment_expression();
5596                                 if(token.type != ',')
5597                                         break;
5598                                 next_token();
5599                         }
5600                 }
5601         }
5602         rem_anchor_token(',');
5603         rem_anchor_token(')');
5604         expect(')');
5605
5606         /* the result is a (int)0 */
5607         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5608         cnst->base.source_position = source_position;
5609         cnst->base.type            = type_int;
5610         cnst->conste.v.int_value   = 0;
5611         cnst->conste.is_ms_noop    = true;
5612
5613         return cnst;
5614
5615 end_error:
5616         return create_invalid_expression();
5617 }
5618
5619 /**
5620  * Parses a primary expression.
5621  */
5622 static expression_t *parse_primary_expression(void)
5623 {
5624         switch (token.type) {
5625                 case T_INTEGER:                  return parse_int_const();
5626                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
5627                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
5628                 case T_FLOATINGPOINT:            return parse_float_const();
5629                 case T_STRING_LITERAL:
5630                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
5631                 case T_IDENTIFIER:               return parse_reference();
5632                 case T___FUNCTION__:
5633                 case T___func__:                 return parse_function_keyword();
5634                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
5635                 case T___FUNCSIG__:              return parse_funcsig_keyword();
5636                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
5637                 case T___builtin_offsetof:       return parse_offsetof();
5638                 case T___builtin_va_start:       return parse_va_start();
5639                 case T___builtin_va_arg:         return parse_va_arg();
5640                 case T___builtin_expect:         return parse_builtin_expect();
5641                 case T___builtin_alloca:
5642                 case T___builtin_nan:
5643                 case T___builtin_nand:
5644                 case T___builtin_nanf:
5645                 case T___builtin_huge_val:
5646                 case T___builtin_va_end:         return parse_builtin_symbol();
5647                 case T___builtin_isgreater:
5648                 case T___builtin_isgreaterequal:
5649                 case T___builtin_isless:
5650                 case T___builtin_islessequal:
5651                 case T___builtin_islessgreater:
5652                 case T___builtin_isunordered:    return parse_compare_builtin();
5653                 case T___builtin_constant_p:     return parse_builtin_constant();
5654                 case T___builtin_prefetch:       return parse_builtin_prefetch();
5655                 case T__assume:                  return parse_assume();
5656
5657                 case '(':                        return parse_brace_expression();
5658                 case T___noop:                   return parse_noop_expression();
5659         }
5660
5661         errorf(HERE, "unexpected token %K, expected an expression", &token);
5662         return create_invalid_expression();
5663 }
5664
5665 /**
5666  * Check if the expression has the character type and issue a warning then.
5667  */
5668 static void check_for_char_index_type(const expression_t *expression) {
5669         type_t       *const type      = expression->base.type;
5670         const type_t *const base_type = skip_typeref(type);
5671
5672         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
5673                         warning.char_subscripts) {
5674                 warningf(&expression->base.source_position,
5675                          "array subscript has type '%T'", type);
5676         }
5677 }
5678
5679 static expression_t *parse_array_expression(unsigned precedence,
5680                                             expression_t *left)
5681 {
5682         (void) precedence;
5683
5684         eat('[');
5685         add_anchor_token(']');
5686
5687         expression_t *inside = parse_expression();
5688
5689         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
5690
5691         array_access_expression_t *array_access = &expression->array_access;
5692
5693         type_t *const orig_type_left   = left->base.type;
5694         type_t *const orig_type_inside = inside->base.type;
5695
5696         type_t *const type_left   = skip_typeref(orig_type_left);
5697         type_t *const type_inside = skip_typeref(orig_type_inside);
5698
5699         type_t *return_type;
5700         if (is_type_pointer(type_left)) {
5701                 return_type             = type_left->pointer.points_to;
5702                 array_access->array_ref = left;
5703                 array_access->index     = inside;
5704                 check_for_char_index_type(inside);
5705         } else if (is_type_pointer(type_inside)) {
5706                 return_type             = type_inside->pointer.points_to;
5707                 array_access->array_ref = inside;
5708                 array_access->index     = left;
5709                 array_access->flipped   = true;
5710                 check_for_char_index_type(left);
5711         } else {
5712                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
5713                         errorf(HERE,
5714                                 "array access on object with non-pointer types '%T', '%T'",
5715                                 orig_type_left, orig_type_inside);
5716                 }
5717                 return_type             = type_error_type;
5718                 array_access->array_ref = create_invalid_expression();
5719         }
5720
5721         rem_anchor_token(']');
5722         if(token.type != ']') {
5723                 parse_error_expected("Problem while parsing array access", ']', NULL);
5724                 return expression;
5725         }
5726         next_token();
5727
5728         return_type           = automatic_type_conversion(return_type);
5729         expression->base.type = return_type;
5730
5731         return expression;
5732 }
5733
5734 static expression_t *parse_typeprop(expression_kind_t const kind,
5735                                     source_position_t const pos,
5736                                     unsigned const precedence)
5737 {
5738         expression_t *tp_expression = allocate_expression_zero(kind);
5739         tp_expression->base.type            = type_size_t;
5740         tp_expression->base.source_position = pos;
5741
5742         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
5743
5744         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
5745                 next_token();
5746                 add_anchor_token(')');
5747                 type_t* const orig_type = parse_typename();
5748                 tp_expression->typeprop.type = orig_type;
5749
5750                 type_t const* const type = skip_typeref(orig_type);
5751                 char const* const wrong_type =
5752                         is_type_incomplete(type)    ? "incomplete"          :
5753                         type->kind == TYPE_FUNCTION ? "function designator" :
5754                         type->kind == TYPE_BITFIELD ? "bitfield"            :
5755                         NULL;
5756                 if (wrong_type != NULL) {
5757                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
5758                                what, wrong_type, type);
5759                 }
5760
5761                 rem_anchor_token(')');
5762                 expect(')');
5763         } else {
5764                 expression_t *expression = parse_sub_expression(precedence);
5765
5766                 type_t* const orig_type = revert_automatic_type_conversion(expression);
5767                 expression->base.type = orig_type;
5768
5769                 type_t const* const type = skip_typeref(orig_type);
5770                 char const* const wrong_type =
5771                         is_type_incomplete(type)    ? "incomplete"          :
5772                         type->kind == TYPE_FUNCTION ? "function designator" :
5773                         type->kind == TYPE_BITFIELD ? "bitfield"            :
5774                         NULL;
5775                 if (wrong_type != NULL) {
5776                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
5777                 }
5778
5779                 tp_expression->typeprop.type          = expression->base.type;
5780                 tp_expression->typeprop.tp_expression = expression;
5781         }
5782
5783         return tp_expression;
5784 end_error:
5785         return create_invalid_expression();
5786 }
5787
5788 static expression_t *parse_sizeof(unsigned precedence)
5789 {
5790         source_position_t pos = *HERE;
5791         eat(T_sizeof);
5792         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
5793 }
5794
5795 static expression_t *parse_alignof(unsigned precedence)
5796 {
5797         source_position_t pos = *HERE;
5798         eat(T___alignof__);
5799         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
5800 }
5801
5802 static expression_t *parse_select_expression(unsigned precedence,
5803                                              expression_t *compound)
5804 {
5805         (void) precedence;
5806         assert(token.type == '.' || token.type == T_MINUSGREATER);
5807
5808         bool is_pointer = (token.type == T_MINUSGREATER);
5809         next_token();
5810
5811         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
5812         select->select.compound = compound;
5813
5814         if (token.type != T_IDENTIFIER) {
5815                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
5816                 return select;
5817         }
5818         symbol_t *symbol      = token.v.symbol;
5819         select->select.symbol = symbol;
5820         next_token();
5821
5822         type_t *const orig_type = compound->base.type;
5823         type_t *const type      = skip_typeref(orig_type);
5824
5825         type_t *type_left = type;
5826         if (is_pointer) {
5827                 if (!is_type_pointer(type)) {
5828                         if (is_type_valid(type)) {
5829                                 errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
5830                         }
5831                         return create_invalid_expression();
5832                 }
5833                 type_left = type->pointer.points_to;
5834         }
5835         type_left = skip_typeref(type_left);
5836
5837         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
5838             type_left->kind != TYPE_COMPOUND_UNION) {
5839                 if (is_type_valid(type_left)) {
5840                         errorf(HERE, "request for member '%Y' in something not a struct or "
5841                                "union, but '%T'", symbol, type_left);
5842                 }
5843                 return create_invalid_expression();
5844         }
5845
5846         declaration_t *const declaration = type_left->compound.declaration;
5847
5848         if (!declaration->init.complete) {
5849                 errorf(HERE, "request for member '%Y' of incomplete type '%T'",
5850                        symbol, type_left);
5851                 return create_invalid_expression();
5852         }
5853
5854         declaration_t *iter = find_compound_entry(declaration, symbol);
5855         if (iter == NULL) {
5856                 errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
5857                 return create_invalid_expression();
5858         }
5859
5860         /* we always do the auto-type conversions; the & and sizeof parser contains
5861          * code to revert this! */
5862         type_t *expression_type = automatic_type_conversion(iter->type);
5863
5864         select->select.compound_entry = iter;
5865         select->base.type             = expression_type;
5866
5867         type_t *skipped = skip_typeref(iter->type);
5868         if (skipped->kind == TYPE_BITFIELD) {
5869                 select->base.type = skipped->bitfield.base_type;
5870         }
5871
5872         return select;
5873 }
5874
5875 /**
5876  * Parse a call expression, ie. expression '( ... )'.
5877  *
5878  * @param expression  the function address
5879  */
5880 static expression_t *parse_call_expression(unsigned precedence,
5881                                            expression_t *expression)
5882 {
5883         (void) precedence;
5884         expression_t *result = allocate_expression_zero(EXPR_CALL);
5885         result->base.source_position = expression->base.source_position;
5886
5887         call_expression_t *call = &result->call;
5888         call->function          = expression;
5889
5890         type_t *const orig_type = expression->base.type;
5891         type_t *const type      = skip_typeref(orig_type);
5892
5893         function_type_t *function_type = NULL;
5894         if (is_type_pointer(type)) {
5895                 type_t *const to_type = skip_typeref(type->pointer.points_to);
5896
5897                 if (is_type_function(to_type)) {
5898                         function_type   = &to_type->function;
5899                         call->base.type = function_type->return_type;
5900                 }
5901         }
5902
5903         if (function_type == NULL && is_type_valid(type)) {
5904                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
5905         }
5906
5907         /* parse arguments */
5908         eat('(');
5909         add_anchor_token(')');
5910         add_anchor_token(',');
5911
5912         if(token.type != ')') {
5913                 call_argument_t *last_argument = NULL;
5914
5915                 while(true) {
5916                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
5917
5918                         argument->expression = parse_assignment_expression();
5919                         if(last_argument == NULL) {
5920                                 call->arguments = argument;
5921                         } else {
5922                                 last_argument->next = argument;
5923                         }
5924                         last_argument = argument;
5925
5926                         if(token.type != ',')
5927                                 break;
5928                         next_token();
5929                 }
5930         }
5931         rem_anchor_token(',');
5932         rem_anchor_token(')');
5933         expect(')');
5934
5935         if(function_type == NULL)
5936                 return result;
5937
5938         function_parameter_t *parameter = function_type->parameters;
5939         call_argument_t      *argument  = call->arguments;
5940         if (!function_type->unspecified_parameters) {
5941                 for( ; parameter != NULL && argument != NULL;
5942                                 parameter = parameter->next, argument = argument->next) {
5943                         type_t *expected_type = parameter->type;
5944                         /* TODO report scope in error messages */
5945                         expression_t *const arg_expr = argument->expression;
5946                         type_t       *const res_type = semantic_assign(expected_type, arg_expr,
5947                                                                                                                    "function call",
5948                                                                                                                    &arg_expr->base.source_position);
5949                         if (res_type == NULL) {
5950                                 /* TODO improve error message */
5951                                 errorf(&arg_expr->base.source_position,
5952                                         "Cannot call function with argument '%E' of type '%T' where type '%T' is expected",
5953                                         arg_expr, arg_expr->base.type, expected_type);
5954                         } else {
5955                                 argument->expression = create_implicit_cast(argument->expression, expected_type);
5956                         }
5957                 }
5958
5959                 if (parameter != NULL) {
5960                         errorf(HERE, "too few arguments to function '%E'", expression);
5961                 } else if (argument != NULL && !function_type->variadic) {
5962                         errorf(HERE, "too many arguments to function '%E'", expression);
5963                 }
5964         }
5965
5966         /* do default promotion */
5967         for( ; argument != NULL; argument = argument->next) {
5968                 type_t *type = argument->expression->base.type;
5969
5970                 type = get_default_promoted_type(type);
5971
5972                 argument->expression
5973                         = create_implicit_cast(argument->expression, type);
5974         }
5975
5976         check_format(&result->call);
5977
5978         return result;
5979 end_error:
5980         return create_invalid_expression();
5981 }
5982
5983 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
5984
5985 static bool same_compound_type(const type_t *type1, const type_t *type2)
5986 {
5987         return
5988                 is_type_compound(type1) &&
5989                 type1->kind == type2->kind &&
5990                 type1->compound.declaration == type2->compound.declaration;
5991 }
5992
5993 /**
5994  * Parse a conditional expression, ie. 'expression ? ... : ...'.
5995  *
5996  * @param expression  the conditional expression
5997  */
5998 static expression_t *parse_conditional_expression(unsigned precedence,
5999                                                   expression_t *expression)
6000 {
6001         eat('?');
6002         add_anchor_token(':');
6003
6004         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
6005
6006         conditional_expression_t *conditional = &result->conditional;
6007         conditional->condition = expression;
6008
6009         /* 6.5.15.2 */
6010         type_t *const condition_type_orig = expression->base.type;
6011         type_t *const condition_type      = skip_typeref(condition_type_orig);
6012         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
6013                 type_error("expected a scalar type in conditional condition",
6014                            &expression->base.source_position, condition_type_orig);
6015         }
6016
6017         expression_t *true_expression = parse_expression();
6018         rem_anchor_token(':');
6019         expect(':');
6020         expression_t *false_expression = parse_sub_expression(precedence);
6021
6022         type_t *const orig_true_type  = true_expression->base.type;
6023         type_t *const orig_false_type = false_expression->base.type;
6024         type_t *const true_type       = skip_typeref(orig_true_type);
6025         type_t *const false_type      = skip_typeref(orig_false_type);
6026
6027         /* 6.5.15.3 */
6028         type_t *result_type;
6029         if(is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
6030                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
6031                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
6032                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
6033                         warningf(&expression->base.source_position,
6034                                         "ISO C forbids conditional expression with only one void side");
6035                 }
6036                 result_type = type_void;
6037         } else if (is_type_arithmetic(true_type)
6038                    && is_type_arithmetic(false_type)) {
6039                 result_type = semantic_arithmetic(true_type, false_type);
6040
6041                 true_expression  = create_implicit_cast(true_expression, result_type);
6042                 false_expression = create_implicit_cast(false_expression, result_type);
6043
6044                 conditional->true_expression  = true_expression;
6045                 conditional->false_expression = false_expression;
6046                 conditional->base.type        = result_type;
6047         } else if (same_compound_type(true_type, false_type)) {
6048                 /* just take 1 of the 2 types */
6049                 result_type = true_type;
6050         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
6051                 type_t *pointer_type;
6052                 type_t *other_type;
6053                 expression_t *other_expression;
6054                 if (is_type_pointer(true_type)) {
6055                         pointer_type     = true_type;
6056                         other_type       = false_type;
6057                         other_expression = false_expression;
6058                 } else {
6059                         pointer_type     = false_type;
6060                         other_type       = true_type;
6061                         other_expression = true_expression;
6062                 }
6063
6064                 if(is_type_pointer(other_type)) {
6065                         if(!pointers_compatible(true_type, false_type)) {
6066                                 warningf(&expression->base.source_position,
6067                                                 "pointer types '%T' and '%T' in conditional expression are incompatible", true_type, false_type);
6068                         }
6069                         result_type = true_type;
6070                 } else if(is_null_pointer_constant(other_expression)) {
6071                         result_type = pointer_type;
6072                 } else if(is_type_integer(other_type)) {
6073                         warningf(&expression->base.source_position,
6074                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
6075                         result_type = pointer_type;
6076                 } else {
6077                         type_error_incompatible("while parsing conditional",
6078                                         &expression->base.source_position, true_type, false_type);
6079                         result_type = type_error_type;
6080                 }
6081         } else {
6082                 /* TODO: one pointer to void*, other some pointer */
6083
6084                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
6085                         type_error_incompatible("while parsing conditional",
6086                                                 &expression->base.source_position, true_type,
6087                                                 false_type);
6088                 }
6089                 result_type = type_error_type;
6090         }
6091
6092         conditional->true_expression
6093                 = create_implicit_cast(true_expression, result_type);
6094         conditional->false_expression
6095                 = create_implicit_cast(false_expression, result_type);
6096         conditional->base.type = result_type;
6097         return result;
6098 end_error:
6099         return create_invalid_expression();
6100 }
6101
6102 /**
6103  * Parse an extension expression.
6104  */
6105 static expression_t *parse_extension(unsigned precedence)
6106 {
6107         eat(T___extension__);
6108
6109         /* TODO enable extensions */
6110         expression_t *expression = parse_sub_expression(precedence);
6111         /* TODO disable extensions */
6112         return expression;
6113 }
6114
6115 /**
6116  * Parse a __builtin_classify_type() expression.
6117  */
6118 static expression_t *parse_builtin_classify_type(const unsigned precedence)
6119 {
6120         eat(T___builtin_classify_type);
6121
6122         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
6123         result->base.type    = type_int;
6124
6125         expect('(');
6126         add_anchor_token(')');
6127         expression_t *expression = parse_sub_expression(precedence);
6128         rem_anchor_token(')');
6129         expect(')');
6130         result->classify_type.type_expression = expression;
6131
6132         return result;
6133 end_error:
6134         return create_invalid_expression();
6135 }
6136
6137 static void check_pointer_arithmetic(const source_position_t *source_position,
6138                                      type_t *pointer_type,
6139                                      type_t *orig_pointer_type)
6140 {
6141         type_t *points_to = pointer_type->pointer.points_to;
6142         points_to = skip_typeref(points_to);
6143
6144         if (is_type_incomplete(points_to) &&
6145                         (! (c_mode & _GNUC)
6146                          || !is_type_atomic(points_to, ATOMIC_TYPE_VOID))) {
6147                 errorf(source_position,
6148                            "arithmetic with pointer to incomplete type '%T' not allowed",
6149                            orig_pointer_type);
6150         } else if (is_type_function(points_to)) {
6151                 errorf(source_position,
6152                            "arithmetic with pointer to function type '%T' not allowed",
6153                            orig_pointer_type);
6154         }
6155 }
6156
6157 static void semantic_incdec(unary_expression_t *expression)
6158 {
6159         type_t *const orig_type = expression->value->base.type;
6160         type_t *const type      = skip_typeref(orig_type);
6161         if (is_type_pointer(type)) {
6162                 check_pointer_arithmetic(&expression->base.source_position,
6163                                          type, orig_type);
6164         } else if (!is_type_real(type) && is_type_valid(type)) {
6165                 /* TODO: improve error message */
6166                 errorf(HERE, "operation needs an arithmetic or pointer type");
6167         }
6168         expression->base.type = orig_type;
6169 }
6170
6171 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
6172 {
6173         type_t *const orig_type = expression->value->base.type;
6174         type_t *const type      = skip_typeref(orig_type);
6175         if(!is_type_arithmetic(type)) {
6176                 if (is_type_valid(type)) {
6177                         /* TODO: improve error message */
6178                         errorf(HERE, "operation needs an arithmetic type");
6179                 }
6180                 return;
6181         }
6182
6183         expression->base.type = orig_type;
6184 }
6185
6186 static void semantic_unexpr_scalar(unary_expression_t *expression)
6187 {
6188         type_t *const orig_type = expression->value->base.type;
6189         type_t *const type      = skip_typeref(orig_type);
6190         if (!is_type_scalar(type)) {
6191                 if (is_type_valid(type)) {
6192                         errorf(HERE, "operand of ! must be of scalar type");
6193                 }
6194                 return;
6195         }
6196
6197         expression->base.type = orig_type;
6198 }
6199
6200 static void semantic_unexpr_integer(unary_expression_t *expression)
6201 {
6202         type_t *const orig_type = expression->value->base.type;
6203         type_t *const type      = skip_typeref(orig_type);
6204         if (!is_type_integer(type)) {
6205                 if (is_type_valid(type)) {
6206                         errorf(HERE, "operand of ~ must be of integer type");
6207                 }
6208                 return;
6209         }
6210
6211         expression->base.type = orig_type;
6212 }
6213
6214 static void semantic_dereference(unary_expression_t *expression)
6215 {
6216         type_t *const orig_type = expression->value->base.type;
6217         type_t *const type      = skip_typeref(orig_type);
6218         if(!is_type_pointer(type)) {
6219                 if (is_type_valid(type)) {
6220                         errorf(HERE, "Unary '*' needs pointer or arrray type, but type '%T' given", orig_type);
6221                 }
6222                 return;
6223         }
6224
6225         type_t *result_type   = type->pointer.points_to;
6226         result_type           = automatic_type_conversion(result_type);
6227         expression->base.type = result_type;
6228 }
6229
6230 /**
6231  * Check the semantic of the address taken expression.
6232  */
6233 static void semantic_take_addr(unary_expression_t *expression)
6234 {
6235         expression_t *value = expression->value;
6236         value->base.type    = revert_automatic_type_conversion(value);
6237
6238         type_t *orig_type = value->base.type;
6239         if(!is_type_valid(orig_type))
6240                 return;
6241
6242         if(value->kind == EXPR_REFERENCE) {
6243                 declaration_t *const declaration = value->reference.declaration;
6244                 if(declaration != NULL) {
6245                         if (declaration->storage_class == STORAGE_CLASS_REGISTER) {
6246                                 errorf(&expression->base.source_position,
6247                                        "address of register variable '%Y' requested",
6248                                        declaration->symbol);
6249                         }
6250                         declaration->address_taken = 1;
6251                 }
6252         }
6253
6254         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6255 }
6256
6257 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
6258 static expression_t *parse_##unexpression_type(unsigned precedence)            \
6259 {                                                                              \
6260         eat(token_type);                                                           \
6261                                                                                    \
6262         expression_t *unary_expression                                             \
6263                 = allocate_expression_zero(unexpression_type);                         \
6264         unary_expression->base.source_position = *HERE;                            \
6265         unary_expression->unary.value = parse_sub_expression(precedence);          \
6266                                                                                    \
6267         sfunc(&unary_expression->unary);                                           \
6268                                                                                    \
6269         return unary_expression;                                                   \
6270 }
6271
6272 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
6273                                semantic_unexpr_arithmetic)
6274 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
6275                                semantic_unexpr_arithmetic)
6276 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
6277                                semantic_unexpr_scalar)
6278 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
6279                                semantic_dereference)
6280 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
6281                                semantic_take_addr)
6282 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
6283                                semantic_unexpr_integer)
6284 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
6285                                semantic_incdec)
6286 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
6287                                semantic_incdec)
6288
6289 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
6290                                                sfunc)                         \
6291 static expression_t *parse_##unexpression_type(unsigned precedence,           \
6292                                                expression_t *left)            \
6293 {                                                                             \
6294         (void) precedence;                                                        \
6295         eat(token_type);                                                          \
6296                                                                               \
6297         expression_t *unary_expression                                            \
6298                 = allocate_expression_zero(unexpression_type);                        \
6299         unary_expression->unary.value = left;                                     \
6300                                                                                   \
6301         sfunc(&unary_expression->unary);                                          \
6302                                                                               \
6303         return unary_expression;                                                  \
6304 }
6305
6306 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
6307                                        EXPR_UNARY_POSTFIX_INCREMENT,
6308                                        semantic_incdec)
6309 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
6310                                        EXPR_UNARY_POSTFIX_DECREMENT,
6311                                        semantic_incdec)
6312
6313 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
6314 {
6315         /* TODO: handle complex + imaginary types */
6316
6317         /* Â§ 6.3.1.8 Usual arithmetic conversions */
6318         if(type_left == type_long_double || type_right == type_long_double) {
6319                 return type_long_double;
6320         } else if(type_left == type_double || type_right == type_double) {
6321                 return type_double;
6322         } else if(type_left == type_float || type_right == type_float) {
6323                 return type_float;
6324         }
6325
6326         type_right = promote_integer(type_right);
6327         type_left  = promote_integer(type_left);
6328
6329         if(type_left == type_right)
6330                 return type_left;
6331
6332         bool signed_left  = is_type_signed(type_left);
6333         bool signed_right = is_type_signed(type_right);
6334         int  rank_left    = get_rank(type_left);
6335         int  rank_right   = get_rank(type_right);
6336         if(rank_left < rank_right) {
6337                 if(signed_left == signed_right || !signed_right) {
6338                         return type_right;
6339                 } else {
6340                         return type_left;
6341                 }
6342         } else {
6343                 if(signed_left == signed_right || !signed_left) {
6344                         return type_left;
6345                 } else {
6346                         return type_right;
6347                 }
6348         }
6349 }
6350
6351 /**
6352  * Check the semantic restrictions for a binary expression.
6353  */
6354 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
6355 {
6356         expression_t *const left            = expression->left;
6357         expression_t *const right           = expression->right;
6358         type_t       *const orig_type_left  = left->base.type;
6359         type_t       *const orig_type_right = right->base.type;
6360         type_t       *const type_left       = skip_typeref(orig_type_left);
6361         type_t       *const type_right      = skip_typeref(orig_type_right);
6362
6363         if(!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
6364                 /* TODO: improve error message */
6365                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6366                         errorf(HERE, "operation needs arithmetic types");
6367                 }
6368                 return;
6369         }
6370
6371         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6372         expression->left      = create_implicit_cast(left, arithmetic_type);
6373         expression->right     = create_implicit_cast(right, arithmetic_type);
6374         expression->base.type = arithmetic_type;
6375 }
6376
6377 static void semantic_shift_op(binary_expression_t *expression)
6378 {
6379         expression_t *const left            = expression->left;
6380         expression_t *const right           = expression->right;
6381         type_t       *const orig_type_left  = left->base.type;
6382         type_t       *const orig_type_right = right->base.type;
6383         type_t       *      type_left       = skip_typeref(orig_type_left);
6384         type_t       *      type_right      = skip_typeref(orig_type_right);
6385
6386         if(!is_type_integer(type_left) || !is_type_integer(type_right)) {
6387                 /* TODO: improve error message */
6388                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6389                         errorf(HERE, "operation needs integer types");
6390                 }
6391                 return;
6392         }
6393
6394         type_left  = promote_integer(type_left);
6395         type_right = promote_integer(type_right);
6396
6397         expression->left      = create_implicit_cast(left, type_left);
6398         expression->right     = create_implicit_cast(right, type_right);
6399         expression->base.type = type_left;
6400 }
6401
6402 static void semantic_add(binary_expression_t *expression)
6403 {
6404         expression_t *const left            = expression->left;
6405         expression_t *const right           = expression->right;
6406         type_t       *const orig_type_left  = left->base.type;
6407         type_t       *const orig_type_right = right->base.type;
6408         type_t       *const type_left       = skip_typeref(orig_type_left);
6409         type_t       *const type_right      = skip_typeref(orig_type_right);
6410
6411         /* Â§ 6.5.6 */
6412         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6413                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6414                 expression->left  = create_implicit_cast(left, arithmetic_type);
6415                 expression->right = create_implicit_cast(right, arithmetic_type);
6416                 expression->base.type = arithmetic_type;
6417                 return;
6418         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
6419                 check_pointer_arithmetic(&expression->base.source_position,
6420                                          type_left, orig_type_left);
6421                 expression->base.type = type_left;
6422         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
6423                 check_pointer_arithmetic(&expression->base.source_position,
6424                                          type_right, orig_type_right);
6425                 expression->base.type = type_right;
6426         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6427                 errorf(&expression->base.source_position,
6428                        "invalid operands to binary + ('%T', '%T')",
6429                        orig_type_left, orig_type_right);
6430         }
6431 }
6432
6433 static void semantic_sub(binary_expression_t *expression)
6434 {
6435         expression_t *const left            = expression->left;
6436         expression_t *const right           = expression->right;
6437         type_t       *const orig_type_left  = left->base.type;
6438         type_t       *const orig_type_right = right->base.type;
6439         type_t       *const type_left       = skip_typeref(orig_type_left);
6440         type_t       *const type_right      = skip_typeref(orig_type_right);
6441
6442         /* Â§ 5.6.5 */
6443         if(is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6444                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6445                 expression->left        = create_implicit_cast(left, arithmetic_type);
6446                 expression->right       = create_implicit_cast(right, arithmetic_type);
6447                 expression->base.type =  arithmetic_type;
6448                 return;
6449         } else if(is_type_pointer(type_left) && is_type_integer(type_right)) {
6450                 check_pointer_arithmetic(&expression->base.source_position,
6451                                          type_left, orig_type_left);
6452                 expression->base.type = type_left;
6453         } else if(is_type_pointer(type_left) && is_type_pointer(type_right)) {
6454                 if(!pointers_compatible(type_left, type_right)) {
6455                         errorf(HERE,
6456                                "pointers to incompatible objects to binary '-' ('%T', '%T')",
6457                                orig_type_left, orig_type_right);
6458                 } else {
6459                         expression->base.type = type_ptrdiff_t;
6460                 }
6461         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6462                 errorf(HERE, "invalid operands to binary '-' ('%T', '%T')",
6463                        orig_type_left, orig_type_right);
6464         }
6465 }
6466
6467 /**
6468  * Check the semantics of comparison expressions.
6469  *
6470  * @param expression   The expression to check.
6471  */
6472 static void semantic_comparison(binary_expression_t *expression)
6473 {
6474         expression_t *left            = expression->left;
6475         expression_t *right           = expression->right;
6476         type_t       *orig_type_left  = left->base.type;
6477         type_t       *orig_type_right = right->base.type;
6478
6479         type_t *type_left  = skip_typeref(orig_type_left);
6480         type_t *type_right = skip_typeref(orig_type_right);
6481
6482         /* TODO non-arithmetic types */
6483         if(is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6484                 /* test for signed vs unsigned compares */
6485                 if (warning.sign_compare &&
6486                     (expression->base.kind != EXPR_BINARY_EQUAL &&
6487                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
6488                     (is_type_signed(type_left) != is_type_signed(type_right))) {
6489
6490                         /* check if 1 of the operands is a constant, in this case we just
6491                          * check wether we can safely represent the resulting constant in
6492                          * the type of the other operand. */
6493                         expression_t *const_expr = NULL;
6494                         expression_t *other_expr = NULL;
6495
6496                         if(is_constant_expression(left)) {
6497                                 const_expr = left;
6498                                 other_expr = right;
6499                         } else if(is_constant_expression(right)) {
6500                                 const_expr = right;
6501                                 other_expr = left;
6502                         }
6503
6504                         if(const_expr != NULL) {
6505                                 type_t *other_type = skip_typeref(other_expr->base.type);
6506                                 long    val        = fold_constant(const_expr);
6507                                 /* TODO: check if val can be represented by other_type */
6508                                 (void) other_type;
6509                                 (void) val;
6510                         }
6511                         warningf(&expression->base.source_position,
6512                                  "comparison between signed and unsigned");
6513                 }
6514                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6515                 expression->left        = create_implicit_cast(left, arithmetic_type);
6516                 expression->right       = create_implicit_cast(right, arithmetic_type);
6517                 expression->base.type   = arithmetic_type;
6518                 if (warning.float_equal &&
6519                     (expression->base.kind == EXPR_BINARY_EQUAL ||
6520                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
6521                     is_type_float(arithmetic_type)) {
6522                         warningf(&expression->base.source_position,
6523                                  "comparing floating point with == or != is unsafe");
6524                 }
6525         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
6526                 /* TODO check compatibility */
6527         } else if (is_type_pointer(type_left)) {
6528                 expression->right = create_implicit_cast(right, type_left);
6529         } else if (is_type_pointer(type_right)) {
6530                 expression->left = create_implicit_cast(left, type_right);
6531         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6532                 type_error_incompatible("invalid operands in comparison",
6533                                         &expression->base.source_position,
6534                                         type_left, type_right);
6535         }
6536         expression->base.type = type_int;
6537 }
6538
6539 /**
6540  * Checks if a compound type has constant fields.
6541  */
6542 static bool has_const_fields(const compound_type_t *type)
6543 {
6544         const scope_t       *scope       = &type->declaration->scope;
6545         const declaration_t *declaration = scope->declarations;
6546
6547         for (; declaration != NULL; declaration = declaration->next) {
6548                 if (declaration->namespc != NAMESPACE_NORMAL)
6549                         continue;
6550
6551                 const type_t *decl_type = skip_typeref(declaration->type);
6552                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
6553                         return true;
6554         }
6555         /* TODO */
6556         return false;
6557 }
6558
6559 static bool is_lvalue(const expression_t *expression)
6560 {
6561         switch (expression->kind) {
6562         case EXPR_REFERENCE:
6563         case EXPR_ARRAY_ACCESS:
6564         case EXPR_SELECT:
6565         case EXPR_UNARY_DEREFERENCE:
6566                 return true;
6567
6568         default:
6569                 return false;
6570         }
6571 }
6572
6573 static bool is_valid_assignment_lhs(expression_t const* const left)
6574 {
6575         type_t *const orig_type_left = revert_automatic_type_conversion(left);
6576         type_t *const type_left      = skip_typeref(orig_type_left);
6577
6578         if (!is_lvalue(left)) {
6579                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
6580                        left);
6581                 return false;
6582         }
6583
6584         if (is_type_array(type_left)) {
6585                 errorf(HERE, "cannot assign to arrays ('%E')", left);
6586                 return false;
6587         }
6588         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
6589                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
6590                        orig_type_left);
6591                 return false;
6592         }
6593         if (is_type_incomplete(type_left)) {
6594                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
6595                        left, orig_type_left);
6596                 return false;
6597         }
6598         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
6599                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
6600                        left, orig_type_left);
6601                 return false;
6602         }
6603
6604         return true;
6605 }
6606
6607 static void semantic_arithmetic_assign(binary_expression_t *expression)
6608 {
6609         expression_t *left            = expression->left;
6610         expression_t *right           = expression->right;
6611         type_t       *orig_type_left  = left->base.type;
6612         type_t       *orig_type_right = right->base.type;
6613
6614         if (!is_valid_assignment_lhs(left))
6615                 return;
6616
6617         type_t *type_left  = skip_typeref(orig_type_left);
6618         type_t *type_right = skip_typeref(orig_type_right);
6619
6620         if(!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
6621                 /* TODO: improve error message */
6622                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6623                         errorf(HERE, "operation needs arithmetic types");
6624                 }
6625                 return;
6626         }
6627
6628         /* combined instructions are tricky. We can't create an implicit cast on
6629          * the left side, because we need the uncasted form for the store.
6630          * The ast2firm pass has to know that left_type must be right_type
6631          * for the arithmetic operation and create a cast by itself */
6632         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6633         expression->right       = create_implicit_cast(right, arithmetic_type);
6634         expression->base.type   = type_left;
6635 }
6636
6637 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
6638 {
6639         expression_t *const left            = expression->left;
6640         expression_t *const right           = expression->right;
6641         type_t       *const orig_type_left  = left->base.type;
6642         type_t       *const orig_type_right = right->base.type;
6643         type_t       *const type_left       = skip_typeref(orig_type_left);
6644         type_t       *const type_right      = skip_typeref(orig_type_right);
6645
6646         if (!is_valid_assignment_lhs(left))
6647                 return;
6648
6649         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6650                 /* combined instructions are tricky. We can't create an implicit cast on
6651                  * the left side, because we need the uncasted form for the store.
6652                  * The ast2firm pass has to know that left_type must be right_type
6653                  * for the arithmetic operation and create a cast by itself */
6654                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
6655                 expression->right     = create_implicit_cast(right, arithmetic_type);
6656                 expression->base.type = type_left;
6657         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
6658                 check_pointer_arithmetic(&expression->base.source_position,
6659                                          type_left, orig_type_left);
6660                 expression->base.type = type_left;
6661         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6662                 errorf(HERE, "incompatible types '%T' and '%T' in assignment", orig_type_left, orig_type_right);
6663         }
6664 }
6665
6666 /**
6667  * Check the semantic restrictions of a logical expression.
6668  */
6669 static void semantic_logical_op(binary_expression_t *expression)
6670 {
6671         expression_t *const left            = expression->left;
6672         expression_t *const right           = expression->right;
6673         type_t       *const orig_type_left  = left->base.type;
6674         type_t       *const orig_type_right = right->base.type;
6675         type_t       *const type_left       = skip_typeref(orig_type_left);
6676         type_t       *const type_right      = skip_typeref(orig_type_right);
6677
6678         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
6679                 /* TODO: improve error message */
6680                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6681                         errorf(HERE, "operation needs scalar types");
6682                 }
6683                 return;
6684         }
6685
6686         expression->base.type = type_int;
6687 }
6688
6689 /**
6690  * Check the semantic restrictions of a binary assign expression.
6691  */
6692 static void semantic_binexpr_assign(binary_expression_t *expression)
6693 {
6694         expression_t *left           = expression->left;
6695         type_t       *orig_type_left = left->base.type;
6696
6697         type_t *type_left = revert_automatic_type_conversion(left);
6698         type_left         = skip_typeref(orig_type_left);
6699
6700         if (!is_valid_assignment_lhs(left))
6701                 return;
6702
6703         type_t *const res_type = semantic_assign(orig_type_left, expression->right,
6704                         "assignment", &left->base.source_position);
6705         if (res_type == NULL) {
6706                 errorf(&expression->base.source_position,
6707                         "cannot assign to '%T' from '%T'",
6708                         orig_type_left, expression->right->base.type);
6709         } else {
6710                 expression->right = create_implicit_cast(expression->right, res_type);
6711         }
6712
6713         expression->base.type = orig_type_left;
6714 }
6715
6716 /**
6717  * Determine if the outermost operation (or parts thereof) of the given
6718  * expression has no effect in order to generate a warning about this fact.
6719  * Therefore in some cases this only examines some of the operands of the
6720  * expression (see comments in the function and examples below).
6721  * Examples:
6722  *   f() + 23;    // warning, because + has no effect
6723  *   x || f();    // no warning, because x controls execution of f()
6724  *   x ? y : f(); // warning, because y has no effect
6725  *   (void)x;     // no warning to be able to suppress the warning
6726  * This function can NOT be used for an "expression has definitely no effect"-
6727  * analysis. */
6728 static bool expression_has_effect(const expression_t *const expr)
6729 {
6730         switch (expr->kind) {
6731                 case EXPR_UNKNOWN:                   break;
6732                 case EXPR_INVALID:                   return true; /* do NOT warn */
6733                 case EXPR_REFERENCE:                 return false;
6734                 /* suppress the warning for microsoft __noop operations */
6735                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
6736                 case EXPR_CHARACTER_CONSTANT:        return false;
6737                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
6738                 case EXPR_STRING_LITERAL:            return false;
6739                 case EXPR_WIDE_STRING_LITERAL:       return false;
6740
6741                 case EXPR_CALL: {
6742                         const call_expression_t *const call = &expr->call;
6743                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
6744                                 return true;
6745
6746                         switch (call->function->builtin_symbol.symbol->ID) {
6747                                 case T___builtin_va_end: return true;
6748                                 default:                 return false;
6749                         }
6750                 }
6751
6752                 /* Generate the warning if either the left or right hand side of a
6753                  * conditional expression has no effect */
6754                 case EXPR_CONDITIONAL: {
6755                         const conditional_expression_t *const cond = &expr->conditional;
6756                         return
6757                                 expression_has_effect(cond->true_expression) &&
6758                                 expression_has_effect(cond->false_expression);
6759                 }
6760
6761                 case EXPR_SELECT:                    return false;
6762                 case EXPR_ARRAY_ACCESS:              return false;
6763                 case EXPR_SIZEOF:                    return false;
6764                 case EXPR_CLASSIFY_TYPE:             return false;
6765                 case EXPR_ALIGNOF:                   return false;
6766
6767                 case EXPR_FUNCNAME:                  return false;
6768                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
6769                 case EXPR_BUILTIN_CONSTANT_P:        return false;
6770                 case EXPR_BUILTIN_PREFETCH:          return true;
6771                 case EXPR_OFFSETOF:                  return false;
6772                 case EXPR_VA_START:                  return true;
6773                 case EXPR_VA_ARG:                    return true;
6774                 case EXPR_STATEMENT:                 return true; // TODO
6775                 case EXPR_COMPOUND_LITERAL:          return false;
6776
6777                 case EXPR_UNARY_NEGATE:              return false;
6778                 case EXPR_UNARY_PLUS:                return false;
6779                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
6780                 case EXPR_UNARY_NOT:                 return false;
6781                 case EXPR_UNARY_DEREFERENCE:         return false;
6782                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
6783                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
6784                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
6785                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
6786                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
6787
6788                 /* Treat void casts as if they have an effect in order to being able to
6789                  * suppress the warning */
6790                 case EXPR_UNARY_CAST: {
6791                         type_t *const type = skip_typeref(expr->base.type);
6792                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
6793                 }
6794
6795                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
6796                 case EXPR_UNARY_ASSUME:              return true;
6797
6798                 case EXPR_BINARY_ADD:                return false;
6799                 case EXPR_BINARY_SUB:                return false;
6800                 case EXPR_BINARY_MUL:                return false;
6801                 case EXPR_BINARY_DIV:                return false;
6802                 case EXPR_BINARY_MOD:                return false;
6803                 case EXPR_BINARY_EQUAL:              return false;
6804                 case EXPR_BINARY_NOTEQUAL:           return false;
6805                 case EXPR_BINARY_LESS:               return false;
6806                 case EXPR_BINARY_LESSEQUAL:          return false;
6807                 case EXPR_BINARY_GREATER:            return false;
6808                 case EXPR_BINARY_GREATEREQUAL:       return false;
6809                 case EXPR_BINARY_BITWISE_AND:        return false;
6810                 case EXPR_BINARY_BITWISE_OR:         return false;
6811                 case EXPR_BINARY_BITWISE_XOR:        return false;
6812                 case EXPR_BINARY_SHIFTLEFT:          return false;
6813                 case EXPR_BINARY_SHIFTRIGHT:         return false;
6814                 case EXPR_BINARY_ASSIGN:             return true;
6815                 case EXPR_BINARY_MUL_ASSIGN:         return true;
6816                 case EXPR_BINARY_DIV_ASSIGN:         return true;
6817                 case EXPR_BINARY_MOD_ASSIGN:         return true;
6818                 case EXPR_BINARY_ADD_ASSIGN:         return true;
6819                 case EXPR_BINARY_SUB_ASSIGN:         return true;
6820                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
6821                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
6822                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
6823                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
6824                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
6825
6826                 /* Only examine the right hand side of && and ||, because the left hand
6827                  * side already has the effect of controlling the execution of the right
6828                  * hand side */
6829                 case EXPR_BINARY_LOGICAL_AND:
6830                 case EXPR_BINARY_LOGICAL_OR:
6831                 /* Only examine the right hand side of a comma expression, because the left
6832                  * hand side has a separate warning */
6833                 case EXPR_BINARY_COMMA:
6834                         return expression_has_effect(expr->binary.right);
6835
6836                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
6837                 case EXPR_BINARY_ISGREATER:          return false;
6838                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
6839                 case EXPR_BINARY_ISLESS:             return false;
6840                 case EXPR_BINARY_ISLESSEQUAL:        return false;
6841                 case EXPR_BINARY_ISLESSGREATER:      return false;
6842                 case EXPR_BINARY_ISUNORDERED:        return false;
6843         }
6844
6845         internal_errorf(HERE, "unexpected expression");
6846 }
6847
6848 static void semantic_comma(binary_expression_t *expression)
6849 {
6850         if (warning.unused_value) {
6851                 const expression_t *const left = expression->left;
6852                 if (!expression_has_effect(left)) {
6853                         warningf(&left->base.source_position,
6854                                  "left-hand operand of comma expression has no effect");
6855                 }
6856         }
6857         expression->base.type = expression->right->base.type;
6858 }
6859
6860 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
6861 static expression_t *parse_##binexpression_type(unsigned precedence,      \
6862                                                 expression_t *left)       \
6863 {                                                                         \
6864         eat(token_type);                                                      \
6865         source_position_t pos = *HERE;                                        \
6866                                                                           \
6867         expression_t *right = parse_sub_expression(precedence + lr);          \
6868                                                                           \
6869         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
6870         binexpr->base.source_position = pos;                                  \
6871         binexpr->binary.left  = left;                                         \
6872         binexpr->binary.right = right;                                        \
6873         sfunc(&binexpr->binary);                                              \
6874                                                                           \
6875         return binexpr;                                                       \
6876 }
6877
6878 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
6879 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
6880 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_binexpr_arithmetic, 1)
6881 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_binexpr_arithmetic, 1)
6882 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
6883 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
6884 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
6885 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
6886 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
6887
6888 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
6889                       semantic_comparison, 1)
6890 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
6891                       semantic_comparison, 1)
6892 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
6893                       semantic_comparison, 1)
6894 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
6895                       semantic_comparison, 1)
6896
6897 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
6898                       semantic_binexpr_arithmetic, 1)
6899 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
6900                       semantic_binexpr_arithmetic, 1)
6901 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
6902                       semantic_binexpr_arithmetic, 1)
6903 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
6904                       semantic_logical_op, 1)
6905 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
6906                       semantic_logical_op, 1)
6907 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
6908                       semantic_shift_op, 1)
6909 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
6910                       semantic_shift_op, 1)
6911 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
6912                       semantic_arithmetic_addsubb_assign, 0)
6913 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
6914                       semantic_arithmetic_addsubb_assign, 0)
6915 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
6916                       semantic_arithmetic_assign, 0)
6917 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
6918                       semantic_arithmetic_assign, 0)
6919 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
6920                       semantic_arithmetic_assign, 0)
6921 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
6922                       semantic_arithmetic_assign, 0)
6923 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
6924                       semantic_arithmetic_assign, 0)
6925 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
6926                       semantic_arithmetic_assign, 0)
6927 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
6928                       semantic_arithmetic_assign, 0)
6929 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
6930                       semantic_arithmetic_assign, 0)
6931
6932 static expression_t *parse_sub_expression(unsigned precedence)
6933 {
6934         if(token.type < 0) {
6935                 return expected_expression_error();
6936         }
6937
6938         expression_parser_function_t *parser
6939                 = &expression_parsers[token.type];
6940         source_position_t             source_position = token.source_position;
6941         expression_t                 *left;
6942
6943         if(parser->parser != NULL) {
6944                 left = parser->parser(parser->precedence);
6945         } else {
6946                 left = parse_primary_expression();
6947         }
6948         assert(left != NULL);
6949         left->base.source_position = source_position;
6950
6951         while(true) {
6952                 if(token.type < 0) {
6953                         return expected_expression_error();
6954                 }
6955
6956                 parser = &expression_parsers[token.type];
6957                 if(parser->infix_parser == NULL)
6958                         break;
6959                 if(parser->infix_precedence < precedence)
6960                         break;
6961
6962                 left = parser->infix_parser(parser->infix_precedence, left);
6963
6964                 assert(left != NULL);
6965                 assert(left->kind != EXPR_UNKNOWN);
6966                 left->base.source_position = source_position;
6967         }
6968
6969         return left;
6970 }
6971
6972 /**
6973  * Parse an expression.
6974  */
6975 static expression_t *parse_expression(void)
6976 {
6977         return parse_sub_expression(1);
6978 }
6979
6980 /**
6981  * Register a parser for a prefix-like operator with given precedence.
6982  *
6983  * @param parser      the parser function
6984  * @param token_type  the token type of the prefix token
6985  * @param precedence  the precedence of the operator
6986  */
6987 static void register_expression_parser(parse_expression_function parser,
6988                                        int token_type, unsigned precedence)
6989 {
6990         expression_parser_function_t *entry = &expression_parsers[token_type];
6991
6992         if(entry->parser != NULL) {
6993                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
6994                 panic("trying to register multiple expression parsers for a token");
6995         }
6996         entry->parser     = parser;
6997         entry->precedence = precedence;
6998 }
6999
7000 /**
7001  * Register a parser for an infix operator with given precedence.
7002  *
7003  * @param parser      the parser function
7004  * @param token_type  the token type of the infix operator
7005  * @param precedence  the precedence of the operator
7006  */
7007 static void register_infix_parser(parse_expression_infix_function parser,
7008                 int token_type, unsigned precedence)
7009 {
7010         expression_parser_function_t *entry = &expression_parsers[token_type];
7011
7012         if(entry->infix_parser != NULL) {
7013                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
7014                 panic("trying to register multiple infix expression parsers for a "
7015                       "token");
7016         }
7017         entry->infix_parser     = parser;
7018         entry->infix_precedence = precedence;
7019 }
7020
7021 /**
7022  * Initialize the expression parsers.
7023  */
7024 static void init_expression_parsers(void)
7025 {
7026         memset(&expression_parsers, 0, sizeof(expression_parsers));
7027
7028         register_infix_parser(parse_array_expression,         '[',              30);
7029         register_infix_parser(parse_call_expression,          '(',              30);
7030         register_infix_parser(parse_select_expression,        '.',              30);
7031         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
7032         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
7033                                                               T_PLUSPLUS,       30);
7034         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
7035                                                               T_MINUSMINUS,     30);
7036
7037         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
7038         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
7039         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
7040         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
7041         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
7042         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
7043         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
7044         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
7045         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
7046         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
7047         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
7048         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
7049         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
7050                                                     T_EXCLAMATIONMARKEQUAL, 13);
7051         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
7052         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
7053         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
7054         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
7055         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
7056         register_infix_parser(parse_conditional_expression,   '?',               7);
7057         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
7058         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
7059         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
7060         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
7061         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
7062         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
7063         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
7064                                                                 T_LESSLESSEQUAL, 2);
7065         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
7066                                                           T_GREATERGREATEREQUAL, 2);
7067         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
7068                                                                      T_ANDEQUAL, 2);
7069         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
7070                                                                     T_PIPEEQUAL, 2);
7071         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
7072                                                                    T_CARETEQUAL, 2);
7073
7074         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
7075
7076         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
7077         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
7078         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
7079         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
7080         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
7081         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
7082         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
7083                                                                   T_PLUSPLUS,   25);
7084         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
7085                                                                   T_MINUSMINUS, 25);
7086         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
7087         register_expression_parser(parse_alignof,                T___alignof__, 25);
7088         register_expression_parser(parse_extension,            T___extension__, 25);
7089         register_expression_parser(parse_builtin_classify_type,
7090                                                      T___builtin_classify_type, 25);
7091 }
7092
7093 /**
7094  * Parse a asm statement arguments specification.
7095  */
7096 static asm_argument_t *parse_asm_arguments(bool is_out)
7097 {
7098         asm_argument_t *result = NULL;
7099         asm_argument_t *last   = NULL;
7100
7101         while(token.type == T_STRING_LITERAL || token.type == '[') {
7102                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7103                 memset(argument, 0, sizeof(argument[0]));
7104
7105                 if(token.type == '[') {
7106                         eat('[');
7107                         if(token.type != T_IDENTIFIER) {
7108                                 parse_error_expected("while parsing asm argument",
7109                                                      T_IDENTIFIER, NULL);
7110                                 return NULL;
7111                         }
7112                         argument->symbol = token.v.symbol;
7113
7114                         expect(']');
7115                 }
7116
7117                 argument->constraints = parse_string_literals();
7118                 expect('(');
7119                 argument->expression = parse_expression();
7120                 if (is_out && !is_lvalue(argument->expression)) {
7121                         errorf(&argument->expression->base.source_position,
7122                                "asm output argument is not an lvalue");
7123                 }
7124                 expect(')');
7125
7126                 if(last != NULL) {
7127                         last->next = argument;
7128                 } else {
7129                         result = argument;
7130                 }
7131                 last = argument;
7132
7133                 if(token.type != ',')
7134                         break;
7135                 eat(',');
7136         }
7137
7138         return result;
7139 end_error:
7140         return NULL;
7141 }
7142
7143 /**
7144  * Parse a asm statement clobber specification.
7145  */
7146 static asm_clobber_t *parse_asm_clobbers(void)
7147 {
7148         asm_clobber_t *result = NULL;
7149         asm_clobber_t *last   = NULL;
7150
7151         while(token.type == T_STRING_LITERAL) {
7152                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
7153                 clobber->clobber       = parse_string_literals();
7154
7155                 if(last != NULL) {
7156                         last->next = clobber;
7157                 } else {
7158                         result = clobber;
7159                 }
7160                 last = clobber;
7161
7162                 if(token.type != ',')
7163                         break;
7164                 eat(',');
7165         }
7166
7167         return result;
7168 }
7169
7170 /**
7171  * Parse an asm statement.
7172  */
7173 static statement_t *parse_asm_statement(void)
7174 {
7175         eat(T_asm);
7176
7177         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
7178         statement->base.source_position = token.source_position;
7179
7180         asm_statement_t *asm_statement = &statement->asms;
7181
7182         if(token.type == T_volatile) {
7183                 next_token();
7184                 asm_statement->is_volatile = true;
7185         }
7186
7187         expect('(');
7188         add_anchor_token(')');
7189         add_anchor_token(':');
7190         asm_statement->asm_text = parse_string_literals();
7191
7192         if(token.type != ':') {
7193                 rem_anchor_token(':');
7194                 goto end_of_asm;
7195         }
7196         eat(':');
7197
7198         asm_statement->outputs = parse_asm_arguments(true);
7199         if(token.type != ':') {
7200                 rem_anchor_token(':');
7201                 goto end_of_asm;
7202         }
7203         eat(':');
7204
7205         asm_statement->inputs = parse_asm_arguments(false);
7206         if(token.type != ':') {
7207                 rem_anchor_token(':');
7208                 goto end_of_asm;
7209         }
7210         rem_anchor_token(':');
7211         eat(':');
7212
7213         asm_statement->clobbers = parse_asm_clobbers();
7214
7215 end_of_asm:
7216         rem_anchor_token(')');
7217         expect(')');
7218         expect(';');
7219         return statement;
7220 end_error:
7221         return create_invalid_statement();
7222 }
7223
7224 /**
7225  * Parse a case statement.
7226  */
7227 static statement_t *parse_case_statement(void)
7228 {
7229         eat(T_case);
7230
7231         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
7232
7233         statement->base.source_position  = token.source_position;
7234         statement->case_label.expression = parse_expression();
7235
7236         if (c_mode & _GNUC) {
7237                 if (token.type == T_DOTDOTDOT) {
7238                         next_token();
7239                         statement->case_label.end_range = parse_expression();
7240                 }
7241         }
7242
7243         expect(':');
7244
7245         if (! is_constant_expression(statement->case_label.expression)) {
7246                 errorf(&statement->base.source_position,
7247                        "case label does not reduce to an integer constant");
7248         } else {
7249                 /* TODO: check if the case label is already known */
7250                 if (current_switch != NULL) {
7251                         /* link all cases into the switch statement */
7252                         if (current_switch->last_case == NULL) {
7253                                 current_switch->first_case =
7254                                 current_switch->last_case  = &statement->case_label;
7255                         } else {
7256                                 current_switch->last_case->next = &statement->case_label;
7257                         }
7258                 } else {
7259                         errorf(&statement->base.source_position,
7260                                "case label not within a switch statement");
7261                 }
7262         }
7263         statement->case_label.statement = parse_statement();
7264
7265         return statement;
7266 end_error:
7267         return create_invalid_statement();
7268 }
7269
7270 /**
7271  * Finds an existing default label of a switch statement.
7272  */
7273 static case_label_statement_t *
7274 find_default_label(const switch_statement_t *statement)
7275 {
7276         case_label_statement_t *label = statement->first_case;
7277         for ( ; label != NULL; label = label->next) {
7278                 if (label->expression == NULL)
7279                         return label;
7280         }
7281         return NULL;
7282 }
7283
7284 /**
7285  * Parse a default statement.
7286  */
7287 static statement_t *parse_default_statement(void)
7288 {
7289         eat(T_default);
7290
7291         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
7292
7293         statement->base.source_position = token.source_position;
7294
7295         expect(':');
7296         if (current_switch != NULL) {
7297                 const case_label_statement_t *def_label = find_default_label(current_switch);
7298                 if (def_label != NULL) {
7299                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
7300                                &def_label->base.source_position);
7301                 } else {
7302                         /* link all cases into the switch statement */
7303                         if (current_switch->last_case == NULL) {
7304                                 current_switch->first_case =
7305                                         current_switch->last_case  = &statement->case_label;
7306                         } else {
7307                                 current_switch->last_case->next = &statement->case_label;
7308                         }
7309                 }
7310         } else {
7311                 errorf(&statement->base.source_position,
7312                         "'default' label not within a switch statement");
7313         }
7314         statement->case_label.statement = parse_statement();
7315
7316         return statement;
7317 end_error:
7318         return create_invalid_statement();
7319 }
7320
7321 /**
7322  * Return the declaration for a given label symbol or create a new one.
7323  */
7324 static declaration_t *get_label(symbol_t *symbol)
7325 {
7326         declaration_t *candidate = get_declaration(symbol, NAMESPACE_LABEL);
7327         assert(current_function != NULL);
7328         /* if we found a label in the same function, then we already created the
7329          * declaration */
7330         if(candidate != NULL
7331                         && candidate->parent_scope == &current_function->scope) {
7332                 return candidate;
7333         }
7334
7335         /* otherwise we need to create a new one */
7336         declaration_t *const declaration = allocate_declaration_zero();
7337         declaration->namespc       = NAMESPACE_LABEL;
7338         declaration->symbol        = symbol;
7339
7340         label_push(declaration);
7341
7342         return declaration;
7343 }
7344
7345 /**
7346  * Parse a label statement.
7347  */
7348 static statement_t *parse_label_statement(void)
7349 {
7350         assert(token.type == T_IDENTIFIER);
7351         symbol_t *symbol = token.v.symbol;
7352         next_token();
7353
7354         declaration_t *label = get_label(symbol);
7355
7356         /* if source position is already set then the label is defined twice,
7357          * otherwise it was just mentioned in a goto so far */
7358         if(label->source_position.input_name != NULL) {
7359                 errorf(HERE, "duplicate label '%Y' (declared %P)",
7360                        symbol, &label->source_position);
7361         } else {
7362                 label->source_position = token.source_position;
7363         }
7364
7365         statement_t *statement = allocate_statement_zero(STATEMENT_LABEL);
7366
7367         statement->base.source_position = token.source_position;
7368         statement->label.label          = label;
7369
7370         eat(':');
7371
7372         if(token.type == '}') {
7373                 /* TODO only warn? */
7374                 if(false) {
7375                         warningf(HERE, "label at end of compound statement");
7376                         statement->label.statement = create_empty_statement();
7377                 } else {
7378                         errorf(HERE, "label at end of compound statement");
7379                         statement->label.statement = create_invalid_statement();
7380                 }
7381                 return statement;
7382         } else {
7383                 if (token.type == ';') {
7384                         /* eat an empty statement here, to avoid the warning about an empty
7385                          * after a label.  label:; is commonly used to have a label before
7386                          * a }. */
7387                         statement->label.statement = create_empty_statement();
7388                         next_token();
7389                 } else {
7390                         statement->label.statement = parse_statement();
7391                 }
7392         }
7393
7394         /* remember the labels's in a list for later checking */
7395         if (label_last == NULL) {
7396                 label_first = &statement->label;
7397         } else {
7398                 label_last->next = &statement->label;
7399         }
7400         label_last = &statement->label;
7401
7402         return statement;
7403 }
7404
7405 /**
7406  * Parse an if statement.
7407  */
7408 static statement_t *parse_if(void)
7409 {
7410         eat(T_if);
7411
7412         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
7413         statement->base.source_position = token.source_position;
7414
7415         expect('(');
7416         add_anchor_token(')');
7417         statement->ifs.condition = parse_expression();
7418         rem_anchor_token(')');
7419         expect(')');
7420
7421         add_anchor_token(T_else);
7422         statement->ifs.true_statement = parse_statement();
7423         rem_anchor_token(T_else);
7424
7425         if(token.type == T_else) {
7426                 next_token();
7427                 statement->ifs.false_statement = parse_statement();
7428         }
7429
7430         return statement;
7431 end_error:
7432         return create_invalid_statement();
7433 }
7434
7435 /**
7436  * Parse a switch statement.
7437  */
7438 static statement_t *parse_switch(void)
7439 {
7440         eat(T_switch);
7441
7442         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
7443         statement->base.source_position = token.source_position;
7444
7445         expect('(');
7446         expression_t *const expr = parse_expression();
7447         type_t       *      type = skip_typeref(expr->base.type);
7448         if (is_type_integer(type)) {
7449                 type = promote_integer(type);
7450         } else if (is_type_valid(type)) {
7451                 errorf(&expr->base.source_position,
7452                        "switch quantity is not an integer, but '%T'", type);
7453                 type = type_error_type;
7454         }
7455         statement->switchs.expression = create_implicit_cast(expr, type);
7456         expect(')');
7457
7458         switch_statement_t *rem = current_switch;
7459         current_switch          = &statement->switchs;
7460         statement->switchs.body = parse_statement();
7461         current_switch          = rem;
7462
7463         if(warning.switch_default &&
7464            find_default_label(&statement->switchs) == NULL) {
7465                 warningf(&statement->base.source_position, "switch has no default case");
7466         }
7467
7468         return statement;
7469 end_error:
7470         return create_invalid_statement();
7471 }
7472
7473 static statement_t *parse_loop_body(statement_t *const loop)
7474 {
7475         statement_t *const rem = current_loop;
7476         current_loop = loop;
7477
7478         statement_t *const body = parse_statement();
7479
7480         current_loop = rem;
7481         return body;
7482 }
7483
7484 /**
7485  * Parse a while statement.
7486  */
7487 static statement_t *parse_while(void)
7488 {
7489         eat(T_while);
7490
7491         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
7492         statement->base.source_position = token.source_position;
7493
7494         expect('(');
7495         add_anchor_token(')');
7496         statement->whiles.condition = parse_expression();
7497         rem_anchor_token(')');
7498         expect(')');
7499
7500         statement->whiles.body = parse_loop_body(statement);
7501
7502         return statement;
7503 end_error:
7504         return create_invalid_statement();
7505 }
7506
7507 /**
7508  * Parse a do statement.
7509  */
7510 static statement_t *parse_do(void)
7511 {
7512         eat(T_do);
7513
7514         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
7515
7516         statement->base.source_position = token.source_position;
7517
7518         add_anchor_token(T_while);
7519         statement->do_while.body = parse_loop_body(statement);
7520         rem_anchor_token(T_while);
7521
7522         expect(T_while);
7523         expect('(');
7524         add_anchor_token(')');
7525         statement->do_while.condition = parse_expression();
7526         rem_anchor_token(')');
7527         expect(')');
7528         expect(';');
7529
7530         return statement;
7531 end_error:
7532         return create_invalid_statement();
7533 }
7534
7535 /**
7536  * Parse a for statement.
7537  */
7538 static statement_t *parse_for(void)
7539 {
7540         eat(T_for);
7541
7542         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
7543         statement->base.source_position = token.source_position;
7544
7545         int      top        = environment_top();
7546         scope_t *last_scope = scope;
7547         set_scope(&statement->fors.scope);
7548
7549         expect('(');
7550         add_anchor_token(')');
7551
7552         if(token.type != ';') {
7553                 if(is_declaration_specifier(&token, false)) {
7554                         parse_declaration(record_declaration);
7555                 } else {
7556                         add_anchor_token(';');
7557                         expression_t *const init = parse_expression();
7558                         statement->fors.initialisation = init;
7559                         if (warning.unused_value && !expression_has_effect(init)) {
7560                                 warningf(&init->base.source_position,
7561                                          "initialisation of 'for'-statement has no effect");
7562                         }
7563                         rem_anchor_token(';');
7564                         expect(';');
7565                 }
7566         } else {
7567                 expect(';');
7568         }
7569
7570         if(token.type != ';') {
7571                 add_anchor_token(';');
7572                 statement->fors.condition = parse_expression();
7573                 rem_anchor_token(';');
7574         }
7575         expect(';');
7576         if(token.type != ')') {
7577                 expression_t *const step = parse_expression();
7578                 statement->fors.step = step;
7579                 if (warning.unused_value && !expression_has_effect(step)) {
7580                         warningf(&step->base.source_position,
7581                                  "step of 'for'-statement has no effect");
7582                 }
7583         }
7584         rem_anchor_token(')');
7585         expect(')');
7586         statement->fors.body = parse_loop_body(statement);
7587
7588         assert(scope == &statement->fors.scope);
7589         set_scope(last_scope);
7590         environment_pop_to(top);
7591
7592         return statement;
7593
7594 end_error:
7595         rem_anchor_token(')');
7596         assert(scope == &statement->fors.scope);
7597         set_scope(last_scope);
7598         environment_pop_to(top);
7599
7600         return create_invalid_statement();
7601 }
7602
7603 /**
7604  * Parse a goto statement.
7605  */
7606 static statement_t *parse_goto(void)
7607 {
7608         eat(T_goto);
7609
7610         if(token.type != T_IDENTIFIER) {
7611                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
7612                 eat_statement();
7613                 goto end_error;
7614         }
7615         symbol_t *symbol = token.v.symbol;
7616         next_token();
7617
7618         declaration_t *label = get_label(symbol);
7619
7620         statement_t *statement          = allocate_statement_zero(STATEMENT_GOTO);
7621         statement->base.source_position = token.source_position;
7622
7623         statement->gotos.label = label;
7624
7625         /* remember the goto's in a list for later checking */
7626         if (goto_last == NULL) {
7627                 goto_first = &statement->gotos;
7628         } else {
7629                 goto_last->next = &statement->gotos;
7630         }
7631         goto_last = &statement->gotos;
7632
7633         expect(';');
7634
7635         return statement;
7636 end_error:
7637         return create_invalid_statement();
7638 }
7639
7640 /**
7641  * Parse a continue statement.
7642  */
7643 static statement_t *parse_continue(void)
7644 {
7645         statement_t *statement;
7646         if (current_loop == NULL) {
7647                 errorf(HERE, "continue statement not within loop");
7648                 statement = create_invalid_statement();
7649         } else {
7650                 statement = allocate_statement_zero(STATEMENT_CONTINUE);
7651
7652                 statement->base.source_position = token.source_position;
7653         }
7654
7655         eat(T_continue);
7656         expect(';');
7657
7658         return statement;
7659 end_error:
7660         return create_invalid_statement();
7661 }
7662
7663 /**
7664  * Parse a break statement.
7665  */
7666 static statement_t *parse_break(void)
7667 {
7668         statement_t *statement;
7669         if (current_switch == NULL && current_loop == NULL) {
7670                 errorf(HERE, "break statement not within loop or switch");
7671                 statement = create_invalid_statement();
7672         } else {
7673                 statement = allocate_statement_zero(STATEMENT_BREAK);
7674
7675                 statement->base.source_position = token.source_position;
7676         }
7677
7678         eat(T_break);
7679         expect(';');
7680
7681         return statement;
7682 end_error:
7683         return create_invalid_statement();
7684 }
7685
7686 /**
7687  * Parse a __leave statement.
7688  */
7689 static statement_t *parse_leave(void)
7690 {
7691         statement_t *statement;
7692         if (current_try == NULL) {
7693                 errorf(HERE, "__leave statement not within __try");
7694                 statement = create_invalid_statement();
7695         } else {
7696                 statement = allocate_statement_zero(STATEMENT_LEAVE);
7697
7698                 statement->base.source_position = token.source_position;
7699         }
7700
7701         eat(T___leave);
7702         expect(';');
7703
7704         return statement;
7705 end_error:
7706         return create_invalid_statement();
7707 }
7708
7709 /**
7710  * Check if a given declaration represents a local variable.
7711  */
7712 static bool is_local_var_declaration(const declaration_t *declaration) {
7713         switch ((storage_class_tag_t) declaration->storage_class) {
7714         case STORAGE_CLASS_AUTO:
7715         case STORAGE_CLASS_REGISTER: {
7716                 const type_t *type = skip_typeref(declaration->type);
7717                 if(is_type_function(type)) {
7718                         return false;
7719                 } else {
7720                         return true;
7721                 }
7722         }
7723         default:
7724                 return false;
7725         }
7726 }
7727
7728 /**
7729  * Check if a given declaration represents a variable.
7730  */
7731 static bool is_var_declaration(const declaration_t *declaration) {
7732         if(declaration->storage_class == STORAGE_CLASS_TYPEDEF)
7733                 return false;
7734
7735         const type_t *type = skip_typeref(declaration->type);
7736         return !is_type_function(type);
7737 }
7738
7739 /**
7740  * Check if a given expression represents a local variable.
7741  */
7742 static bool is_local_variable(const expression_t *expression)
7743 {
7744         if (expression->base.kind != EXPR_REFERENCE) {
7745                 return false;
7746         }
7747         const declaration_t *declaration = expression->reference.declaration;
7748         return is_local_var_declaration(declaration);
7749 }
7750
7751 /**
7752  * Check if a given expression represents a local variable and
7753  * return its declaration then, else return NULL.
7754  */
7755 declaration_t *expr_is_variable(const expression_t *expression)
7756 {
7757         if (expression->base.kind != EXPR_REFERENCE) {
7758                 return NULL;
7759         }
7760         declaration_t *declaration = expression->reference.declaration;
7761         if (is_var_declaration(declaration))
7762                 return declaration;
7763         return NULL;
7764 }
7765
7766 /**
7767  * Parse a return statement.
7768  */
7769 static statement_t *parse_return(void)
7770 {
7771         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
7772         statement->base.source_position = token.source_position;
7773
7774         eat(T_return);
7775
7776         expression_t *return_value = NULL;
7777         if(token.type != ';') {
7778                 return_value = parse_expression();
7779         }
7780         expect(';');
7781
7782         const type_t *const func_type = current_function->type;
7783         assert(is_type_function(func_type));
7784         type_t *const return_type = skip_typeref(func_type->function.return_type);
7785
7786         if(return_value != NULL) {
7787                 type_t *return_value_type = skip_typeref(return_value->base.type);
7788
7789                 if(is_type_atomic(return_type, ATOMIC_TYPE_VOID)
7790                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
7791                         warningf(&statement->base.source_position,
7792                                  "'return' with a value, in function returning void");
7793                         return_value = NULL;
7794                 } else {
7795                         type_t *const res_type = semantic_assign(return_type,
7796                                 return_value, "'return'", &statement->base.source_position);
7797                         if (res_type == NULL) {
7798                                 errorf(&statement->base.source_position,
7799                                        "cannot return something of type '%T' in function returning '%T'",
7800                                        return_value->base.type, return_type);
7801                         } else {
7802                                 return_value = create_implicit_cast(return_value, res_type);
7803                         }
7804                 }
7805                 /* check for returning address of a local var */
7806                 if (return_value != NULL &&
7807                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
7808                         const expression_t *expression = return_value->unary.value;
7809                         if (is_local_variable(expression)) {
7810                                 warningf(&statement->base.source_position,
7811                                          "function returns address of local variable");
7812                         }
7813                 }
7814         } else {
7815                 if(!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
7816                         warningf(&statement->base.source_position,
7817                                  "'return' without value, in function returning non-void");
7818                 }
7819         }
7820         statement->returns.value = return_value;
7821
7822         return statement;
7823 end_error:
7824         return create_invalid_statement();
7825 }
7826
7827 /**
7828  * Parse a declaration statement.
7829  */
7830 static statement_t *parse_declaration_statement(void)
7831 {
7832         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
7833
7834         statement->base.source_position = token.source_position;
7835
7836         declaration_t *before = last_declaration;
7837         parse_declaration(record_declaration);
7838
7839         if(before == NULL) {
7840                 statement->declaration.declarations_begin = scope->declarations;
7841         } else {
7842                 statement->declaration.declarations_begin = before->next;
7843         }
7844         statement->declaration.declarations_end = last_declaration;
7845
7846         return statement;
7847 }
7848
7849 /**
7850  * Parse an expression statement, ie. expr ';'.
7851  */
7852 static statement_t *parse_expression_statement(void)
7853 {
7854         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
7855
7856         statement->base.source_position  = token.source_position;
7857         expression_t *const expr         = parse_expression();
7858         statement->expression.expression = expr;
7859
7860         expect(';');
7861
7862         return statement;
7863 end_error:
7864         return create_invalid_statement();
7865 }
7866
7867 /**
7868  * Parse a microsoft __try { } __finally { } or
7869  * __try{ } __except() { }
7870  */
7871 static statement_t *parse_ms_try_statment(void) {
7872         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
7873
7874         statement->base.source_position  = token.source_position;
7875         eat(T___try);
7876
7877         ms_try_statement_t *rem = current_try;
7878         current_try = &statement->ms_try;
7879         statement->ms_try.try_statement = parse_compound_statement(false);
7880         current_try = rem;
7881
7882         if(token.type == T___except) {
7883                 eat(T___except);
7884                 expect('(');
7885                 add_anchor_token(')');
7886                 expression_t *const expr = parse_expression();
7887                 type_t       *      type = skip_typeref(expr->base.type);
7888                 if (is_type_integer(type)) {
7889                         type = promote_integer(type);
7890                 } else if (is_type_valid(type)) {
7891                         errorf(&expr->base.source_position,
7892                                "__expect expression is not an integer, but '%T'", type);
7893                         type = type_error_type;
7894                 }
7895                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
7896                 rem_anchor_token(')');
7897                 expect(')');
7898                 statement->ms_try.final_statement = parse_compound_statement(false);
7899         } else if(token.type == T__finally) {
7900                 eat(T___finally);
7901                 statement->ms_try.final_statement = parse_compound_statement(false);
7902         } else {
7903                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
7904                 return create_invalid_statement();
7905         }
7906         return statement;
7907 end_error:
7908         return create_invalid_statement();
7909 }
7910
7911 /**
7912  * Parse a statement.
7913  * There's also parse_statement() which additionally checks for
7914  * "statement has no effect" warnings
7915  */
7916 static statement_t *intern_parse_statement(void)
7917 {
7918         statement_t *statement = NULL;
7919
7920         /* declaration or statement */
7921         add_anchor_token(';');
7922         switch(token.type) {
7923         case T_asm:
7924                 statement = parse_asm_statement();
7925                 break;
7926
7927         case T_case:
7928                 statement = parse_case_statement();
7929                 break;
7930
7931         case T_default:
7932                 statement = parse_default_statement();
7933                 break;
7934
7935         case '{':
7936                 statement = parse_compound_statement(false);
7937                 break;
7938
7939         case T_if:
7940                 statement = parse_if();
7941                 break;
7942
7943         case T_switch:
7944                 statement = parse_switch();
7945                 break;
7946
7947         case T_while:
7948                 statement = parse_while();
7949                 break;
7950
7951         case T_do:
7952                 statement = parse_do();
7953                 break;
7954
7955         case T_for:
7956                 statement = parse_for();
7957                 break;
7958
7959         case T_goto:
7960                 statement = parse_goto();
7961                 break;
7962
7963         case T_continue:
7964                 statement = parse_continue();
7965                 break;
7966
7967         case T_break:
7968                 statement = parse_break();
7969                 break;
7970
7971         case T___leave:
7972                 statement = parse_leave();
7973                 break;
7974
7975         case T_return:
7976                 statement = parse_return();
7977                 break;
7978
7979         case ';':
7980                 if(warning.empty_statement) {
7981                         warningf(HERE, "statement is empty");
7982                 }
7983                 statement = create_empty_statement();
7984                 next_token();
7985                 break;
7986
7987         case T_IDENTIFIER:
7988                 if(look_ahead(1)->type == ':') {
7989                         statement = parse_label_statement();
7990                         break;
7991                 }
7992
7993                 if(is_typedef_symbol(token.v.symbol)) {
7994                         statement = parse_declaration_statement();
7995                         break;
7996                 }
7997
7998                 statement = parse_expression_statement();
7999                 break;
8000
8001         case T___extension__:
8002                 /* this can be a prefix to a declaration or an expression statement */
8003                 /* we simply eat it now and parse the rest with tail recursion */
8004                 do {
8005                         next_token();
8006                 } while(token.type == T___extension__);
8007                 statement = parse_statement();
8008                 break;
8009
8010         DECLARATION_START
8011                 statement = parse_declaration_statement();
8012                 break;
8013
8014         case T___try:
8015                 statement = parse_ms_try_statment();
8016                 break;
8017
8018         default:
8019                 statement = parse_expression_statement();
8020                 break;
8021         }
8022         rem_anchor_token(';');
8023
8024         assert(statement != NULL
8025                         && statement->base.source_position.input_name != NULL);
8026
8027         return statement;
8028 }
8029
8030 /**
8031  * parse a statement and emits "statement has no effect" warning if needed
8032  * (This is really a wrapper around intern_parse_statement with check for 1
8033  *  single warning. It is needed, because for statement expressions we have
8034  *  to avoid the warning on the last statement)
8035  */
8036 static statement_t *parse_statement(void)
8037 {
8038         statement_t *statement = intern_parse_statement();
8039
8040         if(statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
8041                 expression_t *expression = statement->expression.expression;
8042                 if(!expression_has_effect(expression)) {
8043                         warningf(&expression->base.source_position,
8044                                         "statement has no effect");
8045                 }
8046         }
8047
8048         return statement;
8049 }
8050
8051 /**
8052  * Parse a compound statement.
8053  */
8054 static statement_t *parse_compound_statement(bool inside_expression_statement)
8055 {
8056         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
8057
8058         statement->base.source_position = token.source_position;
8059
8060         eat('{');
8061         add_anchor_token('}');
8062
8063         int      top        = environment_top();
8064         scope_t *last_scope = scope;
8065         set_scope(&statement->compound.scope);
8066
8067         statement_t *last_statement = NULL;
8068
8069         while(token.type != '}' && token.type != T_EOF) {
8070                 statement_t *sub_statement = intern_parse_statement();
8071                 if(is_invalid_statement(sub_statement)) {
8072                         /* an error occurred. if we are at an anchor, return */
8073                         if(at_anchor())
8074                                 goto end_error;
8075                         continue;
8076                 }
8077
8078                 if(last_statement != NULL) {
8079                         last_statement->base.next = sub_statement;
8080                 } else {
8081                         statement->compound.statements = sub_statement;
8082                 }
8083
8084                 while(sub_statement->base.next != NULL)
8085                         sub_statement = sub_statement->base.next;
8086
8087                 last_statement = sub_statement;
8088         }
8089
8090         if(token.type == '}') {
8091                 next_token();
8092         } else {
8093                 errorf(&statement->base.source_position,
8094                        "end of file while looking for closing '}'");
8095         }
8096
8097         /* look over all statements again to produce no effect warnings */
8098         if(warning.unused_value) {
8099                 statement_t *sub_statement = statement->compound.statements;
8100                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
8101                         if(sub_statement->kind != STATEMENT_EXPRESSION)
8102                                 continue;
8103                         /* don't emit a warning for the last expression in an expression
8104                          * statement as it has always an effect */
8105                         if(inside_expression_statement && sub_statement->base.next == NULL)
8106                                 continue;
8107
8108                         expression_t *expression = sub_statement->expression.expression;
8109                         if(!expression_has_effect(expression)) {
8110                                 warningf(&expression->base.source_position,
8111                                          "statement has no effect");
8112                         }
8113                 }
8114         }
8115
8116 end_error:
8117         rem_anchor_token('}');
8118         assert(scope == &statement->compound.scope);
8119         set_scope(last_scope);
8120         environment_pop_to(top);
8121
8122         return statement;
8123 }
8124
8125 /**
8126  * Initialize builtin types.
8127  */
8128 static void initialize_builtin_types(void)
8129 {
8130         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
8131         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
8132         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
8133         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
8134         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
8135         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
8136         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    type_int);
8137         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
8138
8139         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
8140         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
8141         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
8142         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
8143 }
8144
8145 /**
8146  * Check for unused global static functions and variables
8147  */
8148 static void check_unused_globals(void)
8149 {
8150         if (!warning.unused_function && !warning.unused_variable)
8151                 return;
8152
8153         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
8154                 if (decl->used || decl->storage_class != STORAGE_CLASS_STATIC)
8155                         continue;
8156
8157                 type_t *const type = decl->type;
8158                 const char *s;
8159                 if (is_type_function(skip_typeref(type))) {
8160                         if (!warning.unused_function || decl->is_inline)
8161                                 continue;
8162
8163                         s = (decl->init.statement != NULL ? "defined" : "declared");
8164                 } else {
8165                         if (!warning.unused_variable)
8166                                 continue;
8167
8168                         s = "defined";
8169                 }
8170
8171                 warningf(&decl->source_position, "'%#T' %s but not used",
8172                         type, decl->symbol, s);
8173         }
8174 }
8175
8176 /**
8177  * Parse a translation unit.
8178  */
8179 static void parse_translation_unit(void)
8180 {
8181         while(token.type != T_EOF) {
8182                 if (token.type == ';') {
8183                         /* TODO error in strict mode */
8184                         warningf(HERE, "stray ';' outside of function");
8185                         next_token();
8186                 } else {
8187                         parse_external_declaration();
8188                 }
8189         }
8190 }
8191
8192 /**
8193  * Parse the input.
8194  *
8195  * @return  the translation unit or NULL if errors occurred.
8196  */
8197 void start_parsing(void)
8198 {
8199         environment_stack = NEW_ARR_F(stack_entry_t, 0);
8200         label_stack       = NEW_ARR_F(stack_entry_t, 0);
8201         diagnostic_count  = 0;
8202         error_count       = 0;
8203         warning_count     = 0;
8204
8205         type_set_output(stderr);
8206         ast_set_output(stderr);
8207
8208         assert(unit == NULL);
8209         unit = allocate_ast_zero(sizeof(unit[0]));
8210
8211         assert(global_scope == NULL);
8212         global_scope = &unit->scope;
8213
8214         assert(scope == NULL);
8215         set_scope(&unit->scope);
8216
8217         initialize_builtin_types();
8218 }
8219
8220 translation_unit_t *finish_parsing(void)
8221 {
8222         assert(scope == &unit->scope);
8223         scope          = NULL;
8224         last_declaration = NULL;
8225
8226         assert(global_scope == &unit->scope);
8227         check_unused_globals();
8228         global_scope = NULL;
8229
8230         DEL_ARR_F(environment_stack);
8231         DEL_ARR_F(label_stack);
8232
8233         translation_unit_t *result = unit;
8234         unit = NULL;
8235         return result;
8236 }
8237
8238 void parse(void)
8239 {
8240         lookahead_bufpos = 0;
8241         for(int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
8242                 next_token();
8243         }
8244         parse_translation_unit();
8245 }
8246
8247 /**
8248  * Initialize the parser.
8249  */
8250 void init_parser(void)
8251 {
8252         if(c_mode & _MS) {
8253                 /* add predefined symbols for extended-decl-modifier */
8254                 sym_align      = symbol_table_insert("align");
8255                 sym_allocate   = symbol_table_insert("allocate");
8256                 sym_dllimport  = symbol_table_insert("dllimport");
8257                 sym_dllexport  = symbol_table_insert("dllexport");
8258                 sym_naked      = symbol_table_insert("naked");
8259                 sym_noinline   = symbol_table_insert("noinline");
8260                 sym_noreturn   = symbol_table_insert("noreturn");
8261                 sym_nothrow    = symbol_table_insert("nothrow");
8262                 sym_novtable   = symbol_table_insert("novtable");
8263                 sym_property   = symbol_table_insert("property");
8264                 sym_get        = symbol_table_insert("get");
8265                 sym_put        = symbol_table_insert("put");
8266                 sym_selectany  = symbol_table_insert("selectany");
8267                 sym_thread     = symbol_table_insert("thread");
8268                 sym_uuid       = symbol_table_insert("uuid");
8269                 sym_deprecated = symbol_table_insert("deprecated");
8270                 sym_restrict   = symbol_table_insert("restrict");
8271                 sym_noalias    = symbol_table_insert("noalias");
8272         }
8273         memset(token_anchor_set, 0, sizeof(token_anchor_set));
8274
8275         init_expression_parsers();
8276         obstack_init(&temp_obst);
8277
8278         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
8279         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
8280 }
8281
8282 /**
8283  * Terminate the parser.
8284  */
8285 void exit_parser(void)
8286 {
8287         obstack_free(&temp_obst, NULL);
8288 }