Implement -Waddress.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 /** if wchar_t is equal to unsigned short. */
43 bool opt_short_wchar_t =
44 #ifdef _WIN32
45         true;
46 #else
47         false;
48 #endif
49
50 //#define PRINT_TOKENS
51 #define MAX_LOOKAHEAD 2
52
53 typedef struct {
54         declaration_t *old_declaration;
55         symbol_t      *symbol;
56         unsigned short namespc;
57 } stack_entry_t;
58
59 typedef struct argument_list_t argument_list_t;
60 struct argument_list_t {
61         long              argument;
62         argument_list_t  *next;
63 };
64
65 typedef struct gnu_attribute_t gnu_attribute_t;
66 struct gnu_attribute_t {
67         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
68         gnu_attribute_t     *next;
69         bool                 invalid;        /**< Set if this attribute had argument errors, */
70         bool                 have_arguments; /**< True, if this attribute has arguments. */
71         union {
72                 size_t              value;
73                 string_t            string;
74                 atomic_type_kind_t  akind;
75                 long                argument;  /**< Single argument. */
76                 argument_list_t    *arguments; /**< List of argument expressions. */
77         } u;
78 };
79
80 typedef struct declaration_specifiers_t  declaration_specifiers_t;
81 struct declaration_specifiers_t {
82         source_position_t  source_position;
83         unsigned char      declared_storage_class;
84         unsigned char      alignment;         /**< Alignment, 0 if not set. */
85         unsigned int       is_inline : 1;
86         unsigned int       deprecated : 1;
87         decl_modifiers_t   modifiers;         /**< declaration modifiers */
88         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
89         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
90         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
91         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
92         type_t            *type;
93 };
94
95 /**
96  * An environment for parsing initializers (and compound literals).
97  */
98 typedef struct parse_initializer_env_t {
99         type_t        *type;        /**< the type of the initializer. In case of an
100                                          array type with unspecified size this gets
101                                          adjusted to the actual size. */
102         declaration_t *declaration; /**< the declaration that is initialized if any */
103         bool           must_be_constant;
104 } parse_initializer_env_t;
105
106 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration, bool is_definition);
107
108 /** The current token. */
109 static token_t             token;
110 /** The lookahead ring-buffer. */
111 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
112 /** Position of the next token in the lookahead buffer. */
113 static int                 lookahead_bufpos;
114 static stack_entry_t      *environment_stack = NULL;
115 static stack_entry_t      *label_stack       = NULL;
116 static stack_entry_t      *local_label_stack = NULL;
117 static scope_t            *global_scope      = NULL;
118 static scope_t            *scope             = NULL;
119 static declaration_t      *last_declaration  = NULL;
120 static declaration_t      *current_function  = NULL;
121 static declaration_t      *current_init_decl = NULL;
122 static switch_statement_t *current_switch    = NULL;
123 static statement_t        *current_loop      = NULL;
124 static statement_t        *current_parent    = NULL;
125 static ms_try_statement_t *current_try       = NULL;
126 static goto_statement_t   *goto_first        = NULL;
127 static goto_statement_t   *goto_last         = NULL;
128 static label_statement_t  *label_first       = NULL;
129 static label_statement_t  *label_last        = NULL;
130 /** current translation unit. */
131 static translation_unit_t *unit              = NULL;
132 /** true if we are in a type property context (evaluation only for type. */
133 static bool                in_type_prop      = false;
134 /** true in we are in a __extension__ context. */
135 static bool                in_gcc_extension  = false;
136 static struct obstack      temp_obst;
137
138
139 #define PUSH_PARENT(stmt)                          \
140         statement_t *const prev_parent = current_parent; \
141         current_parent = (stmt);
142 #define POP_PARENT ((void)(current_parent = prev_parent))
143
144 static source_position_t null_position = { NULL, 0 };
145
146 /** special symbol used for anonymous entities. */
147 static const symbol_t *sym_anonymous = NULL;
148
149 /* symbols for Microsoft extended-decl-modifier */
150 static const symbol_t *sym_align      = NULL;
151 static const symbol_t *sym_allocate   = NULL;
152 static const symbol_t *sym_dllimport  = NULL;
153 static const symbol_t *sym_dllexport  = NULL;
154 static const symbol_t *sym_naked      = NULL;
155 static const symbol_t *sym_noinline   = NULL;
156 static const symbol_t *sym_noreturn   = NULL;
157 static const symbol_t *sym_nothrow    = NULL;
158 static const symbol_t *sym_novtable   = NULL;
159 static const symbol_t *sym_property   = NULL;
160 static const symbol_t *sym_get        = NULL;
161 static const symbol_t *sym_put        = NULL;
162 static const symbol_t *sym_selectany  = NULL;
163 static const symbol_t *sym_thread     = NULL;
164 static const symbol_t *sym_uuid       = NULL;
165 static const symbol_t *sym_deprecated = NULL;
166 static const symbol_t *sym_restrict   = NULL;
167 static const symbol_t *sym_noalias    = NULL;
168
169 /** The token anchor set */
170 static unsigned char token_anchor_set[T_LAST_TOKEN];
171
172 /** The current source position. */
173 #define HERE (&token.source_position)
174
175 /** true if we are in GCC mode. */
176 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
177
178 static type_t *type_valist;
179
180 static statement_t *parse_compound_statement(bool inside_expression_statement);
181 static statement_t *parse_statement(void);
182
183 static expression_t *parse_sub_expression(unsigned precedence);
184 static expression_t *parse_expression(void);
185 static type_t       *parse_typename(void);
186
187 static void parse_compound_type_entries(declaration_t *compound_declaration);
188 static declaration_t *parse_declarator(
189                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
190 static declaration_t *record_declaration(declaration_t *declaration, bool is_definition);
191
192 static void semantic_comparison(binary_expression_t *expression);
193
194 #define STORAGE_CLASSES     \
195         case T_typedef:         \
196         case T_extern:          \
197         case T_static:          \
198         case T_auto:            \
199         case T_register:        \
200         case T___thread:
201
202 #define TYPE_QUALIFIERS     \
203         case T_const:           \
204         case T_restrict:        \
205         case T_volatile:        \
206         case T_inline:          \
207         case T__forceinline:    \
208         case T___attribute__:
209
210 #ifdef PROVIDE_COMPLEX
211 #define COMPLEX_SPECIFIERS  \
212         case T__Complex:
213 #define IMAGINARY_SPECIFIERS \
214         case T__Imaginary:
215 #else
216 #define COMPLEX_SPECIFIERS
217 #define IMAGINARY_SPECIFIERS
218 #endif
219
220 #define TYPE_SPECIFIERS       \
221         case T_void:              \
222         case T_char:              \
223         case T_short:             \
224         case T_int:               \
225         case T_long:              \
226         case T_float:             \
227         case T_double:            \
228         case T_signed:            \
229         case T_unsigned:          \
230         case T__Bool:             \
231         case T_struct:            \
232         case T_union:             \
233         case T_enum:              \
234         case T___typeof__:        \
235         case T___builtin_va_list: \
236         case T__declspec:         \
237         COMPLEX_SPECIFIERS        \
238         IMAGINARY_SPECIFIERS
239
240 #define DECLARATION_START   \
241         STORAGE_CLASSES         \
242         TYPE_QUALIFIERS         \
243         TYPE_SPECIFIERS
244
245 #define TYPENAME_START      \
246         TYPE_QUALIFIERS         \
247         TYPE_SPECIFIERS
248
249 /**
250  * Allocate an AST node with given size and
251  * initialize all fields with zero.
252  */
253 static void *allocate_ast_zero(size_t size)
254 {
255         void *res = allocate_ast(size);
256         memset(res, 0, size);
257         return res;
258 }
259
260 static declaration_t *allocate_declaration_zero(void)
261 {
262         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
263         declaration->type      = type_error_type;
264         declaration->alignment = 0;
265         return declaration;
266 }
267
268 /**
269  * Returns the size of a statement node.
270  *
271  * @param kind  the statement kind
272  */
273 static size_t get_statement_struct_size(statement_kind_t kind)
274 {
275         static const size_t sizes[] = {
276                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
277                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
278                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
279                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
280                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
281                 [STATEMENT_IF]          = sizeof(if_statement_t),
282                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
283                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
284                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
285                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
286                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
287                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
288                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
289                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
290                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
291                 [STATEMENT_FOR]         = sizeof(for_statement_t),
292                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
293                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
294                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
295         };
296         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
297         assert(sizes[kind] != 0);
298         return sizes[kind];
299 }
300
301 /**
302  * Returns the size of an expression node.
303  *
304  * @param kind  the expression kind
305  */
306 static size_t get_expression_struct_size(expression_kind_t kind)
307 {
308         static const size_t sizes[] = {
309                 [EXPR_INVALID]                 = sizeof(expression_base_t),
310                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
311                 [EXPR_CONST]                   = sizeof(const_expression_t),
312                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
313                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
314                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
315                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
316                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
317                 [EXPR_CALL]                    = sizeof(call_expression_t),
318                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
319                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
320                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
321                 [EXPR_SELECT]                  = sizeof(select_expression_t),
322                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
323                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
324                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
325                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
326                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
327                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
328                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
329                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
330                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
331                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
332                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
333                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
334                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
335         };
336         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
337                 return sizes[EXPR_UNARY_FIRST];
338         }
339         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
340                 return sizes[EXPR_BINARY_FIRST];
341         }
342         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
343         assert(sizes[kind] != 0);
344         return sizes[kind];
345 }
346
347 /**
348  * Allocate a statement node of given kind and initialize all
349  * fields with zero.
350  */
351 static statement_t *allocate_statement_zero(statement_kind_t kind)
352 {
353         size_t       size = get_statement_struct_size(kind);
354         statement_t *res  = allocate_ast_zero(size);
355
356         res->base.kind   = kind;
357         res->base.parent = current_parent;
358         return res;
359 }
360
361 /**
362  * Allocate an expression node of given kind and initialize all
363  * fields with zero.
364  */
365 static expression_t *allocate_expression_zero(expression_kind_t kind)
366 {
367         size_t        size = get_expression_struct_size(kind);
368         expression_t *res  = allocate_ast_zero(size);
369
370         res->base.kind = kind;
371         res->base.type = type_error_type;
372         return res;
373 }
374
375 /**
376  * Creates a new invalid expression.
377  */
378 static expression_t *create_invalid_expression(void)
379 {
380         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
381         expression->base.source_position = token.source_position;
382         return expression;
383 }
384
385 /**
386  * Creates a new invalid statement.
387  */
388 static statement_t *create_invalid_statement(void)
389 {
390         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
391         statement->base.source_position = token.source_position;
392         return statement;
393 }
394
395 /**
396  * Allocate a new empty statement.
397  */
398 static statement_t *create_empty_statement(void)
399 {
400         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
401         statement->base.source_position = token.source_position;
402         return statement;
403 }
404
405 /**
406  * Returns the size of a type node.
407  *
408  * @param kind  the type kind
409  */
410 static size_t get_type_struct_size(type_kind_t kind)
411 {
412         static const size_t sizes[] = {
413                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
414                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
415                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
416                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
417                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
418                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
419                 [TYPE_ENUM]            = sizeof(enum_type_t),
420                 [TYPE_FUNCTION]        = sizeof(function_type_t),
421                 [TYPE_POINTER]         = sizeof(pointer_type_t),
422                 [TYPE_ARRAY]           = sizeof(array_type_t),
423                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
424                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
425                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
426         };
427         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
428         assert(kind <= TYPE_TYPEOF);
429         assert(sizes[kind] != 0);
430         return sizes[kind];
431 }
432
433 /**
434  * Allocate a type node of given kind and initialize all
435  * fields with zero.
436  *
437  * @param kind             type kind to allocate
438  * @param source_position  the source position of the type definition
439  */
440 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
441 {
442         size_t  size = get_type_struct_size(kind);
443         type_t *res  = obstack_alloc(type_obst, size);
444         memset(res, 0, size);
445
446         res->base.kind            = kind;
447         res->base.source_position = *source_position;
448         return res;
449 }
450
451 /**
452  * Returns the size of an initializer node.
453  *
454  * @param kind  the initializer kind
455  */
456 static size_t get_initializer_size(initializer_kind_t kind)
457 {
458         static const size_t sizes[] = {
459                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
460                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
461                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
462                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
463                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
464         };
465         assert(kind < sizeof(sizes) / sizeof(*sizes));
466         assert(sizes[kind] != 0);
467         return sizes[kind];
468 }
469
470 /**
471  * Allocate an initializer node of given kind and initialize all
472  * fields with zero.
473  */
474 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
475 {
476         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
477         result->kind          = kind;
478
479         return result;
480 }
481
482 /**
483  * Free a type from the type obstack.
484  */
485 static void free_type(void *type)
486 {
487         obstack_free(type_obst, type);
488 }
489
490 /**
491  * Returns the index of the top element of the environment stack.
492  */
493 static size_t environment_top(void)
494 {
495         return ARR_LEN(environment_stack);
496 }
497
498 /**
499  * Returns the index of the top element of the global label stack.
500  */
501 static size_t label_top(void)
502 {
503         return ARR_LEN(label_stack);
504 }
505
506 /**
507  * Returns the index of the top element of the local label stack.
508  */
509 static size_t local_label_top(void)
510 {
511         return ARR_LEN(local_label_stack);
512 }
513
514 /**
515  * Return the next token.
516  */
517 static inline void next_token(void)
518 {
519         token                              = lookahead_buffer[lookahead_bufpos];
520         lookahead_buffer[lookahead_bufpos] = lexer_token;
521         lexer_next_token();
522
523         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
524
525 #ifdef PRINT_TOKENS
526         print_token(stderr, &token);
527         fprintf(stderr, "\n");
528 #endif
529 }
530
531 /**
532  * Return the next token with a given lookahead.
533  */
534 static inline const token_t *look_ahead(int num)
535 {
536         assert(num > 0 && num <= MAX_LOOKAHEAD);
537         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
538         return &lookahead_buffer[pos];
539 }
540
541 /**
542  * Adds a token to the token anchor set (a multi-set).
543  */
544 static void add_anchor_token(int token_type)
545 {
546         assert(0 <= token_type && token_type < T_LAST_TOKEN);
547         ++token_anchor_set[token_type];
548 }
549
550 static int save_and_reset_anchor_state(int token_type)
551 {
552         assert(0 <= token_type && token_type < T_LAST_TOKEN);
553         int count = token_anchor_set[token_type];
554         token_anchor_set[token_type] = 0;
555         return count;
556 }
557
558 static void restore_anchor_state(int token_type, int count)
559 {
560         assert(0 <= token_type && token_type < T_LAST_TOKEN);
561         token_anchor_set[token_type] = count;
562 }
563
564 /**
565  * Remove a token from the token anchor set (a multi-set).
566  */
567 static void rem_anchor_token(int token_type)
568 {
569         assert(0 <= token_type && token_type < T_LAST_TOKEN);
570         assert(token_anchor_set[token_type] != 0);
571         --token_anchor_set[token_type];
572 }
573
574 static bool at_anchor(void)
575 {
576         if (token.type < 0)
577                 return false;
578         return token_anchor_set[token.type];
579 }
580
581 /**
582  * Eat tokens until a matching token is found.
583  */
584 static void eat_until_matching_token(int type)
585 {
586         int end_token;
587         switch (type) {
588                 case '(': end_token = ')';  break;
589                 case '{': end_token = '}';  break;
590                 case '[': end_token = ']';  break;
591                 default:  end_token = type; break;
592         }
593
594         unsigned parenthesis_count = 0;
595         unsigned brace_count       = 0;
596         unsigned bracket_count     = 0;
597         while (token.type        != end_token ||
598                parenthesis_count != 0         ||
599                brace_count       != 0         ||
600                bracket_count     != 0) {
601                 switch (token.type) {
602                 case T_EOF: return;
603                 case '(': ++parenthesis_count; break;
604                 case '{': ++brace_count;       break;
605                 case '[': ++bracket_count;     break;
606
607                 case ')':
608                         if (parenthesis_count > 0)
609                                 --parenthesis_count;
610                         goto check_stop;
611
612                 case '}':
613                         if (brace_count > 0)
614                                 --brace_count;
615                         goto check_stop;
616
617                 case ']':
618                         if (bracket_count > 0)
619                                 --bracket_count;
620 check_stop:
621                         if (token.type        == end_token &&
622                             parenthesis_count == 0         &&
623                             brace_count       == 0         &&
624                             bracket_count     == 0)
625                                 return;
626                         break;
627
628                 default:
629                         break;
630                 }
631                 next_token();
632         }
633 }
634
635 /**
636  * Eat input tokens until an anchor is found.
637  */
638 static void eat_until_anchor(void)
639 {
640         if (token.type == T_EOF)
641                 return;
642         while (token_anchor_set[token.type] == 0) {
643                 if (token.type == '(' || token.type == '{' || token.type == '[')
644                         eat_until_matching_token(token.type);
645                 if (token.type == T_EOF)
646                         break;
647                 next_token();
648         }
649 }
650
651 static void eat_block(void)
652 {
653         eat_until_matching_token('{');
654         if (token.type == '}')
655                 next_token();
656 }
657
658 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
659
660 /**
661  * Report a parse error because an expected token was not found.
662  */
663 static
664 #if defined __GNUC__ && __GNUC__ >= 4
665 __attribute__((sentinel))
666 #endif
667 void parse_error_expected(const char *message, ...)
668 {
669         if (message != NULL) {
670                 errorf(HERE, "%s", message);
671         }
672         va_list ap;
673         va_start(ap, message);
674         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
675         va_end(ap);
676 }
677
678 /**
679  * Report a type error.
680  */
681 static void type_error(const char *msg, const source_position_t *source_position,
682                        type_t *type)
683 {
684         errorf(source_position, "%s, but found type '%T'", msg, type);
685 }
686
687 /**
688  * Report an incompatible type.
689  */
690 static void type_error_incompatible(const char *msg,
691                 const source_position_t *source_position, type_t *type1, type_t *type2)
692 {
693         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
694                msg, type1, type2);
695 }
696
697 /**
698  * Expect the the current token is the expected token.
699  * If not, generate an error, eat the current statement,
700  * and goto the end_error label.
701  */
702 #define expect(expected)                                  \
703         do {                                                  \
704                 if (UNLIKELY(token.type != (expected))) {         \
705                         parse_error_expected(NULL, (expected), NULL); \
706                         add_anchor_token(expected);                   \
707                         eat_until_anchor();                           \
708                         if (token.type == expected)                   \
709                                 next_token();                             \
710                         rem_anchor_token(expected);                   \
711                         goto end_error;                               \
712                 }                                                 \
713                 next_token();                                     \
714         } while (0)
715
716 static void set_scope(scope_t *new_scope)
717 {
718         if (scope != NULL) {
719                 scope->last_declaration = last_declaration;
720         }
721         scope = new_scope;
722
723         last_declaration = new_scope->last_declaration;
724 }
725
726 /**
727  * Search a symbol in a given namespace and returns its declaration or
728  * NULL if this symbol was not found.
729  */
730 static declaration_t *get_declaration(const symbol_t *const symbol,
731                                       const namespace_t namespc)
732 {
733         declaration_t *declaration = symbol->declaration;
734         for( ; declaration != NULL; declaration = declaration->symbol_next) {
735                 if (declaration->namespc == namespc)
736                         return declaration;
737         }
738
739         return NULL;
740 }
741
742 /**
743  * pushs an environment_entry on the environment stack and links the
744  * corresponding symbol to the new entry
745  */
746 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
747 {
748         symbol_t    *symbol  = declaration->symbol;
749         namespace_t  namespc = (namespace_t) declaration->namespc;
750
751         /* replace/add declaration into declaration list of the symbol */
752         declaration_t *iter = symbol->declaration;
753         if (iter == NULL) {
754                 symbol->declaration = declaration;
755         } else {
756                 declaration_t *iter_last = NULL;
757                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
758                         /* replace an entry? */
759                         if (iter->namespc == namespc) {
760                                 if (iter_last == NULL) {
761                                         symbol->declaration = declaration;
762                                 } else {
763                                         iter_last->symbol_next = declaration;
764                                 }
765                                 declaration->symbol_next = iter->symbol_next;
766                                 break;
767                         }
768                 }
769                 if (iter == NULL) {
770                         assert(iter_last->symbol_next == NULL);
771                         iter_last->symbol_next = declaration;
772                 }
773         }
774
775         /* remember old declaration */
776         stack_entry_t entry;
777         entry.symbol          = symbol;
778         entry.old_declaration = iter;
779         entry.namespc         = (unsigned short) namespc;
780         ARR_APP1(stack_entry_t, *stack_ptr, entry);
781 }
782
783 /**
784  * Push a declaration on the environment stack.
785  *
786  * @param declaration  the declaration
787  */
788 static void environment_push(declaration_t *declaration)
789 {
790         assert(declaration->source_position.input_name != NULL);
791         assert(declaration->parent_scope != NULL);
792         stack_push(&environment_stack, declaration);
793 }
794
795 /**
796  * Push a declaration on the global label stack.
797  *
798  * @param declaration  the declaration
799  */
800 static void label_push(declaration_t *declaration)
801 {
802         declaration->parent_scope = &current_function->scope;
803         stack_push(&label_stack, declaration);
804 }
805
806 /**
807  * Push a declaration of the local label stack.
808  *
809  * @param declaration  the declaration
810  */
811 static void local_label_push(declaration_t *declaration)
812 {
813         assert(declaration->parent_scope != NULL);
814         stack_push(&local_label_stack, declaration);
815 }
816
817 /**
818  * pops symbols from the environment stack until @p new_top is the top element
819  */
820 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
821 {
822         stack_entry_t *stack = *stack_ptr;
823         size_t         top   = ARR_LEN(stack);
824         size_t         i;
825
826         assert(new_top <= top);
827         if (new_top == top)
828                 return;
829
830         for(i = top; i > new_top; --i) {
831                 stack_entry_t *entry = &stack[i - 1];
832
833                 declaration_t *old_declaration = entry->old_declaration;
834                 symbol_t      *symbol          = entry->symbol;
835                 namespace_t    namespc         = (namespace_t)entry->namespc;
836
837                 /* replace/remove declaration */
838                 declaration_t *declaration = symbol->declaration;
839                 assert(declaration != NULL);
840                 if (declaration->namespc == namespc) {
841                         if (old_declaration == NULL) {
842                                 symbol->declaration = declaration->symbol_next;
843                         } else {
844                                 symbol->declaration = old_declaration;
845                         }
846                 } else {
847                         declaration_t *iter_last = declaration;
848                         declaration_t *iter      = declaration->symbol_next;
849                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
850                                 /* replace an entry? */
851                                 if (iter->namespc == namespc) {
852                                         assert(iter_last != NULL);
853                                         iter_last->symbol_next = old_declaration;
854                                         if (old_declaration != NULL) {
855                                                 old_declaration->symbol_next = iter->symbol_next;
856                                         }
857                                         break;
858                                 }
859                         }
860                         assert(iter != NULL);
861                 }
862         }
863
864         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
865 }
866
867 /**
868  * Pop all entries from the environment stack until the new_top
869  * is reached.
870  *
871  * @param new_top  the new stack top
872  */
873 static void environment_pop_to(size_t new_top)
874 {
875         stack_pop_to(&environment_stack, new_top);
876 }
877
878 /**
879  * Pop all entries from the global label stack until the new_top
880  * is reached.
881  *
882  * @param new_top  the new stack top
883  */
884 static void label_pop_to(size_t new_top)
885 {
886         stack_pop_to(&label_stack, new_top);
887 }
888
889 /**
890  * Pop all entries from the local label stack until the new_top
891  * is reached.
892  *
893  * @param new_top  the new stack top
894  */
895 static void local_label_pop_to(size_t new_top)
896 {
897         stack_pop_to(&local_label_stack, new_top);
898 }
899
900
901 static int get_akind_rank(atomic_type_kind_t akind)
902 {
903         return (int) akind;
904 }
905
906 static int get_rank(const type_t *type)
907 {
908         assert(!is_typeref(type));
909         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
910          * and esp. footnote 108). However we can't fold constants (yet), so we
911          * can't decide whether unsigned int is possible, while int always works.
912          * (unsigned int would be preferable when possible... for stuff like
913          *  struct { enum { ... } bla : 4; } ) */
914         if (type->kind == TYPE_ENUM)
915                 return get_akind_rank(ATOMIC_TYPE_INT);
916
917         assert(type->kind == TYPE_ATOMIC);
918         return get_akind_rank(type->atomic.akind);
919 }
920
921 static type_t *promote_integer(type_t *type)
922 {
923         if (type->kind == TYPE_BITFIELD)
924                 type = type->bitfield.base_type;
925
926         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
927                 type = type_int;
928
929         return type;
930 }
931
932 /**
933  * Create a cast expression.
934  *
935  * @param expression  the expression to cast
936  * @param dest_type   the destination type
937  */
938 static expression_t *create_cast_expression(expression_t *expression,
939                                             type_t *dest_type)
940 {
941         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
942
943         cast->unary.value = expression;
944         cast->base.type   = dest_type;
945
946         return cast;
947 }
948
949 /**
950  * Check if a given expression represents the 0 pointer constant.
951  */
952 static bool is_null_pointer_constant(const expression_t *expression)
953 {
954         /* skip void* cast */
955         if (expression->kind == EXPR_UNARY_CAST
956                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
957                 expression = expression->unary.value;
958         }
959
960         /* TODO: not correct yet, should be any constant integer expression
961          * which evaluates to 0 */
962         if (expression->kind != EXPR_CONST)
963                 return false;
964
965         type_t *const type = skip_typeref(expression->base.type);
966         if (!is_type_integer(type))
967                 return false;
968
969         return expression->conste.v.int_value == 0;
970 }
971
972 /**
973  * Create an implicit cast expression.
974  *
975  * @param expression  the expression to cast
976  * @param dest_type   the destination type
977  */
978 static expression_t *create_implicit_cast(expression_t *expression,
979                                           type_t *dest_type)
980 {
981         type_t *const source_type = expression->base.type;
982
983         if (source_type == dest_type)
984                 return expression;
985
986         return create_cast_expression(expression, dest_type);
987 }
988
989 typedef enum assign_error_t {
990         ASSIGN_SUCCESS,
991         ASSIGN_ERROR_INCOMPATIBLE,
992         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
993         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
994         ASSIGN_WARNING_POINTER_FROM_INT,
995         ASSIGN_WARNING_INT_FROM_POINTER
996 } assign_error_t;
997
998 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
999                                 const expression_t *const right,
1000                                 const char *context,
1001                                 const source_position_t *source_position)
1002 {
1003         type_t *const orig_type_right = right->base.type;
1004         type_t *const type_left       = skip_typeref(orig_type_left);
1005         type_t *const type_right      = skip_typeref(orig_type_right);
1006
1007         switch (error) {
1008         case ASSIGN_SUCCESS:
1009                 return;
1010         case ASSIGN_ERROR_INCOMPATIBLE:
1011                 errorf(source_position,
1012                        "destination type '%T' in %s is incompatible with type '%T'",
1013                        orig_type_left, context, orig_type_right);
1014                 return;
1015
1016         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1017                 type_t *points_to_left
1018                         = skip_typeref(type_left->pointer.points_to);
1019                 type_t *points_to_right
1020                         = skip_typeref(type_right->pointer.points_to);
1021
1022                 /* the left type has all qualifiers from the right type */
1023                 unsigned missing_qualifiers
1024                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1025                 warningf(source_position,
1026                          "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1027                          orig_type_left, context, orig_type_right, missing_qualifiers);
1028                 return;
1029         }
1030
1031         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1032                 warningf(source_position,
1033                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1034                                  orig_type_left, context, right, orig_type_right);
1035                 return;
1036
1037         case ASSIGN_WARNING_POINTER_FROM_INT:
1038                 warningf(source_position,
1039                          "%s makes pointer '%T' from integer '%T' without a cast",
1040                                  context, orig_type_left, orig_type_right);
1041                 return;
1042
1043         case ASSIGN_WARNING_INT_FROM_POINTER:
1044                 warningf(source_position,
1045                                 "%s makes integer '%T' from pointer '%T' without a cast",
1046                                 context, orig_type_left, orig_type_right);
1047                 return;
1048
1049         default:
1050                 panic("invalid error value");
1051         }
1052 }
1053
1054 /** Implements the rules from Â§ 6.5.16.1 */
1055 static assign_error_t semantic_assign(type_t *orig_type_left,
1056                                       const expression_t *const right)
1057 {
1058         type_t *const orig_type_right = right->base.type;
1059         type_t *const type_left       = skip_typeref(orig_type_left);
1060         type_t *const type_right      = skip_typeref(orig_type_right);
1061
1062         if (is_type_pointer(type_left)) {
1063                 if (is_null_pointer_constant(right)) {
1064                         return ASSIGN_SUCCESS;
1065                 } else if (is_type_pointer(type_right)) {
1066                         type_t *points_to_left
1067                                 = skip_typeref(type_left->pointer.points_to);
1068                         type_t *points_to_right
1069                                 = skip_typeref(type_right->pointer.points_to);
1070                         assign_error_t res = ASSIGN_SUCCESS;
1071
1072                         /* the left type has all qualifiers from the right type */
1073                         unsigned missing_qualifiers
1074                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1075                         if (missing_qualifiers != 0) {
1076                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1077                         }
1078
1079                         points_to_left  = get_unqualified_type(points_to_left);
1080                         points_to_right = get_unqualified_type(points_to_right);
1081
1082                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1083                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1084                                 return res;
1085                         }
1086
1087                         if (!types_compatible(points_to_left, points_to_right)) {
1088                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1089                         }
1090
1091                         return res;
1092                 } else if (is_type_integer(type_right)) {
1093                         return ASSIGN_WARNING_POINTER_FROM_INT;
1094                 }
1095         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1096             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1097                 && is_type_pointer(type_right))) {
1098                 return ASSIGN_SUCCESS;
1099         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1100                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1101                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1102                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1103                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1104                         return ASSIGN_SUCCESS;
1105                 }
1106         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1107                 return ASSIGN_WARNING_INT_FROM_POINTER;
1108         }
1109
1110         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1111                 return ASSIGN_SUCCESS;
1112
1113         return ASSIGN_ERROR_INCOMPATIBLE;
1114 }
1115
1116 static expression_t *parse_constant_expression(void)
1117 {
1118         /* start parsing at precedence 7 (conditional expression) */
1119         expression_t *result = parse_sub_expression(7);
1120
1121         if (!is_constant_expression(result)) {
1122                 errorf(&result->base.source_position,
1123                        "expression '%E' is not constant\n", result);
1124         }
1125
1126         return result;
1127 }
1128
1129 static expression_t *parse_assignment_expression(void)
1130 {
1131         /* start parsing at precedence 2 (assignment expression) */
1132         return parse_sub_expression(2);
1133 }
1134
1135 static type_t *make_global_typedef(const char *name, type_t *type)
1136 {
1137         symbol_t *const symbol       = symbol_table_insert(name);
1138
1139         declaration_t *const declaration = allocate_declaration_zero();
1140         declaration->namespc                = NAMESPACE_NORMAL;
1141         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1142         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1143         declaration->type                   = type;
1144         declaration->symbol                 = symbol;
1145         declaration->source_position        = builtin_source_position;
1146         declaration->implicit               = true;
1147
1148         record_declaration(declaration, false);
1149
1150         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1151         typedef_type->typedeft.declaration = declaration;
1152
1153         return typedef_type;
1154 }
1155
1156 static string_t parse_string_literals(void)
1157 {
1158         assert(token.type == T_STRING_LITERAL);
1159         string_t result = token.v.string;
1160
1161         next_token();
1162
1163         while (token.type == T_STRING_LITERAL) {
1164                 result = concat_strings(&result, &token.v.string);
1165                 next_token();
1166         }
1167
1168         return result;
1169 }
1170
1171 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1172         [GNU_AK_CONST]                  = "const",
1173         [GNU_AK_VOLATILE]               = "volatile",
1174         [GNU_AK_CDECL]                  = "cdecl",
1175         [GNU_AK_STDCALL]                = "stdcall",
1176         [GNU_AK_FASTCALL]               = "fastcall",
1177         [GNU_AK_DEPRECATED]             = "deprecated",
1178         [GNU_AK_NOINLINE]               = "noinline",
1179         [GNU_AK_NORETURN]               = "noreturn",
1180         [GNU_AK_NAKED]                  = "naked",
1181         [GNU_AK_PURE]                   = "pure",
1182         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1183         [GNU_AK_MALLOC]                 = "malloc",
1184         [GNU_AK_WEAK]                   = "weak",
1185         [GNU_AK_CONSTRUCTOR]            = "constructor",
1186         [GNU_AK_DESTRUCTOR]             = "destructor",
1187         [GNU_AK_NOTHROW]                = "nothrow",
1188         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1189         [GNU_AK_COMMON]                 = "common",
1190         [GNU_AK_NOCOMMON]               = "nocommon",
1191         [GNU_AK_PACKED]                 = "packed",
1192         [GNU_AK_SHARED]                 = "shared",
1193         [GNU_AK_NOTSHARED]              = "notshared",
1194         [GNU_AK_USED]                   = "used",
1195         [GNU_AK_UNUSED]                 = "unused",
1196         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1197         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1198         [GNU_AK_LONGCALL]               = "longcall",
1199         [GNU_AK_SHORTCALL]              = "shortcall",
1200         [GNU_AK_LONG_CALL]              = "long_call",
1201         [GNU_AK_SHORT_CALL]             = "short_call",
1202         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1203         [GNU_AK_INTERRUPT]              = "interrupt",
1204         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1205         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1206         [GNU_AK_NESTING]                = "nesting",
1207         [GNU_AK_NEAR]                   = "near",
1208         [GNU_AK_FAR]                    = "far",
1209         [GNU_AK_SIGNAL]                 = "signal",
1210         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1211         [GNU_AK_TINY_DATA]              = "tiny_data",
1212         [GNU_AK_SAVEALL]                = "saveall",
1213         [GNU_AK_FLATTEN]                = "flatten",
1214         [GNU_AK_SSEREGPARM]             = "sseregparm",
1215         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1216         [GNU_AK_RETURN_TWICE]           = "return_twice",
1217         [GNU_AK_MAY_ALIAS]              = "may_alias",
1218         [GNU_AK_MS_STRUCT]              = "ms_struct",
1219         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1220         [GNU_AK_DLLIMPORT]              = "dllimport",
1221         [GNU_AK_DLLEXPORT]              = "dllexport",
1222         [GNU_AK_ALIGNED]                = "aligned",
1223         [GNU_AK_ALIAS]                  = "alias",
1224         [GNU_AK_SECTION]                = "section",
1225         [GNU_AK_FORMAT]                 = "format",
1226         [GNU_AK_FORMAT_ARG]             = "format_arg",
1227         [GNU_AK_WEAKREF]                = "weakref",
1228         [GNU_AK_NONNULL]                = "nonnull",
1229         [GNU_AK_TLS_MODEL]              = "tls_model",
1230         [GNU_AK_VISIBILITY]             = "visibility",
1231         [GNU_AK_REGPARM]                = "regparm",
1232         [GNU_AK_MODE]                   = "mode",
1233         [GNU_AK_MODEL]                  = "model",
1234         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1235         [GNU_AK_SP_SWITCH]              = "sp_switch",
1236         [GNU_AK_SENTINEL]               = "sentinel"
1237 };
1238
1239 /**
1240  * compare two string, ignoring double underscores on the second.
1241  */
1242 static int strcmp_underscore(const char *s1, const char *s2)
1243 {
1244         if (s2[0] == '_' && s2[1] == '_') {
1245                 size_t len2 = strlen(s2);
1246                 size_t len1 = strlen(s1);
1247                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1248                         return strncmp(s1, s2+2, len2-4);
1249                 }
1250         }
1251
1252         return strcmp(s1, s2);
1253 }
1254
1255 /**
1256  * Allocate a new gnu temporal attribute.
1257  */
1258 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1259 {
1260         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1261         attribute->kind            = kind;
1262         attribute->next            = NULL;
1263         attribute->invalid         = false;
1264         attribute->have_arguments  = false;
1265
1266         return attribute;
1267 }
1268
1269 /**
1270  * parse one constant expression argument.
1271  */
1272 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1273 {
1274         expression_t *expression;
1275         add_anchor_token(')');
1276         expression = parse_constant_expression();
1277         rem_anchor_token(')');
1278         expect(')');
1279         attribute->u.argument = fold_constant(expression);
1280         return;
1281 end_error:
1282         attribute->invalid = true;
1283 }
1284
1285 /**
1286  * parse a list of constant expressions arguments.
1287  */
1288 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1289 {
1290         argument_list_t **list = &attribute->u.arguments;
1291         argument_list_t  *entry;
1292         expression_t     *expression;
1293         add_anchor_token(')');
1294         add_anchor_token(',');
1295         while (true) {
1296                 expression = parse_constant_expression();
1297                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1298                 entry->argument = fold_constant(expression);
1299                 entry->next     = NULL;
1300                 *list = entry;
1301                 list = &entry->next;
1302                 if (token.type != ',')
1303                         break;
1304                 next_token();
1305         }
1306         rem_anchor_token(',');
1307         rem_anchor_token(')');
1308         expect(')');
1309         return;
1310 end_error:
1311         attribute->invalid = true;
1312 }
1313
1314 /**
1315  * parse one string literal argument.
1316  */
1317 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1318                                            string_t *string)
1319 {
1320         add_anchor_token('(');
1321         if (token.type != T_STRING_LITERAL) {
1322                 parse_error_expected("while parsing attribute directive",
1323                                      T_STRING_LITERAL, NULL);
1324                 goto end_error;
1325         }
1326         *string = parse_string_literals();
1327         rem_anchor_token('(');
1328         expect(')');
1329         return;
1330 end_error:
1331         attribute->invalid = true;
1332 }
1333
1334 /**
1335  * parse one tls model.
1336  */
1337 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1338 {
1339         static const char *const tls_models[] = {
1340                 "global-dynamic",
1341                 "local-dynamic",
1342                 "initial-exec",
1343                 "local-exec"
1344         };
1345         string_t string = { NULL, 0 };
1346         parse_gnu_attribute_string_arg(attribute, &string);
1347         if (string.begin != NULL) {
1348                 for(size_t i = 0; i < 4; ++i) {
1349                         if (strcmp(tls_models[i], string.begin) == 0) {
1350                                 attribute->u.value = i;
1351                                 return;
1352                         }
1353                 }
1354                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1355         }
1356         attribute->invalid = true;
1357 }
1358
1359 /**
1360  * parse one tls model.
1361  */
1362 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1363 {
1364         static const char *const visibilities[] = {
1365                 "default",
1366                 "protected",
1367                 "hidden",
1368                 "internal"
1369         };
1370         string_t string = { NULL, 0 };
1371         parse_gnu_attribute_string_arg(attribute, &string);
1372         if (string.begin != NULL) {
1373                 for(size_t i = 0; i < 4; ++i) {
1374                         if (strcmp(visibilities[i], string.begin) == 0) {
1375                                 attribute->u.value = i;
1376                                 return;
1377                         }
1378                 }
1379                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1380         }
1381         attribute->invalid = true;
1382 }
1383
1384 /**
1385  * parse one (code) model.
1386  */
1387 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1388 {
1389         static const char *const visibilities[] = {
1390                 "small",
1391                 "medium",
1392                 "large"
1393         };
1394         string_t string = { NULL, 0 };
1395         parse_gnu_attribute_string_arg(attribute, &string);
1396         if (string.begin != NULL) {
1397                 for(int i = 0; i < 3; ++i) {
1398                         if (strcmp(visibilities[i], string.begin) == 0) {
1399                                 attribute->u.value = i;
1400                                 return;
1401                         }
1402                 }
1403                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1404         }
1405         attribute->invalid = true;
1406 }
1407
1408 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1409 {
1410         /* TODO: find out what is allowed here... */
1411
1412         /* at least: byte, word, pointer, list of machine modes
1413          * __XXX___ is interpreted as XXX */
1414         add_anchor_token(')');
1415
1416         if (token.type != T_IDENTIFIER) {
1417                 expect(T_IDENTIFIER);
1418         }
1419
1420         /* This isn't really correct, the backend should provide a list of machine
1421          * specific modes (according to gcc philosophy that is...) */
1422         const char *symbol_str = token.v.symbol->string;
1423         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1424             strcmp_underscore("byte", symbol_str) == 0) {
1425                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1426         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1427                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1428         } else if (strcmp_underscore("SI",      symbol_str) == 0
1429                 || strcmp_underscore("word",    symbol_str) == 0
1430                 || strcmp_underscore("pointer", symbol_str) == 0) {
1431                 attribute->u.akind = ATOMIC_TYPE_INT;
1432         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1433                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1434         } else {
1435                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1436                 attribute->invalid = true;
1437         }
1438         next_token();
1439
1440         rem_anchor_token(')');
1441         expect(')');
1442         return;
1443 end_error:
1444         attribute->invalid = true;
1445 }
1446
1447 /**
1448  * parse one interrupt argument.
1449  */
1450 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1451 {
1452         static const char *const interrupts[] = {
1453                 "IRQ",
1454                 "FIQ",
1455                 "SWI",
1456                 "ABORT",
1457                 "UNDEF"
1458         };
1459         string_t string = { NULL, 0 };
1460         parse_gnu_attribute_string_arg(attribute, &string);
1461         if (string.begin != NULL) {
1462                 for(size_t i = 0; i < 5; ++i) {
1463                         if (strcmp(interrupts[i], string.begin) == 0) {
1464                                 attribute->u.value = i;
1465                                 return;
1466                         }
1467                 }
1468                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1469         }
1470         attribute->invalid = true;
1471 }
1472
1473 /**
1474  * parse ( identifier, const expression, const expression )
1475  */
1476 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1477 {
1478         static const char *const format_names[] = {
1479                 "printf",
1480                 "scanf",
1481                 "strftime",
1482                 "strfmon"
1483         };
1484         int i;
1485
1486         if (token.type != T_IDENTIFIER) {
1487                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1488                 goto end_error;
1489         }
1490         const char *name = token.v.symbol->string;
1491         for(i = 0; i < 4; ++i) {
1492                 if (strcmp_underscore(format_names[i], name) == 0)
1493                         break;
1494         }
1495         if (i >= 4) {
1496                 if (warning.attribute)
1497                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1498         }
1499         next_token();
1500
1501         expect(',');
1502         add_anchor_token(')');
1503         add_anchor_token(',');
1504         parse_constant_expression();
1505         rem_anchor_token(',');
1506         rem_anchor_token(')');
1507
1508         expect(',');
1509         add_anchor_token(')');
1510         parse_constant_expression();
1511         rem_anchor_token(')');
1512         expect(')');
1513         return;
1514 end_error:
1515         attribute->u.value = true;
1516 }
1517
1518 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1519 {
1520         if (!attribute->have_arguments)
1521                 return;
1522
1523         /* should have no arguments */
1524         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1525         eat_until_matching_token('(');
1526         /* we have already consumed '(', so we stop before ')', eat it */
1527         eat(')');
1528         attribute->invalid = true;
1529 }
1530
1531 /**
1532  * Parse one GNU attribute.
1533  *
1534  * Note that attribute names can be specified WITH or WITHOUT
1535  * double underscores, ie const or __const__.
1536  *
1537  * The following attributes are parsed without arguments
1538  *  const
1539  *  volatile
1540  *  cdecl
1541  *  stdcall
1542  *  fastcall
1543  *  deprecated
1544  *  noinline
1545  *  noreturn
1546  *  naked
1547  *  pure
1548  *  always_inline
1549  *  malloc
1550  *  weak
1551  *  constructor
1552  *  destructor
1553  *  nothrow
1554  *  transparent_union
1555  *  common
1556  *  nocommon
1557  *  packed
1558  *  shared
1559  *  notshared
1560  *  used
1561  *  unused
1562  *  no_instrument_function
1563  *  warn_unused_result
1564  *  longcall
1565  *  shortcall
1566  *  long_call
1567  *  short_call
1568  *  function_vector
1569  *  interrupt_handler
1570  *  nmi_handler
1571  *  nesting
1572  *  near
1573  *  far
1574  *  signal
1575  *  eightbit_data
1576  *  tiny_data
1577  *  saveall
1578  *  flatten
1579  *  sseregparm
1580  *  externally_visible
1581  *  return_twice
1582  *  may_alias
1583  *  ms_struct
1584  *  gcc_struct
1585  *  dllimport
1586  *  dllexport
1587  *
1588  * The following attributes are parsed with arguments
1589  *  aligned( const expression )
1590  *  alias( string literal )
1591  *  section( string literal )
1592  *  format( identifier, const expression, const expression )
1593  *  format_arg( const expression )
1594  *  tls_model( string literal )
1595  *  visibility( string literal )
1596  *  regparm( const expression )
1597  *  model( string leteral )
1598  *  trap_exit( const expression )
1599  *  sp_switch( string literal )
1600  *
1601  * The following attributes might have arguments
1602  *  weak_ref( string literal )
1603  *  non_null( const expression // ',' )
1604  *  interrupt( string literal )
1605  *  sentinel( constant expression )
1606  */
1607 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1608 {
1609         gnu_attribute_t *head      = *attributes;
1610         gnu_attribute_t *last      = *attributes;
1611         decl_modifiers_t modifiers = 0;
1612         gnu_attribute_t *attribute;
1613
1614         eat(T___attribute__);
1615         expect('(');
1616         expect('(');
1617
1618         if (token.type != ')') {
1619                 /* find the end of the list */
1620                 if (last != NULL) {
1621                         while (last->next != NULL)
1622                                 last = last->next;
1623                 }
1624
1625                 /* non-empty attribute list */
1626                 while (true) {
1627                         const char *name;
1628                         if (token.type == T_const) {
1629                                 name = "const";
1630                         } else if (token.type == T_volatile) {
1631                                 name = "volatile";
1632                         } else if (token.type == T_cdecl) {
1633                                 /* __attribute__((cdecl)), WITH ms mode */
1634                                 name = "cdecl";
1635                         } else if (token.type == T_IDENTIFIER) {
1636                                 const symbol_t *sym = token.v.symbol;
1637                                 name = sym->string;
1638                         } else {
1639                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1640                                 break;
1641                         }
1642
1643                         next_token();
1644
1645                         int i;
1646                         for(i = 0; i < GNU_AK_LAST; ++i) {
1647                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1648                                         break;
1649                         }
1650                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1651
1652                         attribute = NULL;
1653                         if (kind == GNU_AK_LAST) {
1654                                 if (warning.attribute)
1655                                         warningf(HERE, "'%s' attribute directive ignored", name);
1656
1657                                 /* skip possible arguments */
1658                                 if (token.type == '(') {
1659                                         eat_until_matching_token(')');
1660                                 }
1661                         } else {
1662                                 /* check for arguments */
1663                                 attribute = allocate_gnu_attribute(kind);
1664                                 if (token.type == '(') {
1665                                         next_token();
1666                                         if (token.type == ')') {
1667                                                 /* empty args are allowed */
1668                                                 next_token();
1669                                         } else
1670                                                 attribute->have_arguments = true;
1671                                 }
1672
1673                                 switch(kind) {
1674                                 case GNU_AK_CONST:
1675                                 case GNU_AK_VOLATILE:
1676                                 case GNU_AK_NAKED:
1677                                 case GNU_AK_MALLOC:
1678                                 case GNU_AK_WEAK:
1679                                 case GNU_AK_COMMON:
1680                                 case GNU_AK_NOCOMMON:
1681                                 case GNU_AK_SHARED:
1682                                 case GNU_AK_NOTSHARED:
1683                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1684                                 case GNU_AK_WARN_UNUSED_RESULT:
1685                                 case GNU_AK_LONGCALL:
1686                                 case GNU_AK_SHORTCALL:
1687                                 case GNU_AK_LONG_CALL:
1688                                 case GNU_AK_SHORT_CALL:
1689                                 case GNU_AK_FUNCTION_VECTOR:
1690                                 case GNU_AK_INTERRUPT_HANDLER:
1691                                 case GNU_AK_NMI_HANDLER:
1692                                 case GNU_AK_NESTING:
1693                                 case GNU_AK_NEAR:
1694                                 case GNU_AK_FAR:
1695                                 case GNU_AK_SIGNAL:
1696                                 case GNU_AK_EIGTHBIT_DATA:
1697                                 case GNU_AK_TINY_DATA:
1698                                 case GNU_AK_SAVEALL:
1699                                 case GNU_AK_FLATTEN:
1700                                 case GNU_AK_SSEREGPARM:
1701                                 case GNU_AK_EXTERNALLY_VISIBLE:
1702                                 case GNU_AK_RETURN_TWICE:
1703                                 case GNU_AK_MAY_ALIAS:
1704                                 case GNU_AK_MS_STRUCT:
1705                                 case GNU_AK_GCC_STRUCT:
1706                                         goto no_arg;
1707
1708                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1709                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1710                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1711                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1712                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1713                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1714                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1715                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1716                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1717                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1718                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1719                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1720                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1721                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1722                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1723                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1724                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1725
1726                                 case GNU_AK_ALIGNED:
1727                                         /* __align__ may be used without an argument */
1728                                         if (attribute->have_arguments) {
1729                                                 parse_gnu_attribute_const_arg(attribute);
1730                                         }
1731                                         break;
1732
1733                                 case GNU_AK_FORMAT_ARG:
1734                                 case GNU_AK_REGPARM:
1735                                 case GNU_AK_TRAP_EXIT:
1736                                         if (!attribute->have_arguments) {
1737                                                 /* should have arguments */
1738                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1739                                                 attribute->invalid = true;
1740                                         } else
1741                                                 parse_gnu_attribute_const_arg(attribute);
1742                                         break;
1743                                 case GNU_AK_ALIAS:
1744                                 case GNU_AK_SECTION:
1745                                 case GNU_AK_SP_SWITCH:
1746                                         if (!attribute->have_arguments) {
1747                                                 /* should have arguments */
1748                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1749                                                 attribute->invalid = true;
1750                                         } else
1751                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1752                                         break;
1753                                 case GNU_AK_FORMAT:
1754                                         if (!attribute->have_arguments) {
1755                                                 /* should have arguments */
1756                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1757                                                 attribute->invalid = true;
1758                                         } else
1759                                                 parse_gnu_attribute_format_args(attribute);
1760                                         break;
1761                                 case GNU_AK_WEAKREF:
1762                                         /* may have one string argument */
1763                                         if (attribute->have_arguments)
1764                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1765                                         break;
1766                                 case GNU_AK_NONNULL:
1767                                         if (attribute->have_arguments)
1768                                                 parse_gnu_attribute_const_arg_list(attribute);
1769                                         break;
1770                                 case GNU_AK_TLS_MODEL:
1771                                         if (!attribute->have_arguments) {
1772                                                 /* should have arguments */
1773                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1774                                         } else
1775                                                 parse_gnu_attribute_tls_model_arg(attribute);
1776                                         break;
1777                                 case GNU_AK_VISIBILITY:
1778                                         if (!attribute->have_arguments) {
1779                                                 /* should have arguments */
1780                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1781                                         } else
1782                                                 parse_gnu_attribute_visibility_arg(attribute);
1783                                         break;
1784                                 case GNU_AK_MODEL:
1785                                         if (!attribute->have_arguments) {
1786                                                 /* should have arguments */
1787                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1788                                         } else {
1789                                                 parse_gnu_attribute_model_arg(attribute);
1790                                         }
1791                                         break;
1792                                 case GNU_AK_MODE:
1793                                         if (!attribute->have_arguments) {
1794                                                 /* should have arguments */
1795                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1796                                         } else {
1797                                                 parse_gnu_attribute_mode_arg(attribute);
1798                                         }
1799                                         break;
1800                                 case GNU_AK_INTERRUPT:
1801                                         /* may have one string argument */
1802                                         if (attribute->have_arguments)
1803                                                 parse_gnu_attribute_interrupt_arg(attribute);
1804                                         break;
1805                                 case GNU_AK_SENTINEL:
1806                                         /* may have one string argument */
1807                                         if (attribute->have_arguments)
1808                                                 parse_gnu_attribute_const_arg(attribute);
1809                                         break;
1810                                 case GNU_AK_LAST:
1811                                         /* already handled */
1812                                         break;
1813
1814 no_arg:
1815                                         check_no_argument(attribute, name);
1816                                 }
1817                         }
1818                         if (attribute != NULL) {
1819                                 if (last != NULL) {
1820                                         last->next = attribute;
1821                                         last       = attribute;
1822                                 } else {
1823                                         head = last = attribute;
1824                                 }
1825                         }
1826
1827                         if (token.type != ',')
1828                                 break;
1829                         next_token();
1830                 }
1831         }
1832         expect(')');
1833         expect(')');
1834 end_error:
1835         *attributes = head;
1836
1837         return modifiers;
1838 }
1839
1840 /**
1841  * Parse GNU attributes.
1842  */
1843 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1844 {
1845         decl_modifiers_t modifiers = 0;
1846
1847         while (true) {
1848                 switch(token.type) {
1849                 case T___attribute__:
1850                         modifiers |= parse_gnu_attribute(attributes);
1851                         continue;
1852
1853                 case T_asm:
1854                         next_token();
1855                         expect('(');
1856                         if (token.type != T_STRING_LITERAL) {
1857                                 parse_error_expected("while parsing assembler attribute",
1858                                                      T_STRING_LITERAL, NULL);
1859                                 eat_until_matching_token('(');
1860                                 break;
1861                         } else {
1862                                 parse_string_literals();
1863                         }
1864                         expect(')');
1865                         continue;
1866
1867                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1868                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1869                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1870
1871                 case T___thiscall:
1872                         /* TODO record modifier */
1873                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1874                         break;
1875
1876 end_error:
1877                 default: return modifiers;
1878                 }
1879
1880                 next_token();
1881         }
1882 }
1883
1884 static designator_t *parse_designation(void)
1885 {
1886         designator_t *result = NULL;
1887         designator_t *last   = NULL;
1888
1889         while (true) {
1890                 designator_t *designator;
1891                 switch(token.type) {
1892                 case '[':
1893                         designator = allocate_ast_zero(sizeof(designator[0]));
1894                         designator->source_position = token.source_position;
1895                         next_token();
1896                         add_anchor_token(']');
1897                         designator->array_index = parse_constant_expression();
1898                         rem_anchor_token(']');
1899                         expect(']');
1900                         break;
1901                 case '.':
1902                         designator = allocate_ast_zero(sizeof(designator[0]));
1903                         designator->source_position = token.source_position;
1904                         next_token();
1905                         if (token.type != T_IDENTIFIER) {
1906                                 parse_error_expected("while parsing designator",
1907                                                      T_IDENTIFIER, NULL);
1908                                 return NULL;
1909                         }
1910                         designator->symbol = token.v.symbol;
1911                         next_token();
1912                         break;
1913                 default:
1914                         expect('=');
1915                         return result;
1916                 }
1917
1918                 assert(designator != NULL);
1919                 if (last != NULL) {
1920                         last->next = designator;
1921                 } else {
1922                         result = designator;
1923                 }
1924                 last = designator;
1925         }
1926 end_error:
1927         return NULL;
1928 }
1929
1930 static initializer_t *initializer_from_string(array_type_t *type,
1931                                               const string_t *const string)
1932 {
1933         /* TODO: check len vs. size of array type */
1934         (void) type;
1935
1936         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1937         initializer->string.string = *string;
1938
1939         return initializer;
1940 }
1941
1942 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1943                                                    wide_string_t *const string)
1944 {
1945         /* TODO: check len vs. size of array type */
1946         (void) type;
1947
1948         initializer_t *const initializer =
1949                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1950         initializer->wide_string.string = *string;
1951
1952         return initializer;
1953 }
1954
1955 /**
1956  * Build an initializer from a given expression.
1957  */
1958 static initializer_t *initializer_from_expression(type_t *orig_type,
1959                                                   expression_t *expression)
1960 {
1961         /* TODO check that expression is a constant expression */
1962
1963         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1964         type_t *type           = skip_typeref(orig_type);
1965         type_t *expr_type_orig = expression->base.type;
1966         type_t *expr_type      = skip_typeref(expr_type_orig);
1967         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1968                 array_type_t *const array_type   = &type->array;
1969                 type_t       *const element_type = skip_typeref(array_type->element_type);
1970
1971                 if (element_type->kind == TYPE_ATOMIC) {
1972                         atomic_type_kind_t akind = element_type->atomic.akind;
1973                         switch (expression->kind) {
1974                                 case EXPR_STRING_LITERAL:
1975                                         if (akind == ATOMIC_TYPE_CHAR
1976                                                         || akind == ATOMIC_TYPE_SCHAR
1977                                                         || akind == ATOMIC_TYPE_UCHAR) {
1978                                                 return initializer_from_string(array_type,
1979                                                         &expression->string.value);
1980                                         }
1981
1982                                 case EXPR_WIDE_STRING_LITERAL: {
1983                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1984                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1985                                                 return initializer_from_wide_string(array_type,
1986                                                         &expression->wide_string.value);
1987                                         }
1988                                 }
1989
1990                                 default:
1991                                         break;
1992                         }
1993                 }
1994         }
1995
1996         assign_error_t error = semantic_assign(type, expression);
1997         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1998                 return NULL;
1999         report_assign_error(error, type, expression, "initializer",
2000                             &expression->base.source_position);
2001
2002         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2003         result->value.value = create_implicit_cast(expression, type);
2004
2005         return result;
2006 }
2007
2008 /**
2009  * Checks if a given expression can be used as an constant initializer.
2010  */
2011 static bool is_initializer_constant(const expression_t *expression)
2012 {
2013         return is_constant_expression(expression)
2014                 || is_address_constant(expression);
2015 }
2016
2017 /**
2018  * Parses an scalar initializer.
2019  *
2020  * Â§ 6.7.8.11; eat {} without warning
2021  */
2022 static initializer_t *parse_scalar_initializer(type_t *type,
2023                                                bool must_be_constant)
2024 {
2025         /* there might be extra {} hierarchies */
2026         int braces = 0;
2027         if (token.type == '{') {
2028                 warningf(HERE, "extra curly braces around scalar initializer");
2029                 do {
2030                         ++braces;
2031                         next_token();
2032                 } while (token.type == '{');
2033         }
2034
2035         expression_t *expression = parse_assignment_expression();
2036         if (must_be_constant && !is_initializer_constant(expression)) {
2037                 errorf(&expression->base.source_position,
2038                        "Initialisation expression '%E' is not constant\n",
2039                        expression);
2040         }
2041
2042         initializer_t *initializer = initializer_from_expression(type, expression);
2043
2044         if (initializer == NULL) {
2045                 errorf(&expression->base.source_position,
2046                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2047                        expression, expression->base.type, type);
2048                 /* TODO */
2049                 return NULL;
2050         }
2051
2052         bool additional_warning_displayed = false;
2053         while (braces > 0) {
2054                 if (token.type == ',') {
2055                         next_token();
2056                 }
2057                 if (token.type != '}') {
2058                         if (!additional_warning_displayed) {
2059                                 warningf(HERE, "additional elements in scalar initializer");
2060                                 additional_warning_displayed = true;
2061                         }
2062                 }
2063                 eat_block();
2064                 braces--;
2065         }
2066
2067         return initializer;
2068 }
2069
2070 /**
2071  * An entry in the type path.
2072  */
2073 typedef struct type_path_entry_t type_path_entry_t;
2074 struct type_path_entry_t {
2075         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2076         union {
2077                 size_t         index;          /**< For array types: the current index. */
2078                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2079         } v;
2080 };
2081
2082 /**
2083  * A type path expression a position inside compound or array types.
2084  */
2085 typedef struct type_path_t type_path_t;
2086 struct type_path_t {
2087         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2088         type_t            *top_type;     /**< type of the element the path points */
2089         size_t             max_index;    /**< largest index in outermost array */
2090 };
2091
2092 /**
2093  * Prints a type path for debugging.
2094  */
2095 static __attribute__((unused)) void debug_print_type_path(
2096                 const type_path_t *path)
2097 {
2098         size_t len = ARR_LEN(path->path);
2099
2100         for(size_t i = 0; i < len; ++i) {
2101                 const type_path_entry_t *entry = & path->path[i];
2102
2103                 type_t *type = skip_typeref(entry->type);
2104                 if (is_type_compound(type)) {
2105                         /* in gcc mode structs can have no members */
2106                         if (entry->v.compound_entry == NULL) {
2107                                 assert(i == len-1);
2108                                 continue;
2109                         }
2110                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2111                 } else if (is_type_array(type)) {
2112                         fprintf(stderr, "[%zu]", entry->v.index);
2113                 } else {
2114                         fprintf(stderr, "-INVALID-");
2115                 }
2116         }
2117         if (path->top_type != NULL) {
2118                 fprintf(stderr, "  (");
2119                 print_type(path->top_type);
2120                 fprintf(stderr, ")");
2121         }
2122 }
2123
2124 /**
2125  * Return the top type path entry, ie. in a path
2126  * (type).a.b returns the b.
2127  */
2128 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2129 {
2130         size_t len = ARR_LEN(path->path);
2131         assert(len > 0);
2132         return &path->path[len-1];
2133 }
2134
2135 /**
2136  * Enlarge the type path by an (empty) element.
2137  */
2138 static type_path_entry_t *append_to_type_path(type_path_t *path)
2139 {
2140         size_t len = ARR_LEN(path->path);
2141         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2142
2143         type_path_entry_t *result = & path->path[len];
2144         memset(result, 0, sizeof(result[0]));
2145         return result;
2146 }
2147
2148 /**
2149  * Descending into a sub-type. Enter the scope of the current
2150  * top_type.
2151  */
2152 static void descend_into_subtype(type_path_t *path)
2153 {
2154         type_t *orig_top_type = path->top_type;
2155         type_t *top_type      = skip_typeref(orig_top_type);
2156
2157         type_path_entry_t *top = append_to_type_path(path);
2158         top->type              = top_type;
2159
2160         if (is_type_compound(top_type)) {
2161                 declaration_t *declaration = top_type->compound.declaration;
2162                 declaration_t *entry       = declaration->scope.declarations;
2163                 top->v.compound_entry      = entry;
2164
2165                 if (entry != NULL) {
2166                         path->top_type         = entry->type;
2167                 } else {
2168                         path->top_type         = NULL;
2169                 }
2170         } else if (is_type_array(top_type)) {
2171                 top->v.index   = 0;
2172                 path->top_type = top_type->array.element_type;
2173         } else {
2174                 assert(!is_type_valid(top_type));
2175         }
2176 }
2177
2178 /**
2179  * Pop an entry from the given type path, ie. returning from
2180  * (type).a.b to (type).a
2181  */
2182 static void ascend_from_subtype(type_path_t *path)
2183 {
2184         type_path_entry_t *top = get_type_path_top(path);
2185
2186         path->top_type = top->type;
2187
2188         size_t len = ARR_LEN(path->path);
2189         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2190 }
2191
2192 /**
2193  * Pop entries from the given type path until the given
2194  * path level is reached.
2195  */
2196 static void ascend_to(type_path_t *path, size_t top_path_level)
2197 {
2198         size_t len = ARR_LEN(path->path);
2199
2200         while (len > top_path_level) {
2201                 ascend_from_subtype(path);
2202                 len = ARR_LEN(path->path);
2203         }
2204 }
2205
2206 static bool walk_designator(type_path_t *path, const designator_t *designator,
2207                             bool used_in_offsetof)
2208 {
2209         for( ; designator != NULL; designator = designator->next) {
2210                 type_path_entry_t *top       = get_type_path_top(path);
2211                 type_t            *orig_type = top->type;
2212
2213                 type_t *type = skip_typeref(orig_type);
2214
2215                 if (designator->symbol != NULL) {
2216                         symbol_t *symbol = designator->symbol;
2217                         if (!is_type_compound(type)) {
2218                                 if (is_type_valid(type)) {
2219                                         errorf(&designator->source_position,
2220                                                "'.%Y' designator used for non-compound type '%T'",
2221                                                symbol, orig_type);
2222                                 }
2223                                 goto failed;
2224                         }
2225
2226                         declaration_t *declaration = type->compound.declaration;
2227                         declaration_t *iter        = declaration->scope.declarations;
2228                         for( ; iter != NULL; iter = iter->next) {
2229                                 if (iter->symbol == symbol) {
2230                                         break;
2231                                 }
2232                         }
2233                         if (iter == NULL) {
2234                                 errorf(&designator->source_position,
2235                                        "'%T' has no member named '%Y'", orig_type, symbol);
2236                                 goto failed;
2237                         }
2238                         if (used_in_offsetof) {
2239                                 type_t *real_type = skip_typeref(iter->type);
2240                                 if (real_type->kind == TYPE_BITFIELD) {
2241                                         errorf(&designator->source_position,
2242                                                "offsetof designator '%Y' may not specify bitfield",
2243                                                symbol);
2244                                         goto failed;
2245                                 }
2246                         }
2247
2248                         top->type             = orig_type;
2249                         top->v.compound_entry = iter;
2250                         orig_type             = iter->type;
2251                 } else {
2252                         expression_t *array_index = designator->array_index;
2253                         assert(designator->array_index != NULL);
2254
2255                         if (!is_type_array(type)) {
2256                                 if (is_type_valid(type)) {
2257                                         errorf(&designator->source_position,
2258                                                "[%E] designator used for non-array type '%T'",
2259                                                array_index, orig_type);
2260                                 }
2261                                 goto failed;
2262                         }
2263                         if (!is_type_valid(array_index->base.type)) {
2264                                 goto failed;
2265                         }
2266
2267                         long index = fold_constant(array_index);
2268                         if (!used_in_offsetof) {
2269                                 if (index < 0) {
2270                                         errorf(&designator->source_position,
2271                                                "array index [%E] must be positive", array_index);
2272                                         goto failed;
2273                                 }
2274                                 if (type->array.size_constant == true) {
2275                                         long array_size = type->array.size;
2276                                         if (index >= array_size) {
2277                                                 errorf(&designator->source_position,
2278                                                        "designator [%E] (%d) exceeds array size %d",
2279                                                        array_index, index, array_size);
2280                                                 goto failed;
2281                                         }
2282                                 }
2283                         }
2284
2285                         top->type    = orig_type;
2286                         top->v.index = (size_t) index;
2287                         orig_type    = type->array.element_type;
2288                 }
2289                 path->top_type = orig_type;
2290
2291                 if (designator->next != NULL) {
2292                         descend_into_subtype(path);
2293                 }
2294         }
2295         return true;
2296
2297 failed:
2298         return false;
2299 }
2300
2301 static void advance_current_object(type_path_t *path, size_t top_path_level)
2302 {
2303         type_path_entry_t *top = get_type_path_top(path);
2304
2305         type_t *type = skip_typeref(top->type);
2306         if (is_type_union(type)) {
2307                 /* in unions only the first element is initialized */
2308                 top->v.compound_entry = NULL;
2309         } else if (is_type_struct(type)) {
2310                 declaration_t *entry = top->v.compound_entry;
2311
2312                 entry                 = entry->next;
2313                 top->v.compound_entry = entry;
2314                 if (entry != NULL) {
2315                         path->top_type = entry->type;
2316                         return;
2317                 }
2318         } else {
2319                 assert(is_type_array(type));
2320
2321                 top->v.index++;
2322
2323                 if (!type->array.size_constant || top->v.index < type->array.size) {
2324                         return;
2325                 }
2326         }
2327
2328         /* we're past the last member of the current sub-aggregate, try if we
2329          * can ascend in the type hierarchy and continue with another subobject */
2330         size_t len = ARR_LEN(path->path);
2331
2332         if (len > top_path_level) {
2333                 ascend_from_subtype(path);
2334                 advance_current_object(path, top_path_level);
2335         } else {
2336                 path->top_type = NULL;
2337         }
2338 }
2339
2340 /**
2341  * skip until token is found.
2342  */
2343 static void skip_until(int type)
2344 {
2345         while (token.type != type) {
2346                 if (token.type == T_EOF)
2347                         return;
2348                 next_token();
2349         }
2350 }
2351
2352 /**
2353  * skip any {...} blocks until a closing bracket is reached.
2354  */
2355 static void skip_initializers(void)
2356 {
2357         if (token.type == '{')
2358                 next_token();
2359
2360         while (token.type != '}') {
2361                 if (token.type == T_EOF)
2362                         return;
2363                 if (token.type == '{') {
2364                         eat_block();
2365                         continue;
2366                 }
2367                 next_token();
2368         }
2369 }
2370
2371 static initializer_t *create_empty_initializer(void)
2372 {
2373         static initializer_t empty_initializer
2374                 = { .list = { { INITIALIZER_LIST }, 0 } };
2375         return &empty_initializer;
2376 }
2377
2378 /**
2379  * Parse a part of an initialiser for a struct or union,
2380  */
2381 static initializer_t *parse_sub_initializer(type_path_t *path,
2382                 type_t *outer_type, size_t top_path_level,
2383                 parse_initializer_env_t *env)
2384 {
2385         if (token.type == '}') {
2386                 /* empty initializer */
2387                 return create_empty_initializer();
2388         }
2389
2390         type_t *orig_type = path->top_type;
2391         type_t *type      = NULL;
2392
2393         if (orig_type == NULL) {
2394                 /* We are initializing an empty compound. */
2395         } else {
2396                 type = skip_typeref(orig_type);
2397
2398                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2399                  * initializers in this case. */
2400                 if (!is_type_valid(type)) {
2401                         skip_initializers();
2402                         return create_empty_initializer();
2403                 }
2404         }
2405
2406         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2407
2408         while (true) {
2409                 designator_t *designator = NULL;
2410                 if (token.type == '.' || token.type == '[') {
2411                         designator = parse_designation();
2412                         goto finish_designator;
2413                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2414                         /* GNU-style designator ("identifier: value") */
2415                         designator = allocate_ast_zero(sizeof(designator[0]));
2416                         designator->source_position = token.source_position;
2417                         designator->symbol          = token.v.symbol;
2418                         eat(T_IDENTIFIER);
2419                         eat(':');
2420
2421 finish_designator:
2422                         /* reset path to toplevel, evaluate designator from there */
2423                         ascend_to(path, top_path_level);
2424                         if (!walk_designator(path, designator, false)) {
2425                                 /* can't continue after designation error */
2426                                 goto end_error;
2427                         }
2428
2429                         initializer_t *designator_initializer
2430                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2431                         designator_initializer->designator.designator = designator;
2432                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2433
2434                         orig_type = path->top_type;
2435                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2436                 }
2437
2438                 initializer_t *sub;
2439
2440                 if (token.type == '{') {
2441                         if (type != NULL && is_type_scalar(type)) {
2442                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2443                         } else {
2444                                 eat('{');
2445                                 if (type == NULL) {
2446                                         if (env->declaration != NULL) {
2447                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2448                                                        env->declaration->symbol);
2449                                         } else {
2450                                                 errorf(HERE, "extra brace group at end of initializer");
2451                                         }
2452                                 } else
2453                                         descend_into_subtype(path);
2454
2455                                 add_anchor_token('}');
2456                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2457                                                             env);
2458                                 rem_anchor_token('}');
2459
2460                                 if (type != NULL) {
2461                                         ascend_from_subtype(path);
2462                                         expect('}');
2463                                 } else {
2464                                         expect('}');
2465                                         goto error_parse_next;
2466                                 }
2467                         }
2468                 } else {
2469                         /* must be an expression */
2470                         expression_t *expression = parse_assignment_expression();
2471
2472                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2473                                 errorf(&expression->base.source_position,
2474                                        "Initialisation expression '%E' is not constant\n",
2475                                        expression);
2476                         }
2477
2478                         if (type == NULL) {
2479                                 /* we are already outside, ... */
2480                                 if (is_type_compound(outer_type) &&
2481                                     !outer_type->compound.declaration->init.complete) {
2482                                         goto error_parse_next;
2483                                 }
2484                                 goto error_excess;
2485                         }
2486
2487                         /* handle { "string" } special case */
2488                         if ((expression->kind == EXPR_STRING_LITERAL
2489                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2490                                         && outer_type != NULL) {
2491                                 sub = initializer_from_expression(outer_type, expression);
2492                                 if (sub != NULL) {
2493                                         if (token.type == ',') {
2494                                                 next_token();
2495                                         }
2496                                         if (token.type != '}') {
2497                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2498                                                                  orig_type);
2499                                         }
2500                                         /* TODO: eat , ... */
2501                                         return sub;
2502                                 }
2503                         }
2504
2505                         /* descend into subtypes until expression matches type */
2506                         while (true) {
2507                                 orig_type = path->top_type;
2508                                 type      = skip_typeref(orig_type);
2509
2510                                 sub = initializer_from_expression(orig_type, expression);
2511                                 if (sub != NULL) {
2512                                         break;
2513                                 }
2514                                 if (!is_type_valid(type)) {
2515                                         goto end_error;
2516                                 }
2517                                 if (is_type_scalar(type)) {
2518                                         errorf(&expression->base.source_position,
2519                                                         "expression '%E' doesn't match expected type '%T'",
2520                                                         expression, orig_type);
2521                                         goto end_error;
2522                                 }
2523
2524                                 descend_into_subtype(path);
2525                         }
2526                 }
2527
2528                 /* update largest index of top array */
2529                 const type_path_entry_t *first      = &path->path[0];
2530                 type_t                  *first_type = first->type;
2531                 first_type                          = skip_typeref(first_type);
2532                 if (is_type_array(first_type)) {
2533                         size_t index = first->v.index;
2534                         if (index > path->max_index)
2535                                 path->max_index = index;
2536                 }
2537
2538                 if (type != NULL) {
2539                         /* append to initializers list */
2540                         ARR_APP1(initializer_t*, initializers, sub);
2541                 } else {
2542 error_excess:
2543                         if (env->declaration != NULL)
2544                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2545                                  env->declaration->symbol);
2546                         else
2547                                 warningf(HERE, "excess elements in struct initializer");
2548                 }
2549
2550 error_parse_next:
2551                 if (token.type == '}') {
2552                         break;
2553                 }
2554                 expect(',');
2555                 if (token.type == '}') {
2556                         break;
2557                 }
2558
2559                 if (type != NULL) {
2560                         /* advance to the next declaration if we are not at the end */
2561                         advance_current_object(path, top_path_level);
2562                         orig_type = path->top_type;
2563                         if (orig_type != NULL)
2564                                 type = skip_typeref(orig_type);
2565                         else
2566                                 type = NULL;
2567                 }
2568         }
2569
2570         size_t len  = ARR_LEN(initializers);
2571         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2572         initializer_t *result = allocate_ast_zero(size);
2573         result->kind          = INITIALIZER_LIST;
2574         result->list.len      = len;
2575         memcpy(&result->list.initializers, initializers,
2576                len * sizeof(initializers[0]));
2577
2578         DEL_ARR_F(initializers);
2579         ascend_to(path, top_path_level+1);
2580
2581         return result;
2582
2583 end_error:
2584         skip_initializers();
2585         DEL_ARR_F(initializers);
2586         ascend_to(path, top_path_level+1);
2587         return NULL;
2588 }
2589
2590 /**
2591  * Parses an initializer. Parsers either a compound literal
2592  * (env->declaration == NULL) or an initializer of a declaration.
2593  */
2594 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2595 {
2596         type_t        *type   = skip_typeref(env->type);
2597         initializer_t *result = NULL;
2598         size_t         max_index;
2599
2600         if (is_type_scalar(type)) {
2601                 result = parse_scalar_initializer(type, env->must_be_constant);
2602         } else if (token.type == '{') {
2603                 eat('{');
2604
2605                 type_path_t path;
2606                 memset(&path, 0, sizeof(path));
2607                 path.top_type = env->type;
2608                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2609
2610                 descend_into_subtype(&path);
2611
2612                 add_anchor_token('}');
2613                 result = parse_sub_initializer(&path, env->type, 1, env);
2614                 rem_anchor_token('}');
2615
2616                 max_index = path.max_index;
2617                 DEL_ARR_F(path.path);
2618
2619                 expect('}');
2620         } else {
2621                 /* parse_scalar_initializer() also works in this case: we simply
2622                  * have an expression without {} around it */
2623                 result = parse_scalar_initializer(type, env->must_be_constant);
2624         }
2625
2626         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2627          * the array type size */
2628         if (is_type_array(type) && type->array.size_expression == NULL
2629                         && result != NULL) {
2630                 size_t size;
2631                 switch (result->kind) {
2632                 case INITIALIZER_LIST:
2633                         size = max_index + 1;
2634                         break;
2635
2636                 case INITIALIZER_STRING:
2637                         size = result->string.string.size;
2638                         break;
2639
2640                 case INITIALIZER_WIDE_STRING:
2641                         size = result->wide_string.string.size;
2642                         break;
2643
2644                 case INITIALIZER_DESIGNATOR:
2645                 case INITIALIZER_VALUE:
2646                         /* can happen for parse errors */
2647                         size = 0;
2648                         break;
2649
2650                 default:
2651                         internal_errorf(HERE, "invalid initializer type");
2652                 }
2653
2654                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2655                 cnst->base.type          = type_size_t;
2656                 cnst->conste.v.int_value = size;
2657
2658                 type_t *new_type = duplicate_type(type);
2659
2660                 new_type->array.size_expression = cnst;
2661                 new_type->array.size_constant   = true;
2662                 new_type->array.size            = size;
2663                 env->type = new_type;
2664         }
2665
2666         return result;
2667 end_error:
2668         return NULL;
2669 }
2670
2671 static declaration_t *append_declaration(declaration_t *declaration);
2672
2673 static declaration_t *parse_compound_type_specifier(bool is_struct)
2674 {
2675         gnu_attribute_t  *attributes = NULL;
2676         decl_modifiers_t  modifiers  = 0;
2677         if (is_struct) {
2678                 eat(T_struct);
2679         } else {
2680                 eat(T_union);
2681         }
2682
2683         symbol_t      *symbol      = NULL;
2684         declaration_t *declaration = NULL;
2685
2686         if (token.type == T___attribute__) {
2687                 modifiers |= parse_attributes(&attributes);
2688         }
2689
2690         if (token.type == T_IDENTIFIER) {
2691                 symbol = token.v.symbol;
2692                 next_token();
2693
2694                 namespace_t const namespc =
2695                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2696                 declaration = get_declaration(symbol, namespc);
2697                 if (declaration != NULL) {
2698                         if (declaration->parent_scope != scope &&
2699                             (token.type == '{' || token.type == ';')) {
2700                                 declaration = NULL;
2701                         } else if (declaration->init.complete &&
2702                                    token.type == '{') {
2703                                 assert(symbol != NULL);
2704                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2705                                        is_struct ? "struct" : "union", symbol,
2706                                        &declaration->source_position);
2707                                 declaration->scope.declarations = NULL;
2708                         }
2709                 }
2710         } else if (token.type != '{') {
2711                 if (is_struct) {
2712                         parse_error_expected("while parsing struct type specifier",
2713                                              T_IDENTIFIER, '{', NULL);
2714                 } else {
2715                         parse_error_expected("while parsing union type specifier",
2716                                              T_IDENTIFIER, '{', NULL);
2717                 }
2718
2719                 return NULL;
2720         }
2721
2722         if (declaration == NULL) {
2723                 declaration = allocate_declaration_zero();
2724                 declaration->namespc         =
2725                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2726                 declaration->source_position = token.source_position;
2727                 declaration->symbol          = symbol;
2728                 declaration->parent_scope    = scope;
2729                 if (symbol != NULL) {
2730                         environment_push(declaration);
2731                 }
2732                 append_declaration(declaration);
2733         }
2734
2735         if (token.type == '{') {
2736                 declaration->init.complete = true;
2737
2738                 parse_compound_type_entries(declaration);
2739                 modifiers |= parse_attributes(&attributes);
2740         }
2741
2742         declaration->modifiers |= modifiers;
2743         return declaration;
2744 }
2745
2746 static void parse_enum_entries(type_t *const enum_type)
2747 {
2748         eat('{');
2749
2750         if (token.type == '}') {
2751                 next_token();
2752                 errorf(HERE, "empty enum not allowed");
2753                 return;
2754         }
2755
2756         add_anchor_token('}');
2757         do {
2758                 if (token.type != T_IDENTIFIER) {
2759                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2760                         eat_block();
2761                         rem_anchor_token('}');
2762                         return;
2763                 }
2764
2765                 declaration_t *const entry = allocate_declaration_zero();
2766                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2767                 entry->type            = enum_type;
2768                 entry->symbol          = token.v.symbol;
2769                 entry->source_position = token.source_position;
2770                 next_token();
2771
2772                 if (token.type == '=') {
2773                         next_token();
2774                         expression_t *value = parse_constant_expression();
2775
2776                         value = create_implicit_cast(value, enum_type);
2777                         entry->init.enum_value = value;
2778
2779                         /* TODO semantic */
2780                 }
2781
2782                 record_declaration(entry, false);
2783
2784                 if (token.type != ',')
2785                         break;
2786                 next_token();
2787         } while (token.type != '}');
2788         rem_anchor_token('}');
2789
2790         expect('}');
2791
2792 end_error:
2793         ;
2794 }
2795
2796 static type_t *parse_enum_specifier(void)
2797 {
2798         gnu_attribute_t *attributes = NULL;
2799         declaration_t   *declaration;
2800         symbol_t        *symbol;
2801
2802         eat(T_enum);
2803         if (token.type == T_IDENTIFIER) {
2804                 symbol = token.v.symbol;
2805                 next_token();
2806
2807                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2808         } else if (token.type != '{') {
2809                 parse_error_expected("while parsing enum type specifier",
2810                                      T_IDENTIFIER, '{', NULL);
2811                 return NULL;
2812         } else {
2813                 declaration = NULL;
2814                 symbol      = NULL;
2815         }
2816
2817         if (declaration == NULL) {
2818                 declaration = allocate_declaration_zero();
2819                 declaration->namespc         = NAMESPACE_ENUM;
2820                 declaration->source_position = token.source_position;
2821                 declaration->symbol          = symbol;
2822                 declaration->parent_scope  = scope;
2823         }
2824
2825         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2826         type->enumt.declaration = declaration;
2827
2828         if (token.type == '{') {
2829                 if (declaration->init.complete) {
2830                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2831                 }
2832                 if (symbol != NULL) {
2833                         environment_push(declaration);
2834                 }
2835                 append_declaration(declaration);
2836                 declaration->init.complete = true;
2837
2838                 parse_enum_entries(type);
2839                 parse_attributes(&attributes);
2840         }
2841
2842         return type;
2843 }
2844
2845 /**
2846  * if a symbol is a typedef to another type, return true
2847  */
2848 static bool is_typedef_symbol(symbol_t *symbol)
2849 {
2850         const declaration_t *const declaration =
2851                 get_declaration(symbol, NAMESPACE_NORMAL);
2852         return
2853                 declaration != NULL &&
2854                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2855 }
2856
2857 static type_t *parse_typeof(void)
2858 {
2859         eat(T___typeof__);
2860
2861         type_t *type;
2862
2863         expect('(');
2864         add_anchor_token(')');
2865
2866         expression_t *expression  = NULL;
2867
2868         bool old_type_prop     = in_type_prop;
2869         bool old_gcc_extension = in_gcc_extension;
2870         in_type_prop           = true;
2871
2872         while (token.type == T___extension__) {
2873                 /* This can be a prefix to a typename or an expression. */
2874                 next_token();
2875                 in_gcc_extension = true;
2876         }
2877         switch (token.type) {
2878         case T_IDENTIFIER:
2879                 if (is_typedef_symbol(token.v.symbol)) {
2880                         type = parse_typename();
2881                 } else {
2882                         expression = parse_expression();
2883                         type       = expression->base.type;
2884                 }
2885                 break;
2886
2887         TYPENAME_START
2888                 type = parse_typename();
2889                 break;
2890
2891         default:
2892                 expression = parse_expression();
2893                 type       = expression->base.type;
2894                 break;
2895         }
2896         in_type_prop     = old_type_prop;
2897         in_gcc_extension = old_gcc_extension;
2898
2899         rem_anchor_token(')');
2900         expect(')');
2901
2902         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2903         typeof_type->typeoft.expression  = expression;
2904         typeof_type->typeoft.typeof_type = type;
2905
2906         return typeof_type;
2907 end_error:
2908         return NULL;
2909 }
2910
2911 typedef enum specifiers_t {
2912         SPECIFIER_SIGNED    = 1 << 0,
2913         SPECIFIER_UNSIGNED  = 1 << 1,
2914         SPECIFIER_LONG      = 1 << 2,
2915         SPECIFIER_INT       = 1 << 3,
2916         SPECIFIER_DOUBLE    = 1 << 4,
2917         SPECIFIER_CHAR      = 1 << 5,
2918         SPECIFIER_SHORT     = 1 << 6,
2919         SPECIFIER_LONG_LONG = 1 << 7,
2920         SPECIFIER_FLOAT     = 1 << 8,
2921         SPECIFIER_BOOL      = 1 << 9,
2922         SPECIFIER_VOID      = 1 << 10,
2923         SPECIFIER_INT8      = 1 << 11,
2924         SPECIFIER_INT16     = 1 << 12,
2925         SPECIFIER_INT32     = 1 << 13,
2926         SPECIFIER_INT64     = 1 << 14,
2927         SPECIFIER_INT128    = 1 << 15,
2928         SPECIFIER_COMPLEX   = 1 << 16,
2929         SPECIFIER_IMAGINARY = 1 << 17,
2930 } specifiers_t;
2931
2932 static type_t *create_builtin_type(symbol_t *const symbol,
2933                                    type_t *const real_type)
2934 {
2935         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2936         type->builtin.symbol    = symbol;
2937         type->builtin.real_type = real_type;
2938
2939         type_t *result = typehash_insert(type);
2940         if (type != result) {
2941                 free_type(type);
2942         }
2943
2944         return result;
2945 }
2946
2947 static type_t *get_typedef_type(symbol_t *symbol)
2948 {
2949         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2950         if (declaration == NULL ||
2951            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2952                 return NULL;
2953
2954         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2955         type->typedeft.declaration = declaration;
2956
2957         return type;
2958 }
2959
2960 /**
2961  * check for the allowed MS alignment values.
2962  */
2963 static bool check_alignment_value(long long intvalue)
2964 {
2965         if (intvalue < 1 || intvalue > 8192) {
2966                 errorf(HERE, "illegal alignment value");
2967                 return false;
2968         }
2969         unsigned v = (unsigned)intvalue;
2970         for (unsigned i = 1; i <= 8192; i += i) {
2971                 if (i == v)
2972                         return true;
2973         }
2974         errorf(HERE, "alignment must be power of two");
2975         return false;
2976 }
2977
2978 #define DET_MOD(name, tag) do { \
2979         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2980         *modifiers |= tag; \
2981 } while (0)
2982
2983 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2984 {
2985         decl_modifiers_t *modifiers = &specifiers->modifiers;
2986
2987         while (true) {
2988                 if (token.type == T_restrict) {
2989                         next_token();
2990                         DET_MOD(restrict, DM_RESTRICT);
2991                         goto end_loop;
2992                 } else if (token.type != T_IDENTIFIER)
2993                         break;
2994                 symbol_t *symbol = token.v.symbol;
2995                 if (symbol == sym_align) {
2996                         next_token();
2997                         expect('(');
2998                         if (token.type != T_INTEGER)
2999                                 goto end_error;
3000                         if (check_alignment_value(token.v.intvalue)) {
3001                                 if (specifiers->alignment != 0)
3002                                         warningf(HERE, "align used more than once");
3003                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3004                         }
3005                         next_token();
3006                         expect(')');
3007                 } else if (symbol == sym_allocate) {
3008                         next_token();
3009                         expect('(');
3010                         if (token.type != T_IDENTIFIER)
3011                                 goto end_error;
3012                         (void)token.v.symbol;
3013                         expect(')');
3014                 } else if (symbol == sym_dllimport) {
3015                         next_token();
3016                         DET_MOD(dllimport, DM_DLLIMPORT);
3017                 } else if (symbol == sym_dllexport) {
3018                         next_token();
3019                         DET_MOD(dllexport, DM_DLLEXPORT);
3020                 } else if (symbol == sym_thread) {
3021                         next_token();
3022                         DET_MOD(thread, DM_THREAD);
3023                 } else if (symbol == sym_naked) {
3024                         next_token();
3025                         DET_MOD(naked, DM_NAKED);
3026                 } else if (symbol == sym_noinline) {
3027                         next_token();
3028                         DET_MOD(noinline, DM_NOINLINE);
3029                 } else if (symbol == sym_noreturn) {
3030                         next_token();
3031                         DET_MOD(noreturn, DM_NORETURN);
3032                 } else if (symbol == sym_nothrow) {
3033                         next_token();
3034                         DET_MOD(nothrow, DM_NOTHROW);
3035                 } else if (symbol == sym_novtable) {
3036                         next_token();
3037                         DET_MOD(novtable, DM_NOVTABLE);
3038                 } else if (symbol == sym_property) {
3039                         next_token();
3040                         expect('(');
3041                         for (;;) {
3042                                 bool is_get = false;
3043                                 if (token.type != T_IDENTIFIER)
3044                                         goto end_error;
3045                                 if (token.v.symbol == sym_get) {
3046                                         is_get = true;
3047                                 } else if (token.v.symbol == sym_put) {
3048                                 } else {
3049                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3050                                         goto end_error;
3051                                 }
3052                                 next_token();
3053                                 expect('=');
3054                                 if (token.type != T_IDENTIFIER)
3055                                         goto end_error;
3056                                 if (is_get) {
3057                                         if (specifiers->get_property_sym != NULL) {
3058                                                 errorf(HERE, "get property name already specified");
3059                                         } else {
3060                                                 specifiers->get_property_sym = token.v.symbol;
3061                                         }
3062                                 } else {
3063                                         if (specifiers->put_property_sym != NULL) {
3064                                                 errorf(HERE, "put property name already specified");
3065                                         } else {
3066                                                 specifiers->put_property_sym = token.v.symbol;
3067                                         }
3068                                 }
3069                                 next_token();
3070                                 if (token.type == ',') {
3071                                         next_token();
3072                                         continue;
3073                                 }
3074                                 break;
3075                         }
3076                         expect(')');
3077                 } else if (symbol == sym_selectany) {
3078                         next_token();
3079                         DET_MOD(selectany, DM_SELECTANY);
3080                 } else if (symbol == sym_uuid) {
3081                         next_token();
3082                         expect('(');
3083                         if (token.type != T_STRING_LITERAL)
3084                                 goto end_error;
3085                         next_token();
3086                         expect(')');
3087                 } else if (symbol == sym_deprecated) {
3088                         next_token();
3089                         if (specifiers->deprecated != 0)
3090                                 warningf(HERE, "deprecated used more than once");
3091                         specifiers->deprecated = 1;
3092                         if (token.type == '(') {
3093                                 next_token();
3094                                 if (token.type == T_STRING_LITERAL) {
3095                                         specifiers->deprecated_string = token.v.string.begin;
3096                                         next_token();
3097                                 } else {
3098                                         errorf(HERE, "string literal expected");
3099                                 }
3100                                 expect(')');
3101                         }
3102                 } else if (symbol == sym_noalias) {
3103                         next_token();
3104                         DET_MOD(noalias, DM_NOALIAS);
3105                 } else {
3106                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3107                         next_token();
3108                         if (token.type == '(')
3109                                 skip_until(')');
3110                 }
3111 end_loop:
3112                 if (token.type == ',')
3113                         next_token();
3114         }
3115 end_error:
3116         return;
3117 }
3118
3119 static declaration_t *create_error_declaration(symbol_t *symbol, storage_class_tag_t storage_class)
3120 {
3121         declaration_t *const decl    = allocate_declaration_zero();
3122         decl->source_position        = *HERE;
3123         decl->declared_storage_class = storage_class;
3124         decl->storage_class          =
3125                 storage_class != STORAGE_CLASS_NONE || scope == global_scope ?
3126                         storage_class : STORAGE_CLASS_AUTO;
3127         decl->symbol                 = symbol;
3128         decl->implicit               = true;
3129         record_declaration(decl, false);
3130         return decl;
3131 }
3132
3133 /**
3134  * Finish the construction of a struct type by calculating
3135  * its size, offsets, alignment.
3136  */
3137 static void finish_struct_type(compound_type_t *type) {
3138         if (type->declaration == NULL)
3139                 return;
3140         declaration_t *struct_decl = type->declaration;
3141         if (! struct_decl->init.complete)
3142                 return;
3143
3144         il_size_t      size           = 0;
3145         il_size_t      offset;
3146         il_alignment_t alignment      = 1;
3147         bool           need_pad       = false;
3148
3149         declaration_t *entry = struct_decl->scope.declarations;
3150         for (; entry != NULL; entry = entry->next) {
3151                 if (entry->namespc != NAMESPACE_NORMAL)
3152                         continue;
3153
3154                 type_t *m_type = skip_typeref(entry->type);
3155                 if (! is_type_valid(m_type)) {
3156                         /* simply ignore errors here */
3157                         continue;
3158                 }
3159                 il_alignment_t m_alignment = m_type->base.alignment;
3160                 if (m_alignment > alignment)
3161                         alignment = m_alignment;
3162
3163                 offset = (size + m_alignment - 1) & -m_alignment;
3164
3165                 if (offset > size)
3166                         need_pad = true;
3167                 entry->offset = offset;
3168                 size = offset + m_type->base.size;
3169         }
3170         if (type->base.alignment != 0) {
3171                 alignment = type->base.alignment;
3172         }
3173
3174         offset = (size + alignment - 1) & -alignment;
3175         if (offset > size)
3176                 need_pad = true;
3177
3178         if (warning.padded && need_pad) {
3179                 warningf(&struct_decl->source_position,
3180                         "'%#T' needs padding", type, struct_decl->symbol);
3181         }
3182         if (warning.packed && !need_pad) {
3183                 warningf(&struct_decl->source_position,
3184                         "superfluous packed attribute on '%#T'",
3185                         type, struct_decl->symbol);
3186         }
3187
3188         type->base.size      = offset;
3189         type->base.alignment = alignment;
3190 }
3191
3192 /**
3193  * Finish the construction of an union type by calculating
3194  * its size and alignment.
3195  */
3196 static void finish_union_type(compound_type_t *type) {
3197         if (type->declaration == NULL)
3198                 return;
3199         declaration_t *union_decl = type->declaration;
3200         if (! union_decl->init.complete)
3201                 return;
3202
3203         il_size_t      size      = 0;
3204         il_alignment_t alignment = 1;
3205
3206         declaration_t *entry = union_decl->scope.declarations;
3207         for (; entry != NULL; entry = entry->next) {
3208                 if (entry->namespc != NAMESPACE_NORMAL)
3209                         continue;
3210
3211                 type_t *m_type = skip_typeref(entry->type);
3212                 if (! is_type_valid(m_type))
3213                         continue;
3214
3215                 entry->offset = 0;
3216                 if (m_type->base.size > size)
3217                         size = m_type->base.size;
3218                 if (m_type->base.alignment > alignment)
3219                         alignment = m_type->base.alignment;
3220         }
3221         if (type->base.alignment != 0) {
3222                 alignment = type->base.alignment;
3223         }
3224         size = (size + alignment - 1) & -alignment;
3225         type->base.size      = size;
3226         type->base.alignment = alignment;
3227 }
3228
3229 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3230 {
3231         type_t            *type              = NULL;
3232         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3233         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3234         unsigned           type_specifiers   = 0;
3235         bool               newtype           = false;
3236         bool               saw_error         = false;
3237         bool               old_gcc_extension = in_gcc_extension;
3238
3239         specifiers->source_position = token.source_position;
3240
3241         while (true) {
3242                 specifiers->modifiers
3243                         |= parse_attributes(&specifiers->gnu_attributes);
3244                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3245                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3246
3247                 switch (token.type) {
3248
3249                 /* storage class */
3250 #define MATCH_STORAGE_CLASS(token, class)                                  \
3251                 case token:                                                        \
3252                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3253                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3254                         }                                                              \
3255                         specifiers->declared_storage_class = class;                    \
3256                         next_token();                                                  \
3257                         break;
3258
3259                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3260                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3261                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3262                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3263                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3264
3265                 case T__declspec:
3266                         next_token();
3267                         expect('(');
3268                         add_anchor_token(')');
3269                         parse_microsoft_extended_decl_modifier(specifiers);
3270                         rem_anchor_token(')');
3271                         expect(')');
3272                         break;
3273
3274                 case T___thread:
3275                         switch (specifiers->declared_storage_class) {
3276                         case STORAGE_CLASS_NONE:
3277                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3278                                 break;
3279
3280                         case STORAGE_CLASS_EXTERN:
3281                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3282                                 break;
3283
3284                         case STORAGE_CLASS_STATIC:
3285                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3286                                 break;
3287
3288                         default:
3289                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3290                                 break;
3291                         }
3292                         next_token();
3293                         break;
3294
3295                 /* type qualifiers */
3296 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3297                 case token:                                                     \
3298                         qualifiers |= qualifier;                                    \
3299                         next_token();                                               \
3300                         break
3301
3302                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3303                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3304                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3305                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3306                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3307                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3308                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3309                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3310
3311                 case T___extension__:
3312                         next_token();
3313                         in_gcc_extension = true;
3314                         break;
3315
3316                 /* type specifiers */
3317 #define MATCH_SPECIFIER(token, specifier, name)                         \
3318                 case token:                                                     \
3319                         next_token();                                               \
3320                         if (type_specifiers & specifier) {                           \
3321                                 errorf(HERE, "multiple " name " type specifiers given"); \
3322                         } else {                                                    \
3323                                 type_specifiers |= specifier;                           \
3324                         }                                                           \
3325                         break
3326
3327                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3328                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3329                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3330                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3331                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3332                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3333                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3334                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3335                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3336                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3337                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3338                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3339                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3340                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3341                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3342                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3343
3344                 case T__forceinline:
3345                         /* only in microsoft mode */
3346                         specifiers->modifiers |= DM_FORCEINLINE;
3347                         /* FALLTHROUGH */
3348
3349                 case T_inline:
3350                         next_token();
3351                         specifiers->is_inline = true;
3352                         break;
3353
3354                 case T_long:
3355                         next_token();
3356                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3357                                 errorf(HERE, "multiple type specifiers given");
3358                         } else if (type_specifiers & SPECIFIER_LONG) {
3359                                 type_specifiers |= SPECIFIER_LONG_LONG;
3360                         } else {
3361                                 type_specifiers |= SPECIFIER_LONG;
3362                         }
3363                         break;
3364
3365                 case T_struct: {
3366                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3367
3368                         type->compound.declaration = parse_compound_type_specifier(true);
3369                         finish_struct_type(&type->compound);
3370                         break;
3371                 }
3372                 case T_union: {
3373                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3374                         type->compound.declaration = parse_compound_type_specifier(false);
3375                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3376                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3377                         break;
3378                         finish_union_type(&type->compound);
3379                 }
3380                 case T_enum:
3381                         type = parse_enum_specifier();
3382                         break;
3383                 case T___typeof__:
3384                         type = parse_typeof();
3385                         break;
3386                 case T___builtin_va_list:
3387                         type = duplicate_type(type_valist);
3388                         next_token();
3389                         break;
3390
3391                 case T_IDENTIFIER: {
3392                         /* only parse identifier if we haven't found a type yet */
3393                         if (type != NULL || type_specifiers != 0) {
3394                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3395                                  * declaration, so it doesn't generate errors about expecting '(' or
3396                                  * '{' later on. */
3397                                 switch (look_ahead(1)->type) {
3398                                         STORAGE_CLASSES
3399                                         TYPE_SPECIFIERS
3400                                         case T_const:
3401                                         case T_restrict:
3402                                         case T_volatile:
3403                                         case T_inline:
3404                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3405                                         case T_IDENTIFIER:
3406                                         case '*':
3407                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3408                                                 next_token();
3409                                                 continue;
3410
3411                                         default:
3412                                                 goto finish_specifiers;
3413                                 }
3414                         }
3415
3416                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3417                         if (typedef_type == NULL) {
3418                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3419                                  * declaration, so it doesn't generate 'implicit int' followed by more
3420                                  * errors later on. */
3421                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3422                                 switch (la1_type) {
3423                                         DECLARATION_START
3424                                         case T_IDENTIFIER:
3425                                         case '*': {
3426                                                 errorf(HERE, "%K does not name a type", &token);
3427
3428                                                 declaration_t *const decl =
3429                                                         create_error_declaration(token.v.symbol, STORAGE_CLASS_TYPEDEF);
3430
3431                                                 type = allocate_type_zero(TYPE_TYPEDEF, HERE);
3432                                                 type->typedeft.declaration = decl;
3433
3434                                                 next_token();
3435                                                 saw_error = true;
3436                                                 if (la1_type == '*')
3437                                                         goto finish_specifiers;
3438                                                 continue;
3439                                         }
3440
3441                                         default:
3442                                                 goto finish_specifiers;
3443                                 }
3444                         }
3445
3446                         next_token();
3447                         type = typedef_type;
3448                         break;
3449                 }
3450
3451                 /* function specifier */
3452                 default:
3453                         goto finish_specifiers;
3454                 }
3455         }
3456
3457 finish_specifiers:
3458         in_gcc_extension = old_gcc_extension;
3459
3460         if (type == NULL || (saw_error && type_specifiers != 0)) {
3461                 atomic_type_kind_t atomic_type;
3462
3463                 /* match valid basic types */
3464                 switch(type_specifiers) {
3465                 case SPECIFIER_VOID:
3466                         atomic_type = ATOMIC_TYPE_VOID;
3467                         break;
3468                 case SPECIFIER_CHAR:
3469                         atomic_type = ATOMIC_TYPE_CHAR;
3470                         break;
3471                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3472                         atomic_type = ATOMIC_TYPE_SCHAR;
3473                         break;
3474                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3475                         atomic_type = ATOMIC_TYPE_UCHAR;
3476                         break;
3477                 case SPECIFIER_SHORT:
3478                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3479                 case SPECIFIER_SHORT | SPECIFIER_INT:
3480                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3481                         atomic_type = ATOMIC_TYPE_SHORT;
3482                         break;
3483                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3484                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3485                         atomic_type = ATOMIC_TYPE_USHORT;
3486                         break;
3487                 case SPECIFIER_INT:
3488                 case SPECIFIER_SIGNED:
3489                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3490                         atomic_type = ATOMIC_TYPE_INT;
3491                         break;
3492                 case SPECIFIER_UNSIGNED:
3493                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3494                         atomic_type = ATOMIC_TYPE_UINT;
3495                         break;
3496                 case SPECIFIER_LONG:
3497                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3498                 case SPECIFIER_LONG | SPECIFIER_INT:
3499                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3500                         atomic_type = ATOMIC_TYPE_LONG;
3501                         break;
3502                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3503                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3504                         atomic_type = ATOMIC_TYPE_ULONG;
3505                         break;
3506
3507                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3508                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3509                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3510                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3511                         | SPECIFIER_INT:
3512                         atomic_type = ATOMIC_TYPE_LONGLONG;
3513                         goto warn_about_long_long;
3514
3515                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3516                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3517                         | SPECIFIER_INT:
3518                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3519 warn_about_long_long:
3520                         if (warning.long_long) {
3521                                 warningf(&specifiers->source_position,
3522                                          "ISO C90 does not support 'long long'");
3523                         }
3524                         break;
3525
3526                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3527                         atomic_type = unsigned_int8_type_kind;
3528                         break;
3529
3530                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3531                         atomic_type = unsigned_int16_type_kind;
3532                         break;
3533
3534                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3535                         atomic_type = unsigned_int32_type_kind;
3536                         break;
3537
3538                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3539                         atomic_type = unsigned_int64_type_kind;
3540                         break;
3541
3542                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3543                         atomic_type = unsigned_int128_type_kind;
3544                         break;
3545
3546                 case SPECIFIER_INT8:
3547                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3548                         atomic_type = int8_type_kind;
3549                         break;
3550
3551                 case SPECIFIER_INT16:
3552                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3553                         atomic_type = int16_type_kind;
3554                         break;
3555
3556                 case SPECIFIER_INT32:
3557                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3558                         atomic_type = int32_type_kind;
3559                         break;
3560
3561                 case SPECIFIER_INT64:
3562                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3563                         atomic_type = int64_type_kind;
3564                         break;
3565
3566                 case SPECIFIER_INT128:
3567                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3568                         atomic_type = int128_type_kind;
3569                         break;
3570
3571                 case SPECIFIER_FLOAT:
3572                         atomic_type = ATOMIC_TYPE_FLOAT;
3573                         break;
3574                 case SPECIFIER_DOUBLE:
3575                         atomic_type = ATOMIC_TYPE_DOUBLE;
3576                         break;
3577                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3578                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3579                         break;
3580                 case SPECIFIER_BOOL:
3581                         atomic_type = ATOMIC_TYPE_BOOL;
3582                         break;
3583                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3584                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3585                         atomic_type = ATOMIC_TYPE_FLOAT;
3586                         break;
3587                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3588                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3589                         atomic_type = ATOMIC_TYPE_DOUBLE;
3590                         break;
3591                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3592                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3593                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3594                         break;
3595                 default:
3596                         /* invalid specifier combination, give an error message */
3597                         if (type_specifiers == 0) {
3598                                 if (saw_error)
3599                                         goto end_error;
3600
3601                                 if (!strict_mode) {
3602                                         if (warning.implicit_int) {
3603                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3604                                         }
3605                                         atomic_type = ATOMIC_TYPE_INT;
3606                                         break;
3607                                 } else {
3608                                         errorf(HERE, "no type specifiers given in declaration");
3609                                 }
3610                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3611                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3612                                 errorf(HERE, "signed and unsigned specifiers given");
3613                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3614                                 errorf(HERE, "only integer types can be signed or unsigned");
3615                         } else {
3616                                 errorf(HERE, "multiple datatypes in declaration");
3617                         }
3618                         goto end_error;
3619                 }
3620
3621                 if (type_specifiers & SPECIFIER_COMPLEX) {
3622                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3623                         type->complex.akind = atomic_type;
3624                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3625                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3626                         type->imaginary.akind = atomic_type;
3627                 } else {
3628                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3629                         type->atomic.akind = atomic_type;
3630                 }
3631                 newtype = true;
3632         } else if (type_specifiers != 0) {
3633                 errorf(HERE, "multiple datatypes in declaration");
3634         }
3635
3636         /* FIXME: check type qualifiers here */
3637
3638         type->base.qualifiers = qualifiers;
3639         type->base.modifiers  = modifiers;
3640
3641         type_t *result = typehash_insert(type);
3642         if (newtype && result != type) {
3643                 free_type(type);
3644         }
3645
3646         specifiers->type = result;
3647         return;
3648
3649 end_error:
3650         specifiers->type = type_error_type;
3651         return;
3652 }
3653
3654 static type_qualifiers_t parse_type_qualifiers(void)
3655 {
3656         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3657
3658         while (true) {
3659                 switch(token.type) {
3660                 /* type qualifiers */
3661                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3662                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3663                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3664                 /* microsoft extended type modifiers */
3665                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3666                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3667                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3668                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3669                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3670
3671                 default:
3672                         return qualifiers;
3673                 }
3674         }
3675 }
3676
3677 static declaration_t *parse_identifier_list(void)
3678 {
3679         declaration_t *declarations     = NULL;
3680         declaration_t *last_declaration = NULL;
3681         do {
3682                 declaration_t *const declaration = allocate_declaration_zero();
3683                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3684                 declaration->source_position = token.source_position;
3685                 declaration->symbol          = token.v.symbol;
3686                 next_token();
3687
3688                 if (last_declaration != NULL) {
3689                         last_declaration->next = declaration;
3690                 } else {
3691                         declarations = declaration;
3692                 }
3693                 last_declaration = declaration;
3694
3695                 if (token.type != ',') {
3696                         break;
3697                 }
3698                 next_token();
3699         } while (token.type == T_IDENTIFIER);
3700
3701         return declarations;
3702 }
3703
3704 static type_t *automatic_type_conversion(type_t *orig_type);
3705
3706 static void semantic_parameter(declaration_t *declaration)
3707 {
3708         /* TODO: improve error messages */
3709         source_position_t const* const pos = &declaration->source_position;
3710
3711         switch (declaration->declared_storage_class) {
3712                 case STORAGE_CLASS_TYPEDEF:
3713                         errorf(pos, "typedef not allowed in parameter list");
3714                         break;
3715
3716                 /* Allowed storage classes */
3717                 case STORAGE_CLASS_NONE:
3718                 case STORAGE_CLASS_REGISTER:
3719                         break;
3720
3721                 default:
3722                         errorf(pos, "parameter may only have none or register storage class");
3723                         break;
3724         }
3725
3726         type_t *const orig_type = declaration->type;
3727         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3728          * sugar.  Turn it into a pointer.
3729          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3730          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3731          */
3732         type_t *const type = automatic_type_conversion(orig_type);
3733         declaration->type = type;
3734
3735         if (is_type_incomplete(skip_typeref(type))) {
3736                 errorf(pos, "parameter '%#T' is of incomplete type",
3737                        orig_type, declaration->symbol);
3738         }
3739 }
3740
3741 static declaration_t *parse_parameter(void)
3742 {
3743         declaration_specifiers_t specifiers;
3744         memset(&specifiers, 0, sizeof(specifiers));
3745
3746         parse_declaration_specifiers(&specifiers);
3747
3748         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3749
3750         return declaration;
3751 }
3752
3753 static declaration_t *parse_parameters(function_type_t *type)
3754 {
3755         declaration_t *declarations = NULL;
3756
3757         eat('(');
3758         add_anchor_token(')');
3759         int saved_comma_state = save_and_reset_anchor_state(',');
3760
3761         if (token.type == T_IDENTIFIER &&
3762             !is_typedef_symbol(token.v.symbol)) {
3763                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3764                 if (la1_type == ',' || la1_type == ')') {
3765                         type->kr_style_parameters = true;
3766                         declarations = parse_identifier_list();
3767                         goto parameters_finished;
3768                 }
3769         }
3770
3771         if (token.type == ')') {
3772                 type->unspecified_parameters = 1;
3773                 goto parameters_finished;
3774         }
3775
3776         declaration_t        *declaration;
3777         declaration_t        *last_declaration = NULL;
3778         function_parameter_t *parameter;
3779         function_parameter_t *last_parameter = NULL;
3780
3781         while (true) {
3782                 switch(token.type) {
3783                 case T_DOTDOTDOT:
3784                         next_token();
3785                         type->variadic = 1;
3786                         goto parameters_finished;
3787
3788                 case T_IDENTIFIER:
3789                 case T___extension__:
3790                 DECLARATION_START
3791                         declaration = parse_parameter();
3792
3793                         /* func(void) is not a parameter */
3794                         if (last_parameter == NULL
3795                                         && token.type == ')'
3796                                         && declaration->symbol == NULL
3797                                         && skip_typeref(declaration->type) == type_void) {
3798                                 goto parameters_finished;
3799                         }
3800                         semantic_parameter(declaration);
3801
3802                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3803                         memset(parameter, 0, sizeof(parameter[0]));
3804                         parameter->type = declaration->type;
3805
3806                         if (last_parameter != NULL) {
3807                                 last_declaration->next = declaration;
3808                                 last_parameter->next   = parameter;
3809                         } else {
3810                                 type->parameters = parameter;
3811                                 declarations     = declaration;
3812                         }
3813                         last_parameter   = parameter;
3814                         last_declaration = declaration;
3815                         break;
3816
3817                 default:
3818                         goto parameters_finished;
3819                 }
3820                 if (token.type != ',') {
3821                         goto parameters_finished;
3822                 }
3823                 next_token();
3824         }
3825
3826
3827 parameters_finished:
3828         rem_anchor_token(')');
3829         expect(')');
3830
3831         restore_anchor_state(',', saved_comma_state);
3832         return declarations;
3833
3834 end_error:
3835         restore_anchor_state(',', saved_comma_state);
3836         return NULL;
3837 }
3838
3839 typedef enum construct_type_kind_t {
3840         CONSTRUCT_INVALID,
3841         CONSTRUCT_POINTER,
3842         CONSTRUCT_FUNCTION,
3843         CONSTRUCT_ARRAY
3844 } construct_type_kind_t;
3845
3846 typedef struct construct_type_t construct_type_t;
3847 struct construct_type_t {
3848         construct_type_kind_t  kind;
3849         construct_type_t      *next;
3850 };
3851
3852 typedef struct parsed_pointer_t parsed_pointer_t;
3853 struct parsed_pointer_t {
3854         construct_type_t  construct_type;
3855         type_qualifiers_t type_qualifiers;
3856 };
3857
3858 typedef struct construct_function_type_t construct_function_type_t;
3859 struct construct_function_type_t {
3860         construct_type_t  construct_type;
3861         type_t           *function_type;
3862 };
3863
3864 typedef struct parsed_array_t parsed_array_t;
3865 struct parsed_array_t {
3866         construct_type_t  construct_type;
3867         type_qualifiers_t type_qualifiers;
3868         bool              is_static;
3869         bool              is_variable;
3870         expression_t     *size;
3871 };
3872
3873 typedef struct construct_base_type_t construct_base_type_t;
3874 struct construct_base_type_t {
3875         construct_type_t  construct_type;
3876         type_t           *type;
3877 };
3878
3879 static construct_type_t *parse_pointer_declarator(void)
3880 {
3881         eat('*');
3882
3883         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3884         memset(pointer, 0, sizeof(pointer[0]));
3885         pointer->construct_type.kind = CONSTRUCT_POINTER;
3886         pointer->type_qualifiers     = parse_type_qualifiers();
3887
3888         return (construct_type_t*) pointer;
3889 }
3890
3891 static construct_type_t *parse_array_declarator(void)
3892 {
3893         eat('[');
3894         add_anchor_token(']');
3895
3896         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3897         memset(array, 0, sizeof(array[0]));
3898         array->construct_type.kind = CONSTRUCT_ARRAY;
3899
3900         if (token.type == T_static) {
3901                 array->is_static = true;
3902                 next_token();
3903         }
3904
3905         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3906         if (type_qualifiers != 0) {
3907                 if (token.type == T_static) {
3908                         array->is_static = true;
3909                         next_token();
3910                 }
3911         }
3912         array->type_qualifiers = type_qualifiers;
3913
3914         if (token.type == '*' && look_ahead(1)->type == ']') {
3915                 array->is_variable = true;
3916                 next_token();
3917         } else if (token.type != ']') {
3918                 array->size = parse_assignment_expression();
3919         }
3920
3921         rem_anchor_token(']');
3922         expect(']');
3923
3924 end_error:
3925         return (construct_type_t*) array;
3926 }
3927
3928 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3929 {
3930         type_t *type;
3931         if (declaration != NULL) {
3932                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3933
3934                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3935
3936                 if (mask & (mask-1)) {
3937                         const char *first = NULL, *second = NULL;
3938
3939                         /* more than one calling convention set */
3940                         if (declaration->modifiers & DM_CDECL) {
3941                                 if (first == NULL)       first = "cdecl";
3942                                 else if (second == NULL) second = "cdecl";
3943                         }
3944                         if (declaration->modifiers & DM_STDCALL) {
3945                                 if (first == NULL)       first = "stdcall";
3946                                 else if (second == NULL) second = "stdcall";
3947                         }
3948                         if (declaration->modifiers & DM_FASTCALL) {
3949                                 if (first == NULL)       first = "fastcall";
3950                                 else if (second == NULL) second = "fastcall";
3951                         }
3952                         if (declaration->modifiers & DM_THISCALL) {
3953                                 if (first == NULL)       first = "thiscall";
3954                                 else if (second == NULL) second = "thiscall";
3955                         }
3956                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3957                 }
3958
3959                 if (declaration->modifiers & DM_CDECL)
3960                         type->function.calling_convention = CC_CDECL;
3961                 else if (declaration->modifiers & DM_STDCALL)
3962                         type->function.calling_convention = CC_STDCALL;
3963                 else if (declaration->modifiers & DM_FASTCALL)
3964                         type->function.calling_convention = CC_FASTCALL;
3965                 else if (declaration->modifiers & DM_THISCALL)
3966                         type->function.calling_convention = CC_THISCALL;
3967         } else {
3968                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3969         }
3970
3971         declaration_t *parameters = parse_parameters(&type->function);
3972         if (declaration != NULL) {
3973                 declaration->scope.declarations = parameters;
3974         }
3975
3976         construct_function_type_t *construct_function_type =
3977                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3978         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3979         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3980         construct_function_type->function_type       = type;
3981
3982         return &construct_function_type->construct_type;
3983 }
3984
3985 static void fix_declaration_type(declaration_t *declaration)
3986 {
3987         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3988         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3989
3990         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3991                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3992
3993         if (declaration->type->base.modifiers == type_modifiers)
3994                 return;
3995
3996         type_t *copy = duplicate_type(declaration->type);
3997         copy->base.modifiers = type_modifiers;
3998
3999         type_t *result = typehash_insert(copy);
4000         if (result != copy) {
4001                 obstack_free(type_obst, copy);
4002         }
4003
4004         declaration->type = result;
4005 }
4006
4007 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
4008                 bool may_be_abstract)
4009 {
4010         /* construct a single linked list of construct_type_t's which describe
4011          * how to construct the final declarator type */
4012         construct_type_t *first = NULL;
4013         construct_type_t *last  = NULL;
4014         gnu_attribute_t  *attributes = NULL;
4015
4016         decl_modifiers_t modifiers = parse_attributes(&attributes);
4017
4018         /* pointers */
4019         while (token.type == '*') {
4020                 construct_type_t *type = parse_pointer_declarator();
4021
4022                 if (last == NULL) {
4023                         first = type;
4024                         last  = type;
4025                 } else {
4026                         last->next = type;
4027                         last       = type;
4028                 }
4029
4030                 /* TODO: find out if this is correct */
4031                 modifiers |= parse_attributes(&attributes);
4032         }
4033
4034         if (declaration != NULL)
4035                 declaration->modifiers |= modifiers;
4036
4037         construct_type_t *inner_types = NULL;
4038
4039         switch(token.type) {
4040         case T_IDENTIFIER:
4041                 if (declaration == NULL) {
4042                         errorf(HERE, "no identifier expected in typename");
4043                 } else {
4044                         declaration->symbol          = token.v.symbol;
4045                         declaration->source_position = token.source_position;
4046                 }
4047                 next_token();
4048                 break;
4049         case '(':
4050                 next_token();
4051                 add_anchor_token(')');
4052                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
4053                 if (inner_types != NULL) {
4054                         /* All later declarators only modify the return type, not declaration */
4055                         declaration = NULL;
4056                 }
4057                 rem_anchor_token(')');
4058                 expect(')');
4059                 break;
4060         default:
4061                 if (may_be_abstract)
4062                         break;
4063                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4064                 eat_until_anchor();
4065                 return NULL;
4066         }
4067
4068         construct_type_t *p = last;
4069
4070         while(true) {
4071                 construct_type_t *type;
4072                 switch(token.type) {
4073                 case '(':
4074                         type = parse_function_declarator(declaration);
4075                         break;
4076                 case '[':
4077                         type = parse_array_declarator();
4078                         break;
4079                 default:
4080                         goto declarator_finished;
4081                 }
4082
4083                 /* insert in the middle of the list (behind p) */
4084                 if (p != NULL) {
4085                         type->next = p->next;
4086                         p->next    = type;
4087                 } else {
4088                         type->next = first;
4089                         first      = type;
4090                 }
4091                 if (last == p) {
4092                         last = type;
4093                 }
4094         }
4095
4096 declarator_finished:
4097         /* append inner_types at the end of the list, we don't to set last anymore
4098          * as it's not needed anymore */
4099         if (last == NULL) {
4100                 assert(first == NULL);
4101                 first = inner_types;
4102         } else {
4103                 last->next = inner_types;
4104         }
4105
4106         return first;
4107 end_error:
4108         return NULL;
4109 }
4110
4111 static void parse_declaration_attributes(declaration_t *declaration)
4112 {
4113         gnu_attribute_t  *attributes = NULL;
4114         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4115
4116         if (declaration == NULL)
4117                 return;
4118
4119         declaration->modifiers |= modifiers;
4120         /* check if we have these stupid mode attributes... */
4121         type_t *old_type = declaration->type;
4122         if (old_type == NULL)
4123                 return;
4124
4125         gnu_attribute_t *attribute = attributes;
4126         for ( ; attribute != NULL; attribute = attribute->next) {
4127                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4128                         continue;
4129
4130                 atomic_type_kind_t  akind = attribute->u.akind;
4131                 if (!is_type_signed(old_type)) {
4132                         switch(akind) {
4133                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4134                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4135                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4136                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4137                         default:
4138                                 panic("invalid akind in mode attribute");
4139                         }
4140                 }
4141                 declaration->type
4142                         = make_atomic_type(akind, old_type->base.qualifiers);
4143         }
4144 }
4145
4146 static type_t *construct_declarator_type(construct_type_t *construct_list,
4147                                          type_t *type)
4148 {
4149         construct_type_t *iter = construct_list;
4150         for( ; iter != NULL; iter = iter->next) {
4151                 switch(iter->kind) {
4152                 case CONSTRUCT_INVALID:
4153                         internal_errorf(HERE, "invalid type construction found");
4154                 case CONSTRUCT_FUNCTION: {
4155                         construct_function_type_t *construct_function_type
4156                                 = (construct_function_type_t*) iter;
4157
4158                         type_t *function_type = construct_function_type->function_type;
4159
4160                         function_type->function.return_type = type;
4161
4162                         type_t *skipped_return_type = skip_typeref(type);
4163                         /* Â§6.7.5.3(1) */
4164                         if (is_type_function(skipped_return_type)) {
4165                                 errorf(HERE, "function returning function is not allowed");
4166                         } else if (is_type_array(skipped_return_type)) {
4167                                 errorf(HERE, "function returning array is not allowed");
4168                         } else {
4169                                 if (skipped_return_type->base.qualifiers != 0) {
4170                                         warningf(HERE,
4171                                                 "type qualifiers in return type of function type are meaningless");
4172                                 }
4173                         }
4174
4175                         type = function_type;
4176                         break;
4177                 }
4178
4179                 case CONSTRUCT_POINTER: {
4180                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4181                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
4182                         pointer_type->pointer.points_to  = type;
4183                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
4184
4185                         type = pointer_type;
4186                         break;
4187                 }
4188
4189                 case CONSTRUCT_ARRAY: {
4190                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4191                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
4192
4193                         expression_t *size_expression = parsed_array->size;
4194                         if (size_expression != NULL) {
4195                                 size_expression
4196                                         = create_implicit_cast(size_expression, type_size_t);
4197                         }
4198
4199                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4200                         array_type->array.element_type    = type;
4201                         array_type->array.is_static       = parsed_array->is_static;
4202                         array_type->array.is_variable     = parsed_array->is_variable;
4203                         array_type->array.size_expression = size_expression;
4204
4205                         if (size_expression != NULL) {
4206                                 if (is_constant_expression(size_expression)) {
4207                                         array_type->array.size_constant = true;
4208                                         array_type->array.size
4209                                                 = fold_constant(size_expression);
4210                                 } else {
4211                                         array_type->array.is_vla = true;
4212                                 }
4213                         }
4214
4215                         type_t *skipped_type = skip_typeref(type);
4216                         /* Â§6.7.5.2(1) */
4217                         if (is_type_incomplete(skipped_type)) {
4218                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4219                         } else if (is_type_function(skipped_type)) {
4220                                 errorf(HERE, "array of functions is not allowed");
4221                         }
4222                         type = array_type;
4223                         break;
4224                 }
4225                 }
4226
4227                 type_t *hashed_type = typehash_insert(type);
4228                 if (hashed_type != type) {
4229                         /* the function type was constructed earlier freeing it here will
4230                          * destroy other types... */
4231                         if (iter->kind != CONSTRUCT_FUNCTION) {
4232                                 free_type(type);
4233                         }
4234                         type = hashed_type;
4235                 }
4236         }
4237
4238         return type;
4239 }
4240
4241 static declaration_t *parse_declarator(
4242                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
4243 {
4244         declaration_t *const declaration    = allocate_declaration_zero();
4245         declaration->source_position        = specifiers->source_position;
4246         declaration->declared_storage_class = specifiers->declared_storage_class;
4247         declaration->modifiers              = specifiers->modifiers;
4248         declaration->deprecated_string      = specifiers->deprecated_string;
4249         declaration->get_property_sym       = specifiers->get_property_sym;
4250         declaration->put_property_sym       = specifiers->put_property_sym;
4251         declaration->is_inline              = specifiers->is_inline;
4252
4253         declaration->storage_class          = specifiers->declared_storage_class;
4254         if (declaration->storage_class == STORAGE_CLASS_NONE
4255                         && scope != global_scope) {
4256                 declaration->storage_class = STORAGE_CLASS_AUTO;
4257         }
4258
4259         if (specifiers->alignment != 0) {
4260                 /* TODO: add checks here */
4261                 declaration->alignment = specifiers->alignment;
4262         }
4263
4264         construct_type_t *construct_type
4265                 = parse_inner_declarator(declaration, may_be_abstract);
4266         type_t *const type = specifiers->type;
4267         declaration->type = construct_declarator_type(construct_type, type);
4268
4269         parse_declaration_attributes(declaration);
4270
4271         fix_declaration_type(declaration);
4272
4273         if (construct_type != NULL) {
4274                 obstack_free(&temp_obst, construct_type);
4275         }
4276
4277         return declaration;
4278 }
4279
4280 static type_t *parse_abstract_declarator(type_t *base_type)
4281 {
4282         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4283
4284         type_t *result = construct_declarator_type(construct_type, base_type);
4285         if (construct_type != NULL) {
4286                 obstack_free(&temp_obst, construct_type);
4287         }
4288
4289         return result;
4290 }
4291
4292 static declaration_t *append_declaration(declaration_t* const declaration)
4293 {
4294         if (last_declaration != NULL) {
4295                 last_declaration->next = declaration;
4296         } else {
4297                 scope->declarations = declaration;
4298         }
4299         last_declaration = declaration;
4300         return declaration;
4301 }
4302
4303 /**
4304  * Check if the declaration of main is suspicious.  main should be a
4305  * function with external linkage, returning int, taking either zero
4306  * arguments, two, or three arguments of appropriate types, ie.
4307  *
4308  * int main([ int argc, char **argv [, char **env ] ]).
4309  *
4310  * @param decl    the declaration to check
4311  * @param type    the function type of the declaration
4312  */
4313 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4314 {
4315         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4316                 warningf(&decl->source_position,
4317                          "'main' is normally a non-static function");
4318         }
4319         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4320                 warningf(&decl->source_position,
4321                          "return type of 'main' should be 'int', but is '%T'",
4322                          func_type->return_type);
4323         }
4324         const function_parameter_t *parm = func_type->parameters;
4325         if (parm != NULL) {
4326                 type_t *const first_type = parm->type;
4327                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4328                         warningf(&decl->source_position,
4329                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4330                 }
4331                 parm = parm->next;
4332                 if (parm != NULL) {
4333                         type_t *const second_type = parm->type;
4334                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4335                                 warningf(&decl->source_position,
4336                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4337                         }
4338                         parm = parm->next;
4339                         if (parm != NULL) {
4340                                 type_t *const third_type = parm->type;
4341                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4342                                         warningf(&decl->source_position,
4343                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4344                                 }
4345                                 parm = parm->next;
4346                                 if (parm != NULL)
4347                                         goto warn_arg_count;
4348                         }
4349                 } else {
4350 warn_arg_count:
4351                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4352                 }
4353         }
4354 }
4355
4356 /**
4357  * Check if a symbol is the equal to "main".
4358  */
4359 static bool is_sym_main(const symbol_t *const sym)
4360 {
4361         return strcmp(sym->string, "main") == 0;
4362 }
4363
4364 static declaration_t *record_declaration(
4365         declaration_t *const declaration,
4366         const bool is_definition)
4367 {
4368         const symbol_t *const symbol  = declaration->symbol;
4369         const namespace_t     namespc = (namespace_t)declaration->namespc;
4370
4371         assert(symbol != NULL);
4372         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4373
4374         type_t *const orig_type = declaration->type;
4375         type_t *const type      = skip_typeref(orig_type);
4376         if (is_type_function(type) &&
4377                         type->function.unspecified_parameters &&
4378                         warning.strict_prototypes &&
4379                         previous_declaration == NULL) {
4380                 warningf(&declaration->source_position,
4381                          "function declaration '%#T' is not a prototype",
4382                          orig_type, symbol);
4383         }
4384
4385         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4386                 check_type_of_main(declaration, &type->function);
4387         }
4388
4389         if (warning.nested_externs                             &&
4390             declaration->storage_class == STORAGE_CLASS_EXTERN &&
4391             scope                      != global_scope) {
4392                 warningf(&declaration->source_position,
4393                          "nested extern declaration of '%#T'", declaration->type, symbol);
4394         }
4395
4396         assert(declaration != previous_declaration);
4397         if (previous_declaration != NULL
4398                         && previous_declaration->parent_scope == scope) {
4399                 /* can happen for K&R style declarations */
4400                 if (previous_declaration->type == NULL) {
4401                         previous_declaration->type = declaration->type;
4402                 }
4403
4404                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4405                 if (!types_compatible(type, prev_type)) {
4406                         errorf(&declaration->source_position,
4407                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4408                                    orig_type, symbol, previous_declaration->type, symbol,
4409                                    &previous_declaration->source_position);
4410                 } else {
4411                         unsigned old_storage_class = previous_declaration->storage_class;
4412                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4413                                 errorf(&declaration->source_position,
4414                                            "redeclaration of enum entry '%Y' (declared %P)",
4415                                            symbol, &previous_declaration->source_position);
4416                                 return previous_declaration;
4417                         }
4418
4419                         if (warning.redundant_decls                                     &&
4420                             is_definition                                               &&
4421                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4422                             !(previous_declaration->modifiers & DM_USED)                &&
4423                             !previous_declaration->used) {
4424                                 warningf(&previous_declaration->source_position,
4425                                          "unnecessary static forward declaration for '%#T'",
4426                                          previous_declaration->type, symbol);
4427                         }
4428
4429                         unsigned new_storage_class = declaration->storage_class;
4430
4431                         if (is_type_incomplete(prev_type)) {
4432                                 previous_declaration->type = type;
4433                                 prev_type                  = type;
4434                         }
4435
4436                         /* pretend no storage class means extern for function
4437                          * declarations (except if the previous declaration is neither
4438                          * none nor extern) */
4439                         if (is_type_function(type)) {
4440                                 if (prev_type->function.unspecified_parameters) {
4441                                         previous_declaration->type = type;
4442                                         prev_type                  = type;
4443                                 }
4444
4445                                 switch (old_storage_class) {
4446                                 case STORAGE_CLASS_NONE:
4447                                         old_storage_class = STORAGE_CLASS_EXTERN;
4448                                         /* FALLTHROUGH */
4449
4450                                 case STORAGE_CLASS_EXTERN:
4451                                         if (is_definition) {
4452                                                 if (warning.missing_prototypes &&
4453                                                     prev_type->function.unspecified_parameters &&
4454                                                     !is_sym_main(symbol)) {
4455                                                         warningf(&declaration->source_position,
4456                                                                          "no previous prototype for '%#T'",
4457                                                                          orig_type, symbol);
4458                                                 }
4459                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4460                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4461                                         }
4462                                         break;
4463
4464                                 default:
4465                                         break;
4466                                 }
4467                         }
4468
4469                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4470                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4471 warn_redundant_declaration:
4472                                 if (!is_definition           &&
4473                                     warning.redundant_decls  &&
4474                                     is_type_valid(prev_type) &&
4475                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4476                                         warningf(&declaration->source_position,
4477                                                  "redundant declaration for '%Y' (declared %P)",
4478                                                  symbol, &previous_declaration->source_position);
4479                                 }
4480                         } else if (current_function == NULL) {
4481                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4482                                     new_storage_class == STORAGE_CLASS_STATIC) {
4483                                         errorf(&declaration->source_position,
4484                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4485                                                symbol, &previous_declaration->source_position);
4486                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4487                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4488                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4489                                 } else {
4490                                         goto warn_redundant_declaration;
4491                                 }
4492                         } else if (is_type_valid(prev_type)) {
4493                                 if (old_storage_class == new_storage_class) {
4494                                         errorf(&declaration->source_position,
4495                                                "redeclaration of '%Y' (declared %P)",
4496                                                symbol, &previous_declaration->source_position);
4497                                 } else {
4498                                         errorf(&declaration->source_position,
4499                                                "redeclaration of '%Y' with different linkage (declared %P)",
4500                                                symbol, &previous_declaration->source_position);
4501                                 }
4502                         }
4503                 }
4504
4505                 previous_declaration->modifiers |= declaration->modifiers;
4506                 previous_declaration->is_inline |= declaration->is_inline;
4507                 return previous_declaration;
4508         } else if (is_type_function(type)) {
4509                 if (is_definition &&
4510                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4511                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4512                                 warningf(&declaration->source_position,
4513                                          "no previous prototype for '%#T'", orig_type, symbol);
4514                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4515                                 warningf(&declaration->source_position,
4516                                          "no previous declaration for '%#T'", orig_type,
4517                                          symbol);
4518                         }
4519                 }
4520         } else {
4521                 if (warning.missing_declarations &&
4522                     scope == global_scope && (
4523                       declaration->storage_class == STORAGE_CLASS_NONE ||
4524                       declaration->storage_class == STORAGE_CLASS_THREAD
4525                     )) {
4526                         warningf(&declaration->source_position,
4527                                  "no previous declaration for '%#T'", orig_type, symbol);
4528                 }
4529         }
4530
4531         assert(declaration->parent_scope == NULL);
4532         assert(scope != NULL);
4533
4534         declaration->parent_scope = scope;
4535
4536         environment_push(declaration);
4537         return append_declaration(declaration);
4538 }
4539
4540 static void parser_error_multiple_definition(declaration_t *declaration,
4541                 const source_position_t *source_position)
4542 {
4543         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4544                declaration->symbol, &declaration->source_position);
4545 }
4546
4547 static bool is_declaration_specifier(const token_t *token,
4548                                      bool only_specifiers_qualifiers)
4549 {
4550         switch (token->type) {
4551                 TYPE_SPECIFIERS
4552                 TYPE_QUALIFIERS
4553                         return true;
4554                 case T_IDENTIFIER:
4555                         return is_typedef_symbol(token->v.symbol);
4556
4557                 case T___extension__:
4558                 STORAGE_CLASSES
4559                         return !only_specifiers_qualifiers;
4560
4561                 default:
4562                         return false;
4563         }
4564 }
4565
4566 static void parse_init_declarator_rest(declaration_t *declaration)
4567 {
4568         eat('=');
4569
4570         type_t *orig_type = declaration->type;
4571         type_t *type      = skip_typeref(orig_type);
4572
4573         if (declaration->init.initializer != NULL) {
4574                 parser_error_multiple_definition(declaration, HERE);
4575         }
4576
4577         bool must_be_constant = false;
4578         if (declaration->storage_class == STORAGE_CLASS_STATIC
4579                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4580                         || declaration->parent_scope == global_scope) {
4581                 must_be_constant = true;
4582         }
4583
4584         if (is_type_function(type)) {
4585                 errorf(&declaration->source_position,
4586                        "function '%#T' is initialized like a variable",
4587                        orig_type, declaration->symbol);
4588                 orig_type = type_error_type;
4589         }
4590
4591         parse_initializer_env_t env;
4592         env.type             = orig_type;
4593         env.must_be_constant = must_be_constant;
4594         env.declaration      = current_init_decl = declaration;
4595
4596         initializer_t *initializer = parse_initializer(&env);
4597         current_init_decl = NULL;
4598
4599         if (!is_type_function(type)) {
4600                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
4601                  * the array type size */
4602                 declaration->type             = env.type;
4603                 declaration->init.initializer = initializer;
4604         }
4605 }
4606
4607 /* parse rest of a declaration without any declarator */
4608 static void parse_anonymous_declaration_rest(
4609                 const declaration_specifiers_t *specifiers)
4610 {
4611         eat(';');
4612
4613         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) {
4614                 warningf(&specifiers->source_position,
4615                          "useless storage class in empty declaration");
4616         }
4617
4618         type_t *type = specifiers->type;
4619         switch (type->kind) {
4620                 case TYPE_COMPOUND_STRUCT:
4621                 case TYPE_COMPOUND_UNION: {
4622                         if (type->compound.declaration->symbol == NULL) {
4623                                 warningf(&specifiers->source_position,
4624                                          "unnamed struct/union that defines no instances");
4625                         }
4626                         break;
4627                 }
4628
4629                 case TYPE_ENUM:
4630                         break;
4631
4632                 default:
4633                         warningf(&specifiers->source_position, "empty declaration");
4634                         break;
4635         }
4636
4637 #ifdef RECORD_EMPTY_DECLARATIONS
4638         declaration_t *const declaration    = allocate_declaration_zero();
4639         declaration->type                   = specifiers->type;
4640         declaration->declared_storage_class = specifiers->declared_storage_class;
4641         declaration->source_position        = specifiers->source_position;
4642         declaration->modifiers              = specifiers->modifiers;
4643         declaration->storage_class          = STORAGE_CLASS_NONE;
4644
4645         append_declaration(declaration);
4646 #endif
4647 }
4648
4649 static void parse_declaration_rest(declaration_t *ndeclaration,
4650                 const declaration_specifiers_t *specifiers,
4651                 parsed_declaration_func finished_declaration)
4652 {
4653         add_anchor_token(';');
4654         add_anchor_token(',');
4655         while(true) {
4656                 declaration_t *declaration =
4657                         finished_declaration(ndeclaration, token.type == '=');
4658
4659                 type_t *orig_type = declaration->type;
4660                 type_t *type      = skip_typeref(orig_type);
4661
4662                 if (type->kind != TYPE_FUNCTION &&
4663                     declaration->is_inline &&
4664                     is_type_valid(type)) {
4665                         warningf(&declaration->source_position,
4666                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4667                 }
4668
4669                 if (token.type == '=') {
4670                         parse_init_declarator_rest(declaration);
4671                 }
4672
4673                 if (token.type != ',')
4674                         break;
4675                 eat(',');
4676
4677                 add_anchor_token('=');
4678                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4679                 rem_anchor_token('=');
4680         }
4681         expect(';');
4682
4683 end_error:
4684         rem_anchor_token(';');
4685         rem_anchor_token(',');
4686 }
4687
4688 static declaration_t *finished_kr_declaration(declaration_t *declaration, bool is_definition)
4689 {
4690         symbol_t *symbol  = declaration->symbol;
4691         if (symbol == NULL) {
4692                 errorf(HERE, "anonymous declaration not valid as function parameter");
4693                 return declaration;
4694         }
4695         namespace_t namespc = (namespace_t) declaration->namespc;
4696         if (namespc != NAMESPACE_NORMAL) {
4697                 return record_declaration(declaration, false);
4698         }
4699
4700         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4701         if (previous_declaration == NULL ||
4702                         previous_declaration->parent_scope != scope) {
4703                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4704                        symbol);
4705                 return declaration;
4706         }
4707
4708         if (is_definition) {
4709                 errorf(HERE, "parameter %Y is initialised", declaration->symbol);
4710         }
4711
4712         if (previous_declaration->type == NULL) {
4713                 previous_declaration->type          = declaration->type;
4714                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4715                 previous_declaration->storage_class = declaration->storage_class;
4716                 previous_declaration->parent_scope  = scope;
4717                 return previous_declaration;
4718         } else {
4719                 return record_declaration(declaration, false);
4720         }
4721 }
4722
4723 static void parse_declaration(parsed_declaration_func finished_declaration)
4724 {
4725         declaration_specifiers_t specifiers;
4726         memset(&specifiers, 0, sizeof(specifiers));
4727
4728         add_anchor_token(';');
4729         parse_declaration_specifiers(&specifiers);
4730         rem_anchor_token(';');
4731
4732         if (token.type == ';') {
4733                 parse_anonymous_declaration_rest(&specifiers);
4734         } else {
4735                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4736                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4737         }
4738 }
4739
4740 static type_t *get_default_promoted_type(type_t *orig_type)
4741 {
4742         type_t *result = orig_type;
4743
4744         type_t *type = skip_typeref(orig_type);
4745         if (is_type_integer(type)) {
4746                 result = promote_integer(type);
4747         } else if (type == type_float) {
4748                 result = type_double;
4749         }
4750
4751         return result;
4752 }
4753
4754 static void parse_kr_declaration_list(declaration_t *declaration)
4755 {
4756         type_t *type = skip_typeref(declaration->type);
4757         if (!is_type_function(type))
4758                 return;
4759
4760         if (!type->function.kr_style_parameters)
4761                 return;
4762
4763         /* push function parameters */
4764         int       top        = environment_top();
4765         scope_t  *last_scope = scope;
4766         set_scope(&declaration->scope);
4767
4768         declaration_t *parameter = declaration->scope.declarations;
4769         for ( ; parameter != NULL; parameter = parameter->next) {
4770                 assert(parameter->parent_scope == NULL);
4771                 parameter->parent_scope = scope;
4772                 environment_push(parameter);
4773         }
4774
4775         /* parse declaration list */
4776         while (is_declaration_specifier(&token, false)) {
4777                 parse_declaration(finished_kr_declaration);
4778         }
4779
4780         /* pop function parameters */
4781         assert(scope == &declaration->scope);
4782         set_scope(last_scope);
4783         environment_pop_to(top);
4784
4785         /* update function type */
4786         type_t *new_type = duplicate_type(type);
4787
4788         function_parameter_t *parameters     = NULL;
4789         function_parameter_t *last_parameter = NULL;
4790
4791         declaration_t *parameter_declaration = declaration->scope.declarations;
4792         for( ; parameter_declaration != NULL;
4793                         parameter_declaration = parameter_declaration->next) {
4794                 type_t *parameter_type = parameter_declaration->type;
4795                 if (parameter_type == NULL) {
4796                         if (strict_mode) {
4797                                 errorf(HERE, "no type specified for function parameter '%Y'",
4798                                        parameter_declaration->symbol);
4799                         } else {
4800                                 if (warning.implicit_int) {
4801                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4802                                                 parameter_declaration->symbol);
4803                                 }
4804                                 parameter_type              = type_int;
4805                                 parameter_declaration->type = parameter_type;
4806                         }
4807                 }
4808
4809                 semantic_parameter(parameter_declaration);
4810                 parameter_type = parameter_declaration->type;
4811
4812                 /*
4813                  * we need the default promoted types for the function type
4814                  */
4815                 parameter_type = get_default_promoted_type(parameter_type);
4816
4817                 function_parameter_t *function_parameter
4818                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4819                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4820
4821                 function_parameter->type = parameter_type;
4822                 if (last_parameter != NULL) {
4823                         last_parameter->next = function_parameter;
4824                 } else {
4825                         parameters = function_parameter;
4826                 }
4827                 last_parameter = function_parameter;
4828         }
4829
4830         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4831          * prototype */
4832         new_type->function.parameters             = parameters;
4833         new_type->function.unspecified_parameters = true;
4834
4835         type = typehash_insert(new_type);
4836         if (type != new_type) {
4837                 obstack_free(type_obst, new_type);
4838         }
4839
4840         declaration->type = type;
4841 }
4842
4843 static bool first_err = true;
4844
4845 /**
4846  * When called with first_err set, prints the name of the current function,
4847  * else does noting.
4848  */
4849 static void print_in_function(void)
4850 {
4851         if (first_err) {
4852                 first_err = false;
4853                 diagnosticf("%s: In function '%Y':\n",
4854                         current_function->source_position.input_name,
4855                         current_function->symbol);
4856         }
4857 }
4858
4859 /**
4860  * Check if all labels are defined in the current function.
4861  * Check if all labels are used in the current function.
4862  */
4863 static void check_labels(void)
4864 {
4865         for (const goto_statement_t *goto_statement = goto_first;
4866             goto_statement != NULL;
4867             goto_statement = goto_statement->next) {
4868                 /* skip computed gotos */
4869                 if (goto_statement->expression != NULL)
4870                         continue;
4871
4872                 declaration_t *label = goto_statement->label;
4873
4874                 label->used = true;
4875                 if (label->source_position.input_name == NULL) {
4876                         print_in_function();
4877                         errorf(&goto_statement->base.source_position,
4878                                "label '%Y' used but not defined", label->symbol);
4879                  }
4880         }
4881         goto_first = goto_last = NULL;
4882
4883         if (warning.unused_label) {
4884                 for (const label_statement_t *label_statement = label_first;
4885                          label_statement != NULL;
4886                          label_statement = label_statement->next) {
4887                         const declaration_t *label = label_statement->label;
4888
4889                         if (! label->used) {
4890                                 print_in_function();
4891                                 warningf(&label_statement->base.source_position,
4892                                         "label '%Y' defined but not used", label->symbol);
4893                         }
4894                 }
4895         }
4896         label_first = label_last = NULL;
4897 }
4898
4899 /**
4900  * Check declarations of current_function for unused entities.
4901  */
4902 static void check_declarations(void)
4903 {
4904         if (warning.unused_parameter) {
4905                 const scope_t *scope = &current_function->scope;
4906
4907                 if (is_sym_main(current_function->symbol)) {
4908                         /* do not issue unused warnings for main */
4909                         return;
4910                 }
4911                 const declaration_t *parameter = scope->declarations;
4912                 for (; parameter != NULL; parameter = parameter->next) {
4913                         if (! parameter->used) {
4914                                 print_in_function();
4915                                 warningf(&parameter->source_position,
4916                                          "unused parameter '%Y'", parameter->symbol);
4917                         }
4918                 }
4919         }
4920         if (warning.unused_variable) {
4921         }
4922 }
4923
4924 static int determine_truth(expression_t const* const cond)
4925 {
4926         return
4927                 !is_constant_expression(cond) ? 0 :
4928                 fold_constant(cond) != 0      ? 1 :
4929                 -1;
4930 }
4931
4932 static bool noreturn_candidate;
4933
4934 static void check_reachable(statement_t *const stmt)
4935 {
4936         if (stmt->base.reachable)
4937                 return;
4938         if (stmt->kind != STATEMENT_DO_WHILE)
4939                 stmt->base.reachable = true;
4940
4941         statement_t *last = stmt;
4942         statement_t *next;
4943         switch (stmt->kind) {
4944                 case STATEMENT_INVALID:
4945                 case STATEMENT_EMPTY:
4946                 case STATEMENT_DECLARATION:
4947                 case STATEMENT_ASM:
4948                         next = stmt->base.next;
4949                         break;
4950
4951                 case STATEMENT_COMPOUND:
4952                         next = stmt->compound.statements;
4953                         break;
4954
4955                 case STATEMENT_RETURN:
4956                         noreturn_candidate = false;
4957                         return;
4958
4959                 case STATEMENT_IF: {
4960                         if_statement_t const* const ifs = &stmt->ifs;
4961                         int            const        val = determine_truth(ifs->condition);
4962
4963                         if (val >= 0)
4964                                 check_reachable(ifs->true_statement);
4965
4966                         if (val > 0)
4967                                 return;
4968
4969                         if (ifs->false_statement != NULL) {
4970                                 check_reachable(ifs->false_statement);
4971                                 return;
4972                         }
4973
4974                         next = stmt->base.next;
4975                         break;
4976                 }
4977
4978                 case STATEMENT_SWITCH: {
4979                         switch_statement_t const *const switchs = &stmt->switchs;
4980                         expression_t       const *const expr    = switchs->expression;
4981
4982                         if (is_constant_expression(expr)) {
4983                                 long                    const val      = fold_constant(expr);
4984                                 case_label_statement_t *      defaults = NULL;
4985                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4986                                         if (i->expression == NULL) {
4987                                                 defaults = i;
4988                                                 continue;
4989                                         }
4990
4991                                         if (i->first_case <= val && val <= i->last_case) {
4992                                                 check_reachable((statement_t*)i);
4993                                                 return;
4994                                         }
4995                                 }
4996
4997                                 if (defaults != NULL) {
4998                                         check_reachable((statement_t*)defaults);
4999                                         return;
5000                                 }
5001                         } else {
5002                                 bool has_default = false;
5003                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5004                                         if (i->expression == NULL)
5005                                                 has_default = true;
5006
5007                                         check_reachable((statement_t*)i);
5008                                 }
5009
5010                                 if (has_default)
5011                                         return;
5012                         }
5013
5014                         next = stmt->base.next;
5015                         break;
5016                 }
5017
5018                 case STATEMENT_EXPRESSION: {
5019                         /* Check for noreturn function call */
5020                         expression_t const *const expr = stmt->expression.expression;
5021                         if (expr->kind == EXPR_CALL) {
5022                                 expression_t const *const func = expr->call.function;
5023                                 if (func->kind == EXPR_REFERENCE) {
5024                                         declaration_t const *const decl = func->reference.declaration;
5025                                         if (decl != NULL && decl->modifiers & DM_NORETURN) {
5026                                                 return;
5027                                         }
5028                                 }
5029                         }
5030
5031                         next = stmt->base.next;
5032                         break;
5033                 }
5034
5035                 case STATEMENT_CONTINUE: {
5036                         statement_t *parent = stmt;
5037                         for (;;) {
5038                                 parent = parent->base.parent;
5039                                 if (parent == NULL) /* continue not within loop */
5040                                         return;
5041
5042                                 next = parent;
5043                                 switch (parent->kind) {
5044                                         case STATEMENT_WHILE:    goto continue_while;
5045                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5046                                         case STATEMENT_FOR:      goto continue_for;
5047
5048                                         default: break;
5049                                 }
5050                         }
5051                 }
5052
5053                 case STATEMENT_BREAK: {
5054                         statement_t *parent = stmt;
5055                         for (;;) {
5056                                 parent = parent->base.parent;
5057                                 if (parent == NULL) /* break not within loop/switch */
5058                                         return;
5059
5060                                 switch (parent->kind) {
5061                                         case STATEMENT_SWITCH:
5062                                         case STATEMENT_WHILE:
5063                                         case STATEMENT_DO_WHILE:
5064                                         case STATEMENT_FOR:
5065                                                 last = parent;
5066                                                 next = parent->base.next;
5067                                                 goto found_break_parent;
5068
5069                                         default: break;
5070                                 }
5071                         }
5072 found_break_parent:
5073                         break;
5074                 }
5075
5076                 case STATEMENT_GOTO:
5077                         if (stmt->gotos.expression) {
5078                                 statement_t *parent = stmt->base.parent;
5079                                 if (parent == NULL) /* top level goto */
5080                                         return;
5081                                 next = parent;
5082                         } else {
5083                                 next = stmt->gotos.label->init.statement;
5084                                 if (next == NULL) /* missing label */
5085                                         return;
5086                         }
5087                         break;
5088
5089                 case STATEMENT_LABEL:
5090                         next = stmt->label.statement;
5091                         break;
5092
5093                 case STATEMENT_CASE_LABEL:
5094                         next = stmt->case_label.statement;
5095                         break;
5096
5097                 case STATEMENT_WHILE: {
5098                         while_statement_t const *const whiles = &stmt->whiles;
5099                         int                      const val    = determine_truth(whiles->condition);
5100
5101                         if (val >= 0)
5102                                 check_reachable(whiles->body);
5103
5104                         if (val > 0)
5105                                 return;
5106
5107                         next = stmt->base.next;
5108                         break;
5109                 }
5110
5111                 case STATEMENT_DO_WHILE:
5112                         next = stmt->do_while.body;
5113                         break;
5114
5115                 case STATEMENT_FOR: {
5116                         for_statement_t *const fors = &stmt->fors;
5117
5118                         if (fors->condition_reachable)
5119                                 return;
5120                         fors->condition_reachable = true;
5121
5122                         expression_t const *const cond = fors->condition;
5123                         int          const        val  =
5124                                 cond == NULL ? 1 : determine_truth(cond);
5125
5126                         if (val >= 0)
5127                                 check_reachable(fors->body);
5128
5129                         if (val > 0)
5130                                 return;
5131
5132                         next = stmt->base.next;
5133                         break;
5134                 }
5135
5136                 case STATEMENT_MS_TRY: {
5137                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5138                         check_reachable(ms_try->try_statement);
5139                         next = ms_try->final_statement;
5140                         break;
5141                 }
5142
5143                 case STATEMENT_LEAVE: {
5144                         statement_t *parent = stmt;
5145                         for (;;) {
5146                                 parent = parent->base.parent;
5147                                 if (parent == NULL) /* __leave not within __try */
5148                                         return;
5149
5150                                 if (parent->kind == STATEMENT_MS_TRY) {
5151                                         last = parent;
5152                                         next = parent->ms_try.final_statement;
5153                                         break;
5154                                 }
5155                         }
5156                         break;
5157                 }
5158         }
5159
5160         while (next == NULL) {
5161                 next = last->base.parent;
5162                 if (next == NULL) {
5163                         noreturn_candidate = false;
5164
5165                         type_t *const type = current_function->type;
5166                         assert(is_type_function(type));
5167                         type_t *const ret  = skip_typeref(type->function.return_type);
5168                         if (warning.return_type                    &&
5169                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5170                             is_type_valid(ret)                     &&
5171                             !is_sym_main(current_function->symbol)) {
5172                                 warningf(&stmt->base.source_position,
5173                                          "control reaches end of non-void function");
5174                         }
5175                         return;
5176                 }
5177
5178                 switch (next->kind) {
5179                         case STATEMENT_INVALID:
5180                         case STATEMENT_EMPTY:
5181                         case STATEMENT_DECLARATION:
5182                         case STATEMENT_EXPRESSION:
5183                         case STATEMENT_ASM:
5184                         case STATEMENT_RETURN:
5185                         case STATEMENT_CONTINUE:
5186                         case STATEMENT_BREAK:
5187                         case STATEMENT_GOTO:
5188                         case STATEMENT_LEAVE:
5189                                 panic("invalid control flow in function");
5190
5191                         case STATEMENT_COMPOUND:
5192                         case STATEMENT_IF:
5193                         case STATEMENT_SWITCH:
5194                         case STATEMENT_LABEL:
5195                         case STATEMENT_CASE_LABEL:
5196                                 last = next;
5197                                 next = next->base.next;
5198                                 break;
5199
5200                         case STATEMENT_WHILE: {
5201 continue_while:
5202                                 if (next->base.reachable)
5203                                         return;
5204                                 next->base.reachable = true;
5205
5206                                 while_statement_t const *const whiles = &next->whiles;
5207                                 int                      const val    = determine_truth(whiles->condition);
5208
5209                                 if (val >= 0)
5210                                         check_reachable(whiles->body);
5211
5212                                 if (val > 0)
5213                                         return;
5214
5215                                 last = next;
5216                                 next = next->base.next;
5217                                 break;
5218                         }
5219
5220                         case STATEMENT_DO_WHILE: {
5221 continue_do_while:
5222                                 if (next->base.reachable)
5223                                         return;
5224                                 next->base.reachable = true;
5225
5226                                 do_while_statement_t const *const dw  = &next->do_while;
5227                                 int                  const        val = determine_truth(dw->condition);
5228
5229                                 if (val >= 0)
5230                                         check_reachable(dw->body);
5231
5232                                 if (val > 0)
5233                                         return;
5234
5235                                 last = next;
5236                                 next = next->base.next;
5237                                 break;
5238                         }
5239
5240                         case STATEMENT_FOR: {
5241 continue_for:;
5242                                 for_statement_t *const fors = &next->fors;
5243
5244                                 fors->step_reachable = true;
5245
5246                                 if (fors->condition_reachable)
5247                                         return;
5248                                 fors->condition_reachable = true;
5249
5250                                 expression_t const *const cond = fors->condition;
5251                                 int          const        val  =
5252                                         cond == NULL ? 1 : determine_truth(cond);
5253
5254                                 if (val >= 0)
5255                                         check_reachable(fors->body);
5256
5257                                 if (val > 0)
5258                                         return;
5259
5260                                 last = next;
5261                                 next = next->base.next;
5262                                 break;
5263                         }
5264
5265                         case STATEMENT_MS_TRY:
5266                                 last = next;
5267                                 next = next->ms_try.final_statement;
5268                                 break;
5269                 }
5270         }
5271
5272         if (next == NULL) {
5273                 next = stmt->base.parent;
5274                 if (next == NULL) {
5275                         warningf(&stmt->base.source_position,
5276                                  "control reaches end of non-void function");
5277                 }
5278         }
5279
5280         check_reachable(next);
5281 }
5282
5283 static void check_unreachable(statement_t const* const stmt)
5284 {
5285         if (!stmt->base.reachable            &&
5286             stmt->kind != STATEMENT_DO_WHILE &&
5287             stmt->kind != STATEMENT_FOR      &&
5288             (stmt->kind != STATEMENT_COMPOUND || stmt->compound.statements == NULL)) {
5289                 warningf(&stmt->base.source_position, "statement is unreachable");
5290         }
5291
5292         switch (stmt->kind) {
5293                 case STATEMENT_INVALID:
5294                 case STATEMENT_EMPTY:
5295                 case STATEMENT_RETURN:
5296                 case STATEMENT_DECLARATION:
5297                 case STATEMENT_EXPRESSION:
5298                 case STATEMENT_CONTINUE:
5299                 case STATEMENT_BREAK:
5300                 case STATEMENT_GOTO:
5301                 case STATEMENT_ASM:
5302                 case STATEMENT_LEAVE:
5303                         break;
5304
5305                 case STATEMENT_COMPOUND:
5306                         if (stmt->compound.statements)
5307                                 check_unreachable(stmt->compound.statements);
5308                         break;
5309
5310                 case STATEMENT_IF:
5311                         check_unreachable(stmt->ifs.true_statement);
5312                         if (stmt->ifs.false_statement != NULL)
5313                                 check_unreachable(stmt->ifs.false_statement);
5314                         break;
5315
5316                 case STATEMENT_SWITCH:
5317                         check_unreachable(stmt->switchs.body);
5318                         break;
5319
5320                 case STATEMENT_LABEL:
5321                         check_unreachable(stmt->label.statement);
5322                         break;
5323
5324                 case STATEMENT_CASE_LABEL:
5325                         check_unreachable(stmt->case_label.statement);
5326                         break;
5327
5328                 case STATEMENT_WHILE:
5329                         check_unreachable(stmt->whiles.body);
5330                         break;
5331
5332                 case STATEMENT_DO_WHILE:
5333                         check_unreachable(stmt->do_while.body);
5334                         if (!stmt->base.reachable) {
5335                                 expression_t const *const cond = stmt->do_while.condition;
5336                                 if (determine_truth(cond) >= 0) {
5337                                         warningf(&cond->base.source_position,
5338                                                  "condition of do-while-loop is unreachable");
5339                                 }
5340                         }
5341                         break;
5342
5343                 case STATEMENT_FOR: {
5344                         for_statement_t const* const fors = &stmt->fors;
5345
5346                         // if init and step are unreachable, cond is unreachable, too
5347                         if (!stmt->base.reachable && !fors->step_reachable) {
5348                                 warningf(&stmt->base.source_position, "statement is unreachable");
5349                         } else {
5350                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5351                                         warningf(&fors->initialisation->base.source_position,
5352                                                  "initialisation of for-statement is unreachable");
5353                                 }
5354
5355                                 if (!fors->condition_reachable && fors->condition != NULL) {
5356                                         warningf(&fors->condition->base.source_position,
5357                                                  "condition of for-statement is unreachable");
5358                                 }
5359
5360                                 if (!fors->step_reachable && fors->step != NULL) {
5361                                         warningf(&fors->step->base.source_position,
5362                                                  "step of for-statement is unreachable");
5363                                 }
5364                         }
5365
5366                         check_unreachable(fors->body);
5367                         break;
5368                 }
5369
5370                 case STATEMENT_MS_TRY: {
5371                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5372                         check_unreachable(ms_try->try_statement);
5373                         check_unreachable(ms_try->final_statement);
5374                 }
5375         }
5376
5377         if (stmt->base.next)
5378                 check_unreachable(stmt->base.next);
5379 }
5380
5381 static void parse_external_declaration(void)
5382 {
5383         /* function-definitions and declarations both start with declaration
5384          * specifiers */
5385         declaration_specifiers_t specifiers;
5386         memset(&specifiers, 0, sizeof(specifiers));
5387
5388         add_anchor_token(';');
5389         parse_declaration_specifiers(&specifiers);
5390         rem_anchor_token(';');
5391
5392         /* must be a declaration */
5393         if (token.type == ';') {
5394                 parse_anonymous_declaration_rest(&specifiers);
5395                 return;
5396         }
5397
5398         add_anchor_token(',');
5399         add_anchor_token('=');
5400         add_anchor_token(';');
5401         add_anchor_token('{');
5402
5403         /* declarator is common to both function-definitions and declarations */
5404         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
5405
5406         rem_anchor_token('{');
5407         rem_anchor_token(';');
5408         rem_anchor_token('=');
5409         rem_anchor_token(',');
5410
5411         /* must be a declaration */
5412         switch (token.type) {
5413                 case ',':
5414                 case ';':
5415                 case '=':
5416                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
5417                         return;
5418         }
5419
5420         /* must be a function definition */
5421         parse_kr_declaration_list(ndeclaration);
5422
5423         if (token.type != '{') {
5424                 parse_error_expected("while parsing function definition", '{', NULL);
5425                 eat_until_matching_token(';');
5426                 return;
5427         }
5428
5429         type_t *type = ndeclaration->type;
5430
5431         /* note that we don't skip typerefs: the standard doesn't allow them here
5432          * (so we can't use is_type_function here) */
5433         if (type->kind != TYPE_FUNCTION) {
5434                 if (is_type_valid(type)) {
5435                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5436                                type, ndeclaration->symbol);
5437                 }
5438                 eat_block();
5439                 return;
5440         }
5441
5442         if (warning.aggregate_return &&
5443             is_type_compound(skip_typeref(type->function.return_type))) {
5444                 warningf(HERE, "function '%Y' returns an aggregate",
5445                          ndeclaration->symbol);
5446         }
5447         if (warning.traditional && !type->function.unspecified_parameters) {
5448                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5449                         ndeclaration->symbol);
5450         }
5451         if (warning.old_style_definition && type->function.unspecified_parameters) {
5452                 warningf(HERE, "old-style function definition '%Y'",
5453                         ndeclaration->symbol);
5454         }
5455
5456         /* Â§ 6.7.5.3 (14) a function definition with () means no
5457          * parameters (and not unspecified parameters) */
5458         if (type->function.unspecified_parameters
5459                         && type->function.parameters == NULL
5460                         && !type->function.kr_style_parameters) {
5461                 type_t *duplicate = duplicate_type(type);
5462                 duplicate->function.unspecified_parameters = false;
5463
5464                 type = typehash_insert(duplicate);
5465                 if (type != duplicate) {
5466                         obstack_free(type_obst, duplicate);
5467                 }
5468                 ndeclaration->type = type;
5469         }
5470
5471         declaration_t *const declaration = record_declaration(ndeclaration, true);
5472         if (ndeclaration != declaration) {
5473                 declaration->scope = ndeclaration->scope;
5474         }
5475         type = skip_typeref(declaration->type);
5476
5477         /* push function parameters and switch scope */
5478         int       top        = environment_top();
5479         scope_t  *last_scope = scope;
5480         set_scope(&declaration->scope);
5481
5482         declaration_t *parameter = declaration->scope.declarations;
5483         for( ; parameter != NULL; parameter = parameter->next) {
5484                 if (parameter->parent_scope == &ndeclaration->scope) {
5485                         parameter->parent_scope = scope;
5486                 }
5487                 assert(parameter->parent_scope == NULL
5488                                 || parameter->parent_scope == scope);
5489                 parameter->parent_scope = scope;
5490                 if (parameter->symbol == NULL) {
5491                         errorf(&parameter->source_position, "parameter name omitted");
5492                         continue;
5493                 }
5494                 environment_push(parameter);
5495         }
5496
5497         if (declaration->init.statement != NULL) {
5498                 parser_error_multiple_definition(declaration, HERE);
5499                 eat_block();
5500         } else {
5501                 /* parse function body */
5502                 int            label_stack_top      = label_top();
5503                 declaration_t *old_current_function = current_function;
5504                 current_function                    = declaration;
5505                 current_parent                      = NULL;
5506
5507                 statement_t *const body = parse_compound_statement(false);
5508                 declaration->init.statement = body;
5509                 first_err = true;
5510                 check_labels();
5511                 check_declarations();
5512                 if (warning.return_type      ||
5513                     warning.unreachable_code ||
5514                     (warning.missing_noreturn && !(declaration->modifiers & DM_NORETURN))) {
5515                         noreturn_candidate = true;
5516                         check_reachable(body);
5517                         if (warning.unreachable_code)
5518                                 check_unreachable(body);
5519                         if (warning.missing_noreturn &&
5520                             noreturn_candidate       &&
5521                             !(declaration->modifiers & DM_NORETURN)) {
5522                                 warningf(&body->base.source_position,
5523                                          "function '%#T' is candidate for attribute 'noreturn'",
5524                                          type, declaration->symbol);
5525                         }
5526                 }
5527
5528                 assert(current_parent   == NULL);
5529                 assert(current_function == declaration);
5530                 current_function = old_current_function;
5531                 label_pop_to(label_stack_top);
5532         }
5533
5534         assert(scope == &declaration->scope);
5535         set_scope(last_scope);
5536         environment_pop_to(top);
5537 }
5538
5539 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5540                                   source_position_t *source_position,
5541                                   const symbol_t *symbol)
5542 {
5543         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
5544
5545         type->bitfield.base_type       = base_type;
5546         type->bitfield.size_expression = size;
5547
5548         il_size_t bit_size;
5549         type_t *skipped_type = skip_typeref(base_type);
5550         if (!is_type_integer(skipped_type)) {
5551                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5552                         base_type);
5553                 bit_size = 0;
5554         } else {
5555                 bit_size = skipped_type->base.size * 8;
5556         }
5557
5558         if (is_constant_expression(size)) {
5559                 long v = fold_constant(size);
5560
5561                 if (v < 0) {
5562                         errorf(source_position, "negative width in bit-field '%Y'",
5563                                 symbol);
5564                 } else if (v == 0) {
5565                         errorf(source_position, "zero width for bit-field '%Y'",
5566                                 symbol);
5567                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5568                         errorf(source_position, "width of '%Y' exceeds its type",
5569                                 symbol);
5570                 } else {
5571                         type->bitfield.bit_size = v;
5572                 }
5573         }
5574
5575         return type;
5576 }
5577
5578 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
5579                                           symbol_t *symbol)
5580 {
5581         declaration_t *iter = compound_declaration->scope.declarations;
5582         for( ; iter != NULL; iter = iter->next) {
5583                 if (iter->namespc != NAMESPACE_NORMAL)
5584                         continue;
5585
5586                 if (iter->symbol == NULL) {
5587                         type_t *type = skip_typeref(iter->type);
5588                         if (is_type_compound(type)) {
5589                                 declaration_t *result
5590                                         = find_compound_entry(type->compound.declaration, symbol);
5591                                 if (result != NULL)
5592                                         return result;
5593                         }
5594                         continue;
5595                 }
5596
5597                 if (iter->symbol == symbol) {
5598                         return iter;
5599                 }
5600         }
5601
5602         return NULL;
5603 }
5604
5605 static void parse_compound_declarators(declaration_t *struct_declaration,
5606                 const declaration_specifiers_t *specifiers)
5607 {
5608         declaration_t *last_declaration = struct_declaration->scope.declarations;
5609         if (last_declaration != NULL) {
5610                 while (last_declaration->next != NULL) {
5611                         last_declaration = last_declaration->next;
5612                 }
5613         }
5614
5615         while (true) {
5616                 declaration_t *declaration;
5617
5618                 if (token.type == ':') {
5619                         source_position_t source_position = *HERE;
5620                         next_token();
5621
5622                         type_t *base_type = specifiers->type;
5623                         expression_t *size = parse_constant_expression();
5624
5625                         type_t *type = make_bitfield_type(base_type, size,
5626                                         &source_position, sym_anonymous);
5627
5628                         declaration                         = allocate_declaration_zero();
5629                         declaration->namespc                = NAMESPACE_NORMAL;
5630                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
5631                         declaration->storage_class          = STORAGE_CLASS_NONE;
5632                         declaration->source_position        = source_position;
5633                         declaration->modifiers              = specifiers->modifiers;
5634                         declaration->type                   = type;
5635                 } else {
5636                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
5637
5638                         type_t *orig_type = declaration->type;
5639                         type_t *type      = skip_typeref(orig_type);
5640
5641                         if (token.type == ':') {
5642                                 source_position_t source_position = *HERE;
5643                                 next_token();
5644                                 expression_t *size = parse_constant_expression();
5645
5646                                 type_t *bitfield_type = make_bitfield_type(orig_type, size,
5647                                                 &source_position, declaration->symbol);
5648                                 declaration->type = bitfield_type;
5649                         } else {
5650                                 /* TODO we ignore arrays for now... what is missing is a check
5651                                  * that they're at the end of the struct */
5652                                 if (is_type_incomplete(type) && !is_type_array(type)) {
5653                                         errorf(HERE,
5654                                                "compound member '%Y' has incomplete type '%T'",
5655                                                declaration->symbol, orig_type);
5656                                 } else if (is_type_function(type)) {
5657                                         errorf(HERE, "compound member '%Y' must not have function type '%T'",
5658                                                declaration->symbol, orig_type);
5659                                 }
5660                         }
5661                 }
5662
5663                 /* make sure we don't define a symbol multiple times */
5664                 symbol_t *symbol = declaration->symbol;
5665                 if (symbol != NULL) {
5666                         declaration_t *prev_decl
5667                                 = find_compound_entry(struct_declaration, symbol);
5668
5669                         if (prev_decl != NULL) {
5670                                 assert(prev_decl->symbol == symbol);
5671                                 errorf(&declaration->source_position,
5672                                        "multiple declarations of symbol '%Y' (declared %P)",
5673                                        symbol, &prev_decl->source_position);
5674                         }
5675                 }
5676
5677                 /* append declaration */
5678                 if (last_declaration != NULL) {
5679                         last_declaration->next = declaration;
5680                 } else {
5681                         struct_declaration->scope.declarations = declaration;
5682                 }
5683                 last_declaration = declaration;
5684
5685                 if (token.type != ',')
5686                         break;
5687                 next_token();
5688         }
5689         expect(';');
5690
5691 end_error:
5692         ;
5693 }
5694
5695 static void parse_compound_type_entries(declaration_t *compound_declaration)
5696 {
5697         eat('{');
5698         add_anchor_token('}');
5699
5700         while (token.type != '}' && token.type != T_EOF) {
5701                 declaration_specifiers_t specifiers;
5702                 memset(&specifiers, 0, sizeof(specifiers));
5703                 parse_declaration_specifiers(&specifiers);
5704
5705                 parse_compound_declarators(compound_declaration, &specifiers);
5706         }
5707         rem_anchor_token('}');
5708
5709         if (token.type == T_EOF) {
5710                 errorf(HERE, "EOF while parsing struct");
5711         }
5712         next_token();
5713 }
5714
5715 static type_t *parse_typename(void)
5716 {
5717         declaration_specifiers_t specifiers;
5718         memset(&specifiers, 0, sizeof(specifiers));
5719         parse_declaration_specifiers(&specifiers);
5720         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
5721                 /* TODO: improve error message, user does probably not know what a
5722                  * storage class is...
5723                  */
5724                 errorf(HERE, "typename may not have a storage class");
5725         }
5726
5727         type_t *result = parse_abstract_declarator(specifiers.type);
5728
5729         return result;
5730 }
5731
5732
5733
5734
5735 typedef expression_t* (*parse_expression_function) (unsigned precedence);
5736 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
5737                                                           expression_t *left);
5738
5739 typedef struct expression_parser_function_t expression_parser_function_t;
5740 struct expression_parser_function_t {
5741         unsigned                         precedence;
5742         parse_expression_function        parser;
5743         unsigned                         infix_precedence;
5744         parse_expression_infix_function  infix_parser;
5745 };
5746
5747 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5748
5749 /**
5750  * Prints an error message if an expression was expected but not read
5751  */
5752 static expression_t *expected_expression_error(void)
5753 {
5754         /* skip the error message if the error token was read */
5755         if (token.type != T_ERROR) {
5756                 errorf(HERE, "expected expression, got token '%K'", &token);
5757         }
5758         next_token();
5759
5760         return create_invalid_expression();
5761 }
5762
5763 /**
5764  * Parse a string constant.
5765  */
5766 static expression_t *parse_string_const(void)
5767 {
5768         wide_string_t wres;
5769         if (token.type == T_STRING_LITERAL) {
5770                 string_t res = token.v.string;
5771                 next_token();
5772                 while (token.type == T_STRING_LITERAL) {
5773                         res = concat_strings(&res, &token.v.string);
5774                         next_token();
5775                 }
5776                 if (token.type != T_WIDE_STRING_LITERAL) {
5777                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
5778                         /* note: that we use type_char_ptr here, which is already the
5779                          * automatic converted type. revert_automatic_type_conversion
5780                          * will construct the array type */
5781                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
5782                         cnst->string.value = res;
5783                         return cnst;
5784                 }
5785
5786                 wres = concat_string_wide_string(&res, &token.v.wide_string);
5787         } else {
5788                 wres = token.v.wide_string;
5789         }
5790         next_token();
5791
5792         for (;;) {
5793                 switch (token.type) {
5794                         case T_WIDE_STRING_LITERAL:
5795                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5796                                 break;
5797
5798                         case T_STRING_LITERAL:
5799                                 wres = concat_wide_string_string(&wres, &token.v.string);
5800                                 break;
5801
5802                         default: {
5803                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5804                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5805                                 cnst->wide_string.value = wres;
5806                                 return cnst;
5807                         }
5808                 }
5809                 next_token();
5810         }
5811 }
5812
5813 /**
5814  * Parse an integer constant.
5815  */
5816 static expression_t *parse_int_const(void)
5817 {
5818         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5819         cnst->base.source_position = *HERE;
5820         cnst->base.type            = token.datatype;
5821         cnst->conste.v.int_value   = token.v.intvalue;
5822
5823         next_token();
5824
5825         return cnst;
5826 }
5827
5828 /**
5829  * Parse a character constant.
5830  */
5831 static expression_t *parse_character_constant(void)
5832 {
5833         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5834
5835         cnst->base.source_position = *HERE;
5836         cnst->base.type            = token.datatype;
5837         cnst->conste.v.character   = token.v.string;
5838
5839         if (cnst->conste.v.character.size != 1) {
5840                 if (warning.multichar && GNU_MODE) {
5841                         warningf(HERE, "multi-character character constant");
5842                 } else {
5843                         errorf(HERE, "more than 1 characters in character constant");
5844                 }
5845         }
5846         next_token();
5847
5848         return cnst;
5849 }
5850
5851 /**
5852  * Parse a wide character constant.
5853  */
5854 static expression_t *parse_wide_character_constant(void)
5855 {
5856         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5857
5858         cnst->base.source_position    = *HERE;
5859         cnst->base.type               = token.datatype;
5860         cnst->conste.v.wide_character = token.v.wide_string;
5861
5862         if (cnst->conste.v.wide_character.size != 1) {
5863                 if (warning.multichar && GNU_MODE) {
5864                         warningf(HERE, "multi-character character constant");
5865                 } else {
5866                         errorf(HERE, "more than 1 characters in character constant");
5867                 }
5868         }
5869         next_token();
5870
5871         return cnst;
5872 }
5873
5874 /**
5875  * Parse a float constant.
5876  */
5877 static expression_t *parse_float_const(void)
5878 {
5879         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5880         cnst->base.type            = token.datatype;
5881         cnst->conste.v.float_value = token.v.floatvalue;
5882
5883         next_token();
5884
5885         return cnst;
5886 }
5887
5888 static declaration_t *create_implicit_function(symbol_t *symbol,
5889                 const source_position_t *source_position)
5890 {
5891         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5892         ntype->function.return_type            = type_int;
5893         ntype->function.unspecified_parameters = true;
5894
5895         type_t *type = typehash_insert(ntype);
5896         if (type != ntype) {
5897                 free_type(ntype);
5898         }
5899
5900         declaration_t *const declaration    = allocate_declaration_zero();
5901         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5902         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5903         declaration->type                   = type;
5904         declaration->symbol                 = symbol;
5905         declaration->source_position        = *source_position;
5906         declaration->implicit               = true;
5907
5908         bool strict_prototypes_old = warning.strict_prototypes;
5909         warning.strict_prototypes  = false;
5910         record_declaration(declaration, false);
5911         warning.strict_prototypes = strict_prototypes_old;
5912
5913         return declaration;
5914 }
5915
5916 /**
5917  * Creates a return_type (func)(argument_type) function type if not
5918  * already exists.
5919  */
5920 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5921                                     type_t *argument_type2)
5922 {
5923         function_parameter_t *parameter2
5924                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5925         memset(parameter2, 0, sizeof(parameter2[0]));
5926         parameter2->type = argument_type2;
5927
5928         function_parameter_t *parameter1
5929                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5930         memset(parameter1, 0, sizeof(parameter1[0]));
5931         parameter1->type = argument_type1;
5932         parameter1->next = parameter2;
5933
5934         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5935         type->function.return_type = return_type;
5936         type->function.parameters  = parameter1;
5937
5938         type_t *result = typehash_insert(type);
5939         if (result != type) {
5940                 free_type(type);
5941         }
5942
5943         return result;
5944 }
5945
5946 /**
5947  * Creates a return_type (func)(argument_type) function type if not
5948  * already exists.
5949  *
5950  * @param return_type    the return type
5951  * @param argument_type  the argument type
5952  */
5953 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5954 {
5955         function_parameter_t *parameter
5956                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5957         memset(parameter, 0, sizeof(parameter[0]));
5958         parameter->type = argument_type;
5959
5960         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5961         type->function.return_type = return_type;
5962         type->function.parameters  = parameter;
5963
5964         type_t *result = typehash_insert(type);
5965         if (result != type) {
5966                 free_type(type);
5967         }
5968
5969         return result;
5970 }
5971
5972 static type_t *make_function_0_type(type_t *return_type)
5973 {
5974         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5975         type->function.return_type = return_type;
5976         type->function.parameters  = NULL;
5977
5978         type_t *result = typehash_insert(type);
5979         if (result != type) {
5980                 free_type(type);
5981         }
5982
5983         return result;
5984 }
5985
5986 /**
5987  * Creates a function type for some function like builtins.
5988  *
5989  * @param symbol   the symbol describing the builtin
5990  */
5991 static type_t *get_builtin_symbol_type(symbol_t *symbol)
5992 {
5993         switch(symbol->ID) {
5994         case T___builtin_alloca:
5995                 return make_function_1_type(type_void_ptr, type_size_t);
5996         case T___builtin_huge_val:
5997                 return make_function_0_type(type_double);
5998         case T___builtin_nan:
5999                 return make_function_1_type(type_double, type_char_ptr);
6000         case T___builtin_nanf:
6001                 return make_function_1_type(type_float, type_char_ptr);
6002         case T___builtin_nand:
6003                 return make_function_1_type(type_long_double, type_char_ptr);
6004         case T___builtin_va_end:
6005                 return make_function_1_type(type_void, type_valist);
6006         case T___builtin_expect:
6007                 return make_function_2_type(type_long, type_long, type_long);
6008         default:
6009                 internal_errorf(HERE, "not implemented builtin symbol found");
6010         }
6011 }
6012
6013 /**
6014  * Performs automatic type cast as described in Â§ 6.3.2.1.
6015  *
6016  * @param orig_type  the original type
6017  */
6018 static type_t *automatic_type_conversion(type_t *orig_type)
6019 {
6020         type_t *type = skip_typeref(orig_type);
6021         if (is_type_array(type)) {
6022                 array_type_t *array_type   = &type->array;
6023                 type_t       *element_type = array_type->element_type;
6024                 unsigned      qualifiers   = array_type->base.qualifiers;
6025
6026                 return make_pointer_type(element_type, qualifiers);
6027         }
6028
6029         if (is_type_function(type)) {
6030                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6031         }
6032
6033         return orig_type;
6034 }
6035
6036 /**
6037  * reverts the automatic casts of array to pointer types and function
6038  * to function-pointer types as defined Â§ 6.3.2.1
6039  */
6040 type_t *revert_automatic_type_conversion(const expression_t *expression)
6041 {
6042         switch (expression->kind) {
6043                 case EXPR_REFERENCE: return expression->reference.declaration->type;
6044
6045                 case EXPR_SELECT:
6046                         return get_qualified_type(expression->select.compound_entry->type,
6047                                                   expression->base.type->base.qualifiers);
6048
6049                 case EXPR_UNARY_DEREFERENCE: {
6050                         const expression_t *const value = expression->unary.value;
6051                         type_t             *const type  = skip_typeref(value->base.type);
6052                         assert(is_type_pointer(type));
6053                         return type->pointer.points_to;
6054                 }
6055
6056                 case EXPR_BUILTIN_SYMBOL:
6057                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6058
6059                 case EXPR_ARRAY_ACCESS: {
6060                         const expression_t *array_ref = expression->array_access.array_ref;
6061                         type_t             *type_left = skip_typeref(array_ref->base.type);
6062                         if (!is_type_valid(type_left))
6063                                 return type_left;
6064                         assert(is_type_pointer(type_left));
6065                         return type_left->pointer.points_to;
6066                 }
6067
6068                 case EXPR_STRING_LITERAL: {
6069                         size_t size = expression->string.value.size;
6070                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6071                 }
6072
6073                 case EXPR_WIDE_STRING_LITERAL: {
6074                         size_t size = expression->wide_string.value.size;
6075                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6076                 }
6077
6078                 case EXPR_COMPOUND_LITERAL:
6079                         return expression->compound_literal.type;
6080
6081                 default: break;
6082         }
6083
6084         return expression->base.type;
6085 }
6086
6087 static expression_t *parse_reference(void)
6088 {
6089         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
6090
6091         reference_expression_t *ref = &expression->reference;
6092         symbol_t *const symbol = token.v.symbol;
6093
6094         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
6095
6096         if (declaration == NULL) {
6097                 if (!strict_mode && look_ahead(1)->type == '(') {
6098                         /* an implicitly declared function */
6099                         if (warning.implicit_function_declaration) {
6100                                 warningf(HERE, "implicit declaration of function '%Y'",
6101                                         symbol);
6102                         }
6103
6104                         declaration = create_implicit_function(symbol, HERE);
6105                 } else {
6106                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6107                         declaration = create_error_declaration(symbol, STORAGE_CLASS_NONE);
6108                 }
6109         }
6110
6111         type_t *type = declaration->type;
6112
6113         /* we always do the auto-type conversions; the & and sizeof parser contains
6114          * code to revert this! */
6115         type = automatic_type_conversion(type);
6116
6117         ref->declaration = declaration;
6118         ref->base.type   = type;
6119
6120         /* this declaration is used */
6121         declaration->used = true;
6122
6123         /* check for deprecated functions */
6124         if (warning.deprecated_declarations &&
6125             declaration->modifiers & DM_DEPRECATED) {
6126                 char const *const prefix = is_type_function(declaration->type) ?
6127                         "function" : "variable";
6128
6129                 if (declaration->deprecated_string != NULL) {
6130                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6131                                 prefix, declaration->symbol, &declaration->source_position,
6132                                 declaration->deprecated_string);
6133                 } else {
6134                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6135                                 declaration->symbol, &declaration->source_position);
6136                 }
6137         }
6138         if (warning.init_self && declaration == current_init_decl && !in_type_prop) {
6139                 current_init_decl = NULL;
6140                 warningf(HERE, "variable '%#T' is initialized by itself",
6141                         declaration->type, declaration->symbol);
6142         }
6143
6144         next_token();
6145         return expression;
6146 }
6147
6148 static bool semantic_cast(expression_t *cast)
6149 {
6150         expression_t            *expression      = cast->unary.value;
6151         type_t                  *orig_dest_type  = cast->base.type;
6152         type_t                  *orig_type_right = expression->base.type;
6153         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6154         type_t            const *src_type        = skip_typeref(orig_type_right);
6155         source_position_t const *pos             = &cast->base.source_position;
6156
6157         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6158         if (dst_type == type_void)
6159                 return true;
6160
6161         /* only integer and pointer can be casted to pointer */
6162         if (is_type_pointer(dst_type)  &&
6163             !is_type_pointer(src_type) &&
6164             !is_type_integer(src_type) &&
6165             is_type_valid(src_type)) {
6166                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6167                 return false;
6168         }
6169
6170         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6171                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6172                 return false;
6173         }
6174
6175         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6176                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6177                 return false;
6178         }
6179
6180         if (warning.cast_qual &&
6181             is_type_pointer(src_type) &&
6182             is_type_pointer(dst_type)) {
6183                 type_t *src = skip_typeref(src_type->pointer.points_to);
6184                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6185                 unsigned missing_qualifiers =
6186                         src->base.qualifiers & ~dst->base.qualifiers;
6187                 if (missing_qualifiers != 0) {
6188                         warningf(pos,
6189                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6190                                  missing_qualifiers, orig_type_right);
6191                 }
6192         }
6193         return true;
6194 }
6195
6196 static expression_t *parse_compound_literal(type_t *type)
6197 {
6198         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6199
6200         parse_initializer_env_t env;
6201         env.type             = type;
6202         env.declaration      = NULL;
6203         env.must_be_constant = false;
6204         initializer_t *initializer = parse_initializer(&env);
6205         type = env.type;
6206
6207         expression->compound_literal.initializer = initializer;
6208         expression->compound_literal.type        = type;
6209         expression->base.type                    = automatic_type_conversion(type);
6210
6211         return expression;
6212 }
6213
6214 /**
6215  * Parse a cast expression.
6216  */
6217 static expression_t *parse_cast(void)
6218 {
6219         add_anchor_token(')');
6220
6221         source_position_t source_position = token.source_position;
6222
6223         type_t *type  = parse_typename();
6224
6225         rem_anchor_token(')');
6226         expect(')');
6227
6228         if (token.type == '{') {
6229                 return parse_compound_literal(type);
6230         }
6231
6232         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6233         cast->base.source_position = source_position;
6234
6235         expression_t *value = parse_sub_expression(20);
6236         cast->base.type   = type;
6237         cast->unary.value = value;
6238
6239         if (! semantic_cast(cast)) {
6240                 /* TODO: record the error in the AST. else it is impossible to detect it */
6241         }
6242
6243         return cast;
6244 end_error:
6245         return create_invalid_expression();
6246 }
6247
6248 /**
6249  * Parse a statement expression.
6250  */
6251 static expression_t *parse_statement_expression(void)
6252 {
6253         add_anchor_token(')');
6254
6255         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6256
6257         statement_t *statement           = parse_compound_statement(true);
6258         expression->statement.statement  = statement;
6259         expression->base.source_position = statement->base.source_position;
6260
6261         /* find last statement and use its type */
6262         type_t *type = type_void;
6263         const statement_t *stmt = statement->compound.statements;
6264         if (stmt != NULL) {
6265                 while (stmt->base.next != NULL)
6266                         stmt = stmt->base.next;
6267
6268                 if (stmt->kind == STATEMENT_EXPRESSION) {
6269                         type = stmt->expression.expression->base.type;
6270                 }
6271         } else {
6272                 warningf(&expression->base.source_position, "empty statement expression ({})");
6273         }
6274         expression->base.type = type;
6275
6276         rem_anchor_token(')');
6277         expect(')');
6278
6279 end_error:
6280         return expression;
6281 }
6282
6283 /**
6284  * Parse a parenthesized expression.
6285  */
6286 static expression_t *parse_parenthesized_expression(void)
6287 {
6288         eat('(');
6289
6290         switch(token.type) {
6291         case '{':
6292                 /* gcc extension: a statement expression */
6293                 return parse_statement_expression();
6294
6295         TYPE_QUALIFIERS
6296         TYPE_SPECIFIERS
6297                 return parse_cast();
6298         case T_IDENTIFIER:
6299                 if (is_typedef_symbol(token.v.symbol)) {
6300                         return parse_cast();
6301                 }
6302         }
6303
6304         add_anchor_token(')');
6305         expression_t *result = parse_expression();
6306         rem_anchor_token(')');
6307         expect(')');
6308
6309 end_error:
6310         return result;
6311 }
6312
6313 static expression_t *parse_function_keyword(void)
6314 {
6315         next_token();
6316         /* TODO */
6317
6318         if (current_function == NULL) {
6319                 errorf(HERE, "'__func__' used outside of a function");
6320         }
6321
6322         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6323         expression->base.type     = type_char_ptr;
6324         expression->funcname.kind = FUNCNAME_FUNCTION;
6325
6326         return expression;
6327 }
6328
6329 static expression_t *parse_pretty_function_keyword(void)
6330 {
6331         eat(T___PRETTY_FUNCTION__);
6332
6333         if (current_function == NULL) {
6334                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6335         }
6336
6337         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6338         expression->base.type     = type_char_ptr;
6339         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6340
6341         return expression;
6342 }
6343
6344 static expression_t *parse_funcsig_keyword(void)
6345 {
6346         eat(T___FUNCSIG__);
6347
6348         if (current_function == NULL) {
6349                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6350         }
6351
6352         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6353         expression->base.type     = type_char_ptr;
6354         expression->funcname.kind = FUNCNAME_FUNCSIG;
6355
6356         return expression;
6357 }
6358
6359 static expression_t *parse_funcdname_keyword(void)
6360 {
6361         eat(T___FUNCDNAME__);
6362
6363         if (current_function == NULL) {
6364                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6365         }
6366
6367         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6368         expression->base.type     = type_char_ptr;
6369         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6370
6371         return expression;
6372 }
6373
6374 static designator_t *parse_designator(void)
6375 {
6376         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6377         result->source_position = *HERE;
6378
6379         if (token.type != T_IDENTIFIER) {
6380                 parse_error_expected("while parsing member designator",
6381                                      T_IDENTIFIER, NULL);
6382                 return NULL;
6383         }
6384         result->symbol = token.v.symbol;
6385         next_token();
6386
6387         designator_t *last_designator = result;
6388         while(true) {
6389                 if (token.type == '.') {
6390                         next_token();
6391                         if (token.type != T_IDENTIFIER) {
6392                                 parse_error_expected("while parsing member designator",
6393                                                      T_IDENTIFIER, NULL);
6394                                 return NULL;
6395                         }
6396                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6397                         designator->source_position = *HERE;
6398                         designator->symbol          = token.v.symbol;
6399                         next_token();
6400
6401                         last_designator->next = designator;
6402                         last_designator       = designator;
6403                         continue;
6404                 }
6405                 if (token.type == '[') {
6406                         next_token();
6407                         add_anchor_token(']');
6408                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6409                         designator->source_position = *HERE;
6410                         designator->array_index     = parse_expression();
6411                         rem_anchor_token(']');
6412                         expect(']');
6413                         if (designator->array_index == NULL) {
6414                                 return NULL;
6415                         }
6416
6417                         last_designator->next = designator;
6418                         last_designator       = designator;
6419                         continue;
6420                 }
6421                 break;
6422         }
6423
6424         return result;
6425 end_error:
6426         return NULL;
6427 }
6428
6429 /**
6430  * Parse the __builtin_offsetof() expression.
6431  */
6432 static expression_t *parse_offsetof(void)
6433 {
6434         eat(T___builtin_offsetof);
6435
6436         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6437         expression->base.type    = type_size_t;
6438
6439         expect('(');
6440         add_anchor_token(',');
6441         type_t *type = parse_typename();
6442         rem_anchor_token(',');
6443         expect(',');
6444         add_anchor_token(')');
6445         designator_t *designator = parse_designator();
6446         rem_anchor_token(')');
6447         expect(')');
6448
6449         expression->offsetofe.type       = type;
6450         expression->offsetofe.designator = designator;
6451
6452         type_path_t path;
6453         memset(&path, 0, sizeof(path));
6454         path.top_type = type;
6455         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6456
6457         descend_into_subtype(&path);
6458
6459         if (!walk_designator(&path, designator, true)) {
6460                 return create_invalid_expression();
6461         }
6462
6463         DEL_ARR_F(path.path);
6464
6465         return expression;
6466 end_error:
6467         return create_invalid_expression();
6468 }
6469
6470 /**
6471  * Parses a _builtin_va_start() expression.
6472  */
6473 static expression_t *parse_va_start(void)
6474 {
6475         eat(T___builtin_va_start);
6476
6477         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6478
6479         expect('(');
6480         add_anchor_token(',');
6481         expression->va_starte.ap = parse_assignment_expression();
6482         rem_anchor_token(',');
6483         expect(',');
6484         expression_t *const expr = parse_assignment_expression();
6485         if (expr->kind == EXPR_REFERENCE) {
6486                 declaration_t *const decl = expr->reference.declaration;
6487                 if (decl->parent_scope != &current_function->scope || decl->next != NULL) {
6488                         errorf(&expr->base.source_position,
6489                                "second argument of 'va_start' must be last parameter of the current function");
6490                 }
6491                 expression->va_starte.parameter = decl;
6492                 expect(')');
6493                 return expression;
6494         }
6495         expect(')');
6496 end_error:
6497         return create_invalid_expression();
6498 }
6499
6500 /**
6501  * Parses a _builtin_va_arg() expression.
6502  */
6503 static expression_t *parse_va_arg(void)
6504 {
6505         eat(T___builtin_va_arg);
6506
6507         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6508
6509         expect('(');
6510         expression->va_arge.ap = parse_assignment_expression();
6511         expect(',');
6512         expression->base.type = parse_typename();
6513         expect(')');
6514
6515         return expression;
6516 end_error:
6517         return create_invalid_expression();
6518 }
6519
6520 static expression_t *parse_builtin_symbol(void)
6521 {
6522         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
6523
6524         symbol_t *symbol = token.v.symbol;
6525
6526         expression->builtin_symbol.symbol = symbol;
6527         next_token();
6528
6529         type_t *type = get_builtin_symbol_type(symbol);
6530         type = automatic_type_conversion(type);
6531
6532         expression->base.type = type;
6533         return expression;
6534 }
6535
6536 /**
6537  * Parses a __builtin_constant() expression.
6538  */
6539 static expression_t *parse_builtin_constant(void)
6540 {
6541         eat(T___builtin_constant_p);
6542
6543         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6544
6545         expect('(');
6546         add_anchor_token(')');
6547         expression->builtin_constant.value = parse_assignment_expression();
6548         rem_anchor_token(')');
6549         expect(')');
6550         expression->base.type = type_int;
6551
6552         return expression;
6553 end_error:
6554         return create_invalid_expression();
6555 }
6556
6557 /**
6558  * Parses a __builtin_prefetch() expression.
6559  */
6560 static expression_t *parse_builtin_prefetch(void)
6561 {
6562         eat(T___builtin_prefetch);
6563
6564         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
6565
6566         expect('(');
6567         add_anchor_token(')');
6568         expression->builtin_prefetch.adr = parse_assignment_expression();
6569         if (token.type == ',') {
6570                 next_token();
6571                 expression->builtin_prefetch.rw = parse_assignment_expression();
6572         }
6573         if (token.type == ',') {
6574                 next_token();
6575                 expression->builtin_prefetch.locality = parse_assignment_expression();
6576         }
6577         rem_anchor_token(')');
6578         expect(')');
6579         expression->base.type = type_void;
6580
6581         return expression;
6582 end_error:
6583         return create_invalid_expression();
6584 }
6585
6586 /**
6587  * Parses a __builtin_is_*() compare expression.
6588  */
6589 static expression_t *parse_compare_builtin(void)
6590 {
6591         expression_t *expression;
6592
6593         switch(token.type) {
6594         case T___builtin_isgreater:
6595                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6596                 break;
6597         case T___builtin_isgreaterequal:
6598                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6599                 break;
6600         case T___builtin_isless:
6601                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6602                 break;
6603         case T___builtin_islessequal:
6604                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6605                 break;
6606         case T___builtin_islessgreater:
6607                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6608                 break;
6609         case T___builtin_isunordered:
6610                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6611                 break;
6612         default:
6613                 internal_errorf(HERE, "invalid compare builtin found");
6614                 break;
6615         }
6616         expression->base.source_position = *HERE;
6617         next_token();
6618
6619         expect('(');
6620         expression->binary.left = parse_assignment_expression();
6621         expect(',');
6622         expression->binary.right = parse_assignment_expression();
6623         expect(')');
6624
6625         type_t *const orig_type_left  = expression->binary.left->base.type;
6626         type_t *const orig_type_right = expression->binary.right->base.type;
6627
6628         type_t *const type_left  = skip_typeref(orig_type_left);
6629         type_t *const type_right = skip_typeref(orig_type_right);
6630         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6631                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6632                         type_error_incompatible("invalid operands in comparison",
6633                                 &expression->base.source_position, orig_type_left, orig_type_right);
6634                 }
6635         } else {
6636                 semantic_comparison(&expression->binary);
6637         }
6638
6639         return expression;
6640 end_error:
6641         return create_invalid_expression();
6642 }
6643
6644 #if 0
6645 /**
6646  * Parses a __builtin_expect() expression.
6647  */
6648 static expression_t *parse_builtin_expect(void)
6649 {
6650         eat(T___builtin_expect);
6651
6652         expression_t *expression
6653                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
6654
6655         expect('(');
6656         expression->binary.left = parse_assignment_expression();
6657         expect(',');
6658         expression->binary.right = parse_constant_expression();
6659         expect(')');
6660
6661         expression->base.type = expression->binary.left->base.type;
6662
6663         return expression;
6664 end_error:
6665         return create_invalid_expression();
6666 }
6667 #endif
6668
6669 /**
6670  * Parses a MS assume() expression.
6671  */
6672 static expression_t *parse_assume(void)
6673 {
6674         eat(T__assume);
6675
6676         expression_t *expression
6677                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
6678
6679         expect('(');
6680         add_anchor_token(')');
6681         expression->unary.value = parse_assignment_expression();
6682         rem_anchor_token(')');
6683         expect(')');
6684
6685         expression->base.type = type_void;
6686         return expression;
6687 end_error:
6688         return create_invalid_expression();
6689 }
6690
6691 /**
6692  * Return the declaration for a given label symbol or create a new one.
6693  *
6694  * @param symbol  the symbol of the label
6695  */
6696 static declaration_t *get_label(symbol_t *symbol)
6697 {
6698         declaration_t *candidate;
6699         assert(current_function != NULL);
6700
6701         candidate = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
6702         /* if we found a local label, we already created the declaration */
6703         if (candidate != NULL) {
6704                 assert(candidate->parent_scope == scope);
6705                 return candidate;
6706         }
6707
6708         candidate = get_declaration(symbol, NAMESPACE_LABEL);
6709         /* if we found a label in the same function, then we already created the
6710          * declaration */
6711         if (candidate != NULL
6712                         && candidate->parent_scope == &current_function->scope) {
6713                 return candidate;
6714         }
6715
6716         /* otherwise we need to create a new one */
6717         declaration_t *const declaration = allocate_declaration_zero();
6718         declaration->namespc       = NAMESPACE_LABEL;
6719         declaration->symbol        = symbol;
6720
6721         label_push(declaration);
6722
6723         return declaration;
6724 }
6725
6726 /**
6727  * Parses a GNU && label address expression.
6728  */
6729 static expression_t *parse_label_address(void)
6730 {
6731         source_position_t source_position = token.source_position;
6732         eat(T_ANDAND);
6733         if (token.type != T_IDENTIFIER) {
6734                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6735                 goto end_error;
6736         }
6737         symbol_t *symbol = token.v.symbol;
6738         next_token();
6739
6740         declaration_t *label = get_label(symbol);
6741
6742         label->used          = true;
6743         label->address_taken = true;
6744
6745         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6746         expression->base.source_position = source_position;
6747
6748         /* label address is threaten as a void pointer */
6749         expression->base.type                 = type_void_ptr;
6750         expression->label_address.declaration = label;
6751         return expression;
6752 end_error:
6753         return create_invalid_expression();
6754 }
6755
6756 /**
6757  * Parse a microsoft __noop expression.
6758  */
6759 static expression_t *parse_noop_expression(void)
6760 {
6761         source_position_t source_position = *HERE;
6762         eat(T___noop);
6763
6764         if (token.type == '(') {
6765                 /* parse arguments */
6766                 eat('(');
6767                 add_anchor_token(')');
6768                 add_anchor_token(',');
6769
6770                 if (token.type != ')') {
6771                         while(true) {
6772                                 (void)parse_assignment_expression();
6773                                 if (token.type != ',')
6774                                         break;
6775                                 next_token();
6776                         }
6777                 }
6778         }
6779         rem_anchor_token(',');
6780         rem_anchor_token(')');
6781         expect(')');
6782
6783         /* the result is a (int)0 */
6784         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6785         cnst->base.source_position = source_position;
6786         cnst->base.type            = type_int;
6787         cnst->conste.v.int_value   = 0;
6788         cnst->conste.is_ms_noop    = true;
6789
6790         return cnst;
6791
6792 end_error:
6793         return create_invalid_expression();
6794 }
6795
6796 /**
6797  * Parses a primary expression.
6798  */
6799 static expression_t *parse_primary_expression(void)
6800 {
6801         switch (token.type) {
6802                 case T_INTEGER:                  return parse_int_const();
6803                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
6804                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
6805                 case T_FLOATINGPOINT:            return parse_float_const();
6806                 case T_STRING_LITERAL:
6807                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
6808                 case T_IDENTIFIER:               return parse_reference();
6809                 case T___FUNCTION__:
6810                 case T___func__:                 return parse_function_keyword();
6811                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
6812                 case T___FUNCSIG__:              return parse_funcsig_keyword();
6813                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
6814                 case T___builtin_offsetof:       return parse_offsetof();
6815                 case T___builtin_va_start:       return parse_va_start();
6816                 case T___builtin_va_arg:         return parse_va_arg();
6817                 case T___builtin_expect:
6818                 case T___builtin_alloca:
6819                 case T___builtin_nan:
6820                 case T___builtin_nand:
6821                 case T___builtin_nanf:
6822                 case T___builtin_huge_val:
6823                 case T___builtin_va_end:         return parse_builtin_symbol();
6824                 case T___builtin_isgreater:
6825                 case T___builtin_isgreaterequal:
6826                 case T___builtin_isless:
6827                 case T___builtin_islessequal:
6828                 case T___builtin_islessgreater:
6829                 case T___builtin_isunordered:    return parse_compare_builtin();
6830                 case T___builtin_constant_p:     return parse_builtin_constant();
6831                 case T___builtin_prefetch:       return parse_builtin_prefetch();
6832                 case T__assume:                  return parse_assume();
6833                 case T_ANDAND:
6834                         if (GNU_MODE)
6835                                 return parse_label_address();
6836                         break;
6837
6838                 case '(':                        return parse_parenthesized_expression();
6839                 case T___noop:                   return parse_noop_expression();
6840         }
6841
6842         errorf(HERE, "unexpected token %K, expected an expression", &token);
6843         return create_invalid_expression();
6844 }
6845
6846 /**
6847  * Check if the expression has the character type and issue a warning then.
6848  */
6849 static void check_for_char_index_type(const expression_t *expression)
6850 {
6851         type_t       *const type      = expression->base.type;
6852         const type_t *const base_type = skip_typeref(type);
6853
6854         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
6855                         warning.char_subscripts) {
6856                 warningf(&expression->base.source_position,
6857                          "array subscript has type '%T'", type);
6858         }
6859 }
6860
6861 static expression_t *parse_array_expression(unsigned precedence,
6862                                             expression_t *left)
6863 {
6864         (void) precedence;
6865
6866         eat('[');
6867         add_anchor_token(']');
6868
6869         expression_t *inside = parse_expression();
6870
6871         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6872
6873         array_access_expression_t *array_access = &expression->array_access;
6874
6875         type_t *const orig_type_left   = left->base.type;
6876         type_t *const orig_type_inside = inside->base.type;
6877
6878         type_t *const type_left   = skip_typeref(orig_type_left);
6879         type_t *const type_inside = skip_typeref(orig_type_inside);
6880
6881         type_t *return_type;
6882         if (is_type_pointer(type_left)) {
6883                 return_type             = type_left->pointer.points_to;
6884                 array_access->array_ref = left;
6885                 array_access->index     = inside;
6886                 check_for_char_index_type(inside);
6887         } else if (is_type_pointer(type_inside)) {
6888                 return_type             = type_inside->pointer.points_to;
6889                 array_access->array_ref = inside;
6890                 array_access->index     = left;
6891                 array_access->flipped   = true;
6892                 check_for_char_index_type(left);
6893         } else {
6894                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6895                         errorf(HERE,
6896                                 "array access on object with non-pointer types '%T', '%T'",
6897                                 orig_type_left, orig_type_inside);
6898                 }
6899                 return_type             = type_error_type;
6900                 array_access->array_ref = left;
6901                 array_access->index     = inside;
6902         }
6903
6904         expression->base.type = automatic_type_conversion(return_type);
6905
6906         rem_anchor_token(']');
6907         if (token.type == ']') {
6908                 next_token();
6909         } else {
6910                 parse_error_expected("Problem while parsing array access", ']', NULL);
6911         }
6912         return expression;
6913 }
6914
6915 static expression_t *parse_typeprop(expression_kind_t const kind,
6916                                     source_position_t const pos,
6917                                     unsigned const precedence)
6918 {
6919         expression_t  *tp_expression = allocate_expression_zero(kind);
6920         tp_expression->base.type            = type_size_t;
6921         tp_expression->base.source_position = pos;
6922
6923         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6924
6925         /* we only refer to a type property, mark this case */
6926         bool old     = in_type_prop;
6927         in_type_prop = true;
6928         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6929                 next_token();
6930                 add_anchor_token(')');
6931                 type_t* const orig_type = parse_typename();
6932                 tp_expression->typeprop.type = orig_type;
6933
6934                 type_t const* const type = skip_typeref(orig_type);
6935                 char const* const wrong_type =
6936                         is_type_incomplete(type)    ? "incomplete"          :
6937                         type->kind == TYPE_FUNCTION ? "function designator" :
6938                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6939                         NULL;
6940                 if (wrong_type != NULL) {
6941                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6942                                what, wrong_type, type);
6943                 }
6944
6945                 rem_anchor_token(')');
6946                 expect(')');
6947         } else {
6948                 expression_t *expression = parse_sub_expression(precedence);
6949
6950                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6951                 expression->base.type = orig_type;
6952
6953                 type_t const* const type = skip_typeref(orig_type);
6954                 char const* const wrong_type =
6955                         is_type_incomplete(type)    ? "incomplete"          :
6956                         type->kind == TYPE_FUNCTION ? "function designator" :
6957                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6958                         NULL;
6959                 if (wrong_type != NULL) {
6960                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
6961                 }
6962
6963                 tp_expression->typeprop.type          = expression->base.type;
6964                 tp_expression->typeprop.tp_expression = expression;
6965         }
6966
6967 end_error:
6968         in_type_prop = old;
6969         return tp_expression;
6970 }
6971
6972 static expression_t *parse_sizeof(unsigned precedence)
6973 {
6974         source_position_t pos = *HERE;
6975         eat(T_sizeof);
6976         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
6977 }
6978
6979 static expression_t *parse_alignof(unsigned precedence)
6980 {
6981         source_position_t pos = *HERE;
6982         eat(T___alignof__);
6983         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
6984 }
6985
6986 static expression_t *parse_select_expression(unsigned precedence,
6987                                              expression_t *compound)
6988 {
6989         (void) precedence;
6990         assert(token.type == '.' || token.type == T_MINUSGREATER);
6991
6992         bool is_pointer = (token.type == T_MINUSGREATER);
6993         next_token();
6994
6995         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
6996         select->select.compound = compound;
6997
6998         if (token.type != T_IDENTIFIER) {
6999                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7000                 return select;
7001         }
7002         symbol_t *symbol = token.v.symbol;
7003         next_token();
7004
7005         type_t *const orig_type = compound->base.type;
7006         type_t *const type      = skip_typeref(orig_type);
7007
7008         type_t *type_left;
7009         bool    saw_error = false;
7010         if (is_type_pointer(type)) {
7011                 if (!is_pointer) {
7012                         errorf(HERE,
7013                                "request for member '%Y' in something not a struct or union, but '%T'",
7014                                symbol, orig_type);
7015                         saw_error = true;
7016                 }
7017                 type_left = skip_typeref(type->pointer.points_to);
7018         } else {
7019                 if (is_pointer && is_type_valid(type)) {
7020                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7021                         saw_error = true;
7022                 }
7023                 type_left = type;
7024         }
7025
7026         declaration_t *entry;
7027         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7028             type_left->kind == TYPE_COMPOUND_UNION) {
7029                 declaration_t *const declaration = type_left->compound.declaration;
7030
7031                 if (!declaration->init.complete) {
7032                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7033                                symbol, type_left);
7034                         goto create_error_entry;
7035                 }
7036
7037                 entry = find_compound_entry(declaration, symbol);
7038                 if (entry == NULL) {
7039                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7040                         goto create_error_entry;
7041                 }
7042         } else {
7043                 if (is_type_valid(type_left) && !saw_error) {
7044                         errorf(HERE,
7045                                "request for member '%Y' in something not a struct or union, but '%T'",
7046                                symbol, type_left);
7047                 }
7048 create_error_entry:
7049                 entry         = allocate_declaration_zero();
7050                 entry->symbol = symbol;
7051         }
7052
7053         select->select.compound_entry = entry;
7054
7055         type_t *const res_type =
7056                 get_qualified_type(entry->type, type_left->base.qualifiers);
7057
7058         /* we always do the auto-type conversions; the & and sizeof parser contains
7059          * code to revert this! */
7060         select->base.type = automatic_type_conversion(res_type);
7061
7062         type_t *skipped = skip_typeref(res_type);
7063         if (skipped->kind == TYPE_BITFIELD) {
7064                 select->base.type = skipped->bitfield.base_type;
7065         }
7066
7067         return select;
7068 }
7069
7070 static void check_call_argument(const function_parameter_t *parameter,
7071                                 call_argument_t *argument, unsigned pos)
7072 {
7073         type_t         *expected_type      = parameter->type;
7074         type_t         *expected_type_skip = skip_typeref(expected_type);
7075         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7076         expression_t   *arg_expr           = argument->expression;
7077         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7078
7079         /* handle transparent union gnu extension */
7080         if (is_type_union(expected_type_skip)
7081                         && (expected_type_skip->base.modifiers
7082                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7083                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
7084
7085                 declaration_t *declaration = union_decl->scope.declarations;
7086                 type_t        *best_type   = NULL;
7087                 for ( ; declaration != NULL; declaration = declaration->next) {
7088                         type_t *decl_type = declaration->type;
7089                         error = semantic_assign(decl_type, arg_expr);
7090                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7091                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7092                                 continue;
7093
7094                         if (error == ASSIGN_SUCCESS) {
7095                                 best_type = decl_type;
7096                         } else if (best_type == NULL) {
7097                                 best_type = decl_type;
7098                         }
7099                 }
7100
7101                 if (best_type != NULL) {
7102                         expected_type = best_type;
7103                 }
7104         }
7105
7106         error                = semantic_assign(expected_type, arg_expr);
7107         argument->expression = create_implicit_cast(argument->expression,
7108                                                     expected_type);
7109
7110         if (error != ASSIGN_SUCCESS) {
7111                 /* report exact scope in error messages (like "in argument 3") */
7112                 char buf[64];
7113                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7114                 report_assign_error(error, expected_type, arg_expr,     buf,
7115                                                         &arg_expr->base.source_position);
7116         } else if (warning.traditional || warning.conversion) {
7117                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7118                 if (!types_compatible(expected_type_skip, promoted_type) &&
7119                     !types_compatible(expected_type_skip, type_void_ptr) &&
7120                     !types_compatible(type_void_ptr,      promoted_type)) {
7121                         /* Deliberately show the skipped types in this warning */
7122                         warningf(&arg_expr->base.source_position,
7123                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7124                                 pos, expected_type_skip, promoted_type);
7125                 }
7126         }
7127 }
7128
7129 /**
7130  * Parse a call expression, ie. expression '( ... )'.
7131  *
7132  * @param expression  the function address
7133  */
7134 static expression_t *parse_call_expression(unsigned precedence,
7135                                            expression_t *expression)
7136 {
7137         (void) precedence;
7138         expression_t *result = allocate_expression_zero(EXPR_CALL);
7139         result->base.source_position = expression->base.source_position;
7140
7141         call_expression_t *call = &result->call;
7142         call->function          = expression;
7143
7144         type_t *const orig_type = expression->base.type;
7145         type_t *const type      = skip_typeref(orig_type);
7146
7147         function_type_t *function_type = NULL;
7148         if (is_type_pointer(type)) {
7149                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7150
7151                 if (is_type_function(to_type)) {
7152                         function_type   = &to_type->function;
7153                         call->base.type = function_type->return_type;
7154                 }
7155         }
7156
7157         if (function_type == NULL && is_type_valid(type)) {
7158                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7159         }
7160
7161         /* parse arguments */
7162         eat('(');
7163         add_anchor_token(')');
7164         add_anchor_token(',');
7165
7166         if (token.type != ')') {
7167                 call_argument_t *last_argument = NULL;
7168
7169                 while (true) {
7170                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7171
7172                         argument->expression = parse_assignment_expression();
7173                         if (last_argument == NULL) {
7174                                 call->arguments = argument;
7175                         } else {
7176                                 last_argument->next = argument;
7177                         }
7178                         last_argument = argument;
7179
7180                         if (token.type != ',')
7181                                 break;
7182                         next_token();
7183                 }
7184         }
7185         rem_anchor_token(',');
7186         rem_anchor_token(')');
7187         expect(')');
7188
7189         if (function_type == NULL)
7190                 return result;
7191
7192         function_parameter_t *parameter = function_type->parameters;
7193         call_argument_t      *argument  = call->arguments;
7194         if (!function_type->unspecified_parameters) {
7195                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7196                                 parameter = parameter->next, argument = argument->next) {
7197                         check_call_argument(parameter, argument, ++pos);
7198                 }
7199
7200                 if (parameter != NULL) {
7201                         errorf(HERE, "too few arguments to function '%E'", expression);
7202                 } else if (argument != NULL && !function_type->variadic) {
7203                         errorf(HERE, "too many arguments to function '%E'", expression);
7204                 }
7205         }
7206
7207         /* do default promotion */
7208         for( ; argument != NULL; argument = argument->next) {
7209                 type_t *type = argument->expression->base.type;
7210
7211                 type = get_default_promoted_type(type);
7212
7213                 argument->expression
7214                         = create_implicit_cast(argument->expression, type);
7215         }
7216
7217         check_format(&result->call);
7218
7219         if (warning.aggregate_return &&
7220             is_type_compound(skip_typeref(function_type->return_type))) {
7221                 warningf(&result->base.source_position,
7222                          "function call has aggregate value");
7223         }
7224
7225 end_error:
7226         return result;
7227 }
7228
7229 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7230
7231 static bool same_compound_type(const type_t *type1, const type_t *type2)
7232 {
7233         return
7234                 is_type_compound(type1) &&
7235                 type1->kind == type2->kind &&
7236                 type1->compound.declaration == type2->compound.declaration;
7237 }
7238
7239 /**
7240  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7241  *
7242  * @param expression  the conditional expression
7243  */
7244 static expression_t *parse_conditional_expression(unsigned precedence,
7245                                                   expression_t *expression)
7246 {
7247         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7248
7249         conditional_expression_t *conditional = &result->conditional;
7250         conditional->base.source_position = *HERE;
7251         conditional->condition            = expression;
7252
7253         eat('?');
7254         add_anchor_token(':');
7255
7256         /* 6.5.15.2 */
7257         type_t *const condition_type_orig = expression->base.type;
7258         type_t *const condition_type      = skip_typeref(condition_type_orig);
7259         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7260                 type_error("expected a scalar type in conditional condition",
7261                            &expression->base.source_position, condition_type_orig);
7262         }
7263
7264         expression_t *true_expression = expression;
7265         bool          gnu_cond = false;
7266         if (GNU_MODE && token.type == ':') {
7267                 gnu_cond = true;
7268         } else
7269                 true_expression = parse_expression();
7270         rem_anchor_token(':');
7271         expect(':');
7272         expression_t *false_expression = parse_sub_expression(precedence);
7273
7274         type_t *const orig_true_type  = true_expression->base.type;
7275         type_t *const orig_false_type = false_expression->base.type;
7276         type_t *const true_type       = skip_typeref(orig_true_type);
7277         type_t *const false_type      = skip_typeref(orig_false_type);
7278
7279         /* 6.5.15.3 */
7280         type_t *result_type;
7281         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
7282                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7283                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
7284                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7285                         warningf(&conditional->base.source_position,
7286                                         "ISO C forbids conditional expression with only one void side");
7287                 }
7288                 result_type = type_void;
7289         } else if (is_type_arithmetic(true_type)
7290                    && is_type_arithmetic(false_type)) {
7291                 result_type = semantic_arithmetic(true_type, false_type);
7292
7293                 true_expression  = create_implicit_cast(true_expression, result_type);
7294                 false_expression = create_implicit_cast(false_expression, result_type);
7295
7296                 conditional->true_expression  = true_expression;
7297                 conditional->false_expression = false_expression;
7298                 conditional->base.type        = result_type;
7299         } else if (same_compound_type(true_type, false_type)) {
7300                 /* just take 1 of the 2 types */
7301                 result_type = true_type;
7302         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7303                 type_t *pointer_type;
7304                 type_t *other_type;
7305                 expression_t *other_expression;
7306                 if (is_type_pointer(true_type) &&
7307                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7308                         pointer_type     = true_type;
7309                         other_type       = false_type;
7310                         other_expression = false_expression;
7311                 } else {
7312                         pointer_type     = false_type;
7313                         other_type       = true_type;
7314                         other_expression = true_expression;
7315                 }
7316
7317                 if (is_null_pointer_constant(other_expression)) {
7318                         result_type = pointer_type;
7319                 } else if (is_type_pointer(other_type)) {
7320                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7321                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7322
7323                         type_t *to;
7324                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7325                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7326                                 to = type_void;
7327                         } else if (types_compatible(get_unqualified_type(to1),
7328                                                     get_unqualified_type(to2))) {
7329                                 to = to1;
7330                         } else {
7331                                 warningf(&conditional->base.source_position,
7332                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7333                                         true_type, false_type);
7334                                 to = type_void;
7335                         }
7336
7337                         type_t *const type =
7338                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7339                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7340                 } else if (is_type_integer(other_type)) {
7341                         warningf(&conditional->base.source_position,
7342                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7343                         result_type = pointer_type;
7344                 } else {
7345                         type_error_incompatible("while parsing conditional",
7346                                         &expression->base.source_position, true_type, false_type);
7347                         result_type = type_error_type;
7348                 }
7349         } else {
7350                 /* TODO: one pointer to void*, other some pointer */
7351
7352                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7353                         type_error_incompatible("while parsing conditional",
7354                                                 &conditional->base.source_position, true_type,
7355                                                 false_type);
7356                 }
7357                 result_type = type_error_type;
7358         }
7359
7360         conditional->true_expression
7361                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7362         conditional->false_expression
7363                 = create_implicit_cast(false_expression, result_type);
7364         conditional->base.type = result_type;
7365         return result;
7366 end_error:
7367         return create_invalid_expression();
7368 }
7369
7370 /**
7371  * Parse an extension expression.
7372  */
7373 static expression_t *parse_extension(unsigned precedence)
7374 {
7375         eat(T___extension__);
7376
7377         bool old_gcc_extension   = in_gcc_extension;
7378         in_gcc_extension         = true;
7379         expression_t *expression = parse_sub_expression(precedence);
7380         in_gcc_extension         = old_gcc_extension;
7381         return expression;
7382 }
7383
7384 /**
7385  * Parse a __builtin_classify_type() expression.
7386  */
7387 static expression_t *parse_builtin_classify_type(const unsigned precedence)
7388 {
7389         eat(T___builtin_classify_type);
7390
7391         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7392         result->base.type    = type_int;
7393
7394         expect('(');
7395         add_anchor_token(')');
7396         expression_t *expression = parse_sub_expression(precedence);
7397         rem_anchor_token(')');
7398         expect(')');
7399         result->classify_type.type_expression = expression;
7400
7401         return result;
7402 end_error:
7403         return create_invalid_expression();
7404 }
7405
7406 static bool check_pointer_arithmetic(const source_position_t *source_position,
7407                                      type_t *pointer_type,
7408                                      type_t *orig_pointer_type)
7409 {
7410         type_t *points_to = pointer_type->pointer.points_to;
7411         points_to = skip_typeref(points_to);
7412
7413         if (is_type_incomplete(points_to)) {
7414                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7415                         errorf(source_position,
7416                                "arithmetic with pointer to incomplete type '%T' not allowed",
7417                                orig_pointer_type);
7418                         return false;
7419                 } else if (warning.pointer_arith) {
7420                         warningf(source_position,
7421                                  "pointer of type '%T' used in arithmetic",
7422                                  orig_pointer_type);
7423                 }
7424         } else if (is_type_function(points_to)) {
7425                 if (!GNU_MODE) {
7426                         errorf(source_position,
7427                                "arithmetic with pointer to function type '%T' not allowed",
7428                                orig_pointer_type);
7429                         return false;
7430                 } else if (warning.pointer_arith) {
7431                         warningf(source_position,
7432                                  "pointer to a function '%T' used in arithmetic",
7433                                  orig_pointer_type);
7434                 }
7435         }
7436         return true;
7437 }
7438
7439 static bool is_lvalue(const expression_t *expression)
7440 {
7441         switch (expression->kind) {
7442         case EXPR_REFERENCE:
7443         case EXPR_ARRAY_ACCESS:
7444         case EXPR_SELECT:
7445         case EXPR_UNARY_DEREFERENCE:
7446                 return true;
7447
7448         default:
7449                 return false;
7450         }
7451 }
7452
7453 static void semantic_incdec(unary_expression_t *expression)
7454 {
7455         type_t *const orig_type = expression->value->base.type;
7456         type_t *const type      = skip_typeref(orig_type);
7457         if (is_type_pointer(type)) {
7458                 if (!check_pointer_arithmetic(&expression->base.source_position,
7459                                               type, orig_type)) {
7460                         return;
7461                 }
7462         } else if (!is_type_real(type) && is_type_valid(type)) {
7463                 /* TODO: improve error message */
7464                 errorf(&expression->base.source_position,
7465                        "operation needs an arithmetic or pointer type");
7466                 return;
7467         }
7468         if (!is_lvalue(expression->value)) {
7469                 /* TODO: improve error message */
7470                 errorf(&expression->base.source_position, "lvalue required as operand");
7471         }
7472         expression->base.type = orig_type;
7473 }
7474
7475 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7476 {
7477         type_t *const orig_type = expression->value->base.type;
7478         type_t *const type      = skip_typeref(orig_type);
7479         if (!is_type_arithmetic(type)) {
7480                 if (is_type_valid(type)) {
7481                         /* TODO: improve error message */
7482                         errorf(&expression->base.source_position,
7483                                 "operation needs an arithmetic type");
7484                 }
7485                 return;
7486         }
7487
7488         expression->base.type = orig_type;
7489 }
7490
7491 static void semantic_unexpr_plus(unary_expression_t *expression)
7492 {
7493         semantic_unexpr_arithmetic(expression);
7494         if (warning.traditional)
7495                 warningf(&expression->base.source_position,
7496                         "traditional C rejects the unary plus operator");
7497 }
7498
7499 static expression_t const *get_reference_address(expression_t const *expr)
7500 {
7501         bool regular_take_address = true;
7502         for (;;) {
7503                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7504                         expr = expr->unary.value;
7505                 } else {
7506                         regular_take_address = false;
7507                 }
7508
7509                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7510                         break;
7511
7512                 expr = expr->unary.value;
7513         }
7514
7515         if (expr->kind != EXPR_REFERENCE)
7516                 return NULL;
7517
7518         if (!regular_take_address &&
7519             !is_type_function(skip_typeref(expr->reference.declaration->type))) {
7520                 return NULL;
7521         }
7522
7523         return expr;
7524 }
7525
7526 static void warn_function_address_as_bool(expression_t const* expr)
7527 {
7528         if (!warning.address)
7529                 return;
7530
7531         expr = get_reference_address(expr);
7532         if (expr != NULL) {
7533                 warningf(&expr->base.source_position,
7534                         "the address of '%Y' will always evaluate as 'true'",
7535                         expr->reference.declaration->symbol);
7536         }
7537 }
7538
7539 static void semantic_not(unary_expression_t *expression)
7540 {
7541         type_t *const orig_type = expression->value->base.type;
7542         type_t *const type      = skip_typeref(orig_type);
7543         if (!is_type_scalar(type) && is_type_valid(type)) {
7544                 errorf(&expression->base.source_position,
7545                        "operand of ! must be of scalar type");
7546         }
7547
7548         warn_function_address_as_bool(expression->value);
7549
7550         expression->base.type = type_int;
7551 }
7552
7553 static void semantic_unexpr_integer(unary_expression_t *expression)
7554 {
7555         type_t *const orig_type = expression->value->base.type;
7556         type_t *const type      = skip_typeref(orig_type);
7557         if (!is_type_integer(type)) {
7558                 if (is_type_valid(type)) {
7559                         errorf(&expression->base.source_position,
7560                                "operand of ~ must be of integer type");
7561                 }
7562                 return;
7563         }
7564
7565         expression->base.type = orig_type;
7566 }
7567
7568 static void semantic_dereference(unary_expression_t *expression)
7569 {
7570         type_t *const orig_type = expression->value->base.type;
7571         type_t *const type      = skip_typeref(orig_type);
7572         if (!is_type_pointer(type)) {
7573                 if (is_type_valid(type)) {
7574                         errorf(&expression->base.source_position,
7575                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7576                 }
7577                 return;
7578         }
7579
7580         type_t *result_type   = type->pointer.points_to;
7581         result_type           = automatic_type_conversion(result_type);
7582         expression->base.type = result_type;
7583 }
7584
7585 /**
7586  * Record that an address is taken (expression represents an lvalue).
7587  *
7588  * @param expression       the expression
7589  * @param may_be_register  if true, the expression might be an register
7590  */
7591 static void set_address_taken(expression_t *expression, bool may_be_register)
7592 {
7593         if (expression->kind != EXPR_REFERENCE)
7594                 return;
7595
7596         declaration_t *const declaration = expression->reference.declaration;
7597         /* happens for parse errors */
7598         if (declaration == NULL)
7599                 return;
7600
7601         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
7602                 errorf(&expression->base.source_position,
7603                                 "address of register variable '%Y' requested",
7604                                 declaration->symbol);
7605         } else {
7606                 declaration->address_taken = 1;
7607         }
7608 }
7609
7610 /**
7611  * Check the semantic of the address taken expression.
7612  */
7613 static void semantic_take_addr(unary_expression_t *expression)
7614 {
7615         expression_t *value = expression->value;
7616         value->base.type    = revert_automatic_type_conversion(value);
7617
7618         type_t *orig_type = value->base.type;
7619         if (!is_type_valid(orig_type))
7620                 return;
7621
7622         set_address_taken(value, false);
7623
7624         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7625 }
7626
7627 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
7628 static expression_t *parse_##unexpression_type(unsigned precedence)            \
7629 {                                                                              \
7630         expression_t *unary_expression                                             \
7631                 = allocate_expression_zero(unexpression_type);                         \
7632         unary_expression->base.source_position = *HERE;                            \
7633         eat(token_type);                                                           \
7634         unary_expression->unary.value = parse_sub_expression(precedence);          \
7635                                                                                    \
7636         sfunc(&unary_expression->unary);                                           \
7637                                                                                    \
7638         return unary_expression;                                                   \
7639 }
7640
7641 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7642                                semantic_unexpr_arithmetic)
7643 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7644                                semantic_unexpr_plus)
7645 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7646                                semantic_not)
7647 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7648                                semantic_dereference)
7649 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7650                                semantic_take_addr)
7651 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7652                                semantic_unexpr_integer)
7653 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7654                                semantic_incdec)
7655 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7656                                semantic_incdec)
7657
7658 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
7659                                                sfunc)                         \
7660 static expression_t *parse_##unexpression_type(unsigned precedence,           \
7661                                                expression_t *left)            \
7662 {                                                                             \
7663         (void) precedence;                                                        \
7664                                                                               \
7665         expression_t *unary_expression                                            \
7666                 = allocate_expression_zero(unexpression_type);                        \
7667         unary_expression->base.source_position = *HERE;                           \
7668         eat(token_type);                                                          \
7669         unary_expression->unary.value          = left;                            \
7670                                                                                   \
7671         sfunc(&unary_expression->unary);                                          \
7672                                                                               \
7673         return unary_expression;                                                  \
7674 }
7675
7676 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7677                                        EXPR_UNARY_POSTFIX_INCREMENT,
7678                                        semantic_incdec)
7679 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7680                                        EXPR_UNARY_POSTFIX_DECREMENT,
7681                                        semantic_incdec)
7682
7683 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7684 {
7685         /* TODO: handle complex + imaginary types */
7686
7687         type_left  = get_unqualified_type(type_left);
7688         type_right = get_unqualified_type(type_right);
7689
7690         /* Â§ 6.3.1.8 Usual arithmetic conversions */
7691         if (type_left == type_long_double || type_right == type_long_double) {
7692                 return type_long_double;
7693         } else if (type_left == type_double || type_right == type_double) {
7694                 return type_double;
7695         } else if (type_left == type_float || type_right == type_float) {
7696                 return type_float;
7697         }
7698
7699         type_left  = promote_integer(type_left);
7700         type_right = promote_integer(type_right);
7701
7702         if (type_left == type_right)
7703                 return type_left;
7704
7705         bool const signed_left  = is_type_signed(type_left);
7706         bool const signed_right = is_type_signed(type_right);
7707         int const  rank_left    = get_rank(type_left);
7708         int const  rank_right   = get_rank(type_right);
7709
7710         if (signed_left == signed_right)
7711                 return rank_left >= rank_right ? type_left : type_right;
7712
7713         int     s_rank;
7714         int     u_rank;
7715         type_t *s_type;
7716         type_t *u_type;
7717         if (signed_left) {
7718                 s_rank = rank_left;
7719                 s_type = type_left;
7720                 u_rank = rank_right;
7721                 u_type = type_right;
7722         } else {
7723                 s_rank = rank_right;
7724                 s_type = type_right;
7725                 u_rank = rank_left;
7726                 u_type = type_left;
7727         }
7728
7729         if (u_rank >= s_rank)
7730                 return u_type;
7731
7732         /* casting rank to atomic_type_kind is a bit hacky, but makes things
7733          * easier here... */
7734         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
7735                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
7736                 return s_type;
7737
7738         switch (s_rank) {
7739                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
7740                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7741                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7742
7743                 default: panic("invalid atomic type");
7744         }
7745 }
7746
7747 /**
7748  * Check the semantic restrictions for a binary expression.
7749  */
7750 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7751 {
7752         expression_t *const left            = expression->left;
7753         expression_t *const right           = expression->right;
7754         type_t       *const orig_type_left  = left->base.type;
7755         type_t       *const orig_type_right = right->base.type;
7756         type_t       *const type_left       = skip_typeref(orig_type_left);
7757         type_t       *const type_right      = skip_typeref(orig_type_right);
7758
7759         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7760                 /* TODO: improve error message */
7761                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7762                         errorf(&expression->base.source_position,
7763                                "operation needs arithmetic types");
7764                 }
7765                 return;
7766         }
7767
7768         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7769         expression->left      = create_implicit_cast(left, arithmetic_type);
7770         expression->right     = create_implicit_cast(right, arithmetic_type);
7771         expression->base.type = arithmetic_type;
7772 }
7773
7774 static void warn_div_by_zero(binary_expression_t const *const expression)
7775 {
7776         if (!warning.div_by_zero ||
7777             !is_type_integer(expression->base.type))
7778                 return;
7779
7780         expression_t const *const right = expression->right;
7781         /* The type of the right operand can be different for /= */
7782         if (is_type_integer(right->base.type) &&
7783             is_constant_expression(right)     &&
7784             fold_constant(right) == 0) {
7785                 warningf(&expression->base.source_position, "division by zero");
7786         }
7787 }
7788
7789 /**
7790  * Check the semantic restrictions for a div/mod expression.
7791  */
7792 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
7793         semantic_binexpr_arithmetic(expression);
7794         warn_div_by_zero(expression);
7795 }
7796
7797 static void semantic_shift_op(binary_expression_t *expression)
7798 {
7799         expression_t *const left            = expression->left;
7800         expression_t *const right           = expression->right;
7801         type_t       *const orig_type_left  = left->base.type;
7802         type_t       *const orig_type_right = right->base.type;
7803         type_t       *      type_left       = skip_typeref(orig_type_left);
7804         type_t       *      type_right      = skip_typeref(orig_type_right);
7805
7806         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7807                 /* TODO: improve error message */
7808                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7809                         errorf(&expression->base.source_position,
7810                                "operands of shift operation must have integer types");
7811                 }
7812                 return;
7813         }
7814
7815         type_left  = promote_integer(type_left);
7816         type_right = promote_integer(type_right);
7817
7818         expression->left      = create_implicit_cast(left, type_left);
7819         expression->right     = create_implicit_cast(right, type_right);
7820         expression->base.type = type_left;
7821 }
7822
7823 static void semantic_add(binary_expression_t *expression)
7824 {
7825         expression_t *const left            = expression->left;
7826         expression_t *const right           = expression->right;
7827         type_t       *const orig_type_left  = left->base.type;
7828         type_t       *const orig_type_right = right->base.type;
7829         type_t       *const type_left       = skip_typeref(orig_type_left);
7830         type_t       *const type_right      = skip_typeref(orig_type_right);
7831
7832         /* Â§ 6.5.6 */
7833         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7834                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7835                 expression->left  = create_implicit_cast(left, arithmetic_type);
7836                 expression->right = create_implicit_cast(right, arithmetic_type);
7837                 expression->base.type = arithmetic_type;
7838                 return;
7839         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7840                 check_pointer_arithmetic(&expression->base.source_position,
7841                                          type_left, orig_type_left);
7842                 expression->base.type = type_left;
7843         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
7844                 check_pointer_arithmetic(&expression->base.source_position,
7845                                          type_right, orig_type_right);
7846                 expression->base.type = type_right;
7847         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7848                 errorf(&expression->base.source_position,
7849                        "invalid operands to binary + ('%T', '%T')",
7850                        orig_type_left, orig_type_right);
7851         }
7852 }
7853
7854 static void semantic_sub(binary_expression_t *expression)
7855 {
7856         expression_t            *const left            = expression->left;
7857         expression_t            *const right           = expression->right;
7858         type_t                  *const orig_type_left  = left->base.type;
7859         type_t                  *const orig_type_right = right->base.type;
7860         type_t                  *const type_left       = skip_typeref(orig_type_left);
7861         type_t                  *const type_right      = skip_typeref(orig_type_right);
7862         source_position_t const *const pos             = &expression->base.source_position;
7863
7864         /* Â§ 5.6.5 */
7865         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7866                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7867                 expression->left        = create_implicit_cast(left, arithmetic_type);
7868                 expression->right       = create_implicit_cast(right, arithmetic_type);
7869                 expression->base.type =  arithmetic_type;
7870                 return;
7871         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7872                 check_pointer_arithmetic(&expression->base.source_position,
7873                                          type_left, orig_type_left);
7874                 expression->base.type = type_left;
7875         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7876                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
7877                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
7878                 if (!types_compatible(unqual_left, unqual_right)) {
7879                         errorf(pos,
7880                                "subtracting pointers to incompatible types '%T' and '%T'",
7881                                orig_type_left, orig_type_right);
7882                 } else if (!is_type_object(unqual_left)) {
7883                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
7884                                 warningf(pos, "subtracting pointers to void");
7885                         } else {
7886                                 errorf(pos, "subtracting pointers to non-object types '%T'",
7887                                        orig_type_left);
7888                         }
7889                 }
7890                 expression->base.type = type_ptrdiff_t;
7891         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7892                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
7893                        orig_type_left, orig_type_right);
7894         }
7895 }
7896
7897 static void warn_string_literal_address(expression_t const* expr)
7898 {
7899         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7900                 expr = expr->unary.value;
7901                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7902                         return;
7903                 expr = expr->unary.value;
7904         }
7905
7906         if (expr->kind == EXPR_STRING_LITERAL ||
7907             expr->kind == EXPR_WIDE_STRING_LITERAL) {
7908                 warningf(&expr->base.source_position,
7909                         "comparison with string literal results in unspecified behaviour");
7910         }
7911 }
7912
7913 /**
7914  * Check the semantics of comparison expressions.
7915  *
7916  * @param expression   The expression to check.
7917  */
7918 static void semantic_comparison(binary_expression_t *expression)
7919 {
7920         expression_t *left  = expression->left;
7921         expression_t *right = expression->right;
7922
7923         if (warning.address) {
7924                 warn_string_literal_address(left);
7925                 warn_string_literal_address(right);
7926
7927                 expression_t const* const func_left = get_reference_address(left);
7928                 if (func_left != NULL && is_null_pointer_constant(right)) {
7929                         warningf(&expression->base.source_position,
7930                                 "the address of '%Y' will never be NULL",
7931                                 func_left->reference.declaration->symbol);
7932                 }
7933
7934                 expression_t const* const func_right = get_reference_address(right);
7935                 if (func_right != NULL && is_null_pointer_constant(right)) {
7936                         warningf(&expression->base.source_position,
7937                                 "the address of '%Y' will never be NULL",
7938                                 func_right->reference.declaration->symbol);
7939                 }
7940         }
7941
7942         type_t *orig_type_left  = left->base.type;
7943         type_t *orig_type_right = right->base.type;
7944         type_t *type_left       = skip_typeref(orig_type_left);
7945         type_t *type_right      = skip_typeref(orig_type_right);
7946
7947         /* TODO non-arithmetic types */
7948         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7949                 /* test for signed vs unsigned compares */
7950                 if (warning.sign_compare &&
7951                     (expression->base.kind != EXPR_BINARY_EQUAL &&
7952                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
7953                     (is_type_signed(type_left) != is_type_signed(type_right))) {
7954
7955                         /* check if 1 of the operands is a constant, in this case we just
7956                          * check wether we can safely represent the resulting constant in
7957                          * the type of the other operand. */
7958                         expression_t *const_expr = NULL;
7959                         expression_t *other_expr = NULL;
7960
7961                         if (is_constant_expression(left)) {
7962                                 const_expr = left;
7963                                 other_expr = right;
7964                         } else if (is_constant_expression(right)) {
7965                                 const_expr = right;
7966                                 other_expr = left;
7967                         }
7968
7969                         if (const_expr != NULL) {
7970                                 type_t *other_type = skip_typeref(other_expr->base.type);
7971                                 long    val        = fold_constant(const_expr);
7972                                 /* TODO: check if val can be represented by other_type */
7973                                 (void) other_type;
7974                                 (void) val;
7975                         }
7976                         warningf(&expression->base.source_position,
7977                                  "comparison between signed and unsigned");
7978                 }
7979                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7980                 expression->left        = create_implicit_cast(left, arithmetic_type);
7981                 expression->right       = create_implicit_cast(right, arithmetic_type);
7982                 expression->base.type   = arithmetic_type;
7983                 if (warning.float_equal &&
7984                     (expression->base.kind == EXPR_BINARY_EQUAL ||
7985                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
7986                     is_type_float(arithmetic_type)) {
7987                         warningf(&expression->base.source_position,
7988                                  "comparing floating point with == or != is unsafe");
7989                 }
7990         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7991                 /* TODO check compatibility */
7992         } else if (is_type_pointer(type_left)) {
7993                 expression->right = create_implicit_cast(right, type_left);
7994         } else if (is_type_pointer(type_right)) {
7995                 expression->left = create_implicit_cast(left, type_right);
7996         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7997                 type_error_incompatible("invalid operands in comparison",
7998                                         &expression->base.source_position,
7999                                         type_left, type_right);
8000         }
8001         expression->base.type = type_int;
8002 }
8003
8004 /**
8005  * Checks if a compound type has constant fields.
8006  */
8007 static bool has_const_fields(const compound_type_t *type)
8008 {
8009         const scope_t       *scope       = &type->declaration->scope;
8010         const declaration_t *declaration = scope->declarations;
8011
8012         for (; declaration != NULL; declaration = declaration->next) {
8013                 if (declaration->namespc != NAMESPACE_NORMAL)
8014                         continue;
8015
8016                 const type_t *decl_type = skip_typeref(declaration->type);
8017                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8018                         return true;
8019         }
8020         /* TODO */
8021         return false;
8022 }
8023
8024 static bool is_valid_assignment_lhs(expression_t const* const left)
8025 {
8026         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8027         type_t *const type_left      = skip_typeref(orig_type_left);
8028
8029         if (!is_lvalue(left)) {
8030                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
8031                        left);
8032                 return false;
8033         }
8034
8035         if (is_type_array(type_left)) {
8036                 errorf(HERE, "cannot assign to arrays ('%E')", left);
8037                 return false;
8038         }
8039         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8040                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
8041                        orig_type_left);
8042                 return false;
8043         }
8044         if (is_type_incomplete(type_left)) {
8045                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
8046                        left, orig_type_left);
8047                 return false;
8048         }
8049         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8050                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
8051                        left, orig_type_left);
8052                 return false;
8053         }
8054
8055         return true;
8056 }
8057
8058 static void semantic_arithmetic_assign(binary_expression_t *expression)
8059 {
8060         expression_t *left            = expression->left;
8061         expression_t *right           = expression->right;
8062         type_t       *orig_type_left  = left->base.type;
8063         type_t       *orig_type_right = right->base.type;
8064
8065         if (!is_valid_assignment_lhs(left))
8066                 return;
8067
8068         type_t *type_left  = skip_typeref(orig_type_left);
8069         type_t *type_right = skip_typeref(orig_type_right);
8070
8071         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8072                 /* TODO: improve error message */
8073                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8074                         errorf(&expression->base.source_position,
8075                                "operation needs arithmetic types");
8076                 }
8077                 return;
8078         }
8079
8080         /* combined instructions are tricky. We can't create an implicit cast on
8081          * the left side, because we need the uncasted form for the store.
8082          * The ast2firm pass has to know that left_type must be right_type
8083          * for the arithmetic operation and create a cast by itself */
8084         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8085         expression->right       = create_implicit_cast(right, arithmetic_type);
8086         expression->base.type   = type_left;
8087 }
8088
8089 static void semantic_divmod_assign(binary_expression_t *expression)
8090 {
8091         semantic_arithmetic_assign(expression);
8092         warn_div_by_zero(expression);
8093 }
8094
8095 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8096 {
8097         expression_t *const left            = expression->left;
8098         expression_t *const right           = expression->right;
8099         type_t       *const orig_type_left  = left->base.type;
8100         type_t       *const orig_type_right = right->base.type;
8101         type_t       *const type_left       = skip_typeref(orig_type_left);
8102         type_t       *const type_right      = skip_typeref(orig_type_right);
8103
8104         if (!is_valid_assignment_lhs(left))
8105                 return;
8106
8107         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8108                 /* combined instructions are tricky. We can't create an implicit cast on
8109                  * the left side, because we need the uncasted form for the store.
8110                  * The ast2firm pass has to know that left_type must be right_type
8111                  * for the arithmetic operation and create a cast by itself */
8112                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8113                 expression->right     = create_implicit_cast(right, arithmetic_type);
8114                 expression->base.type = type_left;
8115         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8116                 check_pointer_arithmetic(&expression->base.source_position,
8117                                          type_left, orig_type_left);
8118                 expression->base.type = type_left;
8119         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8120                 errorf(&expression->base.source_position,
8121                        "incompatible types '%T' and '%T' in assignment",
8122                        orig_type_left, orig_type_right);
8123         }
8124 }
8125
8126 /**
8127  * Check the semantic restrictions of a logical expression.
8128  */
8129 static void semantic_logical_op(binary_expression_t *expression)
8130 {
8131         expression_t *const left            = expression->left;
8132         expression_t *const right           = expression->right;
8133         type_t       *const orig_type_left  = left->base.type;
8134         type_t       *const orig_type_right = right->base.type;
8135         type_t       *const type_left       = skip_typeref(orig_type_left);
8136         type_t       *const type_right      = skip_typeref(orig_type_right);
8137
8138         warn_function_address_as_bool(left);
8139         warn_function_address_as_bool(right);
8140
8141         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8142                 /* TODO: improve error message */
8143                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8144                         errorf(&expression->base.source_position,
8145                                "operation needs scalar types");
8146                 }
8147                 return;
8148         }
8149
8150         expression->base.type = type_int;
8151 }
8152
8153 /**
8154  * Check the semantic restrictions of a binary assign expression.
8155  */
8156 static void semantic_binexpr_assign(binary_expression_t *expression)
8157 {
8158         expression_t *left           = expression->left;
8159         type_t       *orig_type_left = left->base.type;
8160
8161         if (!is_valid_assignment_lhs(left))
8162                 return;
8163
8164         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8165         report_assign_error(error, orig_type_left, expression->right,
8166                         "assignment", &left->base.source_position);
8167         expression->right = create_implicit_cast(expression->right, orig_type_left);
8168         expression->base.type = orig_type_left;
8169 }
8170
8171 /**
8172  * Determine if the outermost operation (or parts thereof) of the given
8173  * expression has no effect in order to generate a warning about this fact.
8174  * Therefore in some cases this only examines some of the operands of the
8175  * expression (see comments in the function and examples below).
8176  * Examples:
8177  *   f() + 23;    // warning, because + has no effect
8178  *   x || f();    // no warning, because x controls execution of f()
8179  *   x ? y : f(); // warning, because y has no effect
8180  *   (void)x;     // no warning to be able to suppress the warning
8181  * This function can NOT be used for an "expression has definitely no effect"-
8182  * analysis. */
8183 static bool expression_has_effect(const expression_t *const expr)
8184 {
8185         switch (expr->kind) {
8186                 case EXPR_UNKNOWN:                   break;
8187                 case EXPR_INVALID:                   return true; /* do NOT warn */
8188                 case EXPR_REFERENCE:                 return false;
8189                 /* suppress the warning for microsoft __noop operations */
8190                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8191                 case EXPR_CHARACTER_CONSTANT:        return false;
8192                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8193                 case EXPR_STRING_LITERAL:            return false;
8194                 case EXPR_WIDE_STRING_LITERAL:       return false;
8195                 case EXPR_LABEL_ADDRESS:             return false;
8196
8197                 case EXPR_CALL: {
8198                         const call_expression_t *const call = &expr->call;
8199                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8200                                 return true;
8201
8202                         switch (call->function->builtin_symbol.symbol->ID) {
8203                                 case T___builtin_va_end: return true;
8204                                 default:                 return false;
8205                         }
8206                 }
8207
8208                 /* Generate the warning if either the left or right hand side of a
8209                  * conditional expression has no effect */
8210                 case EXPR_CONDITIONAL: {
8211                         const conditional_expression_t *const cond = &expr->conditional;
8212                         return
8213                                 expression_has_effect(cond->true_expression) &&
8214                                 expression_has_effect(cond->false_expression);
8215                 }
8216
8217                 case EXPR_SELECT:                    return false;
8218                 case EXPR_ARRAY_ACCESS:              return false;
8219                 case EXPR_SIZEOF:                    return false;
8220                 case EXPR_CLASSIFY_TYPE:             return false;
8221                 case EXPR_ALIGNOF:                   return false;
8222
8223                 case EXPR_FUNCNAME:                  return false;
8224                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8225                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8226                 case EXPR_BUILTIN_PREFETCH:          return true;
8227                 case EXPR_OFFSETOF:                  return false;
8228                 case EXPR_VA_START:                  return true;
8229                 case EXPR_VA_ARG:                    return true;
8230                 case EXPR_STATEMENT:                 return true; // TODO
8231                 case EXPR_COMPOUND_LITERAL:          return false;
8232
8233                 case EXPR_UNARY_NEGATE:              return false;
8234                 case EXPR_UNARY_PLUS:                return false;
8235                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8236                 case EXPR_UNARY_NOT:                 return false;
8237                 case EXPR_UNARY_DEREFERENCE:         return false;
8238                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8239                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8240                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8241                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8242                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8243
8244                 /* Treat void casts as if they have an effect in order to being able to
8245                  * suppress the warning */
8246                 case EXPR_UNARY_CAST: {
8247                         type_t *const type = skip_typeref(expr->base.type);
8248                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8249                 }
8250
8251                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8252                 case EXPR_UNARY_ASSUME:              return true;
8253
8254                 case EXPR_BINARY_ADD:                return false;
8255                 case EXPR_BINARY_SUB:                return false;
8256                 case EXPR_BINARY_MUL:                return false;
8257                 case EXPR_BINARY_DIV:                return false;
8258                 case EXPR_BINARY_MOD:                return false;
8259                 case EXPR_BINARY_EQUAL:              return false;
8260                 case EXPR_BINARY_NOTEQUAL:           return false;
8261                 case EXPR_BINARY_LESS:               return false;
8262                 case EXPR_BINARY_LESSEQUAL:          return false;
8263                 case EXPR_BINARY_GREATER:            return false;
8264                 case EXPR_BINARY_GREATEREQUAL:       return false;
8265                 case EXPR_BINARY_BITWISE_AND:        return false;
8266                 case EXPR_BINARY_BITWISE_OR:         return false;
8267                 case EXPR_BINARY_BITWISE_XOR:        return false;
8268                 case EXPR_BINARY_SHIFTLEFT:          return false;
8269                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8270                 case EXPR_BINARY_ASSIGN:             return true;
8271                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8272                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8273                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8274                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8275                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8276                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8277                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8278                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8279                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8280                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8281
8282                 /* Only examine the right hand side of && and ||, because the left hand
8283                  * side already has the effect of controlling the execution of the right
8284                  * hand side */
8285                 case EXPR_BINARY_LOGICAL_AND:
8286                 case EXPR_BINARY_LOGICAL_OR:
8287                 /* Only examine the right hand side of a comma expression, because the left
8288                  * hand side has a separate warning */
8289                 case EXPR_BINARY_COMMA:
8290                         return expression_has_effect(expr->binary.right);
8291
8292                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8293                 case EXPR_BINARY_ISGREATER:          return false;
8294                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8295                 case EXPR_BINARY_ISLESS:             return false;
8296                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8297                 case EXPR_BINARY_ISLESSGREATER:      return false;
8298                 case EXPR_BINARY_ISUNORDERED:        return false;
8299         }
8300
8301         internal_errorf(HERE, "unexpected expression");
8302 }
8303
8304 static void semantic_comma(binary_expression_t *expression)
8305 {
8306         if (warning.unused_value) {
8307                 const expression_t *const left = expression->left;
8308                 if (!expression_has_effect(left)) {
8309                         warningf(&left->base.source_position,
8310                                  "left-hand operand of comma expression has no effect");
8311                 }
8312         }
8313         expression->base.type = expression->right->base.type;
8314 }
8315
8316 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
8317 static expression_t *parse_##binexpression_type(unsigned precedence,      \
8318                                                 expression_t *left)       \
8319 {                                                                         \
8320         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
8321         binexpr->base.source_position = *HERE;                                \
8322         binexpr->binary.left          = left;                                 \
8323         eat(token_type);                                                      \
8324                                                                           \
8325         expression_t *right = parse_sub_expression(precedence + lr);          \
8326                                                                           \
8327         binexpr->binary.right = right;                                        \
8328         sfunc(&binexpr->binary);                                              \
8329                                                                           \
8330         return binexpr;                                                       \
8331 }
8332
8333 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
8334 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
8335 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_divmod_arithmetic, 1)
8336 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_divmod_arithmetic, 1)
8337 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
8338 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
8339 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
8340 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
8341 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
8342
8343 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
8344                       semantic_comparison, 1)
8345 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
8346                       semantic_comparison, 1)
8347 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
8348                       semantic_comparison, 1)
8349 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
8350                       semantic_comparison, 1)
8351
8352 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
8353                       semantic_binexpr_arithmetic, 1)
8354 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
8355                       semantic_binexpr_arithmetic, 1)
8356 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
8357                       semantic_binexpr_arithmetic, 1)
8358 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
8359                       semantic_logical_op, 1)
8360 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
8361                       semantic_logical_op, 1)
8362 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
8363                       semantic_shift_op, 1)
8364 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
8365                       semantic_shift_op, 1)
8366 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
8367                       semantic_arithmetic_addsubb_assign, 0)
8368 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
8369                       semantic_arithmetic_addsubb_assign, 0)
8370 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
8371                       semantic_arithmetic_assign, 0)
8372 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
8373                       semantic_divmod_assign, 0)
8374 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
8375                       semantic_divmod_assign, 0)
8376 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
8377                       semantic_arithmetic_assign, 0)
8378 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8379                       semantic_arithmetic_assign, 0)
8380 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
8381                       semantic_arithmetic_assign, 0)
8382 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
8383                       semantic_arithmetic_assign, 0)
8384 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
8385                       semantic_arithmetic_assign, 0)
8386
8387 static expression_t *parse_sub_expression(unsigned precedence)
8388 {
8389         if (token.type < 0) {
8390                 return expected_expression_error();
8391         }
8392
8393         expression_parser_function_t *parser
8394                 = &expression_parsers[token.type];
8395         source_position_t             source_position = token.source_position;
8396         expression_t                 *left;
8397
8398         if (parser->parser != NULL) {
8399                 left = parser->parser(parser->precedence);
8400         } else {
8401                 left = parse_primary_expression();
8402         }
8403         assert(left != NULL);
8404         left->base.source_position = source_position;
8405
8406         while(true) {
8407                 if (token.type < 0) {
8408                         return expected_expression_error();
8409                 }
8410
8411                 parser = &expression_parsers[token.type];
8412                 if (parser->infix_parser == NULL)
8413                         break;
8414                 if (parser->infix_precedence < precedence)
8415                         break;
8416
8417                 left = parser->infix_parser(parser->infix_precedence, left);
8418
8419                 assert(left != NULL);
8420                 assert(left->kind != EXPR_UNKNOWN);
8421                 left->base.source_position = source_position;
8422         }
8423
8424         return left;
8425 }
8426
8427 /**
8428  * Parse an expression.
8429  */
8430 static expression_t *parse_expression(void)
8431 {
8432         return parse_sub_expression(1);
8433 }
8434
8435 /**
8436  * Register a parser for a prefix-like operator with given precedence.
8437  *
8438  * @param parser      the parser function
8439  * @param token_type  the token type of the prefix token
8440  * @param precedence  the precedence of the operator
8441  */
8442 static void register_expression_parser(parse_expression_function parser,
8443                                        int token_type, unsigned precedence)
8444 {
8445         expression_parser_function_t *entry = &expression_parsers[token_type];
8446
8447         if (entry->parser != NULL) {
8448                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8449                 panic("trying to register multiple expression parsers for a token");
8450         }
8451         entry->parser     = parser;
8452         entry->precedence = precedence;
8453 }
8454
8455 /**
8456  * Register a parser for an infix operator with given precedence.
8457  *
8458  * @param parser      the parser function
8459  * @param token_type  the token type of the infix operator
8460  * @param precedence  the precedence of the operator
8461  */
8462 static void register_infix_parser(parse_expression_infix_function parser,
8463                 int token_type, unsigned precedence)
8464 {
8465         expression_parser_function_t *entry = &expression_parsers[token_type];
8466
8467         if (entry->infix_parser != NULL) {
8468                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8469                 panic("trying to register multiple infix expression parsers for a "
8470                       "token");
8471         }
8472         entry->infix_parser     = parser;
8473         entry->infix_precedence = precedence;
8474 }
8475
8476 /**
8477  * Initialize the expression parsers.
8478  */
8479 static void init_expression_parsers(void)
8480 {
8481         memset(&expression_parsers, 0, sizeof(expression_parsers));
8482
8483         register_infix_parser(parse_array_expression,         '[',              30);
8484         register_infix_parser(parse_call_expression,          '(',              30);
8485         register_infix_parser(parse_select_expression,        '.',              30);
8486         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
8487         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
8488                                                               T_PLUSPLUS,       30);
8489         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
8490                                                               T_MINUSMINUS,     30);
8491
8492         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
8493         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
8494         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
8495         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
8496         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
8497         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
8498         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
8499         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
8500         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
8501         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
8502         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
8503         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
8504         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
8505                                                     T_EXCLAMATIONMARKEQUAL, 13);
8506         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
8507         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
8508         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
8509         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
8510         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
8511         register_infix_parser(parse_conditional_expression,   '?',               7);
8512         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
8513         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
8514         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
8515         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
8516         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
8517         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
8518         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
8519                                                                 T_LESSLESSEQUAL, 2);
8520         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8521                                                           T_GREATERGREATEREQUAL, 2);
8522         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
8523                                                                      T_ANDEQUAL, 2);
8524         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
8525                                                                     T_PIPEEQUAL, 2);
8526         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
8527                                                                    T_CARETEQUAL, 2);
8528
8529         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
8530
8531         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
8532         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
8533         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
8534         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
8535         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
8536         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
8537         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
8538                                                                   T_PLUSPLUS,   25);
8539         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
8540                                                                   T_MINUSMINUS, 25);
8541         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
8542         register_expression_parser(parse_alignof,                T___alignof__, 25);
8543         register_expression_parser(parse_extension,            T___extension__, 25);
8544         register_expression_parser(parse_builtin_classify_type,
8545                                                      T___builtin_classify_type, 25);
8546 }
8547
8548 /**
8549  * Parse a asm statement arguments specification.
8550  */
8551 static asm_argument_t *parse_asm_arguments(bool is_out)
8552 {
8553         asm_argument_t *result = NULL;
8554         asm_argument_t *last   = NULL;
8555
8556         while (token.type == T_STRING_LITERAL || token.type == '[') {
8557                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8558                 memset(argument, 0, sizeof(argument[0]));
8559
8560                 if (token.type == '[') {
8561                         eat('[');
8562                         if (token.type != T_IDENTIFIER) {
8563                                 parse_error_expected("while parsing asm argument",
8564                                                      T_IDENTIFIER, NULL);
8565                                 return NULL;
8566                         }
8567                         argument->symbol = token.v.symbol;
8568
8569                         expect(']');
8570                 }
8571
8572                 argument->constraints = parse_string_literals();
8573                 expect('(');
8574                 add_anchor_token(')');
8575                 expression_t *expression = parse_expression();
8576                 rem_anchor_token(')');
8577                 if (is_out) {
8578                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8579                          * change size or type representation (e.g. int -> long is ok, but
8580                          * int -> float is not) */
8581                         if (expression->kind == EXPR_UNARY_CAST) {
8582                                 type_t      *const type = expression->base.type;
8583                                 type_kind_t  const kind = type->kind;
8584                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8585                                         unsigned flags;
8586                                         unsigned size;
8587                                         if (kind == TYPE_ATOMIC) {
8588                                                 atomic_type_kind_t const akind = type->atomic.akind;
8589                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8590                                                 size  = get_atomic_type_size(akind);
8591                                         } else {
8592                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8593                                                 size  = get_atomic_type_size(get_intptr_kind());
8594                                         }
8595
8596                                         do {
8597                                                 expression_t *const value      = expression->unary.value;
8598                                                 type_t       *const value_type = value->base.type;
8599                                                 type_kind_t   const value_kind = value_type->kind;
8600
8601                                                 unsigned value_flags;
8602                                                 unsigned value_size;
8603                                                 if (value_kind == TYPE_ATOMIC) {
8604                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8605                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8606                                                         value_size  = get_atomic_type_size(value_akind);
8607                                                 } else if (value_kind == TYPE_POINTER) {
8608                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8609                                                         value_size  = get_atomic_type_size(get_intptr_kind());
8610                                                 } else {
8611                                                         break;
8612                                                 }
8613
8614                                                 if (value_flags != flags || value_size != size)
8615                                                         break;
8616
8617                                                 expression = value;
8618                                         } while (expression->kind == EXPR_UNARY_CAST);
8619                                 }
8620                         }
8621
8622                         if (!is_lvalue(expression)) {
8623                                 errorf(&expression->base.source_position,
8624                                        "asm output argument is not an lvalue");
8625                         }
8626                 }
8627                 argument->expression = expression;
8628                 expect(')');
8629
8630                 set_address_taken(expression, true);
8631
8632                 if (last != NULL) {
8633                         last->next = argument;
8634                 } else {
8635                         result = argument;
8636                 }
8637                 last = argument;
8638
8639                 if (token.type != ',')
8640                         break;
8641                 eat(',');
8642         }
8643
8644         return result;
8645 end_error:
8646         return NULL;
8647 }
8648
8649 /**
8650  * Parse a asm statement clobber specification.
8651  */
8652 static asm_clobber_t *parse_asm_clobbers(void)
8653 {
8654         asm_clobber_t *result = NULL;
8655         asm_clobber_t *last   = NULL;
8656
8657         while(token.type == T_STRING_LITERAL) {
8658                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8659                 clobber->clobber       = parse_string_literals();
8660
8661                 if (last != NULL) {
8662                         last->next = clobber;
8663                 } else {
8664                         result = clobber;
8665                 }
8666                 last = clobber;
8667
8668                 if (token.type != ',')
8669                         break;
8670                 eat(',');
8671         }
8672
8673         return result;
8674 }
8675
8676 /**
8677  * Parse an asm statement.
8678  */
8679 static statement_t *parse_asm_statement(void)
8680 {
8681         eat(T_asm);
8682
8683         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
8684         statement->base.source_position = token.source_position;
8685
8686         asm_statement_t *asm_statement = &statement->asms;
8687
8688         if (token.type == T_volatile) {
8689                 next_token();
8690                 asm_statement->is_volatile = true;
8691         }
8692
8693         expect('(');
8694         add_anchor_token(')');
8695         add_anchor_token(':');
8696         asm_statement->asm_text = parse_string_literals();
8697
8698         if (token.type != ':') {
8699                 rem_anchor_token(':');
8700                 goto end_of_asm;
8701         }
8702         eat(':');
8703
8704         asm_statement->outputs = parse_asm_arguments(true);
8705         if (token.type != ':') {
8706                 rem_anchor_token(':');
8707                 goto end_of_asm;
8708         }
8709         eat(':');
8710
8711         asm_statement->inputs = parse_asm_arguments(false);
8712         if (token.type != ':') {
8713                 rem_anchor_token(':');
8714                 goto end_of_asm;
8715         }
8716         rem_anchor_token(':');
8717         eat(':');
8718
8719         asm_statement->clobbers = parse_asm_clobbers();
8720
8721 end_of_asm:
8722         rem_anchor_token(')');
8723         expect(')');
8724         expect(';');
8725
8726         if (asm_statement->outputs == NULL) {
8727                 /* GCC: An 'asm' instruction without any output operands will be treated
8728                  * identically to a volatile 'asm' instruction. */
8729                 asm_statement->is_volatile = true;
8730         }
8731
8732         return statement;
8733 end_error:
8734         return create_invalid_statement();
8735 }
8736
8737 /**
8738  * Parse a case statement.
8739  */
8740 static statement_t *parse_case_statement(void)
8741 {
8742         eat(T_case);
8743
8744         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8745         source_position_t *const pos       = &statement->base.source_position;
8746
8747         *pos                             = token.source_position;
8748         expression_t *const expression   = parse_expression();
8749         statement->case_label.expression = expression;
8750         if (!is_constant_expression(expression)) {
8751                 /* This check does not prevent the error message in all cases of an
8752                  * prior error while parsing the expression.  At least it catches the
8753                  * common case of a mistyped enum entry. */
8754                 if (is_type_valid(expression->base.type)) {
8755                         errorf(pos, "case label does not reduce to an integer constant");
8756                 }
8757                 statement->case_label.is_bad = true;
8758         } else {
8759                 long const val = fold_constant(expression);
8760                 statement->case_label.first_case = val;
8761                 statement->case_label.last_case  = val;
8762         }
8763
8764         if (GNU_MODE) {
8765                 if (token.type == T_DOTDOTDOT) {
8766                         next_token();
8767                         expression_t *const end_range   = parse_expression();
8768                         statement->case_label.end_range = end_range;
8769                         if (!is_constant_expression(end_range)) {
8770                                 /* This check does not prevent the error message in all cases of an
8771                                  * prior error while parsing the expression.  At least it catches the
8772                                  * common case of a mistyped enum entry. */
8773                                 if (is_type_valid(end_range->base.type)) {
8774                                         errorf(pos, "case range does not reduce to an integer constant");
8775                                 }
8776                                 statement->case_label.is_bad = true;
8777                         } else {
8778                                 long const val = fold_constant(end_range);
8779                                 statement->case_label.last_case = val;
8780
8781                                 if (val < statement->case_label.first_case) {
8782                                         statement->case_label.is_empty_range = true;
8783                                         warningf(pos, "empty range specified");
8784                                 }
8785                         }
8786                 }
8787         }
8788
8789         PUSH_PARENT(statement);
8790
8791         expect(':');
8792
8793         if (current_switch != NULL) {
8794                 if (! statement->case_label.is_bad) {
8795                         /* Check for duplicate case values */
8796                         case_label_statement_t *c = &statement->case_label;
8797                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
8798                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
8799                                         continue;
8800
8801                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
8802                                         continue;
8803
8804                                 errorf(pos, "duplicate case value (previously used %P)",
8805                                        &l->base.source_position);
8806                                 break;
8807                         }
8808                 }
8809                 /* link all cases into the switch statement */
8810                 if (current_switch->last_case == NULL) {
8811                         current_switch->first_case      = &statement->case_label;
8812                 } else {
8813                         current_switch->last_case->next = &statement->case_label;
8814                 }
8815                 current_switch->last_case = &statement->case_label;
8816         } else {
8817                 errorf(pos, "case label not within a switch statement");
8818         }
8819
8820         statement_t *const inner_stmt = parse_statement();
8821         statement->case_label.statement = inner_stmt;
8822         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8823                 errorf(&inner_stmt->base.source_position, "declaration after case label");
8824         }
8825
8826         POP_PARENT;
8827         return statement;
8828 end_error:
8829         POP_PARENT;
8830         return create_invalid_statement();
8831 }
8832
8833 /**
8834  * Parse a default statement.
8835  */
8836 static statement_t *parse_default_statement(void)
8837 {
8838         eat(T_default);
8839
8840         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8841         statement->base.source_position = token.source_position;
8842
8843         PUSH_PARENT(statement);
8844
8845         expect(':');
8846         if (current_switch != NULL) {
8847                 const case_label_statement_t *def_label = current_switch->default_label;
8848                 if (def_label != NULL) {
8849                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
8850                                &def_label->base.source_position);
8851                 } else {
8852                         current_switch->default_label = &statement->case_label;
8853
8854                         /* link all cases into the switch statement */
8855                         if (current_switch->last_case == NULL) {
8856                                 current_switch->first_case      = &statement->case_label;
8857                         } else {
8858                                 current_switch->last_case->next = &statement->case_label;
8859                         }
8860                         current_switch->last_case = &statement->case_label;
8861                 }
8862         } else {
8863                 errorf(&statement->base.source_position,
8864                         "'default' label not within a switch statement");
8865         }
8866
8867         statement_t *const inner_stmt = parse_statement();
8868         statement->case_label.statement = inner_stmt;
8869         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8870                 errorf(&inner_stmt->base.source_position, "declaration after default label");
8871         }
8872
8873         POP_PARENT;
8874         return statement;
8875 end_error:
8876         POP_PARENT;
8877         return create_invalid_statement();
8878 }
8879
8880 /**
8881  * Parse a label statement.
8882  */
8883 static statement_t *parse_label_statement(void)
8884 {
8885         assert(token.type == T_IDENTIFIER);
8886         symbol_t *symbol = token.v.symbol;
8887         next_token();
8888
8889         declaration_t *label = get_label(symbol);
8890
8891         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
8892         statement->base.source_position = token.source_position;
8893         statement->label.label          = label;
8894
8895         PUSH_PARENT(statement);
8896
8897         /* if statement is already set then the label is defined twice,
8898          * otherwise it was just mentioned in a goto/local label declaration so far */
8899         if (label->init.statement != NULL) {
8900                 errorf(HERE, "duplicate label '%Y' (declared %P)",
8901                        symbol, &label->source_position);
8902         } else {
8903                 label->source_position = token.source_position;
8904                 label->init.statement  = statement;
8905         }
8906
8907         eat(':');
8908
8909         if (token.type == '}') {
8910                 /* TODO only warn? */
8911                 if (false) {
8912                         warningf(HERE, "label at end of compound statement");
8913                         statement->label.statement = create_empty_statement();
8914                 } else {
8915                         errorf(HERE, "label at end of compound statement");
8916                         statement->label.statement = create_invalid_statement();
8917                 }
8918         } else if (token.type == ';') {
8919                 /* Eat an empty statement here, to avoid the warning about an empty
8920                  * statement after a label.  label:; is commonly used to have a label
8921                  * before a closing brace. */
8922                 statement->label.statement = create_empty_statement();
8923                 next_token();
8924         } else {
8925                 statement_t *const inner_stmt = parse_statement();
8926                 statement->label.statement = inner_stmt;
8927                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
8928                         errorf(&inner_stmt->base.source_position, "declaration after label");
8929                 }
8930         }
8931
8932         /* remember the labels in a list for later checking */
8933         if (label_last == NULL) {
8934                 label_first = &statement->label;
8935         } else {
8936                 label_last->next = &statement->label;
8937         }
8938         label_last = &statement->label;
8939
8940         POP_PARENT;
8941         return statement;
8942 }
8943
8944 /**
8945  * Parse an if statement.
8946  */
8947 static statement_t *parse_if(void)
8948 {
8949         eat(T_if);
8950
8951         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
8952         statement->base.source_position = token.source_position;
8953
8954         PUSH_PARENT(statement);
8955
8956         expect('(');
8957         add_anchor_token(')');
8958         statement->ifs.condition = parse_expression();
8959         rem_anchor_token(')');
8960         expect(')');
8961
8962         add_anchor_token(T_else);
8963         statement->ifs.true_statement = parse_statement();
8964         rem_anchor_token(T_else);
8965
8966         if (token.type == T_else) {
8967                 next_token();
8968                 statement->ifs.false_statement = parse_statement();
8969         }
8970
8971         POP_PARENT;
8972         return statement;
8973 end_error:
8974         POP_PARENT;
8975         return create_invalid_statement();
8976 }
8977
8978 /**
8979  * Check that all enums are handled in a switch.
8980  *
8981  * @param statement  the switch statement to check
8982  */
8983 static void check_enum_cases(const switch_statement_t *statement) {
8984         const type_t *type = skip_typeref(statement->expression->base.type);
8985         if (! is_type_enum(type))
8986                 return;
8987         const enum_type_t *enumt = &type->enumt;
8988
8989         /* if we have a default, no warnings */
8990         if (statement->default_label != NULL)
8991                 return;
8992
8993         /* FIXME: calculation of value should be done while parsing */
8994         const declaration_t *declaration;
8995         long last_value = -1;
8996         for (declaration = enumt->declaration->next;
8997              declaration != NULL && declaration->storage_class == STORAGE_CLASS_ENUM_ENTRY;
8998                  declaration = declaration->next) {
8999                 const expression_t *expression = declaration->init.enum_value;
9000                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
9001                 bool                found      = false;
9002                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9003                         if (l->expression == NULL)
9004                                 continue;
9005                         if (l->first_case <= value && value <= l->last_case) {
9006                                 found = true;
9007                                 break;
9008                         }
9009                 }
9010                 if (! found) {
9011                         warningf(&statement->base.source_position,
9012                                 "enumeration value '%Y' not handled in switch", declaration->symbol);
9013                 }
9014                 last_value = value;
9015         }
9016 }
9017
9018 /**
9019  * Parse a switch statement.
9020  */
9021 static statement_t *parse_switch(void)
9022 {
9023         eat(T_switch);
9024
9025         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
9026         statement->base.source_position = token.source_position;
9027
9028         PUSH_PARENT(statement);
9029
9030         expect('(');
9031         add_anchor_token(')');
9032         expression_t *const expr = parse_expression();
9033         type_t       *      type = skip_typeref(expr->base.type);
9034         if (is_type_integer(type)) {
9035                 type = promote_integer(type);
9036                 if (warning.traditional) {
9037                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9038                                 warningf(&expr->base.source_position,
9039                                         "'%T' switch expression not converted to '%T' in ISO C",
9040                                         type, type_int);
9041                         }
9042                 }
9043         } else if (is_type_valid(type)) {
9044                 errorf(&expr->base.source_position,
9045                        "switch quantity is not an integer, but '%T'", type);
9046                 type = type_error_type;
9047         }
9048         statement->switchs.expression = create_implicit_cast(expr, type);
9049         expect(')');
9050         rem_anchor_token(')');
9051
9052         switch_statement_t *rem = current_switch;
9053         current_switch          = &statement->switchs;
9054         statement->switchs.body = parse_statement();
9055         current_switch          = rem;
9056
9057         if (warning.switch_default &&
9058             statement->switchs.default_label == NULL) {
9059                 warningf(&statement->base.source_position, "switch has no default case");
9060         }
9061         if (warning.switch_enum)
9062                 check_enum_cases(&statement->switchs);
9063
9064         POP_PARENT;
9065         return statement;
9066 end_error:
9067         POP_PARENT;
9068         return create_invalid_statement();
9069 }
9070
9071 static statement_t *parse_loop_body(statement_t *const loop)
9072 {
9073         statement_t *const rem = current_loop;
9074         current_loop = loop;
9075
9076         statement_t *const body = parse_statement();
9077
9078         current_loop = rem;
9079         return body;
9080 }
9081
9082 /**
9083  * Parse a while statement.
9084  */
9085 static statement_t *parse_while(void)
9086 {
9087         eat(T_while);
9088
9089         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
9090         statement->base.source_position = token.source_position;
9091
9092         PUSH_PARENT(statement);
9093
9094         expect('(');
9095         add_anchor_token(')');
9096         statement->whiles.condition = parse_expression();
9097         rem_anchor_token(')');
9098         expect(')');
9099
9100         statement->whiles.body = parse_loop_body(statement);
9101
9102         POP_PARENT;
9103         return statement;
9104 end_error:
9105         POP_PARENT;
9106         return create_invalid_statement();
9107 }
9108
9109 /**
9110  * Parse a do statement.
9111  */
9112 static statement_t *parse_do(void)
9113 {
9114         eat(T_do);
9115
9116         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9117         statement->base.source_position = token.source_position;
9118
9119         PUSH_PARENT(statement)
9120
9121         add_anchor_token(T_while);
9122         statement->do_while.body = parse_loop_body(statement);
9123         rem_anchor_token(T_while);
9124
9125         expect(T_while);
9126         expect('(');
9127         add_anchor_token(')');
9128         statement->do_while.condition = parse_expression();
9129         rem_anchor_token(')');
9130         expect(')');
9131         expect(';');
9132
9133         POP_PARENT;
9134         return statement;
9135 end_error:
9136         POP_PARENT;
9137         return create_invalid_statement();
9138 }
9139
9140 /**
9141  * Parse a for statement.
9142  */
9143 static statement_t *parse_for(void)
9144 {
9145         eat(T_for);
9146
9147         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
9148         statement->base.source_position = token.source_position;
9149
9150         PUSH_PARENT(statement);
9151
9152         int      top        = environment_top();
9153         scope_t *last_scope = scope;
9154         set_scope(&statement->fors.scope);
9155
9156         expect('(');
9157         add_anchor_token(')');
9158
9159         if (token.type != ';') {
9160                 if (is_declaration_specifier(&token, false)) {
9161                         parse_declaration(record_declaration);
9162                 } else {
9163                         add_anchor_token(';');
9164                         expression_t *const init = parse_expression();
9165                         statement->fors.initialisation = init;
9166                         if (warning.unused_value && !expression_has_effect(init)) {
9167                                 warningf(&init->base.source_position,
9168                                          "initialisation of 'for'-statement has no effect");
9169                         }
9170                         rem_anchor_token(';');
9171                         expect(';');
9172                 }
9173         } else {
9174                 expect(';');
9175         }
9176
9177         if (token.type != ';') {
9178                 add_anchor_token(';');
9179                 statement->fors.condition = parse_expression();
9180                 rem_anchor_token(';');
9181         }
9182         expect(';');
9183         if (token.type != ')') {
9184                 expression_t *const step = parse_expression();
9185                 statement->fors.step = step;
9186                 if (warning.unused_value && !expression_has_effect(step)) {
9187                         warningf(&step->base.source_position,
9188                                  "step of 'for'-statement has no effect");
9189                 }
9190         }
9191         rem_anchor_token(')');
9192         expect(')');
9193         statement->fors.body = parse_loop_body(statement);
9194
9195         assert(scope == &statement->fors.scope);
9196         set_scope(last_scope);
9197         environment_pop_to(top);
9198
9199         POP_PARENT;
9200         return statement;
9201
9202 end_error:
9203         POP_PARENT;
9204         rem_anchor_token(')');
9205         assert(scope == &statement->fors.scope);
9206         set_scope(last_scope);
9207         environment_pop_to(top);
9208
9209         return create_invalid_statement();
9210 }
9211
9212 /**
9213  * Parse a goto statement.
9214  */
9215 static statement_t *parse_goto(void)
9216 {
9217         source_position_t source_position = token.source_position;
9218         eat(T_goto);
9219
9220         statement_t *statement;
9221         if (GNU_MODE && token.type == '*') {
9222                 next_token();
9223                 expression_t *expression = parse_expression();
9224
9225                 /* Argh: although documentation say the expression must be of type void *,
9226                  * gcc excepts anything that can be casted into void * without error */
9227                 type_t *type = expression->base.type;
9228
9229                 if (type != type_error_type) {
9230                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9231                                 errorf(&source_position, "cannot convert to a pointer type");
9232                         } else if (type != type_void_ptr) {
9233                                 warningf(&source_position,
9234                                         "type of computed goto expression should be 'void*' not '%T'", type);
9235                         }
9236                         expression = create_implicit_cast(expression, type_void_ptr);
9237                 }
9238
9239                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9240                 statement->base.source_position = source_position;
9241                 statement->gotos.expression     = expression;
9242         } else {
9243                 if (token.type != T_IDENTIFIER) {
9244                         if (GNU_MODE)
9245                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9246                         else
9247                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9248                         eat_until_anchor();
9249                         goto end_error;
9250                 }
9251                 symbol_t *symbol = token.v.symbol;
9252                 next_token();
9253
9254                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9255                 statement->base.source_position = source_position;
9256                 statement->gotos.label          = get_label(symbol);
9257         }
9258
9259         /* remember the goto's in a list for later checking */
9260         if (goto_last == NULL) {
9261                 goto_first = &statement->gotos;
9262         } else {
9263                 goto_last->next = &statement->gotos;
9264         }
9265         goto_last = &statement->gotos;
9266
9267         expect(';');
9268
9269         return statement;
9270 end_error:
9271         return create_invalid_statement();
9272 }
9273
9274 /**
9275  * Parse a continue statement.
9276  */
9277 static statement_t *parse_continue(void)
9278 {
9279         if (current_loop == NULL) {
9280                 errorf(HERE, "continue statement not within loop");
9281         }
9282
9283         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9284         statement->base.source_position = token.source_position;
9285
9286         eat(T_continue);
9287         expect(';');
9288
9289 end_error:
9290         return statement;
9291 }
9292
9293 /**
9294  * Parse a break statement.
9295  */
9296 static statement_t *parse_break(void)
9297 {
9298         if (current_switch == NULL && current_loop == NULL) {
9299                 errorf(HERE, "break statement not within loop or switch");
9300         }
9301
9302         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9303         statement->base.source_position = token.source_position;
9304
9305         eat(T_break);
9306         expect(';');
9307
9308 end_error:
9309         return statement;
9310 }
9311
9312 /**
9313  * Parse a __leave statement.
9314  */
9315 static statement_t *parse_leave_statement(void)
9316 {
9317         if (current_try == NULL) {
9318                 errorf(HERE, "__leave statement not within __try");
9319         }
9320
9321         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9322         statement->base.source_position = token.source_position;
9323
9324         eat(T___leave);
9325         expect(';');
9326
9327 end_error:
9328         return statement;
9329 }
9330
9331 /**
9332  * Check if a given declaration represents a local variable.
9333  */
9334 static bool is_local_var_declaration(const declaration_t *declaration)
9335 {
9336         switch ((storage_class_tag_t) declaration->storage_class) {
9337         case STORAGE_CLASS_AUTO:
9338         case STORAGE_CLASS_REGISTER: {
9339                 const type_t *type = skip_typeref(declaration->type);
9340                 if (is_type_function(type)) {
9341                         return false;
9342                 } else {
9343                         return true;
9344                 }
9345         }
9346         default:
9347                 return false;
9348         }
9349 }
9350
9351 /**
9352  * Check if a given declaration represents a variable.
9353  */
9354 static bool is_var_declaration(const declaration_t *declaration)
9355 {
9356         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
9357                 return false;
9358
9359         const type_t *type = skip_typeref(declaration->type);
9360         return !is_type_function(type);
9361 }
9362
9363 /**
9364  * Check if a given expression represents a local variable.
9365  */
9366 static bool is_local_variable(const expression_t *expression)
9367 {
9368         if (expression->base.kind != EXPR_REFERENCE) {
9369                 return false;
9370         }
9371         const declaration_t *declaration = expression->reference.declaration;
9372         return is_local_var_declaration(declaration);
9373 }
9374
9375 /**
9376  * Check if a given expression represents a local variable and
9377  * return its declaration then, else return NULL.
9378  */
9379 declaration_t *expr_is_variable(const expression_t *expression)
9380 {
9381         if (expression->base.kind != EXPR_REFERENCE) {
9382                 return NULL;
9383         }
9384         declaration_t *declaration = expression->reference.declaration;
9385         if (is_var_declaration(declaration))
9386                 return declaration;
9387         return NULL;
9388 }
9389
9390 /**
9391  * Parse a return statement.
9392  */
9393 static statement_t *parse_return(void)
9394 {
9395         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
9396         statement->base.source_position = token.source_position;
9397
9398         eat(T_return);
9399
9400         expression_t *return_value = NULL;
9401         if (token.type != ';') {
9402                 return_value = parse_expression();
9403         }
9404
9405         const type_t *const func_type = current_function->type;
9406         assert(is_type_function(func_type));
9407         type_t *const return_type = skip_typeref(func_type->function.return_type);
9408
9409         if (return_value != NULL) {
9410                 type_t *return_value_type = skip_typeref(return_value->base.type);
9411
9412                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
9413                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9414                         warningf(&statement->base.source_position,
9415                                  "'return' with a value, in function returning void");
9416                         return_value = NULL;
9417                 } else {
9418                         assign_error_t error = semantic_assign(return_type, return_value);
9419                         report_assign_error(error, return_type, return_value, "'return'",
9420                                             &statement->base.source_position);
9421                         return_value = create_implicit_cast(return_value, return_type);
9422                 }
9423                 /* check for returning address of a local var */
9424                 if (return_value != NULL &&
9425                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9426                         const expression_t *expression = return_value->unary.value;
9427                         if (is_local_variable(expression)) {
9428                                 warningf(&statement->base.source_position,
9429                                          "function returns address of local variable");
9430                         }
9431                 }
9432         } else {
9433                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9434                         warningf(&statement->base.source_position,
9435                                  "'return' without value, in function returning non-void");
9436                 }
9437         }
9438         statement->returns.value = return_value;
9439
9440         expect(';');
9441
9442 end_error:
9443         return statement;
9444 }
9445
9446 /**
9447  * Parse a declaration statement.
9448  */
9449 static statement_t *parse_declaration_statement(void)
9450 {
9451         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9452
9453         statement->base.source_position = token.source_position;
9454
9455         declaration_t *before = last_declaration;
9456         if (GNU_MODE)
9457                 parse_external_declaration();
9458         else
9459                 parse_declaration(record_declaration);
9460
9461         if (before == NULL) {
9462                 statement->declaration.declarations_begin = scope->declarations;
9463         } else {
9464                 statement->declaration.declarations_begin = before->next;
9465         }
9466         statement->declaration.declarations_end = last_declaration;
9467
9468         return statement;
9469 }
9470
9471 /**
9472  * Parse an expression statement, ie. expr ';'.
9473  */
9474 static statement_t *parse_expression_statement(void)
9475 {
9476         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9477
9478         statement->base.source_position  = token.source_position;
9479         expression_t *const expr         = parse_expression();
9480         statement->expression.expression = expr;
9481
9482         expect(';');
9483
9484 end_error:
9485         return statement;
9486 }
9487
9488 /**
9489  * Parse a microsoft __try { } __finally { } or
9490  * __try{ } __except() { }
9491  */
9492 static statement_t *parse_ms_try_statment(void)
9493 {
9494         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9495         statement->base.source_position  = token.source_position;
9496         eat(T___try);
9497
9498         PUSH_PARENT(statement);
9499
9500         ms_try_statement_t *rem = current_try;
9501         current_try = &statement->ms_try;
9502         statement->ms_try.try_statement = parse_compound_statement(false);
9503         current_try = rem;
9504
9505         POP_PARENT;
9506
9507         if (token.type == T___except) {
9508                 eat(T___except);
9509                 expect('(');
9510                 add_anchor_token(')');
9511                 expression_t *const expr = parse_expression();
9512                 type_t       *      type = skip_typeref(expr->base.type);
9513                 if (is_type_integer(type)) {
9514                         type = promote_integer(type);
9515                 } else if (is_type_valid(type)) {
9516                         errorf(&expr->base.source_position,
9517                                "__expect expression is not an integer, but '%T'", type);
9518                         type = type_error_type;
9519                 }
9520                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9521                 rem_anchor_token(')');
9522                 expect(')');
9523                 statement->ms_try.final_statement = parse_compound_statement(false);
9524         } else if (token.type == T__finally) {
9525                 eat(T___finally);
9526                 statement->ms_try.final_statement = parse_compound_statement(false);
9527         } else {
9528                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9529                 return create_invalid_statement();
9530         }
9531         return statement;
9532 end_error:
9533         return create_invalid_statement();
9534 }
9535
9536 static statement_t *parse_empty_statement(void)
9537 {
9538         if (warning.empty_statement) {
9539                 warningf(HERE, "statement is empty");
9540         }
9541         statement_t *const statement = create_empty_statement();
9542         eat(';');
9543         return statement;
9544 }
9545
9546 static statement_t *parse_local_label_declaration(void) {
9547         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9548         statement->base.source_position = token.source_position;
9549
9550         eat(T___label__);
9551
9552         declaration_t *begin = NULL, *end = NULL;
9553
9554         while (true) {
9555                 if (token.type != T_IDENTIFIER) {
9556                         parse_error_expected("while parsing local label declaration",
9557                                 T_IDENTIFIER, NULL);
9558                         goto end_error;
9559                 }
9560                 symbol_t      *symbol      = token.v.symbol;
9561                 declaration_t *declaration = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
9562                 if (declaration != NULL) {
9563                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition at %P)",
9564                                 symbol, &declaration->source_position);
9565                 } else {
9566                         declaration = allocate_declaration_zero();
9567                         declaration->namespc         = NAMESPACE_LOCAL_LABEL;
9568                         declaration->source_position = token.source_position;
9569                         declaration->symbol          = symbol;
9570                         declaration->parent_scope    = scope;
9571                         declaration->init.statement  = NULL;
9572
9573                         if (end != NULL)
9574                                 end->next = declaration;
9575                         end = declaration;
9576                         if (begin == NULL)
9577                                 begin = declaration;
9578
9579                         local_label_push(declaration);
9580                 }
9581                 next_token();
9582
9583                 if (token.type != ',')
9584                         break;
9585                 next_token();
9586         }
9587         eat(';');
9588 end_error:
9589         statement->declaration.declarations_begin = begin;
9590         statement->declaration.declarations_end   = end;
9591         return statement;
9592 }
9593
9594 /**
9595  * Parse a statement.
9596  * There's also parse_statement() which additionally checks for
9597  * "statement has no effect" warnings
9598  */
9599 static statement_t *intern_parse_statement(void)
9600 {
9601         statement_t *statement = NULL;
9602
9603         /* declaration or statement */
9604         add_anchor_token(';');
9605         switch (token.type) {
9606         case T_IDENTIFIER: {
9607                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
9608                 if (la1_type == ':') {
9609                         statement = parse_label_statement();
9610                 } else if (is_typedef_symbol(token.v.symbol)) {
9611                         statement = parse_declaration_statement();
9612                 } else switch (la1_type) {
9613                         case '*':
9614                                 if (get_declaration(token.v.symbol, NAMESPACE_NORMAL) != NULL)
9615                                         goto expression_statment;
9616                                 /* FALLTHROUGH */
9617
9618                         DECLARATION_START
9619                         case T_IDENTIFIER:
9620                                 statement = parse_declaration_statement();
9621                                 break;
9622
9623                         default:
9624 expression_statment:
9625                                 statement = parse_expression_statement();
9626                                 break;
9627                 }
9628                 break;
9629         }
9630
9631         case T___extension__:
9632                 /* This can be a prefix to a declaration or an expression statement.
9633                  * We simply eat it now and parse the rest with tail recursion. */
9634                 do {
9635                         next_token();
9636                 } while (token.type == T___extension__);
9637                 bool old_gcc_extension = in_gcc_extension;
9638                 in_gcc_extension       = true;
9639                 statement = parse_statement();
9640                 in_gcc_extension = old_gcc_extension;
9641                 break;
9642
9643         DECLARATION_START
9644                 statement = parse_declaration_statement();
9645                 break;
9646
9647         case T___label__:
9648                 statement = parse_local_label_declaration();
9649                 break;
9650
9651         case ';':        statement = parse_empty_statement();         break;
9652         case '{':        statement = parse_compound_statement(false); break;
9653         case T___leave:  statement = parse_leave_statement();         break;
9654         case T___try:    statement = parse_ms_try_statment();         break;
9655         case T_asm:      statement = parse_asm_statement();           break;
9656         case T_break:    statement = parse_break();                   break;
9657         case T_case:     statement = parse_case_statement();          break;
9658         case T_continue: statement = parse_continue();                break;
9659         case T_default:  statement = parse_default_statement();       break;
9660         case T_do:       statement = parse_do();                      break;
9661         case T_for:      statement = parse_for();                     break;
9662         case T_goto:     statement = parse_goto();                    break;
9663         case T_if:       statement = parse_if ();                     break;
9664         case T_return:   statement = parse_return();                  break;
9665         case T_switch:   statement = parse_switch();                  break;
9666         case T_while:    statement = parse_while();                   break;
9667
9668         case '!':
9669         case '&':
9670         case '(':
9671         case '*':
9672         case '+':
9673         case '-':
9674         case '~':
9675         case T_ANDAND:
9676         case T_CHARACTER_CONSTANT:
9677         case T_FLOATINGPOINT:
9678         case T_INTEGER:
9679         case T_MINUSMINUS:
9680         case T_PLUSPLUS:
9681         case T_STRING_LITERAL:
9682         case T_WIDE_CHARACTER_CONSTANT:
9683         case T_WIDE_STRING_LITERAL:
9684         case T___FUNCDNAME__:
9685         case T___FUNCSIG__:
9686         case T___FUNCTION__:
9687         case T___PRETTY_FUNCTION__:
9688         case T___builtin_alloca:
9689         case T___builtin_classify_type:
9690         case T___builtin_constant_p:
9691         case T___builtin_expect:
9692         case T___builtin_huge_val:
9693         case T___builtin_isgreater:
9694         case T___builtin_isgreaterequal:
9695         case T___builtin_isless:
9696         case T___builtin_islessequal:
9697         case T___builtin_islessgreater:
9698         case T___builtin_isunordered:
9699         case T___builtin_nan:
9700         case T___builtin_nand:
9701         case T___builtin_nanf:
9702         case T___builtin_offsetof:
9703         case T___builtin_prefetch:
9704         case T___builtin_va_arg:
9705         case T___builtin_va_end:
9706         case T___builtin_va_start:
9707         case T___func__:
9708         case T___noop:
9709         case T__assume:
9710                 statement = parse_expression_statement();
9711                 break;
9712
9713         default:
9714                 errorf(HERE, "unexpected token %K while parsing statement", &token);
9715                 statement = create_invalid_statement();
9716                 if (!at_anchor())
9717                         next_token();
9718                 break;
9719         }
9720         rem_anchor_token(';');
9721
9722         assert(statement != NULL
9723                         && statement->base.source_position.input_name != NULL);
9724
9725         return statement;
9726 }
9727
9728 /**
9729  * parse a statement and emits "statement has no effect" warning if needed
9730  * (This is really a wrapper around intern_parse_statement with check for 1
9731  *  single warning. It is needed, because for statement expressions we have
9732  *  to avoid the warning on the last statement)
9733  */
9734 static statement_t *parse_statement(void)
9735 {
9736         statement_t *statement = intern_parse_statement();
9737
9738         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
9739                 expression_t *expression = statement->expression.expression;
9740                 if (!expression_has_effect(expression)) {
9741                         warningf(&expression->base.source_position,
9742                                         "statement has no effect");
9743                 }
9744         }
9745
9746         return statement;
9747 }
9748
9749 /**
9750  * Parse a compound statement.
9751  */
9752 static statement_t *parse_compound_statement(bool inside_expression_statement)
9753 {
9754         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
9755         statement->base.source_position = token.source_position;
9756
9757         PUSH_PARENT(statement);
9758
9759         eat('{');
9760         add_anchor_token('}');
9761
9762         int      top        = environment_top();
9763         int      top_local  = local_label_top();
9764         scope_t *last_scope = scope;
9765         set_scope(&statement->compound.scope);
9766
9767         statement_t **anchor            = &statement->compound.statements;
9768         bool          only_decls_so_far = true;
9769         while (token.type != '}' && token.type != T_EOF) {
9770                 statement_t *sub_statement = intern_parse_statement();
9771                 if (is_invalid_statement(sub_statement)) {
9772                         /* an error occurred. if we are at an anchor, return */
9773                         if (at_anchor())
9774                                 goto end_error;
9775                         continue;
9776                 }
9777
9778                 if (warning.declaration_after_statement) {
9779                         if (sub_statement->kind != STATEMENT_DECLARATION) {
9780                                 only_decls_so_far = false;
9781                         } else if (!only_decls_so_far) {
9782                                 warningf(&sub_statement->base.source_position,
9783                                          "ISO C90 forbids mixed declarations and code");
9784                         }
9785                 }
9786
9787                 *anchor = sub_statement;
9788
9789                 while (sub_statement->base.next != NULL)
9790                         sub_statement = sub_statement->base.next;
9791
9792                 anchor = &sub_statement->base.next;
9793         }
9794
9795         if (token.type == '}') {
9796                 next_token();
9797         } else {
9798                 errorf(&statement->base.source_position,
9799                        "end of file while looking for closing '}'");
9800         }
9801
9802         /* look over all statements again to produce no effect warnings */
9803         if (warning.unused_value) {
9804                 statement_t *sub_statement = statement->compound.statements;
9805                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
9806                         if (sub_statement->kind != STATEMENT_EXPRESSION)
9807                                 continue;
9808                         /* don't emit a warning for the last expression in an expression
9809                          * statement as it has always an effect */
9810                         if (inside_expression_statement && sub_statement->base.next == NULL)
9811                                 continue;
9812
9813                         expression_t *expression = sub_statement->expression.expression;
9814                         if (!expression_has_effect(expression)) {
9815                                 warningf(&expression->base.source_position,
9816                                          "statement has no effect");
9817                         }
9818                 }
9819         }
9820
9821 end_error:
9822         rem_anchor_token('}');
9823         assert(scope == &statement->compound.scope);
9824         set_scope(last_scope);
9825         environment_pop_to(top);
9826         local_label_pop_to(top_local);
9827
9828         POP_PARENT;
9829         return statement;
9830 }
9831
9832 /**
9833  * Initialize builtin types.
9834  */
9835 static void initialize_builtin_types(void)
9836 {
9837         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
9838         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
9839         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
9840         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
9841         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
9842         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
9843         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
9844         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
9845
9846         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
9847         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
9848         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
9849         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
9850
9851         /* const version of wchar_t */
9852         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
9853         type_const_wchar_t->typedeft.declaration  = type_wchar_t->typedeft.declaration;
9854         type_const_wchar_t->base.qualifiers      |= TYPE_QUALIFIER_CONST;
9855
9856         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
9857 }
9858
9859 /**
9860  * Check for unused global static functions and variables
9861  */
9862 static void check_unused_globals(void)
9863 {
9864         if (!warning.unused_function && !warning.unused_variable)
9865                 return;
9866
9867         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
9868                 if (decl->used                  ||
9869                     decl->modifiers & DM_UNUSED ||
9870                     decl->modifiers & DM_USED   ||
9871                     decl->storage_class != STORAGE_CLASS_STATIC)
9872                         continue;
9873
9874                 type_t *const type = decl->type;
9875                 const char *s;
9876                 if (is_type_function(skip_typeref(type))) {
9877                         if (!warning.unused_function || decl->is_inline)
9878                                 continue;
9879
9880                         s = (decl->init.statement != NULL ? "defined" : "declared");
9881                 } else {
9882                         if (!warning.unused_variable)
9883                                 continue;
9884
9885                         s = "defined";
9886                 }
9887
9888                 warningf(&decl->source_position, "'%#T' %s but not used",
9889                         type, decl->symbol, s);
9890         }
9891 }
9892
9893 static void parse_global_asm(void)
9894 {
9895         eat(T_asm);
9896         expect('(');
9897
9898         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
9899         statement->base.source_position = token.source_position;
9900         statement->asms.asm_text        = parse_string_literals();
9901         statement->base.next            = unit->global_asm;
9902         unit->global_asm                = statement;
9903
9904         expect(')');
9905         expect(';');
9906
9907 end_error:;
9908 }
9909
9910 /**
9911  * Parse a translation unit.
9912  */
9913 static void parse_translation_unit(void)
9914 {
9915         for (;;) {
9916 #ifndef NDEBUG
9917                 bool anchor_leak = false;
9918                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
9919                         unsigned char count = token_anchor_set[i];
9920                         if (count != 0) {
9921                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
9922                                 anchor_leak = true;
9923                         }
9924                 }
9925                 if (in_gcc_extension) {
9926                         errorf(HERE, "Leaked __extension__");
9927                         anchor_leak = true;
9928                 }
9929
9930                 if (anchor_leak)
9931                         abort();
9932 #endif
9933
9934                 switch (token.type) {
9935                         DECLARATION_START
9936                         case T_IDENTIFIER:
9937                         case T___extension__:
9938                                 parse_external_declaration();
9939                                 break;
9940
9941                         case T_asm:
9942                                 parse_global_asm();
9943                                 break;
9944
9945                         case T_EOF:
9946                                 return;
9947
9948                         case ';':
9949                                 /* TODO error in strict mode */
9950                                 warningf(HERE, "stray ';' outside of function");
9951                                 next_token();
9952                                 break;
9953
9954                         default:
9955                                 errorf(HERE, "stray %K outside of function", &token);
9956                                 if (token.type == '(' || token.type == '{' || token.type == '[')
9957                                         eat_until_matching_token(token.type);
9958                                 next_token();
9959                                 break;
9960                 }
9961         }
9962 }
9963
9964 /**
9965  * Parse the input.
9966  *
9967  * @return  the translation unit or NULL if errors occurred.
9968  */
9969 void start_parsing(void)
9970 {
9971         environment_stack = NEW_ARR_F(stack_entry_t, 0);
9972         label_stack       = NEW_ARR_F(stack_entry_t, 0);
9973         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
9974         diagnostic_count  = 0;
9975         error_count       = 0;
9976         warning_count     = 0;
9977
9978         type_set_output(stderr);
9979         ast_set_output(stderr);
9980
9981         assert(unit == NULL);
9982         unit = allocate_ast_zero(sizeof(unit[0]));
9983
9984         assert(global_scope == NULL);
9985         global_scope = &unit->scope;
9986
9987         assert(scope == NULL);
9988         set_scope(&unit->scope);
9989
9990         initialize_builtin_types();
9991 }
9992
9993 translation_unit_t *finish_parsing(void)
9994 {
9995         assert(scope == &unit->scope);
9996         scope          = NULL;
9997         last_declaration = NULL;
9998
9999         assert(global_scope == &unit->scope);
10000         check_unused_globals();
10001         global_scope = NULL;
10002
10003         DEL_ARR_F(environment_stack);
10004         DEL_ARR_F(label_stack);
10005         DEL_ARR_F(local_label_stack);
10006
10007         translation_unit_t *result = unit;
10008         unit = NULL;
10009         return result;
10010 }
10011
10012 void parse(void)
10013 {
10014         lookahead_bufpos = 0;
10015         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10016                 next_token();
10017         }
10018         parse_translation_unit();
10019 }
10020
10021 /**
10022  * Initialize the parser.
10023  */
10024 void init_parser(void)
10025 {
10026         sym_anonymous = symbol_table_insert("<anonymous>");
10027
10028         if (c_mode & _MS) {
10029                 /* add predefined symbols for extended-decl-modifier */
10030                 sym_align      = symbol_table_insert("align");
10031                 sym_allocate   = symbol_table_insert("allocate");
10032                 sym_dllimport  = symbol_table_insert("dllimport");
10033                 sym_dllexport  = symbol_table_insert("dllexport");
10034                 sym_naked      = symbol_table_insert("naked");
10035                 sym_noinline   = symbol_table_insert("noinline");
10036                 sym_noreturn   = symbol_table_insert("noreturn");
10037                 sym_nothrow    = symbol_table_insert("nothrow");
10038                 sym_novtable   = symbol_table_insert("novtable");
10039                 sym_property   = symbol_table_insert("property");
10040                 sym_get        = symbol_table_insert("get");
10041                 sym_put        = symbol_table_insert("put");
10042                 sym_selectany  = symbol_table_insert("selectany");
10043                 sym_thread     = symbol_table_insert("thread");
10044                 sym_uuid       = symbol_table_insert("uuid");
10045                 sym_deprecated = symbol_table_insert("deprecated");
10046                 sym_restrict   = symbol_table_insert("restrict");
10047                 sym_noalias    = symbol_table_insert("noalias");
10048         }
10049         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10050
10051         init_expression_parsers();
10052         obstack_init(&temp_obst);
10053
10054         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
10055         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
10056 }
10057
10058 /**
10059  * Terminate the parser.
10060  */
10061 void exit_parser(void)
10062 {
10063         obstack_free(&temp_obst, NULL);
10064 }