Small simplification.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 /** if wchar_t is equal to unsigned short. */
43 bool opt_short_wchar_t =
44 #ifdef _WIN32
45         true;
46 #else
47         false;
48 #endif
49
50 //#define PRINT_TOKENS
51 #define MAX_LOOKAHEAD 2
52
53 typedef struct {
54         declaration_t *old_declaration;
55         symbol_t      *symbol;
56         unsigned short namespc;
57 } stack_entry_t;
58
59 typedef struct argument_list_t argument_list_t;
60 struct argument_list_t {
61         long              argument;
62         argument_list_t  *next;
63 };
64
65 typedef struct gnu_attribute_t gnu_attribute_t;
66 struct gnu_attribute_t {
67         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
68         gnu_attribute_t     *next;
69         bool                 invalid;        /**< Set if this attribute had argument errors, */
70         bool                 have_arguments; /**< True, if this attribute has arguments. */
71         union {
72                 size_t              value;
73                 string_t            string;
74                 atomic_type_kind_t  akind;
75                 long                argument;  /**< Single argument. */
76                 argument_list_t    *arguments; /**< List of argument expressions. */
77         } u;
78 };
79
80 typedef struct declaration_specifiers_t  declaration_specifiers_t;
81 struct declaration_specifiers_t {
82         source_position_t  source_position;
83         unsigned char      declared_storage_class;
84         unsigned char      alignment;         /**< Alignment, 0 if not set. */
85         unsigned int       is_inline : 1;
86         unsigned int       deprecated : 1;
87         decl_modifiers_t   modifiers;         /**< declaration modifiers */
88         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
89         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
90         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
91         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
92         type_t            *type;
93 };
94
95 /**
96  * An environment for parsing initializers (and compound literals).
97  */
98 typedef struct parse_initializer_env_t {
99         type_t        *type;        /**< the type of the initializer. In case of an
100                                          array type with unspecified size this gets
101                                          adjusted to the actual size. */
102         declaration_t *declaration; /**< the declaration that is initialized if any */
103         bool           must_be_constant;
104 } parse_initializer_env_t;
105
106 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration, bool is_definition);
107
108 static token_t             token;
109 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
110 static int                 lookahead_bufpos;
111 static stack_entry_t      *environment_stack = NULL;
112 static stack_entry_t      *label_stack       = NULL;
113 static stack_entry_t      *local_label_stack = NULL;
114 static scope_t            *global_scope      = NULL;
115 static scope_t            *scope             = NULL;
116 static declaration_t      *last_declaration  = NULL;
117 static declaration_t      *current_function  = NULL;
118 static declaration_t      *current_init_decl = NULL;
119 static switch_statement_t *current_switch    = NULL;
120 static statement_t        *current_loop      = NULL;
121 static statement_t        *current_parent    = NULL;
122 static ms_try_statement_t *current_try       = NULL;
123 static goto_statement_t   *goto_first        = NULL;
124 static goto_statement_t   *goto_last         = NULL;
125 static label_statement_t  *label_first       = NULL;
126 static label_statement_t  *label_last        = NULL;
127 static translation_unit_t *unit              = NULL;
128 static struct obstack      temp_obst;
129
130 #define PUSH_PARENT(stmt)                          \
131         statement_t *const prev_parent = current_parent; \
132         current_parent = (stmt);
133 #define POP_PARENT ((void)(current_parent = prev_parent))
134
135 static source_position_t null_position = { NULL, 0 };
136
137 /** special symbol used for anonymous entities. */
138 static const symbol_t *sym_anonymous = NULL;
139
140 /* symbols for Microsoft extended-decl-modifier */
141 static const symbol_t *sym_align      = NULL;
142 static const symbol_t *sym_allocate   = NULL;
143 static const symbol_t *sym_dllimport  = NULL;
144 static const symbol_t *sym_dllexport  = NULL;
145 static const symbol_t *sym_naked      = NULL;
146 static const symbol_t *sym_noinline   = NULL;
147 static const symbol_t *sym_noreturn   = NULL;
148 static const symbol_t *sym_nothrow    = NULL;
149 static const symbol_t *sym_novtable   = NULL;
150 static const symbol_t *sym_property   = NULL;
151 static const symbol_t *sym_get        = NULL;
152 static const symbol_t *sym_put        = NULL;
153 static const symbol_t *sym_selectany  = NULL;
154 static const symbol_t *sym_thread     = NULL;
155 static const symbol_t *sym_uuid       = NULL;
156 static const symbol_t *sym_deprecated = NULL;
157 static const symbol_t *sym_restrict   = NULL;
158 static const symbol_t *sym_noalias    = NULL;
159
160 /** The token anchor set */
161 static unsigned char token_anchor_set[T_LAST_TOKEN];
162
163 /** The current source position. */
164 #define HERE (&token.source_position)
165
166 static type_t *type_valist;
167
168 static statement_t *parse_compound_statement(bool inside_expression_statement);
169 static statement_t *parse_statement(void);
170
171 static expression_t *parse_sub_expression(unsigned precedence);
172 static expression_t *parse_expression(void);
173 static type_t       *parse_typename(void);
174
175 static void parse_compound_type_entries(declaration_t *compound_declaration);
176 static declaration_t *parse_declarator(
177                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
178 static declaration_t *record_declaration(declaration_t *declaration, bool is_definition);
179
180 static void semantic_comparison(binary_expression_t *expression);
181
182 #define STORAGE_CLASSES     \
183         case T_typedef:         \
184         case T_extern:          \
185         case T_static:          \
186         case T_auto:            \
187         case T_register:        \
188         case T___thread:
189
190 #define TYPE_QUALIFIERS     \
191         case T_const:           \
192         case T_restrict:        \
193         case T_volatile:        \
194         case T_inline:          \
195         case T__forceinline:    \
196         case T___attribute__:
197
198 #ifdef PROVIDE_COMPLEX
199 #define COMPLEX_SPECIFIERS  \
200         case T__Complex:
201 #define IMAGINARY_SPECIFIERS \
202         case T__Imaginary:
203 #else
204 #define COMPLEX_SPECIFIERS
205 #define IMAGINARY_SPECIFIERS
206 #endif
207
208 #define TYPE_SPECIFIERS       \
209         case T_void:              \
210         case T_char:              \
211         case T_short:             \
212         case T_int:               \
213         case T_long:              \
214         case T_float:             \
215         case T_double:            \
216         case T_signed:            \
217         case T_unsigned:          \
218         case T__Bool:             \
219         case T_struct:            \
220         case T_union:             \
221         case T_enum:              \
222         case T___typeof__:        \
223         case T___builtin_va_list: \
224         case T__declspec:         \
225         COMPLEX_SPECIFIERS        \
226         IMAGINARY_SPECIFIERS
227
228 #define DECLARATION_START   \
229         STORAGE_CLASSES         \
230         TYPE_QUALIFIERS         \
231         TYPE_SPECIFIERS
232
233 #define TYPENAME_START      \
234         TYPE_QUALIFIERS         \
235         TYPE_SPECIFIERS
236
237 /**
238  * Allocate an AST node with given size and
239  * initialize all fields with zero.
240  */
241 static void *allocate_ast_zero(size_t size)
242 {
243         void *res = allocate_ast(size);
244         memset(res, 0, size);
245         return res;
246 }
247
248 static declaration_t *allocate_declaration_zero(void)
249 {
250         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
251         declaration->type      = type_error_type;
252         declaration->alignment = 0;
253         return declaration;
254 }
255
256 /**
257  * Returns the size of a statement node.
258  *
259  * @param kind  the statement kind
260  */
261 static size_t get_statement_struct_size(statement_kind_t kind)
262 {
263         static const size_t sizes[] = {
264                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
265                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
266                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
267                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
268                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
269                 [STATEMENT_IF]          = sizeof(if_statement_t),
270                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
271                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
272                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
273                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
274                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
275                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
276                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
277                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
278                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
279                 [STATEMENT_FOR]         = sizeof(for_statement_t),
280                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
281                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
282                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
283         };
284         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
285         assert(sizes[kind] != 0);
286         return sizes[kind];
287 }
288
289 /**
290  * Returns the size of an expression node.
291  *
292  * @param kind  the expression kind
293  */
294 static size_t get_expression_struct_size(expression_kind_t kind)
295 {
296         static const size_t sizes[] = {
297                 [EXPR_INVALID]                 = sizeof(expression_base_t),
298                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
299                 [EXPR_CONST]                   = sizeof(const_expression_t),
300                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
301                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
302                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
303                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
304                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
305                 [EXPR_CALL]                    = sizeof(call_expression_t),
306                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
307                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
308                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
309                 [EXPR_SELECT]                  = sizeof(select_expression_t),
310                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
311                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
312                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
313                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
314                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
315                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
316                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
317                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
318                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
319                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
320                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
321                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
322                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
323         };
324         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
325                 return sizes[EXPR_UNARY_FIRST];
326         }
327         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
328                 return sizes[EXPR_BINARY_FIRST];
329         }
330         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
331         assert(sizes[kind] != 0);
332         return sizes[kind];
333 }
334
335 /**
336  * Allocate a statement node of given kind and initialize all
337  * fields with zero.
338  */
339 static statement_t *allocate_statement_zero(statement_kind_t kind)
340 {
341         size_t       size = get_statement_struct_size(kind);
342         statement_t *res  = allocate_ast_zero(size);
343
344         res->base.kind   = kind;
345         res->base.parent = current_parent;
346         return res;
347 }
348
349 /**
350  * Allocate an expression node of given kind and initialize all
351  * fields with zero.
352  */
353 static expression_t *allocate_expression_zero(expression_kind_t kind)
354 {
355         size_t        size = get_expression_struct_size(kind);
356         expression_t *res  = allocate_ast_zero(size);
357
358         res->base.kind = kind;
359         res->base.type = type_error_type;
360         return res;
361 }
362
363 /**
364  * Creates a new invalid expression.
365  */
366 static expression_t *create_invalid_expression(void)
367 {
368         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
369         expression->base.source_position = token.source_position;
370         return expression;
371 }
372
373 /**
374  * Creates a new invalid statement.
375  */
376 static statement_t *create_invalid_statement(void)
377 {
378         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
379         statement->base.source_position = token.source_position;
380         return statement;
381 }
382
383 /**
384  * Allocate a new empty statement.
385  */
386 static statement_t *create_empty_statement(void)
387 {
388         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
389         statement->base.source_position = token.source_position;
390         return statement;
391 }
392
393 /**
394  * Returns the size of a type node.
395  *
396  * @param kind  the type kind
397  */
398 static size_t get_type_struct_size(type_kind_t kind)
399 {
400         static const size_t sizes[] = {
401                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
402                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
403                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
404                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
405                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
406                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
407                 [TYPE_ENUM]            = sizeof(enum_type_t),
408                 [TYPE_FUNCTION]        = sizeof(function_type_t),
409                 [TYPE_POINTER]         = sizeof(pointer_type_t),
410                 [TYPE_ARRAY]           = sizeof(array_type_t),
411                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
412                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
413                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
414         };
415         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
416         assert(kind <= TYPE_TYPEOF);
417         assert(sizes[kind] != 0);
418         return sizes[kind];
419 }
420
421 /**
422  * Allocate a type node of given kind and initialize all
423  * fields with zero.
424  *
425  * @param kind             type kind to allocate
426  * @param source_position  the source position of the type definition
427  */
428 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
429 {
430         size_t  size = get_type_struct_size(kind);
431         type_t *res  = obstack_alloc(type_obst, size);
432         memset(res, 0, size);
433
434         res->base.kind            = kind;
435         res->base.source_position = *source_position;
436         return res;
437 }
438
439 /**
440  * Returns the size of an initializer node.
441  *
442  * @param kind  the initializer kind
443  */
444 static size_t get_initializer_size(initializer_kind_t kind)
445 {
446         static const size_t sizes[] = {
447                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
448                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
449                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
450                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
451                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
452         };
453         assert(kind < sizeof(sizes) / sizeof(*sizes));
454         assert(sizes[kind] != 0);
455         return sizes[kind];
456 }
457
458 /**
459  * Allocate an initializer node of given kind and initialize all
460  * fields with zero.
461  */
462 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
463 {
464         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
465         result->kind          = kind;
466
467         return result;
468 }
469
470 /**
471  * Free a type from the type obstack.
472  */
473 static void free_type(void *type)
474 {
475         obstack_free(type_obst, type);
476 }
477
478 /**
479  * Returns the index of the top element of the environment stack.
480  */
481 static size_t environment_top(void)
482 {
483         return ARR_LEN(environment_stack);
484 }
485
486 /**
487  * Returns the index of the top element of the global label stack.
488  */
489 static size_t label_top(void)
490 {
491         return ARR_LEN(label_stack);
492 }
493
494 /**
495  * Returns the index of the top element of the local label stack.
496  */
497 static size_t local_label_top(void)
498 {
499         return ARR_LEN(local_label_stack);
500 }
501
502 /**
503  * Return the next token.
504  */
505 static inline void next_token(void)
506 {
507         token                              = lookahead_buffer[lookahead_bufpos];
508         lookahead_buffer[lookahead_bufpos] = lexer_token;
509         lexer_next_token();
510
511         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
512
513 #ifdef PRINT_TOKENS
514         print_token(stderr, &token);
515         fprintf(stderr, "\n");
516 #endif
517 }
518
519 /**
520  * Return the next token with a given lookahead.
521  */
522 static inline const token_t *look_ahead(int num)
523 {
524         assert(num > 0 && num <= MAX_LOOKAHEAD);
525         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
526         return &lookahead_buffer[pos];
527 }
528
529 /**
530  * Adds a token to the token anchor set (a multi-set).
531  */
532 static void add_anchor_token(int token_type)
533 {
534         assert(0 <= token_type && token_type < T_LAST_TOKEN);
535         ++token_anchor_set[token_type];
536 }
537
538 static int save_and_reset_anchor_state(int token_type)
539 {
540         assert(0 <= token_type && token_type < T_LAST_TOKEN);
541         int count = token_anchor_set[token_type];
542         token_anchor_set[token_type] = 0;
543         return count;
544 }
545
546 static void restore_anchor_state(int token_type, int count)
547 {
548         assert(0 <= token_type && token_type < T_LAST_TOKEN);
549         token_anchor_set[token_type] = count;
550 }
551
552 /**
553  * Remove a token from the token anchor set (a multi-set).
554  */
555 static void rem_anchor_token(int token_type)
556 {
557         assert(0 <= token_type && token_type < T_LAST_TOKEN);
558         assert(token_anchor_set[token_type] != 0);
559         --token_anchor_set[token_type];
560 }
561
562 static bool at_anchor(void)
563 {
564         if (token.type < 0)
565                 return false;
566         return token_anchor_set[token.type];
567 }
568
569 /**
570  * Eat tokens until a matching token is found.
571  */
572 static void eat_until_matching_token(int type)
573 {
574         int end_token;
575         switch (type) {
576                 case '(': end_token = ')';  break;
577                 case '{': end_token = '}';  break;
578                 case '[': end_token = ']';  break;
579                 default:  end_token = type; break;
580         }
581
582         unsigned parenthesis_count = 0;
583         unsigned brace_count       = 0;
584         unsigned bracket_count     = 0;
585         while (token.type        != end_token ||
586                parenthesis_count != 0         ||
587                brace_count       != 0         ||
588                bracket_count     != 0) {
589                 switch (token.type) {
590                 case T_EOF: return;
591                 case '(': ++parenthesis_count; break;
592                 case '{': ++brace_count;       break;
593                 case '[': ++bracket_count;     break;
594
595                 case ')':
596                         if (parenthesis_count > 0)
597                                 --parenthesis_count;
598                         goto check_stop;
599
600                 case '}':
601                         if (brace_count > 0)
602                                 --brace_count;
603                         goto check_stop;
604
605                 case ']':
606                         if (bracket_count > 0)
607                                 --bracket_count;
608 check_stop:
609                         if (token.type        == end_token &&
610                             parenthesis_count == 0         &&
611                             brace_count       == 0         &&
612                             bracket_count     == 0)
613                                 return;
614                         break;
615
616                 default:
617                         break;
618                 }
619                 next_token();
620         }
621 }
622
623 /**
624  * Eat input tokens until an anchor is found.
625  */
626 static void eat_until_anchor(void)
627 {
628         if (token.type == T_EOF)
629                 return;
630         while (token_anchor_set[token.type] == 0) {
631                 if (token.type == '(' || token.type == '{' || token.type == '[')
632                         eat_until_matching_token(token.type);
633                 if (token.type == T_EOF)
634                         break;
635                 next_token();
636         }
637 }
638
639 static void eat_block(void)
640 {
641         eat_until_matching_token('{');
642         if (token.type == '}')
643                 next_token();
644 }
645
646 /**
647  * eat all token until a ';' is reached or a stop token is found.
648  */
649 static void eat_statement(void)
650 {
651         eat_until_matching_token(';');
652         if (token.type == ';')
653                 next_token();
654 }
655
656 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
657
658 /**
659  * Report a parse error because an expected token was not found.
660  */
661 static
662 #if defined __GNUC__ && __GNUC__ >= 4
663 __attribute__((sentinel))
664 #endif
665 void parse_error_expected(const char *message, ...)
666 {
667         if (message != NULL) {
668                 errorf(HERE, "%s", message);
669         }
670         va_list ap;
671         va_start(ap, message);
672         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
673         va_end(ap);
674 }
675
676 /**
677  * Report a type error.
678  */
679 static void type_error(const char *msg, const source_position_t *source_position,
680                        type_t *type)
681 {
682         errorf(source_position, "%s, but found type '%T'", msg, type);
683 }
684
685 /**
686  * Report an incompatible type.
687  */
688 static void type_error_incompatible(const char *msg,
689                 const source_position_t *source_position, type_t *type1, type_t *type2)
690 {
691         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
692                msg, type1, type2);
693 }
694
695 /**
696  * Expect the the current token is the expected token.
697  * If not, generate an error, eat the current statement,
698  * and goto the end_error label.
699  */
700 #define expect(expected)                                  \
701         do {                                                  \
702                 if (UNLIKELY(token.type != (expected))) {         \
703                         parse_error_expected(NULL, (expected), NULL); \
704                         add_anchor_token(expected);                   \
705                         eat_until_anchor();                           \
706                         if (token.type == expected)                   \
707                                 next_token();                             \
708                         rem_anchor_token(expected);                   \
709                         goto end_error;                               \
710                 }                                                 \
711                 next_token();                                     \
712         } while (0)
713
714 static void set_scope(scope_t *new_scope)
715 {
716         if (scope != NULL) {
717                 scope->last_declaration = last_declaration;
718         }
719         scope = new_scope;
720
721         last_declaration = new_scope->last_declaration;
722 }
723
724 /**
725  * Search a symbol in a given namespace and returns its declaration or
726  * NULL if this symbol was not found.
727  */
728 static declaration_t *get_declaration(const symbol_t *const symbol,
729                                       const namespace_t namespc)
730 {
731         declaration_t *declaration = symbol->declaration;
732         for( ; declaration != NULL; declaration = declaration->symbol_next) {
733                 if (declaration->namespc == namespc)
734                         return declaration;
735         }
736
737         return NULL;
738 }
739
740 /**
741  * pushs an environment_entry on the environment stack and links the
742  * corresponding symbol to the new entry
743  */
744 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
745 {
746         symbol_t    *symbol  = declaration->symbol;
747         namespace_t  namespc = (namespace_t) declaration->namespc;
748
749         /* replace/add declaration into declaration list of the symbol */
750         declaration_t *iter = symbol->declaration;
751         if (iter == NULL) {
752                 symbol->declaration = declaration;
753         } else {
754                 declaration_t *iter_last = NULL;
755                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
756                         /* replace an entry? */
757                         if (iter->namespc == namespc) {
758                                 if (iter_last == NULL) {
759                                         symbol->declaration = declaration;
760                                 } else {
761                                         iter_last->symbol_next = declaration;
762                                 }
763                                 declaration->symbol_next = iter->symbol_next;
764                                 break;
765                         }
766                 }
767                 if (iter == NULL) {
768                         assert(iter_last->symbol_next == NULL);
769                         iter_last->symbol_next = declaration;
770                 }
771         }
772
773         /* remember old declaration */
774         stack_entry_t entry;
775         entry.symbol          = symbol;
776         entry.old_declaration = iter;
777         entry.namespc         = (unsigned short) namespc;
778         ARR_APP1(stack_entry_t, *stack_ptr, entry);
779 }
780
781 /**
782  * Push a declaration on the environment stack.
783  *
784  * @param declaration  the declaration
785  */
786 static void environment_push(declaration_t *declaration)
787 {
788         assert(declaration->source_position.input_name != NULL);
789         assert(declaration->parent_scope != NULL);
790         stack_push(&environment_stack, declaration);
791 }
792
793 /**
794  * Push a declaration on the global label stack.
795  *
796  * @param declaration  the declaration
797  */
798 static void label_push(declaration_t *declaration)
799 {
800         declaration->parent_scope = &current_function->scope;
801         stack_push(&label_stack, declaration);
802 }
803
804 /**
805  * Push a declaration of the local label stack.
806  *
807  * @param declaration  the declaration
808  */
809 static void local_label_push(declaration_t *declaration)
810 {
811         assert(declaration->parent_scope != NULL);
812         stack_push(&local_label_stack, declaration);
813 }
814
815 /**
816  * pops symbols from the environment stack until @p new_top is the top element
817  */
818 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
819 {
820         stack_entry_t *stack = *stack_ptr;
821         size_t         top   = ARR_LEN(stack);
822         size_t         i;
823
824         assert(new_top <= top);
825         if (new_top == top)
826                 return;
827
828         for(i = top; i > new_top; --i) {
829                 stack_entry_t *entry = &stack[i - 1];
830
831                 declaration_t *old_declaration = entry->old_declaration;
832                 symbol_t      *symbol          = entry->symbol;
833                 namespace_t    namespc         = (namespace_t)entry->namespc;
834
835                 /* replace/remove declaration */
836                 declaration_t *declaration = symbol->declaration;
837                 assert(declaration != NULL);
838                 if (declaration->namespc == namespc) {
839                         if (old_declaration == NULL) {
840                                 symbol->declaration = declaration->symbol_next;
841                         } else {
842                                 symbol->declaration = old_declaration;
843                         }
844                 } else {
845                         declaration_t *iter_last = declaration;
846                         declaration_t *iter      = declaration->symbol_next;
847                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
848                                 /* replace an entry? */
849                                 if (iter->namespc == namespc) {
850                                         assert(iter_last != NULL);
851                                         iter_last->symbol_next = old_declaration;
852                                         if (old_declaration != NULL) {
853                                                 old_declaration->symbol_next = iter->symbol_next;
854                                         }
855                                         break;
856                                 }
857                         }
858                         assert(iter != NULL);
859                 }
860         }
861
862         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
863 }
864
865 /**
866  * Pop all entries from the environment stack until the new_top
867  * is reached.
868  *
869  * @param new_top  the new stack top
870  */
871 static void environment_pop_to(size_t new_top)
872 {
873         stack_pop_to(&environment_stack, new_top);
874 }
875
876 /**
877  * Pop all entries from the global label stack until the new_top
878  * is reached.
879  *
880  * @param new_top  the new stack top
881  */
882 static void label_pop_to(size_t new_top)
883 {
884         stack_pop_to(&label_stack, new_top);
885 }
886
887 /**
888  * Pop all entries from the local label stack until the new_top
889  * is reached.
890  *
891  * @param new_top  the new stack top
892  */
893 static void local_label_pop_to(size_t new_top)
894 {
895         stack_pop_to(&local_label_stack, new_top);
896 }
897
898
899 static int get_akind_rank(atomic_type_kind_t akind)
900 {
901         return (int) akind;
902 }
903
904 static int get_rank(const type_t *type)
905 {
906         assert(!is_typeref(type));
907         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
908          * and esp. footnote 108). However we can't fold constants (yet), so we
909          * can't decide whether unsigned int is possible, while int always works.
910          * (unsigned int would be preferable when possible... for stuff like
911          *  struct { enum { ... } bla : 4; } ) */
912         if (type->kind == TYPE_ENUM)
913                 return get_akind_rank(ATOMIC_TYPE_INT);
914
915         assert(type->kind == TYPE_ATOMIC);
916         return get_akind_rank(type->atomic.akind);
917 }
918
919 static type_t *promote_integer(type_t *type)
920 {
921         if (type->kind == TYPE_BITFIELD)
922                 type = type->bitfield.base_type;
923
924         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
925                 type = type_int;
926
927         return type;
928 }
929
930 /**
931  * Create a cast expression.
932  *
933  * @param expression  the expression to cast
934  * @param dest_type   the destination type
935  */
936 static expression_t *create_cast_expression(expression_t *expression,
937                                             type_t *dest_type)
938 {
939         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
940
941         cast->unary.value = expression;
942         cast->base.type   = dest_type;
943
944         return cast;
945 }
946
947 /**
948  * Check if a given expression represents the 0 pointer constant.
949  */
950 static bool is_null_pointer_constant(const expression_t *expression)
951 {
952         /* skip void* cast */
953         if (expression->kind == EXPR_UNARY_CAST
954                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
955                 expression = expression->unary.value;
956         }
957
958         /* TODO: not correct yet, should be any constant integer expression
959          * which evaluates to 0 */
960         if (expression->kind != EXPR_CONST)
961                 return false;
962
963         type_t *const type = skip_typeref(expression->base.type);
964         if (!is_type_integer(type))
965                 return false;
966
967         return expression->conste.v.int_value == 0;
968 }
969
970 /**
971  * Create an implicit cast expression.
972  *
973  * @param expression  the expression to cast
974  * @param dest_type   the destination type
975  */
976 static expression_t *create_implicit_cast(expression_t *expression,
977                                           type_t *dest_type)
978 {
979         type_t *const source_type = expression->base.type;
980
981         if (source_type == dest_type)
982                 return expression;
983
984         return create_cast_expression(expression, dest_type);
985 }
986
987 typedef enum assign_error_t {
988         ASSIGN_SUCCESS,
989         ASSIGN_ERROR_INCOMPATIBLE,
990         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
991         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
992         ASSIGN_WARNING_POINTER_FROM_INT,
993         ASSIGN_WARNING_INT_FROM_POINTER
994 } assign_error_t;
995
996 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
997                                 const expression_t *const right,
998                                 const char *context,
999                                 const source_position_t *source_position)
1000 {
1001         type_t *const orig_type_right = right->base.type;
1002         type_t *const type_left       = skip_typeref(orig_type_left);
1003         type_t *const type_right      = skip_typeref(orig_type_right);
1004
1005         switch (error) {
1006         case ASSIGN_SUCCESS:
1007                 return;
1008         case ASSIGN_ERROR_INCOMPATIBLE:
1009                 errorf(source_position,
1010                        "destination type '%T' in %s is incompatible with type '%T'",
1011                        orig_type_left, context, orig_type_right);
1012                 return;
1013
1014         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1015                 type_t *points_to_left
1016                         = skip_typeref(type_left->pointer.points_to);
1017                 type_t *points_to_right
1018                         = skip_typeref(type_right->pointer.points_to);
1019
1020                 /* the left type has all qualifiers from the right type */
1021                 unsigned missing_qualifiers
1022                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1023                 warningf(source_position,
1024                          "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1025                          orig_type_left, context, orig_type_right, missing_qualifiers);
1026                 return;
1027         }
1028
1029         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1030                 warningf(source_position,
1031                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1032                                  orig_type_left, context, right, orig_type_right);
1033                 return;
1034
1035         case ASSIGN_WARNING_POINTER_FROM_INT:
1036                 warningf(source_position,
1037                          "%s makes pointer '%T' from integer '%T' without a cast",
1038                                  context, orig_type_left, orig_type_right);
1039                 return;
1040
1041         case ASSIGN_WARNING_INT_FROM_POINTER:
1042                 warningf(source_position,
1043                                 "%s makes integer '%T' from pointer '%T' without a cast",
1044                                 context, orig_type_left, orig_type_right);
1045                 return;
1046
1047         default:
1048                 panic("invalid error value");
1049         }
1050 }
1051
1052 /** Implements the rules from Â§ 6.5.16.1 */
1053 static assign_error_t semantic_assign(type_t *orig_type_left,
1054                                       const expression_t *const right)
1055 {
1056         type_t *const orig_type_right = right->base.type;
1057         type_t *const type_left       = skip_typeref(orig_type_left);
1058         type_t *const type_right      = skip_typeref(orig_type_right);
1059
1060         if (is_type_pointer(type_left)) {
1061                 if (is_null_pointer_constant(right)) {
1062                         return ASSIGN_SUCCESS;
1063                 } else if (is_type_pointer(type_right)) {
1064                         type_t *points_to_left
1065                                 = skip_typeref(type_left->pointer.points_to);
1066                         type_t *points_to_right
1067                                 = skip_typeref(type_right->pointer.points_to);
1068                         assign_error_t res = ASSIGN_SUCCESS;
1069
1070                         /* the left type has all qualifiers from the right type */
1071                         unsigned missing_qualifiers
1072                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1073                         if (missing_qualifiers != 0) {
1074                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1075                         }
1076
1077                         points_to_left  = get_unqualified_type(points_to_left);
1078                         points_to_right = get_unqualified_type(points_to_right);
1079
1080                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1081                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1082                                 return res;
1083                         }
1084
1085                         if (!types_compatible(points_to_left, points_to_right)) {
1086                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1087                         }
1088
1089                         return res;
1090                 } else if (is_type_integer(type_right)) {
1091                         return ASSIGN_WARNING_POINTER_FROM_INT;
1092                 }
1093         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1094             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1095                 && is_type_pointer(type_right))) {
1096                 return ASSIGN_SUCCESS;
1097         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1098                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1099                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1100                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1101                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1102                         return ASSIGN_SUCCESS;
1103                 }
1104         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1105                 return ASSIGN_WARNING_INT_FROM_POINTER;
1106         }
1107
1108         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1109                 return ASSIGN_SUCCESS;
1110
1111         return ASSIGN_ERROR_INCOMPATIBLE;
1112 }
1113
1114 static expression_t *parse_constant_expression(void)
1115 {
1116         /* start parsing at precedence 7 (conditional expression) */
1117         expression_t *result = parse_sub_expression(7);
1118
1119         if (!is_constant_expression(result)) {
1120                 errorf(&result->base.source_position,
1121                        "expression '%E' is not constant\n", result);
1122         }
1123
1124         return result;
1125 }
1126
1127 static expression_t *parse_assignment_expression(void)
1128 {
1129         /* start parsing at precedence 2 (assignment expression) */
1130         return parse_sub_expression(2);
1131 }
1132
1133 static type_t *make_global_typedef(const char *name, type_t *type)
1134 {
1135         symbol_t *const symbol       = symbol_table_insert(name);
1136
1137         declaration_t *const declaration = allocate_declaration_zero();
1138         declaration->namespc                = NAMESPACE_NORMAL;
1139         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1140         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1141         declaration->type                   = type;
1142         declaration->symbol                 = symbol;
1143         declaration->source_position        = builtin_source_position;
1144         declaration->implicit               = true;
1145
1146         record_declaration(declaration, false);
1147
1148         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1149         typedef_type->typedeft.declaration = declaration;
1150
1151         return typedef_type;
1152 }
1153
1154 static string_t parse_string_literals(void)
1155 {
1156         assert(token.type == T_STRING_LITERAL);
1157         string_t result = token.v.string;
1158
1159         next_token();
1160
1161         while (token.type == T_STRING_LITERAL) {
1162                 result = concat_strings(&result, &token.v.string);
1163                 next_token();
1164         }
1165
1166         return result;
1167 }
1168
1169 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1170         [GNU_AK_CONST]                  = "const",
1171         [GNU_AK_VOLATILE]               = "volatile",
1172         [GNU_AK_CDECL]                  = "cdecl",
1173         [GNU_AK_STDCALL]                = "stdcall",
1174         [GNU_AK_FASTCALL]               = "fastcall",
1175         [GNU_AK_DEPRECATED]             = "deprecated",
1176         [GNU_AK_NOINLINE]               = "noinline",
1177         [GNU_AK_NORETURN]               = "noreturn",
1178         [GNU_AK_NAKED]                  = "naked",
1179         [GNU_AK_PURE]                   = "pure",
1180         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1181         [GNU_AK_MALLOC]                 = "malloc",
1182         [GNU_AK_WEAK]                   = "weak",
1183         [GNU_AK_CONSTRUCTOR]            = "constructor",
1184         [GNU_AK_DESTRUCTOR]             = "destructor",
1185         [GNU_AK_NOTHROW]                = "nothrow",
1186         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1187         [GNU_AK_COMMON]                 = "common",
1188         [GNU_AK_NOCOMMON]               = "nocommon",
1189         [GNU_AK_PACKED]                 = "packed",
1190         [GNU_AK_SHARED]                 = "shared",
1191         [GNU_AK_NOTSHARED]              = "notshared",
1192         [GNU_AK_USED]                   = "used",
1193         [GNU_AK_UNUSED]                 = "unused",
1194         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1195         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1196         [GNU_AK_LONGCALL]               = "longcall",
1197         [GNU_AK_SHORTCALL]              = "shortcall",
1198         [GNU_AK_LONG_CALL]              = "long_call",
1199         [GNU_AK_SHORT_CALL]             = "short_call",
1200         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1201         [GNU_AK_INTERRUPT]              = "interrupt",
1202         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1203         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1204         [GNU_AK_NESTING]                = "nesting",
1205         [GNU_AK_NEAR]                   = "near",
1206         [GNU_AK_FAR]                    = "far",
1207         [GNU_AK_SIGNAL]                 = "signal",
1208         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1209         [GNU_AK_TINY_DATA]              = "tiny_data",
1210         [GNU_AK_SAVEALL]                = "saveall",
1211         [GNU_AK_FLATTEN]                = "flatten",
1212         [GNU_AK_SSEREGPARM]             = "sseregparm",
1213         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1214         [GNU_AK_RETURN_TWICE]           = "return_twice",
1215         [GNU_AK_MAY_ALIAS]              = "may_alias",
1216         [GNU_AK_MS_STRUCT]              = "ms_struct",
1217         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1218         [GNU_AK_DLLIMPORT]              = "dllimport",
1219         [GNU_AK_DLLEXPORT]              = "dllexport",
1220         [GNU_AK_ALIGNED]                = "aligned",
1221         [GNU_AK_ALIAS]                  = "alias",
1222         [GNU_AK_SECTION]                = "section",
1223         [GNU_AK_FORMAT]                 = "format",
1224         [GNU_AK_FORMAT_ARG]             = "format_arg",
1225         [GNU_AK_WEAKREF]                = "weakref",
1226         [GNU_AK_NONNULL]                = "nonnull",
1227         [GNU_AK_TLS_MODEL]              = "tls_model",
1228         [GNU_AK_VISIBILITY]             = "visibility",
1229         [GNU_AK_REGPARM]                = "regparm",
1230         [GNU_AK_MODE]                   = "mode",
1231         [GNU_AK_MODEL]                  = "model",
1232         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1233         [GNU_AK_SP_SWITCH]              = "sp_switch",
1234         [GNU_AK_SENTINEL]               = "sentinel"
1235 };
1236
1237 /**
1238  * compare two string, ignoring double underscores on the second.
1239  */
1240 static int strcmp_underscore(const char *s1, const char *s2)
1241 {
1242         if (s2[0] == '_' && s2[1] == '_') {
1243                 size_t len2 = strlen(s2);
1244                 size_t len1 = strlen(s1);
1245                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1246                         return strncmp(s1, s2+2, len2-4);
1247                 }
1248         }
1249
1250         return strcmp(s1, s2);
1251 }
1252
1253 /**
1254  * Allocate a new gnu temporal attribute.
1255  */
1256 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1257 {
1258         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1259         attribute->kind            = kind;
1260         attribute->next            = NULL;
1261         attribute->invalid         = false;
1262         attribute->have_arguments  = false;
1263
1264         return attribute;
1265 }
1266
1267 /**
1268  * parse one constant expression argument.
1269  */
1270 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1271 {
1272         expression_t *expression;
1273         add_anchor_token(')');
1274         expression = parse_constant_expression();
1275         rem_anchor_token(')');
1276         expect(')');
1277         attribute->u.argument = fold_constant(expression);
1278         return;
1279 end_error:
1280         attribute->invalid = true;
1281 }
1282
1283 /**
1284  * parse a list of constant expressions arguments.
1285  */
1286 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1287 {
1288         argument_list_t **list = &attribute->u.arguments;
1289         argument_list_t  *entry;
1290         expression_t     *expression;
1291         add_anchor_token(')');
1292         add_anchor_token(',');
1293         while (true) {
1294                 expression = parse_constant_expression();
1295                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1296                 entry->argument = fold_constant(expression);
1297                 entry->next     = NULL;
1298                 *list = entry;
1299                 list = &entry->next;
1300                 if (token.type != ',')
1301                         break;
1302                 next_token();
1303         }
1304         rem_anchor_token(',');
1305         rem_anchor_token(')');
1306         expect(')');
1307         return;
1308 end_error:
1309         attribute->invalid = true;
1310 }
1311
1312 /**
1313  * parse one string literal argument.
1314  */
1315 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1316                                            string_t *string)
1317 {
1318         add_anchor_token('(');
1319         if (token.type != T_STRING_LITERAL) {
1320                 parse_error_expected("while parsing attribute directive",
1321                                      T_STRING_LITERAL, NULL);
1322                 goto end_error;
1323         }
1324         *string = parse_string_literals();
1325         rem_anchor_token('(');
1326         expect(')');
1327         return;
1328 end_error:
1329         attribute->invalid = true;
1330 }
1331
1332 /**
1333  * parse one tls model.
1334  */
1335 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1336 {
1337         static const char *const tls_models[] = {
1338                 "global-dynamic",
1339                 "local-dynamic",
1340                 "initial-exec",
1341                 "local-exec"
1342         };
1343         string_t string = { NULL, 0 };
1344         parse_gnu_attribute_string_arg(attribute, &string);
1345         if (string.begin != NULL) {
1346                 for(size_t i = 0; i < 4; ++i) {
1347                         if (strcmp(tls_models[i], string.begin) == 0) {
1348                                 attribute->u.value = i;
1349                                 return;
1350                         }
1351                 }
1352                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1353         }
1354         attribute->invalid = true;
1355 }
1356
1357 /**
1358  * parse one tls model.
1359  */
1360 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1361 {
1362         static const char *const visibilities[] = {
1363                 "default",
1364                 "protected",
1365                 "hidden",
1366                 "internal"
1367         };
1368         string_t string = { NULL, 0 };
1369         parse_gnu_attribute_string_arg(attribute, &string);
1370         if (string.begin != NULL) {
1371                 for(size_t i = 0; i < 4; ++i) {
1372                         if (strcmp(visibilities[i], string.begin) == 0) {
1373                                 attribute->u.value = i;
1374                                 return;
1375                         }
1376                 }
1377                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1378         }
1379         attribute->invalid = true;
1380 }
1381
1382 /**
1383  * parse one (code) model.
1384  */
1385 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1386 {
1387         static const char *const visibilities[] = {
1388                 "small",
1389                 "medium",
1390                 "large"
1391         };
1392         string_t string = { NULL, 0 };
1393         parse_gnu_attribute_string_arg(attribute, &string);
1394         if (string.begin != NULL) {
1395                 for(int i = 0; i < 3; ++i) {
1396                         if (strcmp(visibilities[i], string.begin) == 0) {
1397                                 attribute->u.value = i;
1398                                 return;
1399                         }
1400                 }
1401                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1402         }
1403         attribute->invalid = true;
1404 }
1405
1406 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1407 {
1408         /* TODO: find out what is allowed here... */
1409
1410         /* at least: byte, word, pointer, list of machine modes
1411          * __XXX___ is interpreted as XXX */
1412         add_anchor_token(')');
1413
1414         if (token.type != T_IDENTIFIER) {
1415                 expect(T_IDENTIFIER);
1416         }
1417
1418         /* This isn't really correct, the backend should provide a list of machine
1419          * specific modes (according to gcc philosophy that is...) */
1420         const char *symbol_str = token.v.symbol->string;
1421         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1422             strcmp_underscore("byte", symbol_str) == 0) {
1423                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1424         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1425                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1426         } else if (strcmp_underscore("SI",      symbol_str) == 0
1427                 || strcmp_underscore("word",    symbol_str) == 0
1428                 || strcmp_underscore("pointer", symbol_str) == 0) {
1429                 attribute->u.akind = ATOMIC_TYPE_INT;
1430         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1431                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1432         } else {
1433                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1434                 attribute->invalid = true;
1435         }
1436         next_token();
1437
1438         rem_anchor_token(')');
1439         expect(')');
1440         return;
1441 end_error:
1442         attribute->invalid = true;
1443 }
1444
1445 /**
1446  * parse one interrupt argument.
1447  */
1448 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1449 {
1450         static const char *const interrupts[] = {
1451                 "IRQ",
1452                 "FIQ",
1453                 "SWI",
1454                 "ABORT",
1455                 "UNDEF"
1456         };
1457         string_t string = { NULL, 0 };
1458         parse_gnu_attribute_string_arg(attribute, &string);
1459         if (string.begin != NULL) {
1460                 for(size_t i = 0; i < 5; ++i) {
1461                         if (strcmp(interrupts[i], string.begin) == 0) {
1462                                 attribute->u.value = i;
1463                                 return;
1464                         }
1465                 }
1466                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1467         }
1468         attribute->invalid = true;
1469 }
1470
1471 /**
1472  * parse ( identifier, const expression, const expression )
1473  */
1474 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1475 {
1476         static const char *const format_names[] = {
1477                 "printf",
1478                 "scanf",
1479                 "strftime",
1480                 "strfmon"
1481         };
1482         int i;
1483
1484         if (token.type != T_IDENTIFIER) {
1485                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1486                 goto end_error;
1487         }
1488         const char *name = token.v.symbol->string;
1489         for(i = 0; i < 4; ++i) {
1490                 if (strcmp_underscore(format_names[i], name) == 0)
1491                         break;
1492         }
1493         if (i >= 4) {
1494                 if (warning.attribute)
1495                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1496         }
1497         next_token();
1498
1499         expect(',');
1500         add_anchor_token(')');
1501         add_anchor_token(',');
1502         parse_constant_expression();
1503         rem_anchor_token(',');
1504         rem_anchor_token(')');
1505
1506         expect(',');
1507         add_anchor_token(')');
1508         parse_constant_expression();
1509         rem_anchor_token(')');
1510         expect(')');
1511         return;
1512 end_error:
1513         attribute->u.value = true;
1514 }
1515
1516 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1517 {
1518         if (!attribute->have_arguments)
1519                 return;
1520
1521         /* should have no arguments */
1522         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1523         eat_until_matching_token('(');
1524         /* we have already consumed '(', so we stop before ')', eat it */
1525         eat(')');
1526         attribute->invalid = true;
1527 }
1528
1529 /**
1530  * Parse one GNU attribute.
1531  *
1532  * Note that attribute names can be specified WITH or WITHOUT
1533  * double underscores, ie const or __const__.
1534  *
1535  * The following attributes are parsed without arguments
1536  *  const
1537  *  volatile
1538  *  cdecl
1539  *  stdcall
1540  *  fastcall
1541  *  deprecated
1542  *  noinline
1543  *  noreturn
1544  *  naked
1545  *  pure
1546  *  always_inline
1547  *  malloc
1548  *  weak
1549  *  constructor
1550  *  destructor
1551  *  nothrow
1552  *  transparent_union
1553  *  common
1554  *  nocommon
1555  *  packed
1556  *  shared
1557  *  notshared
1558  *  used
1559  *  unused
1560  *  no_instrument_function
1561  *  warn_unused_result
1562  *  longcall
1563  *  shortcall
1564  *  long_call
1565  *  short_call
1566  *  function_vector
1567  *  interrupt_handler
1568  *  nmi_handler
1569  *  nesting
1570  *  near
1571  *  far
1572  *  signal
1573  *  eightbit_data
1574  *  tiny_data
1575  *  saveall
1576  *  flatten
1577  *  sseregparm
1578  *  externally_visible
1579  *  return_twice
1580  *  may_alias
1581  *  ms_struct
1582  *  gcc_struct
1583  *  dllimport
1584  *  dllexport
1585  *
1586  * The following attributes are parsed with arguments
1587  *  aligned( const expression )
1588  *  alias( string literal )
1589  *  section( string literal )
1590  *  format( identifier, const expression, const expression )
1591  *  format_arg( const expression )
1592  *  tls_model( string literal )
1593  *  visibility( string literal )
1594  *  regparm( const expression )
1595  *  model( string leteral )
1596  *  trap_exit( const expression )
1597  *  sp_switch( string literal )
1598  *
1599  * The following attributes might have arguments
1600  *  weak_ref( string literal )
1601  *  non_null( const expression // ',' )
1602  *  interrupt( string literal )
1603  *  sentinel( constant expression )
1604  */
1605 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1606 {
1607         gnu_attribute_t *head      = *attributes;
1608         gnu_attribute_t *last      = *attributes;
1609         decl_modifiers_t modifiers = 0;
1610         gnu_attribute_t *attribute;
1611
1612         eat(T___attribute__);
1613         expect('(');
1614         expect('(');
1615
1616         if (token.type != ')') {
1617                 /* find the end of the list */
1618                 if (last != NULL) {
1619                         while (last->next != NULL)
1620                                 last = last->next;
1621                 }
1622
1623                 /* non-empty attribute list */
1624                 while (true) {
1625                         const char *name;
1626                         if (token.type == T_const) {
1627                                 name = "const";
1628                         } else if (token.type == T_volatile) {
1629                                 name = "volatile";
1630                         } else if (token.type == T_cdecl) {
1631                                 /* __attribute__((cdecl)), WITH ms mode */
1632                                 name = "cdecl";
1633                         } else if (token.type == T_IDENTIFIER) {
1634                                 const symbol_t *sym = token.v.symbol;
1635                                 name = sym->string;
1636                         } else {
1637                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1638                                 break;
1639                         }
1640
1641                         next_token();
1642
1643                         int i;
1644                         for(i = 0; i < GNU_AK_LAST; ++i) {
1645                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1646                                         break;
1647                         }
1648                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1649
1650                         attribute = NULL;
1651                         if (kind == GNU_AK_LAST) {
1652                                 if (warning.attribute)
1653                                         warningf(HERE, "'%s' attribute directive ignored", name);
1654
1655                                 /* skip possible arguments */
1656                                 if (token.type == '(') {
1657                                         eat_until_matching_token(')');
1658                                 }
1659                         } else {
1660                                 /* check for arguments */
1661                                 attribute = allocate_gnu_attribute(kind);
1662                                 if (token.type == '(') {
1663                                         next_token();
1664                                         if (token.type == ')') {
1665                                                 /* empty args are allowed */
1666                                                 next_token();
1667                                         } else
1668                                                 attribute->have_arguments = true;
1669                                 }
1670
1671                                 switch(kind) {
1672                                 case GNU_AK_CONST:
1673                                 case GNU_AK_VOLATILE:
1674                                 case GNU_AK_NAKED:
1675                                 case GNU_AK_MALLOC:
1676                                 case GNU_AK_WEAK:
1677                                 case GNU_AK_COMMON:
1678                                 case GNU_AK_NOCOMMON:
1679                                 case GNU_AK_SHARED:
1680                                 case GNU_AK_NOTSHARED:
1681                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1682                                 case GNU_AK_WARN_UNUSED_RESULT:
1683                                 case GNU_AK_LONGCALL:
1684                                 case GNU_AK_SHORTCALL:
1685                                 case GNU_AK_LONG_CALL:
1686                                 case GNU_AK_SHORT_CALL:
1687                                 case GNU_AK_FUNCTION_VECTOR:
1688                                 case GNU_AK_INTERRUPT_HANDLER:
1689                                 case GNU_AK_NMI_HANDLER:
1690                                 case GNU_AK_NESTING:
1691                                 case GNU_AK_NEAR:
1692                                 case GNU_AK_FAR:
1693                                 case GNU_AK_SIGNAL:
1694                                 case GNU_AK_EIGTHBIT_DATA:
1695                                 case GNU_AK_TINY_DATA:
1696                                 case GNU_AK_SAVEALL:
1697                                 case GNU_AK_FLATTEN:
1698                                 case GNU_AK_SSEREGPARM:
1699                                 case GNU_AK_EXTERNALLY_VISIBLE:
1700                                 case GNU_AK_RETURN_TWICE:
1701                                 case GNU_AK_MAY_ALIAS:
1702                                 case GNU_AK_MS_STRUCT:
1703                                 case GNU_AK_GCC_STRUCT:
1704                                         goto no_arg;
1705
1706                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1707                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1708                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1709                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1710                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1711                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1712                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1713                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1714                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1715                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1716                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1717                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1718                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1719                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1720                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1721                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1722                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1723
1724                                 case GNU_AK_ALIGNED:
1725                                         /* __align__ may be used without an argument */
1726                                         if (attribute->have_arguments) {
1727                                                 parse_gnu_attribute_const_arg(attribute);
1728                                         }
1729                                         break;
1730
1731                                 case GNU_AK_FORMAT_ARG:
1732                                 case GNU_AK_REGPARM:
1733                                 case GNU_AK_TRAP_EXIT:
1734                                         if (!attribute->have_arguments) {
1735                                                 /* should have arguments */
1736                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1737                                                 attribute->invalid = true;
1738                                         } else
1739                                                 parse_gnu_attribute_const_arg(attribute);
1740                                         break;
1741                                 case GNU_AK_ALIAS:
1742                                 case GNU_AK_SECTION:
1743                                 case GNU_AK_SP_SWITCH:
1744                                         if (!attribute->have_arguments) {
1745                                                 /* should have arguments */
1746                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1747                                                 attribute->invalid = true;
1748                                         } else
1749                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1750                                         break;
1751                                 case GNU_AK_FORMAT:
1752                                         if (!attribute->have_arguments) {
1753                                                 /* should have arguments */
1754                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1755                                                 attribute->invalid = true;
1756                                         } else
1757                                                 parse_gnu_attribute_format_args(attribute);
1758                                         break;
1759                                 case GNU_AK_WEAKREF:
1760                                         /* may have one string argument */
1761                                         if (attribute->have_arguments)
1762                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1763                                         break;
1764                                 case GNU_AK_NONNULL:
1765                                         if (attribute->have_arguments)
1766                                                 parse_gnu_attribute_const_arg_list(attribute);
1767                                         break;
1768                                 case GNU_AK_TLS_MODEL:
1769                                         if (!attribute->have_arguments) {
1770                                                 /* should have arguments */
1771                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1772                                         } else
1773                                                 parse_gnu_attribute_tls_model_arg(attribute);
1774                                         break;
1775                                 case GNU_AK_VISIBILITY:
1776                                         if (!attribute->have_arguments) {
1777                                                 /* should have arguments */
1778                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1779                                         } else
1780                                                 parse_gnu_attribute_visibility_arg(attribute);
1781                                         break;
1782                                 case GNU_AK_MODEL:
1783                                         if (!attribute->have_arguments) {
1784                                                 /* should have arguments */
1785                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1786                                         } else {
1787                                                 parse_gnu_attribute_model_arg(attribute);
1788                                         }
1789                                         break;
1790                                 case GNU_AK_MODE:
1791                                         if (!attribute->have_arguments) {
1792                                                 /* should have arguments */
1793                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1794                                         } else {
1795                                                 parse_gnu_attribute_mode_arg(attribute);
1796                                         }
1797                                         break;
1798                                 case GNU_AK_INTERRUPT:
1799                                         /* may have one string argument */
1800                                         if (attribute->have_arguments)
1801                                                 parse_gnu_attribute_interrupt_arg(attribute);
1802                                         break;
1803                                 case GNU_AK_SENTINEL:
1804                                         /* may have one string argument */
1805                                         if (attribute->have_arguments)
1806                                                 parse_gnu_attribute_const_arg(attribute);
1807                                         break;
1808                                 case GNU_AK_LAST:
1809                                         /* already handled */
1810                                         break;
1811
1812 no_arg:
1813                                         check_no_argument(attribute, name);
1814                                 }
1815                         }
1816                         if (attribute != NULL) {
1817                                 if (last != NULL) {
1818                                         last->next = attribute;
1819                                         last       = attribute;
1820                                 } else {
1821                                         head = last = attribute;
1822                                 }
1823                         }
1824
1825                         if (token.type != ',')
1826                                 break;
1827                         next_token();
1828                 }
1829         }
1830         expect(')');
1831         expect(')');
1832 end_error:
1833         *attributes = head;
1834
1835         return modifiers;
1836 }
1837
1838 /**
1839  * Parse GNU attributes.
1840  */
1841 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1842 {
1843         decl_modifiers_t modifiers = 0;
1844
1845         while (true) {
1846                 switch(token.type) {
1847                 case T___attribute__:
1848                         modifiers |= parse_gnu_attribute(attributes);
1849                         continue;
1850
1851                 case T_asm:
1852                         next_token();
1853                         expect('(');
1854                         if (token.type != T_STRING_LITERAL) {
1855                                 parse_error_expected("while parsing assembler attribute",
1856                                                      T_STRING_LITERAL, NULL);
1857                                 eat_until_matching_token('(');
1858                                 break;
1859                         } else {
1860                                 parse_string_literals();
1861                         }
1862                         expect(')');
1863                         continue;
1864
1865                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1866                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1867                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1868
1869                 case T___thiscall:
1870                         /* TODO record modifier */
1871                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1872                         break;
1873
1874 end_error:
1875                 default: return modifiers;
1876                 }
1877
1878                 next_token();
1879         }
1880 }
1881
1882 static designator_t *parse_designation(void)
1883 {
1884         designator_t *result = NULL;
1885         designator_t *last   = NULL;
1886
1887         while (true) {
1888                 designator_t *designator;
1889                 switch(token.type) {
1890                 case '[':
1891                         designator = allocate_ast_zero(sizeof(designator[0]));
1892                         designator->source_position = token.source_position;
1893                         next_token();
1894                         add_anchor_token(']');
1895                         designator->array_index = parse_constant_expression();
1896                         rem_anchor_token(']');
1897                         expect(']');
1898                         break;
1899                 case '.':
1900                         designator = allocate_ast_zero(sizeof(designator[0]));
1901                         designator->source_position = token.source_position;
1902                         next_token();
1903                         if (token.type != T_IDENTIFIER) {
1904                                 parse_error_expected("while parsing designator",
1905                                                      T_IDENTIFIER, NULL);
1906                                 return NULL;
1907                         }
1908                         designator->symbol = token.v.symbol;
1909                         next_token();
1910                         break;
1911                 default:
1912                         expect('=');
1913                         return result;
1914                 }
1915
1916                 assert(designator != NULL);
1917                 if (last != NULL) {
1918                         last->next = designator;
1919                 } else {
1920                         result = designator;
1921                 }
1922                 last = designator;
1923         }
1924 end_error:
1925         return NULL;
1926 }
1927
1928 static initializer_t *initializer_from_string(array_type_t *type,
1929                                               const string_t *const string)
1930 {
1931         /* TODO: check len vs. size of array type */
1932         (void) type;
1933
1934         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1935         initializer->string.string = *string;
1936
1937         return initializer;
1938 }
1939
1940 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1941                                                    wide_string_t *const string)
1942 {
1943         /* TODO: check len vs. size of array type */
1944         (void) type;
1945
1946         initializer_t *const initializer =
1947                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1948         initializer->wide_string.string = *string;
1949
1950         return initializer;
1951 }
1952
1953 /**
1954  * Build an initializer from a given expression.
1955  */
1956 static initializer_t *initializer_from_expression(type_t *orig_type,
1957                                                   expression_t *expression)
1958 {
1959         /* TODO check that expression is a constant expression */
1960
1961         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1962         type_t *type           = skip_typeref(orig_type);
1963         type_t *expr_type_orig = expression->base.type;
1964         type_t *expr_type      = skip_typeref(expr_type_orig);
1965         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1966                 array_type_t *const array_type   = &type->array;
1967                 type_t       *const element_type = skip_typeref(array_type->element_type);
1968
1969                 if (element_type->kind == TYPE_ATOMIC) {
1970                         atomic_type_kind_t akind = element_type->atomic.akind;
1971                         switch (expression->kind) {
1972                                 case EXPR_STRING_LITERAL:
1973                                         if (akind == ATOMIC_TYPE_CHAR
1974                                                         || akind == ATOMIC_TYPE_SCHAR
1975                                                         || akind == ATOMIC_TYPE_UCHAR) {
1976                                                 return initializer_from_string(array_type,
1977                                                         &expression->string.value);
1978                                         }
1979
1980                                 case EXPR_WIDE_STRING_LITERAL: {
1981                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1982                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1983                                                 return initializer_from_wide_string(array_type,
1984                                                         &expression->wide_string.value);
1985                                         }
1986                                 }
1987
1988                                 default:
1989                                         break;
1990                         }
1991                 }
1992         }
1993
1994         assign_error_t error = semantic_assign(type, expression);
1995         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1996                 return NULL;
1997         report_assign_error(error, type, expression, "initializer",
1998                             &expression->base.source_position);
1999
2000         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2001         result->value.value = create_implicit_cast(expression, type);
2002
2003         return result;
2004 }
2005
2006 /**
2007  * Checks if a given expression can be used as an constant initializer.
2008  */
2009 static bool is_initializer_constant(const expression_t *expression)
2010 {
2011         return is_constant_expression(expression)
2012                 || is_address_constant(expression);
2013 }
2014
2015 /**
2016  * Parses an scalar initializer.
2017  *
2018  * Â§ 6.7.8.11; eat {} without warning
2019  */
2020 static initializer_t *parse_scalar_initializer(type_t *type,
2021                                                bool must_be_constant)
2022 {
2023         /* there might be extra {} hierarchies */
2024         int braces = 0;
2025         if (token.type == '{') {
2026                 warningf(HERE, "extra curly braces around scalar initializer");
2027                 do {
2028                         ++braces;
2029                         next_token();
2030                 } while (token.type == '{');
2031         }
2032
2033         expression_t *expression = parse_assignment_expression();
2034         if (must_be_constant && !is_initializer_constant(expression)) {
2035                 errorf(&expression->base.source_position,
2036                        "Initialisation expression '%E' is not constant\n",
2037                        expression);
2038         }
2039
2040         initializer_t *initializer = initializer_from_expression(type, expression);
2041
2042         if (initializer == NULL) {
2043                 errorf(&expression->base.source_position,
2044                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2045                        expression, expression->base.type, type);
2046                 /* TODO */
2047                 return NULL;
2048         }
2049
2050         bool additional_warning_displayed = false;
2051         while (braces > 0) {
2052                 if (token.type == ',') {
2053                         next_token();
2054                 }
2055                 if (token.type != '}') {
2056                         if (!additional_warning_displayed) {
2057                                 warningf(HERE, "additional elements in scalar initializer");
2058                                 additional_warning_displayed = true;
2059                         }
2060                 }
2061                 eat_block();
2062                 braces--;
2063         }
2064
2065         return initializer;
2066 }
2067
2068 /**
2069  * An entry in the type path.
2070  */
2071 typedef struct type_path_entry_t type_path_entry_t;
2072 struct type_path_entry_t {
2073         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2074         union {
2075                 size_t         index;          /**< For array types: the current index. */
2076                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2077         } v;
2078 };
2079
2080 /**
2081  * A type path expression a position inside compound or array types.
2082  */
2083 typedef struct type_path_t type_path_t;
2084 struct type_path_t {
2085         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2086         type_t            *top_type;     /**< type of the element the path points */
2087         size_t             max_index;    /**< largest index in outermost array */
2088 };
2089
2090 /**
2091  * Prints a type path for debugging.
2092  */
2093 static __attribute__((unused)) void debug_print_type_path(
2094                 const type_path_t *path)
2095 {
2096         size_t len = ARR_LEN(path->path);
2097
2098         for(size_t i = 0; i < len; ++i) {
2099                 const type_path_entry_t *entry = & path->path[i];
2100
2101                 type_t *type = skip_typeref(entry->type);
2102                 if (is_type_compound(type)) {
2103                         /* in gcc mode structs can have no members */
2104                         if (entry->v.compound_entry == NULL) {
2105                                 assert(i == len-1);
2106                                 continue;
2107                         }
2108                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2109                 } else if (is_type_array(type)) {
2110                         fprintf(stderr, "[%zu]", entry->v.index);
2111                 } else {
2112                         fprintf(stderr, "-INVALID-");
2113                 }
2114         }
2115         if (path->top_type != NULL) {
2116                 fprintf(stderr, "  (");
2117                 print_type(path->top_type);
2118                 fprintf(stderr, ")");
2119         }
2120 }
2121
2122 /**
2123  * Return the top type path entry, ie. in a path
2124  * (type).a.b returns the b.
2125  */
2126 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2127 {
2128         size_t len = ARR_LEN(path->path);
2129         assert(len > 0);
2130         return &path->path[len-1];
2131 }
2132
2133 /**
2134  * Enlarge the type path by an (empty) element.
2135  */
2136 static type_path_entry_t *append_to_type_path(type_path_t *path)
2137 {
2138         size_t len = ARR_LEN(path->path);
2139         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2140
2141         type_path_entry_t *result = & path->path[len];
2142         memset(result, 0, sizeof(result[0]));
2143         return result;
2144 }
2145
2146 /**
2147  * Descending into a sub-type. Enter the scope of the current
2148  * top_type.
2149  */
2150 static void descend_into_subtype(type_path_t *path)
2151 {
2152         type_t *orig_top_type = path->top_type;
2153         type_t *top_type      = skip_typeref(orig_top_type);
2154
2155         type_path_entry_t *top = append_to_type_path(path);
2156         top->type              = top_type;
2157
2158         if (is_type_compound(top_type)) {
2159                 declaration_t *declaration = top_type->compound.declaration;
2160                 declaration_t *entry       = declaration->scope.declarations;
2161                 top->v.compound_entry      = entry;
2162
2163                 if (entry != NULL) {
2164                         path->top_type         = entry->type;
2165                 } else {
2166                         path->top_type         = NULL;
2167                 }
2168         } else if (is_type_array(top_type)) {
2169                 top->v.index   = 0;
2170                 path->top_type = top_type->array.element_type;
2171         } else {
2172                 assert(!is_type_valid(top_type));
2173         }
2174 }
2175
2176 /**
2177  * Pop an entry from the given type path, ie. returning from
2178  * (type).a.b to (type).a
2179  */
2180 static void ascend_from_subtype(type_path_t *path)
2181 {
2182         type_path_entry_t *top = get_type_path_top(path);
2183
2184         path->top_type = top->type;
2185
2186         size_t len = ARR_LEN(path->path);
2187         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2188 }
2189
2190 /**
2191  * Pop entries from the given type path until the given
2192  * path level is reached.
2193  */
2194 static void ascend_to(type_path_t *path, size_t top_path_level)
2195 {
2196         size_t len = ARR_LEN(path->path);
2197
2198         while (len > top_path_level) {
2199                 ascend_from_subtype(path);
2200                 len = ARR_LEN(path->path);
2201         }
2202 }
2203
2204 static bool walk_designator(type_path_t *path, const designator_t *designator,
2205                             bool used_in_offsetof)
2206 {
2207         for( ; designator != NULL; designator = designator->next) {
2208                 type_path_entry_t *top       = get_type_path_top(path);
2209                 type_t            *orig_type = top->type;
2210
2211                 type_t *type = skip_typeref(orig_type);
2212
2213                 if (designator->symbol != NULL) {
2214                         symbol_t *symbol = designator->symbol;
2215                         if (!is_type_compound(type)) {
2216                                 if (is_type_valid(type)) {
2217                                         errorf(&designator->source_position,
2218                                                "'.%Y' designator used for non-compound type '%T'",
2219                                                symbol, orig_type);
2220                                 }
2221                                 goto failed;
2222                         }
2223
2224                         declaration_t *declaration = type->compound.declaration;
2225                         declaration_t *iter        = declaration->scope.declarations;
2226                         for( ; iter != NULL; iter = iter->next) {
2227                                 if (iter->symbol == symbol) {
2228                                         break;
2229                                 }
2230                         }
2231                         if (iter == NULL) {
2232                                 errorf(&designator->source_position,
2233                                        "'%T' has no member named '%Y'", orig_type, symbol);
2234                                 goto failed;
2235                         }
2236                         if (used_in_offsetof) {
2237                                 type_t *real_type = skip_typeref(iter->type);
2238                                 if (real_type->kind == TYPE_BITFIELD) {
2239                                         errorf(&designator->source_position,
2240                                                "offsetof designator '%Y' may not specify bitfield",
2241                                                symbol);
2242                                         goto failed;
2243                                 }
2244                         }
2245
2246                         top->type             = orig_type;
2247                         top->v.compound_entry = iter;
2248                         orig_type             = iter->type;
2249                 } else {
2250                         expression_t *array_index = designator->array_index;
2251                         assert(designator->array_index != NULL);
2252
2253                         if (!is_type_array(type)) {
2254                                 if (is_type_valid(type)) {
2255                                         errorf(&designator->source_position,
2256                                                "[%E] designator used for non-array type '%T'",
2257                                                array_index, orig_type);
2258                                 }
2259                                 goto failed;
2260                         }
2261                         if (!is_type_valid(array_index->base.type)) {
2262                                 goto failed;
2263                         }
2264
2265                         long index = fold_constant(array_index);
2266                         if (!used_in_offsetof) {
2267                                 if (index < 0) {
2268                                         errorf(&designator->source_position,
2269                                                "array index [%E] must be positive", array_index);
2270                                         goto failed;
2271                                 }
2272                                 if (type->array.size_constant == true) {
2273                                         long array_size = type->array.size;
2274                                         if (index >= array_size) {
2275                                                 errorf(&designator->source_position,
2276                                                        "designator [%E] (%d) exceeds array size %d",
2277                                                        array_index, index, array_size);
2278                                                 goto failed;
2279                                         }
2280                                 }
2281                         }
2282
2283                         top->type    = orig_type;
2284                         top->v.index = (size_t) index;
2285                         orig_type    = type->array.element_type;
2286                 }
2287                 path->top_type = orig_type;
2288
2289                 if (designator->next != NULL) {
2290                         descend_into_subtype(path);
2291                 }
2292         }
2293         return true;
2294
2295 failed:
2296         return false;
2297 }
2298
2299 static void advance_current_object(type_path_t *path, size_t top_path_level)
2300 {
2301         type_path_entry_t *top = get_type_path_top(path);
2302
2303         type_t *type = skip_typeref(top->type);
2304         if (is_type_union(type)) {
2305                 /* in unions only the first element is initialized */
2306                 top->v.compound_entry = NULL;
2307         } else if (is_type_struct(type)) {
2308                 declaration_t *entry = top->v.compound_entry;
2309
2310                 entry                 = entry->next;
2311                 top->v.compound_entry = entry;
2312                 if (entry != NULL) {
2313                         path->top_type = entry->type;
2314                         return;
2315                 }
2316         } else {
2317                 assert(is_type_array(type));
2318
2319                 top->v.index++;
2320
2321                 if (!type->array.size_constant || top->v.index < type->array.size) {
2322                         return;
2323                 }
2324         }
2325
2326         /* we're past the last member of the current sub-aggregate, try if we
2327          * can ascend in the type hierarchy and continue with another subobject */
2328         size_t len = ARR_LEN(path->path);
2329
2330         if (len > top_path_level) {
2331                 ascend_from_subtype(path);
2332                 advance_current_object(path, top_path_level);
2333         } else {
2334                 path->top_type = NULL;
2335         }
2336 }
2337
2338 /**
2339  * skip until token is found.
2340  */
2341 static void skip_until(int type)
2342 {
2343         while (token.type != type) {
2344                 if (token.type == T_EOF)
2345                         return;
2346                 next_token();
2347         }
2348 }
2349
2350 /**
2351  * skip any {...} blocks until a closing bracket is reached.
2352  */
2353 static void skip_initializers(void)
2354 {
2355         if (token.type == '{')
2356                 next_token();
2357
2358         while (token.type != '}') {
2359                 if (token.type == T_EOF)
2360                         return;
2361                 if (token.type == '{') {
2362                         eat_block();
2363                         continue;
2364                 }
2365                 next_token();
2366         }
2367 }
2368
2369 static initializer_t *create_empty_initializer(void)
2370 {
2371         static initializer_t empty_initializer
2372                 = { .list = { { INITIALIZER_LIST }, 0 } };
2373         return &empty_initializer;
2374 }
2375
2376 /**
2377  * Parse a part of an initialiser for a struct or union,
2378  */
2379 static initializer_t *parse_sub_initializer(type_path_t *path,
2380                 type_t *outer_type, size_t top_path_level,
2381                 parse_initializer_env_t *env)
2382 {
2383         if (token.type == '}') {
2384                 /* empty initializer */
2385                 return create_empty_initializer();
2386         }
2387
2388         type_t *orig_type = path->top_type;
2389         type_t *type      = NULL;
2390
2391         if (orig_type == NULL) {
2392                 /* We are initializing an empty compound. */
2393         } else {
2394                 type = skip_typeref(orig_type);
2395
2396                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2397                  * initializers in this case. */
2398                 if (!is_type_valid(type)) {
2399                         skip_initializers();
2400                         return create_empty_initializer();
2401                 }
2402         }
2403
2404         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2405
2406         while (true) {
2407                 designator_t *designator = NULL;
2408                 if (token.type == '.' || token.type == '[') {
2409                         designator = parse_designation();
2410                         goto finish_designator;
2411                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2412                         /* GNU-style designator ("identifier: value") */
2413                         designator = allocate_ast_zero(sizeof(designator[0]));
2414                         designator->source_position = token.source_position;
2415                         designator->symbol          = token.v.symbol;
2416                         eat(T_IDENTIFIER);
2417                         eat(':');
2418
2419 finish_designator:
2420                         /* reset path to toplevel, evaluate designator from there */
2421                         ascend_to(path, top_path_level);
2422                         if (!walk_designator(path, designator, false)) {
2423                                 /* can't continue after designation error */
2424                                 goto end_error;
2425                         }
2426
2427                         initializer_t *designator_initializer
2428                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2429                         designator_initializer->designator.designator = designator;
2430                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2431
2432                         orig_type = path->top_type;
2433                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2434                 }
2435
2436                 initializer_t *sub;
2437
2438                 if (token.type == '{') {
2439                         if (type != NULL && is_type_scalar(type)) {
2440                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2441                         } else {
2442                                 eat('{');
2443                                 if (type == NULL) {
2444                                         if (env->declaration != NULL) {
2445                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2446                                                        env->declaration->symbol);
2447                                         } else {
2448                                                 errorf(HERE, "extra brace group at end of initializer");
2449                                         }
2450                                 } else
2451                                         descend_into_subtype(path);
2452
2453                                 add_anchor_token('}');
2454                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2455                                                             env);
2456                                 rem_anchor_token('}');
2457
2458                                 if (type != NULL) {
2459                                         ascend_from_subtype(path);
2460                                         expect('}');
2461                                 } else {
2462                                         expect('}');
2463                                         goto error_parse_next;
2464                                 }
2465                         }
2466                 } else {
2467                         /* must be an expression */
2468                         expression_t *expression = parse_assignment_expression();
2469
2470                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2471                                 errorf(&expression->base.source_position,
2472                                        "Initialisation expression '%E' is not constant\n",
2473                                        expression);
2474                         }
2475
2476                         if (type == NULL) {
2477                                 /* we are already outside, ... */
2478                                 if (is_type_compound(outer_type) &&
2479                                     !outer_type->compound.declaration->init.complete) {
2480                                         goto error_parse_next;
2481                                 }
2482                                 goto error_excess;
2483                         }
2484
2485                         /* handle { "string" } special case */
2486                         if ((expression->kind == EXPR_STRING_LITERAL
2487                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2488                                         && outer_type != NULL) {
2489                                 sub = initializer_from_expression(outer_type, expression);
2490                                 if (sub != NULL) {
2491                                         if (token.type == ',') {
2492                                                 next_token();
2493                                         }
2494                                         if (token.type != '}') {
2495                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2496                                                                  orig_type);
2497                                         }
2498                                         /* TODO: eat , ... */
2499                                         return sub;
2500                                 }
2501                         }
2502
2503                         /* descend into subtypes until expression matches type */
2504                         while (true) {
2505                                 orig_type = path->top_type;
2506                                 type      = skip_typeref(orig_type);
2507
2508                                 sub = initializer_from_expression(orig_type, expression);
2509                                 if (sub != NULL) {
2510                                         break;
2511                                 }
2512                                 if (!is_type_valid(type)) {
2513                                         goto end_error;
2514                                 }
2515                                 if (is_type_scalar(type)) {
2516                                         errorf(&expression->base.source_position,
2517                                                         "expression '%E' doesn't match expected type '%T'",
2518                                                         expression, orig_type);
2519                                         goto end_error;
2520                                 }
2521
2522                                 descend_into_subtype(path);
2523                         }
2524                 }
2525
2526                 /* update largest index of top array */
2527                 const type_path_entry_t *first      = &path->path[0];
2528                 type_t                  *first_type = first->type;
2529                 first_type                          = skip_typeref(first_type);
2530                 if (is_type_array(first_type)) {
2531                         size_t index = first->v.index;
2532                         if (index > path->max_index)
2533                                 path->max_index = index;
2534                 }
2535
2536                 if (type != NULL) {
2537                         /* append to initializers list */
2538                         ARR_APP1(initializer_t*, initializers, sub);
2539                 } else {
2540 error_excess:
2541                         if (env->declaration != NULL)
2542                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2543                                  env->declaration->symbol);
2544                         else
2545                                 warningf(HERE, "excess elements in struct initializer");
2546                 }
2547
2548 error_parse_next:
2549                 if (token.type == '}') {
2550                         break;
2551                 }
2552                 expect(',');
2553                 if (token.type == '}') {
2554                         break;
2555                 }
2556
2557                 if (type != NULL) {
2558                         /* advance to the next declaration if we are not at the end */
2559                         advance_current_object(path, top_path_level);
2560                         orig_type = path->top_type;
2561                         if (orig_type != NULL)
2562                                 type = skip_typeref(orig_type);
2563                         else
2564                                 type = NULL;
2565                 }
2566         }
2567
2568         size_t len  = ARR_LEN(initializers);
2569         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2570         initializer_t *result = allocate_ast_zero(size);
2571         result->kind          = INITIALIZER_LIST;
2572         result->list.len      = len;
2573         memcpy(&result->list.initializers, initializers,
2574                len * sizeof(initializers[0]));
2575
2576         DEL_ARR_F(initializers);
2577         ascend_to(path, top_path_level+1);
2578
2579         return result;
2580
2581 end_error:
2582         skip_initializers();
2583         DEL_ARR_F(initializers);
2584         ascend_to(path, top_path_level+1);
2585         return NULL;
2586 }
2587
2588 /**
2589  * Parses an initializer. Parsers either a compound literal
2590  * (env->declaration == NULL) or an initializer of a declaration.
2591  */
2592 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2593 {
2594         type_t        *type   = skip_typeref(env->type);
2595         initializer_t *result = NULL;
2596         size_t         max_index;
2597
2598         if (is_type_scalar(type)) {
2599                 result = parse_scalar_initializer(type, env->must_be_constant);
2600         } else if (token.type == '{') {
2601                 eat('{');
2602
2603                 type_path_t path;
2604                 memset(&path, 0, sizeof(path));
2605                 path.top_type = env->type;
2606                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2607
2608                 descend_into_subtype(&path);
2609
2610                 add_anchor_token('}');
2611                 result = parse_sub_initializer(&path, env->type, 1, env);
2612                 rem_anchor_token('}');
2613
2614                 max_index = path.max_index;
2615                 DEL_ARR_F(path.path);
2616
2617                 expect('}');
2618         } else {
2619                 /* parse_scalar_initializer() also works in this case: we simply
2620                  * have an expression without {} around it */
2621                 result = parse_scalar_initializer(type, env->must_be_constant);
2622         }
2623
2624         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2625          * the array type size */
2626         if (is_type_array(type) && type->array.size_expression == NULL
2627                         && result != NULL) {
2628                 size_t size;
2629                 switch (result->kind) {
2630                 case INITIALIZER_LIST:
2631                         size = max_index + 1;
2632                         break;
2633
2634                 case INITIALIZER_STRING:
2635                         size = result->string.string.size;
2636                         break;
2637
2638                 case INITIALIZER_WIDE_STRING:
2639                         size = result->wide_string.string.size;
2640                         break;
2641
2642                 case INITIALIZER_DESIGNATOR:
2643                 case INITIALIZER_VALUE:
2644                         /* can happen for parse errors */
2645                         size = 0;
2646                         break;
2647
2648                 default:
2649                         internal_errorf(HERE, "invalid initializer type");
2650                 }
2651
2652                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2653                 cnst->base.type          = type_size_t;
2654                 cnst->conste.v.int_value = size;
2655
2656                 type_t *new_type = duplicate_type(type);
2657
2658                 new_type->array.size_expression = cnst;
2659                 new_type->array.size_constant   = true;
2660                 new_type->array.size            = size;
2661                 env->type = new_type;
2662         }
2663
2664         return result;
2665 end_error:
2666         return NULL;
2667 }
2668
2669 static declaration_t *append_declaration(declaration_t *declaration);
2670
2671 static declaration_t *parse_compound_type_specifier(bool is_struct)
2672 {
2673         gnu_attribute_t  *attributes = NULL;
2674         decl_modifiers_t  modifiers  = 0;
2675         if (is_struct) {
2676                 eat(T_struct);
2677         } else {
2678                 eat(T_union);
2679         }
2680
2681         symbol_t      *symbol      = NULL;
2682         declaration_t *declaration = NULL;
2683
2684         if (token.type == T___attribute__) {
2685                 modifiers |= parse_attributes(&attributes);
2686         }
2687
2688         if (token.type == T_IDENTIFIER) {
2689                 symbol = token.v.symbol;
2690                 next_token();
2691
2692                 namespace_t const namespc =
2693                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2694                 declaration = get_declaration(symbol, namespc);
2695                 if (declaration != NULL) {
2696                         if (declaration->parent_scope != scope &&
2697                             (token.type == '{' || token.type == ';')) {
2698                                 declaration = NULL;
2699                         } else if (declaration->init.complete &&
2700                                    token.type == '{') {
2701                                 assert(symbol != NULL);
2702                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2703                                        is_struct ? "struct" : "union", symbol,
2704                                        &declaration->source_position);
2705                                 declaration->scope.declarations = NULL;
2706                         }
2707                 }
2708         } else if (token.type != '{') {
2709                 if (is_struct) {
2710                         parse_error_expected("while parsing struct type specifier",
2711                                              T_IDENTIFIER, '{', NULL);
2712                 } else {
2713                         parse_error_expected("while parsing union type specifier",
2714                                              T_IDENTIFIER, '{', NULL);
2715                 }
2716
2717                 return NULL;
2718         }
2719
2720         if (declaration == NULL) {
2721                 declaration = allocate_declaration_zero();
2722                 declaration->namespc         =
2723                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2724                 declaration->source_position = token.source_position;
2725                 declaration->symbol          = symbol;
2726                 declaration->parent_scope    = scope;
2727                 if (symbol != NULL) {
2728                         environment_push(declaration);
2729                 }
2730                 append_declaration(declaration);
2731         }
2732
2733         if (token.type == '{') {
2734                 declaration->init.complete = true;
2735
2736                 parse_compound_type_entries(declaration);
2737                 modifiers |= parse_attributes(&attributes);
2738         }
2739
2740         declaration->modifiers |= modifiers;
2741         return declaration;
2742 }
2743
2744 static void parse_enum_entries(type_t *const enum_type)
2745 {
2746         eat('{');
2747
2748         if (token.type == '}') {
2749                 next_token();
2750                 errorf(HERE, "empty enum not allowed");
2751                 return;
2752         }
2753
2754         add_anchor_token('}');
2755         do {
2756                 if (token.type != T_IDENTIFIER) {
2757                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2758                         eat_block();
2759                         rem_anchor_token('}');
2760                         return;
2761                 }
2762
2763                 declaration_t *const entry = allocate_declaration_zero();
2764                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2765                 entry->type            = enum_type;
2766                 entry->symbol          = token.v.symbol;
2767                 entry->source_position = token.source_position;
2768                 next_token();
2769
2770                 if (token.type == '=') {
2771                         next_token();
2772                         expression_t *value = parse_constant_expression();
2773
2774                         value = create_implicit_cast(value, enum_type);
2775                         entry->init.enum_value = value;
2776
2777                         /* TODO semantic */
2778                 }
2779
2780                 record_declaration(entry, false);
2781
2782                 if (token.type != ',')
2783                         break;
2784                 next_token();
2785         } while (token.type != '}');
2786         rem_anchor_token('}');
2787
2788         expect('}');
2789
2790 end_error:
2791         ;
2792 }
2793
2794 static type_t *parse_enum_specifier(void)
2795 {
2796         gnu_attribute_t *attributes = NULL;
2797         declaration_t   *declaration;
2798         symbol_t        *symbol;
2799
2800         eat(T_enum);
2801         if (token.type == T_IDENTIFIER) {
2802                 symbol = token.v.symbol;
2803                 next_token();
2804
2805                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2806         } else if (token.type != '{') {
2807                 parse_error_expected("while parsing enum type specifier",
2808                                      T_IDENTIFIER, '{', NULL);
2809                 return NULL;
2810         } else {
2811                 declaration = NULL;
2812                 symbol      = NULL;
2813         }
2814
2815         if (declaration == NULL) {
2816                 declaration = allocate_declaration_zero();
2817                 declaration->namespc         = NAMESPACE_ENUM;
2818                 declaration->source_position = token.source_position;
2819                 declaration->symbol          = symbol;
2820                 declaration->parent_scope  = scope;
2821         }
2822
2823         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2824         type->enumt.declaration = declaration;
2825
2826         if (token.type == '{') {
2827                 if (declaration->init.complete) {
2828                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2829                 }
2830                 if (symbol != NULL) {
2831                         environment_push(declaration);
2832                 }
2833                 append_declaration(declaration);
2834                 declaration->init.complete = true;
2835
2836                 parse_enum_entries(type);
2837                 parse_attributes(&attributes);
2838         }
2839
2840         return type;
2841 }
2842
2843 /**
2844  * if a symbol is a typedef to another type, return true
2845  */
2846 static bool is_typedef_symbol(symbol_t *symbol)
2847 {
2848         const declaration_t *const declaration =
2849                 get_declaration(symbol, NAMESPACE_NORMAL);
2850         return
2851                 declaration != NULL &&
2852                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2853 }
2854
2855 static type_t *parse_typeof(void)
2856 {
2857         eat(T___typeof__);
2858
2859         type_t *type;
2860
2861         expect('(');
2862         add_anchor_token(')');
2863
2864         expression_t *expression  = NULL;
2865
2866 restart:
2867         switch(token.type) {
2868         case T___extension__:
2869                 /* This can be a prefix to a typename or an expression.  We simply eat
2870                  * it now. */
2871                 do {
2872                         next_token();
2873                 } while (token.type == T___extension__);
2874                 goto restart;
2875
2876         case T_IDENTIFIER:
2877                 if (is_typedef_symbol(token.v.symbol)) {
2878                         type = parse_typename();
2879                 } else {
2880                         expression = parse_expression();
2881                         type       = expression->base.type;
2882                 }
2883                 break;
2884
2885         TYPENAME_START
2886                 type = parse_typename();
2887                 break;
2888
2889         default:
2890                 expression = parse_expression();
2891                 type       = expression->base.type;
2892                 break;
2893         }
2894
2895         rem_anchor_token(')');
2896         expect(')');
2897
2898         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2899         typeof_type->typeoft.expression  = expression;
2900         typeof_type->typeoft.typeof_type = type;
2901
2902         return typeof_type;
2903 end_error:
2904         return NULL;
2905 }
2906
2907 typedef enum specifiers_t {
2908         SPECIFIER_SIGNED    = 1 << 0,
2909         SPECIFIER_UNSIGNED  = 1 << 1,
2910         SPECIFIER_LONG      = 1 << 2,
2911         SPECIFIER_INT       = 1 << 3,
2912         SPECIFIER_DOUBLE    = 1 << 4,
2913         SPECIFIER_CHAR      = 1 << 5,
2914         SPECIFIER_SHORT     = 1 << 6,
2915         SPECIFIER_LONG_LONG = 1 << 7,
2916         SPECIFIER_FLOAT     = 1 << 8,
2917         SPECIFIER_BOOL      = 1 << 9,
2918         SPECIFIER_VOID      = 1 << 10,
2919         SPECIFIER_INT8      = 1 << 11,
2920         SPECIFIER_INT16     = 1 << 12,
2921         SPECIFIER_INT32     = 1 << 13,
2922         SPECIFIER_INT64     = 1 << 14,
2923         SPECIFIER_INT128    = 1 << 15,
2924         SPECIFIER_COMPLEX   = 1 << 16,
2925         SPECIFIER_IMAGINARY = 1 << 17,
2926 } specifiers_t;
2927
2928 static type_t *create_builtin_type(symbol_t *const symbol,
2929                                    type_t *const real_type)
2930 {
2931         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2932         type->builtin.symbol    = symbol;
2933         type->builtin.real_type = real_type;
2934
2935         type_t *result = typehash_insert(type);
2936         if (type != result) {
2937                 free_type(type);
2938         }
2939
2940         return result;
2941 }
2942
2943 static type_t *get_typedef_type(symbol_t *symbol)
2944 {
2945         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2946         if (declaration == NULL ||
2947            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2948                 return NULL;
2949
2950         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2951         type->typedeft.declaration = declaration;
2952
2953         return type;
2954 }
2955
2956 /**
2957  * check for the allowed MS alignment values.
2958  */
2959 static bool check_alignment_value(long long intvalue)
2960 {
2961         if (intvalue < 1 || intvalue > 8192) {
2962                 errorf(HERE, "illegal alignment value");
2963                 return false;
2964         }
2965         unsigned v = (unsigned)intvalue;
2966         for(unsigned i = 1; i <= 8192; i += i) {
2967                 if (i == v)
2968                         return true;
2969         }
2970         errorf(HERE, "alignment must be power of two");
2971         return false;
2972 }
2973
2974 #define DET_MOD(name, tag) do { \
2975         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2976         *modifiers |= tag; \
2977 } while (0)
2978
2979 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2980 {
2981         decl_modifiers_t *modifiers = &specifiers->modifiers;
2982
2983         while (true) {
2984                 if (token.type == T_restrict) {
2985                         next_token();
2986                         DET_MOD(restrict, DM_RESTRICT);
2987                         goto end_loop;
2988                 } else if (token.type != T_IDENTIFIER)
2989                         break;
2990                 symbol_t *symbol = token.v.symbol;
2991                 if (symbol == sym_align) {
2992                         next_token();
2993                         expect('(');
2994                         if (token.type != T_INTEGER)
2995                                 goto end_error;
2996                         if (check_alignment_value(token.v.intvalue)) {
2997                                 if (specifiers->alignment != 0)
2998                                         warningf(HERE, "align used more than once");
2999                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3000                         }
3001                         next_token();
3002                         expect(')');
3003                 } else if (symbol == sym_allocate) {
3004                         next_token();
3005                         expect('(');
3006                         if (token.type != T_IDENTIFIER)
3007                                 goto end_error;
3008                         (void)token.v.symbol;
3009                         expect(')');
3010                 } else if (symbol == sym_dllimport) {
3011                         next_token();
3012                         DET_MOD(dllimport, DM_DLLIMPORT);
3013                 } else if (symbol == sym_dllexport) {
3014                         next_token();
3015                         DET_MOD(dllexport, DM_DLLEXPORT);
3016                 } else if (symbol == sym_thread) {
3017                         next_token();
3018                         DET_MOD(thread, DM_THREAD);
3019                 } else if (symbol == sym_naked) {
3020                         next_token();
3021                         DET_MOD(naked, DM_NAKED);
3022                 } else if (symbol == sym_noinline) {
3023                         next_token();
3024                         DET_MOD(noinline, DM_NOINLINE);
3025                 } else if (symbol == sym_noreturn) {
3026                         next_token();
3027                         DET_MOD(noreturn, DM_NORETURN);
3028                 } else if (symbol == sym_nothrow) {
3029                         next_token();
3030                         DET_MOD(nothrow, DM_NOTHROW);
3031                 } else if (symbol == sym_novtable) {
3032                         next_token();
3033                         DET_MOD(novtable, DM_NOVTABLE);
3034                 } else if (symbol == sym_property) {
3035                         next_token();
3036                         expect('(');
3037                         for(;;) {
3038                                 bool is_get = false;
3039                                 if (token.type != T_IDENTIFIER)
3040                                         goto end_error;
3041                                 if (token.v.symbol == sym_get) {
3042                                         is_get = true;
3043                                 } else if (token.v.symbol == sym_put) {
3044                                 } else {
3045                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3046                                         goto end_error;
3047                                 }
3048                                 next_token();
3049                                 expect('=');
3050                                 if (token.type != T_IDENTIFIER)
3051                                         goto end_error;
3052                                 if (is_get) {
3053                                         if (specifiers->get_property_sym != NULL) {
3054                                                 errorf(HERE, "get property name already specified");
3055                                         } else {
3056                                                 specifiers->get_property_sym = token.v.symbol;
3057                                         }
3058                                 } else {
3059                                         if (specifiers->put_property_sym != NULL) {
3060                                                 errorf(HERE, "put property name already specified");
3061                                         } else {
3062                                                 specifiers->put_property_sym = token.v.symbol;
3063                                         }
3064                                 }
3065                                 next_token();
3066                                 if (token.type == ',') {
3067                                         next_token();
3068                                         continue;
3069                                 }
3070                                 break;
3071                         }
3072                         expect(')');
3073                 } else if (symbol == sym_selectany) {
3074                         next_token();
3075                         DET_MOD(selectany, DM_SELECTANY);
3076                 } else if (symbol == sym_uuid) {
3077                         next_token();
3078                         expect('(');
3079                         if (token.type != T_STRING_LITERAL)
3080                                 goto end_error;
3081                         next_token();
3082                         expect(')');
3083                 } else if (symbol == sym_deprecated) {
3084                         next_token();
3085                         if (specifiers->deprecated != 0)
3086                                 warningf(HERE, "deprecated used more than once");
3087                         specifiers->deprecated = 1;
3088                         if (token.type == '(') {
3089                                 next_token();
3090                                 if (token.type == T_STRING_LITERAL) {
3091                                         specifiers->deprecated_string = token.v.string.begin;
3092                                         next_token();
3093                                 } else {
3094                                         errorf(HERE, "string literal expected");
3095                                 }
3096                                 expect(')');
3097                         }
3098                 } else if (symbol == sym_noalias) {
3099                         next_token();
3100                         DET_MOD(noalias, DM_NOALIAS);
3101                 } else {
3102                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3103                         next_token();
3104                         if (token.type == '(')
3105                                 skip_until(')');
3106                 }
3107 end_loop:
3108                 if (token.type == ',')
3109                         next_token();
3110         }
3111 end_error:
3112         return;
3113 }
3114
3115 static declaration_t *create_error_declaration(symbol_t *symbol, storage_class_tag_t storage_class)
3116 {
3117         declaration_t *const decl    = allocate_declaration_zero();
3118         decl->source_position        = *HERE;
3119         decl->declared_storage_class = storage_class;
3120         decl->storage_class          =
3121                 storage_class != STORAGE_CLASS_NONE || scope == global_scope ?
3122                         storage_class : STORAGE_CLASS_AUTO;
3123         decl->symbol                 = symbol;
3124         decl->implicit               = true;
3125         record_declaration(decl, false);
3126         return decl;
3127 }
3128
3129 /**
3130  * Finish the construction of a struct type by calculating
3131  * its size, offsets, alignment.
3132  */
3133 static void finish_struct_type(compound_type_t *type) {
3134         if (type->declaration == NULL)
3135                 return;
3136         declaration_t *struct_decl = type->declaration;
3137         if (! struct_decl->init.complete)
3138                 return;
3139
3140         il_size_t      size           = 0;
3141         il_size_t      offset;
3142         il_alignment_t alignment      = 1;
3143         bool           need_pad       = false;
3144
3145         declaration_t *entry = struct_decl->scope.declarations;
3146         for (; entry != NULL; entry = entry->next) {
3147                 if (entry->namespc != NAMESPACE_NORMAL)
3148                         continue;
3149
3150                 type_t *m_type = skip_typeref(entry->type);
3151                 if (! is_type_valid(m_type)) {
3152                         /* simply ignore errors here */
3153                         continue;
3154                 }
3155                 il_alignment_t m_alignment = m_type->base.alignment;
3156                 if (m_alignment > alignment)
3157                         alignment = m_alignment;
3158
3159                 offset = (size + m_alignment - 1) & -m_alignment;
3160
3161                 if (offset > size)
3162                         need_pad = true;
3163                 entry->offset = offset;
3164                 size = offset + m_type->base.size;
3165         }
3166         if (type->base.alignment != 0) {
3167                 alignment = type->base.alignment;
3168         }
3169
3170         offset = (size + alignment - 1) & -alignment;
3171         if (offset > size)
3172                 need_pad = true;
3173
3174         if (warning.padded && need_pad) {
3175                 warningf(&struct_decl->source_position,
3176                         "'%#T' needs padding", type, struct_decl->symbol);
3177         }
3178         if (warning.packed && !need_pad) {
3179                 warningf(&struct_decl->source_position,
3180                         "superfluous packed attribute on '%#T'",
3181                         type, struct_decl->symbol);
3182         }
3183
3184         type->base.size      = offset;
3185         type->base.alignment = alignment;
3186 }
3187
3188 /**
3189  * Finish the construction of an union type by calculating
3190  * its size and alignment.
3191  */
3192 static void finish_union_type(compound_type_t *type) {
3193         if (type->declaration == NULL)
3194                 return;
3195         declaration_t *union_decl = type->declaration;
3196         if (! union_decl->init.complete)
3197                 return;
3198
3199         il_size_t      size      = 0;
3200         il_alignment_t alignment = 1;
3201
3202         declaration_t *entry = union_decl->scope.declarations;
3203         for (; entry != NULL; entry = entry->next) {
3204                 if (entry->namespc != NAMESPACE_NORMAL)
3205                         continue;
3206
3207                 type_t *m_type = skip_typeref(entry->type);
3208                 if (! is_type_valid(m_type))
3209                         continue;
3210
3211                 entry->offset = 0;
3212                 if (m_type->base.size > size)
3213                         size = m_type->base.size;
3214                 if (m_type->base.alignment > alignment)
3215                         alignment = m_type->base.alignment;
3216         }
3217         if (type->base.alignment != 0) {
3218                 alignment = type->base.alignment;
3219         }
3220         size = (size + alignment - 1) & -alignment;
3221         type->base.size      = size;
3222         type->base.alignment = alignment;
3223 }
3224
3225 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3226 {
3227         type_t            *type            = NULL;
3228         type_qualifiers_t  qualifiers      = TYPE_QUALIFIER_NONE;
3229         type_modifiers_t   modifiers       = TYPE_MODIFIER_NONE;
3230         unsigned           type_specifiers = 0;
3231         bool               newtype         = false;
3232         bool               saw_error       = false;
3233
3234         specifiers->source_position = token.source_position;
3235
3236         while (true) {
3237                 specifiers->modifiers
3238                         |= parse_attributes(&specifiers->gnu_attributes);
3239                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3240                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3241
3242                 switch(token.type) {
3243
3244                 /* storage class */
3245 #define MATCH_STORAGE_CLASS(token, class)                                  \
3246                 case token:                                                        \
3247                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3248                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3249                         }                                                              \
3250                         specifiers->declared_storage_class = class;                    \
3251                         next_token();                                                  \
3252                         break;
3253
3254                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3255                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3256                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3257                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3258                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3259
3260                 case T__declspec:
3261                         next_token();
3262                         expect('(');
3263                         add_anchor_token(')');
3264                         parse_microsoft_extended_decl_modifier(specifiers);
3265                         rem_anchor_token(')');
3266                         expect(')');
3267                         break;
3268
3269                 case T___thread:
3270                         switch (specifiers->declared_storage_class) {
3271                         case STORAGE_CLASS_NONE:
3272                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3273                                 break;
3274
3275                         case STORAGE_CLASS_EXTERN:
3276                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3277                                 break;
3278
3279                         case STORAGE_CLASS_STATIC:
3280                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3281                                 break;
3282
3283                         default:
3284                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3285                                 break;
3286                         }
3287                         next_token();
3288                         break;
3289
3290                 /* type qualifiers */
3291 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3292                 case token:                                                     \
3293                         qualifiers |= qualifier;                                    \
3294                         next_token();                                               \
3295                         break
3296
3297                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3298                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3299                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3300                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3301                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3302                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3303                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3304                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3305
3306                 case T___extension__:
3307                         /* TODO */
3308                         next_token();
3309                         break;
3310
3311                 /* type specifiers */
3312 #define MATCH_SPECIFIER(token, specifier, name)                         \
3313                 case token:                                                     \
3314                         next_token();                                               \
3315                         if (type_specifiers & specifier) {                           \
3316                                 errorf(HERE, "multiple " name " type specifiers given"); \
3317                         } else {                                                    \
3318                                 type_specifiers |= specifier;                           \
3319                         }                                                           \
3320                         break
3321
3322                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3323                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3324                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3325                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3326                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3327                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3328                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3329                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3330                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3331                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3332                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3333                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3334                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3335                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3336                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3337                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3338
3339                 case T__forceinline:
3340                         /* only in microsoft mode */
3341                         specifiers->modifiers |= DM_FORCEINLINE;
3342                         /* FALLTHROUGH */
3343
3344                 case T_inline:
3345                         next_token();
3346                         specifiers->is_inline = true;
3347                         break;
3348
3349                 case T_long:
3350                         next_token();
3351                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3352                                 errorf(HERE, "multiple type specifiers given");
3353                         } else if (type_specifiers & SPECIFIER_LONG) {
3354                                 type_specifiers |= SPECIFIER_LONG_LONG;
3355                         } else {
3356                                 type_specifiers |= SPECIFIER_LONG;
3357                         }
3358                         break;
3359
3360                 case T_struct: {
3361                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3362
3363                         type->compound.declaration = parse_compound_type_specifier(true);
3364                         finish_struct_type(&type->compound);
3365                         break;
3366                 }
3367                 case T_union: {
3368                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3369                         type->compound.declaration = parse_compound_type_specifier(false);
3370                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3371                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3372                         break;
3373                         finish_union_type(&type->compound);
3374                 }
3375                 case T_enum:
3376                         type = parse_enum_specifier();
3377                         break;
3378                 case T___typeof__:
3379                         type = parse_typeof();
3380                         break;
3381                 case T___builtin_va_list:
3382                         type = duplicate_type(type_valist);
3383                         next_token();
3384                         break;
3385
3386                 case T_IDENTIFIER: {
3387                         /* only parse identifier if we haven't found a type yet */
3388                         if (type != NULL || type_specifiers != 0) {
3389                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3390                                  * declaration, so it doesn't generate errors about expecting '(' or
3391                                  * '{' later on. */
3392                                 switch (look_ahead(1)->type) {
3393                                         STORAGE_CLASSES
3394                                         TYPE_SPECIFIERS
3395                                         case T_const:
3396                                         case T_restrict:
3397                                         case T_volatile:
3398                                         case T_inline:
3399                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3400                                         case T_IDENTIFIER:
3401                                         case '*':
3402                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3403                                                 next_token();
3404                                                 continue;
3405
3406                                         default:
3407                                                 goto finish_specifiers;
3408                                 }
3409                         }
3410
3411                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3412                         if (typedef_type == NULL) {
3413                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3414                                  * declaration, so it doesn't generate 'implicit int' followed by more
3415                                  * errors later on. */
3416                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3417                                 switch (la1_type) {
3418                                         DECLARATION_START
3419                                         case T_IDENTIFIER:
3420                                         case '*': {
3421                                                 errorf(HERE, "%K does not name a type", &token);
3422
3423                                                 declaration_t *const decl =
3424                                                         create_error_declaration(token.v.symbol, STORAGE_CLASS_TYPEDEF);
3425
3426                                                 type = allocate_type_zero(TYPE_TYPEDEF, HERE);
3427                                                 type->typedeft.declaration = decl;
3428
3429                                                 next_token();
3430                                                 saw_error = true;
3431                                                 if (la1_type == '*')
3432                                                         goto finish_specifiers;
3433                                                 continue;
3434                                         }
3435
3436                                         default:
3437                                                 goto finish_specifiers;
3438                                 }
3439                         }
3440
3441                         next_token();
3442                         type = typedef_type;
3443                         break;
3444                 }
3445
3446                 /* function specifier */
3447                 default:
3448                         goto finish_specifiers;
3449                 }
3450         }
3451
3452 finish_specifiers:
3453         if (type == NULL || (saw_error && type_specifiers != 0)) {
3454                 atomic_type_kind_t atomic_type;
3455
3456                 /* match valid basic types */
3457                 switch(type_specifiers) {
3458                 case SPECIFIER_VOID:
3459                         atomic_type = ATOMIC_TYPE_VOID;
3460                         break;
3461                 case SPECIFIER_CHAR:
3462                         atomic_type = ATOMIC_TYPE_CHAR;
3463                         break;
3464                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3465                         atomic_type = ATOMIC_TYPE_SCHAR;
3466                         break;
3467                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3468                         atomic_type = ATOMIC_TYPE_UCHAR;
3469                         break;
3470                 case SPECIFIER_SHORT:
3471                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3472                 case SPECIFIER_SHORT | SPECIFIER_INT:
3473                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3474                         atomic_type = ATOMIC_TYPE_SHORT;
3475                         break;
3476                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3477                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3478                         atomic_type = ATOMIC_TYPE_USHORT;
3479                         break;
3480                 case SPECIFIER_INT:
3481                 case SPECIFIER_SIGNED:
3482                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3483                         atomic_type = ATOMIC_TYPE_INT;
3484                         break;
3485                 case SPECIFIER_UNSIGNED:
3486                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3487                         atomic_type = ATOMIC_TYPE_UINT;
3488                         break;
3489                 case SPECIFIER_LONG:
3490                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3491                 case SPECIFIER_LONG | SPECIFIER_INT:
3492                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3493                         atomic_type = ATOMIC_TYPE_LONG;
3494                         break;
3495                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3496                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3497                         atomic_type = ATOMIC_TYPE_ULONG;
3498                         break;
3499
3500                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3501                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3502                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3503                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3504                         | SPECIFIER_INT:
3505                         atomic_type = ATOMIC_TYPE_LONGLONG;
3506                         goto warn_about_long_long;
3507
3508                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3509                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3510                         | SPECIFIER_INT:
3511                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3512 warn_about_long_long:
3513                         if (warning.long_long) {
3514                                 warningf(&specifiers->source_position,
3515                                          "ISO C90 does not support 'long long'");
3516                         }
3517                         break;
3518
3519                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3520                         atomic_type = unsigned_int8_type_kind;
3521                         break;
3522
3523                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3524                         atomic_type = unsigned_int16_type_kind;
3525                         break;
3526
3527                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3528                         atomic_type = unsigned_int32_type_kind;
3529                         break;
3530
3531                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3532                         atomic_type = unsigned_int64_type_kind;
3533                         break;
3534
3535                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3536                         atomic_type = unsigned_int128_type_kind;
3537                         break;
3538
3539                 case SPECIFIER_INT8:
3540                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3541                         atomic_type = int8_type_kind;
3542                         break;
3543
3544                 case SPECIFIER_INT16:
3545                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3546                         atomic_type = int16_type_kind;
3547                         break;
3548
3549                 case SPECIFIER_INT32:
3550                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3551                         atomic_type = int32_type_kind;
3552                         break;
3553
3554                 case SPECIFIER_INT64:
3555                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3556                         atomic_type = int64_type_kind;
3557                         break;
3558
3559                 case SPECIFIER_INT128:
3560                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3561                         atomic_type = int128_type_kind;
3562                         break;
3563
3564                 case SPECIFIER_FLOAT:
3565                         atomic_type = ATOMIC_TYPE_FLOAT;
3566                         break;
3567                 case SPECIFIER_DOUBLE:
3568                         atomic_type = ATOMIC_TYPE_DOUBLE;
3569                         break;
3570                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3571                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3572                         break;
3573                 case SPECIFIER_BOOL:
3574                         atomic_type = ATOMIC_TYPE_BOOL;
3575                         break;
3576                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3577                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3578                         atomic_type = ATOMIC_TYPE_FLOAT;
3579                         break;
3580                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3581                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3582                         atomic_type = ATOMIC_TYPE_DOUBLE;
3583                         break;
3584                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3585                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3586                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3587                         break;
3588                 default:
3589                         /* invalid specifier combination, give an error message */
3590                         if (type_specifiers == 0) {
3591                                 if (saw_error)
3592                                         goto end_error;
3593
3594                                 if (!strict_mode) {
3595                                         if (warning.implicit_int) {
3596                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3597                                         }
3598                                         atomic_type = ATOMIC_TYPE_INT;
3599                                         break;
3600                                 } else {
3601                                         errorf(HERE, "no type specifiers given in declaration");
3602                                 }
3603                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3604                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3605                                 errorf(HERE, "signed and unsigned specifiers given");
3606                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3607                                 errorf(HERE, "only integer types can be signed or unsigned");
3608                         } else {
3609                                 errorf(HERE, "multiple datatypes in declaration");
3610                         }
3611                         goto end_error;
3612                 }
3613
3614                 if (type_specifiers & SPECIFIER_COMPLEX) {
3615                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3616                         type->complex.akind = atomic_type;
3617                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3618                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3619                         type->imaginary.akind = atomic_type;
3620                 } else {
3621                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3622                         type->atomic.akind = atomic_type;
3623                 }
3624                 newtype = true;
3625         } else if (type_specifiers != 0) {
3626                 errorf(HERE, "multiple datatypes in declaration");
3627         }
3628
3629         /* FIXME: check type qualifiers here */
3630
3631         type->base.qualifiers = qualifiers;
3632         type->base.modifiers  = modifiers;
3633
3634         type_t *result = typehash_insert(type);
3635         if (newtype && result != type) {
3636                 free_type(type);
3637         }
3638
3639         specifiers->type = result;
3640         return;
3641
3642 end_error:
3643         specifiers->type = type_error_type;
3644         return;
3645 }
3646
3647 static type_qualifiers_t parse_type_qualifiers(void)
3648 {
3649         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3650
3651         while (true) {
3652                 switch(token.type) {
3653                 /* type qualifiers */
3654                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3655                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3656                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3657                 /* microsoft extended type modifiers */
3658                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3659                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3660                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3661                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3662                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3663
3664                 default:
3665                         return qualifiers;
3666                 }
3667         }
3668 }
3669
3670 static declaration_t *parse_identifier_list(void)
3671 {
3672         declaration_t *declarations     = NULL;
3673         declaration_t *last_declaration = NULL;
3674         do {
3675                 declaration_t *const declaration = allocate_declaration_zero();
3676                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3677                 declaration->source_position = token.source_position;
3678                 declaration->symbol          = token.v.symbol;
3679                 next_token();
3680
3681                 if (last_declaration != NULL) {
3682                         last_declaration->next = declaration;
3683                 } else {
3684                         declarations = declaration;
3685                 }
3686                 last_declaration = declaration;
3687
3688                 if (token.type != ',') {
3689                         break;
3690                 }
3691                 next_token();
3692         } while (token.type == T_IDENTIFIER);
3693
3694         return declarations;
3695 }
3696
3697 static type_t *automatic_type_conversion(type_t *orig_type);
3698
3699 static void semantic_parameter(declaration_t *declaration)
3700 {
3701         /* TODO: improve error messages */
3702         source_position_t const* const pos = &declaration->source_position;
3703
3704         switch (declaration->declared_storage_class) {
3705                 case STORAGE_CLASS_TYPEDEF:
3706                         errorf(pos, "typedef not allowed in parameter list");
3707                         break;
3708
3709                 /* Allowed storage classes */
3710                 case STORAGE_CLASS_NONE:
3711                 case STORAGE_CLASS_REGISTER:
3712                         break;
3713
3714                 default:
3715                         errorf(pos, "parameter may only have none or register storage class");
3716                         break;
3717         }
3718
3719         type_t *const orig_type = declaration->type;
3720         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3721          * sugar.  Turn it into a pointer.
3722          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3723          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3724          */
3725         type_t *const type = automatic_type_conversion(orig_type);
3726         declaration->type = type;
3727
3728         if (is_type_incomplete(skip_typeref(type))) {
3729                 errorf(pos, "parameter '%#T' is of incomplete type",
3730                        orig_type, declaration->symbol);
3731         }
3732 }
3733
3734 static declaration_t *parse_parameter(void)
3735 {
3736         declaration_specifiers_t specifiers;
3737         memset(&specifiers, 0, sizeof(specifiers));
3738
3739         parse_declaration_specifiers(&specifiers);
3740
3741         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3742
3743         return declaration;
3744 }
3745
3746 static declaration_t *parse_parameters(function_type_t *type)
3747 {
3748         declaration_t *declarations = NULL;
3749
3750         eat('(');
3751         add_anchor_token(')');
3752         int saved_comma_state = save_and_reset_anchor_state(',');
3753
3754         if (token.type == T_IDENTIFIER &&
3755             !is_typedef_symbol(token.v.symbol)) {
3756                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3757                 if (la1_type == ',' || la1_type == ')') {
3758                         type->kr_style_parameters = true;
3759                         declarations = parse_identifier_list();
3760                         goto parameters_finished;
3761                 }
3762         }
3763
3764         if (token.type == ')') {
3765                 type->unspecified_parameters = 1;
3766                 goto parameters_finished;
3767         }
3768
3769         declaration_t        *declaration;
3770         declaration_t        *last_declaration = NULL;
3771         function_parameter_t *parameter;
3772         function_parameter_t *last_parameter = NULL;
3773
3774         while (true) {
3775                 switch(token.type) {
3776                 case T_DOTDOTDOT:
3777                         next_token();
3778                         type->variadic = 1;
3779                         goto parameters_finished;
3780
3781                 case T_IDENTIFIER:
3782                 case T___extension__:
3783                 DECLARATION_START
3784                         declaration = parse_parameter();
3785
3786                         /* func(void) is not a parameter */
3787                         if (last_parameter == NULL
3788                                         && token.type == ')'
3789                                         && declaration->symbol == NULL
3790                                         && skip_typeref(declaration->type) == type_void) {
3791                                 goto parameters_finished;
3792                         }
3793                         semantic_parameter(declaration);
3794
3795                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3796                         memset(parameter, 0, sizeof(parameter[0]));
3797                         parameter->type = declaration->type;
3798
3799                         if (last_parameter != NULL) {
3800                                 last_declaration->next = declaration;
3801                                 last_parameter->next   = parameter;
3802                         } else {
3803                                 type->parameters = parameter;
3804                                 declarations     = declaration;
3805                         }
3806                         last_parameter   = parameter;
3807                         last_declaration = declaration;
3808                         break;
3809
3810                 default:
3811                         goto parameters_finished;
3812                 }
3813                 if (token.type != ',') {
3814                         goto parameters_finished;
3815                 }
3816                 next_token();
3817         }
3818
3819
3820 parameters_finished:
3821         rem_anchor_token(')');
3822         expect(')');
3823
3824         restore_anchor_state(',', saved_comma_state);
3825         return declarations;
3826
3827 end_error:
3828         restore_anchor_state(',', saved_comma_state);
3829         return NULL;
3830 }
3831
3832 typedef enum construct_type_kind_t {
3833         CONSTRUCT_INVALID,
3834         CONSTRUCT_POINTER,
3835         CONSTRUCT_FUNCTION,
3836         CONSTRUCT_ARRAY
3837 } construct_type_kind_t;
3838
3839 typedef struct construct_type_t construct_type_t;
3840 struct construct_type_t {
3841         construct_type_kind_t  kind;
3842         construct_type_t      *next;
3843 };
3844
3845 typedef struct parsed_pointer_t parsed_pointer_t;
3846 struct parsed_pointer_t {
3847         construct_type_t  construct_type;
3848         type_qualifiers_t type_qualifiers;
3849 };
3850
3851 typedef struct construct_function_type_t construct_function_type_t;
3852 struct construct_function_type_t {
3853         construct_type_t  construct_type;
3854         type_t           *function_type;
3855 };
3856
3857 typedef struct parsed_array_t parsed_array_t;
3858 struct parsed_array_t {
3859         construct_type_t  construct_type;
3860         type_qualifiers_t type_qualifiers;
3861         bool              is_static;
3862         bool              is_variable;
3863         expression_t     *size;
3864 };
3865
3866 typedef struct construct_base_type_t construct_base_type_t;
3867 struct construct_base_type_t {
3868         construct_type_t  construct_type;
3869         type_t           *type;
3870 };
3871
3872 static construct_type_t *parse_pointer_declarator(void)
3873 {
3874         eat('*');
3875
3876         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3877         memset(pointer, 0, sizeof(pointer[0]));
3878         pointer->construct_type.kind = CONSTRUCT_POINTER;
3879         pointer->type_qualifiers     = parse_type_qualifiers();
3880
3881         return (construct_type_t*) pointer;
3882 }
3883
3884 static construct_type_t *parse_array_declarator(void)
3885 {
3886         eat('[');
3887         add_anchor_token(']');
3888
3889         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3890         memset(array, 0, sizeof(array[0]));
3891         array->construct_type.kind = CONSTRUCT_ARRAY;
3892
3893         if (token.type == T_static) {
3894                 array->is_static = true;
3895                 next_token();
3896         }
3897
3898         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3899         if (type_qualifiers != 0) {
3900                 if (token.type == T_static) {
3901                         array->is_static = true;
3902                         next_token();
3903                 }
3904         }
3905         array->type_qualifiers = type_qualifiers;
3906
3907         if (token.type == '*' && look_ahead(1)->type == ']') {
3908                 array->is_variable = true;
3909                 next_token();
3910         } else if (token.type != ']') {
3911                 array->size = parse_assignment_expression();
3912         }
3913
3914         rem_anchor_token(']');
3915         expect(']');
3916
3917 end_error:
3918         return (construct_type_t*) array;
3919 }
3920
3921 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3922 {
3923         type_t *type;
3924         if (declaration != NULL) {
3925                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3926
3927                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3928
3929                 if (mask & (mask-1)) {
3930                         const char *first = NULL, *second = NULL;
3931
3932                         /* more than one calling convention set */
3933                         if (declaration->modifiers & DM_CDECL) {
3934                                 if (first == NULL)       first = "cdecl";
3935                                 else if (second == NULL) second = "cdecl";
3936                         }
3937                         if (declaration->modifiers & DM_STDCALL) {
3938                                 if (first == NULL)       first = "stdcall";
3939                                 else if (second == NULL) second = "stdcall";
3940                         }
3941                         if (declaration->modifiers & DM_FASTCALL) {
3942                                 if (first == NULL)       first = "fastcall";
3943                                 else if (second == NULL) second = "fastcall";
3944                         }
3945                         if (declaration->modifiers & DM_THISCALL) {
3946                                 if (first == NULL)       first = "thiscall";
3947                                 else if (second == NULL) second = "thiscall";
3948                         }
3949                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3950                 }
3951
3952                 if (declaration->modifiers & DM_CDECL)
3953                         type->function.calling_convention = CC_CDECL;
3954                 else if (declaration->modifiers & DM_STDCALL)
3955                         type->function.calling_convention = CC_STDCALL;
3956                 else if (declaration->modifiers & DM_FASTCALL)
3957                         type->function.calling_convention = CC_FASTCALL;
3958                 else if (declaration->modifiers & DM_THISCALL)
3959                         type->function.calling_convention = CC_THISCALL;
3960         } else {
3961                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3962         }
3963
3964         declaration_t *parameters = parse_parameters(&type->function);
3965         if (declaration != NULL) {
3966                 declaration->scope.declarations = parameters;
3967         }
3968
3969         construct_function_type_t *construct_function_type =
3970                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3971         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3972         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3973         construct_function_type->function_type       = type;
3974
3975         return &construct_function_type->construct_type;
3976 }
3977
3978 static void fix_declaration_type(declaration_t *declaration)
3979 {
3980         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3981         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3982
3983         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3984                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3985
3986         if (declaration->type->base.modifiers == type_modifiers)
3987                 return;
3988
3989         type_t *copy = duplicate_type(declaration->type);
3990         copy->base.modifiers = type_modifiers;
3991
3992         type_t *result = typehash_insert(copy);
3993         if (result != copy) {
3994                 obstack_free(type_obst, copy);
3995         }
3996
3997         declaration->type = result;
3998 }
3999
4000 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
4001                 bool may_be_abstract)
4002 {
4003         /* construct a single linked list of construct_type_t's which describe
4004          * how to construct the final declarator type */
4005         construct_type_t *first = NULL;
4006         construct_type_t *last  = NULL;
4007         gnu_attribute_t  *attributes = NULL;
4008
4009         decl_modifiers_t modifiers = parse_attributes(&attributes);
4010
4011         /* pointers */
4012         while (token.type == '*') {
4013                 construct_type_t *type = parse_pointer_declarator();
4014
4015                 if (last == NULL) {
4016                         first = type;
4017                         last  = type;
4018                 } else {
4019                         last->next = type;
4020                         last       = type;
4021                 }
4022
4023                 /* TODO: find out if this is correct */
4024                 modifiers |= parse_attributes(&attributes);
4025         }
4026
4027         if (declaration != NULL)
4028                 declaration->modifiers |= modifiers;
4029
4030         construct_type_t *inner_types = NULL;
4031
4032         switch(token.type) {
4033         case T_IDENTIFIER:
4034                 if (declaration == NULL) {
4035                         errorf(HERE, "no identifier expected in typename");
4036                 } else {
4037                         declaration->symbol          = token.v.symbol;
4038                         declaration->source_position = token.source_position;
4039                 }
4040                 next_token();
4041                 break;
4042         case '(':
4043                 next_token();
4044                 add_anchor_token(')');
4045                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
4046                 if (inner_types != NULL) {
4047                         /* All later declarators only modify the return type, not declaration */
4048                         declaration = NULL;
4049                 }
4050                 rem_anchor_token(')');
4051                 expect(')');
4052                 break;
4053         default:
4054                 if (may_be_abstract)
4055                         break;
4056                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4057                 /* avoid a loop in the outermost scope, because eat_statement doesn't
4058                  * eat '}' */
4059                 if (token.type == '}' && current_function == NULL) {
4060                         next_token();
4061                 } else {
4062                         eat_statement();
4063                 }
4064                 return NULL;
4065         }
4066
4067         construct_type_t *p = last;
4068
4069         while(true) {
4070                 construct_type_t *type;
4071                 switch(token.type) {
4072                 case '(':
4073                         type = parse_function_declarator(declaration);
4074                         break;
4075                 case '[':
4076                         type = parse_array_declarator();
4077                         break;
4078                 default:
4079                         goto declarator_finished;
4080                 }
4081
4082                 /* insert in the middle of the list (behind p) */
4083                 if (p != NULL) {
4084                         type->next = p->next;
4085                         p->next    = type;
4086                 } else {
4087                         type->next = first;
4088                         first      = type;
4089                 }
4090                 if (last == p) {
4091                         last = type;
4092                 }
4093         }
4094
4095 declarator_finished:
4096         /* append inner_types at the end of the list, we don't to set last anymore
4097          * as it's not needed anymore */
4098         if (last == NULL) {
4099                 assert(first == NULL);
4100                 first = inner_types;
4101         } else {
4102                 last->next = inner_types;
4103         }
4104
4105         return first;
4106 end_error:
4107         return NULL;
4108 }
4109
4110 static void parse_declaration_attributes(declaration_t *declaration)
4111 {
4112         gnu_attribute_t  *attributes = NULL;
4113         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4114
4115         if (declaration == NULL)
4116                 return;
4117
4118         declaration->modifiers |= modifiers;
4119         /* check if we have these stupid mode attributes... */
4120         type_t *old_type = declaration->type;
4121         if (old_type == NULL)
4122                 return;
4123
4124         gnu_attribute_t *attribute = attributes;
4125         for ( ; attribute != NULL; attribute = attribute->next) {
4126                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4127                         continue;
4128
4129                 atomic_type_kind_t  akind = attribute->u.akind;
4130                 if (!is_type_signed(old_type)) {
4131                         switch(akind) {
4132                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4133                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4134                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4135                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4136                         default:
4137                                 panic("invalid akind in mode attribute");
4138                         }
4139                 }
4140                 declaration->type
4141                         = make_atomic_type(akind, old_type->base.qualifiers);
4142         }
4143 }
4144
4145 static type_t *construct_declarator_type(construct_type_t *construct_list,
4146                                          type_t *type)
4147 {
4148         construct_type_t *iter = construct_list;
4149         for( ; iter != NULL; iter = iter->next) {
4150                 switch(iter->kind) {
4151                 case CONSTRUCT_INVALID:
4152                         internal_errorf(HERE, "invalid type construction found");
4153                 case CONSTRUCT_FUNCTION: {
4154                         construct_function_type_t *construct_function_type
4155                                 = (construct_function_type_t*) iter;
4156
4157                         type_t *function_type = construct_function_type->function_type;
4158
4159                         function_type->function.return_type = type;
4160
4161                         type_t *skipped_return_type = skip_typeref(type);
4162                         /* Â§6.7.5.3(1) */
4163                         if (is_type_function(skipped_return_type)) {
4164                                 errorf(HERE, "function returning function is not allowed");
4165                         } else if (is_type_array(skipped_return_type)) {
4166                                 errorf(HERE, "function returning array is not allowed");
4167                         } else {
4168                                 if (skipped_return_type->base.qualifiers != 0) {
4169                                         warningf(HERE,
4170                                                 "type qualifiers in return type of function type are meaningless");
4171                                 }
4172                         }
4173
4174                         type = function_type;
4175                         break;
4176                 }
4177
4178                 case CONSTRUCT_POINTER: {
4179                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4180                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
4181                         pointer_type->pointer.points_to  = type;
4182                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
4183
4184                         type = pointer_type;
4185                         break;
4186                 }
4187
4188                 case CONSTRUCT_ARRAY: {
4189                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4190                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
4191
4192                         expression_t *size_expression = parsed_array->size;
4193                         if (size_expression != NULL) {
4194                                 size_expression
4195                                         = create_implicit_cast(size_expression, type_size_t);
4196                         }
4197
4198                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4199                         array_type->array.element_type    = type;
4200                         array_type->array.is_static       = parsed_array->is_static;
4201                         array_type->array.is_variable     = parsed_array->is_variable;
4202                         array_type->array.size_expression = size_expression;
4203
4204                         if (size_expression != NULL) {
4205                                 if (is_constant_expression(size_expression)) {
4206                                         array_type->array.size_constant = true;
4207                                         array_type->array.size
4208                                                 = fold_constant(size_expression);
4209                                 } else {
4210                                         array_type->array.is_vla = true;
4211                                 }
4212                         }
4213
4214                         type_t *skipped_type = skip_typeref(type);
4215                         /* Â§6.7.5.2(1) */
4216                         if (is_type_incomplete(skipped_type)) {
4217                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4218                         } else if (is_type_function(skipped_type)) {
4219                                 errorf(HERE, "array of functions is not allowed");
4220                         }
4221                         type = array_type;
4222                         break;
4223                 }
4224                 }
4225
4226                 type_t *hashed_type = typehash_insert(type);
4227                 if (hashed_type != type) {
4228                         /* the function type was constructed earlier freeing it here will
4229                          * destroy other types... */
4230                         if (iter->kind != CONSTRUCT_FUNCTION) {
4231                                 free_type(type);
4232                         }
4233                         type = hashed_type;
4234                 }
4235         }
4236
4237         return type;
4238 }
4239
4240 static declaration_t *parse_declarator(
4241                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
4242 {
4243         declaration_t *const declaration    = allocate_declaration_zero();
4244         declaration->source_position        = specifiers->source_position;
4245         declaration->declared_storage_class = specifiers->declared_storage_class;
4246         declaration->modifiers              = specifiers->modifiers;
4247         declaration->deprecated_string      = specifiers->deprecated_string;
4248         declaration->get_property_sym       = specifiers->get_property_sym;
4249         declaration->put_property_sym       = specifiers->put_property_sym;
4250         declaration->is_inline              = specifiers->is_inline;
4251
4252         declaration->storage_class          = specifiers->declared_storage_class;
4253         if (declaration->storage_class == STORAGE_CLASS_NONE
4254                         && scope != global_scope) {
4255                 declaration->storage_class = STORAGE_CLASS_AUTO;
4256         }
4257
4258         if (specifiers->alignment != 0) {
4259                 /* TODO: add checks here */
4260                 declaration->alignment = specifiers->alignment;
4261         }
4262
4263         construct_type_t *construct_type
4264                 = parse_inner_declarator(declaration, may_be_abstract);
4265         type_t *const type = specifiers->type;
4266         declaration->type = construct_declarator_type(construct_type, type);
4267
4268         parse_declaration_attributes(declaration);
4269
4270         fix_declaration_type(declaration);
4271
4272         if (construct_type != NULL) {
4273                 obstack_free(&temp_obst, construct_type);
4274         }
4275
4276         return declaration;
4277 }
4278
4279 static type_t *parse_abstract_declarator(type_t *base_type)
4280 {
4281         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4282
4283         type_t *result = construct_declarator_type(construct_type, base_type);
4284         if (construct_type != NULL) {
4285                 obstack_free(&temp_obst, construct_type);
4286         }
4287
4288         return result;
4289 }
4290
4291 static declaration_t *append_declaration(declaration_t* const declaration)
4292 {
4293         if (last_declaration != NULL) {
4294                 last_declaration->next = declaration;
4295         } else {
4296                 scope->declarations = declaration;
4297         }
4298         last_declaration = declaration;
4299         return declaration;
4300 }
4301
4302 /**
4303  * Check if the declaration of main is suspicious.  main should be a
4304  * function with external linkage, returning int, taking either zero
4305  * arguments, two, or three arguments of appropriate types, ie.
4306  *
4307  * int main([ int argc, char **argv [, char **env ] ]).
4308  *
4309  * @param decl    the declaration to check
4310  * @param type    the function type of the declaration
4311  */
4312 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4313 {
4314         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4315                 warningf(&decl->source_position,
4316                          "'main' is normally a non-static function");
4317         }
4318         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4319                 warningf(&decl->source_position,
4320                          "return type of 'main' should be 'int', but is '%T'",
4321                          func_type->return_type);
4322         }
4323         const function_parameter_t *parm = func_type->parameters;
4324         if (parm != NULL) {
4325                 type_t *const first_type = parm->type;
4326                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4327                         warningf(&decl->source_position,
4328                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4329                 }
4330                 parm = parm->next;
4331                 if (parm != NULL) {
4332                         type_t *const second_type = parm->type;
4333                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4334                                 warningf(&decl->source_position,
4335                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4336                         }
4337                         parm = parm->next;
4338                         if (parm != NULL) {
4339                                 type_t *const third_type = parm->type;
4340                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4341                                         warningf(&decl->source_position,
4342                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4343                                 }
4344                                 parm = parm->next;
4345                                 if (parm != NULL)
4346                                         goto warn_arg_count;
4347                         }
4348                 } else {
4349 warn_arg_count:
4350                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4351                 }
4352         }
4353 }
4354
4355 /**
4356  * Check if a symbol is the equal to "main".
4357  */
4358 static bool is_sym_main(const symbol_t *const sym)
4359 {
4360         return strcmp(sym->string, "main") == 0;
4361 }
4362
4363 static declaration_t *record_declaration(
4364         declaration_t *const declaration,
4365         const bool is_definition)
4366 {
4367         const symbol_t *const symbol  = declaration->symbol;
4368         const namespace_t     namespc = (namespace_t)declaration->namespc;
4369
4370         assert(symbol != NULL);
4371         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4372
4373         type_t *const orig_type = declaration->type;
4374         type_t *const type      = skip_typeref(orig_type);
4375         if (is_type_function(type) &&
4376                         type->function.unspecified_parameters &&
4377                         warning.strict_prototypes &&
4378                         previous_declaration == NULL) {
4379                 warningf(&declaration->source_position,
4380                          "function declaration '%#T' is not a prototype",
4381                          orig_type, symbol);
4382         }
4383
4384         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4385                 check_type_of_main(declaration, &type->function);
4386         }
4387
4388         if (warning.nested_externs                             &&
4389             declaration->storage_class == STORAGE_CLASS_EXTERN &&
4390             scope                      != global_scope) {
4391                 warningf(&declaration->source_position,
4392                          "nested extern declaration of '%#T'", declaration->type, symbol);
4393         }
4394
4395         assert(declaration != previous_declaration);
4396         if (previous_declaration != NULL
4397                         && previous_declaration->parent_scope == scope) {
4398                 /* can happen for K&R style declarations */
4399                 if (previous_declaration->type == NULL) {
4400                         previous_declaration->type = declaration->type;
4401                 }
4402
4403                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4404                 if (!types_compatible(type, prev_type)) {
4405                         errorf(&declaration->source_position,
4406                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4407                                    orig_type, symbol, previous_declaration->type, symbol,
4408                                    &previous_declaration->source_position);
4409                 } else {
4410                         unsigned old_storage_class = previous_declaration->storage_class;
4411                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4412                                 errorf(&declaration->source_position,
4413                                            "redeclaration of enum entry '%Y' (declared %P)",
4414                                            symbol, &previous_declaration->source_position);
4415                                 return previous_declaration;
4416                         }
4417
4418                         if (warning.redundant_decls                                     &&
4419                             is_definition                                               &&
4420                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4421                             !(previous_declaration->modifiers & DM_USED)                &&
4422                             !previous_declaration->used) {
4423                                 warningf(&previous_declaration->source_position,
4424                                          "unnecessary static forward declaration for '%#T'",
4425                                          previous_declaration->type, symbol);
4426                         }
4427
4428                         unsigned new_storage_class = declaration->storage_class;
4429
4430                         if (is_type_incomplete(prev_type)) {
4431                                 previous_declaration->type = type;
4432                                 prev_type                  = type;
4433                         }
4434
4435                         /* pretend no storage class means extern for function
4436                          * declarations (except if the previous declaration is neither
4437                          * none nor extern) */
4438                         if (is_type_function(type)) {
4439                                 if (prev_type->function.unspecified_parameters) {
4440                                         previous_declaration->type = type;
4441                                         prev_type                  = type;
4442                                 }
4443
4444                                 switch (old_storage_class) {
4445                                 case STORAGE_CLASS_NONE:
4446                                         old_storage_class = STORAGE_CLASS_EXTERN;
4447                                         /* FALLTHROUGH */
4448
4449                                 case STORAGE_CLASS_EXTERN:
4450                                         if (is_definition) {
4451                                                 if (warning.missing_prototypes &&
4452                                                     prev_type->function.unspecified_parameters &&
4453                                                     !is_sym_main(symbol)) {
4454                                                         warningf(&declaration->source_position,
4455                                                                          "no previous prototype for '%#T'",
4456                                                                          orig_type, symbol);
4457                                                 }
4458                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4459                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4460                                         }
4461                                         break;
4462
4463                                 default:
4464                                         break;
4465                                 }
4466                         }
4467
4468                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4469                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4470 warn_redundant_declaration:
4471                                 if (!is_definition           &&
4472                                     warning.redundant_decls  &&
4473                                     is_type_valid(prev_type) &&
4474                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4475                                         warningf(&declaration->source_position,
4476                                                  "redundant declaration for '%Y' (declared %P)",
4477                                                  symbol, &previous_declaration->source_position);
4478                                 }
4479                         } else if (current_function == NULL) {
4480                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4481                                     new_storage_class == STORAGE_CLASS_STATIC) {
4482                                         errorf(&declaration->source_position,
4483                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4484                                                symbol, &previous_declaration->source_position);
4485                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4486                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4487                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4488                                 } else {
4489                                         goto warn_redundant_declaration;
4490                                 }
4491                         } else if (is_type_valid(prev_type)) {
4492                                 if (old_storage_class == new_storage_class) {
4493                                         errorf(&declaration->source_position,
4494                                                "redeclaration of '%Y' (declared %P)",
4495                                                symbol, &previous_declaration->source_position);
4496                                 } else {
4497                                         errorf(&declaration->source_position,
4498                                                "redeclaration of '%Y' with different linkage (declared %P)",
4499                                                symbol, &previous_declaration->source_position);
4500                                 }
4501                         }
4502                 }
4503
4504                 previous_declaration->modifiers |= declaration->modifiers;
4505                 previous_declaration->is_inline |= declaration->is_inline;
4506                 return previous_declaration;
4507         } else if (is_type_function(type)) {
4508                 if (is_definition &&
4509                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4510                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4511                                 warningf(&declaration->source_position,
4512                                          "no previous prototype for '%#T'", orig_type, symbol);
4513                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4514                                 warningf(&declaration->source_position,
4515                                          "no previous declaration for '%#T'", orig_type,
4516                                          symbol);
4517                         }
4518                 }
4519         } else {
4520                 if (warning.missing_declarations &&
4521                     scope == global_scope && (
4522                       declaration->storage_class == STORAGE_CLASS_NONE ||
4523                       declaration->storage_class == STORAGE_CLASS_THREAD
4524                     )) {
4525                         warningf(&declaration->source_position,
4526                                  "no previous declaration for '%#T'", orig_type, symbol);
4527                 }
4528         }
4529
4530         assert(declaration->parent_scope == NULL);
4531         assert(scope != NULL);
4532
4533         declaration->parent_scope = scope;
4534
4535         environment_push(declaration);
4536         return append_declaration(declaration);
4537 }
4538
4539 static void parser_error_multiple_definition(declaration_t *declaration,
4540                 const source_position_t *source_position)
4541 {
4542         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4543                declaration->symbol, &declaration->source_position);
4544 }
4545
4546 static bool is_declaration_specifier(const token_t *token,
4547                                      bool only_specifiers_qualifiers)
4548 {
4549         switch(token->type) {
4550                 TYPE_SPECIFIERS
4551                 TYPE_QUALIFIERS
4552                         return true;
4553                 case T_IDENTIFIER:
4554                         return is_typedef_symbol(token->v.symbol);
4555
4556                 case T___extension__:
4557                 STORAGE_CLASSES
4558                         return !only_specifiers_qualifiers;
4559
4560                 default:
4561                         return false;
4562         }
4563 }
4564
4565 static void parse_init_declarator_rest(declaration_t *declaration)
4566 {
4567         eat('=');
4568
4569         type_t *orig_type = declaration->type;
4570         type_t *type      = skip_typeref(orig_type);
4571
4572         if (declaration->init.initializer != NULL) {
4573                 parser_error_multiple_definition(declaration, HERE);
4574         }
4575
4576         bool must_be_constant = false;
4577         if (declaration->storage_class == STORAGE_CLASS_STATIC
4578                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4579                         || declaration->parent_scope == global_scope) {
4580                 must_be_constant = true;
4581         }
4582
4583         if (is_type_function(type)) {
4584                 errorf(&declaration->source_position,
4585                        "function '%#T' is initialized like a variable",
4586                        orig_type, declaration->symbol);
4587                 orig_type = type_error_type;
4588         }
4589
4590         parse_initializer_env_t env;
4591         env.type             = orig_type;
4592         env.must_be_constant = must_be_constant;
4593         env.declaration      = current_init_decl = declaration;
4594
4595         initializer_t *initializer = parse_initializer(&env);
4596         current_init_decl = NULL;
4597
4598         if (!is_type_function(type)) {
4599                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
4600                  * the array type size */
4601                 declaration->type             = env.type;
4602                 declaration->init.initializer = initializer;
4603         }
4604 }
4605
4606 /* parse rest of a declaration without any declarator */
4607 static void parse_anonymous_declaration_rest(
4608                 const declaration_specifiers_t *specifiers)
4609 {
4610         eat(';');
4611
4612         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) {
4613                 warningf(&specifiers->source_position,
4614                          "useless storage class in empty declaration");
4615         }
4616
4617         type_t *type = specifiers->type;
4618         switch (type->kind) {
4619                 case TYPE_COMPOUND_STRUCT:
4620                 case TYPE_COMPOUND_UNION: {
4621                         if (type->compound.declaration->symbol == NULL) {
4622                                 warningf(&specifiers->source_position,
4623                                          "unnamed struct/union that defines no instances");
4624                         }
4625                         break;
4626                 }
4627
4628                 case TYPE_ENUM:
4629                         break;
4630
4631                 default:
4632                         warningf(&specifiers->source_position, "empty declaration");
4633                         break;
4634         }
4635
4636 #ifdef RECORD_EMPTY_DECLARATIONS
4637         declaration_t *const declaration    = allocate_declaration_zero();
4638         declaration->type                   = specifiers->type;
4639         declaration->declared_storage_class = specifiers->declared_storage_class;
4640         declaration->source_position        = specifiers->source_position;
4641         declaration->modifiers              = specifiers->modifiers;
4642         declaration->storage_class          = STORAGE_CLASS_NONE;
4643
4644         append_declaration(declaration);
4645 #endif
4646 }
4647
4648 static void parse_declaration_rest(declaration_t *ndeclaration,
4649                 const declaration_specifiers_t *specifiers,
4650                 parsed_declaration_func finished_declaration)
4651 {
4652         add_anchor_token(';');
4653         add_anchor_token('=');
4654         add_anchor_token(',');
4655         while(true) {
4656                 declaration_t *declaration =
4657                         finished_declaration(ndeclaration, token.type == '=');
4658
4659                 type_t *orig_type = declaration->type;
4660                 type_t *type      = skip_typeref(orig_type);
4661
4662                 if (type->kind != TYPE_FUNCTION &&
4663                     declaration->is_inline &&
4664                     is_type_valid(type)) {
4665                         warningf(&declaration->source_position,
4666                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4667                 }
4668
4669                 if (token.type == '=') {
4670                         parse_init_declarator_rest(declaration);
4671                 }
4672
4673                 if (token.type != ',')
4674                         break;
4675                 eat(',');
4676
4677                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4678         }
4679         expect(';');
4680
4681 end_error:
4682         rem_anchor_token(';');
4683         rem_anchor_token('=');
4684         rem_anchor_token(',');
4685 }
4686
4687 static declaration_t *finished_kr_declaration(declaration_t *declaration, bool is_definition)
4688 {
4689         symbol_t *symbol  = declaration->symbol;
4690         if (symbol == NULL) {
4691                 errorf(HERE, "anonymous declaration not valid as function parameter");
4692                 return declaration;
4693         }
4694         namespace_t namespc = (namespace_t) declaration->namespc;
4695         if (namespc != NAMESPACE_NORMAL) {
4696                 return record_declaration(declaration, false);
4697         }
4698
4699         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4700         if (previous_declaration == NULL ||
4701                         previous_declaration->parent_scope != scope) {
4702                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4703                        symbol);
4704                 return declaration;
4705         }
4706
4707         if (is_definition) {
4708                 errorf(HERE, "parameter %Y is initialised", declaration->symbol);
4709         }
4710
4711         if (previous_declaration->type == NULL) {
4712                 previous_declaration->type          = declaration->type;
4713                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4714                 previous_declaration->storage_class = declaration->storage_class;
4715                 previous_declaration->parent_scope  = scope;
4716                 return previous_declaration;
4717         } else {
4718                 return record_declaration(declaration, false);
4719         }
4720 }
4721
4722 static void parse_declaration(parsed_declaration_func finished_declaration)
4723 {
4724         declaration_specifiers_t specifiers;
4725         memset(&specifiers, 0, sizeof(specifiers));
4726         parse_declaration_specifiers(&specifiers);
4727
4728         if (token.type == ';') {
4729                 parse_anonymous_declaration_rest(&specifiers);
4730         } else {
4731                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4732                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4733         }
4734 }
4735
4736 static type_t *get_default_promoted_type(type_t *orig_type)
4737 {
4738         type_t *result = orig_type;
4739
4740         type_t *type = skip_typeref(orig_type);
4741         if (is_type_integer(type)) {
4742                 result = promote_integer(type);
4743         } else if (type == type_float) {
4744                 result = type_double;
4745         }
4746
4747         return result;
4748 }
4749
4750 static void parse_kr_declaration_list(declaration_t *declaration)
4751 {
4752         type_t *type = skip_typeref(declaration->type);
4753         if (!is_type_function(type))
4754                 return;
4755
4756         if (!type->function.kr_style_parameters)
4757                 return;
4758
4759         /* push function parameters */
4760         int       top        = environment_top();
4761         scope_t  *last_scope = scope;
4762         set_scope(&declaration->scope);
4763
4764         declaration_t *parameter = declaration->scope.declarations;
4765         for ( ; parameter != NULL; parameter = parameter->next) {
4766                 assert(parameter->parent_scope == NULL);
4767                 parameter->parent_scope = scope;
4768                 environment_push(parameter);
4769         }
4770
4771         /* parse declaration list */
4772         while (is_declaration_specifier(&token, false)) {
4773                 parse_declaration(finished_kr_declaration);
4774         }
4775
4776         /* pop function parameters */
4777         assert(scope == &declaration->scope);
4778         set_scope(last_scope);
4779         environment_pop_to(top);
4780
4781         /* update function type */
4782         type_t *new_type = duplicate_type(type);
4783
4784         function_parameter_t *parameters     = NULL;
4785         function_parameter_t *last_parameter = NULL;
4786
4787         declaration_t *parameter_declaration = declaration->scope.declarations;
4788         for( ; parameter_declaration != NULL;
4789                         parameter_declaration = parameter_declaration->next) {
4790                 type_t *parameter_type = parameter_declaration->type;
4791                 if (parameter_type == NULL) {
4792                         if (strict_mode) {
4793                                 errorf(HERE, "no type specified for function parameter '%Y'",
4794                                        parameter_declaration->symbol);
4795                         } else {
4796                                 if (warning.implicit_int) {
4797                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4798                                                 parameter_declaration->symbol);
4799                                 }
4800                                 parameter_type              = type_int;
4801                                 parameter_declaration->type = parameter_type;
4802                         }
4803                 }
4804
4805                 semantic_parameter(parameter_declaration);
4806                 parameter_type = parameter_declaration->type;
4807
4808                 /*
4809                  * we need the default promoted types for the function type
4810                  */
4811                 parameter_type = get_default_promoted_type(parameter_type);
4812
4813                 function_parameter_t *function_parameter
4814                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4815                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4816
4817                 function_parameter->type = parameter_type;
4818                 if (last_parameter != NULL) {
4819                         last_parameter->next = function_parameter;
4820                 } else {
4821                         parameters = function_parameter;
4822                 }
4823                 last_parameter = function_parameter;
4824         }
4825
4826         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4827          * prototype */
4828         new_type->function.parameters             = parameters;
4829         new_type->function.unspecified_parameters = true;
4830
4831         type = typehash_insert(new_type);
4832         if (type != new_type) {
4833                 obstack_free(type_obst, new_type);
4834         }
4835
4836         declaration->type = type;
4837 }
4838
4839 static bool first_err = true;
4840
4841 /**
4842  * When called with first_err set, prints the name of the current function,
4843  * else does noting.
4844  */
4845 static void print_in_function(void)
4846 {
4847         if (first_err) {
4848                 first_err = false;
4849                 diagnosticf("%s: In function '%Y':\n",
4850                         current_function->source_position.input_name,
4851                         current_function->symbol);
4852         }
4853 }
4854
4855 /**
4856  * Check if all labels are defined in the current function.
4857  * Check if all labels are used in the current function.
4858  */
4859 static void check_labels(void)
4860 {
4861         for (const goto_statement_t *goto_statement = goto_first;
4862             goto_statement != NULL;
4863             goto_statement = goto_statement->next) {
4864                 /* skip computed gotos */
4865                 if (goto_statement->expression != NULL)
4866                         continue;
4867
4868                 declaration_t *label = goto_statement->label;
4869
4870                 label->used = true;
4871                 if (label->source_position.input_name == NULL) {
4872                         print_in_function();
4873                         errorf(&goto_statement->base.source_position,
4874                                "label '%Y' used but not defined", label->symbol);
4875                  }
4876         }
4877         goto_first = goto_last = NULL;
4878
4879         if (warning.unused_label) {
4880                 for (const label_statement_t *label_statement = label_first;
4881                          label_statement != NULL;
4882                          label_statement = label_statement->next) {
4883                         const declaration_t *label = label_statement->label;
4884
4885                         if (! label->used) {
4886                                 print_in_function();
4887                                 warningf(&label_statement->base.source_position,
4888                                         "label '%Y' defined but not used", label->symbol);
4889                         }
4890                 }
4891         }
4892         label_first = label_last = NULL;
4893 }
4894
4895 /**
4896  * Check declarations of current_function for unused entities.
4897  */
4898 static void check_declarations(void)
4899 {
4900         if (warning.unused_parameter) {
4901                 const scope_t *scope = &current_function->scope;
4902
4903                 if (is_sym_main(current_function->symbol)) {
4904                         /* do not issue unused warnings for main */
4905                         return;
4906                 }
4907                 const declaration_t *parameter = scope->declarations;
4908                 for (; parameter != NULL; parameter = parameter->next) {
4909                         if (! parameter->used) {
4910                                 print_in_function();
4911                                 warningf(&parameter->source_position,
4912                                          "unused parameter '%Y'", parameter->symbol);
4913                         }
4914                 }
4915         }
4916         if (warning.unused_variable) {
4917         }
4918 }
4919
4920 static int determine_truth(expression_t const* const cond)
4921 {
4922         return
4923                 !is_constant_expression(cond) ? 0 :
4924                 fold_constant(cond) != 0      ? 1 :
4925                 -1;
4926 }
4927
4928 static bool noreturn_candidate;
4929
4930 static void check_reachable(statement_t *const stmt)
4931 {
4932         if (stmt->base.reachable)
4933                 return;
4934         if (stmt->kind != STATEMENT_DO_WHILE)
4935                 stmt->base.reachable = true;
4936
4937         statement_t *last = stmt;
4938         statement_t *next;
4939         switch (stmt->kind) {
4940                 case STATEMENT_INVALID:
4941                 case STATEMENT_EMPTY:
4942                 case STATEMENT_DECLARATION:
4943                 case STATEMENT_ASM:
4944                         next = stmt->base.next;
4945                         break;
4946
4947                 case STATEMENT_COMPOUND:
4948                         next = stmt->compound.statements;
4949                         break;
4950
4951                 case STATEMENT_RETURN:
4952                         noreturn_candidate = false;
4953                         return;
4954
4955                 case STATEMENT_IF: {
4956                         if_statement_t const* const ifs = &stmt->ifs;
4957                         int            const        val = determine_truth(ifs->condition);
4958
4959                         if (val >= 0)
4960                                 check_reachable(ifs->true_statement);
4961
4962                         if (val > 0)
4963                                 return;
4964
4965                         if (ifs->false_statement != NULL) {
4966                                 check_reachable(ifs->false_statement);
4967                                 return;
4968                         }
4969
4970                         next = stmt->base.next;
4971                         break;
4972                 }
4973
4974                 case STATEMENT_SWITCH: {
4975                         switch_statement_t const *const switchs = &stmt->switchs;
4976                         expression_t       const *const expr    = switchs->expression;
4977
4978                         if (is_constant_expression(expr)) {
4979                                 long                    const val      = fold_constant(expr);
4980                                 case_label_statement_t *      defaults = NULL;
4981                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4982                                         if (i->expression == NULL) {
4983                                                 defaults = i;
4984                                                 continue;
4985                                         }
4986
4987                                         if (i->first_case <= val && val <= i->last_case) {
4988                                                 check_reachable((statement_t*)i);
4989                                                 return;
4990                                         }
4991                                 }
4992
4993                                 if (defaults != NULL) {
4994                                         check_reachable((statement_t*)defaults);
4995                                         return;
4996                                 }
4997                         } else {
4998                                 bool has_default = false;
4999                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5000                                         if (i->expression == NULL)
5001                                                 has_default = true;
5002
5003                                         check_reachable((statement_t*)i);
5004                                 }
5005
5006                                 if (has_default)
5007                                         return;
5008                         }
5009
5010                         next = stmt->base.next;
5011                         break;
5012                 }
5013
5014                 case STATEMENT_EXPRESSION: {
5015                         /* Check for noreturn function call */
5016                         expression_t const *const expr = stmt->expression.expression;
5017                         if (expr->kind == EXPR_CALL) {
5018                                 expression_t const *const func = expr->call.function;
5019                                 if (func->kind == EXPR_REFERENCE) {
5020                                         declaration_t const *const decl = func->reference.declaration;
5021                                         if (decl != NULL && decl->modifiers & DM_NORETURN) {
5022                                                 return;
5023                                         }
5024                                 }
5025                         }
5026
5027                         next = stmt->base.next;
5028                         break;
5029                 }
5030
5031                 case STATEMENT_CONTINUE: {
5032                         statement_t *parent = stmt;
5033                         for (;;) {
5034                                 parent = parent->base.parent;
5035                                 if (parent == NULL) /* continue not within loop */
5036                                         return;
5037
5038                                 next = parent;
5039                                 switch (parent->kind) {
5040                                         case STATEMENT_WHILE:    goto continue_while;
5041                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5042                                         case STATEMENT_FOR:      goto continue_for;
5043
5044                                         default: break;
5045                                 }
5046                         }
5047                 }
5048
5049                 case STATEMENT_BREAK: {
5050                         statement_t *parent = stmt;
5051                         for (;;) {
5052                                 parent = parent->base.parent;
5053                                 if (parent == NULL) /* break not within loop/switch */
5054                                         return;
5055
5056                                 switch (parent->kind) {
5057                                         case STATEMENT_SWITCH:
5058                                         case STATEMENT_WHILE:
5059                                         case STATEMENT_DO_WHILE:
5060                                         case STATEMENT_FOR:
5061                                                 last = parent;
5062                                                 next = parent->base.next;
5063                                                 goto found_break_parent;
5064
5065                                         default: break;
5066                                 }
5067                         }
5068 found_break_parent:
5069                         break;
5070                 }
5071
5072                 case STATEMENT_GOTO:
5073                         if (stmt->gotos.expression) {
5074                                 statement_t *parent = stmt->base.parent;
5075                                 if (parent == NULL) /* top level goto */
5076                                         return;
5077                                 next = parent;
5078                         } else {
5079                                 next = stmt->gotos.label->init.statement;
5080                                 if (next == NULL) /* missing label */
5081                                         return;
5082                         }
5083                         break;
5084
5085                 case STATEMENT_LABEL:
5086                         next = stmt->label.statement;
5087                         break;
5088
5089                 case STATEMENT_CASE_LABEL:
5090                         next = stmt->case_label.statement;
5091                         break;
5092
5093                 case STATEMENT_WHILE: {
5094                         while_statement_t const *const whiles = &stmt->whiles;
5095                         int                      const val    = determine_truth(whiles->condition);
5096
5097                         if (val >= 0)
5098                                 check_reachable(whiles->body);
5099
5100                         if (val > 0)
5101                                 return;
5102
5103                         next = stmt->base.next;
5104                         break;
5105                 }
5106
5107                 case STATEMENT_DO_WHILE:
5108                         next = stmt->do_while.body;
5109                         break;
5110
5111                 case STATEMENT_FOR: {
5112                         for_statement_t *const fors = &stmt->fors;
5113
5114                         if (fors->condition_reachable)
5115                                 return;
5116                         fors->condition_reachable = true;
5117
5118                         expression_t const *const cond = fors->condition;
5119                         int          const        val  =
5120                                 cond == NULL ? 1 : determine_truth(cond);
5121
5122                         if (val >= 0)
5123                                 check_reachable(fors->body);
5124
5125                         if (val > 0)
5126                                 return;
5127
5128                         next = stmt->base.next;
5129                         break;
5130                 }
5131
5132                 case STATEMENT_MS_TRY: {
5133                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5134                         check_reachable(ms_try->try_statement);
5135                         next = ms_try->final_statement;
5136                         break;
5137                 }
5138
5139                 case STATEMENT_LEAVE: {
5140                         statement_t *parent = stmt;
5141                         for (;;) {
5142                                 parent = parent->base.parent;
5143                                 if (parent == NULL) /* __leave not within __try */
5144                                         return;
5145
5146                                 if (parent->kind == STATEMENT_MS_TRY) {
5147                                         last = parent;
5148                                         next = parent->ms_try.final_statement;
5149                                         break;
5150                                 }
5151                         }
5152                         break;
5153                 }
5154         }
5155
5156         while (next == NULL) {
5157                 next = last->base.parent;
5158                 if (next == NULL) {
5159                         noreturn_candidate = false;
5160
5161                         type_t *const type = current_function->type;
5162                         assert(is_type_function(type));
5163                         type_t *const ret  = skip_typeref(type->function.return_type);
5164                         if (warning.return_type                    &&
5165                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5166                             is_type_valid(ret)                     &&
5167                             !is_sym_main(current_function->symbol)) {
5168                                 warningf(&stmt->base.source_position,
5169                                          "control reaches end of non-void function");
5170                         }
5171                         return;
5172                 }
5173
5174                 switch (next->kind) {
5175                         case STATEMENT_INVALID:
5176                         case STATEMENT_EMPTY:
5177                         case STATEMENT_DECLARATION:
5178                         case STATEMENT_EXPRESSION:
5179                         case STATEMENT_ASM:
5180                         case STATEMENT_RETURN:
5181                         case STATEMENT_CONTINUE:
5182                         case STATEMENT_BREAK:
5183                         case STATEMENT_GOTO:
5184                         case STATEMENT_LEAVE:
5185                                 panic("invalid control flow in function");
5186
5187                         case STATEMENT_COMPOUND:
5188                         case STATEMENT_IF:
5189                         case STATEMENT_SWITCH:
5190                         case STATEMENT_LABEL:
5191                         case STATEMENT_CASE_LABEL:
5192                                 last = next;
5193                                 next = next->base.next;
5194                                 break;
5195
5196                         case STATEMENT_WHILE: {
5197 continue_while:
5198                                 if (next->base.reachable)
5199                                         return;
5200                                 next->base.reachable = true;
5201
5202                                 while_statement_t const *const whiles = &next->whiles;
5203                                 int                      const val    = determine_truth(whiles->condition);
5204
5205                                 if (val >= 0)
5206                                         check_reachable(whiles->body);
5207
5208                                 if (val > 0)
5209                                         return;
5210
5211                                 last = next;
5212                                 next = next->base.next;
5213                                 break;
5214                         }
5215
5216                         case STATEMENT_DO_WHILE: {
5217 continue_do_while:
5218                                 if (next->base.reachable)
5219                                         return;
5220                                 next->base.reachable = true;
5221
5222                                 do_while_statement_t const *const dw  = &next->do_while;
5223                                 int                  const        val = determine_truth(dw->condition);
5224
5225                                 if (val >= 0)
5226                                         check_reachable(dw->body);
5227
5228                                 if (val > 0)
5229                                         return;
5230
5231                                 last = next;
5232                                 next = next->base.next;
5233                                 break;
5234                         }
5235
5236                         case STATEMENT_FOR: {
5237 continue_for:;
5238                                 for_statement_t *const fors = &next->fors;
5239
5240                                 fors->step_reachable = true;
5241
5242                                 if (fors->condition_reachable)
5243                                         return;
5244                                 fors->condition_reachable = true;
5245
5246                                 expression_t const *const cond = fors->condition;
5247                                 int          const        val  =
5248                                         cond == NULL ? 1 : determine_truth(cond);
5249
5250                                 if (val >= 0)
5251                                         check_reachable(fors->body);
5252
5253                                 if (val > 0)
5254                                         return;
5255
5256                                 last = next;
5257                                 next = next->base.next;
5258                                 break;
5259                         }
5260
5261                         case STATEMENT_MS_TRY:
5262                                 last = next;
5263                                 next = next->ms_try.final_statement;
5264                                 break;
5265                 }
5266         }
5267
5268         if (next == NULL) {
5269                 next = stmt->base.parent;
5270                 if (next == NULL) {
5271                         warningf(&stmt->base.source_position,
5272                                  "control reaches end of non-void function");
5273                 }
5274         }
5275
5276         check_reachable(next);
5277 }
5278
5279 static void check_unreachable(statement_t const* const stmt)
5280 {
5281         if (!stmt->base.reachable            &&
5282             stmt->kind != STATEMENT_DO_WHILE &&
5283             stmt->kind != STATEMENT_FOR      &&
5284             (stmt->kind != STATEMENT_COMPOUND || stmt->compound.statements == NULL)) {
5285                 warningf(&stmt->base.source_position, "statement is unreachable");
5286         }
5287
5288         switch (stmt->kind) {
5289                 case STATEMENT_INVALID:
5290                 case STATEMENT_EMPTY:
5291                 case STATEMENT_RETURN:
5292                 case STATEMENT_DECLARATION:
5293                 case STATEMENT_EXPRESSION:
5294                 case STATEMENT_CONTINUE:
5295                 case STATEMENT_BREAK:
5296                 case STATEMENT_GOTO:
5297                 case STATEMENT_ASM:
5298                 case STATEMENT_LEAVE:
5299                         break;
5300
5301                 case STATEMENT_COMPOUND:
5302                         if (stmt->compound.statements)
5303                                 check_unreachable(stmt->compound.statements);
5304                         break;
5305
5306                 case STATEMENT_IF:
5307                         check_unreachable(stmt->ifs.true_statement);
5308                         if (stmt->ifs.false_statement != NULL)
5309                                 check_unreachable(stmt->ifs.false_statement);
5310                         break;
5311
5312                 case STATEMENT_SWITCH:
5313                         check_unreachable(stmt->switchs.body);
5314                         break;
5315
5316                 case STATEMENT_LABEL:
5317                         check_unreachable(stmt->label.statement);
5318                         break;
5319
5320                 case STATEMENT_CASE_LABEL:
5321                         check_unreachable(stmt->case_label.statement);
5322                         break;
5323
5324                 case STATEMENT_WHILE:
5325                         check_unreachable(stmt->whiles.body);
5326                         break;
5327
5328                 case STATEMENT_DO_WHILE:
5329                         check_unreachable(stmt->do_while.body);
5330                         if (!stmt->base.reachable) {
5331                                 expression_t const *const cond = stmt->do_while.condition;
5332                                 if (determine_truth(cond) >= 0) {
5333                                         warningf(&cond->base.source_position,
5334                                                  "condition of do-while-loop is unreachable");
5335                                 }
5336                         }
5337                         break;
5338
5339                 case STATEMENT_FOR: {
5340                         for_statement_t const* const fors = &stmt->fors;
5341
5342                         // if init and step are unreachable, cond is unreachable, too
5343                         if (!stmt->base.reachable && !fors->step_reachable) {
5344                                 warningf(&stmt->base.source_position, "statement is unreachable");
5345                         } else {
5346                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5347                                         warningf(&fors->initialisation->base.source_position,
5348                                                  "initialisation of for-statement is unreachable");
5349                                 }
5350
5351                                 if (!fors->condition_reachable && fors->condition != NULL) {
5352                                         warningf(&fors->condition->base.source_position,
5353                                                  "condition of for-statement is unreachable");
5354                                 }
5355
5356                                 if (!fors->step_reachable && fors->step != NULL) {
5357                                         warningf(&fors->step->base.source_position,
5358                                                  "step of for-statement is unreachable");
5359                                 }
5360                         }
5361
5362                         check_unreachable(fors->body);
5363                         break;
5364                 }
5365
5366                 case STATEMENT_MS_TRY: {
5367                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5368                         check_unreachable(ms_try->try_statement);
5369                         check_unreachable(ms_try->final_statement);
5370                 }
5371         }
5372
5373         if (stmt->base.next)
5374                 check_unreachable(stmt->base.next);
5375 }
5376
5377 static void parse_external_declaration(void)
5378 {
5379         /* function-definitions and declarations both start with declaration
5380          * specifiers */
5381         declaration_specifiers_t specifiers;
5382         memset(&specifiers, 0, sizeof(specifiers));
5383
5384         add_anchor_token(';');
5385         parse_declaration_specifiers(&specifiers);
5386         rem_anchor_token(';');
5387
5388         /* must be a declaration */
5389         if (token.type == ';') {
5390                 parse_anonymous_declaration_rest(&specifiers);
5391                 return;
5392         }
5393
5394         add_anchor_token(',');
5395         add_anchor_token('=');
5396         add_anchor_token(';');
5397
5398         /* declarator is common to both function-definitions and declarations */
5399         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
5400
5401         rem_anchor_token(',');
5402         rem_anchor_token('=');
5403         rem_anchor_token(';');
5404
5405         /* must be a declaration */
5406         switch (token.type) {
5407                 case ',':
5408                 case ';':
5409                 case '=':
5410                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
5411                         return;
5412         }
5413
5414         /* must be a function definition */
5415         parse_kr_declaration_list(ndeclaration);
5416
5417         if (token.type != '{') {
5418                 parse_error_expected("while parsing function definition", '{', NULL);
5419                 eat_until_matching_token(';');
5420                 return;
5421         }
5422
5423         type_t *type = ndeclaration->type;
5424
5425         /* note that we don't skip typerefs: the standard doesn't allow them here
5426          * (so we can't use is_type_function here) */
5427         if (type->kind != TYPE_FUNCTION) {
5428                 if (is_type_valid(type)) {
5429                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5430                                type, ndeclaration->symbol);
5431                 }
5432                 eat_block();
5433                 return;
5434         }
5435
5436         if (warning.aggregate_return &&
5437             is_type_compound(skip_typeref(type->function.return_type))) {
5438                 warningf(HERE, "function '%Y' returns an aggregate",
5439                          ndeclaration->symbol);
5440         }
5441         if (warning.traditional && !type->function.unspecified_parameters) {
5442                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5443                         ndeclaration->symbol);
5444         }
5445         if (warning.old_style_definition && type->function.unspecified_parameters) {
5446                 warningf(HERE, "old-style function definition '%Y'",
5447                         ndeclaration->symbol);
5448         }
5449
5450         /* Â§ 6.7.5.3 (14) a function definition with () means no
5451          * parameters (and not unspecified parameters) */
5452         if (type->function.unspecified_parameters
5453                         && type->function.parameters == NULL
5454                         && !type->function.kr_style_parameters) {
5455                 type_t *duplicate = duplicate_type(type);
5456                 duplicate->function.unspecified_parameters = false;
5457
5458                 type = typehash_insert(duplicate);
5459                 if (type != duplicate) {
5460                         obstack_free(type_obst, duplicate);
5461                 }
5462                 ndeclaration->type = type;
5463         }
5464
5465         declaration_t *const declaration = record_declaration(ndeclaration, true);
5466         if (ndeclaration != declaration) {
5467                 declaration->scope = ndeclaration->scope;
5468         }
5469         type = skip_typeref(declaration->type);
5470
5471         /* push function parameters and switch scope */
5472         int       top        = environment_top();
5473         scope_t  *last_scope = scope;
5474         set_scope(&declaration->scope);
5475
5476         declaration_t *parameter = declaration->scope.declarations;
5477         for( ; parameter != NULL; parameter = parameter->next) {
5478                 if (parameter->parent_scope == &ndeclaration->scope) {
5479                         parameter->parent_scope = scope;
5480                 }
5481                 assert(parameter->parent_scope == NULL
5482                                 || parameter->parent_scope == scope);
5483                 parameter->parent_scope = scope;
5484                 if (parameter->symbol == NULL) {
5485                         errorf(&parameter->source_position, "parameter name omitted");
5486                         continue;
5487                 }
5488                 environment_push(parameter);
5489         }
5490
5491         if (declaration->init.statement != NULL) {
5492                 parser_error_multiple_definition(declaration, HERE);
5493                 eat_block();
5494         } else {
5495                 /* parse function body */
5496                 int            label_stack_top      = label_top();
5497                 declaration_t *old_current_function = current_function;
5498                 current_function                    = declaration;
5499                 current_parent                      = NULL;
5500
5501                 statement_t *const body = parse_compound_statement(false);
5502                 declaration->init.statement = body;
5503                 first_err = true;
5504                 check_labels();
5505                 check_declarations();
5506                 if (warning.return_type      ||
5507                     warning.unreachable_code ||
5508                     (warning.missing_noreturn && !(declaration->modifiers & DM_NORETURN))) {
5509                         noreturn_candidate = true;
5510                         check_reachable(body);
5511                         if (warning.unreachable_code)
5512                                 check_unreachable(body);
5513                         if (warning.missing_noreturn &&
5514                             noreturn_candidate       &&
5515                             !(declaration->modifiers & DM_NORETURN)) {
5516                                 warningf(&body->base.source_position,
5517                                          "function '%#T' is candidate for attribute 'noreturn'",
5518                                          type, declaration->symbol);
5519                         }
5520                 }
5521
5522                 assert(current_parent   == NULL);
5523                 assert(current_function == declaration);
5524                 current_function = old_current_function;
5525                 label_pop_to(label_stack_top);
5526         }
5527
5528         assert(scope == &declaration->scope);
5529         set_scope(last_scope);
5530         environment_pop_to(top);
5531 }
5532
5533 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5534                                   source_position_t *source_position,
5535                                   const symbol_t *symbol)
5536 {
5537         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
5538
5539         type->bitfield.base_type       = base_type;
5540         type->bitfield.size_expression = size;
5541
5542         il_size_t bit_size;
5543         type_t *skipped_type = skip_typeref(base_type);
5544         if (!is_type_integer(skipped_type)) {
5545                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5546                         base_type);
5547                 bit_size = 0;
5548         } else {
5549                 bit_size = skipped_type->base.size * 8;
5550         }
5551
5552         if (is_constant_expression(size)) {
5553                 long v = fold_constant(size);
5554
5555                 if (v < 0) {
5556                         errorf(source_position, "negative width in bit-field '%Y'",
5557                                 symbol);
5558                 } else if (v == 0) {
5559                         errorf(source_position, "zero width for bit-field '%Y'",
5560                                 symbol);
5561                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5562                         errorf(source_position, "width of '%Y' exceeds its type",
5563                                 symbol);
5564                 } else {
5565                         type->bitfield.bit_size = v;
5566                 }
5567         }
5568
5569         return type;
5570 }
5571
5572 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
5573                                           symbol_t *symbol)
5574 {
5575         declaration_t *iter = compound_declaration->scope.declarations;
5576         for( ; iter != NULL; iter = iter->next) {
5577                 if (iter->namespc != NAMESPACE_NORMAL)
5578                         continue;
5579
5580                 if (iter->symbol == NULL) {
5581                         type_t *type = skip_typeref(iter->type);
5582                         if (is_type_compound(type)) {
5583                                 declaration_t *result
5584                                         = find_compound_entry(type->compound.declaration, symbol);
5585                                 if (result != NULL)
5586                                         return result;
5587                         }
5588                         continue;
5589                 }
5590
5591                 if (iter->symbol == symbol) {
5592                         return iter;
5593                 }
5594         }
5595
5596         return NULL;
5597 }
5598
5599 static void parse_compound_declarators(declaration_t *struct_declaration,
5600                 const declaration_specifiers_t *specifiers)
5601 {
5602         declaration_t *last_declaration = struct_declaration->scope.declarations;
5603         if (last_declaration != NULL) {
5604                 while (last_declaration->next != NULL) {
5605                         last_declaration = last_declaration->next;
5606                 }
5607         }
5608
5609         while (true) {
5610                 declaration_t *declaration;
5611
5612                 if (token.type == ':') {
5613                         source_position_t source_position = *HERE;
5614                         next_token();
5615
5616                         type_t *base_type = specifiers->type;
5617                         expression_t *size = parse_constant_expression();
5618
5619                         type_t *type = make_bitfield_type(base_type, size,
5620                                         &source_position, sym_anonymous);
5621
5622                         declaration                         = allocate_declaration_zero();
5623                         declaration->namespc                = NAMESPACE_NORMAL;
5624                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
5625                         declaration->storage_class          = STORAGE_CLASS_NONE;
5626                         declaration->source_position        = source_position;
5627                         declaration->modifiers              = specifiers->modifiers;
5628                         declaration->type                   = type;
5629                 } else {
5630                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
5631
5632                         type_t *orig_type = declaration->type;
5633                         type_t *type      = skip_typeref(orig_type);
5634
5635                         if (token.type == ':') {
5636                                 source_position_t source_position = *HERE;
5637                                 next_token();
5638                                 expression_t *size = parse_constant_expression();
5639
5640                                 type_t *bitfield_type = make_bitfield_type(orig_type, size,
5641                                                 &source_position, declaration->symbol);
5642                                 declaration->type = bitfield_type;
5643                         } else {
5644                                 /* TODO we ignore arrays for now... what is missing is a check
5645                                  * that they're at the end of the struct */
5646                                 if (is_type_incomplete(type) && !is_type_array(type)) {
5647                                         errorf(HERE,
5648                                                "compound member '%Y' has incomplete type '%T'",
5649                                                declaration->symbol, orig_type);
5650                                 } else if (is_type_function(type)) {
5651                                         errorf(HERE, "compound member '%Y' must not have function type '%T'",
5652                                                declaration->symbol, orig_type);
5653                                 }
5654                         }
5655                 }
5656
5657                 /* make sure we don't define a symbol multiple times */
5658                 symbol_t *symbol = declaration->symbol;
5659                 if (symbol != NULL) {
5660                         declaration_t *prev_decl
5661                                 = find_compound_entry(struct_declaration, symbol);
5662
5663                         if (prev_decl != NULL) {
5664                                 assert(prev_decl->symbol == symbol);
5665                                 errorf(&declaration->source_position,
5666                                        "multiple declarations of symbol '%Y' (declared %P)",
5667                                        symbol, &prev_decl->source_position);
5668                         }
5669                 }
5670
5671                 /* append declaration */
5672                 if (last_declaration != NULL) {
5673                         last_declaration->next = declaration;
5674                 } else {
5675                         struct_declaration->scope.declarations = declaration;
5676                 }
5677                 last_declaration = declaration;
5678
5679                 if (token.type != ',')
5680                         break;
5681                 next_token();
5682         }
5683         expect(';');
5684
5685 end_error:
5686         ;
5687 }
5688
5689 static void parse_compound_type_entries(declaration_t *compound_declaration)
5690 {
5691         eat('{');
5692         add_anchor_token('}');
5693
5694         while (token.type != '}' && token.type != T_EOF) {
5695                 declaration_specifiers_t specifiers;
5696                 memset(&specifiers, 0, sizeof(specifiers));
5697                 parse_declaration_specifiers(&specifiers);
5698
5699                 parse_compound_declarators(compound_declaration, &specifiers);
5700         }
5701         rem_anchor_token('}');
5702
5703         if (token.type == T_EOF) {
5704                 errorf(HERE, "EOF while parsing struct");
5705         }
5706         next_token();
5707 }
5708
5709 static type_t *parse_typename(void)
5710 {
5711         declaration_specifiers_t specifiers;
5712         memset(&specifiers, 0, sizeof(specifiers));
5713         parse_declaration_specifiers(&specifiers);
5714         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
5715                 /* TODO: improve error message, user does probably not know what a
5716                  * storage class is...
5717                  */
5718                 errorf(HERE, "typename may not have a storage class");
5719         }
5720
5721         type_t *result = parse_abstract_declarator(specifiers.type);
5722
5723         return result;
5724 }
5725
5726
5727
5728
5729 typedef expression_t* (*parse_expression_function) (unsigned precedence);
5730 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
5731                                                           expression_t *left);
5732
5733 typedef struct expression_parser_function_t expression_parser_function_t;
5734 struct expression_parser_function_t {
5735         unsigned                         precedence;
5736         parse_expression_function        parser;
5737         unsigned                         infix_precedence;
5738         parse_expression_infix_function  infix_parser;
5739 };
5740
5741 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5742
5743 /**
5744  * Prints an error message if an expression was expected but not read
5745  */
5746 static expression_t *expected_expression_error(void)
5747 {
5748         /* skip the error message if the error token was read */
5749         if (token.type != T_ERROR) {
5750                 errorf(HERE, "expected expression, got token '%K'", &token);
5751         }
5752         next_token();
5753
5754         return create_invalid_expression();
5755 }
5756
5757 /**
5758  * Parse a string constant.
5759  */
5760 static expression_t *parse_string_const(void)
5761 {
5762         wide_string_t wres;
5763         if (token.type == T_STRING_LITERAL) {
5764                 string_t res = token.v.string;
5765                 next_token();
5766                 while (token.type == T_STRING_LITERAL) {
5767                         res = concat_strings(&res, &token.v.string);
5768                         next_token();
5769                 }
5770                 if (token.type != T_WIDE_STRING_LITERAL) {
5771                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
5772                         /* note: that we use type_char_ptr here, which is already the
5773                          * automatic converted type. revert_automatic_type_conversion
5774                          * will construct the array type */
5775                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
5776                         cnst->string.value = res;
5777                         return cnst;
5778                 }
5779
5780                 wres = concat_string_wide_string(&res, &token.v.wide_string);
5781         } else {
5782                 wres = token.v.wide_string;
5783         }
5784         next_token();
5785
5786         for (;;) {
5787                 switch (token.type) {
5788                         case T_WIDE_STRING_LITERAL:
5789                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5790                                 break;
5791
5792                         case T_STRING_LITERAL:
5793                                 wres = concat_wide_string_string(&wres, &token.v.string);
5794                                 break;
5795
5796                         default: {
5797                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5798                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5799                                 cnst->wide_string.value = wres;
5800                                 return cnst;
5801                         }
5802                 }
5803                 next_token();
5804         }
5805 }
5806
5807 /**
5808  * Parse an integer constant.
5809  */
5810 static expression_t *parse_int_const(void)
5811 {
5812         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5813         cnst->base.source_position = *HERE;
5814         cnst->base.type            = token.datatype;
5815         cnst->conste.v.int_value   = token.v.intvalue;
5816
5817         next_token();
5818
5819         return cnst;
5820 }
5821
5822 /**
5823  * Parse a character constant.
5824  */
5825 static expression_t *parse_character_constant(void)
5826 {
5827         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5828
5829         cnst->base.source_position = *HERE;
5830         cnst->base.type            = token.datatype;
5831         cnst->conste.v.character   = token.v.string;
5832
5833         if (cnst->conste.v.character.size != 1) {
5834                 if (warning.multichar && (c_mode & _GNUC)) {
5835                         /* TODO */
5836                         warningf(HERE, "multi-character character constant");
5837                 } else {
5838                         errorf(HERE, "more than 1 characters in character constant");
5839                 }
5840         }
5841         next_token();
5842
5843         return cnst;
5844 }
5845
5846 /**
5847  * Parse a wide character constant.
5848  */
5849 static expression_t *parse_wide_character_constant(void)
5850 {
5851         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5852
5853         cnst->base.source_position    = *HERE;
5854         cnst->base.type               = token.datatype;
5855         cnst->conste.v.wide_character = token.v.wide_string;
5856
5857         if (cnst->conste.v.wide_character.size != 1) {
5858                 if (warning.multichar && (c_mode & _GNUC)) {
5859                         /* TODO */
5860                         warningf(HERE, "multi-character character constant");
5861                 } else {
5862                         errorf(HERE, "more than 1 characters in character constant");
5863                 }
5864         }
5865         next_token();
5866
5867         return cnst;
5868 }
5869
5870 /**
5871  * Parse a float constant.
5872  */
5873 static expression_t *parse_float_const(void)
5874 {
5875         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5876         cnst->base.type            = token.datatype;
5877         cnst->conste.v.float_value = token.v.floatvalue;
5878
5879         next_token();
5880
5881         return cnst;
5882 }
5883
5884 static declaration_t *create_implicit_function(symbol_t *symbol,
5885                 const source_position_t *source_position)
5886 {
5887         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5888         ntype->function.return_type            = type_int;
5889         ntype->function.unspecified_parameters = true;
5890
5891         type_t *type = typehash_insert(ntype);
5892         if (type != ntype) {
5893                 free_type(ntype);
5894         }
5895
5896         declaration_t *const declaration    = allocate_declaration_zero();
5897         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5898         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5899         declaration->type                   = type;
5900         declaration->symbol                 = symbol;
5901         declaration->source_position        = *source_position;
5902         declaration->implicit               = true;
5903
5904         bool strict_prototypes_old = warning.strict_prototypes;
5905         warning.strict_prototypes  = false;
5906         record_declaration(declaration, false);
5907         warning.strict_prototypes = strict_prototypes_old;
5908
5909         return declaration;
5910 }
5911
5912 /**
5913  * Creates a return_type (func)(argument_type) function type if not
5914  * already exists.
5915  */
5916 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5917                                     type_t *argument_type2)
5918 {
5919         function_parameter_t *parameter2
5920                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5921         memset(parameter2, 0, sizeof(parameter2[0]));
5922         parameter2->type = argument_type2;
5923
5924         function_parameter_t *parameter1
5925                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5926         memset(parameter1, 0, sizeof(parameter1[0]));
5927         parameter1->type = argument_type1;
5928         parameter1->next = parameter2;
5929
5930         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5931         type->function.return_type = return_type;
5932         type->function.parameters  = parameter1;
5933
5934         type_t *result = typehash_insert(type);
5935         if (result != type) {
5936                 free_type(type);
5937         }
5938
5939         return result;
5940 }
5941
5942 /**
5943  * Creates a return_type (func)(argument_type) function type if not
5944  * already exists.
5945  *
5946  * @param return_type    the return type
5947  * @param argument_type  the argument type
5948  */
5949 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5950 {
5951         function_parameter_t *parameter
5952                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5953         memset(parameter, 0, sizeof(parameter[0]));
5954         parameter->type = argument_type;
5955
5956         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5957         type->function.return_type = return_type;
5958         type->function.parameters  = parameter;
5959
5960         type_t *result = typehash_insert(type);
5961         if (result != type) {
5962                 free_type(type);
5963         }
5964
5965         return result;
5966 }
5967
5968 static type_t *make_function_0_type(type_t *return_type)
5969 {
5970         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5971         type->function.return_type = return_type;
5972         type->function.parameters  = NULL;
5973
5974         type_t *result = typehash_insert(type);
5975         if (result != type) {
5976                 free_type(type);
5977         }
5978
5979         return result;
5980 }
5981
5982 /**
5983  * Creates a function type for some function like builtins.
5984  *
5985  * @param symbol   the symbol describing the builtin
5986  */
5987 static type_t *get_builtin_symbol_type(symbol_t *symbol)
5988 {
5989         switch(symbol->ID) {
5990         case T___builtin_alloca:
5991                 return make_function_1_type(type_void_ptr, type_size_t);
5992         case T___builtin_huge_val:
5993                 return make_function_0_type(type_double);
5994         case T___builtin_nan:
5995                 return make_function_1_type(type_double, type_char_ptr);
5996         case T___builtin_nanf:
5997                 return make_function_1_type(type_float, type_char_ptr);
5998         case T___builtin_nand:
5999                 return make_function_1_type(type_long_double, type_char_ptr);
6000         case T___builtin_va_end:
6001                 return make_function_1_type(type_void, type_valist);
6002         case T___builtin_expect:
6003                 return make_function_2_type(type_long, type_long, type_long);
6004         default:
6005                 internal_errorf(HERE, "not implemented builtin symbol found");
6006         }
6007 }
6008
6009 /**
6010  * Performs automatic type cast as described in Â§ 6.3.2.1.
6011  *
6012  * @param orig_type  the original type
6013  */
6014 static type_t *automatic_type_conversion(type_t *orig_type)
6015 {
6016         type_t *type = skip_typeref(orig_type);
6017         if (is_type_array(type)) {
6018                 array_type_t *array_type   = &type->array;
6019                 type_t       *element_type = array_type->element_type;
6020                 unsigned      qualifiers   = array_type->base.qualifiers;
6021
6022                 return make_pointer_type(element_type, qualifiers);
6023         }
6024
6025         if (is_type_function(type)) {
6026                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6027         }
6028
6029         return orig_type;
6030 }
6031
6032 /**
6033  * reverts the automatic casts of array to pointer types and function
6034  * to function-pointer types as defined Â§ 6.3.2.1
6035  */
6036 type_t *revert_automatic_type_conversion(const expression_t *expression)
6037 {
6038         switch (expression->kind) {
6039                 case EXPR_REFERENCE: return expression->reference.declaration->type;
6040
6041                 case EXPR_SELECT:
6042                         return get_qualified_type(expression->select.compound_entry->type,
6043                                                   expression->base.type->base.qualifiers);
6044
6045                 case EXPR_UNARY_DEREFERENCE: {
6046                         const expression_t *const value = expression->unary.value;
6047                         type_t             *const type  = skip_typeref(value->base.type);
6048                         assert(is_type_pointer(type));
6049                         return type->pointer.points_to;
6050                 }
6051
6052                 case EXPR_BUILTIN_SYMBOL:
6053                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6054
6055                 case EXPR_ARRAY_ACCESS: {
6056                         const expression_t *array_ref = expression->array_access.array_ref;
6057                         type_t             *type_left = skip_typeref(array_ref->base.type);
6058                         if (!is_type_valid(type_left))
6059                                 return type_left;
6060                         assert(is_type_pointer(type_left));
6061                         return type_left->pointer.points_to;
6062                 }
6063
6064                 case EXPR_STRING_LITERAL: {
6065                         size_t size = expression->string.value.size;
6066                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6067                 }
6068
6069                 case EXPR_WIDE_STRING_LITERAL: {
6070                         size_t size = expression->wide_string.value.size;
6071                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6072                 }
6073
6074                 case EXPR_COMPOUND_LITERAL:
6075                         return expression->compound_literal.type;
6076
6077                 default: break;
6078         }
6079
6080         return expression->base.type;
6081 }
6082
6083 static expression_t *parse_reference(void)
6084 {
6085         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
6086
6087         reference_expression_t *ref = &expression->reference;
6088         symbol_t *const symbol = token.v.symbol;
6089
6090         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
6091
6092         if (declaration == NULL) {
6093                 if (!strict_mode && look_ahead(1)->type == '(') {
6094                         /* an implicitly declared function */
6095                         if (warning.implicit_function_declaration) {
6096                                 warningf(HERE, "implicit declaration of function '%Y'",
6097                                         symbol);
6098                         }
6099
6100                         declaration = create_implicit_function(symbol, HERE);
6101                 } else {
6102                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6103                         declaration = create_error_declaration(symbol, STORAGE_CLASS_NONE);
6104                 }
6105         }
6106
6107         type_t *type = declaration->type;
6108
6109         /* we always do the auto-type conversions; the & and sizeof parser contains
6110          * code to revert this! */
6111         type = automatic_type_conversion(type);
6112
6113         ref->declaration = declaration;
6114         ref->base.type   = type;
6115
6116         /* this declaration is used */
6117         declaration->used = true;
6118
6119         /* check for deprecated functions */
6120         if (warning.deprecated_declarations &&
6121             declaration->modifiers & DM_DEPRECATED) {
6122                 char const *const prefix = is_type_function(declaration->type) ?
6123                         "function" : "variable";
6124
6125                 if (declaration->deprecated_string != NULL) {
6126                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6127                                 prefix, declaration->symbol, &declaration->source_position,
6128                                 declaration->deprecated_string);
6129                 } else {
6130                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6131                                 declaration->symbol, &declaration->source_position);
6132                 }
6133         }
6134         if (warning.init_self && declaration == current_init_decl) {
6135                 current_init_decl = NULL;
6136                 warningf(HERE, "variable '%#T' is initialized by itself",
6137                         declaration->type, declaration->symbol);
6138         }
6139
6140         next_token();
6141         return expression;
6142 }
6143
6144 static bool semantic_cast(expression_t *cast)
6145 {
6146         expression_t            *expression      = cast->unary.value;
6147         type_t                  *orig_dest_type  = cast->base.type;
6148         type_t                  *orig_type_right = expression->base.type;
6149         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6150         type_t            const *src_type        = skip_typeref(orig_type_right);
6151         source_position_t const *pos             = &cast->base.source_position;
6152
6153         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6154         if (dst_type == type_void)
6155                 return true;
6156
6157         /* only integer and pointer can be casted to pointer */
6158         if (is_type_pointer(dst_type)  &&
6159             !is_type_pointer(src_type) &&
6160             !is_type_integer(src_type) &&
6161             is_type_valid(src_type)) {
6162                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6163                 return false;
6164         }
6165
6166         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6167                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6168                 return false;
6169         }
6170
6171         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6172                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6173                 return false;
6174         }
6175
6176         if (warning.cast_qual &&
6177             is_type_pointer(src_type) &&
6178             is_type_pointer(dst_type)) {
6179                 type_t *src = skip_typeref(src_type->pointer.points_to);
6180                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6181                 unsigned missing_qualifiers =
6182                         src->base.qualifiers & ~dst->base.qualifiers;
6183                 if (missing_qualifiers != 0) {
6184                         warningf(pos,
6185                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6186                                  missing_qualifiers, orig_type_right);
6187                 }
6188         }
6189         return true;
6190 }
6191
6192 static expression_t *parse_compound_literal(type_t *type)
6193 {
6194         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6195
6196         parse_initializer_env_t env;
6197         env.type             = type;
6198         env.declaration      = NULL;
6199         env.must_be_constant = false;
6200         initializer_t *initializer = parse_initializer(&env);
6201         type = env.type;
6202
6203         expression->compound_literal.initializer = initializer;
6204         expression->compound_literal.type        = type;
6205         expression->base.type                    = automatic_type_conversion(type);
6206
6207         return expression;
6208 }
6209
6210 /**
6211  * Parse a cast expression.
6212  */
6213 static expression_t *parse_cast(void)
6214 {
6215         add_anchor_token(')');
6216
6217         source_position_t source_position = token.source_position;
6218
6219         type_t *type  = parse_typename();
6220
6221         rem_anchor_token(')');
6222         expect(')');
6223
6224         if (token.type == '{') {
6225                 return parse_compound_literal(type);
6226         }
6227
6228         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6229         cast->base.source_position = source_position;
6230
6231         expression_t *value = parse_sub_expression(20);
6232         cast->base.type   = type;
6233         cast->unary.value = value;
6234
6235         if (! semantic_cast(cast)) {
6236                 /* TODO: record the error in the AST. else it is impossible to detect it */
6237         }
6238
6239         return cast;
6240 end_error:
6241         return create_invalid_expression();
6242 }
6243
6244 /**
6245  * Parse a statement expression.
6246  */
6247 static expression_t *parse_statement_expression(void)
6248 {
6249         add_anchor_token(')');
6250
6251         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6252
6253         statement_t *statement           = parse_compound_statement(true);
6254         expression->statement.statement  = statement;
6255         expression->base.source_position = statement->base.source_position;
6256
6257         /* find last statement and use its type */
6258         type_t *type = type_void;
6259         const statement_t *stmt = statement->compound.statements;
6260         if (stmt != NULL) {
6261                 while (stmt->base.next != NULL)
6262                         stmt = stmt->base.next;
6263
6264                 if (stmt->kind == STATEMENT_EXPRESSION) {
6265                         type = stmt->expression.expression->base.type;
6266                 }
6267         } else {
6268                 warningf(&expression->base.source_position, "empty statement expression ({})");
6269         }
6270         expression->base.type = type;
6271
6272         rem_anchor_token(')');
6273         expect(')');
6274
6275 end_error:
6276         return expression;
6277 }
6278
6279 /**
6280  * Parse a parenthesized expression.
6281  */
6282 static expression_t *parse_parenthesized_expression(void)
6283 {
6284         eat('(');
6285
6286         switch(token.type) {
6287         case '{':
6288                 /* gcc extension: a statement expression */
6289                 return parse_statement_expression();
6290
6291         TYPE_QUALIFIERS
6292         TYPE_SPECIFIERS
6293                 return parse_cast();
6294         case T_IDENTIFIER:
6295                 if (is_typedef_symbol(token.v.symbol)) {
6296                         return parse_cast();
6297                 }
6298         }
6299
6300         add_anchor_token(')');
6301         expression_t *result = parse_expression();
6302         rem_anchor_token(')');
6303         expect(')');
6304
6305 end_error:
6306         return result;
6307 }
6308
6309 static expression_t *parse_function_keyword(void)
6310 {
6311         next_token();
6312         /* TODO */
6313
6314         if (current_function == NULL) {
6315                 errorf(HERE, "'__func__' used outside of a function");
6316         }
6317
6318         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6319         expression->base.type     = type_char_ptr;
6320         expression->funcname.kind = FUNCNAME_FUNCTION;
6321
6322         return expression;
6323 }
6324
6325 static expression_t *parse_pretty_function_keyword(void)
6326 {
6327         eat(T___PRETTY_FUNCTION__);
6328
6329         if (current_function == NULL) {
6330                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6331         }
6332
6333         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6334         expression->base.type     = type_char_ptr;
6335         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6336
6337         return expression;
6338 }
6339
6340 static expression_t *parse_funcsig_keyword(void)
6341 {
6342         eat(T___FUNCSIG__);
6343
6344         if (current_function == NULL) {
6345                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6346         }
6347
6348         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6349         expression->base.type     = type_char_ptr;
6350         expression->funcname.kind = FUNCNAME_FUNCSIG;
6351
6352         return expression;
6353 }
6354
6355 static expression_t *parse_funcdname_keyword(void)
6356 {
6357         eat(T___FUNCDNAME__);
6358
6359         if (current_function == NULL) {
6360                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6361         }
6362
6363         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6364         expression->base.type     = type_char_ptr;
6365         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6366
6367         return expression;
6368 }
6369
6370 static designator_t *parse_designator(void)
6371 {
6372         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6373         result->source_position = *HERE;
6374
6375         if (token.type != T_IDENTIFIER) {
6376                 parse_error_expected("while parsing member designator",
6377                                      T_IDENTIFIER, NULL);
6378                 return NULL;
6379         }
6380         result->symbol = token.v.symbol;
6381         next_token();
6382
6383         designator_t *last_designator = result;
6384         while(true) {
6385                 if (token.type == '.') {
6386                         next_token();
6387                         if (token.type != T_IDENTIFIER) {
6388                                 parse_error_expected("while parsing member designator",
6389                                                      T_IDENTIFIER, NULL);
6390                                 return NULL;
6391                         }
6392                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6393                         designator->source_position = *HERE;
6394                         designator->symbol          = token.v.symbol;
6395                         next_token();
6396
6397                         last_designator->next = designator;
6398                         last_designator       = designator;
6399                         continue;
6400                 }
6401                 if (token.type == '[') {
6402                         next_token();
6403                         add_anchor_token(']');
6404                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6405                         designator->source_position = *HERE;
6406                         designator->array_index     = parse_expression();
6407                         rem_anchor_token(']');
6408                         expect(']');
6409                         if (designator->array_index == NULL) {
6410                                 return NULL;
6411                         }
6412
6413                         last_designator->next = designator;
6414                         last_designator       = designator;
6415                         continue;
6416                 }
6417                 break;
6418         }
6419
6420         return result;
6421 end_error:
6422         return NULL;
6423 }
6424
6425 /**
6426  * Parse the __builtin_offsetof() expression.
6427  */
6428 static expression_t *parse_offsetof(void)
6429 {
6430         eat(T___builtin_offsetof);
6431
6432         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6433         expression->base.type    = type_size_t;
6434
6435         expect('(');
6436         add_anchor_token(',');
6437         type_t *type = parse_typename();
6438         rem_anchor_token(',');
6439         expect(',');
6440         add_anchor_token(')');
6441         designator_t *designator = parse_designator();
6442         rem_anchor_token(')');
6443         expect(')');
6444
6445         expression->offsetofe.type       = type;
6446         expression->offsetofe.designator = designator;
6447
6448         type_path_t path;
6449         memset(&path, 0, sizeof(path));
6450         path.top_type = type;
6451         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6452
6453         descend_into_subtype(&path);
6454
6455         if (!walk_designator(&path, designator, true)) {
6456                 return create_invalid_expression();
6457         }
6458
6459         DEL_ARR_F(path.path);
6460
6461         return expression;
6462 end_error:
6463         return create_invalid_expression();
6464 }
6465
6466 /**
6467  * Parses a _builtin_va_start() expression.
6468  */
6469 static expression_t *parse_va_start(void)
6470 {
6471         eat(T___builtin_va_start);
6472
6473         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6474
6475         expect('(');
6476         add_anchor_token(',');
6477         expression->va_starte.ap = parse_assignment_expression();
6478         rem_anchor_token(',');
6479         expect(',');
6480         expression_t *const expr = parse_assignment_expression();
6481         if (expr->kind == EXPR_REFERENCE) {
6482                 declaration_t *const decl = expr->reference.declaration;
6483                 if (decl->parent_scope != &current_function->scope || decl->next != NULL) {
6484                         errorf(&expr->base.source_position,
6485                                "second argument of 'va_start' must be last parameter of the current function");
6486                 }
6487                 expression->va_starte.parameter = decl;
6488                 expect(')');
6489                 return expression;
6490         }
6491         expect(')');
6492 end_error:
6493         return create_invalid_expression();
6494 }
6495
6496 /**
6497  * Parses a _builtin_va_arg() expression.
6498  */
6499 static expression_t *parse_va_arg(void)
6500 {
6501         eat(T___builtin_va_arg);
6502
6503         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6504
6505         expect('(');
6506         expression->va_arge.ap = parse_assignment_expression();
6507         expect(',');
6508         expression->base.type = parse_typename();
6509         expect(')');
6510
6511         return expression;
6512 end_error:
6513         return create_invalid_expression();
6514 }
6515
6516 static expression_t *parse_builtin_symbol(void)
6517 {
6518         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
6519
6520         symbol_t *symbol = token.v.symbol;
6521
6522         expression->builtin_symbol.symbol = symbol;
6523         next_token();
6524
6525         type_t *type = get_builtin_symbol_type(symbol);
6526         type = automatic_type_conversion(type);
6527
6528         expression->base.type = type;
6529         return expression;
6530 }
6531
6532 /**
6533  * Parses a __builtin_constant() expression.
6534  */
6535 static expression_t *parse_builtin_constant(void)
6536 {
6537         eat(T___builtin_constant_p);
6538
6539         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6540
6541         expect('(');
6542         add_anchor_token(')');
6543         expression->builtin_constant.value = parse_assignment_expression();
6544         rem_anchor_token(')');
6545         expect(')');
6546         expression->base.type = type_int;
6547
6548         return expression;
6549 end_error:
6550         return create_invalid_expression();
6551 }
6552
6553 /**
6554  * Parses a __builtin_prefetch() expression.
6555  */
6556 static expression_t *parse_builtin_prefetch(void)
6557 {
6558         eat(T___builtin_prefetch);
6559
6560         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
6561
6562         expect('(');
6563         add_anchor_token(')');
6564         expression->builtin_prefetch.adr = parse_assignment_expression();
6565         if (token.type == ',') {
6566                 next_token();
6567                 expression->builtin_prefetch.rw = parse_assignment_expression();
6568         }
6569         if (token.type == ',') {
6570                 next_token();
6571                 expression->builtin_prefetch.locality = parse_assignment_expression();
6572         }
6573         rem_anchor_token(')');
6574         expect(')');
6575         expression->base.type = type_void;
6576
6577         return expression;
6578 end_error:
6579         return create_invalid_expression();
6580 }
6581
6582 /**
6583  * Parses a __builtin_is_*() compare expression.
6584  */
6585 static expression_t *parse_compare_builtin(void)
6586 {
6587         expression_t *expression;
6588
6589         switch(token.type) {
6590         case T___builtin_isgreater:
6591                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6592                 break;
6593         case T___builtin_isgreaterequal:
6594                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6595                 break;
6596         case T___builtin_isless:
6597                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6598                 break;
6599         case T___builtin_islessequal:
6600                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6601                 break;
6602         case T___builtin_islessgreater:
6603                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6604                 break;
6605         case T___builtin_isunordered:
6606                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6607                 break;
6608         default:
6609                 internal_errorf(HERE, "invalid compare builtin found");
6610                 break;
6611         }
6612         expression->base.source_position = *HERE;
6613         next_token();
6614
6615         expect('(');
6616         expression->binary.left = parse_assignment_expression();
6617         expect(',');
6618         expression->binary.right = parse_assignment_expression();
6619         expect(')');
6620
6621         type_t *const orig_type_left  = expression->binary.left->base.type;
6622         type_t *const orig_type_right = expression->binary.right->base.type;
6623
6624         type_t *const type_left  = skip_typeref(orig_type_left);
6625         type_t *const type_right = skip_typeref(orig_type_right);
6626         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6627                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6628                         type_error_incompatible("invalid operands in comparison",
6629                                 &expression->base.source_position, orig_type_left, orig_type_right);
6630                 }
6631         } else {
6632                 semantic_comparison(&expression->binary);
6633         }
6634
6635         return expression;
6636 end_error:
6637         return create_invalid_expression();
6638 }
6639
6640 #if 0
6641 /**
6642  * Parses a __builtin_expect() expression.
6643  */
6644 static expression_t *parse_builtin_expect(void)
6645 {
6646         eat(T___builtin_expect);
6647
6648         expression_t *expression
6649                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
6650
6651         expect('(');
6652         expression->binary.left = parse_assignment_expression();
6653         expect(',');
6654         expression->binary.right = parse_constant_expression();
6655         expect(')');
6656
6657         expression->base.type = expression->binary.left->base.type;
6658
6659         return expression;
6660 end_error:
6661         return create_invalid_expression();
6662 }
6663 #endif
6664
6665 /**
6666  * Parses a MS assume() expression.
6667  */
6668 static expression_t *parse_assume(void)
6669 {
6670         eat(T__assume);
6671
6672         expression_t *expression
6673                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
6674
6675         expect('(');
6676         add_anchor_token(')');
6677         expression->unary.value = parse_assignment_expression();
6678         rem_anchor_token(')');
6679         expect(')');
6680
6681         expression->base.type = type_void;
6682         return expression;
6683 end_error:
6684         return create_invalid_expression();
6685 }
6686
6687 /**
6688  * Return the declaration for a given label symbol or create a new one.
6689  *
6690  * @param symbol  the symbol of the label
6691  */
6692 static declaration_t *get_label(symbol_t *symbol)
6693 {
6694         declaration_t *candidate;
6695         assert(current_function != NULL);
6696
6697         candidate = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
6698         /* if we found a local label, we already created the declaration */
6699         if (candidate != NULL) {
6700                 assert(candidate->parent_scope == scope);
6701                 return candidate;
6702         }
6703
6704         candidate = get_declaration(symbol, NAMESPACE_LABEL);
6705         /* if we found a label in the same function, then we already created the
6706          * declaration */
6707         if (candidate != NULL
6708                         && candidate->parent_scope == &current_function->scope) {
6709                 return candidate;
6710         }
6711
6712         /* otherwise we need to create a new one */
6713         declaration_t *const declaration = allocate_declaration_zero();
6714         declaration->namespc       = NAMESPACE_LABEL;
6715         declaration->symbol        = symbol;
6716
6717         label_push(declaration);
6718
6719         return declaration;
6720 }
6721
6722 /**
6723  * Parses a GNU && label address expression.
6724  */
6725 static expression_t *parse_label_address(void)
6726 {
6727         source_position_t source_position = token.source_position;
6728         eat(T_ANDAND);
6729         if (token.type != T_IDENTIFIER) {
6730                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6731                 goto end_error;
6732         }
6733         symbol_t *symbol = token.v.symbol;
6734         next_token();
6735
6736         declaration_t *label = get_label(symbol);
6737
6738         label->used          = true;
6739         label->address_taken = true;
6740
6741         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6742         expression->base.source_position = source_position;
6743
6744         /* label address is threaten as a void pointer */
6745         expression->base.type                 = type_void_ptr;
6746         expression->label_address.declaration = label;
6747         return expression;
6748 end_error:
6749         return create_invalid_expression();
6750 }
6751
6752 /**
6753  * Parse a microsoft __noop expression.
6754  */
6755 static expression_t *parse_noop_expression(void)
6756 {
6757         source_position_t source_position = *HERE;
6758         eat(T___noop);
6759
6760         if (token.type == '(') {
6761                 /* parse arguments */
6762                 eat('(');
6763                 add_anchor_token(')');
6764                 add_anchor_token(',');
6765
6766                 if (token.type != ')') {
6767                         while(true) {
6768                                 (void)parse_assignment_expression();
6769                                 if (token.type != ',')
6770                                         break;
6771                                 next_token();
6772                         }
6773                 }
6774         }
6775         rem_anchor_token(',');
6776         rem_anchor_token(')');
6777         expect(')');
6778
6779         /* the result is a (int)0 */
6780         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6781         cnst->base.source_position = source_position;
6782         cnst->base.type            = type_int;
6783         cnst->conste.v.int_value   = 0;
6784         cnst->conste.is_ms_noop    = true;
6785
6786         return cnst;
6787
6788 end_error:
6789         return create_invalid_expression();
6790 }
6791
6792 /**
6793  * Parses a primary expression.
6794  */
6795 static expression_t *parse_primary_expression(void)
6796 {
6797         switch (token.type) {
6798                 case T_INTEGER:                  return parse_int_const();
6799                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
6800                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
6801                 case T_FLOATINGPOINT:            return parse_float_const();
6802                 case T_STRING_LITERAL:
6803                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
6804                 case T_IDENTIFIER:               return parse_reference();
6805                 case T___FUNCTION__:
6806                 case T___func__:                 return parse_function_keyword();
6807                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
6808                 case T___FUNCSIG__:              return parse_funcsig_keyword();
6809                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
6810                 case T___builtin_offsetof:       return parse_offsetof();
6811                 case T___builtin_va_start:       return parse_va_start();
6812                 case T___builtin_va_arg:         return parse_va_arg();
6813                 case T___builtin_expect:
6814                 case T___builtin_alloca:
6815                 case T___builtin_nan:
6816                 case T___builtin_nand:
6817                 case T___builtin_nanf:
6818                 case T___builtin_huge_val:
6819                 case T___builtin_va_end:         return parse_builtin_symbol();
6820                 case T___builtin_isgreater:
6821                 case T___builtin_isgreaterequal:
6822                 case T___builtin_isless:
6823                 case T___builtin_islessequal:
6824                 case T___builtin_islessgreater:
6825                 case T___builtin_isunordered:    return parse_compare_builtin();
6826                 case T___builtin_constant_p:     return parse_builtin_constant();
6827                 case T___builtin_prefetch:       return parse_builtin_prefetch();
6828                 case T__assume:                  return parse_assume();
6829                 case T_ANDAND:
6830                         if (c_mode & _GNUC)
6831                                 return parse_label_address();
6832                         break;
6833
6834                 case '(':                        return parse_parenthesized_expression();
6835                 case T___noop:                   return parse_noop_expression();
6836         }
6837
6838         errorf(HERE, "unexpected token %K, expected an expression", &token);
6839         return create_invalid_expression();
6840 }
6841
6842 /**
6843  * Check if the expression has the character type and issue a warning then.
6844  */
6845 static void check_for_char_index_type(const expression_t *expression)
6846 {
6847         type_t       *const type      = expression->base.type;
6848         const type_t *const base_type = skip_typeref(type);
6849
6850         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
6851                         warning.char_subscripts) {
6852                 warningf(&expression->base.source_position,
6853                          "array subscript has type '%T'", type);
6854         }
6855 }
6856
6857 static expression_t *parse_array_expression(unsigned precedence,
6858                                             expression_t *left)
6859 {
6860         (void) precedence;
6861
6862         eat('[');
6863         add_anchor_token(']');
6864
6865         expression_t *inside = parse_expression();
6866
6867         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6868
6869         array_access_expression_t *array_access = &expression->array_access;
6870
6871         type_t *const orig_type_left   = left->base.type;
6872         type_t *const orig_type_inside = inside->base.type;
6873
6874         type_t *const type_left   = skip_typeref(orig_type_left);
6875         type_t *const type_inside = skip_typeref(orig_type_inside);
6876
6877         type_t *return_type;
6878         if (is_type_pointer(type_left)) {
6879                 return_type             = type_left->pointer.points_to;
6880                 array_access->array_ref = left;
6881                 array_access->index     = inside;
6882                 check_for_char_index_type(inside);
6883         } else if (is_type_pointer(type_inside)) {
6884                 return_type             = type_inside->pointer.points_to;
6885                 array_access->array_ref = inside;
6886                 array_access->index     = left;
6887                 array_access->flipped   = true;
6888                 check_for_char_index_type(left);
6889         } else {
6890                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6891                         errorf(HERE,
6892                                 "array access on object with non-pointer types '%T', '%T'",
6893                                 orig_type_left, orig_type_inside);
6894                 }
6895                 return_type             = type_error_type;
6896                 array_access->array_ref = left;
6897                 array_access->index     = inside;
6898         }
6899
6900         expression->base.type = automatic_type_conversion(return_type);
6901
6902         rem_anchor_token(']');
6903         if (token.type == ']') {
6904                 next_token();
6905         } else {
6906                 parse_error_expected("Problem while parsing array access", ']', NULL);
6907         }
6908         return expression;
6909 }
6910
6911 static expression_t *parse_typeprop(expression_kind_t const kind,
6912                                     source_position_t const pos,
6913                                     unsigned const precedence)
6914 {
6915         expression_t  *tp_expression = allocate_expression_zero(kind);
6916         tp_expression->base.type            = type_size_t;
6917         tp_expression->base.source_position = pos;
6918
6919         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6920
6921         /* we only refer to a type property, not the value, so do not warn
6922          * when using current_init_decl */
6923         declaration_t *old = current_init_decl;
6924         current_init_decl  = NULL;
6925         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6926                 next_token();
6927                 add_anchor_token(')');
6928                 type_t* const orig_type = parse_typename();
6929                 tp_expression->typeprop.type = orig_type;
6930
6931                 type_t const* const type = skip_typeref(orig_type);
6932                 char const* const wrong_type =
6933                         is_type_incomplete(type)    ? "incomplete"          :
6934                         type->kind == TYPE_FUNCTION ? "function designator" :
6935                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6936                         NULL;
6937                 if (wrong_type != NULL) {
6938                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6939                                what, wrong_type, type);
6940                 }
6941
6942                 rem_anchor_token(')');
6943                 expect(')');
6944         } else {
6945                 expression_t *expression = parse_sub_expression(precedence);
6946
6947                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6948                 expression->base.type = orig_type;
6949
6950                 type_t const* const type = skip_typeref(orig_type);
6951                 char const* const wrong_type =
6952                         is_type_incomplete(type)    ? "incomplete"          :
6953                         type->kind == TYPE_FUNCTION ? "function designator" :
6954                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6955                         NULL;
6956                 if (wrong_type != NULL) {
6957                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
6958                 }
6959
6960                 tp_expression->typeprop.type          = expression->base.type;
6961                 tp_expression->typeprop.tp_expression = expression;
6962         }
6963
6964 end_error:
6965         current_init_decl  = old;
6966         return tp_expression;
6967 }
6968
6969 static expression_t *parse_sizeof(unsigned precedence)
6970 {
6971         source_position_t pos = *HERE;
6972         eat(T_sizeof);
6973         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
6974 }
6975
6976 static expression_t *parse_alignof(unsigned precedence)
6977 {
6978         source_position_t pos = *HERE;
6979         eat(T___alignof__);
6980         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
6981 }
6982
6983 static expression_t *parse_select_expression(unsigned precedence,
6984                                              expression_t *compound)
6985 {
6986         (void) precedence;
6987         assert(token.type == '.' || token.type == T_MINUSGREATER);
6988
6989         bool is_pointer = (token.type == T_MINUSGREATER);
6990         next_token();
6991
6992         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
6993         select->select.compound = compound;
6994
6995         if (token.type != T_IDENTIFIER) {
6996                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
6997                 return select;
6998         }
6999         symbol_t *symbol = token.v.symbol;
7000         next_token();
7001
7002         type_t *const orig_type = compound->base.type;
7003         type_t *const type      = skip_typeref(orig_type);
7004
7005         type_t *type_left;
7006         bool    saw_error = false;
7007         if (is_type_pointer(type)) {
7008                 if (!is_pointer) {
7009                         errorf(HERE,
7010                                "request for member '%Y' in something not a struct or union, but '%T'",
7011                                symbol, orig_type);
7012                         saw_error = true;
7013                 }
7014                 type_left = skip_typeref(type->pointer.points_to);
7015         } else {
7016                 if (is_pointer && is_type_valid(type)) {
7017                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7018                         saw_error = true;
7019                 }
7020                 type_left = type;
7021         }
7022
7023         declaration_t *entry;
7024         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7025             type_left->kind == TYPE_COMPOUND_UNION) {
7026                 declaration_t *const declaration = type_left->compound.declaration;
7027
7028                 if (!declaration->init.complete) {
7029                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7030                                symbol, type_left);
7031                         goto create_error_entry;
7032                 }
7033
7034                 entry = find_compound_entry(declaration, symbol);
7035                 if (entry == NULL) {
7036                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7037                         goto create_error_entry;
7038                 }
7039         } else {
7040                 if (is_type_valid(type_left) && !saw_error) {
7041                         errorf(HERE,
7042                                "request for member '%Y' in something not a struct or union, but '%T'",
7043                                symbol, type_left);
7044                 }
7045 create_error_entry:
7046                 entry         = allocate_declaration_zero();
7047                 entry->symbol = symbol;
7048         }
7049
7050         select->select.compound_entry = entry;
7051
7052         type_t *const res_type =
7053                 get_qualified_type(entry->type, type_left->base.qualifiers);
7054
7055         /* we always do the auto-type conversions; the & and sizeof parser contains
7056          * code to revert this! */
7057         select->base.type = automatic_type_conversion(res_type);
7058
7059         type_t *skipped = skip_typeref(res_type);
7060         if (skipped->kind == TYPE_BITFIELD) {
7061                 select->base.type = skipped->bitfield.base_type;
7062         }
7063
7064         return select;
7065 }
7066
7067 static void check_call_argument(const function_parameter_t *parameter,
7068                                 call_argument_t *argument, unsigned pos)
7069 {
7070         type_t         *expected_type      = parameter->type;
7071         type_t         *expected_type_skip = skip_typeref(expected_type);
7072         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7073         expression_t   *arg_expr           = argument->expression;
7074         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7075
7076         /* handle transparent union gnu extension */
7077         if (is_type_union(expected_type_skip)
7078                         && (expected_type_skip->base.modifiers
7079                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7080                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
7081
7082                 declaration_t *declaration = union_decl->scope.declarations;
7083                 type_t        *best_type   = NULL;
7084                 for ( ; declaration != NULL; declaration = declaration->next) {
7085                         type_t *decl_type = declaration->type;
7086                         error = semantic_assign(decl_type, arg_expr);
7087                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7088                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7089                                 continue;
7090
7091                         if (error == ASSIGN_SUCCESS) {
7092                                 best_type = decl_type;
7093                         } else if (best_type == NULL) {
7094                                 best_type = decl_type;
7095                         }
7096                 }
7097
7098                 if (best_type != NULL) {
7099                         expected_type = best_type;
7100                 }
7101         }
7102
7103         error                = semantic_assign(expected_type, arg_expr);
7104         argument->expression = create_implicit_cast(argument->expression,
7105                                                     expected_type);
7106
7107         if (error != ASSIGN_SUCCESS) {
7108                 /* report exact scope in error messages (like "in argument 3") */
7109                 char buf[64];
7110                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7111                 report_assign_error(error, expected_type, arg_expr,     buf,
7112                                                         &arg_expr->base.source_position);
7113         } else if (warning.traditional || warning.conversion) {
7114                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7115                 if (!types_compatible(expected_type_skip, promoted_type) &&
7116                     !types_compatible(expected_type_skip, type_void_ptr) &&
7117                     !types_compatible(type_void_ptr,      promoted_type)) {
7118                         /* Deliberately show the skipped types in this warning */
7119                         warningf(&arg_expr->base.source_position,
7120                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7121                                 pos, expected_type_skip, promoted_type);
7122                 }
7123         }
7124 }
7125
7126 /**
7127  * Parse a call expression, ie. expression '( ... )'.
7128  *
7129  * @param expression  the function address
7130  */
7131 static expression_t *parse_call_expression(unsigned precedence,
7132                                            expression_t *expression)
7133 {
7134         (void) precedence;
7135         expression_t *result = allocate_expression_zero(EXPR_CALL);
7136         result->base.source_position = expression->base.source_position;
7137
7138         call_expression_t *call = &result->call;
7139         call->function          = expression;
7140
7141         type_t *const orig_type = expression->base.type;
7142         type_t *const type      = skip_typeref(orig_type);
7143
7144         function_type_t *function_type = NULL;
7145         if (is_type_pointer(type)) {
7146                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7147
7148                 if (is_type_function(to_type)) {
7149                         function_type   = &to_type->function;
7150                         call->base.type = function_type->return_type;
7151                 }
7152         }
7153
7154         if (function_type == NULL && is_type_valid(type)) {
7155                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7156         }
7157
7158         /* parse arguments */
7159         eat('(');
7160         add_anchor_token(')');
7161         add_anchor_token(',');
7162
7163         if (token.type != ')') {
7164                 call_argument_t *last_argument = NULL;
7165
7166                 while (true) {
7167                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7168
7169                         argument->expression = parse_assignment_expression();
7170                         if (last_argument == NULL) {
7171                                 call->arguments = argument;
7172                         } else {
7173                                 last_argument->next = argument;
7174                         }
7175                         last_argument = argument;
7176
7177                         if (token.type != ',')
7178                                 break;
7179                         next_token();
7180                 }
7181         }
7182         rem_anchor_token(',');
7183         rem_anchor_token(')');
7184         expect(')');
7185
7186         if (function_type == NULL)
7187                 return result;
7188
7189         function_parameter_t *parameter = function_type->parameters;
7190         call_argument_t      *argument  = call->arguments;
7191         if (!function_type->unspecified_parameters) {
7192                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7193                                 parameter = parameter->next, argument = argument->next) {
7194                         check_call_argument(parameter, argument, ++pos);
7195                 }
7196
7197                 if (parameter != NULL) {
7198                         errorf(HERE, "too few arguments to function '%E'", expression);
7199                 } else if (argument != NULL && !function_type->variadic) {
7200                         errorf(HERE, "too many arguments to function '%E'", expression);
7201                 }
7202         }
7203
7204         /* do default promotion */
7205         for( ; argument != NULL; argument = argument->next) {
7206                 type_t *type = argument->expression->base.type;
7207
7208                 type = get_default_promoted_type(type);
7209
7210                 argument->expression
7211                         = create_implicit_cast(argument->expression, type);
7212         }
7213
7214         check_format(&result->call);
7215
7216         if (warning.aggregate_return &&
7217             is_type_compound(skip_typeref(function_type->return_type))) {
7218                 warningf(&result->base.source_position,
7219                          "function call has aggregate value");
7220         }
7221
7222 end_error:
7223         return result;
7224 }
7225
7226 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7227
7228 static bool same_compound_type(const type_t *type1, const type_t *type2)
7229 {
7230         return
7231                 is_type_compound(type1) &&
7232                 type1->kind == type2->kind &&
7233                 type1->compound.declaration == type2->compound.declaration;
7234 }
7235
7236 /**
7237  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7238  *
7239  * @param expression  the conditional expression
7240  */
7241 static expression_t *parse_conditional_expression(unsigned precedence,
7242                                                   expression_t *expression)
7243 {
7244         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7245
7246         conditional_expression_t *conditional = &result->conditional;
7247         conditional->base.source_position = *HERE;
7248         conditional->condition            = expression;
7249
7250         eat('?');
7251         add_anchor_token(':');
7252
7253         /* 6.5.15.2 */
7254         type_t *const condition_type_orig = expression->base.type;
7255         type_t *const condition_type      = skip_typeref(condition_type_orig);
7256         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7257                 type_error("expected a scalar type in conditional condition",
7258                            &expression->base.source_position, condition_type_orig);
7259         }
7260
7261         expression_t *true_expression = expression;
7262         bool          gnu_cond = false;
7263         if ((c_mode & _GNUC) && token.type == ':') {
7264                 gnu_cond = true;
7265         } else
7266                 true_expression = parse_expression();
7267         rem_anchor_token(':');
7268         expect(':');
7269         expression_t *false_expression = parse_sub_expression(precedence);
7270
7271         type_t *const orig_true_type  = true_expression->base.type;
7272         type_t *const orig_false_type = false_expression->base.type;
7273         type_t *const true_type       = skip_typeref(orig_true_type);
7274         type_t *const false_type      = skip_typeref(orig_false_type);
7275
7276         /* 6.5.15.3 */
7277         type_t *result_type;
7278         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
7279                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7280                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
7281                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7282                         warningf(&conditional->base.source_position,
7283                                         "ISO C forbids conditional expression with only one void side");
7284                 }
7285                 result_type = type_void;
7286         } else if (is_type_arithmetic(true_type)
7287                    && is_type_arithmetic(false_type)) {
7288                 result_type = semantic_arithmetic(true_type, false_type);
7289
7290                 true_expression  = create_implicit_cast(true_expression, result_type);
7291                 false_expression = create_implicit_cast(false_expression, result_type);
7292
7293                 conditional->true_expression  = true_expression;
7294                 conditional->false_expression = false_expression;
7295                 conditional->base.type        = result_type;
7296         } else if (same_compound_type(true_type, false_type)) {
7297                 /* just take 1 of the 2 types */
7298                 result_type = true_type;
7299         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7300                 type_t *pointer_type;
7301                 type_t *other_type;
7302                 expression_t *other_expression;
7303                 if (is_type_pointer(true_type) &&
7304                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7305                         pointer_type     = true_type;
7306                         other_type       = false_type;
7307                         other_expression = false_expression;
7308                 } else {
7309                         pointer_type     = false_type;
7310                         other_type       = true_type;
7311                         other_expression = true_expression;
7312                 }
7313
7314                 if (is_null_pointer_constant(other_expression)) {
7315                         result_type = pointer_type;
7316                 } else if (is_type_pointer(other_type)) {
7317                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7318                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7319
7320                         type_t *to;
7321                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7322                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7323                                 to = type_void;
7324                         } else if (types_compatible(get_unqualified_type(to1),
7325                                                     get_unqualified_type(to2))) {
7326                                 to = to1;
7327                         } else {
7328                                 warningf(&conditional->base.source_position,
7329                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7330                                         true_type, false_type);
7331                                 to = type_void;
7332                         }
7333
7334                         type_t *const type =
7335                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7336                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7337                 } else if (is_type_integer(other_type)) {
7338                         warningf(&conditional->base.source_position,
7339                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7340                         result_type = pointer_type;
7341                 } else {
7342                         type_error_incompatible("while parsing conditional",
7343                                         &expression->base.source_position, true_type, false_type);
7344                         result_type = type_error_type;
7345                 }
7346         } else {
7347                 /* TODO: one pointer to void*, other some pointer */
7348
7349                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7350                         type_error_incompatible("while parsing conditional",
7351                                                 &conditional->base.source_position, true_type,
7352                                                 false_type);
7353                 }
7354                 result_type = type_error_type;
7355         }
7356
7357         conditional->true_expression
7358                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7359         conditional->false_expression
7360                 = create_implicit_cast(false_expression, result_type);
7361         conditional->base.type = result_type;
7362         return result;
7363 end_error:
7364         return create_invalid_expression();
7365 }
7366
7367 /**
7368  * Parse an extension expression.
7369  */
7370 static expression_t *parse_extension(unsigned precedence)
7371 {
7372         eat(T___extension__);
7373
7374         /* TODO enable extensions */
7375         expression_t *expression = parse_sub_expression(precedence);
7376         /* TODO disable extensions */
7377         return expression;
7378 }
7379
7380 /**
7381  * Parse a __builtin_classify_type() expression.
7382  */
7383 static expression_t *parse_builtin_classify_type(const unsigned precedence)
7384 {
7385         eat(T___builtin_classify_type);
7386
7387         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7388         result->base.type    = type_int;
7389
7390         expect('(');
7391         add_anchor_token(')');
7392         expression_t *expression = parse_sub_expression(precedence);
7393         rem_anchor_token(')');
7394         expect(')');
7395         result->classify_type.type_expression = expression;
7396
7397         return result;
7398 end_error:
7399         return create_invalid_expression();
7400 }
7401
7402 static bool check_pointer_arithmetic(const source_position_t *source_position,
7403                                      type_t *pointer_type,
7404                                      type_t *orig_pointer_type)
7405 {
7406         type_t *points_to = pointer_type->pointer.points_to;
7407         points_to = skip_typeref(points_to);
7408
7409         if (is_type_incomplete(points_to)) {
7410                 if (!(c_mode & _GNUC) || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7411                         errorf(source_position,
7412                                "arithmetic with pointer to incomplete type '%T' not allowed",
7413                                orig_pointer_type);
7414                         return false;
7415                 } else if (warning.pointer_arith) {
7416                         warningf(source_position,
7417                                  "pointer of type '%T' used in arithmetic",
7418                                  orig_pointer_type);
7419                 }
7420         } else if (is_type_function(points_to)) {
7421                 if (!(c_mode && _GNUC)) {
7422                         errorf(source_position,
7423                                "arithmetic with pointer to function type '%T' not allowed",
7424                                orig_pointer_type);
7425                         return false;
7426                 } else if (warning.pointer_arith) {
7427                         warningf(source_position,
7428                                  "pointer to a function '%T' used in arithmetic",
7429                                  orig_pointer_type);
7430                 }
7431         }
7432         return true;
7433 }
7434
7435 static bool is_lvalue(const expression_t *expression)
7436 {
7437         switch (expression->kind) {
7438         case EXPR_REFERENCE:
7439         case EXPR_ARRAY_ACCESS:
7440         case EXPR_SELECT:
7441         case EXPR_UNARY_DEREFERENCE:
7442                 return true;
7443
7444         default:
7445                 return false;
7446         }
7447 }
7448
7449 static void semantic_incdec(unary_expression_t *expression)
7450 {
7451         type_t *const orig_type = expression->value->base.type;
7452         type_t *const type      = skip_typeref(orig_type);
7453         if (is_type_pointer(type)) {
7454                 if (!check_pointer_arithmetic(&expression->base.source_position,
7455                                               type, orig_type)) {
7456                         return;
7457                 }
7458         } else if (!is_type_real(type) && is_type_valid(type)) {
7459                 /* TODO: improve error message */
7460                 errorf(&expression->base.source_position,
7461                        "operation needs an arithmetic or pointer type");
7462                 return;
7463         }
7464         if (!is_lvalue(expression->value)) {
7465                 /* TODO: improve error message */
7466                 errorf(&expression->base.source_position, "lvalue required as operand");
7467         }
7468         expression->base.type = orig_type;
7469 }
7470
7471 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7472 {
7473         type_t *const orig_type = expression->value->base.type;
7474         type_t *const type      = skip_typeref(orig_type);
7475         if (!is_type_arithmetic(type)) {
7476                 if (is_type_valid(type)) {
7477                         /* TODO: improve error message */
7478                         errorf(&expression->base.source_position,
7479                                 "operation needs an arithmetic type");
7480                 }
7481                 return;
7482         }
7483
7484         expression->base.type = orig_type;
7485 }
7486
7487 static void semantic_unexpr_plus(unary_expression_t *expression)
7488 {
7489         semantic_unexpr_arithmetic(expression);
7490         if (warning.traditional)
7491                 warningf(&expression->base.source_position,
7492                         "traditional C rejects the unary plus operator");
7493 }
7494
7495 static void semantic_not(unary_expression_t *expression)
7496 {
7497         type_t *const orig_type = expression->value->base.type;
7498         type_t *const type      = skip_typeref(orig_type);
7499         if (!is_type_scalar(type) && is_type_valid(type)) {
7500                 errorf(&expression->base.source_position,
7501                        "operand of ! must be of scalar type");
7502         }
7503
7504         expression->base.type = type_int;
7505 }
7506
7507 static void semantic_unexpr_integer(unary_expression_t *expression)
7508 {
7509         type_t *const orig_type = expression->value->base.type;
7510         type_t *const type      = skip_typeref(orig_type);
7511         if (!is_type_integer(type)) {
7512                 if (is_type_valid(type)) {
7513                         errorf(&expression->base.source_position,
7514                                "operand of ~ must be of integer type");
7515                 }
7516                 return;
7517         }
7518
7519         expression->base.type = orig_type;
7520 }
7521
7522 static void semantic_dereference(unary_expression_t *expression)
7523 {
7524         type_t *const orig_type = expression->value->base.type;
7525         type_t *const type      = skip_typeref(orig_type);
7526         if (!is_type_pointer(type)) {
7527                 if (is_type_valid(type)) {
7528                         errorf(&expression->base.source_position,
7529                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7530                 }
7531                 return;
7532         }
7533
7534         type_t *result_type   = type->pointer.points_to;
7535         result_type           = automatic_type_conversion(result_type);
7536         expression->base.type = result_type;
7537 }
7538
7539 /**
7540  * Record that an address is taken (expression represents an lvalue).
7541  *
7542  * @param expression       the expression
7543  * @param may_be_register  if true, the expression might be an register
7544  */
7545 static void set_address_taken(expression_t *expression, bool may_be_register)
7546 {
7547         if (expression->kind != EXPR_REFERENCE)
7548                 return;
7549
7550         declaration_t *const declaration = expression->reference.declaration;
7551         /* happens for parse errors */
7552         if (declaration == NULL)
7553                 return;
7554
7555         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
7556                 errorf(&expression->base.source_position,
7557                                 "address of register variable '%Y' requested",
7558                                 declaration->symbol);
7559         } else {
7560                 declaration->address_taken = 1;
7561         }
7562 }
7563
7564 /**
7565  * Check the semantic of the address taken expression.
7566  */
7567 static void semantic_take_addr(unary_expression_t *expression)
7568 {
7569         expression_t *value = expression->value;
7570         value->base.type    = revert_automatic_type_conversion(value);
7571
7572         type_t *orig_type = value->base.type;
7573         if (!is_type_valid(orig_type))
7574                 return;
7575
7576         set_address_taken(value, false);
7577
7578         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7579 }
7580
7581 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
7582 static expression_t *parse_##unexpression_type(unsigned precedence)            \
7583 {                                                                              \
7584         expression_t *unary_expression                                             \
7585                 = allocate_expression_zero(unexpression_type);                         \
7586         unary_expression->base.source_position = *HERE;                            \
7587         eat(token_type);                                                           \
7588         unary_expression->unary.value = parse_sub_expression(precedence);          \
7589                                                                                    \
7590         sfunc(&unary_expression->unary);                                           \
7591                                                                                    \
7592         return unary_expression;                                                   \
7593 }
7594
7595 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7596                                semantic_unexpr_arithmetic)
7597 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7598                                semantic_unexpr_plus)
7599 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7600                                semantic_not)
7601 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7602                                semantic_dereference)
7603 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7604                                semantic_take_addr)
7605 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7606                                semantic_unexpr_integer)
7607 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7608                                semantic_incdec)
7609 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7610                                semantic_incdec)
7611
7612 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
7613                                                sfunc)                         \
7614 static expression_t *parse_##unexpression_type(unsigned precedence,           \
7615                                                expression_t *left)            \
7616 {                                                                             \
7617         (void) precedence;                                                        \
7618                                                                               \
7619         expression_t *unary_expression                                            \
7620                 = allocate_expression_zero(unexpression_type);                        \
7621         unary_expression->base.source_position = *HERE;                           \
7622         eat(token_type);                                                          \
7623         unary_expression->unary.value          = left;                            \
7624                                                                                   \
7625         sfunc(&unary_expression->unary);                                          \
7626                                                                               \
7627         return unary_expression;                                                  \
7628 }
7629
7630 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7631                                        EXPR_UNARY_POSTFIX_INCREMENT,
7632                                        semantic_incdec)
7633 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7634                                        EXPR_UNARY_POSTFIX_DECREMENT,
7635                                        semantic_incdec)
7636
7637 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7638 {
7639         /* TODO: handle complex + imaginary types */
7640
7641         type_left  = get_unqualified_type(type_left);
7642         type_right = get_unqualified_type(type_right);
7643
7644         /* Â§ 6.3.1.8 Usual arithmetic conversions */
7645         if (type_left == type_long_double || type_right == type_long_double) {
7646                 return type_long_double;
7647         } else if (type_left == type_double || type_right == type_double) {
7648                 return type_double;
7649         } else if (type_left == type_float || type_right == type_float) {
7650                 return type_float;
7651         }
7652
7653         type_left  = promote_integer(type_left);
7654         type_right = promote_integer(type_right);
7655
7656         if (type_left == type_right)
7657                 return type_left;
7658
7659         bool const signed_left  = is_type_signed(type_left);
7660         bool const signed_right = is_type_signed(type_right);
7661         int const  rank_left    = get_rank(type_left);
7662         int const  rank_right   = get_rank(type_right);
7663
7664         if (signed_left == signed_right)
7665                 return rank_left >= rank_right ? type_left : type_right;
7666
7667         int     s_rank;
7668         int     u_rank;
7669         type_t *s_type;
7670         type_t *u_type;
7671         if (signed_left) {
7672                 s_rank = rank_left;
7673                 s_type = type_left;
7674                 u_rank = rank_right;
7675                 u_type = type_right;
7676         } else {
7677                 s_rank = rank_right;
7678                 s_type = type_right;
7679                 u_rank = rank_left;
7680                 u_type = type_left;
7681         }
7682
7683         if (u_rank >= s_rank)
7684                 return u_type;
7685
7686         /* casting rank to atomic_type_kind is a bit hacky, but makes things
7687          * easier here... */
7688         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
7689                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
7690                 return s_type;
7691
7692         switch (s_rank) {
7693                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
7694                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7695                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7696
7697                 default: panic("invalid atomic type");
7698         }
7699 }
7700
7701 /**
7702  * Check the semantic restrictions for a binary expression.
7703  */
7704 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7705 {
7706         expression_t *const left            = expression->left;
7707         expression_t *const right           = expression->right;
7708         type_t       *const orig_type_left  = left->base.type;
7709         type_t       *const orig_type_right = right->base.type;
7710         type_t       *const type_left       = skip_typeref(orig_type_left);
7711         type_t       *const type_right      = skip_typeref(orig_type_right);
7712
7713         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7714                 /* TODO: improve error message */
7715                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7716                         errorf(&expression->base.source_position,
7717                                "operation needs arithmetic types");
7718                 }
7719                 return;
7720         }
7721
7722         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7723         expression->left      = create_implicit_cast(left, arithmetic_type);
7724         expression->right     = create_implicit_cast(right, arithmetic_type);
7725         expression->base.type = arithmetic_type;
7726 }
7727
7728 static void warn_div_by_zero(binary_expression_t const *const expression)
7729 {
7730         if (!warning.div_by_zero ||
7731             !is_type_integer(expression->base.type))
7732                 return;
7733
7734         expression_t const *const right = expression->right;
7735         /* The type of the right operand can be different for /= */
7736         if (is_type_integer(right->base.type) &&
7737             is_constant_expression(right)     &&
7738             fold_constant(right) == 0) {
7739                 warningf(&expression->base.source_position, "division by zero");
7740         }
7741 }
7742
7743 /**
7744  * Check the semantic restrictions for a div/mod expression.
7745  */
7746 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
7747         semantic_binexpr_arithmetic(expression);
7748         warn_div_by_zero(expression);
7749 }
7750
7751 static void semantic_shift_op(binary_expression_t *expression)
7752 {
7753         expression_t *const left            = expression->left;
7754         expression_t *const right           = expression->right;
7755         type_t       *const orig_type_left  = left->base.type;
7756         type_t       *const orig_type_right = right->base.type;
7757         type_t       *      type_left       = skip_typeref(orig_type_left);
7758         type_t       *      type_right      = skip_typeref(orig_type_right);
7759
7760         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7761                 /* TODO: improve error message */
7762                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7763                         errorf(&expression->base.source_position,
7764                                "operands of shift operation must have integer types");
7765                 }
7766                 return;
7767         }
7768
7769         type_left  = promote_integer(type_left);
7770         type_right = promote_integer(type_right);
7771
7772         expression->left      = create_implicit_cast(left, type_left);
7773         expression->right     = create_implicit_cast(right, type_right);
7774         expression->base.type = type_left;
7775 }
7776
7777 static void semantic_add(binary_expression_t *expression)
7778 {
7779         expression_t *const left            = expression->left;
7780         expression_t *const right           = expression->right;
7781         type_t       *const orig_type_left  = left->base.type;
7782         type_t       *const orig_type_right = right->base.type;
7783         type_t       *const type_left       = skip_typeref(orig_type_left);
7784         type_t       *const type_right      = skip_typeref(orig_type_right);
7785
7786         /* Â§ 6.5.6 */
7787         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7788                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7789                 expression->left  = create_implicit_cast(left, arithmetic_type);
7790                 expression->right = create_implicit_cast(right, arithmetic_type);
7791                 expression->base.type = arithmetic_type;
7792                 return;
7793         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7794                 check_pointer_arithmetic(&expression->base.source_position,
7795                                          type_left, orig_type_left);
7796                 expression->base.type = type_left;
7797         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
7798                 check_pointer_arithmetic(&expression->base.source_position,
7799                                          type_right, orig_type_right);
7800                 expression->base.type = type_right;
7801         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7802                 errorf(&expression->base.source_position,
7803                        "invalid operands to binary + ('%T', '%T')",
7804                        orig_type_left, orig_type_right);
7805         }
7806 }
7807
7808 static void semantic_sub(binary_expression_t *expression)
7809 {
7810         expression_t            *const left            = expression->left;
7811         expression_t            *const right           = expression->right;
7812         type_t                  *const orig_type_left  = left->base.type;
7813         type_t                  *const orig_type_right = right->base.type;
7814         type_t                  *const type_left       = skip_typeref(orig_type_left);
7815         type_t                  *const type_right      = skip_typeref(orig_type_right);
7816         source_position_t const *const pos             = &expression->base.source_position;
7817
7818         /* Â§ 5.6.5 */
7819         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7820                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7821                 expression->left        = create_implicit_cast(left, arithmetic_type);
7822                 expression->right       = create_implicit_cast(right, arithmetic_type);
7823                 expression->base.type =  arithmetic_type;
7824                 return;
7825         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7826                 check_pointer_arithmetic(&expression->base.source_position,
7827                                          type_left, orig_type_left);
7828                 expression->base.type = type_left;
7829         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7830                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
7831                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
7832                 if (!types_compatible(unqual_left, unqual_right)) {
7833                         errorf(pos,
7834                                "subtracting pointers to incompatible types '%T' and '%T'",
7835                                orig_type_left, orig_type_right);
7836                 } else if (!is_type_object(unqual_left)) {
7837                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
7838                                 warningf(pos, "subtracting pointers to void");
7839                         } else {
7840                                 errorf(pos, "subtracting pointers to non-object types '%T'",
7841                                        orig_type_left);
7842                         }
7843                 }
7844                 expression->base.type = type_ptrdiff_t;
7845         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7846                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
7847                        orig_type_left, orig_type_right);
7848         }
7849 }
7850
7851 /**
7852  * Check the semantics of comparison expressions.
7853  *
7854  * @param expression   The expression to check.
7855  */
7856 static void semantic_comparison(binary_expression_t *expression)
7857 {
7858         expression_t *left            = expression->left;
7859         expression_t *right           = expression->right;
7860         type_t       *orig_type_left  = left->base.type;
7861         type_t       *orig_type_right = right->base.type;
7862
7863         type_t *type_left  = skip_typeref(orig_type_left);
7864         type_t *type_right = skip_typeref(orig_type_right);
7865
7866         /* TODO non-arithmetic types */
7867         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7868                 /* test for signed vs unsigned compares */
7869                 if (warning.sign_compare &&
7870                     (expression->base.kind != EXPR_BINARY_EQUAL &&
7871                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
7872                     (is_type_signed(type_left) != is_type_signed(type_right))) {
7873
7874                         /* check if 1 of the operands is a constant, in this case we just
7875                          * check wether we can safely represent the resulting constant in
7876                          * the type of the other operand. */
7877                         expression_t *const_expr = NULL;
7878                         expression_t *other_expr = NULL;
7879
7880                         if (is_constant_expression(left)) {
7881                                 const_expr = left;
7882                                 other_expr = right;
7883                         } else if (is_constant_expression(right)) {
7884                                 const_expr = right;
7885                                 other_expr = left;
7886                         }
7887
7888                         if (const_expr != NULL) {
7889                                 type_t *other_type = skip_typeref(other_expr->base.type);
7890                                 long    val        = fold_constant(const_expr);
7891                                 /* TODO: check if val can be represented by other_type */
7892                                 (void) other_type;
7893                                 (void) val;
7894                         }
7895                         warningf(&expression->base.source_position,
7896                                  "comparison between signed and unsigned");
7897                 }
7898                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7899                 expression->left        = create_implicit_cast(left, arithmetic_type);
7900                 expression->right       = create_implicit_cast(right, arithmetic_type);
7901                 expression->base.type   = arithmetic_type;
7902                 if (warning.float_equal &&
7903                     (expression->base.kind == EXPR_BINARY_EQUAL ||
7904                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
7905                     is_type_float(arithmetic_type)) {
7906                         warningf(&expression->base.source_position,
7907                                  "comparing floating point with == or != is unsafe");
7908                 }
7909         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7910                 /* TODO check compatibility */
7911         } else if (is_type_pointer(type_left)) {
7912                 expression->right = create_implicit_cast(right, type_left);
7913         } else if (is_type_pointer(type_right)) {
7914                 expression->left = create_implicit_cast(left, type_right);
7915         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7916                 type_error_incompatible("invalid operands in comparison",
7917                                         &expression->base.source_position,
7918                                         type_left, type_right);
7919         }
7920         expression->base.type = type_int;
7921 }
7922
7923 /**
7924  * Checks if a compound type has constant fields.
7925  */
7926 static bool has_const_fields(const compound_type_t *type)
7927 {
7928         const scope_t       *scope       = &type->declaration->scope;
7929         const declaration_t *declaration = scope->declarations;
7930
7931         for (; declaration != NULL; declaration = declaration->next) {
7932                 if (declaration->namespc != NAMESPACE_NORMAL)
7933                         continue;
7934
7935                 const type_t *decl_type = skip_typeref(declaration->type);
7936                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
7937                         return true;
7938         }
7939         /* TODO */
7940         return false;
7941 }
7942
7943 static bool is_valid_assignment_lhs(expression_t const* const left)
7944 {
7945         type_t *const orig_type_left = revert_automatic_type_conversion(left);
7946         type_t *const type_left      = skip_typeref(orig_type_left);
7947
7948         if (!is_lvalue(left)) {
7949                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
7950                        left);
7951                 return false;
7952         }
7953
7954         if (is_type_array(type_left)) {
7955                 errorf(HERE, "cannot assign to arrays ('%E')", left);
7956                 return false;
7957         }
7958         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
7959                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
7960                        orig_type_left);
7961                 return false;
7962         }
7963         if (is_type_incomplete(type_left)) {
7964                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
7965                        left, orig_type_left);
7966                 return false;
7967         }
7968         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
7969                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
7970                        left, orig_type_left);
7971                 return false;
7972         }
7973
7974         return true;
7975 }
7976
7977 static void semantic_arithmetic_assign(binary_expression_t *expression)
7978 {
7979         expression_t *left            = expression->left;
7980         expression_t *right           = expression->right;
7981         type_t       *orig_type_left  = left->base.type;
7982         type_t       *orig_type_right = right->base.type;
7983
7984         if (!is_valid_assignment_lhs(left))
7985                 return;
7986
7987         type_t *type_left  = skip_typeref(orig_type_left);
7988         type_t *type_right = skip_typeref(orig_type_right);
7989
7990         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7991                 /* TODO: improve error message */
7992                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7993                         errorf(&expression->base.source_position,
7994                                "operation needs arithmetic types");
7995                 }
7996                 return;
7997         }
7998
7999         /* combined instructions are tricky. We can't create an implicit cast on
8000          * the left side, because we need the uncasted form for the store.
8001          * The ast2firm pass has to know that left_type must be right_type
8002          * for the arithmetic operation and create a cast by itself */
8003         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8004         expression->right       = create_implicit_cast(right, arithmetic_type);
8005         expression->base.type   = type_left;
8006 }
8007
8008 static void semantic_divmod_assign(binary_expression_t *expression)
8009 {
8010         semantic_arithmetic_assign(expression);
8011         warn_div_by_zero(expression);
8012 }
8013
8014 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8015 {
8016         expression_t *const left            = expression->left;
8017         expression_t *const right           = expression->right;
8018         type_t       *const orig_type_left  = left->base.type;
8019         type_t       *const orig_type_right = right->base.type;
8020         type_t       *const type_left       = skip_typeref(orig_type_left);
8021         type_t       *const type_right      = skip_typeref(orig_type_right);
8022
8023         if (!is_valid_assignment_lhs(left))
8024                 return;
8025
8026         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8027                 /* combined instructions are tricky. We can't create an implicit cast on
8028                  * the left side, because we need the uncasted form for the store.
8029                  * The ast2firm pass has to know that left_type must be right_type
8030                  * for the arithmetic operation and create a cast by itself */
8031                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8032                 expression->right     = create_implicit_cast(right, arithmetic_type);
8033                 expression->base.type = type_left;
8034         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8035                 check_pointer_arithmetic(&expression->base.source_position,
8036                                          type_left, orig_type_left);
8037                 expression->base.type = type_left;
8038         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8039                 errorf(&expression->base.source_position,
8040                        "incompatible types '%T' and '%T' in assignment",
8041                        orig_type_left, orig_type_right);
8042         }
8043 }
8044
8045 /**
8046  * Check the semantic restrictions of a logical expression.
8047  */
8048 static void semantic_logical_op(binary_expression_t *expression)
8049 {
8050         expression_t *const left            = expression->left;
8051         expression_t *const right           = expression->right;
8052         type_t       *const orig_type_left  = left->base.type;
8053         type_t       *const orig_type_right = right->base.type;
8054         type_t       *const type_left       = skip_typeref(orig_type_left);
8055         type_t       *const type_right      = skip_typeref(orig_type_right);
8056
8057         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8058                 /* TODO: improve error message */
8059                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8060                         errorf(&expression->base.source_position,
8061                                "operation needs scalar types");
8062                 }
8063                 return;
8064         }
8065
8066         expression->base.type = type_int;
8067 }
8068
8069 /**
8070  * Check the semantic restrictions of a binary assign expression.
8071  */
8072 static void semantic_binexpr_assign(binary_expression_t *expression)
8073 {
8074         expression_t *left           = expression->left;
8075         type_t       *orig_type_left = left->base.type;
8076
8077         if (!is_valid_assignment_lhs(left))
8078                 return;
8079
8080         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8081         report_assign_error(error, orig_type_left, expression->right,
8082                         "assignment", &left->base.source_position);
8083         expression->right = create_implicit_cast(expression->right, orig_type_left);
8084         expression->base.type = orig_type_left;
8085 }
8086
8087 /**
8088  * Determine if the outermost operation (or parts thereof) of the given
8089  * expression has no effect in order to generate a warning about this fact.
8090  * Therefore in some cases this only examines some of the operands of the
8091  * expression (see comments in the function and examples below).
8092  * Examples:
8093  *   f() + 23;    // warning, because + has no effect
8094  *   x || f();    // no warning, because x controls execution of f()
8095  *   x ? y : f(); // warning, because y has no effect
8096  *   (void)x;     // no warning to be able to suppress the warning
8097  * This function can NOT be used for an "expression has definitely no effect"-
8098  * analysis. */
8099 static bool expression_has_effect(const expression_t *const expr)
8100 {
8101         switch (expr->kind) {
8102                 case EXPR_UNKNOWN:                   break;
8103                 case EXPR_INVALID:                   return true; /* do NOT warn */
8104                 case EXPR_REFERENCE:                 return false;
8105                 /* suppress the warning for microsoft __noop operations */
8106                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8107                 case EXPR_CHARACTER_CONSTANT:        return false;
8108                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8109                 case EXPR_STRING_LITERAL:            return false;
8110                 case EXPR_WIDE_STRING_LITERAL:       return false;
8111                 case EXPR_LABEL_ADDRESS:             return false;
8112
8113                 case EXPR_CALL: {
8114                         const call_expression_t *const call = &expr->call;
8115                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8116                                 return true;
8117
8118                         switch (call->function->builtin_symbol.symbol->ID) {
8119                                 case T___builtin_va_end: return true;
8120                                 default:                 return false;
8121                         }
8122                 }
8123
8124                 /* Generate the warning if either the left or right hand side of a
8125                  * conditional expression has no effect */
8126                 case EXPR_CONDITIONAL: {
8127                         const conditional_expression_t *const cond = &expr->conditional;
8128                         return
8129                                 expression_has_effect(cond->true_expression) &&
8130                                 expression_has_effect(cond->false_expression);
8131                 }
8132
8133                 case EXPR_SELECT:                    return false;
8134                 case EXPR_ARRAY_ACCESS:              return false;
8135                 case EXPR_SIZEOF:                    return false;
8136                 case EXPR_CLASSIFY_TYPE:             return false;
8137                 case EXPR_ALIGNOF:                   return false;
8138
8139                 case EXPR_FUNCNAME:                  return false;
8140                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8141                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8142                 case EXPR_BUILTIN_PREFETCH:          return true;
8143                 case EXPR_OFFSETOF:                  return false;
8144                 case EXPR_VA_START:                  return true;
8145                 case EXPR_VA_ARG:                    return true;
8146                 case EXPR_STATEMENT:                 return true; // TODO
8147                 case EXPR_COMPOUND_LITERAL:          return false;
8148
8149                 case EXPR_UNARY_NEGATE:              return false;
8150                 case EXPR_UNARY_PLUS:                return false;
8151                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8152                 case EXPR_UNARY_NOT:                 return false;
8153                 case EXPR_UNARY_DEREFERENCE:         return false;
8154                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8155                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8156                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8157                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8158                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8159
8160                 /* Treat void casts as if they have an effect in order to being able to
8161                  * suppress the warning */
8162                 case EXPR_UNARY_CAST: {
8163                         type_t *const type = skip_typeref(expr->base.type);
8164                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8165                 }
8166
8167                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8168                 case EXPR_UNARY_ASSUME:              return true;
8169
8170                 case EXPR_BINARY_ADD:                return false;
8171                 case EXPR_BINARY_SUB:                return false;
8172                 case EXPR_BINARY_MUL:                return false;
8173                 case EXPR_BINARY_DIV:                return false;
8174                 case EXPR_BINARY_MOD:                return false;
8175                 case EXPR_BINARY_EQUAL:              return false;
8176                 case EXPR_BINARY_NOTEQUAL:           return false;
8177                 case EXPR_BINARY_LESS:               return false;
8178                 case EXPR_BINARY_LESSEQUAL:          return false;
8179                 case EXPR_BINARY_GREATER:            return false;
8180                 case EXPR_BINARY_GREATEREQUAL:       return false;
8181                 case EXPR_BINARY_BITWISE_AND:        return false;
8182                 case EXPR_BINARY_BITWISE_OR:         return false;
8183                 case EXPR_BINARY_BITWISE_XOR:        return false;
8184                 case EXPR_BINARY_SHIFTLEFT:          return false;
8185                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8186                 case EXPR_BINARY_ASSIGN:             return true;
8187                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8188                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8189                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8190                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8191                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8192                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8193                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8194                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8195                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8196                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8197
8198                 /* Only examine the right hand side of && and ||, because the left hand
8199                  * side already has the effect of controlling the execution of the right
8200                  * hand side */
8201                 case EXPR_BINARY_LOGICAL_AND:
8202                 case EXPR_BINARY_LOGICAL_OR:
8203                 /* Only examine the right hand side of a comma expression, because the left
8204                  * hand side has a separate warning */
8205                 case EXPR_BINARY_COMMA:
8206                         return expression_has_effect(expr->binary.right);
8207
8208                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8209                 case EXPR_BINARY_ISGREATER:          return false;
8210                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8211                 case EXPR_BINARY_ISLESS:             return false;
8212                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8213                 case EXPR_BINARY_ISLESSGREATER:      return false;
8214                 case EXPR_BINARY_ISUNORDERED:        return false;
8215         }
8216
8217         internal_errorf(HERE, "unexpected expression");
8218 }
8219
8220 static void semantic_comma(binary_expression_t *expression)
8221 {
8222         if (warning.unused_value) {
8223                 const expression_t *const left = expression->left;
8224                 if (!expression_has_effect(left)) {
8225                         warningf(&left->base.source_position,
8226                                  "left-hand operand of comma expression has no effect");
8227                 }
8228         }
8229         expression->base.type = expression->right->base.type;
8230 }
8231
8232 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
8233 static expression_t *parse_##binexpression_type(unsigned precedence,      \
8234                                                 expression_t *left)       \
8235 {                                                                         \
8236         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
8237         binexpr->base.source_position = *HERE;                                \
8238         binexpr->binary.left          = left;                                 \
8239         eat(token_type);                                                      \
8240                                                                           \
8241         expression_t *right = parse_sub_expression(precedence + lr);          \
8242                                                                           \
8243         binexpr->binary.right = right;                                        \
8244         sfunc(&binexpr->binary);                                              \
8245                                                                           \
8246         return binexpr;                                                       \
8247 }
8248
8249 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
8250 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
8251 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_divmod_arithmetic, 1)
8252 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_divmod_arithmetic, 1)
8253 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
8254 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
8255 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
8256 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
8257 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
8258
8259 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
8260                       semantic_comparison, 1)
8261 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
8262                       semantic_comparison, 1)
8263 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
8264                       semantic_comparison, 1)
8265 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
8266                       semantic_comparison, 1)
8267
8268 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
8269                       semantic_binexpr_arithmetic, 1)
8270 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
8271                       semantic_binexpr_arithmetic, 1)
8272 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
8273                       semantic_binexpr_arithmetic, 1)
8274 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
8275                       semantic_logical_op, 1)
8276 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
8277                       semantic_logical_op, 1)
8278 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
8279                       semantic_shift_op, 1)
8280 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
8281                       semantic_shift_op, 1)
8282 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
8283                       semantic_arithmetic_addsubb_assign, 0)
8284 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
8285                       semantic_arithmetic_addsubb_assign, 0)
8286 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
8287                       semantic_arithmetic_assign, 0)
8288 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
8289                       semantic_divmod_assign, 0)
8290 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
8291                       semantic_divmod_assign, 0)
8292 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
8293                       semantic_arithmetic_assign, 0)
8294 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8295                       semantic_arithmetic_assign, 0)
8296 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
8297                       semantic_arithmetic_assign, 0)
8298 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
8299                       semantic_arithmetic_assign, 0)
8300 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
8301                       semantic_arithmetic_assign, 0)
8302
8303 static expression_t *parse_sub_expression(unsigned precedence)
8304 {
8305         if (token.type < 0) {
8306                 return expected_expression_error();
8307         }
8308
8309         expression_parser_function_t *parser
8310                 = &expression_parsers[token.type];
8311         source_position_t             source_position = token.source_position;
8312         expression_t                 *left;
8313
8314         if (parser->parser != NULL) {
8315                 left = parser->parser(parser->precedence);
8316         } else {
8317                 left = parse_primary_expression();
8318         }
8319         assert(left != NULL);
8320         left->base.source_position = source_position;
8321
8322         while(true) {
8323                 if (token.type < 0) {
8324                         return expected_expression_error();
8325                 }
8326
8327                 parser = &expression_parsers[token.type];
8328                 if (parser->infix_parser == NULL)
8329                         break;
8330                 if (parser->infix_precedence < precedence)
8331                         break;
8332
8333                 left = parser->infix_parser(parser->infix_precedence, left);
8334
8335                 assert(left != NULL);
8336                 assert(left->kind != EXPR_UNKNOWN);
8337                 left->base.source_position = source_position;
8338         }
8339
8340         return left;
8341 }
8342
8343 /**
8344  * Parse an expression.
8345  */
8346 static expression_t *parse_expression(void)
8347 {
8348         return parse_sub_expression(1);
8349 }
8350
8351 /**
8352  * Register a parser for a prefix-like operator with given precedence.
8353  *
8354  * @param parser      the parser function
8355  * @param token_type  the token type of the prefix token
8356  * @param precedence  the precedence of the operator
8357  */
8358 static void register_expression_parser(parse_expression_function parser,
8359                                        int token_type, unsigned precedence)
8360 {
8361         expression_parser_function_t *entry = &expression_parsers[token_type];
8362
8363         if (entry->parser != NULL) {
8364                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8365                 panic("trying to register multiple expression parsers for a token");
8366         }
8367         entry->parser     = parser;
8368         entry->precedence = precedence;
8369 }
8370
8371 /**
8372  * Register a parser for an infix operator with given precedence.
8373  *
8374  * @param parser      the parser function
8375  * @param token_type  the token type of the infix operator
8376  * @param precedence  the precedence of the operator
8377  */
8378 static void register_infix_parser(parse_expression_infix_function parser,
8379                 int token_type, unsigned precedence)
8380 {
8381         expression_parser_function_t *entry = &expression_parsers[token_type];
8382
8383         if (entry->infix_parser != NULL) {
8384                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8385                 panic("trying to register multiple infix expression parsers for a "
8386                       "token");
8387         }
8388         entry->infix_parser     = parser;
8389         entry->infix_precedence = precedence;
8390 }
8391
8392 /**
8393  * Initialize the expression parsers.
8394  */
8395 static void init_expression_parsers(void)
8396 {
8397         memset(&expression_parsers, 0, sizeof(expression_parsers));
8398
8399         register_infix_parser(parse_array_expression,         '[',              30);
8400         register_infix_parser(parse_call_expression,          '(',              30);
8401         register_infix_parser(parse_select_expression,        '.',              30);
8402         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
8403         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
8404                                                               T_PLUSPLUS,       30);
8405         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
8406                                                               T_MINUSMINUS,     30);
8407
8408         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
8409         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
8410         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
8411         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
8412         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
8413         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
8414         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
8415         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
8416         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
8417         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
8418         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
8419         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
8420         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
8421                                                     T_EXCLAMATIONMARKEQUAL, 13);
8422         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
8423         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
8424         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
8425         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
8426         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
8427         register_infix_parser(parse_conditional_expression,   '?',               7);
8428         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
8429         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
8430         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
8431         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
8432         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
8433         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
8434         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
8435                                                                 T_LESSLESSEQUAL, 2);
8436         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8437                                                           T_GREATERGREATEREQUAL, 2);
8438         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
8439                                                                      T_ANDEQUAL, 2);
8440         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
8441                                                                     T_PIPEEQUAL, 2);
8442         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
8443                                                                    T_CARETEQUAL, 2);
8444
8445         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
8446
8447         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
8448         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
8449         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
8450         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
8451         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
8452         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
8453         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
8454                                                                   T_PLUSPLUS,   25);
8455         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
8456                                                                   T_MINUSMINUS, 25);
8457         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
8458         register_expression_parser(parse_alignof,                T___alignof__, 25);
8459         register_expression_parser(parse_extension,            T___extension__, 25);
8460         register_expression_parser(parse_builtin_classify_type,
8461                                                      T___builtin_classify_type, 25);
8462 }
8463
8464 /**
8465  * Parse a asm statement arguments specification.
8466  */
8467 static asm_argument_t *parse_asm_arguments(bool is_out)
8468 {
8469         asm_argument_t *result = NULL;
8470         asm_argument_t *last   = NULL;
8471
8472         while (token.type == T_STRING_LITERAL || token.type == '[') {
8473                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8474                 memset(argument, 0, sizeof(argument[0]));
8475
8476                 if (token.type == '[') {
8477                         eat('[');
8478                         if (token.type != T_IDENTIFIER) {
8479                                 parse_error_expected("while parsing asm argument",
8480                                                      T_IDENTIFIER, NULL);
8481                                 return NULL;
8482                         }
8483                         argument->symbol = token.v.symbol;
8484
8485                         expect(']');
8486                 }
8487
8488                 argument->constraints = parse_string_literals();
8489                 expect('(');
8490                 add_anchor_token(')');
8491                 expression_t *expression = parse_expression();
8492                 rem_anchor_token(')');
8493                 if (is_out) {
8494                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8495                          * change size or type representation (e.g. int -> long is ok, but
8496                          * int -> float is not) */
8497                         if (expression->kind == EXPR_UNARY_CAST) {
8498                                 type_t      *const type = expression->base.type;
8499                                 type_kind_t  const kind = type->kind;
8500                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8501                                         unsigned flags;
8502                                         unsigned size;
8503                                         if (kind == TYPE_ATOMIC) {
8504                                                 atomic_type_kind_t const akind = type->atomic.akind;
8505                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8506                                                 size  = get_atomic_type_size(akind);
8507                                         } else {
8508                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8509                                                 size  = get_atomic_type_size(get_intptr_kind());
8510                                         }
8511
8512                                         do {
8513                                                 expression_t *const value      = expression->unary.value;
8514                                                 type_t       *const value_type = value->base.type;
8515                                                 type_kind_t   const value_kind = value_type->kind;
8516
8517                                                 unsigned value_flags;
8518                                                 unsigned value_size;
8519                                                 if (value_kind == TYPE_ATOMIC) {
8520                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8521                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8522                                                         value_size  = get_atomic_type_size(value_akind);
8523                                                 } else if (value_kind == TYPE_POINTER) {
8524                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8525                                                         value_size  = get_atomic_type_size(get_intptr_kind());
8526                                                 } else {
8527                                                         break;
8528                                                 }
8529
8530                                                 if (value_flags != flags || value_size != size)
8531                                                         break;
8532
8533                                                 expression = value;
8534                                         } while (expression->kind == EXPR_UNARY_CAST);
8535                                 }
8536                         }
8537
8538                         if (!is_lvalue(expression)) {
8539                                 errorf(&expression->base.source_position,
8540                                        "asm output argument is not an lvalue");
8541                         }
8542                 }
8543                 argument->expression = expression;
8544                 expect(')');
8545
8546                 set_address_taken(expression, true);
8547
8548                 if (last != NULL) {
8549                         last->next = argument;
8550                 } else {
8551                         result = argument;
8552                 }
8553                 last = argument;
8554
8555                 if (token.type != ',')
8556                         break;
8557                 eat(',');
8558         }
8559
8560         return result;
8561 end_error:
8562         return NULL;
8563 }
8564
8565 /**
8566  * Parse a asm statement clobber specification.
8567  */
8568 static asm_clobber_t *parse_asm_clobbers(void)
8569 {
8570         asm_clobber_t *result = NULL;
8571         asm_clobber_t *last   = NULL;
8572
8573         while(token.type == T_STRING_LITERAL) {
8574                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8575                 clobber->clobber       = parse_string_literals();
8576
8577                 if (last != NULL) {
8578                         last->next = clobber;
8579                 } else {
8580                         result = clobber;
8581                 }
8582                 last = clobber;
8583
8584                 if (token.type != ',')
8585                         break;
8586                 eat(',');
8587         }
8588
8589         return result;
8590 }
8591
8592 /**
8593  * Parse an asm statement.
8594  */
8595 static statement_t *parse_asm_statement(void)
8596 {
8597         eat(T_asm);
8598
8599         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
8600         statement->base.source_position = token.source_position;
8601
8602         asm_statement_t *asm_statement = &statement->asms;
8603
8604         if (token.type == T_volatile) {
8605                 next_token();
8606                 asm_statement->is_volatile = true;
8607         }
8608
8609         expect('(');
8610         add_anchor_token(')');
8611         add_anchor_token(':');
8612         asm_statement->asm_text = parse_string_literals();
8613
8614         if (token.type != ':') {
8615                 rem_anchor_token(':');
8616                 goto end_of_asm;
8617         }
8618         eat(':');
8619
8620         asm_statement->outputs = parse_asm_arguments(true);
8621         if (token.type != ':') {
8622                 rem_anchor_token(':');
8623                 goto end_of_asm;
8624         }
8625         eat(':');
8626
8627         asm_statement->inputs = parse_asm_arguments(false);
8628         if (token.type != ':') {
8629                 rem_anchor_token(':');
8630                 goto end_of_asm;
8631         }
8632         rem_anchor_token(':');
8633         eat(':');
8634
8635         asm_statement->clobbers = parse_asm_clobbers();
8636
8637 end_of_asm:
8638         rem_anchor_token(')');
8639         expect(')');
8640         expect(';');
8641
8642         if (asm_statement->outputs == NULL) {
8643                 /* GCC: An 'asm' instruction without any output operands will be treated
8644                  * identically to a volatile 'asm' instruction. */
8645                 asm_statement->is_volatile = true;
8646         }
8647
8648         return statement;
8649 end_error:
8650         return create_invalid_statement();
8651 }
8652
8653 /**
8654  * Parse a case statement.
8655  */
8656 static statement_t *parse_case_statement(void)
8657 {
8658         eat(T_case);
8659
8660         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8661         source_position_t *const pos       = &statement->base.source_position;
8662
8663         *pos                             = token.source_position;
8664         expression_t *const expression   = parse_expression();
8665         statement->case_label.expression = expression;
8666         if (!is_constant_expression(expression)) {
8667                 /* This check does not prevent the error message in all cases of an
8668                  * prior error while parsing the expression.  At least it catches the
8669                  * common case of a mistyped enum entry. */
8670                 if (is_type_valid(expression->base.type)) {
8671                         errorf(pos, "case label does not reduce to an integer constant");
8672                 }
8673                 statement->case_label.is_bad = true;
8674         } else {
8675                 long const val = fold_constant(expression);
8676                 statement->case_label.first_case = val;
8677                 statement->case_label.last_case  = val;
8678         }
8679
8680         if (c_mode & _GNUC) {
8681                 if (token.type == T_DOTDOTDOT) {
8682                         next_token();
8683                         expression_t *const end_range   = parse_expression();
8684                         statement->case_label.end_range = end_range;
8685                         if (!is_constant_expression(end_range)) {
8686                                 /* This check does not prevent the error message in all cases of an
8687                                  * prior error while parsing the expression.  At least it catches the
8688                                  * common case of a mistyped enum entry. */
8689                                 if (is_type_valid(end_range->base.type)) {
8690                                         errorf(pos, "case range does not reduce to an integer constant");
8691                                 }
8692                                 statement->case_label.is_bad = true;
8693                         } else {
8694                                 long const val = fold_constant(end_range);
8695                                 statement->case_label.last_case = val;
8696
8697                                 if (val < statement->case_label.first_case) {
8698                                         statement->case_label.is_empty_range = true;
8699                                         warningf(pos, "empty range specified");
8700                                 }
8701                         }
8702                 }
8703         }
8704
8705         PUSH_PARENT(statement);
8706
8707         expect(':');
8708
8709         if (current_switch != NULL) {
8710                 if (! statement->case_label.is_bad) {
8711                         /* Check for duplicate case values */
8712                         case_label_statement_t *c = &statement->case_label;
8713                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
8714                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
8715                                         continue;
8716
8717                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
8718                                         continue;
8719
8720                                 errorf(pos, "duplicate case value (previously used %P)",
8721                                        &l->base.source_position);
8722                                 break;
8723                         }
8724                 }
8725                 /* link all cases into the switch statement */
8726                 if (current_switch->last_case == NULL) {
8727                         current_switch->first_case      = &statement->case_label;
8728                 } else {
8729                         current_switch->last_case->next = &statement->case_label;
8730                 }
8731                 current_switch->last_case = &statement->case_label;
8732         } else {
8733                 errorf(pos, "case label not within a switch statement");
8734         }
8735
8736         statement_t *const inner_stmt = parse_statement();
8737         statement->case_label.statement = inner_stmt;
8738         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8739                 errorf(&inner_stmt->base.source_position, "declaration after case label");
8740         }
8741
8742         POP_PARENT;
8743         return statement;
8744 end_error:
8745         POP_PARENT;
8746         return create_invalid_statement();
8747 }
8748
8749 /**
8750  * Parse a default statement.
8751  */
8752 static statement_t *parse_default_statement(void)
8753 {
8754         eat(T_default);
8755
8756         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8757         statement->base.source_position = token.source_position;
8758
8759         PUSH_PARENT(statement);
8760
8761         expect(':');
8762         if (current_switch != NULL) {
8763                 const case_label_statement_t *def_label = current_switch->default_label;
8764                 if (def_label != NULL) {
8765                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
8766                                &def_label->base.source_position);
8767                 } else {
8768                         current_switch->default_label = &statement->case_label;
8769
8770                         /* link all cases into the switch statement */
8771                         if (current_switch->last_case == NULL) {
8772                                 current_switch->first_case      = &statement->case_label;
8773                         } else {
8774                                 current_switch->last_case->next = &statement->case_label;
8775                         }
8776                         current_switch->last_case = &statement->case_label;
8777                 }
8778         } else {
8779                 errorf(&statement->base.source_position,
8780                         "'default' label not within a switch statement");
8781         }
8782
8783         statement_t *const inner_stmt = parse_statement();
8784         statement->case_label.statement = inner_stmt;
8785         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8786                 errorf(&inner_stmt->base.source_position, "declaration after default label");
8787         }
8788
8789         POP_PARENT;
8790         return statement;
8791 end_error:
8792         POP_PARENT;
8793         return create_invalid_statement();
8794 }
8795
8796 /**
8797  * Parse a label statement.
8798  */
8799 static statement_t *parse_label_statement(void)
8800 {
8801         assert(token.type == T_IDENTIFIER);
8802         symbol_t *symbol = token.v.symbol;
8803         next_token();
8804
8805         declaration_t *label = get_label(symbol);
8806
8807         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
8808         statement->base.source_position = token.source_position;
8809         statement->label.label          = label;
8810
8811         PUSH_PARENT(statement);
8812
8813         /* if statement is already set then the label is defined twice,
8814          * otherwise it was just mentioned in a goto/local label declaration so far */
8815         if (label->init.statement != NULL) {
8816                 errorf(HERE, "duplicate label '%Y' (declared %P)",
8817                        symbol, &label->source_position);
8818         } else {
8819                 label->source_position = token.source_position;
8820                 label->init.statement  = statement;
8821         }
8822
8823         eat(':');
8824
8825         if (token.type == '}') {
8826                 /* TODO only warn? */
8827                 if (false) {
8828                         warningf(HERE, "label at end of compound statement");
8829                         statement->label.statement = create_empty_statement();
8830                 } else {
8831                         errorf(HERE, "label at end of compound statement");
8832                         statement->label.statement = create_invalid_statement();
8833                 }
8834         } else if (token.type == ';') {
8835                 /* Eat an empty statement here, to avoid the warning about an empty
8836                  * statement after a label.  label:; is commonly used to have a label
8837                  * before a closing brace. */
8838                 statement->label.statement = create_empty_statement();
8839                 next_token();
8840         } else {
8841                 statement_t *const inner_stmt = parse_statement();
8842                 statement->label.statement = inner_stmt;
8843                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
8844                         errorf(&inner_stmt->base.source_position, "declaration after label");
8845                 }
8846         }
8847
8848         /* remember the labels in a list for later checking */
8849         if (label_last == NULL) {
8850                 label_first = &statement->label;
8851         } else {
8852                 label_last->next = &statement->label;
8853         }
8854         label_last = &statement->label;
8855
8856         POP_PARENT;
8857         return statement;
8858 }
8859
8860 /**
8861  * Parse an if statement.
8862  */
8863 static statement_t *parse_if(void)
8864 {
8865         eat(T_if);
8866
8867         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
8868         statement->base.source_position = token.source_position;
8869
8870         PUSH_PARENT(statement);
8871
8872         expect('(');
8873         add_anchor_token(')');
8874         statement->ifs.condition = parse_expression();
8875         rem_anchor_token(')');
8876         expect(')');
8877
8878         add_anchor_token(T_else);
8879         statement->ifs.true_statement = parse_statement();
8880         rem_anchor_token(T_else);
8881
8882         if (token.type == T_else) {
8883                 next_token();
8884                 statement->ifs.false_statement = parse_statement();
8885         }
8886
8887         POP_PARENT;
8888         return statement;
8889 end_error:
8890         POP_PARENT;
8891         return create_invalid_statement();
8892 }
8893
8894 /**
8895  * Check that all enums are handled in a switch.
8896  *
8897  * @param statement  the switch statement to check
8898  */
8899 static void check_enum_cases(const switch_statement_t *statement) {
8900         const type_t *type = skip_typeref(statement->expression->base.type);
8901         if (! is_type_enum(type))
8902                 return;
8903         const enum_type_t *enumt = &type->enumt;
8904
8905         /* if we have a default, no warnings */
8906         if (statement->default_label != NULL)
8907                 return;
8908
8909         /* FIXME: calculation of value should be done while parsing */
8910         const declaration_t *declaration;
8911         long last_value = -1;
8912         for (declaration = enumt->declaration->next;
8913              declaration != NULL && declaration->storage_class == STORAGE_CLASS_ENUM_ENTRY;
8914                  declaration = declaration->next) {
8915                 const expression_t *expression = declaration->init.enum_value;
8916                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
8917                 bool                found      = false;
8918                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
8919                         if (l->expression == NULL)
8920                                 continue;
8921                         if (l->first_case <= value && value <= l->last_case) {
8922                                 found = true;
8923                                 break;
8924                         }
8925                 }
8926                 if (! found) {
8927                         warningf(&statement->base.source_position,
8928                                 "enumeration value '%Y' not handled in switch", declaration->symbol);
8929                 }
8930                 last_value = value;
8931         }
8932 }
8933
8934 /**
8935  * Parse a switch statement.
8936  */
8937 static statement_t *parse_switch(void)
8938 {
8939         eat(T_switch);
8940
8941         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
8942         statement->base.source_position = token.source_position;
8943
8944         PUSH_PARENT(statement);
8945
8946         expect('(');
8947         add_anchor_token(')');
8948         expression_t *const expr = parse_expression();
8949         type_t       *      type = skip_typeref(expr->base.type);
8950         if (is_type_integer(type)) {
8951                 type = promote_integer(type);
8952                 if (warning.traditional) {
8953                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
8954                                 warningf(&expr->base.source_position,
8955                                         "'%T' switch expression not converted to '%T' in ISO C",
8956                                         type, type_int);
8957                         }
8958                 }
8959         } else if (is_type_valid(type)) {
8960                 errorf(&expr->base.source_position,
8961                        "switch quantity is not an integer, but '%T'", type);
8962                 type = type_error_type;
8963         }
8964         statement->switchs.expression = create_implicit_cast(expr, type);
8965         expect(')');
8966         rem_anchor_token(')');
8967
8968         switch_statement_t *rem = current_switch;
8969         current_switch          = &statement->switchs;
8970         statement->switchs.body = parse_statement();
8971         current_switch          = rem;
8972
8973         if (warning.switch_default &&
8974             statement->switchs.default_label == NULL) {
8975                 warningf(&statement->base.source_position, "switch has no default case");
8976         }
8977         if (warning.switch_enum)
8978                 check_enum_cases(&statement->switchs);
8979
8980         POP_PARENT;
8981         return statement;
8982 end_error:
8983         POP_PARENT;
8984         return create_invalid_statement();
8985 }
8986
8987 static statement_t *parse_loop_body(statement_t *const loop)
8988 {
8989         statement_t *const rem = current_loop;
8990         current_loop = loop;
8991
8992         statement_t *const body = parse_statement();
8993
8994         current_loop = rem;
8995         return body;
8996 }
8997
8998 /**
8999  * Parse a while statement.
9000  */
9001 static statement_t *parse_while(void)
9002 {
9003         eat(T_while);
9004
9005         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
9006         statement->base.source_position = token.source_position;
9007
9008         PUSH_PARENT(statement);
9009
9010         expect('(');
9011         add_anchor_token(')');
9012         statement->whiles.condition = parse_expression();
9013         rem_anchor_token(')');
9014         expect(')');
9015
9016         statement->whiles.body = parse_loop_body(statement);
9017
9018         POP_PARENT;
9019         return statement;
9020 end_error:
9021         POP_PARENT;
9022         return create_invalid_statement();
9023 }
9024
9025 /**
9026  * Parse a do statement.
9027  */
9028 static statement_t *parse_do(void)
9029 {
9030         eat(T_do);
9031
9032         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9033         statement->base.source_position = token.source_position;
9034
9035         PUSH_PARENT(statement)
9036
9037         add_anchor_token(T_while);
9038         statement->do_while.body = parse_loop_body(statement);
9039         rem_anchor_token(T_while);
9040
9041         expect(T_while);
9042         expect('(');
9043         add_anchor_token(')');
9044         statement->do_while.condition = parse_expression();
9045         rem_anchor_token(')');
9046         expect(')');
9047         expect(';');
9048
9049         POP_PARENT;
9050         return statement;
9051 end_error:
9052         POP_PARENT;
9053         return create_invalid_statement();
9054 }
9055
9056 /**
9057  * Parse a for statement.
9058  */
9059 static statement_t *parse_for(void)
9060 {
9061         eat(T_for);
9062
9063         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
9064         statement->base.source_position = token.source_position;
9065
9066         PUSH_PARENT(statement);
9067
9068         int      top        = environment_top();
9069         scope_t *last_scope = scope;
9070         set_scope(&statement->fors.scope);
9071
9072         expect('(');
9073         add_anchor_token(')');
9074
9075         if (token.type != ';') {
9076                 if (is_declaration_specifier(&token, false)) {
9077                         parse_declaration(record_declaration);
9078                 } else {
9079                         add_anchor_token(';');
9080                         expression_t *const init = parse_expression();
9081                         statement->fors.initialisation = init;
9082                         if (warning.unused_value && !expression_has_effect(init)) {
9083                                 warningf(&init->base.source_position,
9084                                          "initialisation of 'for'-statement has no effect");
9085                         }
9086                         rem_anchor_token(';');
9087                         expect(';');
9088                 }
9089         } else {
9090                 expect(';');
9091         }
9092
9093         if (token.type != ';') {
9094                 add_anchor_token(';');
9095                 statement->fors.condition = parse_expression();
9096                 rem_anchor_token(';');
9097         }
9098         expect(';');
9099         if (token.type != ')') {
9100                 expression_t *const step = parse_expression();
9101                 statement->fors.step = step;
9102                 if (warning.unused_value && !expression_has_effect(step)) {
9103                         warningf(&step->base.source_position,
9104                                  "step of 'for'-statement has no effect");
9105                 }
9106         }
9107         rem_anchor_token(')');
9108         expect(')');
9109         statement->fors.body = parse_loop_body(statement);
9110
9111         assert(scope == &statement->fors.scope);
9112         set_scope(last_scope);
9113         environment_pop_to(top);
9114
9115         POP_PARENT;
9116         return statement;
9117
9118 end_error:
9119         POP_PARENT;
9120         rem_anchor_token(')');
9121         assert(scope == &statement->fors.scope);
9122         set_scope(last_scope);
9123         environment_pop_to(top);
9124
9125         return create_invalid_statement();
9126 }
9127
9128 /**
9129  * Parse a goto statement.
9130  */
9131 static statement_t *parse_goto(void)
9132 {
9133         source_position_t source_position = token.source_position;
9134         eat(T_goto);
9135
9136         statement_t *statement;
9137         if (c_mode & _GNUC && token.type == '*') {
9138                 next_token();
9139                 expression_t *expression = parse_expression();
9140
9141                 /* Argh: although documentation say the expression must be of type void *,
9142                  * gcc excepts anything that can be casted into void * without error */
9143                 type_t *type = expression->base.type;
9144
9145                 if (type != type_error_type) {
9146                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9147                                 errorf(&source_position, "cannot convert to a pointer type");
9148                         } else if (type != type_void_ptr) {
9149                                 warningf(&source_position,
9150                                         "type of computed goto expression should be 'void*' not '%T'", type);
9151                         }
9152                         expression = create_implicit_cast(expression, type_void_ptr);
9153                 }
9154
9155                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9156                 statement->base.source_position = source_position;
9157                 statement->gotos.expression     = expression;
9158         } else {
9159                 if (token.type != T_IDENTIFIER) {
9160                         if (c_mode & _GNUC)
9161                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9162                         else
9163                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9164                         eat_statement();
9165                         goto end_error;
9166                 }
9167                 symbol_t *symbol = token.v.symbol;
9168                 next_token();
9169
9170                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9171                 statement->base.source_position = source_position;
9172                 statement->gotos.label          = get_label(symbol);
9173         }
9174
9175         /* remember the goto's in a list for later checking */
9176         if (goto_last == NULL) {
9177                 goto_first = &statement->gotos;
9178         } else {
9179                 goto_last->next = &statement->gotos;
9180         }
9181         goto_last = &statement->gotos;
9182
9183         expect(';');
9184
9185         return statement;
9186 end_error:
9187         return create_invalid_statement();
9188 }
9189
9190 /**
9191  * Parse a continue statement.
9192  */
9193 static statement_t *parse_continue(void)
9194 {
9195         if (current_loop == NULL) {
9196                 errorf(HERE, "continue statement not within loop");
9197         }
9198
9199         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9200         statement->base.source_position = token.source_position;
9201
9202         eat(T_continue);
9203         expect(';');
9204
9205 end_error:
9206         return statement;
9207 }
9208
9209 /**
9210  * Parse a break statement.
9211  */
9212 static statement_t *parse_break(void)
9213 {
9214         if (current_switch == NULL && current_loop == NULL) {
9215                 errorf(HERE, "break statement not within loop or switch");
9216         }
9217
9218         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9219         statement->base.source_position = token.source_position;
9220
9221         eat(T_break);
9222         expect(';');
9223
9224 end_error:
9225         return statement;
9226 }
9227
9228 /**
9229  * Parse a __leave statement.
9230  */
9231 static statement_t *parse_leave_statement(void)
9232 {
9233         if (current_try == NULL) {
9234                 errorf(HERE, "__leave statement not within __try");
9235         }
9236
9237         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9238         statement->base.source_position = token.source_position;
9239
9240         eat(T___leave);
9241         expect(';');
9242
9243 end_error:
9244         return statement;
9245 }
9246
9247 /**
9248  * Check if a given declaration represents a local variable.
9249  */
9250 static bool is_local_var_declaration(const declaration_t *declaration)
9251 {
9252         switch ((storage_class_tag_t) declaration->storage_class) {
9253         case STORAGE_CLASS_AUTO:
9254         case STORAGE_CLASS_REGISTER: {
9255                 const type_t *type = skip_typeref(declaration->type);
9256                 if (is_type_function(type)) {
9257                         return false;
9258                 } else {
9259                         return true;
9260                 }
9261         }
9262         default:
9263                 return false;
9264         }
9265 }
9266
9267 /**
9268  * Check if a given declaration represents a variable.
9269  */
9270 static bool is_var_declaration(const declaration_t *declaration)
9271 {
9272         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
9273                 return false;
9274
9275         const type_t *type = skip_typeref(declaration->type);
9276         return !is_type_function(type);
9277 }
9278
9279 /**
9280  * Check if a given expression represents a local variable.
9281  */
9282 static bool is_local_variable(const expression_t *expression)
9283 {
9284         if (expression->base.kind != EXPR_REFERENCE) {
9285                 return false;
9286         }
9287         const declaration_t *declaration = expression->reference.declaration;
9288         return is_local_var_declaration(declaration);
9289 }
9290
9291 /**
9292  * Check if a given expression represents a local variable and
9293  * return its declaration then, else return NULL.
9294  */
9295 declaration_t *expr_is_variable(const expression_t *expression)
9296 {
9297         if (expression->base.kind != EXPR_REFERENCE) {
9298                 return NULL;
9299         }
9300         declaration_t *declaration = expression->reference.declaration;
9301         if (is_var_declaration(declaration))
9302                 return declaration;
9303         return NULL;
9304 }
9305
9306 /**
9307  * Parse a return statement.
9308  */
9309 static statement_t *parse_return(void)
9310 {
9311         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
9312         statement->base.source_position = token.source_position;
9313
9314         eat(T_return);
9315
9316         expression_t *return_value = NULL;
9317         if (token.type != ';') {
9318                 return_value = parse_expression();
9319         }
9320
9321         const type_t *const func_type = current_function->type;
9322         assert(is_type_function(func_type));
9323         type_t *const return_type = skip_typeref(func_type->function.return_type);
9324
9325         if (return_value != NULL) {
9326                 type_t *return_value_type = skip_typeref(return_value->base.type);
9327
9328                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
9329                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9330                         warningf(&statement->base.source_position,
9331                                  "'return' with a value, in function returning void");
9332                         return_value = NULL;
9333                 } else {
9334                         assign_error_t error = semantic_assign(return_type, return_value);
9335                         report_assign_error(error, return_type, return_value, "'return'",
9336                                             &statement->base.source_position);
9337                         return_value = create_implicit_cast(return_value, return_type);
9338                 }
9339                 /* check for returning address of a local var */
9340                 if (return_value != NULL &&
9341                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9342                         const expression_t *expression = return_value->unary.value;
9343                         if (is_local_variable(expression)) {
9344                                 warningf(&statement->base.source_position,
9345                                          "function returns address of local variable");
9346                         }
9347                 }
9348         } else {
9349                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9350                         warningf(&statement->base.source_position,
9351                                  "'return' without value, in function returning non-void");
9352                 }
9353         }
9354         statement->returns.value = return_value;
9355
9356         expect(';');
9357
9358 end_error:
9359         return statement;
9360 }
9361
9362 /**
9363  * Parse a declaration statement.
9364  */
9365 static statement_t *parse_declaration_statement(void)
9366 {
9367         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9368
9369         statement->base.source_position = token.source_position;
9370
9371         declaration_t *before = last_declaration;
9372         parse_declaration(record_declaration);
9373
9374         if (before == NULL) {
9375                 statement->declaration.declarations_begin = scope->declarations;
9376         } else {
9377                 statement->declaration.declarations_begin = before->next;
9378         }
9379         statement->declaration.declarations_end = last_declaration;
9380
9381         return statement;
9382 }
9383
9384 /**
9385  * Parse an expression statement, ie. expr ';'.
9386  */
9387 static statement_t *parse_expression_statement(void)
9388 {
9389         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9390
9391         statement->base.source_position  = token.source_position;
9392         expression_t *const expr         = parse_expression();
9393         statement->expression.expression = expr;
9394
9395         expect(';');
9396
9397 end_error:
9398         return statement;
9399 }
9400
9401 /**
9402  * Parse a microsoft __try { } __finally { } or
9403  * __try{ } __except() { }
9404  */
9405 static statement_t *parse_ms_try_statment(void)
9406 {
9407         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9408         statement->base.source_position  = token.source_position;
9409         eat(T___try);
9410
9411         PUSH_PARENT(statement);
9412
9413         ms_try_statement_t *rem = current_try;
9414         current_try = &statement->ms_try;
9415         statement->ms_try.try_statement = parse_compound_statement(false);
9416         current_try = rem;
9417
9418         POP_PARENT;
9419
9420         if (token.type == T___except) {
9421                 eat(T___except);
9422                 expect('(');
9423                 add_anchor_token(')');
9424                 expression_t *const expr = parse_expression();
9425                 type_t       *      type = skip_typeref(expr->base.type);
9426                 if (is_type_integer(type)) {
9427                         type = promote_integer(type);
9428                 } else if (is_type_valid(type)) {
9429                         errorf(&expr->base.source_position,
9430                                "__expect expression is not an integer, but '%T'", type);
9431                         type = type_error_type;
9432                 }
9433                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9434                 rem_anchor_token(')');
9435                 expect(')');
9436                 statement->ms_try.final_statement = parse_compound_statement(false);
9437         } else if (token.type == T__finally) {
9438                 eat(T___finally);
9439                 statement->ms_try.final_statement = parse_compound_statement(false);
9440         } else {
9441                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9442                 return create_invalid_statement();
9443         }
9444         return statement;
9445 end_error:
9446         return create_invalid_statement();
9447 }
9448
9449 static statement_t *parse_empty_statement(void)
9450 {
9451         if (warning.empty_statement) {
9452                 warningf(HERE, "statement is empty");
9453         }
9454         statement_t *const statement = create_empty_statement();
9455         eat(';');
9456         return statement;
9457 }
9458
9459 static statement_t *parse_local_label_declaration(void) {
9460         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9461         statement->base.source_position = token.source_position;
9462
9463         eat(T___label__);
9464
9465         declaration_t *begin = NULL, *end = NULL;
9466
9467         while (true) {
9468                 if (token.type != T_IDENTIFIER) {
9469                         parse_error_expected("while parsing local label declaration",
9470                                 T_IDENTIFIER, NULL);
9471                         goto end_error;
9472                 }
9473                 symbol_t      *symbol      = token.v.symbol;
9474                 declaration_t *declaration = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
9475                 if (declaration != NULL) {
9476                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition at %P)",
9477                                 symbol, &declaration->source_position);
9478                 } else {
9479                         declaration = allocate_declaration_zero();
9480                         declaration->namespc         = NAMESPACE_LOCAL_LABEL;
9481                         declaration->source_position = token.source_position;
9482                         declaration->symbol          = symbol;
9483                         declaration->parent_scope    = scope;
9484                         declaration->init.statement  = NULL;
9485
9486                         if (end != NULL)
9487                                 end->next = declaration;
9488                         end = declaration;
9489                         if (begin == NULL)
9490                                 begin = declaration;
9491
9492                         local_label_push(declaration);
9493                 }
9494                 next_token();
9495
9496                 if (token.type != ',')
9497                         break;
9498                 next_token();
9499         }
9500         eat(';');
9501 end_error:
9502         statement->declaration.declarations_begin = begin;
9503         statement->declaration.declarations_end   = end;
9504         return statement;
9505 }
9506
9507 /**
9508  * Parse a statement.
9509  * There's also parse_statement() which additionally checks for
9510  * "statement has no effect" warnings
9511  */
9512 static statement_t *intern_parse_statement(void)
9513 {
9514         statement_t *statement = NULL;
9515
9516         /* declaration or statement */
9517         add_anchor_token(';');
9518         switch (token.type) {
9519         case T_IDENTIFIER: {
9520                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
9521                 if (la1_type == ':') {
9522                         statement = parse_label_statement();
9523                 } else if (is_typedef_symbol(token.v.symbol)) {
9524                         statement = parse_declaration_statement();
9525                 } else switch (la1_type) {
9526                         case '*':
9527                                 if (get_declaration(token.v.symbol, NAMESPACE_NORMAL) != NULL)
9528                                         goto expression_statment;
9529                                 /* FALLTHROUGH */
9530
9531                         DECLARATION_START
9532                         case T_IDENTIFIER:
9533                                 statement = parse_declaration_statement();
9534                                 break;
9535
9536                         default:
9537 expression_statment:
9538                                 statement = parse_expression_statement();
9539                                 break;
9540                 }
9541                 break;
9542         }
9543
9544         case T___extension__:
9545                 /* This can be a prefix to a declaration or an expression statement.
9546                  * We simply eat it now and parse the rest with tail recursion. */
9547                 do {
9548                         next_token();
9549                 } while (token.type == T___extension__);
9550                 statement = parse_statement();
9551                 break;
9552
9553         DECLARATION_START
9554                 statement = parse_declaration_statement();
9555                 break;
9556
9557         case T___label__:
9558                 statement = parse_local_label_declaration();
9559                 break;
9560
9561         case ';':        statement = parse_empty_statement();         break;
9562         case '{':        statement = parse_compound_statement(false); break;
9563         case T___leave:  statement = parse_leave_statement();         break;
9564         case T___try:    statement = parse_ms_try_statment();         break;
9565         case T_asm:      statement = parse_asm_statement();           break;
9566         case T_break:    statement = parse_break();                   break;
9567         case T_case:     statement = parse_case_statement();          break;
9568         case T_continue: statement = parse_continue();                break;
9569         case T_default:  statement = parse_default_statement();       break;
9570         case T_do:       statement = parse_do();                      break;
9571         case T_for:      statement = parse_for();                     break;
9572         case T_goto:     statement = parse_goto();                    break;
9573         case T_if:       statement = parse_if ();                     break;
9574         case T_return:   statement = parse_return();                  break;
9575         case T_switch:   statement = parse_switch();                  break;
9576         case T_while:    statement = parse_while();                   break;
9577
9578         case '!':
9579         case '&':
9580         case '(':
9581         case '*':
9582         case '+':
9583         case '-':
9584         case '~':
9585         case T_ANDAND:
9586         case T_CHARACTER_CONSTANT:
9587         case T_FLOATINGPOINT:
9588         case T_INTEGER:
9589         case T_MINUSMINUS:
9590         case T_PLUSPLUS:
9591         case T_STRING_LITERAL:
9592         case T_WIDE_CHARACTER_CONSTANT:
9593         case T_WIDE_STRING_LITERAL:
9594         case T___FUNCDNAME__:
9595         case T___FUNCSIG__:
9596         case T___FUNCTION__:
9597         case T___PRETTY_FUNCTION__:
9598         case T___builtin_alloca:
9599         case T___builtin_classify_type:
9600         case T___builtin_constant_p:
9601         case T___builtin_expect:
9602         case T___builtin_huge_val:
9603         case T___builtin_isgreater:
9604         case T___builtin_isgreaterequal:
9605         case T___builtin_isless:
9606         case T___builtin_islessequal:
9607         case T___builtin_islessgreater:
9608         case T___builtin_isunordered:
9609         case T___builtin_nan:
9610         case T___builtin_nand:
9611         case T___builtin_nanf:
9612         case T___builtin_offsetof:
9613         case T___builtin_prefetch:
9614         case T___builtin_va_arg:
9615         case T___builtin_va_end:
9616         case T___builtin_va_start:
9617         case T___func__:
9618         case T___noop:
9619         case T__assume:
9620                 statement = parse_expression_statement();
9621                 break;
9622
9623         default:
9624                 errorf(HERE, "unexpected token %K while parsing statement", &token);
9625                 statement = create_invalid_statement();
9626                 if (!at_anchor())
9627                         next_token();
9628                 break;
9629         }
9630         rem_anchor_token(';');
9631
9632         assert(statement != NULL
9633                         && statement->base.source_position.input_name != NULL);
9634
9635         return statement;
9636 }
9637
9638 /**
9639  * parse a statement and emits "statement has no effect" warning if needed
9640  * (This is really a wrapper around intern_parse_statement with check for 1
9641  *  single warning. It is needed, because for statement expressions we have
9642  *  to avoid the warning on the last statement)
9643  */
9644 static statement_t *parse_statement(void)
9645 {
9646         statement_t *statement = intern_parse_statement();
9647
9648         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
9649                 expression_t *expression = statement->expression.expression;
9650                 if (!expression_has_effect(expression)) {
9651                         warningf(&expression->base.source_position,
9652                                         "statement has no effect");
9653                 }
9654         }
9655
9656         return statement;
9657 }
9658
9659 /**
9660  * Parse a compound statement.
9661  */
9662 static statement_t *parse_compound_statement(bool inside_expression_statement)
9663 {
9664         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
9665         statement->base.source_position = token.source_position;
9666
9667         PUSH_PARENT(statement);
9668
9669         eat('{');
9670         add_anchor_token('}');
9671
9672         int      top        = environment_top();
9673         int      top_local  = local_label_top();
9674         scope_t *last_scope = scope;
9675         set_scope(&statement->compound.scope);
9676
9677         statement_t **anchor            = &statement->compound.statements;
9678         bool          only_decls_so_far = true;
9679         while (token.type != '}' && token.type != T_EOF) {
9680                 statement_t *sub_statement = intern_parse_statement();
9681                 if (is_invalid_statement(sub_statement)) {
9682                         /* an error occurred. if we are at an anchor, return */
9683                         if (at_anchor())
9684                                 goto end_error;
9685                         continue;
9686                 }
9687
9688                 if (warning.declaration_after_statement) {
9689                         if (sub_statement->kind != STATEMENT_DECLARATION) {
9690                                 only_decls_so_far = false;
9691                         } else if (!only_decls_so_far) {
9692                                 warningf(&sub_statement->base.source_position,
9693                                          "ISO C90 forbids mixed declarations and code");
9694                         }
9695                 }
9696
9697                 *anchor = sub_statement;
9698
9699                 while (sub_statement->base.next != NULL)
9700                         sub_statement = sub_statement->base.next;
9701
9702                 anchor = &sub_statement->base.next;
9703         }
9704
9705         if (token.type == '}') {
9706                 next_token();
9707         } else {
9708                 errorf(&statement->base.source_position,
9709                        "end of file while looking for closing '}'");
9710         }
9711
9712         /* look over all statements again to produce no effect warnings */
9713         if (warning.unused_value) {
9714                 statement_t *sub_statement = statement->compound.statements;
9715                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
9716                         if (sub_statement->kind != STATEMENT_EXPRESSION)
9717                                 continue;
9718                         /* don't emit a warning for the last expression in an expression
9719                          * statement as it has always an effect */
9720                         if (inside_expression_statement && sub_statement->base.next == NULL)
9721                                 continue;
9722
9723                         expression_t *expression = sub_statement->expression.expression;
9724                         if (!expression_has_effect(expression)) {
9725                                 warningf(&expression->base.source_position,
9726                                          "statement has no effect");
9727                         }
9728                 }
9729         }
9730
9731 end_error:
9732         rem_anchor_token('}');
9733         assert(scope == &statement->compound.scope);
9734         set_scope(last_scope);
9735         environment_pop_to(top);
9736         local_label_pop_to(top_local);
9737
9738         POP_PARENT;
9739         return statement;
9740 }
9741
9742 /**
9743  * Initialize builtin types.
9744  */
9745 static void initialize_builtin_types(void)
9746 {
9747         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
9748         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
9749         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
9750         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
9751         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
9752         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
9753         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
9754         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
9755
9756         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
9757         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
9758         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
9759         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
9760
9761         /* const version of wchar_t */
9762         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
9763         type_const_wchar_t->typedeft.declaration  = type_wchar_t->typedeft.declaration;
9764         type_const_wchar_t->base.qualifiers      |= TYPE_QUALIFIER_CONST;
9765
9766         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
9767 }
9768
9769 /**
9770  * Check for unused global static functions and variables
9771  */
9772 static void check_unused_globals(void)
9773 {
9774         if (!warning.unused_function && !warning.unused_variable)
9775                 return;
9776
9777         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
9778                 if (decl->used                  ||
9779                     decl->modifiers & DM_UNUSED ||
9780                     decl->modifiers & DM_USED   ||
9781                     decl->storage_class != STORAGE_CLASS_STATIC)
9782                         continue;
9783
9784                 type_t *const type = decl->type;
9785                 const char *s;
9786                 if (is_type_function(skip_typeref(type))) {
9787                         if (!warning.unused_function || decl->is_inline)
9788                                 continue;
9789
9790                         s = (decl->init.statement != NULL ? "defined" : "declared");
9791                 } else {
9792                         if (!warning.unused_variable)
9793                                 continue;
9794
9795                         s = "defined";
9796                 }
9797
9798                 warningf(&decl->source_position, "'%#T' %s but not used",
9799                         type, decl->symbol, s);
9800         }
9801 }
9802
9803 static void parse_global_asm(void)
9804 {
9805         eat(T_asm);
9806         expect('(');
9807
9808         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
9809         statement->base.source_position = token.source_position;
9810         statement->asms.asm_text        = parse_string_literals();
9811         statement->base.next            = unit->global_asm;
9812         unit->global_asm                = statement;
9813
9814         expect(')');
9815         expect(';');
9816
9817 end_error:;
9818 }
9819
9820 /**
9821  * Parse a translation unit.
9822  */
9823 static void parse_translation_unit(void)
9824 {
9825         for (;;) {
9826 #ifndef NDEBUG
9827                 bool anchor_leak = false;
9828                 for (token_type_t i = 0; i != T_LAST_TOKEN; ++i) {
9829                         unsigned char count = token_anchor_set[i];
9830                         if (count != 0) {
9831                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
9832                                 anchor_leak = true;
9833                         }
9834                 }
9835                 if (anchor_leak)
9836                         abort();
9837 #endif
9838
9839                 switch (token.type) {
9840                         DECLARATION_START
9841                         case T_IDENTIFIER:
9842                         case T___extension__:
9843                                 parse_external_declaration();
9844                                 break;
9845
9846                         case T_asm:
9847                                 parse_global_asm();
9848                                 break;
9849
9850                         case T_EOF:
9851                                 return;
9852
9853                         case ';':
9854                                 /* TODO error in strict mode */
9855                                 warningf(HERE, "stray ';' outside of function");
9856                                 next_token();
9857                                 break;
9858
9859                         default:
9860                                 errorf(HERE, "stray %K outside of function", &token);
9861                                 if (token.type == '(' || token.type == '{' || token.type == '[')
9862                                         eat_until_matching_token(token.type);
9863                                 next_token();
9864                                 break;
9865                 }
9866         }
9867 }
9868
9869 /**
9870  * Parse the input.
9871  *
9872  * @return  the translation unit or NULL if errors occurred.
9873  */
9874 void start_parsing(void)
9875 {
9876         environment_stack = NEW_ARR_F(stack_entry_t, 0);
9877         label_stack       = NEW_ARR_F(stack_entry_t, 0);
9878         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
9879         diagnostic_count  = 0;
9880         error_count       = 0;
9881         warning_count     = 0;
9882
9883         type_set_output(stderr);
9884         ast_set_output(stderr);
9885
9886         assert(unit == NULL);
9887         unit = allocate_ast_zero(sizeof(unit[0]));
9888
9889         assert(global_scope == NULL);
9890         global_scope = &unit->scope;
9891
9892         assert(scope == NULL);
9893         set_scope(&unit->scope);
9894
9895         initialize_builtin_types();
9896 }
9897
9898 translation_unit_t *finish_parsing(void)
9899 {
9900         assert(scope == &unit->scope);
9901         scope          = NULL;
9902         last_declaration = NULL;
9903
9904         assert(global_scope == &unit->scope);
9905         check_unused_globals();
9906         global_scope = NULL;
9907
9908         DEL_ARR_F(environment_stack);
9909         DEL_ARR_F(label_stack);
9910         DEL_ARR_F(local_label_stack);
9911
9912         translation_unit_t *result = unit;
9913         unit = NULL;
9914         return result;
9915 }
9916
9917 void parse(void)
9918 {
9919         lookahead_bufpos = 0;
9920         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
9921                 next_token();
9922         }
9923         parse_translation_unit();
9924 }
9925
9926 /**
9927  * Initialize the parser.
9928  */
9929 void init_parser(void)
9930 {
9931         sym_anonymous = symbol_table_insert("<anonymous>");
9932
9933         if (c_mode & _MS) {
9934                 /* add predefined symbols for extended-decl-modifier */
9935                 sym_align      = symbol_table_insert("align");
9936                 sym_allocate   = symbol_table_insert("allocate");
9937                 sym_dllimport  = symbol_table_insert("dllimport");
9938                 sym_dllexport  = symbol_table_insert("dllexport");
9939                 sym_naked      = symbol_table_insert("naked");
9940                 sym_noinline   = symbol_table_insert("noinline");
9941                 sym_noreturn   = symbol_table_insert("noreturn");
9942                 sym_nothrow    = symbol_table_insert("nothrow");
9943                 sym_novtable   = symbol_table_insert("novtable");
9944                 sym_property   = symbol_table_insert("property");
9945                 sym_get        = symbol_table_insert("get");
9946                 sym_put        = symbol_table_insert("put");
9947                 sym_selectany  = symbol_table_insert("selectany");
9948                 sym_thread     = symbol_table_insert("thread");
9949                 sym_uuid       = symbol_table_insert("uuid");
9950                 sym_deprecated = symbol_table_insert("deprecated");
9951                 sym_restrict   = symbol_table_insert("restrict");
9952                 sym_noalias    = symbol_table_insert("noalias");
9953         }
9954         memset(token_anchor_set, 0, sizeof(token_anchor_set));
9955
9956         init_expression_parsers();
9957         obstack_init(&temp_obst);
9958
9959         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
9960         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
9961 }
9962
9963 /**
9964  * Terminate the parser.
9965  */
9966 void exit_parser(void)
9967 {
9968         obstack_free(&temp_obst, NULL);
9969 }