fixed comments
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 /** if wchar_t is equal to unsigned short. */
43 bool opt_short_wchar_t =
44 #ifdef _WIN32
45         true;
46 #else
47         false;
48 #endif
49
50 //#define PRINT_TOKENS
51 #define MAX_LOOKAHEAD 2
52
53 typedef struct {
54         declaration_t *old_declaration;
55         symbol_t      *symbol;
56         unsigned short namespc;
57 } stack_entry_t;
58
59 typedef struct argument_list_t argument_list_t;
60 struct argument_list_t {
61         long              argument;
62         argument_list_t  *next;
63 };
64
65 typedef struct gnu_attribute_t gnu_attribute_t;
66 struct gnu_attribute_t {
67         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
68         gnu_attribute_t     *next;
69         bool                 invalid;        /**< Set if this attribute had argument errors, */
70         bool                 have_arguments; /**< True, if this attribute has arguments. */
71         union {
72                 size_t              value;
73                 string_t            string;
74                 atomic_type_kind_t  akind;
75                 long                argument;  /**< Single argument. */
76                 argument_list_t    *arguments; /**< List of argument expressions. */
77         } u;
78 };
79
80 typedef struct declaration_specifiers_t  declaration_specifiers_t;
81 struct declaration_specifiers_t {
82         source_position_t  source_position;
83         unsigned char      declared_storage_class;
84         unsigned char      alignment;         /**< Alignment, 0 if not set. */
85         unsigned int       is_inline : 1;
86         unsigned int       deprecated : 1;
87         decl_modifiers_t   modifiers;         /**< declaration modifiers */
88         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
89         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
90         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
91         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
92         type_t            *type;
93 };
94
95 /**
96  * An environment for parsing initializers (and compound literals).
97  */
98 typedef struct parse_initializer_env_t {
99         type_t        *type;        /**< the type of the initializer. In case of an
100                                          array type with unspecified size this gets
101                                          adjusted to the actual size. */
102         declaration_t *declaration; /**< the declaration that is initialized if any */
103         bool           must_be_constant;
104 } parse_initializer_env_t;
105
106 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration, bool is_definition);
107
108 /** The current token. */
109 static token_t             token;
110 /** The lookahead ring-buffer. */
111 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
112 /** Position of the next token in the lookahead buffer. */
113 static int                 lookahead_bufpos;
114 static stack_entry_t      *environment_stack = NULL;
115 static stack_entry_t      *label_stack       = NULL;
116 static stack_entry_t      *local_label_stack = NULL;
117 static scope_t            *global_scope      = NULL;
118 static scope_t            *scope             = NULL;
119 static declaration_t      *last_declaration  = NULL;
120 static declaration_t      *current_function  = NULL;
121 static declaration_t      *current_init_decl = NULL;
122 static switch_statement_t *current_switch    = NULL;
123 static statement_t        *current_loop      = NULL;
124 static statement_t        *current_parent    = NULL;
125 static ms_try_statement_t *current_try       = NULL;
126 static goto_statement_t   *goto_first        = NULL;
127 static goto_statement_t   *goto_last         = NULL;
128 static label_statement_t  *label_first       = NULL;
129 static label_statement_t  *label_last        = NULL;
130 /** current translation unit. */
131 static translation_unit_t *unit              = NULL;
132 /** true if we are in a type property context (evaluation only for type. */
133 static bool                in_type_prop      = false;
134 /** true in we are in a __extension__ context. */
135 static bool                in_gcc_extension  = false;
136 static struct obstack      temp_obst;
137
138
139 #define PUSH_PARENT(stmt)                          \
140         statement_t *const prev_parent = current_parent; \
141         current_parent = (stmt);
142 #define POP_PARENT ((void)(current_parent = prev_parent))
143
144 static source_position_t null_position = { NULL, 0 };
145
146 /** special symbol used for anonymous entities. */
147 static const symbol_t *sym_anonymous = NULL;
148
149 /* symbols for Microsoft extended-decl-modifier */
150 static const symbol_t *sym_align      = NULL;
151 static const symbol_t *sym_allocate   = NULL;
152 static const symbol_t *sym_dllimport  = NULL;
153 static const symbol_t *sym_dllexport  = NULL;
154 static const symbol_t *sym_naked      = NULL;
155 static const symbol_t *sym_noinline   = NULL;
156 static const symbol_t *sym_noreturn   = NULL;
157 static const symbol_t *sym_nothrow    = NULL;
158 static const symbol_t *sym_novtable   = NULL;
159 static const symbol_t *sym_property   = NULL;
160 static const symbol_t *sym_get        = NULL;
161 static const symbol_t *sym_put        = NULL;
162 static const symbol_t *sym_selectany  = NULL;
163 static const symbol_t *sym_thread     = NULL;
164 static const symbol_t *sym_uuid       = NULL;
165 static const symbol_t *sym_deprecated = NULL;
166 static const symbol_t *sym_restrict   = NULL;
167 static const symbol_t *sym_noalias    = NULL;
168
169 /** The token anchor set */
170 static unsigned char token_anchor_set[T_LAST_TOKEN];
171
172 /** The current source position. */
173 #define HERE (&token.source_position)
174
175 /** true if we are in GCC mode. */
176 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
177
178 static type_t *type_valist;
179
180 static statement_t *parse_compound_statement(bool inside_expression_statement);
181 static statement_t *parse_statement(void);
182
183 static expression_t *parse_sub_expression(unsigned precedence);
184 static expression_t *parse_expression(void);
185 static type_t       *parse_typename(void);
186
187 static void parse_compound_type_entries(declaration_t *compound_declaration);
188 static declaration_t *parse_declarator(
189                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
190 static declaration_t *record_declaration(declaration_t *declaration, bool is_definition);
191
192 static void semantic_comparison(binary_expression_t *expression);
193
194 #define STORAGE_CLASSES     \
195         case T_typedef:         \
196         case T_extern:          \
197         case T_static:          \
198         case T_auto:            \
199         case T_register:        \
200         case T___thread:
201
202 #define TYPE_QUALIFIERS     \
203         case T_const:           \
204         case T_restrict:        \
205         case T_volatile:        \
206         case T_inline:          \
207         case T__forceinline:    \
208         case T___attribute__:
209
210 #ifdef PROVIDE_COMPLEX
211 #define COMPLEX_SPECIFIERS  \
212         case T__Complex:
213 #define IMAGINARY_SPECIFIERS \
214         case T__Imaginary:
215 #else
216 #define COMPLEX_SPECIFIERS
217 #define IMAGINARY_SPECIFIERS
218 #endif
219
220 #define TYPE_SPECIFIERS       \
221         case T_void:              \
222         case T_char:              \
223         case T_short:             \
224         case T_int:               \
225         case T_long:              \
226         case T_float:             \
227         case T_double:            \
228         case T_signed:            \
229         case T_unsigned:          \
230         case T__Bool:             \
231         case T_struct:            \
232         case T_union:             \
233         case T_enum:              \
234         case T___typeof__:        \
235         case T___builtin_va_list: \
236         case T__declspec:         \
237         COMPLEX_SPECIFIERS        \
238         IMAGINARY_SPECIFIERS
239
240 #define DECLARATION_START   \
241         STORAGE_CLASSES         \
242         TYPE_QUALIFIERS         \
243         TYPE_SPECIFIERS
244
245 #define TYPENAME_START      \
246         TYPE_QUALIFIERS         \
247         TYPE_SPECIFIERS
248
249 /**
250  * Allocate an AST node with given size and
251  * initialize all fields with zero.
252  */
253 static void *allocate_ast_zero(size_t size)
254 {
255         void *res = allocate_ast(size);
256         memset(res, 0, size);
257         return res;
258 }
259
260 static declaration_t *allocate_declaration_zero(void)
261 {
262         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
263         declaration->type      = type_error_type;
264         declaration->alignment = 0;
265         return declaration;
266 }
267
268 /**
269  * Returns the size of a statement node.
270  *
271  * @param kind  the statement kind
272  */
273 static size_t get_statement_struct_size(statement_kind_t kind)
274 {
275         static const size_t sizes[] = {
276                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
277                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
278                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
279                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
280                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
281                 [STATEMENT_IF]          = sizeof(if_statement_t),
282                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
283                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
284                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
285                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
286                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
287                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
288                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
289                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
290                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
291                 [STATEMENT_FOR]         = sizeof(for_statement_t),
292                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
293                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
294                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
295         };
296         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
297         assert(sizes[kind] != 0);
298         return sizes[kind];
299 }
300
301 /**
302  * Returns the size of an expression node.
303  *
304  * @param kind  the expression kind
305  */
306 static size_t get_expression_struct_size(expression_kind_t kind)
307 {
308         static const size_t sizes[] = {
309                 [EXPR_INVALID]                 = sizeof(expression_base_t),
310                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
311                 [EXPR_CONST]                   = sizeof(const_expression_t),
312                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
313                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
314                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
315                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
316                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
317                 [EXPR_CALL]                    = sizeof(call_expression_t),
318                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
319                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
320                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
321                 [EXPR_SELECT]                  = sizeof(select_expression_t),
322                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
323                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
324                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
325                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
326                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
327                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
328                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
329                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
330                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
331                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
332                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
333                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
334                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
335         };
336         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
337                 return sizes[EXPR_UNARY_FIRST];
338         }
339         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
340                 return sizes[EXPR_BINARY_FIRST];
341         }
342         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
343         assert(sizes[kind] != 0);
344         return sizes[kind];
345 }
346
347 /**
348  * Allocate a statement node of given kind and initialize all
349  * fields with zero.
350  */
351 static statement_t *allocate_statement_zero(statement_kind_t kind)
352 {
353         size_t       size = get_statement_struct_size(kind);
354         statement_t *res  = allocate_ast_zero(size);
355
356         res->base.kind   = kind;
357         res->base.parent = current_parent;
358         return res;
359 }
360
361 /**
362  * Allocate an expression node of given kind and initialize all
363  * fields with zero.
364  */
365 static expression_t *allocate_expression_zero(expression_kind_t kind)
366 {
367         size_t        size = get_expression_struct_size(kind);
368         expression_t *res  = allocate_ast_zero(size);
369
370         res->base.kind = kind;
371         res->base.type = type_error_type;
372         return res;
373 }
374
375 /**
376  * Creates a new invalid expression.
377  */
378 static expression_t *create_invalid_expression(void)
379 {
380         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
381         expression->base.source_position = token.source_position;
382         return expression;
383 }
384
385 /**
386  * Creates a new invalid statement.
387  */
388 static statement_t *create_invalid_statement(void)
389 {
390         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
391         statement->base.source_position = token.source_position;
392         return statement;
393 }
394
395 /**
396  * Allocate a new empty statement.
397  */
398 static statement_t *create_empty_statement(void)
399 {
400         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
401         statement->base.source_position = token.source_position;
402         return statement;
403 }
404
405 /**
406  * Returns the size of a type node.
407  *
408  * @param kind  the type kind
409  */
410 static size_t get_type_struct_size(type_kind_t kind)
411 {
412         static const size_t sizes[] = {
413                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
414                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
415                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
416                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
417                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
418                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
419                 [TYPE_ENUM]            = sizeof(enum_type_t),
420                 [TYPE_FUNCTION]        = sizeof(function_type_t),
421                 [TYPE_POINTER]         = sizeof(pointer_type_t),
422                 [TYPE_ARRAY]           = sizeof(array_type_t),
423                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
424                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
425                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
426         };
427         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
428         assert(kind <= TYPE_TYPEOF);
429         assert(sizes[kind] != 0);
430         return sizes[kind];
431 }
432
433 /**
434  * Allocate a type node of given kind and initialize all
435  * fields with zero.
436  *
437  * @param kind             type kind to allocate
438  * @param source_position  the source position of the type definition
439  */
440 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
441 {
442         size_t  size = get_type_struct_size(kind);
443         type_t *res  = obstack_alloc(type_obst, size);
444         memset(res, 0, size);
445
446         res->base.kind            = kind;
447         res->base.source_position = *source_position;
448         return res;
449 }
450
451 /**
452  * Returns the size of an initializer node.
453  *
454  * @param kind  the initializer kind
455  */
456 static size_t get_initializer_size(initializer_kind_t kind)
457 {
458         static const size_t sizes[] = {
459                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
460                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
461                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
462                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
463                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
464         };
465         assert(kind < sizeof(sizes) / sizeof(*sizes));
466         assert(sizes[kind] != 0);
467         return sizes[kind];
468 }
469
470 /**
471  * Allocate an initializer node of given kind and initialize all
472  * fields with zero.
473  */
474 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
475 {
476         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
477         result->kind          = kind;
478
479         return result;
480 }
481
482 /**
483  * Free a type from the type obstack.
484  */
485 static void free_type(void *type)
486 {
487         obstack_free(type_obst, type);
488 }
489
490 /**
491  * Returns the index of the top element of the environment stack.
492  */
493 static size_t environment_top(void)
494 {
495         return ARR_LEN(environment_stack);
496 }
497
498 /**
499  * Returns the index of the top element of the global label stack.
500  */
501 static size_t label_top(void)
502 {
503         return ARR_LEN(label_stack);
504 }
505
506 /**
507  * Returns the index of the top element of the local label stack.
508  */
509 static size_t local_label_top(void)
510 {
511         return ARR_LEN(local_label_stack);
512 }
513
514 /**
515  * Return the next token.
516  */
517 static inline void next_token(void)
518 {
519         token                              = lookahead_buffer[lookahead_bufpos];
520         lookahead_buffer[lookahead_bufpos] = lexer_token;
521         lexer_next_token();
522
523         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
524
525 #ifdef PRINT_TOKENS
526         print_token(stderr, &token);
527         fprintf(stderr, "\n");
528 #endif
529 }
530
531 /**
532  * Return the next token with a given lookahead.
533  */
534 static inline const token_t *look_ahead(int num)
535 {
536         assert(num > 0 && num <= MAX_LOOKAHEAD);
537         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
538         return &lookahead_buffer[pos];
539 }
540
541 /**
542  * Adds a token to the token anchor set (a multi-set).
543  */
544 static void add_anchor_token(int token_type)
545 {
546         assert(0 <= token_type && token_type < T_LAST_TOKEN);
547         ++token_anchor_set[token_type];
548 }
549
550 static int save_and_reset_anchor_state(int token_type)
551 {
552         assert(0 <= token_type && token_type < T_LAST_TOKEN);
553         int count = token_anchor_set[token_type];
554         token_anchor_set[token_type] = 0;
555         return count;
556 }
557
558 static void restore_anchor_state(int token_type, int count)
559 {
560         assert(0 <= token_type && token_type < T_LAST_TOKEN);
561         token_anchor_set[token_type] = count;
562 }
563
564 /**
565  * Remove a token from the token anchor set (a multi-set).
566  */
567 static void rem_anchor_token(int token_type)
568 {
569         assert(0 <= token_type && token_type < T_LAST_TOKEN);
570         assert(token_anchor_set[token_type] != 0);
571         --token_anchor_set[token_type];
572 }
573
574 static bool at_anchor(void)
575 {
576         if (token.type < 0)
577                 return false;
578         return token_anchor_set[token.type];
579 }
580
581 /**
582  * Eat tokens until a matching token is found.
583  */
584 static void eat_until_matching_token(int type)
585 {
586         int end_token;
587         switch (type) {
588                 case '(': end_token = ')';  break;
589                 case '{': end_token = '}';  break;
590                 case '[': end_token = ']';  break;
591                 default:  end_token = type; break;
592         }
593
594         unsigned parenthesis_count = 0;
595         unsigned brace_count       = 0;
596         unsigned bracket_count     = 0;
597         while (token.type        != end_token ||
598                parenthesis_count != 0         ||
599                brace_count       != 0         ||
600                bracket_count     != 0) {
601                 switch (token.type) {
602                 case T_EOF: return;
603                 case '(': ++parenthesis_count; break;
604                 case '{': ++brace_count;       break;
605                 case '[': ++bracket_count;     break;
606
607                 case ')':
608                         if (parenthesis_count > 0)
609                                 --parenthesis_count;
610                         goto check_stop;
611
612                 case '}':
613                         if (brace_count > 0)
614                                 --brace_count;
615                         goto check_stop;
616
617                 case ']':
618                         if (bracket_count > 0)
619                                 --bracket_count;
620 check_stop:
621                         if (token.type        == end_token &&
622                             parenthesis_count == 0         &&
623                             brace_count       == 0         &&
624                             bracket_count     == 0)
625                                 return;
626                         break;
627
628                 default:
629                         break;
630                 }
631                 next_token();
632         }
633 }
634
635 /**
636  * Eat input tokens until an anchor is found.
637  */
638 static void eat_until_anchor(void)
639 {
640         if (token.type == T_EOF)
641                 return;
642         while (token_anchor_set[token.type] == 0) {
643                 if (token.type == '(' || token.type == '{' || token.type == '[')
644                         eat_until_matching_token(token.type);
645                 if (token.type == T_EOF)
646                         break;
647                 next_token();
648         }
649 }
650
651 static void eat_block(void)
652 {
653         eat_until_matching_token('{');
654         if (token.type == '}')
655                 next_token();
656 }
657
658 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
659
660 /**
661  * Report a parse error because an expected token was not found.
662  */
663 static
664 #if defined __GNUC__ && __GNUC__ >= 4
665 __attribute__((sentinel))
666 #endif
667 void parse_error_expected(const char *message, ...)
668 {
669         if (message != NULL) {
670                 errorf(HERE, "%s", message);
671         }
672         va_list ap;
673         va_start(ap, message);
674         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
675         va_end(ap);
676 }
677
678 /**
679  * Report a type error.
680  */
681 static void type_error(const char *msg, const source_position_t *source_position,
682                        type_t *type)
683 {
684         errorf(source_position, "%s, but found type '%T'", msg, type);
685 }
686
687 /**
688  * Report an incompatible type.
689  */
690 static void type_error_incompatible(const char *msg,
691                 const source_position_t *source_position, type_t *type1, type_t *type2)
692 {
693         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
694                msg, type1, type2);
695 }
696
697 /**
698  * Expect the the current token is the expected token.
699  * If not, generate an error, eat the current statement,
700  * and goto the end_error label.
701  */
702 #define expect(expected)                                  \
703         do {                                                  \
704                 if (UNLIKELY(token.type != (expected))) {         \
705                         parse_error_expected(NULL, (expected), NULL); \
706                         add_anchor_token(expected);                   \
707                         eat_until_anchor();                           \
708                         if (token.type == expected)                   \
709                                 next_token();                             \
710                         rem_anchor_token(expected);                   \
711                         goto end_error;                               \
712                 }                                                 \
713                 next_token();                                     \
714         } while (0)
715
716 static void set_scope(scope_t *new_scope)
717 {
718         if (scope != NULL) {
719                 scope->last_declaration = last_declaration;
720         }
721         scope = new_scope;
722
723         last_declaration = new_scope->last_declaration;
724 }
725
726 /**
727  * Search a symbol in a given namespace and returns its declaration or
728  * NULL if this symbol was not found.
729  */
730 static declaration_t *get_declaration(const symbol_t *const symbol,
731                                       const namespace_t namespc)
732 {
733         declaration_t *declaration = symbol->declaration;
734         for( ; declaration != NULL; declaration = declaration->symbol_next) {
735                 if (declaration->namespc == namespc)
736                         return declaration;
737         }
738
739         return NULL;
740 }
741
742 /**
743  * pushs an environment_entry on the environment stack and links the
744  * corresponding symbol to the new entry
745  */
746 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
747 {
748         symbol_t    *symbol  = declaration->symbol;
749         namespace_t  namespc = (namespace_t) declaration->namespc;
750
751         /* replace/add declaration into declaration list of the symbol */
752         declaration_t *iter = symbol->declaration;
753         if (iter == NULL) {
754                 symbol->declaration = declaration;
755         } else {
756                 declaration_t *iter_last = NULL;
757                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
758                         /* replace an entry? */
759                         if (iter->namespc == namespc) {
760                                 if (iter_last == NULL) {
761                                         symbol->declaration = declaration;
762                                 } else {
763                                         iter_last->symbol_next = declaration;
764                                 }
765                                 declaration->symbol_next = iter->symbol_next;
766                                 break;
767                         }
768                 }
769                 if (iter == NULL) {
770                         assert(iter_last->symbol_next == NULL);
771                         iter_last->symbol_next = declaration;
772                 }
773         }
774
775         /* remember old declaration */
776         stack_entry_t entry;
777         entry.symbol          = symbol;
778         entry.old_declaration = iter;
779         entry.namespc         = (unsigned short) namespc;
780         ARR_APP1(stack_entry_t, *stack_ptr, entry);
781 }
782
783 /**
784  * Push a declaration on the environment stack.
785  *
786  * @param declaration  the declaration
787  */
788 static void environment_push(declaration_t *declaration)
789 {
790         assert(declaration->source_position.input_name != NULL);
791         assert(declaration->parent_scope != NULL);
792         stack_push(&environment_stack, declaration);
793 }
794
795 /**
796  * Push a declaration on the global label stack.
797  *
798  * @param declaration  the declaration
799  */
800 static void label_push(declaration_t *declaration)
801 {
802         declaration->parent_scope = &current_function->scope;
803         stack_push(&label_stack, declaration);
804 }
805
806 /**
807  * Push a declaration of the local label stack.
808  *
809  * @param declaration  the declaration
810  */
811 static void local_label_push(declaration_t *declaration)
812 {
813         assert(declaration->parent_scope != NULL);
814         stack_push(&local_label_stack, declaration);
815 }
816
817 /**
818  * pops symbols from the environment stack until @p new_top is the top element
819  */
820 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
821 {
822         stack_entry_t *stack = *stack_ptr;
823         size_t         top   = ARR_LEN(stack);
824         size_t         i;
825
826         assert(new_top <= top);
827         if (new_top == top)
828                 return;
829
830         for(i = top; i > new_top; --i) {
831                 stack_entry_t *entry = &stack[i - 1];
832
833                 declaration_t *old_declaration = entry->old_declaration;
834                 symbol_t      *symbol          = entry->symbol;
835                 namespace_t    namespc         = (namespace_t)entry->namespc;
836
837                 /* replace/remove declaration */
838                 declaration_t *declaration = symbol->declaration;
839                 assert(declaration != NULL);
840                 if (declaration->namespc == namespc) {
841                         if (old_declaration == NULL) {
842                                 symbol->declaration = declaration->symbol_next;
843                         } else {
844                                 symbol->declaration = old_declaration;
845                         }
846                 } else {
847                         declaration_t *iter_last = declaration;
848                         declaration_t *iter      = declaration->symbol_next;
849                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
850                                 /* replace an entry? */
851                                 if (iter->namespc == namespc) {
852                                         assert(iter_last != NULL);
853                                         iter_last->symbol_next = old_declaration;
854                                         if (old_declaration != NULL) {
855                                                 old_declaration->symbol_next = iter->symbol_next;
856                                         }
857                                         break;
858                                 }
859                         }
860                         assert(iter != NULL);
861                 }
862         }
863
864         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
865 }
866
867 /**
868  * Pop all entries from the environment stack until the new_top
869  * is reached.
870  *
871  * @param new_top  the new stack top
872  */
873 static void environment_pop_to(size_t new_top)
874 {
875         stack_pop_to(&environment_stack, new_top);
876 }
877
878 /**
879  * Pop all entries from the global label stack until the new_top
880  * is reached.
881  *
882  * @param new_top  the new stack top
883  */
884 static void label_pop_to(size_t new_top)
885 {
886         stack_pop_to(&label_stack, new_top);
887 }
888
889 /**
890  * Pop all entries from the local label stack until the new_top
891  * is reached.
892  *
893  * @param new_top  the new stack top
894  */
895 static void local_label_pop_to(size_t new_top)
896 {
897         stack_pop_to(&local_label_stack, new_top);
898 }
899
900
901 static int get_akind_rank(atomic_type_kind_t akind)
902 {
903         return (int) akind;
904 }
905
906 static int get_rank(const type_t *type)
907 {
908         assert(!is_typeref(type));
909         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
910          * and esp. footnote 108). However we can't fold constants (yet), so we
911          * can't decide whether unsigned int is possible, while int always works.
912          * (unsigned int would be preferable when possible... for stuff like
913          *  struct { enum { ... } bla : 4; } ) */
914         if (type->kind == TYPE_ENUM)
915                 return get_akind_rank(ATOMIC_TYPE_INT);
916
917         assert(type->kind == TYPE_ATOMIC);
918         return get_akind_rank(type->atomic.akind);
919 }
920
921 static type_t *promote_integer(type_t *type)
922 {
923         if (type->kind == TYPE_BITFIELD)
924                 type = type->bitfield.base_type;
925
926         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
927                 type = type_int;
928
929         return type;
930 }
931
932 /**
933  * Create a cast expression.
934  *
935  * @param expression  the expression to cast
936  * @param dest_type   the destination type
937  */
938 static expression_t *create_cast_expression(expression_t *expression,
939                                             type_t *dest_type)
940 {
941         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
942
943         cast->unary.value = expression;
944         cast->base.type   = dest_type;
945
946         return cast;
947 }
948
949 /**
950  * Check if a given expression represents the 0 pointer constant.
951  */
952 static bool is_null_pointer_constant(const expression_t *expression)
953 {
954         /* skip void* cast */
955         if (expression->kind == EXPR_UNARY_CAST
956                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
957                 expression = expression->unary.value;
958         }
959
960         /* TODO: not correct yet, should be any constant integer expression
961          * which evaluates to 0 */
962         if (expression->kind != EXPR_CONST)
963                 return false;
964
965         type_t *const type = skip_typeref(expression->base.type);
966         if (!is_type_integer(type))
967                 return false;
968
969         return expression->conste.v.int_value == 0;
970 }
971
972 /**
973  * Create an implicit cast expression.
974  *
975  * @param expression  the expression to cast
976  * @param dest_type   the destination type
977  */
978 static expression_t *create_implicit_cast(expression_t *expression,
979                                           type_t *dest_type)
980 {
981         type_t *const source_type = expression->base.type;
982
983         if (source_type == dest_type)
984                 return expression;
985
986         return create_cast_expression(expression, dest_type);
987 }
988
989 typedef enum assign_error_t {
990         ASSIGN_SUCCESS,
991         ASSIGN_ERROR_INCOMPATIBLE,
992         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
993         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
994         ASSIGN_WARNING_POINTER_FROM_INT,
995         ASSIGN_WARNING_INT_FROM_POINTER
996 } assign_error_t;
997
998 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
999                                 const expression_t *const right,
1000                                 const char *context,
1001                                 const source_position_t *source_position)
1002 {
1003         type_t *const orig_type_right = right->base.type;
1004         type_t *const type_left       = skip_typeref(orig_type_left);
1005         type_t *const type_right      = skip_typeref(orig_type_right);
1006
1007         switch (error) {
1008         case ASSIGN_SUCCESS:
1009                 return;
1010         case ASSIGN_ERROR_INCOMPATIBLE:
1011                 errorf(source_position,
1012                        "destination type '%T' in %s is incompatible with type '%T'",
1013                        orig_type_left, context, orig_type_right);
1014                 return;
1015
1016         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1017                 type_t *points_to_left
1018                         = skip_typeref(type_left->pointer.points_to);
1019                 type_t *points_to_right
1020                         = skip_typeref(type_right->pointer.points_to);
1021
1022                 /* the left type has all qualifiers from the right type */
1023                 unsigned missing_qualifiers
1024                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1025                 warningf(source_position,
1026                          "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1027                          orig_type_left, context, orig_type_right, missing_qualifiers);
1028                 return;
1029         }
1030
1031         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1032                 warningf(source_position,
1033                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1034                                  orig_type_left, context, right, orig_type_right);
1035                 return;
1036
1037         case ASSIGN_WARNING_POINTER_FROM_INT:
1038                 warningf(source_position,
1039                          "%s makes pointer '%T' from integer '%T' without a cast",
1040                                  context, orig_type_left, orig_type_right);
1041                 return;
1042
1043         case ASSIGN_WARNING_INT_FROM_POINTER:
1044                 warningf(source_position,
1045                                 "%s makes integer '%T' from pointer '%T' without a cast",
1046                                 context, orig_type_left, orig_type_right);
1047                 return;
1048
1049         default:
1050                 panic("invalid error value");
1051         }
1052 }
1053
1054 /** Implements the rules from Â§ 6.5.16.1 */
1055 static assign_error_t semantic_assign(type_t *orig_type_left,
1056                                       const expression_t *const right)
1057 {
1058         type_t *const orig_type_right = right->base.type;
1059         type_t *const type_left       = skip_typeref(orig_type_left);
1060         type_t *const type_right      = skip_typeref(orig_type_right);
1061
1062         if (is_type_pointer(type_left)) {
1063                 if (is_null_pointer_constant(right)) {
1064                         return ASSIGN_SUCCESS;
1065                 } else if (is_type_pointer(type_right)) {
1066                         type_t *points_to_left
1067                                 = skip_typeref(type_left->pointer.points_to);
1068                         type_t *points_to_right
1069                                 = skip_typeref(type_right->pointer.points_to);
1070                         assign_error_t res = ASSIGN_SUCCESS;
1071
1072                         /* the left type has all qualifiers from the right type */
1073                         unsigned missing_qualifiers
1074                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1075                         if (missing_qualifiers != 0) {
1076                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1077                         }
1078
1079                         points_to_left  = get_unqualified_type(points_to_left);
1080                         points_to_right = get_unqualified_type(points_to_right);
1081
1082                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1083                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1084                                 return res;
1085                         }
1086
1087                         if (!types_compatible(points_to_left, points_to_right)) {
1088                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1089                         }
1090
1091                         return res;
1092                 } else if (is_type_integer(type_right)) {
1093                         return ASSIGN_WARNING_POINTER_FROM_INT;
1094                 }
1095         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1096             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1097                 && is_type_pointer(type_right))) {
1098                 return ASSIGN_SUCCESS;
1099         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1100                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1101                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1102                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1103                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1104                         return ASSIGN_SUCCESS;
1105                 }
1106         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1107                 return ASSIGN_WARNING_INT_FROM_POINTER;
1108         }
1109
1110         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1111                 return ASSIGN_SUCCESS;
1112
1113         return ASSIGN_ERROR_INCOMPATIBLE;
1114 }
1115
1116 static expression_t *parse_constant_expression(void)
1117 {
1118         /* start parsing at precedence 7 (conditional expression) */
1119         expression_t *result = parse_sub_expression(7);
1120
1121         if (!is_constant_expression(result)) {
1122                 errorf(&result->base.source_position,
1123                        "expression '%E' is not constant\n", result);
1124         }
1125
1126         return result;
1127 }
1128
1129 static expression_t *parse_assignment_expression(void)
1130 {
1131         /* start parsing at precedence 2 (assignment expression) */
1132         return parse_sub_expression(2);
1133 }
1134
1135 static type_t *make_global_typedef(const char *name, type_t *type)
1136 {
1137         symbol_t *const symbol       = symbol_table_insert(name);
1138
1139         declaration_t *const declaration = allocate_declaration_zero();
1140         declaration->namespc                = NAMESPACE_NORMAL;
1141         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1142         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1143         declaration->type                   = type;
1144         declaration->symbol                 = symbol;
1145         declaration->source_position        = builtin_source_position;
1146         declaration->implicit               = true;
1147
1148         record_declaration(declaration, false);
1149
1150         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1151         typedef_type->typedeft.declaration = declaration;
1152
1153         return typedef_type;
1154 }
1155
1156 static string_t parse_string_literals(void)
1157 {
1158         assert(token.type == T_STRING_LITERAL);
1159         string_t result = token.v.string;
1160
1161         next_token();
1162
1163         while (token.type == T_STRING_LITERAL) {
1164                 result = concat_strings(&result, &token.v.string);
1165                 next_token();
1166         }
1167
1168         return result;
1169 }
1170
1171 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1172         [GNU_AK_CONST]                  = "const",
1173         [GNU_AK_VOLATILE]               = "volatile",
1174         [GNU_AK_CDECL]                  = "cdecl",
1175         [GNU_AK_STDCALL]                = "stdcall",
1176         [GNU_AK_FASTCALL]               = "fastcall",
1177         [GNU_AK_DEPRECATED]             = "deprecated",
1178         [GNU_AK_NOINLINE]               = "noinline",
1179         [GNU_AK_NORETURN]               = "noreturn",
1180         [GNU_AK_NAKED]                  = "naked",
1181         [GNU_AK_PURE]                   = "pure",
1182         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1183         [GNU_AK_MALLOC]                 = "malloc",
1184         [GNU_AK_WEAK]                   = "weak",
1185         [GNU_AK_CONSTRUCTOR]            = "constructor",
1186         [GNU_AK_DESTRUCTOR]             = "destructor",
1187         [GNU_AK_NOTHROW]                = "nothrow",
1188         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1189         [GNU_AK_COMMON]                 = "common",
1190         [GNU_AK_NOCOMMON]               = "nocommon",
1191         [GNU_AK_PACKED]                 = "packed",
1192         [GNU_AK_SHARED]                 = "shared",
1193         [GNU_AK_NOTSHARED]              = "notshared",
1194         [GNU_AK_USED]                   = "used",
1195         [GNU_AK_UNUSED]                 = "unused",
1196         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1197         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1198         [GNU_AK_LONGCALL]               = "longcall",
1199         [GNU_AK_SHORTCALL]              = "shortcall",
1200         [GNU_AK_LONG_CALL]              = "long_call",
1201         [GNU_AK_SHORT_CALL]             = "short_call",
1202         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1203         [GNU_AK_INTERRUPT]              = "interrupt",
1204         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1205         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1206         [GNU_AK_NESTING]                = "nesting",
1207         [GNU_AK_NEAR]                   = "near",
1208         [GNU_AK_FAR]                    = "far",
1209         [GNU_AK_SIGNAL]                 = "signal",
1210         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1211         [GNU_AK_TINY_DATA]              = "tiny_data",
1212         [GNU_AK_SAVEALL]                = "saveall",
1213         [GNU_AK_FLATTEN]                = "flatten",
1214         [GNU_AK_SSEREGPARM]             = "sseregparm",
1215         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1216         [GNU_AK_RETURN_TWICE]           = "return_twice",
1217         [GNU_AK_MAY_ALIAS]              = "may_alias",
1218         [GNU_AK_MS_STRUCT]              = "ms_struct",
1219         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1220         [GNU_AK_DLLIMPORT]              = "dllimport",
1221         [GNU_AK_DLLEXPORT]              = "dllexport",
1222         [GNU_AK_ALIGNED]                = "aligned",
1223         [GNU_AK_ALIAS]                  = "alias",
1224         [GNU_AK_SECTION]                = "section",
1225         [GNU_AK_FORMAT]                 = "format",
1226         [GNU_AK_FORMAT_ARG]             = "format_arg",
1227         [GNU_AK_WEAKREF]                = "weakref",
1228         [GNU_AK_NONNULL]                = "nonnull",
1229         [GNU_AK_TLS_MODEL]              = "tls_model",
1230         [GNU_AK_VISIBILITY]             = "visibility",
1231         [GNU_AK_REGPARM]                = "regparm",
1232         [GNU_AK_MODE]                   = "mode",
1233         [GNU_AK_MODEL]                  = "model",
1234         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1235         [GNU_AK_SP_SWITCH]              = "sp_switch",
1236         [GNU_AK_SENTINEL]               = "sentinel"
1237 };
1238
1239 /**
1240  * compare two string, ignoring double underscores on the second.
1241  */
1242 static int strcmp_underscore(const char *s1, const char *s2)
1243 {
1244         if (s2[0] == '_' && s2[1] == '_') {
1245                 size_t len2 = strlen(s2);
1246                 size_t len1 = strlen(s1);
1247                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1248                         return strncmp(s1, s2+2, len2-4);
1249                 }
1250         }
1251
1252         return strcmp(s1, s2);
1253 }
1254
1255 /**
1256  * Allocate a new gnu temporal attribute.
1257  */
1258 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1259 {
1260         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1261         attribute->kind            = kind;
1262         attribute->next            = NULL;
1263         attribute->invalid         = false;
1264         attribute->have_arguments  = false;
1265
1266         return attribute;
1267 }
1268
1269 /**
1270  * parse one constant expression argument.
1271  */
1272 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1273 {
1274         expression_t *expression;
1275         add_anchor_token(')');
1276         expression = parse_constant_expression();
1277         rem_anchor_token(')');
1278         expect(')');
1279         attribute->u.argument = fold_constant(expression);
1280         return;
1281 end_error:
1282         attribute->invalid = true;
1283 }
1284
1285 /**
1286  * parse a list of constant expressions arguments.
1287  */
1288 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1289 {
1290         argument_list_t **list = &attribute->u.arguments;
1291         argument_list_t  *entry;
1292         expression_t     *expression;
1293         add_anchor_token(')');
1294         add_anchor_token(',');
1295         while (true) {
1296                 expression = parse_constant_expression();
1297                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1298                 entry->argument = fold_constant(expression);
1299                 entry->next     = NULL;
1300                 *list = entry;
1301                 list = &entry->next;
1302                 if (token.type != ',')
1303                         break;
1304                 next_token();
1305         }
1306         rem_anchor_token(',');
1307         rem_anchor_token(')');
1308         expect(')');
1309         return;
1310 end_error:
1311         attribute->invalid = true;
1312 }
1313
1314 /**
1315  * parse one string literal argument.
1316  */
1317 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1318                                            string_t *string)
1319 {
1320         add_anchor_token('(');
1321         if (token.type != T_STRING_LITERAL) {
1322                 parse_error_expected("while parsing attribute directive",
1323                                      T_STRING_LITERAL, NULL);
1324                 goto end_error;
1325         }
1326         *string = parse_string_literals();
1327         rem_anchor_token('(');
1328         expect(')');
1329         return;
1330 end_error:
1331         attribute->invalid = true;
1332 }
1333
1334 /**
1335  * parse one tls model.
1336  */
1337 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1338 {
1339         static const char *const tls_models[] = {
1340                 "global-dynamic",
1341                 "local-dynamic",
1342                 "initial-exec",
1343                 "local-exec"
1344         };
1345         string_t string = { NULL, 0 };
1346         parse_gnu_attribute_string_arg(attribute, &string);
1347         if (string.begin != NULL) {
1348                 for(size_t i = 0; i < 4; ++i) {
1349                         if (strcmp(tls_models[i], string.begin) == 0) {
1350                                 attribute->u.value = i;
1351                                 return;
1352                         }
1353                 }
1354                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1355         }
1356         attribute->invalid = true;
1357 }
1358
1359 /**
1360  * parse one tls model.
1361  */
1362 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1363 {
1364         static const char *const visibilities[] = {
1365                 "default",
1366                 "protected",
1367                 "hidden",
1368                 "internal"
1369         };
1370         string_t string = { NULL, 0 };
1371         parse_gnu_attribute_string_arg(attribute, &string);
1372         if (string.begin != NULL) {
1373                 for(size_t i = 0; i < 4; ++i) {
1374                         if (strcmp(visibilities[i], string.begin) == 0) {
1375                                 attribute->u.value = i;
1376                                 return;
1377                         }
1378                 }
1379                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1380         }
1381         attribute->invalid = true;
1382 }
1383
1384 /**
1385  * parse one (code) model.
1386  */
1387 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1388 {
1389         static const char *const visibilities[] = {
1390                 "small",
1391                 "medium",
1392                 "large"
1393         };
1394         string_t string = { NULL, 0 };
1395         parse_gnu_attribute_string_arg(attribute, &string);
1396         if (string.begin != NULL) {
1397                 for(int i = 0; i < 3; ++i) {
1398                         if (strcmp(visibilities[i], string.begin) == 0) {
1399                                 attribute->u.value = i;
1400                                 return;
1401                         }
1402                 }
1403                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1404         }
1405         attribute->invalid = true;
1406 }
1407
1408 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1409 {
1410         /* TODO: find out what is allowed here... */
1411
1412         /* at least: byte, word, pointer, list of machine modes
1413          * __XXX___ is interpreted as XXX */
1414         add_anchor_token(')');
1415
1416         if (token.type != T_IDENTIFIER) {
1417                 expect(T_IDENTIFIER);
1418         }
1419
1420         /* This isn't really correct, the backend should provide a list of machine
1421          * specific modes (according to gcc philosophy that is...) */
1422         const char *symbol_str = token.v.symbol->string;
1423         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1424             strcmp_underscore("byte", symbol_str) == 0) {
1425                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1426         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1427                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1428         } else if (strcmp_underscore("SI",      symbol_str) == 0
1429                 || strcmp_underscore("word",    symbol_str) == 0
1430                 || strcmp_underscore("pointer", symbol_str) == 0) {
1431                 attribute->u.akind = ATOMIC_TYPE_INT;
1432         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1433                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1434         } else {
1435                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1436                 attribute->invalid = true;
1437         }
1438         next_token();
1439
1440         rem_anchor_token(')');
1441         expect(')');
1442         return;
1443 end_error:
1444         attribute->invalid = true;
1445 }
1446
1447 /**
1448  * parse one interrupt argument.
1449  */
1450 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1451 {
1452         static const char *const interrupts[] = {
1453                 "IRQ",
1454                 "FIQ",
1455                 "SWI",
1456                 "ABORT",
1457                 "UNDEF"
1458         };
1459         string_t string = { NULL, 0 };
1460         parse_gnu_attribute_string_arg(attribute, &string);
1461         if (string.begin != NULL) {
1462                 for(size_t i = 0; i < 5; ++i) {
1463                         if (strcmp(interrupts[i], string.begin) == 0) {
1464                                 attribute->u.value = i;
1465                                 return;
1466                         }
1467                 }
1468                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1469         }
1470         attribute->invalid = true;
1471 }
1472
1473 /**
1474  * parse ( identifier, const expression, const expression )
1475  */
1476 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1477 {
1478         static const char *const format_names[] = {
1479                 "printf",
1480                 "scanf",
1481                 "strftime",
1482                 "strfmon"
1483         };
1484         int i;
1485
1486         if (token.type != T_IDENTIFIER) {
1487                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1488                 goto end_error;
1489         }
1490         const char *name = token.v.symbol->string;
1491         for(i = 0; i < 4; ++i) {
1492                 if (strcmp_underscore(format_names[i], name) == 0)
1493                         break;
1494         }
1495         if (i >= 4) {
1496                 if (warning.attribute)
1497                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1498         }
1499         next_token();
1500
1501         expect(',');
1502         add_anchor_token(')');
1503         add_anchor_token(',');
1504         parse_constant_expression();
1505         rem_anchor_token(',');
1506         rem_anchor_token(')');
1507
1508         expect(',');
1509         add_anchor_token(')');
1510         parse_constant_expression();
1511         rem_anchor_token(')');
1512         expect(')');
1513         return;
1514 end_error:
1515         attribute->u.value = true;
1516 }
1517
1518 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1519 {
1520         if (!attribute->have_arguments)
1521                 return;
1522
1523         /* should have no arguments */
1524         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1525         eat_until_matching_token('(');
1526         /* we have already consumed '(', so we stop before ')', eat it */
1527         eat(')');
1528         attribute->invalid = true;
1529 }
1530
1531 /**
1532  * Parse one GNU attribute.
1533  *
1534  * Note that attribute names can be specified WITH or WITHOUT
1535  * double underscores, ie const or __const__.
1536  *
1537  * The following attributes are parsed without arguments
1538  *  const
1539  *  volatile
1540  *  cdecl
1541  *  stdcall
1542  *  fastcall
1543  *  deprecated
1544  *  noinline
1545  *  noreturn
1546  *  naked
1547  *  pure
1548  *  always_inline
1549  *  malloc
1550  *  weak
1551  *  constructor
1552  *  destructor
1553  *  nothrow
1554  *  transparent_union
1555  *  common
1556  *  nocommon
1557  *  packed
1558  *  shared
1559  *  notshared
1560  *  used
1561  *  unused
1562  *  no_instrument_function
1563  *  warn_unused_result
1564  *  longcall
1565  *  shortcall
1566  *  long_call
1567  *  short_call
1568  *  function_vector
1569  *  interrupt_handler
1570  *  nmi_handler
1571  *  nesting
1572  *  near
1573  *  far
1574  *  signal
1575  *  eightbit_data
1576  *  tiny_data
1577  *  saveall
1578  *  flatten
1579  *  sseregparm
1580  *  externally_visible
1581  *  return_twice
1582  *  may_alias
1583  *  ms_struct
1584  *  gcc_struct
1585  *  dllimport
1586  *  dllexport
1587  *
1588  * The following attributes are parsed with arguments
1589  *  aligned( const expression )
1590  *  alias( string literal )
1591  *  section( string literal )
1592  *  format( identifier, const expression, const expression )
1593  *  format_arg( const expression )
1594  *  tls_model( string literal )
1595  *  visibility( string literal )
1596  *  regparm( const expression )
1597  *  model( string leteral )
1598  *  trap_exit( const expression )
1599  *  sp_switch( string literal )
1600  *
1601  * The following attributes might have arguments
1602  *  weak_ref( string literal )
1603  *  non_null( const expression // ',' )
1604  *  interrupt( string literal )
1605  *  sentinel( constant expression )
1606  */
1607 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1608 {
1609         gnu_attribute_t *head      = *attributes;
1610         gnu_attribute_t *last      = *attributes;
1611         decl_modifiers_t modifiers = 0;
1612         gnu_attribute_t *attribute;
1613
1614         eat(T___attribute__);
1615         expect('(');
1616         expect('(');
1617
1618         if (token.type != ')') {
1619                 /* find the end of the list */
1620                 if (last != NULL) {
1621                         while (last->next != NULL)
1622                                 last = last->next;
1623                 }
1624
1625                 /* non-empty attribute list */
1626                 while (true) {
1627                         const char *name;
1628                         if (token.type == T_const) {
1629                                 name = "const";
1630                         } else if (token.type == T_volatile) {
1631                                 name = "volatile";
1632                         } else if (token.type == T_cdecl) {
1633                                 /* __attribute__((cdecl)), WITH ms mode */
1634                                 name = "cdecl";
1635                         } else if (token.type == T_IDENTIFIER) {
1636                                 const symbol_t *sym = token.v.symbol;
1637                                 name = sym->string;
1638                         } else {
1639                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1640                                 break;
1641                         }
1642
1643                         next_token();
1644
1645                         int i;
1646                         for(i = 0; i < GNU_AK_LAST; ++i) {
1647                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1648                                         break;
1649                         }
1650                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1651
1652                         attribute = NULL;
1653                         if (kind == GNU_AK_LAST) {
1654                                 if (warning.attribute)
1655                                         warningf(HERE, "'%s' attribute directive ignored", name);
1656
1657                                 /* skip possible arguments */
1658                                 if (token.type == '(') {
1659                                         eat_until_matching_token(')');
1660                                 }
1661                         } else {
1662                                 /* check for arguments */
1663                                 attribute = allocate_gnu_attribute(kind);
1664                                 if (token.type == '(') {
1665                                         next_token();
1666                                         if (token.type == ')') {
1667                                                 /* empty args are allowed */
1668                                                 next_token();
1669                                         } else
1670                                                 attribute->have_arguments = true;
1671                                 }
1672
1673                                 switch(kind) {
1674                                 case GNU_AK_CONST:
1675                                 case GNU_AK_VOLATILE:
1676                                 case GNU_AK_NAKED:
1677                                 case GNU_AK_MALLOC:
1678                                 case GNU_AK_WEAK:
1679                                 case GNU_AK_COMMON:
1680                                 case GNU_AK_NOCOMMON:
1681                                 case GNU_AK_SHARED:
1682                                 case GNU_AK_NOTSHARED:
1683                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1684                                 case GNU_AK_WARN_UNUSED_RESULT:
1685                                 case GNU_AK_LONGCALL:
1686                                 case GNU_AK_SHORTCALL:
1687                                 case GNU_AK_LONG_CALL:
1688                                 case GNU_AK_SHORT_CALL:
1689                                 case GNU_AK_FUNCTION_VECTOR:
1690                                 case GNU_AK_INTERRUPT_HANDLER:
1691                                 case GNU_AK_NMI_HANDLER:
1692                                 case GNU_AK_NESTING:
1693                                 case GNU_AK_NEAR:
1694                                 case GNU_AK_FAR:
1695                                 case GNU_AK_SIGNAL:
1696                                 case GNU_AK_EIGTHBIT_DATA:
1697                                 case GNU_AK_TINY_DATA:
1698                                 case GNU_AK_SAVEALL:
1699                                 case GNU_AK_FLATTEN:
1700                                 case GNU_AK_SSEREGPARM:
1701                                 case GNU_AK_EXTERNALLY_VISIBLE:
1702                                 case GNU_AK_RETURN_TWICE:
1703                                 case GNU_AK_MAY_ALIAS:
1704                                 case GNU_AK_MS_STRUCT:
1705                                 case GNU_AK_GCC_STRUCT:
1706                                         goto no_arg;
1707
1708                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1709                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1710                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1711                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1712                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1713                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1714                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1715                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1716                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1717                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1718                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1719                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1720                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1721                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1722                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1723                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1724                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1725
1726                                 case GNU_AK_ALIGNED:
1727                                         /* __align__ may be used without an argument */
1728                                         if (attribute->have_arguments) {
1729                                                 parse_gnu_attribute_const_arg(attribute);
1730                                         }
1731                                         break;
1732
1733                                 case GNU_AK_FORMAT_ARG:
1734                                 case GNU_AK_REGPARM:
1735                                 case GNU_AK_TRAP_EXIT:
1736                                         if (!attribute->have_arguments) {
1737                                                 /* should have arguments */
1738                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1739                                                 attribute->invalid = true;
1740                                         } else
1741                                                 parse_gnu_attribute_const_arg(attribute);
1742                                         break;
1743                                 case GNU_AK_ALIAS:
1744                                 case GNU_AK_SECTION:
1745                                 case GNU_AK_SP_SWITCH:
1746                                         if (!attribute->have_arguments) {
1747                                                 /* should have arguments */
1748                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1749                                                 attribute->invalid = true;
1750                                         } else
1751                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1752                                         break;
1753                                 case GNU_AK_FORMAT:
1754                                         if (!attribute->have_arguments) {
1755                                                 /* should have arguments */
1756                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1757                                                 attribute->invalid = true;
1758                                         } else
1759                                                 parse_gnu_attribute_format_args(attribute);
1760                                         break;
1761                                 case GNU_AK_WEAKREF:
1762                                         /* may have one string argument */
1763                                         if (attribute->have_arguments)
1764                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1765                                         break;
1766                                 case GNU_AK_NONNULL:
1767                                         if (attribute->have_arguments)
1768                                                 parse_gnu_attribute_const_arg_list(attribute);
1769                                         break;
1770                                 case GNU_AK_TLS_MODEL:
1771                                         if (!attribute->have_arguments) {
1772                                                 /* should have arguments */
1773                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1774                                         } else
1775                                                 parse_gnu_attribute_tls_model_arg(attribute);
1776                                         break;
1777                                 case GNU_AK_VISIBILITY:
1778                                         if (!attribute->have_arguments) {
1779                                                 /* should have arguments */
1780                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1781                                         } else
1782                                                 parse_gnu_attribute_visibility_arg(attribute);
1783                                         break;
1784                                 case GNU_AK_MODEL:
1785                                         if (!attribute->have_arguments) {
1786                                                 /* should have arguments */
1787                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1788                                         } else {
1789                                                 parse_gnu_attribute_model_arg(attribute);
1790                                         }
1791                                         break;
1792                                 case GNU_AK_MODE:
1793                                         if (!attribute->have_arguments) {
1794                                                 /* should have arguments */
1795                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1796                                         } else {
1797                                                 parse_gnu_attribute_mode_arg(attribute);
1798                                         }
1799                                         break;
1800                                 case GNU_AK_INTERRUPT:
1801                                         /* may have one string argument */
1802                                         if (attribute->have_arguments)
1803                                                 parse_gnu_attribute_interrupt_arg(attribute);
1804                                         break;
1805                                 case GNU_AK_SENTINEL:
1806                                         /* may have one string argument */
1807                                         if (attribute->have_arguments)
1808                                                 parse_gnu_attribute_const_arg(attribute);
1809                                         break;
1810                                 case GNU_AK_LAST:
1811                                         /* already handled */
1812                                         break;
1813
1814 no_arg:
1815                                         check_no_argument(attribute, name);
1816                                 }
1817                         }
1818                         if (attribute != NULL) {
1819                                 if (last != NULL) {
1820                                         last->next = attribute;
1821                                         last       = attribute;
1822                                 } else {
1823                                         head = last = attribute;
1824                                 }
1825                         }
1826
1827                         if (token.type != ',')
1828                                 break;
1829                         next_token();
1830                 }
1831         }
1832         expect(')');
1833         expect(')');
1834 end_error:
1835         *attributes = head;
1836
1837         return modifiers;
1838 }
1839
1840 /**
1841  * Parse GNU attributes.
1842  */
1843 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1844 {
1845         decl_modifiers_t modifiers = 0;
1846
1847         while (true) {
1848                 switch(token.type) {
1849                 case T___attribute__:
1850                         modifiers |= parse_gnu_attribute(attributes);
1851                         continue;
1852
1853                 case T_asm:
1854                         next_token();
1855                         expect('(');
1856                         if (token.type != T_STRING_LITERAL) {
1857                                 parse_error_expected("while parsing assembler attribute",
1858                                                      T_STRING_LITERAL, NULL);
1859                                 eat_until_matching_token('(');
1860                                 break;
1861                         } else {
1862                                 parse_string_literals();
1863                         }
1864                         expect(')');
1865                         continue;
1866
1867                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1868                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1869                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1870
1871                 case T___thiscall:
1872                         /* TODO record modifier */
1873                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1874                         break;
1875
1876 end_error:
1877                 default: return modifiers;
1878                 }
1879
1880                 next_token();
1881         }
1882 }
1883
1884 static designator_t *parse_designation(void)
1885 {
1886         designator_t *result = NULL;
1887         designator_t *last   = NULL;
1888
1889         while (true) {
1890                 designator_t *designator;
1891                 switch(token.type) {
1892                 case '[':
1893                         designator = allocate_ast_zero(sizeof(designator[0]));
1894                         designator->source_position = token.source_position;
1895                         next_token();
1896                         add_anchor_token(']');
1897                         designator->array_index = parse_constant_expression();
1898                         rem_anchor_token(']');
1899                         expect(']');
1900                         break;
1901                 case '.':
1902                         designator = allocate_ast_zero(sizeof(designator[0]));
1903                         designator->source_position = token.source_position;
1904                         next_token();
1905                         if (token.type != T_IDENTIFIER) {
1906                                 parse_error_expected("while parsing designator",
1907                                                      T_IDENTIFIER, NULL);
1908                                 return NULL;
1909                         }
1910                         designator->symbol = token.v.symbol;
1911                         next_token();
1912                         break;
1913                 default:
1914                         expect('=');
1915                         return result;
1916                 }
1917
1918                 assert(designator != NULL);
1919                 if (last != NULL) {
1920                         last->next = designator;
1921                 } else {
1922                         result = designator;
1923                 }
1924                 last = designator;
1925         }
1926 end_error:
1927         return NULL;
1928 }
1929
1930 static initializer_t *initializer_from_string(array_type_t *type,
1931                                               const string_t *const string)
1932 {
1933         /* TODO: check len vs. size of array type */
1934         (void) type;
1935
1936         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1937         initializer->string.string = *string;
1938
1939         return initializer;
1940 }
1941
1942 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1943                                                    wide_string_t *const string)
1944 {
1945         /* TODO: check len vs. size of array type */
1946         (void) type;
1947
1948         initializer_t *const initializer =
1949                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1950         initializer->wide_string.string = *string;
1951
1952         return initializer;
1953 }
1954
1955 /**
1956  * Build an initializer from a given expression.
1957  */
1958 static initializer_t *initializer_from_expression(type_t *orig_type,
1959                                                   expression_t *expression)
1960 {
1961         /* TODO check that expression is a constant expression */
1962
1963         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1964         type_t *type           = skip_typeref(orig_type);
1965         type_t *expr_type_orig = expression->base.type;
1966         type_t *expr_type      = skip_typeref(expr_type_orig);
1967         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1968                 array_type_t *const array_type   = &type->array;
1969                 type_t       *const element_type = skip_typeref(array_type->element_type);
1970
1971                 if (element_type->kind == TYPE_ATOMIC) {
1972                         atomic_type_kind_t akind = element_type->atomic.akind;
1973                         switch (expression->kind) {
1974                                 case EXPR_STRING_LITERAL:
1975                                         if (akind == ATOMIC_TYPE_CHAR
1976                                                         || akind == ATOMIC_TYPE_SCHAR
1977                                                         || akind == ATOMIC_TYPE_UCHAR) {
1978                                                 return initializer_from_string(array_type,
1979                                                         &expression->string.value);
1980                                         }
1981
1982                                 case EXPR_WIDE_STRING_LITERAL: {
1983                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1984                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1985                                                 return initializer_from_wide_string(array_type,
1986                                                         &expression->wide_string.value);
1987                                         }
1988                                 }
1989
1990                                 default:
1991                                         break;
1992                         }
1993                 }
1994         }
1995
1996         assign_error_t error = semantic_assign(type, expression);
1997         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1998                 return NULL;
1999         report_assign_error(error, type, expression, "initializer",
2000                             &expression->base.source_position);
2001
2002         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2003         result->value.value = create_implicit_cast(expression, type);
2004
2005         return result;
2006 }
2007
2008 /**
2009  * Checks if a given expression can be used as an constant initializer.
2010  */
2011 static bool is_initializer_constant(const expression_t *expression)
2012 {
2013         return is_constant_expression(expression)
2014                 || is_address_constant(expression);
2015 }
2016
2017 /**
2018  * Parses an scalar initializer.
2019  *
2020  * Â§ 6.7.8.11; eat {} without warning
2021  */
2022 static initializer_t *parse_scalar_initializer(type_t *type,
2023                                                bool must_be_constant)
2024 {
2025         /* there might be extra {} hierarchies */
2026         int braces = 0;
2027         if (token.type == '{') {
2028                 warningf(HERE, "extra curly braces around scalar initializer");
2029                 do {
2030                         ++braces;
2031                         next_token();
2032                 } while (token.type == '{');
2033         }
2034
2035         expression_t *expression = parse_assignment_expression();
2036         if (must_be_constant && !is_initializer_constant(expression)) {
2037                 errorf(&expression->base.source_position,
2038                        "Initialisation expression '%E' is not constant\n",
2039                        expression);
2040         }
2041
2042         initializer_t *initializer = initializer_from_expression(type, expression);
2043
2044         if (initializer == NULL) {
2045                 errorf(&expression->base.source_position,
2046                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2047                        expression, expression->base.type, type);
2048                 /* TODO */
2049                 return NULL;
2050         }
2051
2052         bool additional_warning_displayed = false;
2053         while (braces > 0) {
2054                 if (token.type == ',') {
2055                         next_token();
2056                 }
2057                 if (token.type != '}') {
2058                         if (!additional_warning_displayed) {
2059                                 warningf(HERE, "additional elements in scalar initializer");
2060                                 additional_warning_displayed = true;
2061                         }
2062                 }
2063                 eat_block();
2064                 braces--;
2065         }
2066
2067         return initializer;
2068 }
2069
2070 /**
2071  * An entry in the type path.
2072  */
2073 typedef struct type_path_entry_t type_path_entry_t;
2074 struct type_path_entry_t {
2075         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2076         union {
2077                 size_t         index;          /**< For array types: the current index. */
2078                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2079         } v;
2080 };
2081
2082 /**
2083  * A type path expression a position inside compound or array types.
2084  */
2085 typedef struct type_path_t type_path_t;
2086 struct type_path_t {
2087         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2088         type_t            *top_type;     /**< type of the element the path points */
2089         size_t             max_index;    /**< largest index in outermost array */
2090 };
2091
2092 /**
2093  * Prints a type path for debugging.
2094  */
2095 static __attribute__((unused)) void debug_print_type_path(
2096                 const type_path_t *path)
2097 {
2098         size_t len = ARR_LEN(path->path);
2099
2100         for(size_t i = 0; i < len; ++i) {
2101                 const type_path_entry_t *entry = & path->path[i];
2102
2103                 type_t *type = skip_typeref(entry->type);
2104                 if (is_type_compound(type)) {
2105                         /* in gcc mode structs can have no members */
2106                         if (entry->v.compound_entry == NULL) {
2107                                 assert(i == len-1);
2108                                 continue;
2109                         }
2110                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2111                 } else if (is_type_array(type)) {
2112                         fprintf(stderr, "[%zu]", entry->v.index);
2113                 } else {
2114                         fprintf(stderr, "-INVALID-");
2115                 }
2116         }
2117         if (path->top_type != NULL) {
2118                 fprintf(stderr, "  (");
2119                 print_type(path->top_type);
2120                 fprintf(stderr, ")");
2121         }
2122 }
2123
2124 /**
2125  * Return the top type path entry, ie. in a path
2126  * (type).a.b returns the b.
2127  */
2128 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2129 {
2130         size_t len = ARR_LEN(path->path);
2131         assert(len > 0);
2132         return &path->path[len-1];
2133 }
2134
2135 /**
2136  * Enlarge the type path by an (empty) element.
2137  */
2138 static type_path_entry_t *append_to_type_path(type_path_t *path)
2139 {
2140         size_t len = ARR_LEN(path->path);
2141         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2142
2143         type_path_entry_t *result = & path->path[len];
2144         memset(result, 0, sizeof(result[0]));
2145         return result;
2146 }
2147
2148 /**
2149  * Descending into a sub-type. Enter the scope of the current
2150  * top_type.
2151  */
2152 static void descend_into_subtype(type_path_t *path)
2153 {
2154         type_t *orig_top_type = path->top_type;
2155         type_t *top_type      = skip_typeref(orig_top_type);
2156
2157         type_path_entry_t *top = append_to_type_path(path);
2158         top->type              = top_type;
2159
2160         if (is_type_compound(top_type)) {
2161                 declaration_t *declaration = top_type->compound.declaration;
2162                 declaration_t *entry       = declaration->scope.declarations;
2163                 top->v.compound_entry      = entry;
2164
2165                 if (entry != NULL) {
2166                         path->top_type         = entry->type;
2167                 } else {
2168                         path->top_type         = NULL;
2169                 }
2170         } else if (is_type_array(top_type)) {
2171                 top->v.index   = 0;
2172                 path->top_type = top_type->array.element_type;
2173         } else {
2174                 assert(!is_type_valid(top_type));
2175         }
2176 }
2177
2178 /**
2179  * Pop an entry from the given type path, ie. returning from
2180  * (type).a.b to (type).a
2181  */
2182 static void ascend_from_subtype(type_path_t *path)
2183 {
2184         type_path_entry_t *top = get_type_path_top(path);
2185
2186         path->top_type = top->type;
2187
2188         size_t len = ARR_LEN(path->path);
2189         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2190 }
2191
2192 /**
2193  * Pop entries from the given type path until the given
2194  * path level is reached.
2195  */
2196 static void ascend_to(type_path_t *path, size_t top_path_level)
2197 {
2198         size_t len = ARR_LEN(path->path);
2199
2200         while (len > top_path_level) {
2201                 ascend_from_subtype(path);
2202                 len = ARR_LEN(path->path);
2203         }
2204 }
2205
2206 static bool walk_designator(type_path_t *path, const designator_t *designator,
2207                             bool used_in_offsetof)
2208 {
2209         for( ; designator != NULL; designator = designator->next) {
2210                 type_path_entry_t *top       = get_type_path_top(path);
2211                 type_t            *orig_type = top->type;
2212
2213                 type_t *type = skip_typeref(orig_type);
2214
2215                 if (designator->symbol != NULL) {
2216                         symbol_t *symbol = designator->symbol;
2217                         if (!is_type_compound(type)) {
2218                                 if (is_type_valid(type)) {
2219                                         errorf(&designator->source_position,
2220                                                "'.%Y' designator used for non-compound type '%T'",
2221                                                symbol, orig_type);
2222                                 }
2223                                 goto failed;
2224                         }
2225
2226                         declaration_t *declaration = type->compound.declaration;
2227                         declaration_t *iter        = declaration->scope.declarations;
2228                         for( ; iter != NULL; iter = iter->next) {
2229                                 if (iter->symbol == symbol) {
2230                                         break;
2231                                 }
2232                         }
2233                         if (iter == NULL) {
2234                                 errorf(&designator->source_position,
2235                                        "'%T' has no member named '%Y'", orig_type, symbol);
2236                                 goto failed;
2237                         }
2238                         if (used_in_offsetof) {
2239                                 type_t *real_type = skip_typeref(iter->type);
2240                                 if (real_type->kind == TYPE_BITFIELD) {
2241                                         errorf(&designator->source_position,
2242                                                "offsetof designator '%Y' may not specify bitfield",
2243                                                symbol);
2244                                         goto failed;
2245                                 }
2246                         }
2247
2248                         top->type             = orig_type;
2249                         top->v.compound_entry = iter;
2250                         orig_type             = iter->type;
2251                 } else {
2252                         expression_t *array_index = designator->array_index;
2253                         assert(designator->array_index != NULL);
2254
2255                         if (!is_type_array(type)) {
2256                                 if (is_type_valid(type)) {
2257                                         errorf(&designator->source_position,
2258                                                "[%E] designator used for non-array type '%T'",
2259                                                array_index, orig_type);
2260                                 }
2261                                 goto failed;
2262                         }
2263                         if (!is_type_valid(array_index->base.type)) {
2264                                 goto failed;
2265                         }
2266
2267                         long index = fold_constant(array_index);
2268                         if (!used_in_offsetof) {
2269                                 if (index < 0) {
2270                                         errorf(&designator->source_position,
2271                                                "array index [%E] must be positive", array_index);
2272                                         goto failed;
2273                                 }
2274                                 if (type->array.size_constant == true) {
2275                                         long array_size = type->array.size;
2276                                         if (index >= array_size) {
2277                                                 errorf(&designator->source_position,
2278                                                        "designator [%E] (%d) exceeds array size %d",
2279                                                        array_index, index, array_size);
2280                                                 goto failed;
2281                                         }
2282                                 }
2283                         }
2284
2285                         top->type    = orig_type;
2286                         top->v.index = (size_t) index;
2287                         orig_type    = type->array.element_type;
2288                 }
2289                 path->top_type = orig_type;
2290
2291                 if (designator->next != NULL) {
2292                         descend_into_subtype(path);
2293                 }
2294         }
2295         return true;
2296
2297 failed:
2298         return false;
2299 }
2300
2301 static void advance_current_object(type_path_t *path, size_t top_path_level)
2302 {
2303         type_path_entry_t *top = get_type_path_top(path);
2304
2305         type_t *type = skip_typeref(top->type);
2306         if (is_type_union(type)) {
2307                 /* in unions only the first element is initialized */
2308                 top->v.compound_entry = NULL;
2309         } else if (is_type_struct(type)) {
2310                 declaration_t *entry = top->v.compound_entry;
2311
2312                 entry                 = entry->next;
2313                 top->v.compound_entry = entry;
2314                 if (entry != NULL) {
2315                         path->top_type = entry->type;
2316                         return;
2317                 }
2318         } else {
2319                 assert(is_type_array(type));
2320
2321                 top->v.index++;
2322
2323                 if (!type->array.size_constant || top->v.index < type->array.size) {
2324                         return;
2325                 }
2326         }
2327
2328         /* we're past the last member of the current sub-aggregate, try if we
2329          * can ascend in the type hierarchy and continue with another subobject */
2330         size_t len = ARR_LEN(path->path);
2331
2332         if (len > top_path_level) {
2333                 ascend_from_subtype(path);
2334                 advance_current_object(path, top_path_level);
2335         } else {
2336                 path->top_type = NULL;
2337         }
2338 }
2339
2340 /**
2341  * skip until token is found.
2342  */
2343 static void skip_until(int type)
2344 {
2345         while (token.type != type) {
2346                 if (token.type == T_EOF)
2347                         return;
2348                 next_token();
2349         }
2350 }
2351
2352 /**
2353  * skip any {...} blocks until a closing bracket is reached.
2354  */
2355 static void skip_initializers(void)
2356 {
2357         if (token.type == '{')
2358                 next_token();
2359
2360         while (token.type != '}') {
2361                 if (token.type == T_EOF)
2362                         return;
2363                 if (token.type == '{') {
2364                         eat_block();
2365                         continue;
2366                 }
2367                 next_token();
2368         }
2369 }
2370
2371 static initializer_t *create_empty_initializer(void)
2372 {
2373         static initializer_t empty_initializer
2374                 = { .list = { { INITIALIZER_LIST }, 0 } };
2375         return &empty_initializer;
2376 }
2377
2378 /**
2379  * Parse a part of an initialiser for a struct or union,
2380  */
2381 static initializer_t *parse_sub_initializer(type_path_t *path,
2382                 type_t *outer_type, size_t top_path_level,
2383                 parse_initializer_env_t *env)
2384 {
2385         if (token.type == '}') {
2386                 /* empty initializer */
2387                 return create_empty_initializer();
2388         }
2389
2390         type_t *orig_type = path->top_type;
2391         type_t *type      = NULL;
2392
2393         if (orig_type == NULL) {
2394                 /* We are initializing an empty compound. */
2395         } else {
2396                 type = skip_typeref(orig_type);
2397
2398                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2399                  * initializers in this case. */
2400                 if (!is_type_valid(type)) {
2401                         skip_initializers();
2402                         return create_empty_initializer();
2403                 }
2404         }
2405
2406         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2407
2408         while (true) {
2409                 designator_t *designator = NULL;
2410                 if (token.type == '.' || token.type == '[') {
2411                         designator = parse_designation();
2412                         goto finish_designator;
2413                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2414                         /* GNU-style designator ("identifier: value") */
2415                         designator = allocate_ast_zero(sizeof(designator[0]));
2416                         designator->source_position = token.source_position;
2417                         designator->symbol          = token.v.symbol;
2418                         eat(T_IDENTIFIER);
2419                         eat(':');
2420
2421 finish_designator:
2422                         /* reset path to toplevel, evaluate designator from there */
2423                         ascend_to(path, top_path_level);
2424                         if (!walk_designator(path, designator, false)) {
2425                                 /* can't continue after designation error */
2426                                 goto end_error;
2427                         }
2428
2429                         initializer_t *designator_initializer
2430                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2431                         designator_initializer->designator.designator = designator;
2432                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2433
2434                         orig_type = path->top_type;
2435                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2436                 }
2437
2438                 initializer_t *sub;
2439
2440                 if (token.type == '{') {
2441                         if (type != NULL && is_type_scalar(type)) {
2442                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2443                         } else {
2444                                 eat('{');
2445                                 if (type == NULL) {
2446                                         if (env->declaration != NULL) {
2447                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2448                                                        env->declaration->symbol);
2449                                         } else {
2450                                                 errorf(HERE, "extra brace group at end of initializer");
2451                                         }
2452                                 } else
2453                                         descend_into_subtype(path);
2454
2455                                 add_anchor_token('}');
2456                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2457                                                             env);
2458                                 rem_anchor_token('}');
2459
2460                                 if (type != NULL) {
2461                                         ascend_from_subtype(path);
2462                                         expect('}');
2463                                 } else {
2464                                         expect('}');
2465                                         goto error_parse_next;
2466                                 }
2467                         }
2468                 } else {
2469                         /* must be an expression */
2470                         expression_t *expression = parse_assignment_expression();
2471
2472                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2473                                 errorf(&expression->base.source_position,
2474                                        "Initialisation expression '%E' is not constant\n",
2475                                        expression);
2476                         }
2477
2478                         if (type == NULL) {
2479                                 /* we are already outside, ... */
2480                                 if (is_type_compound(outer_type) &&
2481                                     !outer_type->compound.declaration->init.complete) {
2482                                         goto error_parse_next;
2483                                 }
2484                                 goto error_excess;
2485                         }
2486
2487                         /* handle { "string" } special case */
2488                         if ((expression->kind == EXPR_STRING_LITERAL
2489                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2490                                         && outer_type != NULL) {
2491                                 sub = initializer_from_expression(outer_type, expression);
2492                                 if (sub != NULL) {
2493                                         if (token.type == ',') {
2494                                                 next_token();
2495                                         }
2496                                         if (token.type != '}') {
2497                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2498                                                                  orig_type);
2499                                         }
2500                                         /* TODO: eat , ... */
2501                                         return sub;
2502                                 }
2503                         }
2504
2505                         /* descend into subtypes until expression matches type */
2506                         while (true) {
2507                                 orig_type = path->top_type;
2508                                 type      = skip_typeref(orig_type);
2509
2510                                 sub = initializer_from_expression(orig_type, expression);
2511                                 if (sub != NULL) {
2512                                         break;
2513                                 }
2514                                 if (!is_type_valid(type)) {
2515                                         goto end_error;
2516                                 }
2517                                 if (is_type_scalar(type)) {
2518                                         errorf(&expression->base.source_position,
2519                                                         "expression '%E' doesn't match expected type '%T'",
2520                                                         expression, orig_type);
2521                                         goto end_error;
2522                                 }
2523
2524                                 descend_into_subtype(path);
2525                         }
2526                 }
2527
2528                 /* update largest index of top array */
2529                 const type_path_entry_t *first      = &path->path[0];
2530                 type_t                  *first_type = first->type;
2531                 first_type                          = skip_typeref(first_type);
2532                 if (is_type_array(first_type)) {
2533                         size_t index = first->v.index;
2534                         if (index > path->max_index)
2535                                 path->max_index = index;
2536                 }
2537
2538                 if (type != NULL) {
2539                         /* append to initializers list */
2540                         ARR_APP1(initializer_t*, initializers, sub);
2541                 } else {
2542 error_excess:
2543                         if (env->declaration != NULL)
2544                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2545                                  env->declaration->symbol);
2546                         else
2547                                 warningf(HERE, "excess elements in struct initializer");
2548                 }
2549
2550 error_parse_next:
2551                 if (token.type == '}') {
2552                         break;
2553                 }
2554                 expect(',');
2555                 if (token.type == '}') {
2556                         break;
2557                 }
2558
2559                 if (type != NULL) {
2560                         /* advance to the next declaration if we are not at the end */
2561                         advance_current_object(path, top_path_level);
2562                         orig_type = path->top_type;
2563                         if (orig_type != NULL)
2564                                 type = skip_typeref(orig_type);
2565                         else
2566                                 type = NULL;
2567                 }
2568         }
2569
2570         size_t len  = ARR_LEN(initializers);
2571         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2572         initializer_t *result = allocate_ast_zero(size);
2573         result->kind          = INITIALIZER_LIST;
2574         result->list.len      = len;
2575         memcpy(&result->list.initializers, initializers,
2576                len * sizeof(initializers[0]));
2577
2578         DEL_ARR_F(initializers);
2579         ascend_to(path, top_path_level+1);
2580
2581         return result;
2582
2583 end_error:
2584         skip_initializers();
2585         DEL_ARR_F(initializers);
2586         ascend_to(path, top_path_level+1);
2587         return NULL;
2588 }
2589
2590 /**
2591  * Parses an initializer. Parsers either a compound literal
2592  * (env->declaration == NULL) or an initializer of a declaration.
2593  */
2594 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2595 {
2596         type_t        *type   = skip_typeref(env->type);
2597         initializer_t *result = NULL;
2598         size_t         max_index;
2599
2600         if (is_type_scalar(type)) {
2601                 result = parse_scalar_initializer(type, env->must_be_constant);
2602         } else if (token.type == '{') {
2603                 eat('{');
2604
2605                 type_path_t path;
2606                 memset(&path, 0, sizeof(path));
2607                 path.top_type = env->type;
2608                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2609
2610                 descend_into_subtype(&path);
2611
2612                 add_anchor_token('}');
2613                 result = parse_sub_initializer(&path, env->type, 1, env);
2614                 rem_anchor_token('}');
2615
2616                 max_index = path.max_index;
2617                 DEL_ARR_F(path.path);
2618
2619                 expect('}');
2620         } else {
2621                 /* parse_scalar_initializer() also works in this case: we simply
2622                  * have an expression without {} around it */
2623                 result = parse_scalar_initializer(type, env->must_be_constant);
2624         }
2625
2626         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2627          * the array type size */
2628         if (is_type_array(type) && type->array.size_expression == NULL
2629                         && result != NULL) {
2630                 size_t size;
2631                 switch (result->kind) {
2632                 case INITIALIZER_LIST:
2633                         size = max_index + 1;
2634                         break;
2635
2636                 case INITIALIZER_STRING:
2637                         size = result->string.string.size;
2638                         break;
2639
2640                 case INITIALIZER_WIDE_STRING:
2641                         size = result->wide_string.string.size;
2642                         break;
2643
2644                 case INITIALIZER_DESIGNATOR:
2645                 case INITIALIZER_VALUE:
2646                         /* can happen for parse errors */
2647                         size = 0;
2648                         break;
2649
2650                 default:
2651                         internal_errorf(HERE, "invalid initializer type");
2652                 }
2653
2654                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2655                 cnst->base.type          = type_size_t;
2656                 cnst->conste.v.int_value = size;
2657
2658                 type_t *new_type = duplicate_type(type);
2659
2660                 new_type->array.size_expression = cnst;
2661                 new_type->array.size_constant   = true;
2662                 new_type->array.size            = size;
2663                 env->type = new_type;
2664         }
2665
2666         return result;
2667 end_error:
2668         return NULL;
2669 }
2670
2671 static declaration_t *append_declaration(declaration_t *declaration);
2672
2673 static declaration_t *parse_compound_type_specifier(bool is_struct)
2674 {
2675         gnu_attribute_t  *attributes = NULL;
2676         decl_modifiers_t  modifiers  = 0;
2677         if (is_struct) {
2678                 eat(T_struct);
2679         } else {
2680                 eat(T_union);
2681         }
2682
2683         symbol_t      *symbol      = NULL;
2684         declaration_t *declaration = NULL;
2685
2686         if (token.type == T___attribute__) {
2687                 modifiers |= parse_attributes(&attributes);
2688         }
2689
2690         if (token.type == T_IDENTIFIER) {
2691                 symbol = token.v.symbol;
2692                 next_token();
2693
2694                 namespace_t const namespc =
2695                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2696                 declaration = get_declaration(symbol, namespc);
2697                 if (declaration != NULL) {
2698                         if (declaration->parent_scope != scope &&
2699                             (token.type == '{' || token.type == ';')) {
2700                                 declaration = NULL;
2701                         } else if (declaration->init.complete &&
2702                                    token.type == '{') {
2703                                 assert(symbol != NULL);
2704                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2705                                        is_struct ? "struct" : "union", symbol,
2706                                        &declaration->source_position);
2707                                 declaration->scope.declarations = NULL;
2708                         }
2709                 }
2710         } else if (token.type != '{') {
2711                 if (is_struct) {
2712                         parse_error_expected("while parsing struct type specifier",
2713                                              T_IDENTIFIER, '{', NULL);
2714                 } else {
2715                         parse_error_expected("while parsing union type specifier",
2716                                              T_IDENTIFIER, '{', NULL);
2717                 }
2718
2719                 return NULL;
2720         }
2721
2722         if (declaration == NULL) {
2723                 declaration = allocate_declaration_zero();
2724                 declaration->namespc         =
2725                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2726                 declaration->source_position = token.source_position;
2727                 declaration->symbol          = symbol;
2728                 declaration->parent_scope    = scope;
2729                 if (symbol != NULL) {
2730                         environment_push(declaration);
2731                 }
2732                 append_declaration(declaration);
2733         }
2734
2735         if (token.type == '{') {
2736                 declaration->init.complete = true;
2737
2738                 parse_compound_type_entries(declaration);
2739                 modifiers |= parse_attributes(&attributes);
2740         }
2741
2742         declaration->modifiers |= modifiers;
2743         return declaration;
2744 }
2745
2746 static void parse_enum_entries(type_t *const enum_type)
2747 {
2748         eat('{');
2749
2750         if (token.type == '}') {
2751                 next_token();
2752                 errorf(HERE, "empty enum not allowed");
2753                 return;
2754         }
2755
2756         add_anchor_token('}');
2757         do {
2758                 if (token.type != T_IDENTIFIER) {
2759                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2760                         eat_block();
2761                         rem_anchor_token('}');
2762                         return;
2763                 }
2764
2765                 declaration_t *const entry = allocate_declaration_zero();
2766                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2767                 entry->type            = enum_type;
2768                 entry->symbol          = token.v.symbol;
2769                 entry->source_position = token.source_position;
2770                 next_token();
2771
2772                 if (token.type == '=') {
2773                         next_token();
2774                         expression_t *value = parse_constant_expression();
2775
2776                         value = create_implicit_cast(value, enum_type);
2777                         entry->init.enum_value = value;
2778
2779                         /* TODO semantic */
2780                 }
2781
2782                 record_declaration(entry, false);
2783
2784                 if (token.type != ',')
2785                         break;
2786                 next_token();
2787         } while (token.type != '}');
2788         rem_anchor_token('}');
2789
2790         expect('}');
2791
2792 end_error:
2793         ;
2794 }
2795
2796 static type_t *parse_enum_specifier(void)
2797 {
2798         gnu_attribute_t *attributes = NULL;
2799         declaration_t   *declaration;
2800         symbol_t        *symbol;
2801
2802         eat(T_enum);
2803         if (token.type == T_IDENTIFIER) {
2804                 symbol = token.v.symbol;
2805                 next_token();
2806
2807                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2808         } else if (token.type != '{') {
2809                 parse_error_expected("while parsing enum type specifier",
2810                                      T_IDENTIFIER, '{', NULL);
2811                 return NULL;
2812         } else {
2813                 declaration = NULL;
2814                 symbol      = NULL;
2815         }
2816
2817         if (declaration == NULL) {
2818                 declaration = allocate_declaration_zero();
2819                 declaration->namespc         = NAMESPACE_ENUM;
2820                 declaration->source_position = token.source_position;
2821                 declaration->symbol          = symbol;
2822                 declaration->parent_scope  = scope;
2823         }
2824
2825         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2826         type->enumt.declaration = declaration;
2827
2828         if (token.type == '{') {
2829                 if (declaration->init.complete) {
2830                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2831                 }
2832                 if (symbol != NULL) {
2833                         environment_push(declaration);
2834                 }
2835                 append_declaration(declaration);
2836                 declaration->init.complete = true;
2837
2838                 parse_enum_entries(type);
2839                 parse_attributes(&attributes);
2840         }
2841
2842         return type;
2843 }
2844
2845 /**
2846  * if a symbol is a typedef to another type, return true
2847  */
2848 static bool is_typedef_symbol(symbol_t *symbol)
2849 {
2850         const declaration_t *const declaration =
2851                 get_declaration(symbol, NAMESPACE_NORMAL);
2852         return
2853                 declaration != NULL &&
2854                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2855 }
2856
2857 static type_t *parse_typeof(void)
2858 {
2859         eat(T___typeof__);
2860
2861         type_t *type;
2862
2863         expect('(');
2864         add_anchor_token(')');
2865
2866         expression_t *expression  = NULL;
2867
2868         bool old_type_prop     = in_type_prop;
2869         bool old_gcc_extension = in_gcc_extension;
2870         in_type_prop           = true;
2871
2872         while (token.type == T___extension__) {
2873                 /* This can be a prefix to a typename or an expression. */
2874                 next_token();
2875                 in_gcc_extension = true;
2876         }
2877         switch (token.type) {
2878         case T_IDENTIFIER:
2879                 if (is_typedef_symbol(token.v.symbol)) {
2880                         type = parse_typename();
2881                 } else {
2882                         expression = parse_expression();
2883                         type       = expression->base.type;
2884                 }
2885                 break;
2886
2887         TYPENAME_START
2888                 type = parse_typename();
2889                 break;
2890
2891         default:
2892                 expression = parse_expression();
2893                 type       = expression->base.type;
2894                 break;
2895         }
2896         in_type_prop     = old_type_prop;
2897         in_gcc_extension = old_gcc_extension;
2898
2899         rem_anchor_token(')');
2900         expect(')');
2901
2902         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2903         typeof_type->typeoft.expression  = expression;
2904         typeof_type->typeoft.typeof_type = type;
2905
2906         return typeof_type;
2907 end_error:
2908         return NULL;
2909 }
2910
2911 typedef enum specifiers_t {
2912         SPECIFIER_SIGNED    = 1 << 0,
2913         SPECIFIER_UNSIGNED  = 1 << 1,
2914         SPECIFIER_LONG      = 1 << 2,
2915         SPECIFIER_INT       = 1 << 3,
2916         SPECIFIER_DOUBLE    = 1 << 4,
2917         SPECIFIER_CHAR      = 1 << 5,
2918         SPECIFIER_SHORT     = 1 << 6,
2919         SPECIFIER_LONG_LONG = 1 << 7,
2920         SPECIFIER_FLOAT     = 1 << 8,
2921         SPECIFIER_BOOL      = 1 << 9,
2922         SPECIFIER_VOID      = 1 << 10,
2923         SPECIFIER_INT8      = 1 << 11,
2924         SPECIFIER_INT16     = 1 << 12,
2925         SPECIFIER_INT32     = 1 << 13,
2926         SPECIFIER_INT64     = 1 << 14,
2927         SPECIFIER_INT128    = 1 << 15,
2928         SPECIFIER_COMPLEX   = 1 << 16,
2929         SPECIFIER_IMAGINARY = 1 << 17,
2930 } specifiers_t;
2931
2932 static type_t *create_builtin_type(symbol_t *const symbol,
2933                                    type_t *const real_type)
2934 {
2935         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2936         type->builtin.symbol    = symbol;
2937         type->builtin.real_type = real_type;
2938
2939         type_t *result = typehash_insert(type);
2940         if (type != result) {
2941                 free_type(type);
2942         }
2943
2944         return result;
2945 }
2946
2947 static type_t *get_typedef_type(symbol_t *symbol)
2948 {
2949         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2950         if (declaration == NULL ||
2951            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2952                 return NULL;
2953
2954         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2955         type->typedeft.declaration = declaration;
2956
2957         return type;
2958 }
2959
2960 /**
2961  * check for the allowed MS alignment values.
2962  */
2963 static bool check_alignment_value(long long intvalue)
2964 {
2965         if (intvalue < 1 || intvalue > 8192) {
2966                 errorf(HERE, "illegal alignment value");
2967                 return false;
2968         }
2969         unsigned v = (unsigned)intvalue;
2970         for (unsigned i = 1; i <= 8192; i += i) {
2971                 if (i == v)
2972                         return true;
2973         }
2974         errorf(HERE, "alignment must be power of two");
2975         return false;
2976 }
2977
2978 #define DET_MOD(name, tag) do { \
2979         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2980         *modifiers |= tag; \
2981 } while (0)
2982
2983 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2984 {
2985         decl_modifiers_t *modifiers = &specifiers->modifiers;
2986
2987         while (true) {
2988                 if (token.type == T_restrict) {
2989                         next_token();
2990                         DET_MOD(restrict, DM_RESTRICT);
2991                         goto end_loop;
2992                 } else if (token.type != T_IDENTIFIER)
2993                         break;
2994                 symbol_t *symbol = token.v.symbol;
2995                 if (symbol == sym_align) {
2996                         next_token();
2997                         expect('(');
2998                         if (token.type != T_INTEGER)
2999                                 goto end_error;
3000                         if (check_alignment_value(token.v.intvalue)) {
3001                                 if (specifiers->alignment != 0)
3002                                         warningf(HERE, "align used more than once");
3003                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3004                         }
3005                         next_token();
3006                         expect(')');
3007                 } else if (symbol == sym_allocate) {
3008                         next_token();
3009                         expect('(');
3010                         if (token.type != T_IDENTIFIER)
3011                                 goto end_error;
3012                         (void)token.v.symbol;
3013                         expect(')');
3014                 } else if (symbol == sym_dllimport) {
3015                         next_token();
3016                         DET_MOD(dllimport, DM_DLLIMPORT);
3017                 } else if (symbol == sym_dllexport) {
3018                         next_token();
3019                         DET_MOD(dllexport, DM_DLLEXPORT);
3020                 } else if (symbol == sym_thread) {
3021                         next_token();
3022                         DET_MOD(thread, DM_THREAD);
3023                 } else if (symbol == sym_naked) {
3024                         next_token();
3025                         DET_MOD(naked, DM_NAKED);
3026                 } else if (symbol == sym_noinline) {
3027                         next_token();
3028                         DET_MOD(noinline, DM_NOINLINE);
3029                 } else if (symbol == sym_noreturn) {
3030                         next_token();
3031                         DET_MOD(noreturn, DM_NORETURN);
3032                 } else if (symbol == sym_nothrow) {
3033                         next_token();
3034                         DET_MOD(nothrow, DM_NOTHROW);
3035                 } else if (symbol == sym_novtable) {
3036                         next_token();
3037                         DET_MOD(novtable, DM_NOVTABLE);
3038                 } else if (symbol == sym_property) {
3039                         next_token();
3040                         expect('(');
3041                         for (;;) {
3042                                 bool is_get = false;
3043                                 if (token.type != T_IDENTIFIER)
3044                                         goto end_error;
3045                                 if (token.v.symbol == sym_get) {
3046                                         is_get = true;
3047                                 } else if (token.v.symbol == sym_put) {
3048                                 } else {
3049                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3050                                         goto end_error;
3051                                 }
3052                                 next_token();
3053                                 expect('=');
3054                                 if (token.type != T_IDENTIFIER)
3055                                         goto end_error;
3056                                 if (is_get) {
3057                                         if (specifiers->get_property_sym != NULL) {
3058                                                 errorf(HERE, "get property name already specified");
3059                                         } else {
3060                                                 specifiers->get_property_sym = token.v.symbol;
3061                                         }
3062                                 } else {
3063                                         if (specifiers->put_property_sym != NULL) {
3064                                                 errorf(HERE, "put property name already specified");
3065                                         } else {
3066                                                 specifiers->put_property_sym = token.v.symbol;
3067                                         }
3068                                 }
3069                                 next_token();
3070                                 if (token.type == ',') {
3071                                         next_token();
3072                                         continue;
3073                                 }
3074                                 break;
3075                         }
3076                         expect(')');
3077                 } else if (symbol == sym_selectany) {
3078                         next_token();
3079                         DET_MOD(selectany, DM_SELECTANY);
3080                 } else if (symbol == sym_uuid) {
3081                         next_token();
3082                         expect('(');
3083                         if (token.type != T_STRING_LITERAL)
3084                                 goto end_error;
3085                         next_token();
3086                         expect(')');
3087                 } else if (symbol == sym_deprecated) {
3088                         next_token();
3089                         if (specifiers->deprecated != 0)
3090                                 warningf(HERE, "deprecated used more than once");
3091                         specifiers->deprecated = 1;
3092                         if (token.type == '(') {
3093                                 next_token();
3094                                 if (token.type == T_STRING_LITERAL) {
3095                                         specifiers->deprecated_string = token.v.string.begin;
3096                                         next_token();
3097                                 } else {
3098                                         errorf(HERE, "string literal expected");
3099                                 }
3100                                 expect(')');
3101                         }
3102                 } else if (symbol == sym_noalias) {
3103                         next_token();
3104                         DET_MOD(noalias, DM_NOALIAS);
3105                 } else {
3106                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3107                         next_token();
3108                         if (token.type == '(')
3109                                 skip_until(')');
3110                 }
3111 end_loop:
3112                 if (token.type == ',')
3113                         next_token();
3114         }
3115 end_error:
3116         return;
3117 }
3118
3119 static declaration_t *create_error_declaration(symbol_t *symbol, storage_class_tag_t storage_class)
3120 {
3121         declaration_t *const decl    = allocate_declaration_zero();
3122         decl->source_position        = *HERE;
3123         decl->declared_storage_class = storage_class;
3124         decl->storage_class          =
3125                 storage_class != STORAGE_CLASS_NONE || scope == global_scope ?
3126                         storage_class : STORAGE_CLASS_AUTO;
3127         decl->symbol                 = symbol;
3128         decl->implicit               = true;
3129         record_declaration(decl, false);
3130         return decl;
3131 }
3132
3133 /**
3134  * Finish the construction of a struct type by calculating
3135  * its size, offsets, alignment.
3136  */
3137 static void finish_struct_type(compound_type_t *type) {
3138         if (type->declaration == NULL)
3139                 return;
3140         declaration_t *struct_decl = type->declaration;
3141         if (! struct_decl->init.complete)
3142                 return;
3143
3144         il_size_t      size           = 0;
3145         il_size_t      offset;
3146         il_alignment_t alignment      = 1;
3147         bool           need_pad       = false;
3148
3149         declaration_t *entry = struct_decl->scope.declarations;
3150         for (; entry != NULL; entry = entry->next) {
3151                 if (entry->namespc != NAMESPACE_NORMAL)
3152                         continue;
3153
3154                 type_t *m_type = skip_typeref(entry->type);
3155                 if (! is_type_valid(m_type)) {
3156                         /* simply ignore errors here */
3157                         continue;
3158                 }
3159                 il_alignment_t m_alignment = m_type->base.alignment;
3160                 if (m_alignment > alignment)
3161                         alignment = m_alignment;
3162
3163                 offset = (size + m_alignment - 1) & -m_alignment;
3164
3165                 if (offset > size)
3166                         need_pad = true;
3167                 entry->offset = offset;
3168                 size = offset + m_type->base.size;
3169         }
3170         if (type->base.alignment != 0) {
3171                 alignment = type->base.alignment;
3172         }
3173
3174         offset = (size + alignment - 1) & -alignment;
3175         if (offset > size)
3176                 need_pad = true;
3177
3178         if (warning.padded && need_pad) {
3179                 warningf(&struct_decl->source_position,
3180                         "'%#T' needs padding", type, struct_decl->symbol);
3181         }
3182         if (warning.packed && !need_pad) {
3183                 warningf(&struct_decl->source_position,
3184                         "superfluous packed attribute on '%#T'",
3185                         type, struct_decl->symbol);
3186         }
3187
3188         type->base.size      = offset;
3189         type->base.alignment = alignment;
3190 }
3191
3192 /**
3193  * Finish the construction of an union type by calculating
3194  * its size and alignment.
3195  */
3196 static void finish_union_type(compound_type_t *type) {
3197         if (type->declaration == NULL)
3198                 return;
3199         declaration_t *union_decl = type->declaration;
3200         if (! union_decl->init.complete)
3201                 return;
3202
3203         il_size_t      size      = 0;
3204         il_alignment_t alignment = 1;
3205
3206         declaration_t *entry = union_decl->scope.declarations;
3207         for (; entry != NULL; entry = entry->next) {
3208                 if (entry->namespc != NAMESPACE_NORMAL)
3209                         continue;
3210
3211                 type_t *m_type = skip_typeref(entry->type);
3212                 if (! is_type_valid(m_type))
3213                         continue;
3214
3215                 entry->offset = 0;
3216                 if (m_type->base.size > size)
3217                         size = m_type->base.size;
3218                 if (m_type->base.alignment > alignment)
3219                         alignment = m_type->base.alignment;
3220         }
3221         if (type->base.alignment != 0) {
3222                 alignment = type->base.alignment;
3223         }
3224         size = (size + alignment - 1) & -alignment;
3225         type->base.size      = size;
3226         type->base.alignment = alignment;
3227 }
3228
3229 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3230 {
3231         type_t            *type              = NULL;
3232         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3233         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3234         unsigned           type_specifiers   = 0;
3235         bool               newtype           = false;
3236         bool               saw_error         = false;
3237         bool               old_gcc_extension = in_gcc_extension;
3238
3239         specifiers->source_position = token.source_position;
3240
3241         while (true) {
3242                 specifiers->modifiers
3243                         |= parse_attributes(&specifiers->gnu_attributes);
3244                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3245                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3246
3247                 switch (token.type) {
3248
3249                 /* storage class */
3250 #define MATCH_STORAGE_CLASS(token, class)                                  \
3251                 case token:                                                        \
3252                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3253                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3254                         }                                                              \
3255                         specifiers->declared_storage_class = class;                    \
3256                         next_token();                                                  \
3257                         break;
3258
3259                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3260                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3261                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3262                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3263                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3264
3265                 case T__declspec:
3266                         next_token();
3267                         expect('(');
3268                         add_anchor_token(')');
3269                         parse_microsoft_extended_decl_modifier(specifiers);
3270                         rem_anchor_token(')');
3271                         expect(')');
3272                         break;
3273
3274                 case T___thread:
3275                         switch (specifiers->declared_storage_class) {
3276                         case STORAGE_CLASS_NONE:
3277                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3278                                 break;
3279
3280                         case STORAGE_CLASS_EXTERN:
3281                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3282                                 break;
3283
3284                         case STORAGE_CLASS_STATIC:
3285                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3286                                 break;
3287
3288                         default:
3289                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3290                                 break;
3291                         }
3292                         next_token();
3293                         break;
3294
3295                 /* type qualifiers */
3296 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3297                 case token:                                                     \
3298                         qualifiers |= qualifier;                                    \
3299                         next_token();                                               \
3300                         break
3301
3302                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3303                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3304                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3305                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3306                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3307                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3308                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3309                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3310
3311                 case T___extension__:
3312                         next_token();
3313                         in_gcc_extension = true;
3314                         break;
3315
3316                 /* type specifiers */
3317 #define MATCH_SPECIFIER(token, specifier, name)                         \
3318                 case token:                                                     \
3319                         next_token();                                               \
3320                         if (type_specifiers & specifier) {                           \
3321                                 errorf(HERE, "multiple " name " type specifiers given"); \
3322                         } else {                                                    \
3323                                 type_specifiers |= specifier;                           \
3324                         }                                                           \
3325                         break
3326
3327                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3328                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3329                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3330                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3331                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3332                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3333                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3334                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3335                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3336                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3337                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3338                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3339                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3340                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3341                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3342                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3343
3344                 case T__forceinline:
3345                         /* only in microsoft mode */
3346                         specifiers->modifiers |= DM_FORCEINLINE;
3347                         /* FALLTHROUGH */
3348
3349                 case T_inline:
3350                         next_token();
3351                         specifiers->is_inline = true;
3352                         break;
3353
3354                 case T_long:
3355                         next_token();
3356                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3357                                 errorf(HERE, "multiple type specifiers given");
3358                         } else if (type_specifiers & SPECIFIER_LONG) {
3359                                 type_specifiers |= SPECIFIER_LONG_LONG;
3360                         } else {
3361                                 type_specifiers |= SPECIFIER_LONG;
3362                         }
3363                         break;
3364
3365                 case T_struct: {
3366                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3367
3368                         type->compound.declaration = parse_compound_type_specifier(true);
3369                         finish_struct_type(&type->compound);
3370                         break;
3371                 }
3372                 case T_union: {
3373                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3374                         type->compound.declaration = parse_compound_type_specifier(false);
3375                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3376                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3377                         break;
3378                         finish_union_type(&type->compound);
3379                 }
3380                 case T_enum:
3381                         type = parse_enum_specifier();
3382                         break;
3383                 case T___typeof__:
3384                         type = parse_typeof();
3385                         break;
3386                 case T___builtin_va_list:
3387                         type = duplicate_type(type_valist);
3388                         next_token();
3389                         break;
3390
3391                 case T_IDENTIFIER: {
3392                         /* only parse identifier if we haven't found a type yet */
3393                         if (type != NULL || type_specifiers != 0) {
3394                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3395                                  * declaration, so it doesn't generate errors about expecting '(' or
3396                                  * '{' later on. */
3397                                 switch (look_ahead(1)->type) {
3398                                         STORAGE_CLASSES
3399                                         TYPE_SPECIFIERS
3400                                         case T_const:
3401                                         case T_restrict:
3402                                         case T_volatile:
3403                                         case T_inline:
3404                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3405                                         case T_IDENTIFIER:
3406                                         case '*':
3407                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3408                                                 next_token();
3409                                                 continue;
3410
3411                                         default:
3412                                                 goto finish_specifiers;
3413                                 }
3414                         }
3415
3416                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3417                         if (typedef_type == NULL) {
3418                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3419                                  * declaration, so it doesn't generate 'implicit int' followed by more
3420                                  * errors later on. */
3421                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3422                                 switch (la1_type) {
3423                                         DECLARATION_START
3424                                         case T_IDENTIFIER:
3425                                         case '*': {
3426                                                 errorf(HERE, "%K does not name a type", &token);
3427
3428                                                 declaration_t *const decl =
3429                                                         create_error_declaration(token.v.symbol, STORAGE_CLASS_TYPEDEF);
3430
3431                                                 type = allocate_type_zero(TYPE_TYPEDEF, HERE);
3432                                                 type->typedeft.declaration = decl;
3433
3434                                                 next_token();
3435                                                 saw_error = true;
3436                                                 if (la1_type == '*')
3437                                                         goto finish_specifiers;
3438                                                 continue;
3439                                         }
3440
3441                                         default:
3442                                                 goto finish_specifiers;
3443                                 }
3444                         }
3445
3446                         next_token();
3447                         type = typedef_type;
3448                         break;
3449                 }
3450
3451                 /* function specifier */
3452                 default:
3453                         goto finish_specifiers;
3454                 }
3455         }
3456
3457 finish_specifiers:
3458         in_gcc_extension = old_gcc_extension;
3459
3460         if (type == NULL || (saw_error && type_specifiers != 0)) {
3461                 atomic_type_kind_t atomic_type;
3462
3463                 /* match valid basic types */
3464                 switch(type_specifiers) {
3465                 case SPECIFIER_VOID:
3466                         atomic_type = ATOMIC_TYPE_VOID;
3467                         break;
3468                 case SPECIFIER_CHAR:
3469                         atomic_type = ATOMIC_TYPE_CHAR;
3470                         break;
3471                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3472                         atomic_type = ATOMIC_TYPE_SCHAR;
3473                         break;
3474                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3475                         atomic_type = ATOMIC_TYPE_UCHAR;
3476                         break;
3477                 case SPECIFIER_SHORT:
3478                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3479                 case SPECIFIER_SHORT | SPECIFIER_INT:
3480                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3481                         atomic_type = ATOMIC_TYPE_SHORT;
3482                         break;
3483                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3484                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3485                         atomic_type = ATOMIC_TYPE_USHORT;
3486                         break;
3487                 case SPECIFIER_INT:
3488                 case SPECIFIER_SIGNED:
3489                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3490                         atomic_type = ATOMIC_TYPE_INT;
3491                         break;
3492                 case SPECIFIER_UNSIGNED:
3493                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3494                         atomic_type = ATOMIC_TYPE_UINT;
3495                         break;
3496                 case SPECIFIER_LONG:
3497                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3498                 case SPECIFIER_LONG | SPECIFIER_INT:
3499                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3500                         atomic_type = ATOMIC_TYPE_LONG;
3501                         break;
3502                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3503                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3504                         atomic_type = ATOMIC_TYPE_ULONG;
3505                         break;
3506
3507                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3508                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3509                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3510                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3511                         | SPECIFIER_INT:
3512                         atomic_type = ATOMIC_TYPE_LONGLONG;
3513                         goto warn_about_long_long;
3514
3515                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3516                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3517                         | SPECIFIER_INT:
3518                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3519 warn_about_long_long:
3520                         if (warning.long_long) {
3521                                 warningf(&specifiers->source_position,
3522                                          "ISO C90 does not support 'long long'");
3523                         }
3524                         break;
3525
3526                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3527                         atomic_type = unsigned_int8_type_kind;
3528                         break;
3529
3530                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3531                         atomic_type = unsigned_int16_type_kind;
3532                         break;
3533
3534                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3535                         atomic_type = unsigned_int32_type_kind;
3536                         break;
3537
3538                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3539                         atomic_type = unsigned_int64_type_kind;
3540                         break;
3541
3542                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3543                         atomic_type = unsigned_int128_type_kind;
3544                         break;
3545
3546                 case SPECIFIER_INT8:
3547                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3548                         atomic_type = int8_type_kind;
3549                         break;
3550
3551                 case SPECIFIER_INT16:
3552                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3553                         atomic_type = int16_type_kind;
3554                         break;
3555
3556                 case SPECIFIER_INT32:
3557                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3558                         atomic_type = int32_type_kind;
3559                         break;
3560
3561                 case SPECIFIER_INT64:
3562                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3563                         atomic_type = int64_type_kind;
3564                         break;
3565
3566                 case SPECIFIER_INT128:
3567                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3568                         atomic_type = int128_type_kind;
3569                         break;
3570
3571                 case SPECIFIER_FLOAT:
3572                         atomic_type = ATOMIC_TYPE_FLOAT;
3573                         break;
3574                 case SPECIFIER_DOUBLE:
3575                         atomic_type = ATOMIC_TYPE_DOUBLE;
3576                         break;
3577                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3578                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3579                         break;
3580                 case SPECIFIER_BOOL:
3581                         atomic_type = ATOMIC_TYPE_BOOL;
3582                         break;
3583                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3584                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3585                         atomic_type = ATOMIC_TYPE_FLOAT;
3586                         break;
3587                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3588                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3589                         atomic_type = ATOMIC_TYPE_DOUBLE;
3590                         break;
3591                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3592                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3593                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3594                         break;
3595                 default:
3596                         /* invalid specifier combination, give an error message */
3597                         if (type_specifiers == 0) {
3598                                 if (saw_error)
3599                                         goto end_error;
3600
3601                                 if (!strict_mode) {
3602                                         if (warning.implicit_int) {
3603                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3604                                         }
3605                                         atomic_type = ATOMIC_TYPE_INT;
3606                                         break;
3607                                 } else {
3608                                         errorf(HERE, "no type specifiers given in declaration");
3609                                 }
3610                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3611                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3612                                 errorf(HERE, "signed and unsigned specifiers given");
3613                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3614                                 errorf(HERE, "only integer types can be signed or unsigned");
3615                         } else {
3616                                 errorf(HERE, "multiple datatypes in declaration");
3617                         }
3618                         goto end_error;
3619                 }
3620
3621                 if (type_specifiers & SPECIFIER_COMPLEX) {
3622                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3623                         type->complex.akind = atomic_type;
3624                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3625                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3626                         type->imaginary.akind = atomic_type;
3627                 } else {
3628                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3629                         type->atomic.akind = atomic_type;
3630                 }
3631                 newtype = true;
3632         } else if (type_specifiers != 0) {
3633                 errorf(HERE, "multiple datatypes in declaration");
3634         }
3635
3636         /* FIXME: check type qualifiers here */
3637
3638         type->base.qualifiers = qualifiers;
3639         type->base.modifiers  = modifiers;
3640
3641         type_t *result = typehash_insert(type);
3642         if (newtype && result != type) {
3643                 free_type(type);
3644         }
3645
3646         specifiers->type = result;
3647         return;
3648
3649 end_error:
3650         specifiers->type = type_error_type;
3651         return;
3652 }
3653
3654 static type_qualifiers_t parse_type_qualifiers(void)
3655 {
3656         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3657
3658         while (true) {
3659                 switch(token.type) {
3660                 /* type qualifiers */
3661                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3662                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3663                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3664                 /* microsoft extended type modifiers */
3665                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3666                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3667                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3668                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3669                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3670
3671                 default:
3672                         return qualifiers;
3673                 }
3674         }
3675 }
3676
3677 static declaration_t *parse_identifier_list(void)
3678 {
3679         declaration_t *declarations     = NULL;
3680         declaration_t *last_declaration = NULL;
3681         do {
3682                 declaration_t *const declaration = allocate_declaration_zero();
3683                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3684                 declaration->source_position = token.source_position;
3685                 declaration->symbol          = token.v.symbol;
3686                 next_token();
3687
3688                 if (last_declaration != NULL) {
3689                         last_declaration->next = declaration;
3690                 } else {
3691                         declarations = declaration;
3692                 }
3693                 last_declaration = declaration;
3694
3695                 if (token.type != ',') {
3696                         break;
3697                 }
3698                 next_token();
3699         } while (token.type == T_IDENTIFIER);
3700
3701         return declarations;
3702 }
3703
3704 static type_t *automatic_type_conversion(type_t *orig_type);
3705
3706 static void semantic_parameter(declaration_t *declaration)
3707 {
3708         /* TODO: improve error messages */
3709         source_position_t const* const pos = &declaration->source_position;
3710
3711         switch (declaration->declared_storage_class) {
3712                 case STORAGE_CLASS_TYPEDEF:
3713                         errorf(pos, "typedef not allowed in parameter list");
3714                         break;
3715
3716                 /* Allowed storage classes */
3717                 case STORAGE_CLASS_NONE:
3718                 case STORAGE_CLASS_REGISTER:
3719                         break;
3720
3721                 default:
3722                         errorf(pos, "parameter may only have none or register storage class");
3723                         break;
3724         }
3725
3726         type_t *const orig_type = declaration->type;
3727         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3728          * sugar.  Turn it into a pointer.
3729          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3730          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3731          */
3732         type_t *const type = automatic_type_conversion(orig_type);
3733         declaration->type = type;
3734
3735         if (is_type_incomplete(skip_typeref(type))) {
3736                 errorf(pos, "parameter '%#T' is of incomplete type",
3737                        orig_type, declaration->symbol);
3738         }
3739 }
3740
3741 static declaration_t *parse_parameter(void)
3742 {
3743         declaration_specifiers_t specifiers;
3744         memset(&specifiers, 0, sizeof(specifiers));
3745
3746         parse_declaration_specifiers(&specifiers);
3747
3748         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3749
3750         return declaration;
3751 }
3752
3753 static declaration_t *parse_parameters(function_type_t *type)
3754 {
3755         declaration_t *declarations = NULL;
3756
3757         eat('(');
3758         add_anchor_token(')');
3759         int saved_comma_state = save_and_reset_anchor_state(',');
3760
3761         if (token.type == T_IDENTIFIER &&
3762             !is_typedef_symbol(token.v.symbol)) {
3763                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3764                 if (la1_type == ',' || la1_type == ')') {
3765                         type->kr_style_parameters = true;
3766                         declarations = parse_identifier_list();
3767                         goto parameters_finished;
3768                 }
3769         }
3770
3771         if (token.type == ')') {
3772                 type->unspecified_parameters = 1;
3773                 goto parameters_finished;
3774         }
3775
3776         declaration_t        *declaration;
3777         declaration_t        *last_declaration = NULL;
3778         function_parameter_t *parameter;
3779         function_parameter_t *last_parameter = NULL;
3780
3781         while (true) {
3782                 switch(token.type) {
3783                 case T_DOTDOTDOT:
3784                         next_token();
3785                         type->variadic = 1;
3786                         goto parameters_finished;
3787
3788                 case T_IDENTIFIER:
3789                 case T___extension__:
3790                 DECLARATION_START
3791                         declaration = parse_parameter();
3792
3793                         /* func(void) is not a parameter */
3794                         if (last_parameter == NULL
3795                                         && token.type == ')'
3796                                         && declaration->symbol == NULL
3797                                         && skip_typeref(declaration->type) == type_void) {
3798                                 goto parameters_finished;
3799                         }
3800                         semantic_parameter(declaration);
3801
3802                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3803                         memset(parameter, 0, sizeof(parameter[0]));
3804                         parameter->type = declaration->type;
3805
3806                         if (last_parameter != NULL) {
3807                                 last_declaration->next = declaration;
3808                                 last_parameter->next   = parameter;
3809                         } else {
3810                                 type->parameters = parameter;
3811                                 declarations     = declaration;
3812                         }
3813                         last_parameter   = parameter;
3814                         last_declaration = declaration;
3815                         break;
3816
3817                 default:
3818                         goto parameters_finished;
3819                 }
3820                 if (token.type != ',') {
3821                         goto parameters_finished;
3822                 }
3823                 next_token();
3824         }
3825
3826
3827 parameters_finished:
3828         rem_anchor_token(')');
3829         expect(')');
3830
3831         restore_anchor_state(',', saved_comma_state);
3832         return declarations;
3833
3834 end_error:
3835         restore_anchor_state(',', saved_comma_state);
3836         return NULL;
3837 }
3838
3839 typedef enum construct_type_kind_t {
3840         CONSTRUCT_INVALID,
3841         CONSTRUCT_POINTER,
3842         CONSTRUCT_FUNCTION,
3843         CONSTRUCT_ARRAY
3844 } construct_type_kind_t;
3845
3846 typedef struct construct_type_t construct_type_t;
3847 struct construct_type_t {
3848         construct_type_kind_t  kind;
3849         construct_type_t      *next;
3850 };
3851
3852 typedef struct parsed_pointer_t parsed_pointer_t;
3853 struct parsed_pointer_t {
3854         construct_type_t  construct_type;
3855         type_qualifiers_t type_qualifiers;
3856 };
3857
3858 typedef struct construct_function_type_t construct_function_type_t;
3859 struct construct_function_type_t {
3860         construct_type_t  construct_type;
3861         type_t           *function_type;
3862 };
3863
3864 typedef struct parsed_array_t parsed_array_t;
3865 struct parsed_array_t {
3866         construct_type_t  construct_type;
3867         type_qualifiers_t type_qualifiers;
3868         bool              is_static;
3869         bool              is_variable;
3870         expression_t     *size;
3871 };
3872
3873 typedef struct construct_base_type_t construct_base_type_t;
3874 struct construct_base_type_t {
3875         construct_type_t  construct_type;
3876         type_t           *type;
3877 };
3878
3879 static construct_type_t *parse_pointer_declarator(void)
3880 {
3881         eat('*');
3882
3883         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3884         memset(pointer, 0, sizeof(pointer[0]));
3885         pointer->construct_type.kind = CONSTRUCT_POINTER;
3886         pointer->type_qualifiers     = parse_type_qualifiers();
3887
3888         return (construct_type_t*) pointer;
3889 }
3890
3891 static construct_type_t *parse_array_declarator(void)
3892 {
3893         eat('[');
3894         add_anchor_token(']');
3895
3896         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3897         memset(array, 0, sizeof(array[0]));
3898         array->construct_type.kind = CONSTRUCT_ARRAY;
3899
3900         if (token.type == T_static) {
3901                 array->is_static = true;
3902                 next_token();
3903         }
3904
3905         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3906         if (type_qualifiers != 0) {
3907                 if (token.type == T_static) {
3908                         array->is_static = true;
3909                         next_token();
3910                 }
3911         }
3912         array->type_qualifiers = type_qualifiers;
3913
3914         if (token.type == '*' && look_ahead(1)->type == ']') {
3915                 array->is_variable = true;
3916                 next_token();
3917         } else if (token.type != ']') {
3918                 array->size = parse_assignment_expression();
3919         }
3920
3921         rem_anchor_token(']');
3922         expect(']');
3923
3924 end_error:
3925         return (construct_type_t*) array;
3926 }
3927
3928 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3929 {
3930         type_t *type;
3931         if (declaration != NULL) {
3932                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3933
3934                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3935
3936                 if (mask & (mask-1)) {
3937                         const char *first = NULL, *second = NULL;
3938
3939                         /* more than one calling convention set */
3940                         if (declaration->modifiers & DM_CDECL) {
3941                                 if (first == NULL)       first = "cdecl";
3942                                 else if (second == NULL) second = "cdecl";
3943                         }
3944                         if (declaration->modifiers & DM_STDCALL) {
3945                                 if (first == NULL)       first = "stdcall";
3946                                 else if (second == NULL) second = "stdcall";
3947                         }
3948                         if (declaration->modifiers & DM_FASTCALL) {
3949                                 if (first == NULL)       first = "fastcall";
3950                                 else if (second == NULL) second = "fastcall";
3951                         }
3952                         if (declaration->modifiers & DM_THISCALL) {
3953                                 if (first == NULL)       first = "thiscall";
3954                                 else if (second == NULL) second = "thiscall";
3955                         }
3956                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3957                 }
3958
3959                 if (declaration->modifiers & DM_CDECL)
3960                         type->function.calling_convention = CC_CDECL;
3961                 else if (declaration->modifiers & DM_STDCALL)
3962                         type->function.calling_convention = CC_STDCALL;
3963                 else if (declaration->modifiers & DM_FASTCALL)
3964                         type->function.calling_convention = CC_FASTCALL;
3965                 else if (declaration->modifiers & DM_THISCALL)
3966                         type->function.calling_convention = CC_THISCALL;
3967         } else {
3968                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3969         }
3970
3971         declaration_t *parameters = parse_parameters(&type->function);
3972         if (declaration != NULL) {
3973                 declaration->scope.declarations = parameters;
3974         }
3975
3976         construct_function_type_t *construct_function_type =
3977                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3978         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3979         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3980         construct_function_type->function_type       = type;
3981
3982         return &construct_function_type->construct_type;
3983 }
3984
3985 static void fix_declaration_type(declaration_t *declaration)
3986 {
3987         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3988         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3989
3990         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3991                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3992
3993         if (declaration->type->base.modifiers == type_modifiers)
3994                 return;
3995
3996         type_t *copy = duplicate_type(declaration->type);
3997         copy->base.modifiers = type_modifiers;
3998
3999         type_t *result = typehash_insert(copy);
4000         if (result != copy) {
4001                 obstack_free(type_obst, copy);
4002         }
4003
4004         declaration->type = result;
4005 }
4006
4007 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
4008                 bool may_be_abstract)
4009 {
4010         /* construct a single linked list of construct_type_t's which describe
4011          * how to construct the final declarator type */
4012         construct_type_t *first = NULL;
4013         construct_type_t *last  = NULL;
4014         gnu_attribute_t  *attributes = NULL;
4015
4016         decl_modifiers_t modifiers = parse_attributes(&attributes);
4017
4018         /* pointers */
4019         while (token.type == '*') {
4020                 construct_type_t *type = parse_pointer_declarator();
4021
4022                 if (last == NULL) {
4023                         first = type;
4024                         last  = type;
4025                 } else {
4026                         last->next = type;
4027                         last       = type;
4028                 }
4029
4030                 /* TODO: find out if this is correct */
4031                 modifiers |= parse_attributes(&attributes);
4032         }
4033
4034         if (declaration != NULL)
4035                 declaration->modifiers |= modifiers;
4036
4037         construct_type_t *inner_types = NULL;
4038
4039         switch(token.type) {
4040         case T_IDENTIFIER:
4041                 if (declaration == NULL) {
4042                         errorf(HERE, "no identifier expected in typename");
4043                 } else {
4044                         declaration->symbol          = token.v.symbol;
4045                         declaration->source_position = token.source_position;
4046                 }
4047                 next_token();
4048                 break;
4049         case '(':
4050                 next_token();
4051                 add_anchor_token(')');
4052                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
4053                 if (inner_types != NULL) {
4054                         /* All later declarators only modify the return type, not declaration */
4055                         declaration = NULL;
4056                 }
4057                 rem_anchor_token(')');
4058                 expect(')');
4059                 break;
4060         default:
4061                 if (may_be_abstract)
4062                         break;
4063                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4064                 eat_until_anchor();
4065                 return NULL;
4066         }
4067
4068         construct_type_t *p = last;
4069
4070         while(true) {
4071                 construct_type_t *type;
4072                 switch(token.type) {
4073                 case '(':
4074                         type = parse_function_declarator(declaration);
4075                         break;
4076                 case '[':
4077                         type = parse_array_declarator();
4078                         break;
4079                 default:
4080                         goto declarator_finished;
4081                 }
4082
4083                 /* insert in the middle of the list (behind p) */
4084                 if (p != NULL) {
4085                         type->next = p->next;
4086                         p->next    = type;
4087                 } else {
4088                         type->next = first;
4089                         first      = type;
4090                 }
4091                 if (last == p) {
4092                         last = type;
4093                 }
4094         }
4095
4096 declarator_finished:
4097         /* append inner_types at the end of the list, we don't to set last anymore
4098          * as it's not needed anymore */
4099         if (last == NULL) {
4100                 assert(first == NULL);
4101                 first = inner_types;
4102         } else {
4103                 last->next = inner_types;
4104         }
4105
4106         return first;
4107 end_error:
4108         return NULL;
4109 }
4110
4111 static void parse_declaration_attributes(declaration_t *declaration)
4112 {
4113         gnu_attribute_t  *attributes = NULL;
4114         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4115
4116         if (declaration == NULL)
4117                 return;
4118
4119         declaration->modifiers |= modifiers;
4120         /* check if we have these stupid mode attributes... */
4121         type_t *old_type = declaration->type;
4122         if (old_type == NULL)
4123                 return;
4124
4125         gnu_attribute_t *attribute = attributes;
4126         for ( ; attribute != NULL; attribute = attribute->next) {
4127                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4128                         continue;
4129
4130                 atomic_type_kind_t  akind = attribute->u.akind;
4131                 if (!is_type_signed(old_type)) {
4132                         switch(akind) {
4133                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4134                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4135                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4136                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4137                         default:
4138                                 panic("invalid akind in mode attribute");
4139                         }
4140                 }
4141                 declaration->type
4142                         = make_atomic_type(akind, old_type->base.qualifiers);
4143         }
4144 }
4145
4146 static type_t *construct_declarator_type(construct_type_t *construct_list,
4147                                          type_t *type)
4148 {
4149         construct_type_t *iter = construct_list;
4150         for( ; iter != NULL; iter = iter->next) {
4151                 switch(iter->kind) {
4152                 case CONSTRUCT_INVALID:
4153                         internal_errorf(HERE, "invalid type construction found");
4154                 case CONSTRUCT_FUNCTION: {
4155                         construct_function_type_t *construct_function_type
4156                                 = (construct_function_type_t*) iter;
4157
4158                         type_t *function_type = construct_function_type->function_type;
4159
4160                         function_type->function.return_type = type;
4161
4162                         type_t *skipped_return_type = skip_typeref(type);
4163                         /* Â§6.7.5.3(1) */
4164                         if (is_type_function(skipped_return_type)) {
4165                                 errorf(HERE, "function returning function is not allowed");
4166                         } else if (is_type_array(skipped_return_type)) {
4167                                 errorf(HERE, "function returning array is not allowed");
4168                         } else {
4169                                 if (skipped_return_type->base.qualifiers != 0) {
4170                                         warningf(HERE,
4171                                                 "type qualifiers in return type of function type are meaningless");
4172                                 }
4173                         }
4174
4175                         type = function_type;
4176                         break;
4177                 }
4178
4179                 case CONSTRUCT_POINTER: {
4180                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4181                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
4182                         pointer_type->pointer.points_to  = type;
4183                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
4184
4185                         type = pointer_type;
4186                         break;
4187                 }
4188
4189                 case CONSTRUCT_ARRAY: {
4190                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4191                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
4192
4193                         expression_t *size_expression = parsed_array->size;
4194                         if (size_expression != NULL) {
4195                                 size_expression
4196                                         = create_implicit_cast(size_expression, type_size_t);
4197                         }
4198
4199                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4200                         array_type->array.element_type    = type;
4201                         array_type->array.is_static       = parsed_array->is_static;
4202                         array_type->array.is_variable     = parsed_array->is_variable;
4203                         array_type->array.size_expression = size_expression;
4204
4205                         if (size_expression != NULL) {
4206                                 if (is_constant_expression(size_expression)) {
4207                                         array_type->array.size_constant = true;
4208                                         array_type->array.size
4209                                                 = fold_constant(size_expression);
4210                                 } else {
4211                                         array_type->array.is_vla = true;
4212                                 }
4213                         }
4214
4215                         type_t *skipped_type = skip_typeref(type);
4216                         /* Â§6.7.5.2(1) */
4217                         if (is_type_incomplete(skipped_type)) {
4218                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4219                         } else if (is_type_function(skipped_type)) {
4220                                 errorf(HERE, "array of functions is not allowed");
4221                         }
4222                         type = array_type;
4223                         break;
4224                 }
4225                 }
4226
4227                 type_t *hashed_type = typehash_insert(type);
4228                 if (hashed_type != type) {
4229                         /* the function type was constructed earlier freeing it here will
4230                          * destroy other types... */
4231                         if (iter->kind != CONSTRUCT_FUNCTION) {
4232                                 free_type(type);
4233                         }
4234                         type = hashed_type;
4235                 }
4236         }
4237
4238         return type;
4239 }
4240
4241 static declaration_t *parse_declarator(
4242                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
4243 {
4244         declaration_t *const declaration    = allocate_declaration_zero();
4245         declaration->source_position        = specifiers->source_position;
4246         declaration->declared_storage_class = specifiers->declared_storage_class;
4247         declaration->modifiers              = specifiers->modifiers;
4248         declaration->deprecated_string      = specifiers->deprecated_string;
4249         declaration->get_property_sym       = specifiers->get_property_sym;
4250         declaration->put_property_sym       = specifiers->put_property_sym;
4251         declaration->is_inline              = specifiers->is_inline;
4252
4253         declaration->storage_class          = specifiers->declared_storage_class;
4254         if (declaration->storage_class == STORAGE_CLASS_NONE
4255                         && scope != global_scope) {
4256                 declaration->storage_class = STORAGE_CLASS_AUTO;
4257         }
4258
4259         if (specifiers->alignment != 0) {
4260                 /* TODO: add checks here */
4261                 declaration->alignment = specifiers->alignment;
4262         }
4263
4264         construct_type_t *construct_type
4265                 = parse_inner_declarator(declaration, may_be_abstract);
4266         type_t *const type = specifiers->type;
4267         declaration->type = construct_declarator_type(construct_type, type);
4268
4269         parse_declaration_attributes(declaration);
4270
4271         fix_declaration_type(declaration);
4272
4273         if (construct_type != NULL) {
4274                 obstack_free(&temp_obst, construct_type);
4275         }
4276
4277         return declaration;
4278 }
4279
4280 static type_t *parse_abstract_declarator(type_t *base_type)
4281 {
4282         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4283
4284         type_t *result = construct_declarator_type(construct_type, base_type);
4285         if (construct_type != NULL) {
4286                 obstack_free(&temp_obst, construct_type);
4287         }
4288
4289         return result;
4290 }
4291
4292 static declaration_t *append_declaration(declaration_t* const declaration)
4293 {
4294         if (last_declaration != NULL) {
4295                 last_declaration->next = declaration;
4296         } else {
4297                 scope->declarations = declaration;
4298         }
4299         last_declaration = declaration;
4300         return declaration;
4301 }
4302
4303 /**
4304  * Check if the declaration of main is suspicious.  main should be a
4305  * function with external linkage, returning int, taking either zero
4306  * arguments, two, or three arguments of appropriate types, ie.
4307  *
4308  * int main([ int argc, char **argv [, char **env ] ]).
4309  *
4310  * @param decl    the declaration to check
4311  * @param type    the function type of the declaration
4312  */
4313 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4314 {
4315         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4316                 warningf(&decl->source_position,
4317                          "'main' is normally a non-static function");
4318         }
4319         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4320                 warningf(&decl->source_position,
4321                          "return type of 'main' should be 'int', but is '%T'",
4322                          func_type->return_type);
4323         }
4324         const function_parameter_t *parm = func_type->parameters;
4325         if (parm != NULL) {
4326                 type_t *const first_type = parm->type;
4327                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4328                         warningf(&decl->source_position,
4329                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4330                 }
4331                 parm = parm->next;
4332                 if (parm != NULL) {
4333                         type_t *const second_type = parm->type;
4334                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4335                                 warningf(&decl->source_position,
4336                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4337                         }
4338                         parm = parm->next;
4339                         if (parm != NULL) {
4340                                 type_t *const third_type = parm->type;
4341                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4342                                         warningf(&decl->source_position,
4343                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4344                                 }
4345                                 parm = parm->next;
4346                                 if (parm != NULL)
4347                                         goto warn_arg_count;
4348                         }
4349                 } else {
4350 warn_arg_count:
4351                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4352                 }
4353         }
4354 }
4355
4356 /**
4357  * Check if a symbol is the equal to "main".
4358  */
4359 static bool is_sym_main(const symbol_t *const sym)
4360 {
4361         return strcmp(sym->string, "main") == 0;
4362 }
4363
4364 static declaration_t *record_declaration(
4365         declaration_t *const declaration,
4366         const bool is_definition)
4367 {
4368         const symbol_t *const symbol  = declaration->symbol;
4369         const namespace_t     namespc = (namespace_t)declaration->namespc;
4370
4371         assert(symbol != NULL);
4372         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4373
4374         type_t *const orig_type = declaration->type;
4375         type_t *const type      = skip_typeref(orig_type);
4376         if (is_type_function(type) &&
4377                         type->function.unspecified_parameters &&
4378                         warning.strict_prototypes &&
4379                         previous_declaration == NULL) {
4380                 warningf(&declaration->source_position,
4381                          "function declaration '%#T' is not a prototype",
4382                          orig_type, symbol);
4383         }
4384
4385         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4386                 check_type_of_main(declaration, &type->function);
4387         }
4388
4389         if (warning.nested_externs                             &&
4390             declaration->storage_class == STORAGE_CLASS_EXTERN &&
4391             scope                      != global_scope) {
4392                 warningf(&declaration->source_position,
4393                          "nested extern declaration of '%#T'", declaration->type, symbol);
4394         }
4395
4396         assert(declaration != previous_declaration);
4397         if (previous_declaration != NULL
4398                         && previous_declaration->parent_scope == scope) {
4399                 /* can happen for K&R style declarations */
4400                 if (previous_declaration->type == NULL) {
4401                         previous_declaration->type = declaration->type;
4402                 }
4403
4404                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4405                 if (!types_compatible(type, prev_type)) {
4406                         errorf(&declaration->source_position,
4407                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4408                                    orig_type, symbol, previous_declaration->type, symbol,
4409                                    &previous_declaration->source_position);
4410                 } else {
4411                         unsigned old_storage_class = previous_declaration->storage_class;
4412                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4413                                 errorf(&declaration->source_position,
4414                                            "redeclaration of enum entry '%Y' (declared %P)",
4415                                            symbol, &previous_declaration->source_position);
4416                                 return previous_declaration;
4417                         }
4418
4419                         if (warning.redundant_decls                                     &&
4420                             is_definition                                               &&
4421                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4422                             !(previous_declaration->modifiers & DM_USED)                &&
4423                             !previous_declaration->used) {
4424                                 warningf(&previous_declaration->source_position,
4425                                          "unnecessary static forward declaration for '%#T'",
4426                                          previous_declaration->type, symbol);
4427                         }
4428
4429                         unsigned new_storage_class = declaration->storage_class;
4430
4431                         if (is_type_incomplete(prev_type)) {
4432                                 previous_declaration->type = type;
4433                                 prev_type                  = type;
4434                         }
4435
4436                         /* pretend no storage class means extern for function
4437                          * declarations (except if the previous declaration is neither
4438                          * none nor extern) */
4439                         if (is_type_function(type)) {
4440                                 if (prev_type->function.unspecified_parameters) {
4441                                         previous_declaration->type = type;
4442                                         prev_type                  = type;
4443                                 }
4444
4445                                 switch (old_storage_class) {
4446                                 case STORAGE_CLASS_NONE:
4447                                         old_storage_class = STORAGE_CLASS_EXTERN;
4448                                         /* FALLTHROUGH */
4449
4450                                 case STORAGE_CLASS_EXTERN:
4451                                         if (is_definition) {
4452                                                 if (warning.missing_prototypes &&
4453                                                     prev_type->function.unspecified_parameters &&
4454                                                     !is_sym_main(symbol)) {
4455                                                         warningf(&declaration->source_position,
4456                                                                          "no previous prototype for '%#T'",
4457                                                                          orig_type, symbol);
4458                                                 }
4459                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4460                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4461                                         }
4462                                         break;
4463
4464                                 default:
4465                                         break;
4466                                 }
4467                         }
4468
4469                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4470                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4471 warn_redundant_declaration:
4472                                 if (!is_definition           &&
4473                                     warning.redundant_decls  &&
4474                                     is_type_valid(prev_type) &&
4475                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4476                                         warningf(&declaration->source_position,
4477                                                  "redundant declaration for '%Y' (declared %P)",
4478                                                  symbol, &previous_declaration->source_position);
4479                                 }
4480                         } else if (current_function == NULL) {
4481                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4482                                     new_storage_class == STORAGE_CLASS_STATIC) {
4483                                         errorf(&declaration->source_position,
4484                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4485                                                symbol, &previous_declaration->source_position);
4486                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4487                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4488                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4489                                 } else {
4490                                         goto warn_redundant_declaration;
4491                                 }
4492                         } else if (is_type_valid(prev_type)) {
4493                                 if (old_storage_class == new_storage_class) {
4494                                         errorf(&declaration->source_position,
4495                                                "redeclaration of '%Y' (declared %P)",
4496                                                symbol, &previous_declaration->source_position);
4497                                 } else {
4498                                         errorf(&declaration->source_position,
4499                                                "redeclaration of '%Y' with different linkage (declared %P)",
4500                                                symbol, &previous_declaration->source_position);
4501                                 }
4502                         }
4503                 }
4504
4505                 previous_declaration->modifiers |= declaration->modifiers;
4506                 previous_declaration->is_inline |= declaration->is_inline;
4507                 return previous_declaration;
4508         } else if (is_type_function(type)) {
4509                 if (is_definition &&
4510                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4511                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4512                                 warningf(&declaration->source_position,
4513                                          "no previous prototype for '%#T'", orig_type, symbol);
4514                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4515                                 warningf(&declaration->source_position,
4516                                          "no previous declaration for '%#T'", orig_type,
4517                                          symbol);
4518                         }
4519                 }
4520         } else {
4521                 if (warning.missing_declarations &&
4522                     scope == global_scope && (
4523                       declaration->storage_class == STORAGE_CLASS_NONE ||
4524                       declaration->storage_class == STORAGE_CLASS_THREAD
4525                     )) {
4526                         warningf(&declaration->source_position,
4527                                  "no previous declaration for '%#T'", orig_type, symbol);
4528                 }
4529         }
4530
4531         assert(declaration->parent_scope == NULL);
4532         assert(scope != NULL);
4533
4534         declaration->parent_scope = scope;
4535
4536         environment_push(declaration);
4537         return append_declaration(declaration);
4538 }
4539
4540 static void parser_error_multiple_definition(declaration_t *declaration,
4541                 const source_position_t *source_position)
4542 {
4543         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4544                declaration->symbol, &declaration->source_position);
4545 }
4546
4547 static bool is_declaration_specifier(const token_t *token,
4548                                      bool only_specifiers_qualifiers)
4549 {
4550         switch (token->type) {
4551                 TYPE_SPECIFIERS
4552                 TYPE_QUALIFIERS
4553                         return true;
4554                 case T_IDENTIFIER:
4555                         return is_typedef_symbol(token->v.symbol);
4556
4557                 case T___extension__:
4558                 STORAGE_CLASSES
4559                         return !only_specifiers_qualifiers;
4560
4561                 default:
4562                         return false;
4563         }
4564 }
4565
4566 static void parse_init_declarator_rest(declaration_t *declaration)
4567 {
4568         eat('=');
4569
4570         type_t *orig_type = declaration->type;
4571         type_t *type      = skip_typeref(orig_type);
4572
4573         if (declaration->init.initializer != NULL) {
4574                 parser_error_multiple_definition(declaration, HERE);
4575         }
4576
4577         bool must_be_constant = false;
4578         if (declaration->storage_class == STORAGE_CLASS_STATIC
4579                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4580                         || declaration->parent_scope == global_scope) {
4581                 must_be_constant = true;
4582         }
4583
4584         if (is_type_function(type)) {
4585                 errorf(&declaration->source_position,
4586                        "function '%#T' is initialized like a variable",
4587                        orig_type, declaration->symbol);
4588                 orig_type = type_error_type;
4589         }
4590
4591         parse_initializer_env_t env;
4592         env.type             = orig_type;
4593         env.must_be_constant = must_be_constant;
4594         env.declaration      = current_init_decl = declaration;
4595
4596         initializer_t *initializer = parse_initializer(&env);
4597         current_init_decl = NULL;
4598
4599         if (!is_type_function(type)) {
4600                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
4601                  * the array type size */
4602                 declaration->type             = env.type;
4603                 declaration->init.initializer = initializer;
4604         }
4605 }
4606
4607 /* parse rest of a declaration without any declarator */
4608 static void parse_anonymous_declaration_rest(
4609                 const declaration_specifiers_t *specifiers)
4610 {
4611         eat(';');
4612
4613         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) {
4614                 warningf(&specifiers->source_position,
4615                          "useless storage class in empty declaration");
4616         }
4617
4618         type_t *type = specifiers->type;
4619         switch (type->kind) {
4620                 case TYPE_COMPOUND_STRUCT:
4621                 case TYPE_COMPOUND_UNION: {
4622                         if (type->compound.declaration->symbol == NULL) {
4623                                 warningf(&specifiers->source_position,
4624                                          "unnamed struct/union that defines no instances");
4625                         }
4626                         break;
4627                 }
4628
4629                 case TYPE_ENUM:
4630                         break;
4631
4632                 default:
4633                         warningf(&specifiers->source_position, "empty declaration");
4634                         break;
4635         }
4636
4637 #ifdef RECORD_EMPTY_DECLARATIONS
4638         declaration_t *const declaration    = allocate_declaration_zero();
4639         declaration->type                   = specifiers->type;
4640         declaration->declared_storage_class = specifiers->declared_storage_class;
4641         declaration->source_position        = specifiers->source_position;
4642         declaration->modifiers              = specifiers->modifiers;
4643         declaration->storage_class          = STORAGE_CLASS_NONE;
4644
4645         append_declaration(declaration);
4646 #endif
4647 }
4648
4649 static void parse_declaration_rest(declaration_t *ndeclaration,
4650                 const declaration_specifiers_t *specifiers,
4651                 parsed_declaration_func finished_declaration)
4652 {
4653         add_anchor_token(';');
4654         add_anchor_token(',');
4655         while(true) {
4656                 declaration_t *declaration =
4657                         finished_declaration(ndeclaration, token.type == '=');
4658
4659                 type_t *orig_type = declaration->type;
4660                 type_t *type      = skip_typeref(orig_type);
4661
4662                 if (type->kind != TYPE_FUNCTION &&
4663                     declaration->is_inline &&
4664                     is_type_valid(type)) {
4665                         warningf(&declaration->source_position,
4666                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4667                 }
4668
4669                 if (token.type == '=') {
4670                         parse_init_declarator_rest(declaration);
4671                 }
4672
4673                 if (token.type != ',')
4674                         break;
4675                 eat(',');
4676
4677                 add_anchor_token('=');
4678                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4679                 rem_anchor_token('=');
4680         }
4681         expect(';');
4682
4683 end_error:
4684         rem_anchor_token(';');
4685         rem_anchor_token(',');
4686 }
4687
4688 static declaration_t *finished_kr_declaration(declaration_t *declaration, bool is_definition)
4689 {
4690         symbol_t *symbol  = declaration->symbol;
4691         if (symbol == NULL) {
4692                 errorf(HERE, "anonymous declaration not valid as function parameter");
4693                 return declaration;
4694         }
4695         namespace_t namespc = (namespace_t) declaration->namespc;
4696         if (namespc != NAMESPACE_NORMAL) {
4697                 return record_declaration(declaration, false);
4698         }
4699
4700         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4701         if (previous_declaration == NULL ||
4702                         previous_declaration->parent_scope != scope) {
4703                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4704                        symbol);
4705                 return declaration;
4706         }
4707
4708         if (is_definition) {
4709                 errorf(HERE, "parameter %Y is initialised", declaration->symbol);
4710         }
4711
4712         if (previous_declaration->type == NULL) {
4713                 previous_declaration->type          = declaration->type;
4714                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4715                 previous_declaration->storage_class = declaration->storage_class;
4716                 previous_declaration->parent_scope  = scope;
4717                 return previous_declaration;
4718         } else {
4719                 return record_declaration(declaration, false);
4720         }
4721 }
4722
4723 static void parse_declaration(parsed_declaration_func finished_declaration)
4724 {
4725         declaration_specifiers_t specifiers;
4726         memset(&specifiers, 0, sizeof(specifiers));
4727
4728         add_anchor_token(';');
4729         parse_declaration_specifiers(&specifiers);
4730         rem_anchor_token(';');
4731
4732         if (token.type == ';') {
4733                 parse_anonymous_declaration_rest(&specifiers);
4734         } else {
4735                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4736                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4737         }
4738 }
4739
4740 static type_t *get_default_promoted_type(type_t *orig_type)
4741 {
4742         type_t *result = orig_type;
4743
4744         type_t *type = skip_typeref(orig_type);
4745         if (is_type_integer(type)) {
4746                 result = promote_integer(type);
4747         } else if (type == type_float) {
4748                 result = type_double;
4749         }
4750
4751         return result;
4752 }
4753
4754 static void parse_kr_declaration_list(declaration_t *declaration)
4755 {
4756         type_t *type = skip_typeref(declaration->type);
4757         if (!is_type_function(type))
4758                 return;
4759
4760         if (!type->function.kr_style_parameters)
4761                 return;
4762
4763         /* push function parameters */
4764         int       top        = environment_top();
4765         scope_t  *last_scope = scope;
4766         set_scope(&declaration->scope);
4767
4768         declaration_t *parameter = declaration->scope.declarations;
4769         for ( ; parameter != NULL; parameter = parameter->next) {
4770                 assert(parameter->parent_scope == NULL);
4771                 parameter->parent_scope = scope;
4772                 environment_push(parameter);
4773         }
4774
4775         /* parse declaration list */
4776         while (is_declaration_specifier(&token, false)) {
4777                 parse_declaration(finished_kr_declaration);
4778         }
4779
4780         /* pop function parameters */
4781         assert(scope == &declaration->scope);
4782         set_scope(last_scope);
4783         environment_pop_to(top);
4784
4785         /* update function type */
4786         type_t *new_type = duplicate_type(type);
4787
4788         function_parameter_t *parameters     = NULL;
4789         function_parameter_t *last_parameter = NULL;
4790
4791         declaration_t *parameter_declaration = declaration->scope.declarations;
4792         for( ; parameter_declaration != NULL;
4793                         parameter_declaration = parameter_declaration->next) {
4794                 type_t *parameter_type = parameter_declaration->type;
4795                 if (parameter_type == NULL) {
4796                         if (strict_mode) {
4797                                 errorf(HERE, "no type specified for function parameter '%Y'",
4798                                        parameter_declaration->symbol);
4799                         } else {
4800                                 if (warning.implicit_int) {
4801                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4802                                                 parameter_declaration->symbol);
4803                                 }
4804                                 parameter_type              = type_int;
4805                                 parameter_declaration->type = parameter_type;
4806                         }
4807                 }
4808
4809                 semantic_parameter(parameter_declaration);
4810                 parameter_type = parameter_declaration->type;
4811
4812                 /*
4813                  * we need the default promoted types for the function type
4814                  */
4815                 parameter_type = get_default_promoted_type(parameter_type);
4816
4817                 function_parameter_t *function_parameter
4818                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4819                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4820
4821                 function_parameter->type = parameter_type;
4822                 if (last_parameter != NULL) {
4823                         last_parameter->next = function_parameter;
4824                 } else {
4825                         parameters = function_parameter;
4826                 }
4827                 last_parameter = function_parameter;
4828         }
4829
4830         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4831          * prototype */
4832         new_type->function.parameters             = parameters;
4833         new_type->function.unspecified_parameters = true;
4834
4835         type = typehash_insert(new_type);
4836         if (type != new_type) {
4837                 obstack_free(type_obst, new_type);
4838         }
4839
4840         declaration->type = type;
4841 }
4842
4843 static bool first_err = true;
4844
4845 /**
4846  * When called with first_err set, prints the name of the current function,
4847  * else does noting.
4848  */
4849 static void print_in_function(void)
4850 {
4851         if (first_err) {
4852                 first_err = false;
4853                 diagnosticf("%s: In function '%Y':\n",
4854                         current_function->source_position.input_name,
4855                         current_function->symbol);
4856         }
4857 }
4858
4859 /**
4860  * Check if all labels are defined in the current function.
4861  * Check if all labels are used in the current function.
4862  */
4863 static void check_labels(void)
4864 {
4865         for (const goto_statement_t *goto_statement = goto_first;
4866             goto_statement != NULL;
4867             goto_statement = goto_statement->next) {
4868                 /* skip computed gotos */
4869                 if (goto_statement->expression != NULL)
4870                         continue;
4871
4872                 declaration_t *label = goto_statement->label;
4873
4874                 label->used = true;
4875                 if (label->source_position.input_name == NULL) {
4876                         print_in_function();
4877                         errorf(&goto_statement->base.source_position,
4878                                "label '%Y' used but not defined", label->symbol);
4879                  }
4880         }
4881         goto_first = goto_last = NULL;
4882
4883         if (warning.unused_label) {
4884                 for (const label_statement_t *label_statement = label_first;
4885                          label_statement != NULL;
4886                          label_statement = label_statement->next) {
4887                         const declaration_t *label = label_statement->label;
4888
4889                         if (! label->used) {
4890                                 print_in_function();
4891                                 warningf(&label_statement->base.source_position,
4892                                         "label '%Y' defined but not used", label->symbol);
4893                         }
4894                 }
4895         }
4896         label_first = label_last = NULL;
4897 }
4898
4899 /**
4900  * Check declarations of current_function for unused entities.
4901  */
4902 static void check_declarations(void)
4903 {
4904         if (warning.unused_parameter) {
4905                 const scope_t *scope = &current_function->scope;
4906
4907                 if (is_sym_main(current_function->symbol)) {
4908                         /* do not issue unused warnings for main */
4909                         return;
4910                 }
4911                 const declaration_t *parameter = scope->declarations;
4912                 for (; parameter != NULL; parameter = parameter->next) {
4913                         if (! parameter->used) {
4914                                 print_in_function();
4915                                 warningf(&parameter->source_position,
4916                                          "unused parameter '%Y'", parameter->symbol);
4917                         }
4918                 }
4919         }
4920         if (warning.unused_variable) {
4921         }
4922 }
4923
4924 static int determine_truth(expression_t const* const cond)
4925 {
4926         return
4927                 !is_constant_expression(cond) ? 0 :
4928                 fold_constant(cond) != 0      ? 1 :
4929                 -1;
4930 }
4931
4932 static bool noreturn_candidate;
4933
4934 static void check_reachable(statement_t *const stmt)
4935 {
4936         if (stmt->base.reachable)
4937                 return;
4938         if (stmt->kind != STATEMENT_DO_WHILE)
4939                 stmt->base.reachable = true;
4940
4941         statement_t *last = stmt;
4942         statement_t *next;
4943         switch (stmt->kind) {
4944                 case STATEMENT_INVALID:
4945                 case STATEMENT_EMPTY:
4946                 case STATEMENT_DECLARATION:
4947                 case STATEMENT_ASM:
4948                         next = stmt->base.next;
4949                         break;
4950
4951                 case STATEMENT_COMPOUND:
4952                         next = stmt->compound.statements;
4953                         break;
4954
4955                 case STATEMENT_RETURN:
4956                         noreturn_candidate = false;
4957                         return;
4958
4959                 case STATEMENT_IF: {
4960                         if_statement_t const* const ifs = &stmt->ifs;
4961                         int            const        val = determine_truth(ifs->condition);
4962
4963                         if (val >= 0)
4964                                 check_reachable(ifs->true_statement);
4965
4966                         if (val > 0)
4967                                 return;
4968
4969                         if (ifs->false_statement != NULL) {
4970                                 check_reachable(ifs->false_statement);
4971                                 return;
4972                         }
4973
4974                         next = stmt->base.next;
4975                         break;
4976                 }
4977
4978                 case STATEMENT_SWITCH: {
4979                         switch_statement_t const *const switchs = &stmt->switchs;
4980                         expression_t       const *const expr    = switchs->expression;
4981
4982                         if (is_constant_expression(expr)) {
4983                                 long                    const val      = fold_constant(expr);
4984                                 case_label_statement_t *      defaults = NULL;
4985                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4986                                         if (i->expression == NULL) {
4987                                                 defaults = i;
4988                                                 continue;
4989                                         }
4990
4991                                         if (i->first_case <= val && val <= i->last_case) {
4992                                                 check_reachable((statement_t*)i);
4993                                                 return;
4994                                         }
4995                                 }
4996
4997                                 if (defaults != NULL) {
4998                                         check_reachable((statement_t*)defaults);
4999                                         return;
5000                                 }
5001                         } else {
5002                                 bool has_default = false;
5003                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5004                                         if (i->expression == NULL)
5005                                                 has_default = true;
5006
5007                                         check_reachable((statement_t*)i);
5008                                 }
5009
5010                                 if (has_default)
5011                                         return;
5012                         }
5013
5014                         next = stmt->base.next;
5015                         break;
5016                 }
5017
5018                 case STATEMENT_EXPRESSION: {
5019                         /* Check for noreturn function call */
5020                         expression_t const *const expr = stmt->expression.expression;
5021                         if (expr->kind == EXPR_CALL) {
5022                                 expression_t const *const func = expr->call.function;
5023                                 if (func->kind == EXPR_REFERENCE) {
5024                                         declaration_t const *const decl = func->reference.declaration;
5025                                         if (decl != NULL && decl->modifiers & DM_NORETURN) {
5026                                                 return;
5027                                         }
5028                                 }
5029                         }
5030
5031                         next = stmt->base.next;
5032                         break;
5033                 }
5034
5035                 case STATEMENT_CONTINUE: {
5036                         statement_t *parent = stmt;
5037                         for (;;) {
5038                                 parent = parent->base.parent;
5039                                 if (parent == NULL) /* continue not within loop */
5040                                         return;
5041
5042                                 next = parent;
5043                                 switch (parent->kind) {
5044                                         case STATEMENT_WHILE:    goto continue_while;
5045                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5046                                         case STATEMENT_FOR:      goto continue_for;
5047
5048                                         default: break;
5049                                 }
5050                         }
5051                 }
5052
5053                 case STATEMENT_BREAK: {
5054                         statement_t *parent = stmt;
5055                         for (;;) {
5056                                 parent = parent->base.parent;
5057                                 if (parent == NULL) /* break not within loop/switch */
5058                                         return;
5059
5060                                 switch (parent->kind) {
5061                                         case STATEMENT_SWITCH:
5062                                         case STATEMENT_WHILE:
5063                                         case STATEMENT_DO_WHILE:
5064                                         case STATEMENT_FOR:
5065                                                 last = parent;
5066                                                 next = parent->base.next;
5067                                                 goto found_break_parent;
5068
5069                                         default: break;
5070                                 }
5071                         }
5072 found_break_parent:
5073                         break;
5074                 }
5075
5076                 case STATEMENT_GOTO:
5077                         if (stmt->gotos.expression) {
5078                                 statement_t *parent = stmt->base.parent;
5079                                 if (parent == NULL) /* top level goto */
5080                                         return;
5081                                 next = parent;
5082                         } else {
5083                                 next = stmt->gotos.label->init.statement;
5084                                 if (next == NULL) /* missing label */
5085                                         return;
5086                         }
5087                         break;
5088
5089                 case STATEMENT_LABEL:
5090                         next = stmt->label.statement;
5091                         break;
5092
5093                 case STATEMENT_CASE_LABEL:
5094                         next = stmt->case_label.statement;
5095                         break;
5096
5097                 case STATEMENT_WHILE: {
5098                         while_statement_t const *const whiles = &stmt->whiles;
5099                         int                      const val    = determine_truth(whiles->condition);
5100
5101                         if (val >= 0)
5102                                 check_reachable(whiles->body);
5103
5104                         if (val > 0)
5105                                 return;
5106
5107                         next = stmt->base.next;
5108                         break;
5109                 }
5110
5111                 case STATEMENT_DO_WHILE:
5112                         next = stmt->do_while.body;
5113                         break;
5114
5115                 case STATEMENT_FOR: {
5116                         for_statement_t *const fors = &stmt->fors;
5117
5118                         if (fors->condition_reachable)
5119                                 return;
5120                         fors->condition_reachable = true;
5121
5122                         expression_t const *const cond = fors->condition;
5123                         int          const        val  =
5124                                 cond == NULL ? 1 : determine_truth(cond);
5125
5126                         if (val >= 0)
5127                                 check_reachable(fors->body);
5128
5129                         if (val > 0)
5130                                 return;
5131
5132                         next = stmt->base.next;
5133                         break;
5134                 }
5135
5136                 case STATEMENT_MS_TRY: {
5137                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5138                         check_reachable(ms_try->try_statement);
5139                         next = ms_try->final_statement;
5140                         break;
5141                 }
5142
5143                 case STATEMENT_LEAVE: {
5144                         statement_t *parent = stmt;
5145                         for (;;) {
5146                                 parent = parent->base.parent;
5147                                 if (parent == NULL) /* __leave not within __try */
5148                                         return;
5149
5150                                 if (parent->kind == STATEMENT_MS_TRY) {
5151                                         last = parent;
5152                                         next = parent->ms_try.final_statement;
5153                                         break;
5154                                 }
5155                         }
5156                         break;
5157                 }
5158         }
5159
5160         while (next == NULL) {
5161                 next = last->base.parent;
5162                 if (next == NULL) {
5163                         noreturn_candidate = false;
5164
5165                         type_t *const type = current_function->type;
5166                         assert(is_type_function(type));
5167                         type_t *const ret  = skip_typeref(type->function.return_type);
5168                         if (warning.return_type                    &&
5169                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5170                             is_type_valid(ret)                     &&
5171                             !is_sym_main(current_function->symbol)) {
5172                                 warningf(&stmt->base.source_position,
5173                                          "control reaches end of non-void function");
5174                         }
5175                         return;
5176                 }
5177
5178                 switch (next->kind) {
5179                         case STATEMENT_INVALID:
5180                         case STATEMENT_EMPTY:
5181                         case STATEMENT_DECLARATION:
5182                         case STATEMENT_EXPRESSION:
5183                         case STATEMENT_ASM:
5184                         case STATEMENT_RETURN:
5185                         case STATEMENT_CONTINUE:
5186                         case STATEMENT_BREAK:
5187                         case STATEMENT_GOTO:
5188                         case STATEMENT_LEAVE:
5189                                 panic("invalid control flow in function");
5190
5191                         case STATEMENT_COMPOUND:
5192                         case STATEMENT_IF:
5193                         case STATEMENT_SWITCH:
5194                         case STATEMENT_LABEL:
5195                         case STATEMENT_CASE_LABEL:
5196                                 last = next;
5197                                 next = next->base.next;
5198                                 break;
5199
5200                         case STATEMENT_WHILE: {
5201 continue_while:
5202                                 if (next->base.reachable)
5203                                         return;
5204                                 next->base.reachable = true;
5205
5206                                 while_statement_t const *const whiles = &next->whiles;
5207                                 int                      const val    = determine_truth(whiles->condition);
5208
5209                                 if (val >= 0)
5210                                         check_reachable(whiles->body);
5211
5212                                 if (val > 0)
5213                                         return;
5214
5215                                 last = next;
5216                                 next = next->base.next;
5217                                 break;
5218                         }
5219
5220                         case STATEMENT_DO_WHILE: {
5221 continue_do_while:
5222                                 if (next->base.reachable)
5223                                         return;
5224                                 next->base.reachable = true;
5225
5226                                 do_while_statement_t const *const dw  = &next->do_while;
5227                                 int                  const        val = determine_truth(dw->condition);
5228
5229                                 if (val >= 0)
5230                                         check_reachable(dw->body);
5231
5232                                 if (val > 0)
5233                                         return;
5234
5235                                 last = next;
5236                                 next = next->base.next;
5237                                 break;
5238                         }
5239
5240                         case STATEMENT_FOR: {
5241 continue_for:;
5242                                 for_statement_t *const fors = &next->fors;
5243
5244                                 fors->step_reachable = true;
5245
5246                                 if (fors->condition_reachable)
5247                                         return;
5248                                 fors->condition_reachable = true;
5249
5250                                 expression_t const *const cond = fors->condition;
5251                                 int          const        val  =
5252                                         cond == NULL ? 1 : determine_truth(cond);
5253
5254                                 if (val >= 0)
5255                                         check_reachable(fors->body);
5256
5257                                 if (val > 0)
5258                                         return;
5259
5260                                 last = next;
5261                                 next = next->base.next;
5262                                 break;
5263                         }
5264
5265                         case STATEMENT_MS_TRY:
5266                                 last = next;
5267                                 next = next->ms_try.final_statement;
5268                                 break;
5269                 }
5270         }
5271
5272         if (next == NULL) {
5273                 next = stmt->base.parent;
5274                 if (next == NULL) {
5275                         warningf(&stmt->base.source_position,
5276                                  "control reaches end of non-void function");
5277                 }
5278         }
5279
5280         check_reachable(next);
5281 }
5282
5283 static void check_unreachable(statement_t const* const stmt)
5284 {
5285         if (!stmt->base.reachable            &&
5286             stmt->kind != STATEMENT_DO_WHILE &&
5287             stmt->kind != STATEMENT_FOR      &&
5288             (stmt->kind != STATEMENT_COMPOUND || stmt->compound.statements == NULL)) {
5289                 warningf(&stmt->base.source_position, "statement is unreachable");
5290         }
5291
5292         switch (stmt->kind) {
5293                 case STATEMENT_INVALID:
5294                 case STATEMENT_EMPTY:
5295                 case STATEMENT_RETURN:
5296                 case STATEMENT_DECLARATION:
5297                 case STATEMENT_EXPRESSION:
5298                 case STATEMENT_CONTINUE:
5299                 case STATEMENT_BREAK:
5300                 case STATEMENT_GOTO:
5301                 case STATEMENT_ASM:
5302                 case STATEMENT_LEAVE:
5303                         break;
5304
5305                 case STATEMENT_COMPOUND:
5306                         if (stmt->compound.statements)
5307                                 check_unreachable(stmt->compound.statements);
5308                         break;
5309
5310                 case STATEMENT_IF:
5311                         check_unreachable(stmt->ifs.true_statement);
5312                         if (stmt->ifs.false_statement != NULL)
5313                                 check_unreachable(stmt->ifs.false_statement);
5314                         break;
5315
5316                 case STATEMENT_SWITCH:
5317                         check_unreachable(stmt->switchs.body);
5318                         break;
5319
5320                 case STATEMENT_LABEL:
5321                         check_unreachable(stmt->label.statement);
5322                         break;
5323
5324                 case STATEMENT_CASE_LABEL:
5325                         check_unreachable(stmt->case_label.statement);
5326                         break;
5327
5328                 case STATEMENT_WHILE:
5329                         check_unreachable(stmt->whiles.body);
5330                         break;
5331
5332                 case STATEMENT_DO_WHILE:
5333                         check_unreachable(stmt->do_while.body);
5334                         if (!stmt->base.reachable) {
5335                                 expression_t const *const cond = stmt->do_while.condition;
5336                                 if (determine_truth(cond) >= 0) {
5337                                         warningf(&cond->base.source_position,
5338                                                  "condition of do-while-loop is unreachable");
5339                                 }
5340                         }
5341                         break;
5342
5343                 case STATEMENT_FOR: {
5344                         for_statement_t const* const fors = &stmt->fors;
5345
5346                         // if init and step are unreachable, cond is unreachable, too
5347                         if (!stmt->base.reachable && !fors->step_reachable) {
5348                                 warningf(&stmt->base.source_position, "statement is unreachable");
5349                         } else {
5350                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5351                                         warningf(&fors->initialisation->base.source_position,
5352                                                  "initialisation of for-statement is unreachable");
5353                                 }
5354
5355                                 if (!fors->condition_reachable && fors->condition != NULL) {
5356                                         warningf(&fors->condition->base.source_position,
5357                                                  "condition of for-statement is unreachable");
5358                                 }
5359
5360                                 if (!fors->step_reachable && fors->step != NULL) {
5361                                         warningf(&fors->step->base.source_position,
5362                                                  "step of for-statement is unreachable");
5363                                 }
5364                         }
5365
5366                         check_unreachable(fors->body);
5367                         break;
5368                 }
5369
5370                 case STATEMENT_MS_TRY: {
5371                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5372                         check_unreachable(ms_try->try_statement);
5373                         check_unreachable(ms_try->final_statement);
5374                 }
5375         }
5376
5377         if (stmt->base.next)
5378                 check_unreachable(stmt->base.next);
5379 }
5380
5381 static void parse_external_declaration(void)
5382 {
5383         /* function-definitions and declarations both start with declaration
5384          * specifiers */
5385         declaration_specifiers_t specifiers;
5386         memset(&specifiers, 0, sizeof(specifiers));
5387
5388         add_anchor_token(';');
5389         parse_declaration_specifiers(&specifiers);
5390         rem_anchor_token(';');
5391
5392         /* must be a declaration */
5393         if (token.type == ';') {
5394                 parse_anonymous_declaration_rest(&specifiers);
5395                 return;
5396         }
5397
5398         add_anchor_token(',');
5399         add_anchor_token('=');
5400         add_anchor_token(';');
5401
5402         /* declarator is common to both function-definitions and declarations */
5403         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
5404
5405         rem_anchor_token(',');
5406         rem_anchor_token('=');
5407         rem_anchor_token(';');
5408
5409         /* must be a declaration */
5410         switch (token.type) {
5411                 case ',':
5412                 case ';':
5413                 case '=':
5414                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
5415                         return;
5416         }
5417
5418         /* must be a function definition */
5419         parse_kr_declaration_list(ndeclaration);
5420
5421         if (token.type != '{') {
5422                 parse_error_expected("while parsing function definition", '{', NULL);
5423                 eat_until_matching_token(';');
5424                 return;
5425         }
5426
5427         type_t *type = ndeclaration->type;
5428
5429         /* note that we don't skip typerefs: the standard doesn't allow them here
5430          * (so we can't use is_type_function here) */
5431         if (type->kind != TYPE_FUNCTION) {
5432                 if (is_type_valid(type)) {
5433                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5434                                type, ndeclaration->symbol);
5435                 }
5436                 eat_block();
5437                 return;
5438         }
5439
5440         if (warning.aggregate_return &&
5441             is_type_compound(skip_typeref(type->function.return_type))) {
5442                 warningf(HERE, "function '%Y' returns an aggregate",
5443                          ndeclaration->symbol);
5444         }
5445         if (warning.traditional && !type->function.unspecified_parameters) {
5446                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5447                         ndeclaration->symbol);
5448         }
5449         if (warning.old_style_definition && type->function.unspecified_parameters) {
5450                 warningf(HERE, "old-style function definition '%Y'",
5451                         ndeclaration->symbol);
5452         }
5453
5454         /* Â§ 6.7.5.3 (14) a function definition with () means no
5455          * parameters (and not unspecified parameters) */
5456         if (type->function.unspecified_parameters
5457                         && type->function.parameters == NULL
5458                         && !type->function.kr_style_parameters) {
5459                 type_t *duplicate = duplicate_type(type);
5460                 duplicate->function.unspecified_parameters = false;
5461
5462                 type = typehash_insert(duplicate);
5463                 if (type != duplicate) {
5464                         obstack_free(type_obst, duplicate);
5465                 }
5466                 ndeclaration->type = type;
5467         }
5468
5469         declaration_t *const declaration = record_declaration(ndeclaration, true);
5470         if (ndeclaration != declaration) {
5471                 declaration->scope = ndeclaration->scope;
5472         }
5473         type = skip_typeref(declaration->type);
5474
5475         /* push function parameters and switch scope */
5476         int       top        = environment_top();
5477         scope_t  *last_scope = scope;
5478         set_scope(&declaration->scope);
5479
5480         declaration_t *parameter = declaration->scope.declarations;
5481         for( ; parameter != NULL; parameter = parameter->next) {
5482                 if (parameter->parent_scope == &ndeclaration->scope) {
5483                         parameter->parent_scope = scope;
5484                 }
5485                 assert(parameter->parent_scope == NULL
5486                                 || parameter->parent_scope == scope);
5487                 parameter->parent_scope = scope;
5488                 if (parameter->symbol == NULL) {
5489                         errorf(&parameter->source_position, "parameter name omitted");
5490                         continue;
5491                 }
5492                 environment_push(parameter);
5493         }
5494
5495         if (declaration->init.statement != NULL) {
5496                 parser_error_multiple_definition(declaration, HERE);
5497                 eat_block();
5498         } else {
5499                 /* parse function body */
5500                 int            label_stack_top      = label_top();
5501                 declaration_t *old_current_function = current_function;
5502                 current_function                    = declaration;
5503                 current_parent                      = NULL;
5504
5505                 statement_t *const body = parse_compound_statement(false);
5506                 declaration->init.statement = body;
5507                 first_err = true;
5508                 check_labels();
5509                 check_declarations();
5510                 if (warning.return_type      ||
5511                     warning.unreachable_code ||
5512                     (warning.missing_noreturn && !(declaration->modifiers & DM_NORETURN))) {
5513                         noreturn_candidate = true;
5514                         check_reachable(body);
5515                         if (warning.unreachable_code)
5516                                 check_unreachable(body);
5517                         if (warning.missing_noreturn &&
5518                             noreturn_candidate       &&
5519                             !(declaration->modifiers & DM_NORETURN)) {
5520                                 warningf(&body->base.source_position,
5521                                          "function '%#T' is candidate for attribute 'noreturn'",
5522                                          type, declaration->symbol);
5523                         }
5524                 }
5525
5526                 assert(current_parent   == NULL);
5527                 assert(current_function == declaration);
5528                 current_function = old_current_function;
5529                 label_pop_to(label_stack_top);
5530         }
5531
5532         assert(scope == &declaration->scope);
5533         set_scope(last_scope);
5534         environment_pop_to(top);
5535 }
5536
5537 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5538                                   source_position_t *source_position,
5539                                   const symbol_t *symbol)
5540 {
5541         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
5542
5543         type->bitfield.base_type       = base_type;
5544         type->bitfield.size_expression = size;
5545
5546         il_size_t bit_size;
5547         type_t *skipped_type = skip_typeref(base_type);
5548         if (!is_type_integer(skipped_type)) {
5549                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5550                         base_type);
5551                 bit_size = 0;
5552         } else {
5553                 bit_size = skipped_type->base.size * 8;
5554         }
5555
5556         if (is_constant_expression(size)) {
5557                 long v = fold_constant(size);
5558
5559                 if (v < 0) {
5560                         errorf(source_position, "negative width in bit-field '%Y'",
5561                                 symbol);
5562                 } else if (v == 0) {
5563                         errorf(source_position, "zero width for bit-field '%Y'",
5564                                 symbol);
5565                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5566                         errorf(source_position, "width of '%Y' exceeds its type",
5567                                 symbol);
5568                 } else {
5569                         type->bitfield.bit_size = v;
5570                 }
5571         }
5572
5573         return type;
5574 }
5575
5576 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
5577                                           symbol_t *symbol)
5578 {
5579         declaration_t *iter = compound_declaration->scope.declarations;
5580         for( ; iter != NULL; iter = iter->next) {
5581                 if (iter->namespc != NAMESPACE_NORMAL)
5582                         continue;
5583
5584                 if (iter->symbol == NULL) {
5585                         type_t *type = skip_typeref(iter->type);
5586                         if (is_type_compound(type)) {
5587                                 declaration_t *result
5588                                         = find_compound_entry(type->compound.declaration, symbol);
5589                                 if (result != NULL)
5590                                         return result;
5591                         }
5592                         continue;
5593                 }
5594
5595                 if (iter->symbol == symbol) {
5596                         return iter;
5597                 }
5598         }
5599
5600         return NULL;
5601 }
5602
5603 static void parse_compound_declarators(declaration_t *struct_declaration,
5604                 const declaration_specifiers_t *specifiers)
5605 {
5606         declaration_t *last_declaration = struct_declaration->scope.declarations;
5607         if (last_declaration != NULL) {
5608                 while (last_declaration->next != NULL) {
5609                         last_declaration = last_declaration->next;
5610                 }
5611         }
5612
5613         while (true) {
5614                 declaration_t *declaration;
5615
5616                 if (token.type == ':') {
5617                         source_position_t source_position = *HERE;
5618                         next_token();
5619
5620                         type_t *base_type = specifiers->type;
5621                         expression_t *size = parse_constant_expression();
5622
5623                         type_t *type = make_bitfield_type(base_type, size,
5624                                         &source_position, sym_anonymous);
5625
5626                         declaration                         = allocate_declaration_zero();
5627                         declaration->namespc                = NAMESPACE_NORMAL;
5628                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
5629                         declaration->storage_class          = STORAGE_CLASS_NONE;
5630                         declaration->source_position        = source_position;
5631                         declaration->modifiers              = specifiers->modifiers;
5632                         declaration->type                   = type;
5633                 } else {
5634                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
5635
5636                         type_t *orig_type = declaration->type;
5637                         type_t *type      = skip_typeref(orig_type);
5638
5639                         if (token.type == ':') {
5640                                 source_position_t source_position = *HERE;
5641                                 next_token();
5642                                 expression_t *size = parse_constant_expression();
5643
5644                                 type_t *bitfield_type = make_bitfield_type(orig_type, size,
5645                                                 &source_position, declaration->symbol);
5646                                 declaration->type = bitfield_type;
5647                         } else {
5648                                 /* TODO we ignore arrays for now... what is missing is a check
5649                                  * that they're at the end of the struct */
5650                                 if (is_type_incomplete(type) && !is_type_array(type)) {
5651                                         errorf(HERE,
5652                                                "compound member '%Y' has incomplete type '%T'",
5653                                                declaration->symbol, orig_type);
5654                                 } else if (is_type_function(type)) {
5655                                         errorf(HERE, "compound member '%Y' must not have function type '%T'",
5656                                                declaration->symbol, orig_type);
5657                                 }
5658                         }
5659                 }
5660
5661                 /* make sure we don't define a symbol multiple times */
5662                 symbol_t *symbol = declaration->symbol;
5663                 if (symbol != NULL) {
5664                         declaration_t *prev_decl
5665                                 = find_compound_entry(struct_declaration, symbol);
5666
5667                         if (prev_decl != NULL) {
5668                                 assert(prev_decl->symbol == symbol);
5669                                 errorf(&declaration->source_position,
5670                                        "multiple declarations of symbol '%Y' (declared %P)",
5671                                        symbol, &prev_decl->source_position);
5672                         }
5673                 }
5674
5675                 /* append declaration */
5676                 if (last_declaration != NULL) {
5677                         last_declaration->next = declaration;
5678                 } else {
5679                         struct_declaration->scope.declarations = declaration;
5680                 }
5681                 last_declaration = declaration;
5682
5683                 if (token.type != ',')
5684                         break;
5685                 next_token();
5686         }
5687         expect(';');
5688
5689 end_error:
5690         ;
5691 }
5692
5693 static void parse_compound_type_entries(declaration_t *compound_declaration)
5694 {
5695         eat('{');
5696         add_anchor_token('}');
5697
5698         while (token.type != '}' && token.type != T_EOF) {
5699                 declaration_specifiers_t specifiers;
5700                 memset(&specifiers, 0, sizeof(specifiers));
5701                 parse_declaration_specifiers(&specifiers);
5702
5703                 parse_compound_declarators(compound_declaration, &specifiers);
5704         }
5705         rem_anchor_token('}');
5706
5707         if (token.type == T_EOF) {
5708                 errorf(HERE, "EOF while parsing struct");
5709         }
5710         next_token();
5711 }
5712
5713 static type_t *parse_typename(void)
5714 {
5715         declaration_specifiers_t specifiers;
5716         memset(&specifiers, 0, sizeof(specifiers));
5717         parse_declaration_specifiers(&specifiers);
5718         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
5719                 /* TODO: improve error message, user does probably not know what a
5720                  * storage class is...
5721                  */
5722                 errorf(HERE, "typename may not have a storage class");
5723         }
5724
5725         type_t *result = parse_abstract_declarator(specifiers.type);
5726
5727         return result;
5728 }
5729
5730
5731
5732
5733 typedef expression_t* (*parse_expression_function) (unsigned precedence);
5734 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
5735                                                           expression_t *left);
5736
5737 typedef struct expression_parser_function_t expression_parser_function_t;
5738 struct expression_parser_function_t {
5739         unsigned                         precedence;
5740         parse_expression_function        parser;
5741         unsigned                         infix_precedence;
5742         parse_expression_infix_function  infix_parser;
5743 };
5744
5745 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5746
5747 /**
5748  * Prints an error message if an expression was expected but not read
5749  */
5750 static expression_t *expected_expression_error(void)
5751 {
5752         /* skip the error message if the error token was read */
5753         if (token.type != T_ERROR) {
5754                 errorf(HERE, "expected expression, got token '%K'", &token);
5755         }
5756         next_token();
5757
5758         return create_invalid_expression();
5759 }
5760
5761 /**
5762  * Parse a string constant.
5763  */
5764 static expression_t *parse_string_const(void)
5765 {
5766         wide_string_t wres;
5767         if (token.type == T_STRING_LITERAL) {
5768                 string_t res = token.v.string;
5769                 next_token();
5770                 while (token.type == T_STRING_LITERAL) {
5771                         res = concat_strings(&res, &token.v.string);
5772                         next_token();
5773                 }
5774                 if (token.type != T_WIDE_STRING_LITERAL) {
5775                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
5776                         /* note: that we use type_char_ptr here, which is already the
5777                          * automatic converted type. revert_automatic_type_conversion
5778                          * will construct the array type */
5779                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
5780                         cnst->string.value = res;
5781                         return cnst;
5782                 }
5783
5784                 wres = concat_string_wide_string(&res, &token.v.wide_string);
5785         } else {
5786                 wres = token.v.wide_string;
5787         }
5788         next_token();
5789
5790         for (;;) {
5791                 switch (token.type) {
5792                         case T_WIDE_STRING_LITERAL:
5793                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5794                                 break;
5795
5796                         case T_STRING_LITERAL:
5797                                 wres = concat_wide_string_string(&wres, &token.v.string);
5798                                 break;
5799
5800                         default: {
5801                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5802                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5803                                 cnst->wide_string.value = wres;
5804                                 return cnst;
5805                         }
5806                 }
5807                 next_token();
5808         }
5809 }
5810
5811 /**
5812  * Parse an integer constant.
5813  */
5814 static expression_t *parse_int_const(void)
5815 {
5816         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5817         cnst->base.source_position = *HERE;
5818         cnst->base.type            = token.datatype;
5819         cnst->conste.v.int_value   = token.v.intvalue;
5820
5821         next_token();
5822
5823         return cnst;
5824 }
5825
5826 /**
5827  * Parse a character constant.
5828  */
5829 static expression_t *parse_character_constant(void)
5830 {
5831         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5832
5833         cnst->base.source_position = *HERE;
5834         cnst->base.type            = token.datatype;
5835         cnst->conste.v.character   = token.v.string;
5836
5837         if (cnst->conste.v.character.size != 1) {
5838                 if (warning.multichar && GNU_MODE) {
5839                         warningf(HERE, "multi-character character constant");
5840                 } else {
5841                         errorf(HERE, "more than 1 characters in character constant");
5842                 }
5843         }
5844         next_token();
5845
5846         return cnst;
5847 }
5848
5849 /**
5850  * Parse a wide character constant.
5851  */
5852 static expression_t *parse_wide_character_constant(void)
5853 {
5854         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5855
5856         cnst->base.source_position    = *HERE;
5857         cnst->base.type               = token.datatype;
5858         cnst->conste.v.wide_character = token.v.wide_string;
5859
5860         if (cnst->conste.v.wide_character.size != 1) {
5861                 if (warning.multichar && GNU_MODE) {
5862                         warningf(HERE, "multi-character character constant");
5863                 } else {
5864                         errorf(HERE, "more than 1 characters in character constant");
5865                 }
5866         }
5867         next_token();
5868
5869         return cnst;
5870 }
5871
5872 /**
5873  * Parse a float constant.
5874  */
5875 static expression_t *parse_float_const(void)
5876 {
5877         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5878         cnst->base.type            = token.datatype;
5879         cnst->conste.v.float_value = token.v.floatvalue;
5880
5881         next_token();
5882
5883         return cnst;
5884 }
5885
5886 static declaration_t *create_implicit_function(symbol_t *symbol,
5887                 const source_position_t *source_position)
5888 {
5889         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5890         ntype->function.return_type            = type_int;
5891         ntype->function.unspecified_parameters = true;
5892
5893         type_t *type = typehash_insert(ntype);
5894         if (type != ntype) {
5895                 free_type(ntype);
5896         }
5897
5898         declaration_t *const declaration    = allocate_declaration_zero();
5899         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5900         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5901         declaration->type                   = type;
5902         declaration->symbol                 = symbol;
5903         declaration->source_position        = *source_position;
5904         declaration->implicit               = true;
5905
5906         bool strict_prototypes_old = warning.strict_prototypes;
5907         warning.strict_prototypes  = false;
5908         record_declaration(declaration, false);
5909         warning.strict_prototypes = strict_prototypes_old;
5910
5911         return declaration;
5912 }
5913
5914 /**
5915  * Creates a return_type (func)(argument_type) function type if not
5916  * already exists.
5917  */
5918 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5919                                     type_t *argument_type2)
5920 {
5921         function_parameter_t *parameter2
5922                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5923         memset(parameter2, 0, sizeof(parameter2[0]));
5924         parameter2->type = argument_type2;
5925
5926         function_parameter_t *parameter1
5927                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5928         memset(parameter1, 0, sizeof(parameter1[0]));
5929         parameter1->type = argument_type1;
5930         parameter1->next = parameter2;
5931
5932         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5933         type->function.return_type = return_type;
5934         type->function.parameters  = parameter1;
5935
5936         type_t *result = typehash_insert(type);
5937         if (result != type) {
5938                 free_type(type);
5939         }
5940
5941         return result;
5942 }
5943
5944 /**
5945  * Creates a return_type (func)(argument_type) function type if not
5946  * already exists.
5947  *
5948  * @param return_type    the return type
5949  * @param argument_type  the argument type
5950  */
5951 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5952 {
5953         function_parameter_t *parameter
5954                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5955         memset(parameter, 0, sizeof(parameter[0]));
5956         parameter->type = argument_type;
5957
5958         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5959         type->function.return_type = return_type;
5960         type->function.parameters  = parameter;
5961
5962         type_t *result = typehash_insert(type);
5963         if (result != type) {
5964                 free_type(type);
5965         }
5966
5967         return result;
5968 }
5969
5970 static type_t *make_function_0_type(type_t *return_type)
5971 {
5972         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5973         type->function.return_type = return_type;
5974         type->function.parameters  = NULL;
5975
5976         type_t *result = typehash_insert(type);
5977         if (result != type) {
5978                 free_type(type);
5979         }
5980
5981         return result;
5982 }
5983
5984 /**
5985  * Creates a function type for some function like builtins.
5986  *
5987  * @param symbol   the symbol describing the builtin
5988  */
5989 static type_t *get_builtin_symbol_type(symbol_t *symbol)
5990 {
5991         switch(symbol->ID) {
5992         case T___builtin_alloca:
5993                 return make_function_1_type(type_void_ptr, type_size_t);
5994         case T___builtin_huge_val:
5995                 return make_function_0_type(type_double);
5996         case T___builtin_nan:
5997                 return make_function_1_type(type_double, type_char_ptr);
5998         case T___builtin_nanf:
5999                 return make_function_1_type(type_float, type_char_ptr);
6000         case T___builtin_nand:
6001                 return make_function_1_type(type_long_double, type_char_ptr);
6002         case T___builtin_va_end:
6003                 return make_function_1_type(type_void, type_valist);
6004         case T___builtin_expect:
6005                 return make_function_2_type(type_long, type_long, type_long);
6006         default:
6007                 internal_errorf(HERE, "not implemented builtin symbol found");
6008         }
6009 }
6010
6011 /**
6012  * Performs automatic type cast as described in Â§ 6.3.2.1.
6013  *
6014  * @param orig_type  the original type
6015  */
6016 static type_t *automatic_type_conversion(type_t *orig_type)
6017 {
6018         type_t *type = skip_typeref(orig_type);
6019         if (is_type_array(type)) {
6020                 array_type_t *array_type   = &type->array;
6021                 type_t       *element_type = array_type->element_type;
6022                 unsigned      qualifiers   = array_type->base.qualifiers;
6023
6024                 return make_pointer_type(element_type, qualifiers);
6025         }
6026
6027         if (is_type_function(type)) {
6028                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6029         }
6030
6031         return orig_type;
6032 }
6033
6034 /**
6035  * reverts the automatic casts of array to pointer types and function
6036  * to function-pointer types as defined Â§ 6.3.2.1
6037  */
6038 type_t *revert_automatic_type_conversion(const expression_t *expression)
6039 {
6040         switch (expression->kind) {
6041                 case EXPR_REFERENCE: return expression->reference.declaration->type;
6042
6043                 case EXPR_SELECT:
6044                         return get_qualified_type(expression->select.compound_entry->type,
6045                                                   expression->base.type->base.qualifiers);
6046
6047                 case EXPR_UNARY_DEREFERENCE: {
6048                         const expression_t *const value = expression->unary.value;
6049                         type_t             *const type  = skip_typeref(value->base.type);
6050                         assert(is_type_pointer(type));
6051                         return type->pointer.points_to;
6052                 }
6053
6054                 case EXPR_BUILTIN_SYMBOL:
6055                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6056
6057                 case EXPR_ARRAY_ACCESS: {
6058                         const expression_t *array_ref = expression->array_access.array_ref;
6059                         type_t             *type_left = skip_typeref(array_ref->base.type);
6060                         if (!is_type_valid(type_left))
6061                                 return type_left;
6062                         assert(is_type_pointer(type_left));
6063                         return type_left->pointer.points_to;
6064                 }
6065
6066                 case EXPR_STRING_LITERAL: {
6067                         size_t size = expression->string.value.size;
6068                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6069                 }
6070
6071                 case EXPR_WIDE_STRING_LITERAL: {
6072                         size_t size = expression->wide_string.value.size;
6073                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6074                 }
6075
6076                 case EXPR_COMPOUND_LITERAL:
6077                         return expression->compound_literal.type;
6078
6079                 default: break;
6080         }
6081
6082         return expression->base.type;
6083 }
6084
6085 static expression_t *parse_reference(void)
6086 {
6087         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
6088
6089         reference_expression_t *ref = &expression->reference;
6090         symbol_t *const symbol = token.v.symbol;
6091
6092         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
6093
6094         if (declaration == NULL) {
6095                 if (!strict_mode && look_ahead(1)->type == '(') {
6096                         /* an implicitly declared function */
6097                         if (warning.implicit_function_declaration) {
6098                                 warningf(HERE, "implicit declaration of function '%Y'",
6099                                         symbol);
6100                         }
6101
6102                         declaration = create_implicit_function(symbol, HERE);
6103                 } else {
6104                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6105                         declaration = create_error_declaration(symbol, STORAGE_CLASS_NONE);
6106                 }
6107         }
6108
6109         type_t *type = declaration->type;
6110
6111         /* we always do the auto-type conversions; the & and sizeof parser contains
6112          * code to revert this! */
6113         type = automatic_type_conversion(type);
6114
6115         ref->declaration = declaration;
6116         ref->base.type   = type;
6117
6118         /* this declaration is used */
6119         declaration->used = true;
6120
6121         /* check for deprecated functions */
6122         if (warning.deprecated_declarations &&
6123             declaration->modifiers & DM_DEPRECATED) {
6124                 char const *const prefix = is_type_function(declaration->type) ?
6125                         "function" : "variable";
6126
6127                 if (declaration->deprecated_string != NULL) {
6128                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6129                                 prefix, declaration->symbol, &declaration->source_position,
6130                                 declaration->deprecated_string);
6131                 } else {
6132                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6133                                 declaration->symbol, &declaration->source_position);
6134                 }
6135         }
6136         if (warning.init_self && declaration == current_init_decl && !in_type_prop) {
6137                 current_init_decl = NULL;
6138                 warningf(HERE, "variable '%#T' is initialized by itself",
6139                         declaration->type, declaration->symbol);
6140         }
6141
6142         next_token();
6143         return expression;
6144 }
6145
6146 static bool semantic_cast(expression_t *cast)
6147 {
6148         expression_t            *expression      = cast->unary.value;
6149         type_t                  *orig_dest_type  = cast->base.type;
6150         type_t                  *orig_type_right = expression->base.type;
6151         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6152         type_t            const *src_type        = skip_typeref(orig_type_right);
6153         source_position_t const *pos             = &cast->base.source_position;
6154
6155         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6156         if (dst_type == type_void)
6157                 return true;
6158
6159         /* only integer and pointer can be casted to pointer */
6160         if (is_type_pointer(dst_type)  &&
6161             !is_type_pointer(src_type) &&
6162             !is_type_integer(src_type) &&
6163             is_type_valid(src_type)) {
6164                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6165                 return false;
6166         }
6167
6168         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6169                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6170                 return false;
6171         }
6172
6173         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6174                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6175                 return false;
6176         }
6177
6178         if (warning.cast_qual &&
6179             is_type_pointer(src_type) &&
6180             is_type_pointer(dst_type)) {
6181                 type_t *src = skip_typeref(src_type->pointer.points_to);
6182                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6183                 unsigned missing_qualifiers =
6184                         src->base.qualifiers & ~dst->base.qualifiers;
6185                 if (missing_qualifiers != 0) {
6186                         warningf(pos,
6187                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6188                                  missing_qualifiers, orig_type_right);
6189                 }
6190         }
6191         return true;
6192 }
6193
6194 static expression_t *parse_compound_literal(type_t *type)
6195 {
6196         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6197
6198         parse_initializer_env_t env;
6199         env.type             = type;
6200         env.declaration      = NULL;
6201         env.must_be_constant = false;
6202         initializer_t *initializer = parse_initializer(&env);
6203         type = env.type;
6204
6205         expression->compound_literal.initializer = initializer;
6206         expression->compound_literal.type        = type;
6207         expression->base.type                    = automatic_type_conversion(type);
6208
6209         return expression;
6210 }
6211
6212 /**
6213  * Parse a cast expression.
6214  */
6215 static expression_t *parse_cast(void)
6216 {
6217         add_anchor_token(')');
6218
6219         source_position_t source_position = token.source_position;
6220
6221         type_t *type  = parse_typename();
6222
6223         rem_anchor_token(')');
6224         expect(')');
6225
6226         if (token.type == '{') {
6227                 return parse_compound_literal(type);
6228         }
6229
6230         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6231         cast->base.source_position = source_position;
6232
6233         expression_t *value = parse_sub_expression(20);
6234         cast->base.type   = type;
6235         cast->unary.value = value;
6236
6237         if (! semantic_cast(cast)) {
6238                 /* TODO: record the error in the AST. else it is impossible to detect it */
6239         }
6240
6241         return cast;
6242 end_error:
6243         return create_invalid_expression();
6244 }
6245
6246 /**
6247  * Parse a statement expression.
6248  */
6249 static expression_t *parse_statement_expression(void)
6250 {
6251         add_anchor_token(')');
6252
6253         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6254
6255         statement_t *statement           = parse_compound_statement(true);
6256         expression->statement.statement  = statement;
6257         expression->base.source_position = statement->base.source_position;
6258
6259         /* find last statement and use its type */
6260         type_t *type = type_void;
6261         const statement_t *stmt = statement->compound.statements;
6262         if (stmt != NULL) {
6263                 while (stmt->base.next != NULL)
6264                         stmt = stmt->base.next;
6265
6266                 if (stmt->kind == STATEMENT_EXPRESSION) {
6267                         type = stmt->expression.expression->base.type;
6268                 }
6269         } else {
6270                 warningf(&expression->base.source_position, "empty statement expression ({})");
6271         }
6272         expression->base.type = type;
6273
6274         rem_anchor_token(')');
6275         expect(')');
6276
6277 end_error:
6278         return expression;
6279 }
6280
6281 /**
6282  * Parse a parenthesized expression.
6283  */
6284 static expression_t *parse_parenthesized_expression(void)
6285 {
6286         eat('(');
6287
6288         switch(token.type) {
6289         case '{':
6290                 /* gcc extension: a statement expression */
6291                 return parse_statement_expression();
6292
6293         TYPE_QUALIFIERS
6294         TYPE_SPECIFIERS
6295                 return parse_cast();
6296         case T_IDENTIFIER:
6297                 if (is_typedef_symbol(token.v.symbol)) {
6298                         return parse_cast();
6299                 }
6300         }
6301
6302         add_anchor_token(')');
6303         expression_t *result = parse_expression();
6304         rem_anchor_token(')');
6305         expect(')');
6306
6307 end_error:
6308         return result;
6309 }
6310
6311 static expression_t *parse_function_keyword(void)
6312 {
6313         next_token();
6314         /* TODO */
6315
6316         if (current_function == NULL) {
6317                 errorf(HERE, "'__func__' used outside of a function");
6318         }
6319
6320         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6321         expression->base.type     = type_char_ptr;
6322         expression->funcname.kind = FUNCNAME_FUNCTION;
6323
6324         return expression;
6325 }
6326
6327 static expression_t *parse_pretty_function_keyword(void)
6328 {
6329         eat(T___PRETTY_FUNCTION__);
6330
6331         if (current_function == NULL) {
6332                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6333         }
6334
6335         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6336         expression->base.type     = type_char_ptr;
6337         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6338
6339         return expression;
6340 }
6341
6342 static expression_t *parse_funcsig_keyword(void)
6343 {
6344         eat(T___FUNCSIG__);
6345
6346         if (current_function == NULL) {
6347                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6348         }
6349
6350         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6351         expression->base.type     = type_char_ptr;
6352         expression->funcname.kind = FUNCNAME_FUNCSIG;
6353
6354         return expression;
6355 }
6356
6357 static expression_t *parse_funcdname_keyword(void)
6358 {
6359         eat(T___FUNCDNAME__);
6360
6361         if (current_function == NULL) {
6362                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6363         }
6364
6365         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6366         expression->base.type     = type_char_ptr;
6367         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6368
6369         return expression;
6370 }
6371
6372 static designator_t *parse_designator(void)
6373 {
6374         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6375         result->source_position = *HERE;
6376
6377         if (token.type != T_IDENTIFIER) {
6378                 parse_error_expected("while parsing member designator",
6379                                      T_IDENTIFIER, NULL);
6380                 return NULL;
6381         }
6382         result->symbol = token.v.symbol;
6383         next_token();
6384
6385         designator_t *last_designator = result;
6386         while(true) {
6387                 if (token.type == '.') {
6388                         next_token();
6389                         if (token.type != T_IDENTIFIER) {
6390                                 parse_error_expected("while parsing member designator",
6391                                                      T_IDENTIFIER, NULL);
6392                                 return NULL;
6393                         }
6394                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6395                         designator->source_position = *HERE;
6396                         designator->symbol          = token.v.symbol;
6397                         next_token();
6398
6399                         last_designator->next = designator;
6400                         last_designator       = designator;
6401                         continue;
6402                 }
6403                 if (token.type == '[') {
6404                         next_token();
6405                         add_anchor_token(']');
6406                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6407                         designator->source_position = *HERE;
6408                         designator->array_index     = parse_expression();
6409                         rem_anchor_token(']');
6410                         expect(']');
6411                         if (designator->array_index == NULL) {
6412                                 return NULL;
6413                         }
6414
6415                         last_designator->next = designator;
6416                         last_designator       = designator;
6417                         continue;
6418                 }
6419                 break;
6420         }
6421
6422         return result;
6423 end_error:
6424         return NULL;
6425 }
6426
6427 /**
6428  * Parse the __builtin_offsetof() expression.
6429  */
6430 static expression_t *parse_offsetof(void)
6431 {
6432         eat(T___builtin_offsetof);
6433
6434         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6435         expression->base.type    = type_size_t;
6436
6437         expect('(');
6438         add_anchor_token(',');
6439         type_t *type = parse_typename();
6440         rem_anchor_token(',');
6441         expect(',');
6442         add_anchor_token(')');
6443         designator_t *designator = parse_designator();
6444         rem_anchor_token(')');
6445         expect(')');
6446
6447         expression->offsetofe.type       = type;
6448         expression->offsetofe.designator = designator;
6449
6450         type_path_t path;
6451         memset(&path, 0, sizeof(path));
6452         path.top_type = type;
6453         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6454
6455         descend_into_subtype(&path);
6456
6457         if (!walk_designator(&path, designator, true)) {
6458                 return create_invalid_expression();
6459         }
6460
6461         DEL_ARR_F(path.path);
6462
6463         return expression;
6464 end_error:
6465         return create_invalid_expression();
6466 }
6467
6468 /**
6469  * Parses a _builtin_va_start() expression.
6470  */
6471 static expression_t *parse_va_start(void)
6472 {
6473         eat(T___builtin_va_start);
6474
6475         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6476
6477         expect('(');
6478         add_anchor_token(',');
6479         expression->va_starte.ap = parse_assignment_expression();
6480         rem_anchor_token(',');
6481         expect(',');
6482         expression_t *const expr = parse_assignment_expression();
6483         if (expr->kind == EXPR_REFERENCE) {
6484                 declaration_t *const decl = expr->reference.declaration;
6485                 if (decl->parent_scope != &current_function->scope || decl->next != NULL) {
6486                         errorf(&expr->base.source_position,
6487                                "second argument of 'va_start' must be last parameter of the current function");
6488                 }
6489                 expression->va_starte.parameter = decl;
6490                 expect(')');
6491                 return expression;
6492         }
6493         expect(')');
6494 end_error:
6495         return create_invalid_expression();
6496 }
6497
6498 /**
6499  * Parses a _builtin_va_arg() expression.
6500  */
6501 static expression_t *parse_va_arg(void)
6502 {
6503         eat(T___builtin_va_arg);
6504
6505         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6506
6507         expect('(');
6508         expression->va_arge.ap = parse_assignment_expression();
6509         expect(',');
6510         expression->base.type = parse_typename();
6511         expect(')');
6512
6513         return expression;
6514 end_error:
6515         return create_invalid_expression();
6516 }
6517
6518 static expression_t *parse_builtin_symbol(void)
6519 {
6520         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
6521
6522         symbol_t *symbol = token.v.symbol;
6523
6524         expression->builtin_symbol.symbol = symbol;
6525         next_token();
6526
6527         type_t *type = get_builtin_symbol_type(symbol);
6528         type = automatic_type_conversion(type);
6529
6530         expression->base.type = type;
6531         return expression;
6532 }
6533
6534 /**
6535  * Parses a __builtin_constant() expression.
6536  */
6537 static expression_t *parse_builtin_constant(void)
6538 {
6539         eat(T___builtin_constant_p);
6540
6541         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6542
6543         expect('(');
6544         add_anchor_token(')');
6545         expression->builtin_constant.value = parse_assignment_expression();
6546         rem_anchor_token(')');
6547         expect(')');
6548         expression->base.type = type_int;
6549
6550         return expression;
6551 end_error:
6552         return create_invalid_expression();
6553 }
6554
6555 /**
6556  * Parses a __builtin_prefetch() expression.
6557  */
6558 static expression_t *parse_builtin_prefetch(void)
6559 {
6560         eat(T___builtin_prefetch);
6561
6562         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
6563
6564         expect('(');
6565         add_anchor_token(')');
6566         expression->builtin_prefetch.adr = parse_assignment_expression();
6567         if (token.type == ',') {
6568                 next_token();
6569                 expression->builtin_prefetch.rw = parse_assignment_expression();
6570         }
6571         if (token.type == ',') {
6572                 next_token();
6573                 expression->builtin_prefetch.locality = parse_assignment_expression();
6574         }
6575         rem_anchor_token(')');
6576         expect(')');
6577         expression->base.type = type_void;
6578
6579         return expression;
6580 end_error:
6581         return create_invalid_expression();
6582 }
6583
6584 /**
6585  * Parses a __builtin_is_*() compare expression.
6586  */
6587 static expression_t *parse_compare_builtin(void)
6588 {
6589         expression_t *expression;
6590
6591         switch(token.type) {
6592         case T___builtin_isgreater:
6593                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6594                 break;
6595         case T___builtin_isgreaterequal:
6596                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6597                 break;
6598         case T___builtin_isless:
6599                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6600                 break;
6601         case T___builtin_islessequal:
6602                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6603                 break;
6604         case T___builtin_islessgreater:
6605                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6606                 break;
6607         case T___builtin_isunordered:
6608                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6609                 break;
6610         default:
6611                 internal_errorf(HERE, "invalid compare builtin found");
6612                 break;
6613         }
6614         expression->base.source_position = *HERE;
6615         next_token();
6616
6617         expect('(');
6618         expression->binary.left = parse_assignment_expression();
6619         expect(',');
6620         expression->binary.right = parse_assignment_expression();
6621         expect(')');
6622
6623         type_t *const orig_type_left  = expression->binary.left->base.type;
6624         type_t *const orig_type_right = expression->binary.right->base.type;
6625
6626         type_t *const type_left  = skip_typeref(orig_type_left);
6627         type_t *const type_right = skip_typeref(orig_type_right);
6628         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6629                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6630                         type_error_incompatible("invalid operands in comparison",
6631                                 &expression->base.source_position, orig_type_left, orig_type_right);
6632                 }
6633         } else {
6634                 semantic_comparison(&expression->binary);
6635         }
6636
6637         return expression;
6638 end_error:
6639         return create_invalid_expression();
6640 }
6641
6642 #if 0
6643 /**
6644  * Parses a __builtin_expect() expression.
6645  */
6646 static expression_t *parse_builtin_expect(void)
6647 {
6648         eat(T___builtin_expect);
6649
6650         expression_t *expression
6651                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
6652
6653         expect('(');
6654         expression->binary.left = parse_assignment_expression();
6655         expect(',');
6656         expression->binary.right = parse_constant_expression();
6657         expect(')');
6658
6659         expression->base.type = expression->binary.left->base.type;
6660
6661         return expression;
6662 end_error:
6663         return create_invalid_expression();
6664 }
6665 #endif
6666
6667 /**
6668  * Parses a MS assume() expression.
6669  */
6670 static expression_t *parse_assume(void)
6671 {
6672         eat(T__assume);
6673
6674         expression_t *expression
6675                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
6676
6677         expect('(');
6678         add_anchor_token(')');
6679         expression->unary.value = parse_assignment_expression();
6680         rem_anchor_token(')');
6681         expect(')');
6682
6683         expression->base.type = type_void;
6684         return expression;
6685 end_error:
6686         return create_invalid_expression();
6687 }
6688
6689 /**
6690  * Return the declaration for a given label symbol or create a new one.
6691  *
6692  * @param symbol  the symbol of the label
6693  */
6694 static declaration_t *get_label(symbol_t *symbol)
6695 {
6696         declaration_t *candidate;
6697         assert(current_function != NULL);
6698
6699         candidate = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
6700         /* if we found a local label, we already created the declaration */
6701         if (candidate != NULL) {
6702                 assert(candidate->parent_scope == scope);
6703                 return candidate;
6704         }
6705
6706         candidate = get_declaration(symbol, NAMESPACE_LABEL);
6707         /* if we found a label in the same function, then we already created the
6708          * declaration */
6709         if (candidate != NULL
6710                         && candidate->parent_scope == &current_function->scope) {
6711                 return candidate;
6712         }
6713
6714         /* otherwise we need to create a new one */
6715         declaration_t *const declaration = allocate_declaration_zero();
6716         declaration->namespc       = NAMESPACE_LABEL;
6717         declaration->symbol        = symbol;
6718
6719         label_push(declaration);
6720
6721         return declaration;
6722 }
6723
6724 /**
6725  * Parses a GNU && label address expression.
6726  */
6727 static expression_t *parse_label_address(void)
6728 {
6729         source_position_t source_position = token.source_position;
6730         eat(T_ANDAND);
6731         if (token.type != T_IDENTIFIER) {
6732                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6733                 goto end_error;
6734         }
6735         symbol_t *symbol = token.v.symbol;
6736         next_token();
6737
6738         declaration_t *label = get_label(symbol);
6739
6740         label->used          = true;
6741         label->address_taken = true;
6742
6743         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6744         expression->base.source_position = source_position;
6745
6746         /* label address is threaten as a void pointer */
6747         expression->base.type                 = type_void_ptr;
6748         expression->label_address.declaration = label;
6749         return expression;
6750 end_error:
6751         return create_invalid_expression();
6752 }
6753
6754 /**
6755  * Parse a microsoft __noop expression.
6756  */
6757 static expression_t *parse_noop_expression(void)
6758 {
6759         source_position_t source_position = *HERE;
6760         eat(T___noop);
6761
6762         if (token.type == '(') {
6763                 /* parse arguments */
6764                 eat('(');
6765                 add_anchor_token(')');
6766                 add_anchor_token(',');
6767
6768                 if (token.type != ')') {
6769                         while(true) {
6770                                 (void)parse_assignment_expression();
6771                                 if (token.type != ',')
6772                                         break;
6773                                 next_token();
6774                         }
6775                 }
6776         }
6777         rem_anchor_token(',');
6778         rem_anchor_token(')');
6779         expect(')');
6780
6781         /* the result is a (int)0 */
6782         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6783         cnst->base.source_position = source_position;
6784         cnst->base.type            = type_int;
6785         cnst->conste.v.int_value   = 0;
6786         cnst->conste.is_ms_noop    = true;
6787
6788         return cnst;
6789
6790 end_error:
6791         return create_invalid_expression();
6792 }
6793
6794 /**
6795  * Parses a primary expression.
6796  */
6797 static expression_t *parse_primary_expression(void)
6798 {
6799         switch (token.type) {
6800                 case T_INTEGER:                  return parse_int_const();
6801                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
6802                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
6803                 case T_FLOATINGPOINT:            return parse_float_const();
6804                 case T_STRING_LITERAL:
6805                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
6806                 case T_IDENTIFIER:               return parse_reference();
6807                 case T___FUNCTION__:
6808                 case T___func__:                 return parse_function_keyword();
6809                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
6810                 case T___FUNCSIG__:              return parse_funcsig_keyword();
6811                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
6812                 case T___builtin_offsetof:       return parse_offsetof();
6813                 case T___builtin_va_start:       return parse_va_start();
6814                 case T___builtin_va_arg:         return parse_va_arg();
6815                 case T___builtin_expect:
6816                 case T___builtin_alloca:
6817                 case T___builtin_nan:
6818                 case T___builtin_nand:
6819                 case T___builtin_nanf:
6820                 case T___builtin_huge_val:
6821                 case T___builtin_va_end:         return parse_builtin_symbol();
6822                 case T___builtin_isgreater:
6823                 case T___builtin_isgreaterequal:
6824                 case T___builtin_isless:
6825                 case T___builtin_islessequal:
6826                 case T___builtin_islessgreater:
6827                 case T___builtin_isunordered:    return parse_compare_builtin();
6828                 case T___builtin_constant_p:     return parse_builtin_constant();
6829                 case T___builtin_prefetch:       return parse_builtin_prefetch();
6830                 case T__assume:                  return parse_assume();
6831                 case T_ANDAND:
6832                         if (GNU_MODE)
6833                                 return parse_label_address();
6834                         break;
6835
6836                 case '(':                        return parse_parenthesized_expression();
6837                 case T___noop:                   return parse_noop_expression();
6838         }
6839
6840         errorf(HERE, "unexpected token %K, expected an expression", &token);
6841         return create_invalid_expression();
6842 }
6843
6844 /**
6845  * Check if the expression has the character type and issue a warning then.
6846  */
6847 static void check_for_char_index_type(const expression_t *expression)
6848 {
6849         type_t       *const type      = expression->base.type;
6850         const type_t *const base_type = skip_typeref(type);
6851
6852         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
6853                         warning.char_subscripts) {
6854                 warningf(&expression->base.source_position,
6855                          "array subscript has type '%T'", type);
6856         }
6857 }
6858
6859 static expression_t *parse_array_expression(unsigned precedence,
6860                                             expression_t *left)
6861 {
6862         (void) precedence;
6863
6864         eat('[');
6865         add_anchor_token(']');
6866
6867         expression_t *inside = parse_expression();
6868
6869         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6870
6871         array_access_expression_t *array_access = &expression->array_access;
6872
6873         type_t *const orig_type_left   = left->base.type;
6874         type_t *const orig_type_inside = inside->base.type;
6875
6876         type_t *const type_left   = skip_typeref(orig_type_left);
6877         type_t *const type_inside = skip_typeref(orig_type_inside);
6878
6879         type_t *return_type;
6880         if (is_type_pointer(type_left)) {
6881                 return_type             = type_left->pointer.points_to;
6882                 array_access->array_ref = left;
6883                 array_access->index     = inside;
6884                 check_for_char_index_type(inside);
6885         } else if (is_type_pointer(type_inside)) {
6886                 return_type             = type_inside->pointer.points_to;
6887                 array_access->array_ref = inside;
6888                 array_access->index     = left;
6889                 array_access->flipped   = true;
6890                 check_for_char_index_type(left);
6891         } else {
6892                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6893                         errorf(HERE,
6894                                 "array access on object with non-pointer types '%T', '%T'",
6895                                 orig_type_left, orig_type_inside);
6896                 }
6897                 return_type             = type_error_type;
6898                 array_access->array_ref = left;
6899                 array_access->index     = inside;
6900         }
6901
6902         expression->base.type = automatic_type_conversion(return_type);
6903
6904         rem_anchor_token(']');
6905         if (token.type == ']') {
6906                 next_token();
6907         } else {
6908                 parse_error_expected("Problem while parsing array access", ']', NULL);
6909         }
6910         return expression;
6911 }
6912
6913 static expression_t *parse_typeprop(expression_kind_t const kind,
6914                                     source_position_t const pos,
6915                                     unsigned const precedence)
6916 {
6917         expression_t  *tp_expression = allocate_expression_zero(kind);
6918         tp_expression->base.type            = type_size_t;
6919         tp_expression->base.source_position = pos;
6920
6921         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6922
6923         /* we only refer to a type property, mark this case */
6924         bool old     = in_type_prop;
6925         in_type_prop = true;
6926         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6927                 next_token();
6928                 add_anchor_token(')');
6929                 type_t* const orig_type = parse_typename();
6930                 tp_expression->typeprop.type = orig_type;
6931
6932                 type_t const* const type = skip_typeref(orig_type);
6933                 char const* const wrong_type =
6934                         is_type_incomplete(type)    ? "incomplete"          :
6935                         type->kind == TYPE_FUNCTION ? "function designator" :
6936                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6937                         NULL;
6938                 if (wrong_type != NULL) {
6939                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6940                                what, wrong_type, type);
6941                 }
6942
6943                 rem_anchor_token(')');
6944                 expect(')');
6945         } else {
6946                 expression_t *expression = parse_sub_expression(precedence);
6947
6948                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6949                 expression->base.type = orig_type;
6950
6951                 type_t const* const type = skip_typeref(orig_type);
6952                 char const* const wrong_type =
6953                         is_type_incomplete(type)    ? "incomplete"          :
6954                         type->kind == TYPE_FUNCTION ? "function designator" :
6955                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6956                         NULL;
6957                 if (wrong_type != NULL) {
6958                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
6959                 }
6960
6961                 tp_expression->typeprop.type          = expression->base.type;
6962                 tp_expression->typeprop.tp_expression = expression;
6963         }
6964
6965 end_error:
6966         in_type_prop = old;
6967         return tp_expression;
6968 }
6969
6970 static expression_t *parse_sizeof(unsigned precedence)
6971 {
6972         source_position_t pos = *HERE;
6973         eat(T_sizeof);
6974         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
6975 }
6976
6977 static expression_t *parse_alignof(unsigned precedence)
6978 {
6979         source_position_t pos = *HERE;
6980         eat(T___alignof__);
6981         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
6982 }
6983
6984 static expression_t *parse_select_expression(unsigned precedence,
6985                                              expression_t *compound)
6986 {
6987         (void) precedence;
6988         assert(token.type == '.' || token.type == T_MINUSGREATER);
6989
6990         bool is_pointer = (token.type == T_MINUSGREATER);
6991         next_token();
6992
6993         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
6994         select->select.compound = compound;
6995
6996         if (token.type != T_IDENTIFIER) {
6997                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
6998                 return select;
6999         }
7000         symbol_t *symbol = token.v.symbol;
7001         next_token();
7002
7003         type_t *const orig_type = compound->base.type;
7004         type_t *const type      = skip_typeref(orig_type);
7005
7006         type_t *type_left;
7007         bool    saw_error = false;
7008         if (is_type_pointer(type)) {
7009                 if (!is_pointer) {
7010                         errorf(HERE,
7011                                "request for member '%Y' in something not a struct or union, but '%T'",
7012                                symbol, orig_type);
7013                         saw_error = true;
7014                 }
7015                 type_left = skip_typeref(type->pointer.points_to);
7016         } else {
7017                 if (is_pointer && is_type_valid(type)) {
7018                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7019                         saw_error = true;
7020                 }
7021                 type_left = type;
7022         }
7023
7024         declaration_t *entry;
7025         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7026             type_left->kind == TYPE_COMPOUND_UNION) {
7027                 declaration_t *const declaration = type_left->compound.declaration;
7028
7029                 if (!declaration->init.complete) {
7030                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7031                                symbol, type_left);
7032                         goto create_error_entry;
7033                 }
7034
7035                 entry = find_compound_entry(declaration, symbol);
7036                 if (entry == NULL) {
7037                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7038                         goto create_error_entry;
7039                 }
7040         } else {
7041                 if (is_type_valid(type_left) && !saw_error) {
7042                         errorf(HERE,
7043                                "request for member '%Y' in something not a struct or union, but '%T'",
7044                                symbol, type_left);
7045                 }
7046 create_error_entry:
7047                 entry         = allocate_declaration_zero();
7048                 entry->symbol = symbol;
7049         }
7050
7051         select->select.compound_entry = entry;
7052
7053         type_t *const res_type =
7054                 get_qualified_type(entry->type, type_left->base.qualifiers);
7055
7056         /* we always do the auto-type conversions; the & and sizeof parser contains
7057          * code to revert this! */
7058         select->base.type = automatic_type_conversion(res_type);
7059
7060         type_t *skipped = skip_typeref(res_type);
7061         if (skipped->kind == TYPE_BITFIELD) {
7062                 select->base.type = skipped->bitfield.base_type;
7063         }
7064
7065         return select;
7066 }
7067
7068 static void check_call_argument(const function_parameter_t *parameter,
7069                                 call_argument_t *argument, unsigned pos)
7070 {
7071         type_t         *expected_type      = parameter->type;
7072         type_t         *expected_type_skip = skip_typeref(expected_type);
7073         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7074         expression_t   *arg_expr           = argument->expression;
7075         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7076
7077         /* handle transparent union gnu extension */
7078         if (is_type_union(expected_type_skip)
7079                         && (expected_type_skip->base.modifiers
7080                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7081                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
7082
7083                 declaration_t *declaration = union_decl->scope.declarations;
7084                 type_t        *best_type   = NULL;
7085                 for ( ; declaration != NULL; declaration = declaration->next) {
7086                         type_t *decl_type = declaration->type;
7087                         error = semantic_assign(decl_type, arg_expr);
7088                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7089                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7090                                 continue;
7091
7092                         if (error == ASSIGN_SUCCESS) {
7093                                 best_type = decl_type;
7094                         } else if (best_type == NULL) {
7095                                 best_type = decl_type;
7096                         }
7097                 }
7098
7099                 if (best_type != NULL) {
7100                         expected_type = best_type;
7101                 }
7102         }
7103
7104         error                = semantic_assign(expected_type, arg_expr);
7105         argument->expression = create_implicit_cast(argument->expression,
7106                                                     expected_type);
7107
7108         if (error != ASSIGN_SUCCESS) {
7109                 /* report exact scope in error messages (like "in argument 3") */
7110                 char buf[64];
7111                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7112                 report_assign_error(error, expected_type, arg_expr,     buf,
7113                                                         &arg_expr->base.source_position);
7114         } else if (warning.traditional || warning.conversion) {
7115                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7116                 if (!types_compatible(expected_type_skip, promoted_type) &&
7117                     !types_compatible(expected_type_skip, type_void_ptr) &&
7118                     !types_compatible(type_void_ptr,      promoted_type)) {
7119                         /* Deliberately show the skipped types in this warning */
7120                         warningf(&arg_expr->base.source_position,
7121                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7122                                 pos, expected_type_skip, promoted_type);
7123                 }
7124         }
7125 }
7126
7127 /**
7128  * Parse a call expression, ie. expression '( ... )'.
7129  *
7130  * @param expression  the function address
7131  */
7132 static expression_t *parse_call_expression(unsigned precedence,
7133                                            expression_t *expression)
7134 {
7135         (void) precedence;
7136         expression_t *result = allocate_expression_zero(EXPR_CALL);
7137         result->base.source_position = expression->base.source_position;
7138
7139         call_expression_t *call = &result->call;
7140         call->function          = expression;
7141
7142         type_t *const orig_type = expression->base.type;
7143         type_t *const type      = skip_typeref(orig_type);
7144
7145         function_type_t *function_type = NULL;
7146         if (is_type_pointer(type)) {
7147                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7148
7149                 if (is_type_function(to_type)) {
7150                         function_type   = &to_type->function;
7151                         call->base.type = function_type->return_type;
7152                 }
7153         }
7154
7155         if (function_type == NULL && is_type_valid(type)) {
7156                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7157         }
7158
7159         /* parse arguments */
7160         eat('(');
7161         add_anchor_token(')');
7162         add_anchor_token(',');
7163
7164         if (token.type != ')') {
7165                 call_argument_t *last_argument = NULL;
7166
7167                 while (true) {
7168                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7169
7170                         argument->expression = parse_assignment_expression();
7171                         if (last_argument == NULL) {
7172                                 call->arguments = argument;
7173                         } else {
7174                                 last_argument->next = argument;
7175                         }
7176                         last_argument = argument;
7177
7178                         if (token.type != ',')
7179                                 break;
7180                         next_token();
7181                 }
7182         }
7183         rem_anchor_token(',');
7184         rem_anchor_token(')');
7185         expect(')');
7186
7187         if (function_type == NULL)
7188                 return result;
7189
7190         function_parameter_t *parameter = function_type->parameters;
7191         call_argument_t      *argument  = call->arguments;
7192         if (!function_type->unspecified_parameters) {
7193                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7194                                 parameter = parameter->next, argument = argument->next) {
7195                         check_call_argument(parameter, argument, ++pos);
7196                 }
7197
7198                 if (parameter != NULL) {
7199                         errorf(HERE, "too few arguments to function '%E'", expression);
7200                 } else if (argument != NULL && !function_type->variadic) {
7201                         errorf(HERE, "too many arguments to function '%E'", expression);
7202                 }
7203         }
7204
7205         /* do default promotion */
7206         for( ; argument != NULL; argument = argument->next) {
7207                 type_t *type = argument->expression->base.type;
7208
7209                 type = get_default_promoted_type(type);
7210
7211                 argument->expression
7212                         = create_implicit_cast(argument->expression, type);
7213         }
7214
7215         check_format(&result->call);
7216
7217         if (warning.aggregate_return &&
7218             is_type_compound(skip_typeref(function_type->return_type))) {
7219                 warningf(&result->base.source_position,
7220                          "function call has aggregate value");
7221         }
7222
7223 end_error:
7224         return result;
7225 }
7226
7227 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7228
7229 static bool same_compound_type(const type_t *type1, const type_t *type2)
7230 {
7231         return
7232                 is_type_compound(type1) &&
7233                 type1->kind == type2->kind &&
7234                 type1->compound.declaration == type2->compound.declaration;
7235 }
7236
7237 /**
7238  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7239  *
7240  * @param expression  the conditional expression
7241  */
7242 static expression_t *parse_conditional_expression(unsigned precedence,
7243                                                   expression_t *expression)
7244 {
7245         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7246
7247         conditional_expression_t *conditional = &result->conditional;
7248         conditional->base.source_position = *HERE;
7249         conditional->condition            = expression;
7250
7251         eat('?');
7252         add_anchor_token(':');
7253
7254         /* 6.5.15.2 */
7255         type_t *const condition_type_orig = expression->base.type;
7256         type_t *const condition_type      = skip_typeref(condition_type_orig);
7257         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7258                 type_error("expected a scalar type in conditional condition",
7259                            &expression->base.source_position, condition_type_orig);
7260         }
7261
7262         expression_t *true_expression = expression;
7263         bool          gnu_cond = false;
7264         if (GNU_MODE && token.type == ':') {
7265                 gnu_cond = true;
7266         } else
7267                 true_expression = parse_expression();
7268         rem_anchor_token(':');
7269         expect(':');
7270         expression_t *false_expression = parse_sub_expression(precedence);
7271
7272         type_t *const orig_true_type  = true_expression->base.type;
7273         type_t *const orig_false_type = false_expression->base.type;
7274         type_t *const true_type       = skip_typeref(orig_true_type);
7275         type_t *const false_type      = skip_typeref(orig_false_type);
7276
7277         /* 6.5.15.3 */
7278         type_t *result_type;
7279         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
7280                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7281                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
7282                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7283                         warningf(&conditional->base.source_position,
7284                                         "ISO C forbids conditional expression with only one void side");
7285                 }
7286                 result_type = type_void;
7287         } else if (is_type_arithmetic(true_type)
7288                    && is_type_arithmetic(false_type)) {
7289                 result_type = semantic_arithmetic(true_type, false_type);
7290
7291                 true_expression  = create_implicit_cast(true_expression, result_type);
7292                 false_expression = create_implicit_cast(false_expression, result_type);
7293
7294                 conditional->true_expression  = true_expression;
7295                 conditional->false_expression = false_expression;
7296                 conditional->base.type        = result_type;
7297         } else if (same_compound_type(true_type, false_type)) {
7298                 /* just take 1 of the 2 types */
7299                 result_type = true_type;
7300         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7301                 type_t *pointer_type;
7302                 type_t *other_type;
7303                 expression_t *other_expression;
7304                 if (is_type_pointer(true_type) &&
7305                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7306                         pointer_type     = true_type;
7307                         other_type       = false_type;
7308                         other_expression = false_expression;
7309                 } else {
7310                         pointer_type     = false_type;
7311                         other_type       = true_type;
7312                         other_expression = true_expression;
7313                 }
7314
7315                 if (is_null_pointer_constant(other_expression)) {
7316                         result_type = pointer_type;
7317                 } else if (is_type_pointer(other_type)) {
7318                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7319                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7320
7321                         type_t *to;
7322                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7323                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7324                                 to = type_void;
7325                         } else if (types_compatible(get_unqualified_type(to1),
7326                                                     get_unqualified_type(to2))) {
7327                                 to = to1;
7328                         } else {
7329                                 warningf(&conditional->base.source_position,
7330                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7331                                         true_type, false_type);
7332                                 to = type_void;
7333                         }
7334
7335                         type_t *const type =
7336                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7337                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7338                 } else if (is_type_integer(other_type)) {
7339                         warningf(&conditional->base.source_position,
7340                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7341                         result_type = pointer_type;
7342                 } else {
7343                         type_error_incompatible("while parsing conditional",
7344                                         &expression->base.source_position, true_type, false_type);
7345                         result_type = type_error_type;
7346                 }
7347         } else {
7348                 /* TODO: one pointer to void*, other some pointer */
7349
7350                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7351                         type_error_incompatible("while parsing conditional",
7352                                                 &conditional->base.source_position, true_type,
7353                                                 false_type);
7354                 }
7355                 result_type = type_error_type;
7356         }
7357
7358         conditional->true_expression
7359                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7360         conditional->false_expression
7361                 = create_implicit_cast(false_expression, result_type);
7362         conditional->base.type = result_type;
7363         return result;
7364 end_error:
7365         return create_invalid_expression();
7366 }
7367
7368 /**
7369  * Parse an extension expression.
7370  */
7371 static expression_t *parse_extension(unsigned precedence)
7372 {
7373         eat(T___extension__);
7374
7375         bool old_gcc_extension   = in_gcc_extension;
7376         in_gcc_extension         = true;
7377         expression_t *expression = parse_sub_expression(precedence);
7378         in_gcc_extension         = old_gcc_extension;
7379         return expression;
7380 }
7381
7382 /**
7383  * Parse a __builtin_classify_type() expression.
7384  */
7385 static expression_t *parse_builtin_classify_type(const unsigned precedence)
7386 {
7387         eat(T___builtin_classify_type);
7388
7389         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7390         result->base.type    = type_int;
7391
7392         expect('(');
7393         add_anchor_token(')');
7394         expression_t *expression = parse_sub_expression(precedence);
7395         rem_anchor_token(')');
7396         expect(')');
7397         result->classify_type.type_expression = expression;
7398
7399         return result;
7400 end_error:
7401         return create_invalid_expression();
7402 }
7403
7404 static bool check_pointer_arithmetic(const source_position_t *source_position,
7405                                      type_t *pointer_type,
7406                                      type_t *orig_pointer_type)
7407 {
7408         type_t *points_to = pointer_type->pointer.points_to;
7409         points_to = skip_typeref(points_to);
7410
7411         if (is_type_incomplete(points_to)) {
7412                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7413                         errorf(source_position,
7414                                "arithmetic with pointer to incomplete type '%T' not allowed",
7415                                orig_pointer_type);
7416                         return false;
7417                 } else if (warning.pointer_arith) {
7418                         warningf(source_position,
7419                                  "pointer of type '%T' used in arithmetic",
7420                                  orig_pointer_type);
7421                 }
7422         } else if (is_type_function(points_to)) {
7423                 if (!GNU_MODE) {
7424                         errorf(source_position,
7425                                "arithmetic with pointer to function type '%T' not allowed",
7426                                orig_pointer_type);
7427                         return false;
7428                 } else if (warning.pointer_arith) {
7429                         warningf(source_position,
7430                                  "pointer to a function '%T' used in arithmetic",
7431                                  orig_pointer_type);
7432                 }
7433         }
7434         return true;
7435 }
7436
7437 static bool is_lvalue(const expression_t *expression)
7438 {
7439         switch (expression->kind) {
7440         case EXPR_REFERENCE:
7441         case EXPR_ARRAY_ACCESS:
7442         case EXPR_SELECT:
7443         case EXPR_UNARY_DEREFERENCE:
7444                 return true;
7445
7446         default:
7447                 return false;
7448         }
7449 }
7450
7451 static void semantic_incdec(unary_expression_t *expression)
7452 {
7453         type_t *const orig_type = expression->value->base.type;
7454         type_t *const type      = skip_typeref(orig_type);
7455         if (is_type_pointer(type)) {
7456                 if (!check_pointer_arithmetic(&expression->base.source_position,
7457                                               type, orig_type)) {
7458                         return;
7459                 }
7460         } else if (!is_type_real(type) && is_type_valid(type)) {
7461                 /* TODO: improve error message */
7462                 errorf(&expression->base.source_position,
7463                        "operation needs an arithmetic or pointer type");
7464                 return;
7465         }
7466         if (!is_lvalue(expression->value)) {
7467                 /* TODO: improve error message */
7468                 errorf(&expression->base.source_position, "lvalue required as operand");
7469         }
7470         expression->base.type = orig_type;
7471 }
7472
7473 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7474 {
7475         type_t *const orig_type = expression->value->base.type;
7476         type_t *const type      = skip_typeref(orig_type);
7477         if (!is_type_arithmetic(type)) {
7478                 if (is_type_valid(type)) {
7479                         /* TODO: improve error message */
7480                         errorf(&expression->base.source_position,
7481                                 "operation needs an arithmetic type");
7482                 }
7483                 return;
7484         }
7485
7486         expression->base.type = orig_type;
7487 }
7488
7489 static void semantic_unexpr_plus(unary_expression_t *expression)
7490 {
7491         semantic_unexpr_arithmetic(expression);
7492         if (warning.traditional)
7493                 warningf(&expression->base.source_position,
7494                         "traditional C rejects the unary plus operator");
7495 }
7496
7497 static void semantic_not(unary_expression_t *expression)
7498 {
7499         type_t *const orig_type = expression->value->base.type;
7500         type_t *const type      = skip_typeref(orig_type);
7501         if (!is_type_scalar(type) && is_type_valid(type)) {
7502                 errorf(&expression->base.source_position,
7503                        "operand of ! must be of scalar type");
7504         }
7505
7506         expression->base.type = type_int;
7507 }
7508
7509 static void semantic_unexpr_integer(unary_expression_t *expression)
7510 {
7511         type_t *const orig_type = expression->value->base.type;
7512         type_t *const type      = skip_typeref(orig_type);
7513         if (!is_type_integer(type)) {
7514                 if (is_type_valid(type)) {
7515                         errorf(&expression->base.source_position,
7516                                "operand of ~ must be of integer type");
7517                 }
7518                 return;
7519         }
7520
7521         expression->base.type = orig_type;
7522 }
7523
7524 static void semantic_dereference(unary_expression_t *expression)
7525 {
7526         type_t *const orig_type = expression->value->base.type;
7527         type_t *const type      = skip_typeref(orig_type);
7528         if (!is_type_pointer(type)) {
7529                 if (is_type_valid(type)) {
7530                         errorf(&expression->base.source_position,
7531                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7532                 }
7533                 return;
7534         }
7535
7536         type_t *result_type   = type->pointer.points_to;
7537         result_type           = automatic_type_conversion(result_type);
7538         expression->base.type = result_type;
7539 }
7540
7541 /**
7542  * Record that an address is taken (expression represents an lvalue).
7543  *
7544  * @param expression       the expression
7545  * @param may_be_register  if true, the expression might be an register
7546  */
7547 static void set_address_taken(expression_t *expression, bool may_be_register)
7548 {
7549         if (expression->kind != EXPR_REFERENCE)
7550                 return;
7551
7552         declaration_t *const declaration = expression->reference.declaration;
7553         /* happens for parse errors */
7554         if (declaration == NULL)
7555                 return;
7556
7557         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
7558                 errorf(&expression->base.source_position,
7559                                 "address of register variable '%Y' requested",
7560                                 declaration->symbol);
7561         } else {
7562                 declaration->address_taken = 1;
7563         }
7564 }
7565
7566 /**
7567  * Check the semantic of the address taken expression.
7568  */
7569 static void semantic_take_addr(unary_expression_t *expression)
7570 {
7571         expression_t *value = expression->value;
7572         value->base.type    = revert_automatic_type_conversion(value);
7573
7574         type_t *orig_type = value->base.type;
7575         if (!is_type_valid(orig_type))
7576                 return;
7577
7578         set_address_taken(value, false);
7579
7580         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7581 }
7582
7583 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
7584 static expression_t *parse_##unexpression_type(unsigned precedence)            \
7585 {                                                                              \
7586         expression_t *unary_expression                                             \
7587                 = allocate_expression_zero(unexpression_type);                         \
7588         unary_expression->base.source_position = *HERE;                            \
7589         eat(token_type);                                                           \
7590         unary_expression->unary.value = parse_sub_expression(precedence);          \
7591                                                                                    \
7592         sfunc(&unary_expression->unary);                                           \
7593                                                                                    \
7594         return unary_expression;                                                   \
7595 }
7596
7597 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7598                                semantic_unexpr_arithmetic)
7599 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7600                                semantic_unexpr_plus)
7601 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7602                                semantic_not)
7603 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7604                                semantic_dereference)
7605 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7606                                semantic_take_addr)
7607 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7608                                semantic_unexpr_integer)
7609 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7610                                semantic_incdec)
7611 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7612                                semantic_incdec)
7613
7614 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
7615                                                sfunc)                         \
7616 static expression_t *parse_##unexpression_type(unsigned precedence,           \
7617                                                expression_t *left)            \
7618 {                                                                             \
7619         (void) precedence;                                                        \
7620                                                                               \
7621         expression_t *unary_expression                                            \
7622                 = allocate_expression_zero(unexpression_type);                        \
7623         unary_expression->base.source_position = *HERE;                           \
7624         eat(token_type);                                                          \
7625         unary_expression->unary.value          = left;                            \
7626                                                                                   \
7627         sfunc(&unary_expression->unary);                                          \
7628                                                                               \
7629         return unary_expression;                                                  \
7630 }
7631
7632 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7633                                        EXPR_UNARY_POSTFIX_INCREMENT,
7634                                        semantic_incdec)
7635 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7636                                        EXPR_UNARY_POSTFIX_DECREMENT,
7637                                        semantic_incdec)
7638
7639 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7640 {
7641         /* TODO: handle complex + imaginary types */
7642
7643         type_left  = get_unqualified_type(type_left);
7644         type_right = get_unqualified_type(type_right);
7645
7646         /* Â§ 6.3.1.8 Usual arithmetic conversions */
7647         if (type_left == type_long_double || type_right == type_long_double) {
7648                 return type_long_double;
7649         } else if (type_left == type_double || type_right == type_double) {
7650                 return type_double;
7651         } else if (type_left == type_float || type_right == type_float) {
7652                 return type_float;
7653         }
7654
7655         type_left  = promote_integer(type_left);
7656         type_right = promote_integer(type_right);
7657
7658         if (type_left == type_right)
7659                 return type_left;
7660
7661         bool const signed_left  = is_type_signed(type_left);
7662         bool const signed_right = is_type_signed(type_right);
7663         int const  rank_left    = get_rank(type_left);
7664         int const  rank_right   = get_rank(type_right);
7665
7666         if (signed_left == signed_right)
7667                 return rank_left >= rank_right ? type_left : type_right;
7668
7669         int     s_rank;
7670         int     u_rank;
7671         type_t *s_type;
7672         type_t *u_type;
7673         if (signed_left) {
7674                 s_rank = rank_left;
7675                 s_type = type_left;
7676                 u_rank = rank_right;
7677                 u_type = type_right;
7678         } else {
7679                 s_rank = rank_right;
7680                 s_type = type_right;
7681                 u_rank = rank_left;
7682                 u_type = type_left;
7683         }
7684
7685         if (u_rank >= s_rank)
7686                 return u_type;
7687
7688         /* casting rank to atomic_type_kind is a bit hacky, but makes things
7689          * easier here... */
7690         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
7691                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
7692                 return s_type;
7693
7694         switch (s_rank) {
7695                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
7696                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7697                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7698
7699                 default: panic("invalid atomic type");
7700         }
7701 }
7702
7703 /**
7704  * Check the semantic restrictions for a binary expression.
7705  */
7706 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7707 {
7708         expression_t *const left            = expression->left;
7709         expression_t *const right           = expression->right;
7710         type_t       *const orig_type_left  = left->base.type;
7711         type_t       *const orig_type_right = right->base.type;
7712         type_t       *const type_left       = skip_typeref(orig_type_left);
7713         type_t       *const type_right      = skip_typeref(orig_type_right);
7714
7715         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7716                 /* TODO: improve error message */
7717                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7718                         errorf(&expression->base.source_position,
7719                                "operation needs arithmetic types");
7720                 }
7721                 return;
7722         }
7723
7724         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7725         expression->left      = create_implicit_cast(left, arithmetic_type);
7726         expression->right     = create_implicit_cast(right, arithmetic_type);
7727         expression->base.type = arithmetic_type;
7728 }
7729
7730 static void warn_div_by_zero(binary_expression_t const *const expression)
7731 {
7732         if (!warning.div_by_zero ||
7733             !is_type_integer(expression->base.type))
7734                 return;
7735
7736         expression_t const *const right = expression->right;
7737         /* The type of the right operand can be different for /= */
7738         if (is_type_integer(right->base.type) &&
7739             is_constant_expression(right)     &&
7740             fold_constant(right) == 0) {
7741                 warningf(&expression->base.source_position, "division by zero");
7742         }
7743 }
7744
7745 /**
7746  * Check the semantic restrictions for a div/mod expression.
7747  */
7748 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
7749         semantic_binexpr_arithmetic(expression);
7750         warn_div_by_zero(expression);
7751 }
7752
7753 static void semantic_shift_op(binary_expression_t *expression)
7754 {
7755         expression_t *const left            = expression->left;
7756         expression_t *const right           = expression->right;
7757         type_t       *const orig_type_left  = left->base.type;
7758         type_t       *const orig_type_right = right->base.type;
7759         type_t       *      type_left       = skip_typeref(orig_type_left);
7760         type_t       *      type_right      = skip_typeref(orig_type_right);
7761
7762         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7763                 /* TODO: improve error message */
7764                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7765                         errorf(&expression->base.source_position,
7766                                "operands of shift operation must have integer types");
7767                 }
7768                 return;
7769         }
7770
7771         type_left  = promote_integer(type_left);
7772         type_right = promote_integer(type_right);
7773
7774         expression->left      = create_implicit_cast(left, type_left);
7775         expression->right     = create_implicit_cast(right, type_right);
7776         expression->base.type = type_left;
7777 }
7778
7779 static void semantic_add(binary_expression_t *expression)
7780 {
7781         expression_t *const left            = expression->left;
7782         expression_t *const right           = expression->right;
7783         type_t       *const orig_type_left  = left->base.type;
7784         type_t       *const orig_type_right = right->base.type;
7785         type_t       *const type_left       = skip_typeref(orig_type_left);
7786         type_t       *const type_right      = skip_typeref(orig_type_right);
7787
7788         /* Â§ 6.5.6 */
7789         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7790                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7791                 expression->left  = create_implicit_cast(left, arithmetic_type);
7792                 expression->right = create_implicit_cast(right, arithmetic_type);
7793                 expression->base.type = arithmetic_type;
7794                 return;
7795         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7796                 check_pointer_arithmetic(&expression->base.source_position,
7797                                          type_left, orig_type_left);
7798                 expression->base.type = type_left;
7799         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
7800                 check_pointer_arithmetic(&expression->base.source_position,
7801                                          type_right, orig_type_right);
7802                 expression->base.type = type_right;
7803         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7804                 errorf(&expression->base.source_position,
7805                        "invalid operands to binary + ('%T', '%T')",
7806                        orig_type_left, orig_type_right);
7807         }
7808 }
7809
7810 static void semantic_sub(binary_expression_t *expression)
7811 {
7812         expression_t            *const left            = expression->left;
7813         expression_t            *const right           = expression->right;
7814         type_t                  *const orig_type_left  = left->base.type;
7815         type_t                  *const orig_type_right = right->base.type;
7816         type_t                  *const type_left       = skip_typeref(orig_type_left);
7817         type_t                  *const type_right      = skip_typeref(orig_type_right);
7818         source_position_t const *const pos             = &expression->base.source_position;
7819
7820         /* Â§ 5.6.5 */
7821         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7822                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7823                 expression->left        = create_implicit_cast(left, arithmetic_type);
7824                 expression->right       = create_implicit_cast(right, arithmetic_type);
7825                 expression->base.type =  arithmetic_type;
7826                 return;
7827         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7828                 check_pointer_arithmetic(&expression->base.source_position,
7829                                          type_left, orig_type_left);
7830                 expression->base.type = type_left;
7831         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7832                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
7833                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
7834                 if (!types_compatible(unqual_left, unqual_right)) {
7835                         errorf(pos,
7836                                "subtracting pointers to incompatible types '%T' and '%T'",
7837                                orig_type_left, orig_type_right);
7838                 } else if (!is_type_object(unqual_left)) {
7839                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
7840                                 warningf(pos, "subtracting pointers to void");
7841                         } else {
7842                                 errorf(pos, "subtracting pointers to non-object types '%T'",
7843                                        orig_type_left);
7844                         }
7845                 }
7846                 expression->base.type = type_ptrdiff_t;
7847         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7848                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
7849                        orig_type_left, orig_type_right);
7850         }
7851 }
7852
7853 /**
7854  * Check the semantics of comparison expressions.
7855  *
7856  * @param expression   The expression to check.
7857  */
7858 static void semantic_comparison(binary_expression_t *expression)
7859 {
7860         expression_t *left            = expression->left;
7861         expression_t *right           = expression->right;
7862         type_t       *orig_type_left  = left->base.type;
7863         type_t       *orig_type_right = right->base.type;
7864
7865         type_t *type_left  = skip_typeref(orig_type_left);
7866         type_t *type_right = skip_typeref(orig_type_right);
7867
7868         /* TODO non-arithmetic types */
7869         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7870                 /* test for signed vs unsigned compares */
7871                 if (warning.sign_compare &&
7872                     (expression->base.kind != EXPR_BINARY_EQUAL &&
7873                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
7874                     (is_type_signed(type_left) != is_type_signed(type_right))) {
7875
7876                         /* check if 1 of the operands is a constant, in this case we just
7877                          * check wether we can safely represent the resulting constant in
7878                          * the type of the other operand. */
7879                         expression_t *const_expr = NULL;
7880                         expression_t *other_expr = NULL;
7881
7882                         if (is_constant_expression(left)) {
7883                                 const_expr = left;
7884                                 other_expr = right;
7885                         } else if (is_constant_expression(right)) {
7886                                 const_expr = right;
7887                                 other_expr = left;
7888                         }
7889
7890                         if (const_expr != NULL) {
7891                                 type_t *other_type = skip_typeref(other_expr->base.type);
7892                                 long    val        = fold_constant(const_expr);
7893                                 /* TODO: check if val can be represented by other_type */
7894                                 (void) other_type;
7895                                 (void) val;
7896                         }
7897                         warningf(&expression->base.source_position,
7898                                  "comparison between signed and unsigned");
7899                 }
7900                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7901                 expression->left        = create_implicit_cast(left, arithmetic_type);
7902                 expression->right       = create_implicit_cast(right, arithmetic_type);
7903                 expression->base.type   = arithmetic_type;
7904                 if (warning.float_equal &&
7905                     (expression->base.kind == EXPR_BINARY_EQUAL ||
7906                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
7907                     is_type_float(arithmetic_type)) {
7908                         warningf(&expression->base.source_position,
7909                                  "comparing floating point with == or != is unsafe");
7910                 }
7911         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7912                 /* TODO check compatibility */
7913         } else if (is_type_pointer(type_left)) {
7914                 expression->right = create_implicit_cast(right, type_left);
7915         } else if (is_type_pointer(type_right)) {
7916                 expression->left = create_implicit_cast(left, type_right);
7917         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7918                 type_error_incompatible("invalid operands in comparison",
7919                                         &expression->base.source_position,
7920                                         type_left, type_right);
7921         }
7922         expression->base.type = type_int;
7923 }
7924
7925 /**
7926  * Checks if a compound type has constant fields.
7927  */
7928 static bool has_const_fields(const compound_type_t *type)
7929 {
7930         const scope_t       *scope       = &type->declaration->scope;
7931         const declaration_t *declaration = scope->declarations;
7932
7933         for (; declaration != NULL; declaration = declaration->next) {
7934                 if (declaration->namespc != NAMESPACE_NORMAL)
7935                         continue;
7936
7937                 const type_t *decl_type = skip_typeref(declaration->type);
7938                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
7939                         return true;
7940         }
7941         /* TODO */
7942         return false;
7943 }
7944
7945 static bool is_valid_assignment_lhs(expression_t const* const left)
7946 {
7947         type_t *const orig_type_left = revert_automatic_type_conversion(left);
7948         type_t *const type_left      = skip_typeref(orig_type_left);
7949
7950         if (!is_lvalue(left)) {
7951                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
7952                        left);
7953                 return false;
7954         }
7955
7956         if (is_type_array(type_left)) {
7957                 errorf(HERE, "cannot assign to arrays ('%E')", left);
7958                 return false;
7959         }
7960         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
7961                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
7962                        orig_type_left);
7963                 return false;
7964         }
7965         if (is_type_incomplete(type_left)) {
7966                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
7967                        left, orig_type_left);
7968                 return false;
7969         }
7970         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
7971                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
7972                        left, orig_type_left);
7973                 return false;
7974         }
7975
7976         return true;
7977 }
7978
7979 static void semantic_arithmetic_assign(binary_expression_t *expression)
7980 {
7981         expression_t *left            = expression->left;
7982         expression_t *right           = expression->right;
7983         type_t       *orig_type_left  = left->base.type;
7984         type_t       *orig_type_right = right->base.type;
7985
7986         if (!is_valid_assignment_lhs(left))
7987                 return;
7988
7989         type_t *type_left  = skip_typeref(orig_type_left);
7990         type_t *type_right = skip_typeref(orig_type_right);
7991
7992         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7993                 /* TODO: improve error message */
7994                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7995                         errorf(&expression->base.source_position,
7996                                "operation needs arithmetic types");
7997                 }
7998                 return;
7999         }
8000
8001         /* combined instructions are tricky. We can't create an implicit cast on
8002          * the left side, because we need the uncasted form for the store.
8003          * The ast2firm pass has to know that left_type must be right_type
8004          * for the arithmetic operation and create a cast by itself */
8005         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8006         expression->right       = create_implicit_cast(right, arithmetic_type);
8007         expression->base.type   = type_left;
8008 }
8009
8010 static void semantic_divmod_assign(binary_expression_t *expression)
8011 {
8012         semantic_arithmetic_assign(expression);
8013         warn_div_by_zero(expression);
8014 }
8015
8016 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8017 {
8018         expression_t *const left            = expression->left;
8019         expression_t *const right           = expression->right;
8020         type_t       *const orig_type_left  = left->base.type;
8021         type_t       *const orig_type_right = right->base.type;
8022         type_t       *const type_left       = skip_typeref(orig_type_left);
8023         type_t       *const type_right      = skip_typeref(orig_type_right);
8024
8025         if (!is_valid_assignment_lhs(left))
8026                 return;
8027
8028         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8029                 /* combined instructions are tricky. We can't create an implicit cast on
8030                  * the left side, because we need the uncasted form for the store.
8031                  * The ast2firm pass has to know that left_type must be right_type
8032                  * for the arithmetic operation and create a cast by itself */
8033                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8034                 expression->right     = create_implicit_cast(right, arithmetic_type);
8035                 expression->base.type = type_left;
8036         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8037                 check_pointer_arithmetic(&expression->base.source_position,
8038                                          type_left, orig_type_left);
8039                 expression->base.type = type_left;
8040         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8041                 errorf(&expression->base.source_position,
8042                        "incompatible types '%T' and '%T' in assignment",
8043                        orig_type_left, orig_type_right);
8044         }
8045 }
8046
8047 /**
8048  * Check the semantic restrictions of a logical expression.
8049  */
8050 static void semantic_logical_op(binary_expression_t *expression)
8051 {
8052         expression_t *const left            = expression->left;
8053         expression_t *const right           = expression->right;
8054         type_t       *const orig_type_left  = left->base.type;
8055         type_t       *const orig_type_right = right->base.type;
8056         type_t       *const type_left       = skip_typeref(orig_type_left);
8057         type_t       *const type_right      = skip_typeref(orig_type_right);
8058
8059         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8060                 /* TODO: improve error message */
8061                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8062                         errorf(&expression->base.source_position,
8063                                "operation needs scalar types");
8064                 }
8065                 return;
8066         }
8067
8068         expression->base.type = type_int;
8069 }
8070
8071 /**
8072  * Check the semantic restrictions of a binary assign expression.
8073  */
8074 static void semantic_binexpr_assign(binary_expression_t *expression)
8075 {
8076         expression_t *left           = expression->left;
8077         type_t       *orig_type_left = left->base.type;
8078
8079         if (!is_valid_assignment_lhs(left))
8080                 return;
8081
8082         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8083         report_assign_error(error, orig_type_left, expression->right,
8084                         "assignment", &left->base.source_position);
8085         expression->right = create_implicit_cast(expression->right, orig_type_left);
8086         expression->base.type = orig_type_left;
8087 }
8088
8089 /**
8090  * Determine if the outermost operation (or parts thereof) of the given
8091  * expression has no effect in order to generate a warning about this fact.
8092  * Therefore in some cases this only examines some of the operands of the
8093  * expression (see comments in the function and examples below).
8094  * Examples:
8095  *   f() + 23;    // warning, because + has no effect
8096  *   x || f();    // no warning, because x controls execution of f()
8097  *   x ? y : f(); // warning, because y has no effect
8098  *   (void)x;     // no warning to be able to suppress the warning
8099  * This function can NOT be used for an "expression has definitely no effect"-
8100  * analysis. */
8101 static bool expression_has_effect(const expression_t *const expr)
8102 {
8103         switch (expr->kind) {
8104                 case EXPR_UNKNOWN:                   break;
8105                 case EXPR_INVALID:                   return true; /* do NOT warn */
8106                 case EXPR_REFERENCE:                 return false;
8107                 /* suppress the warning for microsoft __noop operations */
8108                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8109                 case EXPR_CHARACTER_CONSTANT:        return false;
8110                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8111                 case EXPR_STRING_LITERAL:            return false;
8112                 case EXPR_WIDE_STRING_LITERAL:       return false;
8113                 case EXPR_LABEL_ADDRESS:             return false;
8114
8115                 case EXPR_CALL: {
8116                         const call_expression_t *const call = &expr->call;
8117                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8118                                 return true;
8119
8120                         switch (call->function->builtin_symbol.symbol->ID) {
8121                                 case T___builtin_va_end: return true;
8122                                 default:                 return false;
8123                         }
8124                 }
8125
8126                 /* Generate the warning if either the left or right hand side of a
8127                  * conditional expression has no effect */
8128                 case EXPR_CONDITIONAL: {
8129                         const conditional_expression_t *const cond = &expr->conditional;
8130                         return
8131                                 expression_has_effect(cond->true_expression) &&
8132                                 expression_has_effect(cond->false_expression);
8133                 }
8134
8135                 case EXPR_SELECT:                    return false;
8136                 case EXPR_ARRAY_ACCESS:              return false;
8137                 case EXPR_SIZEOF:                    return false;
8138                 case EXPR_CLASSIFY_TYPE:             return false;
8139                 case EXPR_ALIGNOF:                   return false;
8140
8141                 case EXPR_FUNCNAME:                  return false;
8142                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8143                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8144                 case EXPR_BUILTIN_PREFETCH:          return true;
8145                 case EXPR_OFFSETOF:                  return false;
8146                 case EXPR_VA_START:                  return true;
8147                 case EXPR_VA_ARG:                    return true;
8148                 case EXPR_STATEMENT:                 return true; // TODO
8149                 case EXPR_COMPOUND_LITERAL:          return false;
8150
8151                 case EXPR_UNARY_NEGATE:              return false;
8152                 case EXPR_UNARY_PLUS:                return false;
8153                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8154                 case EXPR_UNARY_NOT:                 return false;
8155                 case EXPR_UNARY_DEREFERENCE:         return false;
8156                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8157                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8158                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8159                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8160                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8161
8162                 /* Treat void casts as if they have an effect in order to being able to
8163                  * suppress the warning */
8164                 case EXPR_UNARY_CAST: {
8165                         type_t *const type = skip_typeref(expr->base.type);
8166                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8167                 }
8168
8169                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8170                 case EXPR_UNARY_ASSUME:              return true;
8171
8172                 case EXPR_BINARY_ADD:                return false;
8173                 case EXPR_BINARY_SUB:                return false;
8174                 case EXPR_BINARY_MUL:                return false;
8175                 case EXPR_BINARY_DIV:                return false;
8176                 case EXPR_BINARY_MOD:                return false;
8177                 case EXPR_BINARY_EQUAL:              return false;
8178                 case EXPR_BINARY_NOTEQUAL:           return false;
8179                 case EXPR_BINARY_LESS:               return false;
8180                 case EXPR_BINARY_LESSEQUAL:          return false;
8181                 case EXPR_BINARY_GREATER:            return false;
8182                 case EXPR_BINARY_GREATEREQUAL:       return false;
8183                 case EXPR_BINARY_BITWISE_AND:        return false;
8184                 case EXPR_BINARY_BITWISE_OR:         return false;
8185                 case EXPR_BINARY_BITWISE_XOR:        return false;
8186                 case EXPR_BINARY_SHIFTLEFT:          return false;
8187                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8188                 case EXPR_BINARY_ASSIGN:             return true;
8189                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8190                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8191                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8192                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8193                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8194                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8195                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8196                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8197                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8198                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8199
8200                 /* Only examine the right hand side of && and ||, because the left hand
8201                  * side already has the effect of controlling the execution of the right
8202                  * hand side */
8203                 case EXPR_BINARY_LOGICAL_AND:
8204                 case EXPR_BINARY_LOGICAL_OR:
8205                 /* Only examine the right hand side of a comma expression, because the left
8206                  * hand side has a separate warning */
8207                 case EXPR_BINARY_COMMA:
8208                         return expression_has_effect(expr->binary.right);
8209
8210                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8211                 case EXPR_BINARY_ISGREATER:          return false;
8212                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8213                 case EXPR_BINARY_ISLESS:             return false;
8214                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8215                 case EXPR_BINARY_ISLESSGREATER:      return false;
8216                 case EXPR_BINARY_ISUNORDERED:        return false;
8217         }
8218
8219         internal_errorf(HERE, "unexpected expression");
8220 }
8221
8222 static void semantic_comma(binary_expression_t *expression)
8223 {
8224         if (warning.unused_value) {
8225                 const expression_t *const left = expression->left;
8226                 if (!expression_has_effect(left)) {
8227                         warningf(&left->base.source_position,
8228                                  "left-hand operand of comma expression has no effect");
8229                 }
8230         }
8231         expression->base.type = expression->right->base.type;
8232 }
8233
8234 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
8235 static expression_t *parse_##binexpression_type(unsigned precedence,      \
8236                                                 expression_t *left)       \
8237 {                                                                         \
8238         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
8239         binexpr->base.source_position = *HERE;                                \
8240         binexpr->binary.left          = left;                                 \
8241         eat(token_type);                                                      \
8242                                                                           \
8243         expression_t *right = parse_sub_expression(precedence + lr);          \
8244                                                                           \
8245         binexpr->binary.right = right;                                        \
8246         sfunc(&binexpr->binary);                                              \
8247                                                                           \
8248         return binexpr;                                                       \
8249 }
8250
8251 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
8252 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
8253 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_divmod_arithmetic, 1)
8254 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_divmod_arithmetic, 1)
8255 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
8256 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
8257 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
8258 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
8259 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
8260
8261 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
8262                       semantic_comparison, 1)
8263 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
8264                       semantic_comparison, 1)
8265 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
8266                       semantic_comparison, 1)
8267 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
8268                       semantic_comparison, 1)
8269
8270 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
8271                       semantic_binexpr_arithmetic, 1)
8272 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
8273                       semantic_binexpr_arithmetic, 1)
8274 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
8275                       semantic_binexpr_arithmetic, 1)
8276 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
8277                       semantic_logical_op, 1)
8278 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
8279                       semantic_logical_op, 1)
8280 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
8281                       semantic_shift_op, 1)
8282 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
8283                       semantic_shift_op, 1)
8284 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
8285                       semantic_arithmetic_addsubb_assign, 0)
8286 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
8287                       semantic_arithmetic_addsubb_assign, 0)
8288 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
8289                       semantic_arithmetic_assign, 0)
8290 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
8291                       semantic_divmod_assign, 0)
8292 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
8293                       semantic_divmod_assign, 0)
8294 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
8295                       semantic_arithmetic_assign, 0)
8296 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8297                       semantic_arithmetic_assign, 0)
8298 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
8299                       semantic_arithmetic_assign, 0)
8300 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
8301                       semantic_arithmetic_assign, 0)
8302 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
8303                       semantic_arithmetic_assign, 0)
8304
8305 static expression_t *parse_sub_expression(unsigned precedence)
8306 {
8307         if (token.type < 0) {
8308                 return expected_expression_error();
8309         }
8310
8311         expression_parser_function_t *parser
8312                 = &expression_parsers[token.type];
8313         source_position_t             source_position = token.source_position;
8314         expression_t                 *left;
8315
8316         if (parser->parser != NULL) {
8317                 left = parser->parser(parser->precedence);
8318         } else {
8319                 left = parse_primary_expression();
8320         }
8321         assert(left != NULL);
8322         left->base.source_position = source_position;
8323
8324         while(true) {
8325                 if (token.type < 0) {
8326                         return expected_expression_error();
8327                 }
8328
8329                 parser = &expression_parsers[token.type];
8330                 if (parser->infix_parser == NULL)
8331                         break;
8332                 if (parser->infix_precedence < precedence)
8333                         break;
8334
8335                 left = parser->infix_parser(parser->infix_precedence, left);
8336
8337                 assert(left != NULL);
8338                 assert(left->kind != EXPR_UNKNOWN);
8339                 left->base.source_position = source_position;
8340         }
8341
8342         return left;
8343 }
8344
8345 /**
8346  * Parse an expression.
8347  */
8348 static expression_t *parse_expression(void)
8349 {
8350         return parse_sub_expression(1);
8351 }
8352
8353 /**
8354  * Register a parser for a prefix-like operator with given precedence.
8355  *
8356  * @param parser      the parser function
8357  * @param token_type  the token type of the prefix token
8358  * @param precedence  the precedence of the operator
8359  */
8360 static void register_expression_parser(parse_expression_function parser,
8361                                        int token_type, unsigned precedence)
8362 {
8363         expression_parser_function_t *entry = &expression_parsers[token_type];
8364
8365         if (entry->parser != NULL) {
8366                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8367                 panic("trying to register multiple expression parsers for a token");
8368         }
8369         entry->parser     = parser;
8370         entry->precedence = precedence;
8371 }
8372
8373 /**
8374  * Register a parser for an infix operator with given precedence.
8375  *
8376  * @param parser      the parser function
8377  * @param token_type  the token type of the infix operator
8378  * @param precedence  the precedence of the operator
8379  */
8380 static void register_infix_parser(parse_expression_infix_function parser,
8381                 int token_type, unsigned precedence)
8382 {
8383         expression_parser_function_t *entry = &expression_parsers[token_type];
8384
8385         if (entry->infix_parser != NULL) {
8386                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8387                 panic("trying to register multiple infix expression parsers for a "
8388                       "token");
8389         }
8390         entry->infix_parser     = parser;
8391         entry->infix_precedence = precedence;
8392 }
8393
8394 /**
8395  * Initialize the expression parsers.
8396  */
8397 static void init_expression_parsers(void)
8398 {
8399         memset(&expression_parsers, 0, sizeof(expression_parsers));
8400
8401         register_infix_parser(parse_array_expression,         '[',              30);
8402         register_infix_parser(parse_call_expression,          '(',              30);
8403         register_infix_parser(parse_select_expression,        '.',              30);
8404         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
8405         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
8406                                                               T_PLUSPLUS,       30);
8407         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
8408                                                               T_MINUSMINUS,     30);
8409
8410         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
8411         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
8412         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
8413         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
8414         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
8415         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
8416         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
8417         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
8418         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
8419         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
8420         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
8421         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
8422         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
8423                                                     T_EXCLAMATIONMARKEQUAL, 13);
8424         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
8425         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
8426         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
8427         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
8428         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
8429         register_infix_parser(parse_conditional_expression,   '?',               7);
8430         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
8431         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
8432         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
8433         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
8434         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
8435         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
8436         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
8437                                                                 T_LESSLESSEQUAL, 2);
8438         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8439                                                           T_GREATERGREATEREQUAL, 2);
8440         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
8441                                                                      T_ANDEQUAL, 2);
8442         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
8443                                                                     T_PIPEEQUAL, 2);
8444         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
8445                                                                    T_CARETEQUAL, 2);
8446
8447         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
8448
8449         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
8450         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
8451         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
8452         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
8453         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
8454         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
8455         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
8456                                                                   T_PLUSPLUS,   25);
8457         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
8458                                                                   T_MINUSMINUS, 25);
8459         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
8460         register_expression_parser(parse_alignof,                T___alignof__, 25);
8461         register_expression_parser(parse_extension,            T___extension__, 25);
8462         register_expression_parser(parse_builtin_classify_type,
8463                                                      T___builtin_classify_type, 25);
8464 }
8465
8466 /**
8467  * Parse a asm statement arguments specification.
8468  */
8469 static asm_argument_t *parse_asm_arguments(bool is_out)
8470 {
8471         asm_argument_t *result = NULL;
8472         asm_argument_t *last   = NULL;
8473
8474         while (token.type == T_STRING_LITERAL || token.type == '[') {
8475                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8476                 memset(argument, 0, sizeof(argument[0]));
8477
8478                 if (token.type == '[') {
8479                         eat('[');
8480                         if (token.type != T_IDENTIFIER) {
8481                                 parse_error_expected("while parsing asm argument",
8482                                                      T_IDENTIFIER, NULL);
8483                                 return NULL;
8484                         }
8485                         argument->symbol = token.v.symbol;
8486
8487                         expect(']');
8488                 }
8489
8490                 argument->constraints = parse_string_literals();
8491                 expect('(');
8492                 add_anchor_token(')');
8493                 expression_t *expression = parse_expression();
8494                 rem_anchor_token(')');
8495                 if (is_out) {
8496                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8497                          * change size or type representation (e.g. int -> long is ok, but
8498                          * int -> float is not) */
8499                         if (expression->kind == EXPR_UNARY_CAST) {
8500                                 type_t      *const type = expression->base.type;
8501                                 type_kind_t  const kind = type->kind;
8502                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8503                                         unsigned flags;
8504                                         unsigned size;
8505                                         if (kind == TYPE_ATOMIC) {
8506                                                 atomic_type_kind_t const akind = type->atomic.akind;
8507                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8508                                                 size  = get_atomic_type_size(akind);
8509                                         } else {
8510                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8511                                                 size  = get_atomic_type_size(get_intptr_kind());
8512                                         }
8513
8514                                         do {
8515                                                 expression_t *const value      = expression->unary.value;
8516                                                 type_t       *const value_type = value->base.type;
8517                                                 type_kind_t   const value_kind = value_type->kind;
8518
8519                                                 unsigned value_flags;
8520                                                 unsigned value_size;
8521                                                 if (value_kind == TYPE_ATOMIC) {
8522                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8523                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8524                                                         value_size  = get_atomic_type_size(value_akind);
8525                                                 } else if (value_kind == TYPE_POINTER) {
8526                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8527                                                         value_size  = get_atomic_type_size(get_intptr_kind());
8528                                                 } else {
8529                                                         break;
8530                                                 }
8531
8532                                                 if (value_flags != flags || value_size != size)
8533                                                         break;
8534
8535                                                 expression = value;
8536                                         } while (expression->kind == EXPR_UNARY_CAST);
8537                                 }
8538                         }
8539
8540                         if (!is_lvalue(expression)) {
8541                                 errorf(&expression->base.source_position,
8542                                        "asm output argument is not an lvalue");
8543                         }
8544                 }
8545                 argument->expression = expression;
8546                 expect(')');
8547
8548                 set_address_taken(expression, true);
8549
8550                 if (last != NULL) {
8551                         last->next = argument;
8552                 } else {
8553                         result = argument;
8554                 }
8555                 last = argument;
8556
8557                 if (token.type != ',')
8558                         break;
8559                 eat(',');
8560         }
8561
8562         return result;
8563 end_error:
8564         return NULL;
8565 }
8566
8567 /**
8568  * Parse a asm statement clobber specification.
8569  */
8570 static asm_clobber_t *parse_asm_clobbers(void)
8571 {
8572         asm_clobber_t *result = NULL;
8573         asm_clobber_t *last   = NULL;
8574
8575         while(token.type == T_STRING_LITERAL) {
8576                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8577                 clobber->clobber       = parse_string_literals();
8578
8579                 if (last != NULL) {
8580                         last->next = clobber;
8581                 } else {
8582                         result = clobber;
8583                 }
8584                 last = clobber;
8585
8586                 if (token.type != ',')
8587                         break;
8588                 eat(',');
8589         }
8590
8591         return result;
8592 }
8593
8594 /**
8595  * Parse an asm statement.
8596  */
8597 static statement_t *parse_asm_statement(void)
8598 {
8599         eat(T_asm);
8600
8601         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
8602         statement->base.source_position = token.source_position;
8603
8604         asm_statement_t *asm_statement = &statement->asms;
8605
8606         if (token.type == T_volatile) {
8607                 next_token();
8608                 asm_statement->is_volatile = true;
8609         }
8610
8611         expect('(');
8612         add_anchor_token(')');
8613         add_anchor_token(':');
8614         asm_statement->asm_text = parse_string_literals();
8615
8616         if (token.type != ':') {
8617                 rem_anchor_token(':');
8618                 goto end_of_asm;
8619         }
8620         eat(':');
8621
8622         asm_statement->outputs = parse_asm_arguments(true);
8623         if (token.type != ':') {
8624                 rem_anchor_token(':');
8625                 goto end_of_asm;
8626         }
8627         eat(':');
8628
8629         asm_statement->inputs = parse_asm_arguments(false);
8630         if (token.type != ':') {
8631                 rem_anchor_token(':');
8632                 goto end_of_asm;
8633         }
8634         rem_anchor_token(':');
8635         eat(':');
8636
8637         asm_statement->clobbers = parse_asm_clobbers();
8638
8639 end_of_asm:
8640         rem_anchor_token(')');
8641         expect(')');
8642         expect(';');
8643
8644         if (asm_statement->outputs == NULL) {
8645                 /* GCC: An 'asm' instruction without any output operands will be treated
8646                  * identically to a volatile 'asm' instruction. */
8647                 asm_statement->is_volatile = true;
8648         }
8649
8650         return statement;
8651 end_error:
8652         return create_invalid_statement();
8653 }
8654
8655 /**
8656  * Parse a case statement.
8657  */
8658 static statement_t *parse_case_statement(void)
8659 {
8660         eat(T_case);
8661
8662         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8663         source_position_t *const pos       = &statement->base.source_position;
8664
8665         *pos                             = token.source_position;
8666         expression_t *const expression   = parse_expression();
8667         statement->case_label.expression = expression;
8668         if (!is_constant_expression(expression)) {
8669                 /* This check does not prevent the error message in all cases of an
8670                  * prior error while parsing the expression.  At least it catches the
8671                  * common case of a mistyped enum entry. */
8672                 if (is_type_valid(expression->base.type)) {
8673                         errorf(pos, "case label does not reduce to an integer constant");
8674                 }
8675                 statement->case_label.is_bad = true;
8676         } else {
8677                 long const val = fold_constant(expression);
8678                 statement->case_label.first_case = val;
8679                 statement->case_label.last_case  = val;
8680         }
8681
8682         if (GNU_MODE) {
8683                 if (token.type == T_DOTDOTDOT) {
8684                         next_token();
8685                         expression_t *const end_range   = parse_expression();
8686                         statement->case_label.end_range = end_range;
8687                         if (!is_constant_expression(end_range)) {
8688                                 /* This check does not prevent the error message in all cases of an
8689                                  * prior error while parsing the expression.  At least it catches the
8690                                  * common case of a mistyped enum entry. */
8691                                 if (is_type_valid(end_range->base.type)) {
8692                                         errorf(pos, "case range does not reduce to an integer constant");
8693                                 }
8694                                 statement->case_label.is_bad = true;
8695                         } else {
8696                                 long const val = fold_constant(end_range);
8697                                 statement->case_label.last_case = val;
8698
8699                                 if (val < statement->case_label.first_case) {
8700                                         statement->case_label.is_empty_range = true;
8701                                         warningf(pos, "empty range specified");
8702                                 }
8703                         }
8704                 }
8705         }
8706
8707         PUSH_PARENT(statement);
8708
8709         expect(':');
8710
8711         if (current_switch != NULL) {
8712                 if (! statement->case_label.is_bad) {
8713                         /* Check for duplicate case values */
8714                         case_label_statement_t *c = &statement->case_label;
8715                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
8716                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
8717                                         continue;
8718
8719                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
8720                                         continue;
8721
8722                                 errorf(pos, "duplicate case value (previously used %P)",
8723                                        &l->base.source_position);
8724                                 break;
8725                         }
8726                 }
8727                 /* link all cases into the switch statement */
8728                 if (current_switch->last_case == NULL) {
8729                         current_switch->first_case      = &statement->case_label;
8730                 } else {
8731                         current_switch->last_case->next = &statement->case_label;
8732                 }
8733                 current_switch->last_case = &statement->case_label;
8734         } else {
8735                 errorf(pos, "case label not within a switch statement");
8736         }
8737
8738         statement_t *const inner_stmt = parse_statement();
8739         statement->case_label.statement = inner_stmt;
8740         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8741                 errorf(&inner_stmt->base.source_position, "declaration after case label");
8742         }
8743
8744         POP_PARENT;
8745         return statement;
8746 end_error:
8747         POP_PARENT;
8748         return create_invalid_statement();
8749 }
8750
8751 /**
8752  * Parse a default statement.
8753  */
8754 static statement_t *parse_default_statement(void)
8755 {
8756         eat(T_default);
8757
8758         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8759         statement->base.source_position = token.source_position;
8760
8761         PUSH_PARENT(statement);
8762
8763         expect(':');
8764         if (current_switch != NULL) {
8765                 const case_label_statement_t *def_label = current_switch->default_label;
8766                 if (def_label != NULL) {
8767                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
8768                                &def_label->base.source_position);
8769                 } else {
8770                         current_switch->default_label = &statement->case_label;
8771
8772                         /* link all cases into the switch statement */
8773                         if (current_switch->last_case == NULL) {
8774                                 current_switch->first_case      = &statement->case_label;
8775                         } else {
8776                                 current_switch->last_case->next = &statement->case_label;
8777                         }
8778                         current_switch->last_case = &statement->case_label;
8779                 }
8780         } else {
8781                 errorf(&statement->base.source_position,
8782                         "'default' label not within a switch statement");
8783         }
8784
8785         statement_t *const inner_stmt = parse_statement();
8786         statement->case_label.statement = inner_stmt;
8787         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8788                 errorf(&inner_stmt->base.source_position, "declaration after default label");
8789         }
8790
8791         POP_PARENT;
8792         return statement;
8793 end_error:
8794         POP_PARENT;
8795         return create_invalid_statement();
8796 }
8797
8798 /**
8799  * Parse a label statement.
8800  */
8801 static statement_t *parse_label_statement(void)
8802 {
8803         assert(token.type == T_IDENTIFIER);
8804         symbol_t *symbol = token.v.symbol;
8805         next_token();
8806
8807         declaration_t *label = get_label(symbol);
8808
8809         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
8810         statement->base.source_position = token.source_position;
8811         statement->label.label          = label;
8812
8813         PUSH_PARENT(statement);
8814
8815         /* if statement is already set then the label is defined twice,
8816          * otherwise it was just mentioned in a goto/local label declaration so far */
8817         if (label->init.statement != NULL) {
8818                 errorf(HERE, "duplicate label '%Y' (declared %P)",
8819                        symbol, &label->source_position);
8820         } else {
8821                 label->source_position = token.source_position;
8822                 label->init.statement  = statement;
8823         }
8824
8825         eat(':');
8826
8827         if (token.type == '}') {
8828                 /* TODO only warn? */
8829                 if (false) {
8830                         warningf(HERE, "label at end of compound statement");
8831                         statement->label.statement = create_empty_statement();
8832                 } else {
8833                         errorf(HERE, "label at end of compound statement");
8834                         statement->label.statement = create_invalid_statement();
8835                 }
8836         } else if (token.type == ';') {
8837                 /* Eat an empty statement here, to avoid the warning about an empty
8838                  * statement after a label.  label:; is commonly used to have a label
8839                  * before a closing brace. */
8840                 statement->label.statement = create_empty_statement();
8841                 next_token();
8842         } else {
8843                 statement_t *const inner_stmt = parse_statement();
8844                 statement->label.statement = inner_stmt;
8845                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
8846                         errorf(&inner_stmt->base.source_position, "declaration after label");
8847                 }
8848         }
8849
8850         /* remember the labels in a list for later checking */
8851         if (label_last == NULL) {
8852                 label_first = &statement->label;
8853         } else {
8854                 label_last->next = &statement->label;
8855         }
8856         label_last = &statement->label;
8857
8858         POP_PARENT;
8859         return statement;
8860 }
8861
8862 /**
8863  * Parse an if statement.
8864  */
8865 static statement_t *parse_if(void)
8866 {
8867         eat(T_if);
8868
8869         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
8870         statement->base.source_position = token.source_position;
8871
8872         PUSH_PARENT(statement);
8873
8874         expect('(');
8875         add_anchor_token(')');
8876         statement->ifs.condition = parse_expression();
8877         rem_anchor_token(')');
8878         expect(')');
8879
8880         add_anchor_token(T_else);
8881         statement->ifs.true_statement = parse_statement();
8882         rem_anchor_token(T_else);
8883
8884         if (token.type == T_else) {
8885                 next_token();
8886                 statement->ifs.false_statement = parse_statement();
8887         }
8888
8889         POP_PARENT;
8890         return statement;
8891 end_error:
8892         POP_PARENT;
8893         return create_invalid_statement();
8894 }
8895
8896 /**
8897  * Check that all enums are handled in a switch.
8898  *
8899  * @param statement  the switch statement to check
8900  */
8901 static void check_enum_cases(const switch_statement_t *statement) {
8902         const type_t *type = skip_typeref(statement->expression->base.type);
8903         if (! is_type_enum(type))
8904                 return;
8905         const enum_type_t *enumt = &type->enumt;
8906
8907         /* if we have a default, no warnings */
8908         if (statement->default_label != NULL)
8909                 return;
8910
8911         /* FIXME: calculation of value should be done while parsing */
8912         const declaration_t *declaration;
8913         long last_value = -1;
8914         for (declaration = enumt->declaration->next;
8915              declaration != NULL && declaration->storage_class == STORAGE_CLASS_ENUM_ENTRY;
8916                  declaration = declaration->next) {
8917                 const expression_t *expression = declaration->init.enum_value;
8918                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
8919                 bool                found      = false;
8920                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
8921                         if (l->expression == NULL)
8922                                 continue;
8923                         if (l->first_case <= value && value <= l->last_case) {
8924                                 found = true;
8925                                 break;
8926                         }
8927                 }
8928                 if (! found) {
8929                         warningf(&statement->base.source_position,
8930                                 "enumeration value '%Y' not handled in switch", declaration->symbol);
8931                 }
8932                 last_value = value;
8933         }
8934 }
8935
8936 /**
8937  * Parse a switch statement.
8938  */
8939 static statement_t *parse_switch(void)
8940 {
8941         eat(T_switch);
8942
8943         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
8944         statement->base.source_position = token.source_position;
8945
8946         PUSH_PARENT(statement);
8947
8948         expect('(');
8949         add_anchor_token(')');
8950         expression_t *const expr = parse_expression();
8951         type_t       *      type = skip_typeref(expr->base.type);
8952         if (is_type_integer(type)) {
8953                 type = promote_integer(type);
8954                 if (warning.traditional) {
8955                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
8956                                 warningf(&expr->base.source_position,
8957                                         "'%T' switch expression not converted to '%T' in ISO C",
8958                                         type, type_int);
8959                         }
8960                 }
8961         } else if (is_type_valid(type)) {
8962                 errorf(&expr->base.source_position,
8963                        "switch quantity is not an integer, but '%T'", type);
8964                 type = type_error_type;
8965         }
8966         statement->switchs.expression = create_implicit_cast(expr, type);
8967         expect(')');
8968         rem_anchor_token(')');
8969
8970         switch_statement_t *rem = current_switch;
8971         current_switch          = &statement->switchs;
8972         statement->switchs.body = parse_statement();
8973         current_switch          = rem;
8974
8975         if (warning.switch_default &&
8976             statement->switchs.default_label == NULL) {
8977                 warningf(&statement->base.source_position, "switch has no default case");
8978         }
8979         if (warning.switch_enum)
8980                 check_enum_cases(&statement->switchs);
8981
8982         POP_PARENT;
8983         return statement;
8984 end_error:
8985         POP_PARENT;
8986         return create_invalid_statement();
8987 }
8988
8989 static statement_t *parse_loop_body(statement_t *const loop)
8990 {
8991         statement_t *const rem = current_loop;
8992         current_loop = loop;
8993
8994         statement_t *const body = parse_statement();
8995
8996         current_loop = rem;
8997         return body;
8998 }
8999
9000 /**
9001  * Parse a while statement.
9002  */
9003 static statement_t *parse_while(void)
9004 {
9005         eat(T_while);
9006
9007         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
9008         statement->base.source_position = token.source_position;
9009
9010         PUSH_PARENT(statement);
9011
9012         expect('(');
9013         add_anchor_token(')');
9014         statement->whiles.condition = parse_expression();
9015         rem_anchor_token(')');
9016         expect(')');
9017
9018         statement->whiles.body = parse_loop_body(statement);
9019
9020         POP_PARENT;
9021         return statement;
9022 end_error:
9023         POP_PARENT;
9024         return create_invalid_statement();
9025 }
9026
9027 /**
9028  * Parse a do statement.
9029  */
9030 static statement_t *parse_do(void)
9031 {
9032         eat(T_do);
9033
9034         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9035         statement->base.source_position = token.source_position;
9036
9037         PUSH_PARENT(statement)
9038
9039         add_anchor_token(T_while);
9040         statement->do_while.body = parse_loop_body(statement);
9041         rem_anchor_token(T_while);
9042
9043         expect(T_while);
9044         expect('(');
9045         add_anchor_token(')');
9046         statement->do_while.condition = parse_expression();
9047         rem_anchor_token(')');
9048         expect(')');
9049         expect(';');
9050
9051         POP_PARENT;
9052         return statement;
9053 end_error:
9054         POP_PARENT;
9055         return create_invalid_statement();
9056 }
9057
9058 /**
9059  * Parse a for statement.
9060  */
9061 static statement_t *parse_for(void)
9062 {
9063         eat(T_for);
9064
9065         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
9066         statement->base.source_position = token.source_position;
9067
9068         PUSH_PARENT(statement);
9069
9070         int      top        = environment_top();
9071         scope_t *last_scope = scope;
9072         set_scope(&statement->fors.scope);
9073
9074         expect('(');
9075         add_anchor_token(')');
9076
9077         if (token.type != ';') {
9078                 if (is_declaration_specifier(&token, false)) {
9079                         parse_declaration(record_declaration);
9080                 } else {
9081                         add_anchor_token(';');
9082                         expression_t *const init = parse_expression();
9083                         statement->fors.initialisation = init;
9084                         if (warning.unused_value && !expression_has_effect(init)) {
9085                                 warningf(&init->base.source_position,
9086                                          "initialisation of 'for'-statement has no effect");
9087                         }
9088                         rem_anchor_token(';');
9089                         expect(';');
9090                 }
9091         } else {
9092                 expect(';');
9093         }
9094
9095         if (token.type != ';') {
9096                 add_anchor_token(';');
9097                 statement->fors.condition = parse_expression();
9098                 rem_anchor_token(';');
9099         }
9100         expect(';');
9101         if (token.type != ')') {
9102                 expression_t *const step = parse_expression();
9103                 statement->fors.step = step;
9104                 if (warning.unused_value && !expression_has_effect(step)) {
9105                         warningf(&step->base.source_position,
9106                                  "step of 'for'-statement has no effect");
9107                 }
9108         }
9109         rem_anchor_token(')');
9110         expect(')');
9111         statement->fors.body = parse_loop_body(statement);
9112
9113         assert(scope == &statement->fors.scope);
9114         set_scope(last_scope);
9115         environment_pop_to(top);
9116
9117         POP_PARENT;
9118         return statement;
9119
9120 end_error:
9121         POP_PARENT;
9122         rem_anchor_token(')');
9123         assert(scope == &statement->fors.scope);
9124         set_scope(last_scope);
9125         environment_pop_to(top);
9126
9127         return create_invalid_statement();
9128 }
9129
9130 /**
9131  * Parse a goto statement.
9132  */
9133 static statement_t *parse_goto(void)
9134 {
9135         source_position_t source_position = token.source_position;
9136         eat(T_goto);
9137
9138         statement_t *statement;
9139         if (GNU_MODE && token.type == '*') {
9140                 next_token();
9141                 expression_t *expression = parse_expression();
9142
9143                 /* Argh: although documentation say the expression must be of type void *,
9144                  * gcc excepts anything that can be casted into void * without error */
9145                 type_t *type = expression->base.type;
9146
9147                 if (type != type_error_type) {
9148                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9149                                 errorf(&source_position, "cannot convert to a pointer type");
9150                         } else if (type != type_void_ptr) {
9151                                 warningf(&source_position,
9152                                         "type of computed goto expression should be 'void*' not '%T'", type);
9153                         }
9154                         expression = create_implicit_cast(expression, type_void_ptr);
9155                 }
9156
9157                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9158                 statement->base.source_position = source_position;
9159                 statement->gotos.expression     = expression;
9160         } else {
9161                 if (token.type != T_IDENTIFIER) {
9162                         if (GNU_MODE)
9163                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9164                         else
9165                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9166                         eat_until_anchor();
9167                         goto end_error;
9168                 }
9169                 symbol_t *symbol = token.v.symbol;
9170                 next_token();
9171
9172                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9173                 statement->base.source_position = source_position;
9174                 statement->gotos.label          = get_label(symbol);
9175         }
9176
9177         /* remember the goto's in a list for later checking */
9178         if (goto_last == NULL) {
9179                 goto_first = &statement->gotos;
9180         } else {
9181                 goto_last->next = &statement->gotos;
9182         }
9183         goto_last = &statement->gotos;
9184
9185         expect(';');
9186
9187         return statement;
9188 end_error:
9189         return create_invalid_statement();
9190 }
9191
9192 /**
9193  * Parse a continue statement.
9194  */
9195 static statement_t *parse_continue(void)
9196 {
9197         if (current_loop == NULL) {
9198                 errorf(HERE, "continue statement not within loop");
9199         }
9200
9201         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9202         statement->base.source_position = token.source_position;
9203
9204         eat(T_continue);
9205         expect(';');
9206
9207 end_error:
9208         return statement;
9209 }
9210
9211 /**
9212  * Parse a break statement.
9213  */
9214 static statement_t *parse_break(void)
9215 {
9216         if (current_switch == NULL && current_loop == NULL) {
9217                 errorf(HERE, "break statement not within loop or switch");
9218         }
9219
9220         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9221         statement->base.source_position = token.source_position;
9222
9223         eat(T_break);
9224         expect(';');
9225
9226 end_error:
9227         return statement;
9228 }
9229
9230 /**
9231  * Parse a __leave statement.
9232  */
9233 static statement_t *parse_leave_statement(void)
9234 {
9235         if (current_try == NULL) {
9236                 errorf(HERE, "__leave statement not within __try");
9237         }
9238
9239         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9240         statement->base.source_position = token.source_position;
9241
9242         eat(T___leave);
9243         expect(';');
9244
9245 end_error:
9246         return statement;
9247 }
9248
9249 /**
9250  * Check if a given declaration represents a local variable.
9251  */
9252 static bool is_local_var_declaration(const declaration_t *declaration)
9253 {
9254         switch ((storage_class_tag_t) declaration->storage_class) {
9255         case STORAGE_CLASS_AUTO:
9256         case STORAGE_CLASS_REGISTER: {
9257                 const type_t *type = skip_typeref(declaration->type);
9258                 if (is_type_function(type)) {
9259                         return false;
9260                 } else {
9261                         return true;
9262                 }
9263         }
9264         default:
9265                 return false;
9266         }
9267 }
9268
9269 /**
9270  * Check if a given declaration represents a variable.
9271  */
9272 static bool is_var_declaration(const declaration_t *declaration)
9273 {
9274         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
9275                 return false;
9276
9277         const type_t *type = skip_typeref(declaration->type);
9278         return !is_type_function(type);
9279 }
9280
9281 /**
9282  * Check if a given expression represents a local variable.
9283  */
9284 static bool is_local_variable(const expression_t *expression)
9285 {
9286         if (expression->base.kind != EXPR_REFERENCE) {
9287                 return false;
9288         }
9289         const declaration_t *declaration = expression->reference.declaration;
9290         return is_local_var_declaration(declaration);
9291 }
9292
9293 /**
9294  * Check if a given expression represents a local variable and
9295  * return its declaration then, else return NULL.
9296  */
9297 declaration_t *expr_is_variable(const expression_t *expression)
9298 {
9299         if (expression->base.kind != EXPR_REFERENCE) {
9300                 return NULL;
9301         }
9302         declaration_t *declaration = expression->reference.declaration;
9303         if (is_var_declaration(declaration))
9304                 return declaration;
9305         return NULL;
9306 }
9307
9308 /**
9309  * Parse a return statement.
9310  */
9311 static statement_t *parse_return(void)
9312 {
9313         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
9314         statement->base.source_position = token.source_position;
9315
9316         eat(T_return);
9317
9318         expression_t *return_value = NULL;
9319         if (token.type != ';') {
9320                 return_value = parse_expression();
9321         }
9322
9323         const type_t *const func_type = current_function->type;
9324         assert(is_type_function(func_type));
9325         type_t *const return_type = skip_typeref(func_type->function.return_type);
9326
9327         if (return_value != NULL) {
9328                 type_t *return_value_type = skip_typeref(return_value->base.type);
9329
9330                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
9331                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9332                         warningf(&statement->base.source_position,
9333                                  "'return' with a value, in function returning void");
9334                         return_value = NULL;
9335                 } else {
9336                         assign_error_t error = semantic_assign(return_type, return_value);
9337                         report_assign_error(error, return_type, return_value, "'return'",
9338                                             &statement->base.source_position);
9339                         return_value = create_implicit_cast(return_value, return_type);
9340                 }
9341                 /* check for returning address of a local var */
9342                 if (return_value != NULL &&
9343                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9344                         const expression_t *expression = return_value->unary.value;
9345                         if (is_local_variable(expression)) {
9346                                 warningf(&statement->base.source_position,
9347                                          "function returns address of local variable");
9348                         }
9349                 }
9350         } else {
9351                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9352                         warningf(&statement->base.source_position,
9353                                  "'return' without value, in function returning non-void");
9354                 }
9355         }
9356         statement->returns.value = return_value;
9357
9358         expect(';');
9359
9360 end_error:
9361         return statement;
9362 }
9363
9364 /**
9365  * Parse a declaration statement.
9366  */
9367 static statement_t *parse_declaration_statement(void)
9368 {
9369         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9370
9371         statement->base.source_position = token.source_position;
9372
9373         declaration_t *before = last_declaration;
9374         if (GNU_MODE)
9375                 parse_external_declaration();
9376         else
9377                 parse_declaration(record_declaration);
9378
9379         if (before == NULL) {
9380                 statement->declaration.declarations_begin = scope->declarations;
9381         } else {
9382                 statement->declaration.declarations_begin = before->next;
9383         }
9384         statement->declaration.declarations_end = last_declaration;
9385
9386         return statement;
9387 }
9388
9389 /**
9390  * Parse an expression statement, ie. expr ';'.
9391  */
9392 static statement_t *parse_expression_statement(void)
9393 {
9394         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9395
9396         statement->base.source_position  = token.source_position;
9397         expression_t *const expr         = parse_expression();
9398         statement->expression.expression = expr;
9399
9400         expect(';');
9401
9402 end_error:
9403         return statement;
9404 }
9405
9406 /**
9407  * Parse a microsoft __try { } __finally { } or
9408  * __try{ } __except() { }
9409  */
9410 static statement_t *parse_ms_try_statment(void)
9411 {
9412         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9413         statement->base.source_position  = token.source_position;
9414         eat(T___try);
9415
9416         PUSH_PARENT(statement);
9417
9418         ms_try_statement_t *rem = current_try;
9419         current_try = &statement->ms_try;
9420         statement->ms_try.try_statement = parse_compound_statement(false);
9421         current_try = rem;
9422
9423         POP_PARENT;
9424
9425         if (token.type == T___except) {
9426                 eat(T___except);
9427                 expect('(');
9428                 add_anchor_token(')');
9429                 expression_t *const expr = parse_expression();
9430                 type_t       *      type = skip_typeref(expr->base.type);
9431                 if (is_type_integer(type)) {
9432                         type = promote_integer(type);
9433                 } else if (is_type_valid(type)) {
9434                         errorf(&expr->base.source_position,
9435                                "__expect expression is not an integer, but '%T'", type);
9436                         type = type_error_type;
9437                 }
9438                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9439                 rem_anchor_token(')');
9440                 expect(')');
9441                 statement->ms_try.final_statement = parse_compound_statement(false);
9442         } else if (token.type == T__finally) {
9443                 eat(T___finally);
9444                 statement->ms_try.final_statement = parse_compound_statement(false);
9445         } else {
9446                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9447                 return create_invalid_statement();
9448         }
9449         return statement;
9450 end_error:
9451         return create_invalid_statement();
9452 }
9453
9454 static statement_t *parse_empty_statement(void)
9455 {
9456         if (warning.empty_statement) {
9457                 warningf(HERE, "statement is empty");
9458         }
9459         statement_t *const statement = create_empty_statement();
9460         eat(';');
9461         return statement;
9462 }
9463
9464 static statement_t *parse_local_label_declaration(void) {
9465         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9466         statement->base.source_position = token.source_position;
9467
9468         eat(T___label__);
9469
9470         declaration_t *begin = NULL, *end = NULL;
9471
9472         while (true) {
9473                 if (token.type != T_IDENTIFIER) {
9474                         parse_error_expected("while parsing local label declaration",
9475                                 T_IDENTIFIER, NULL);
9476                         goto end_error;
9477                 }
9478                 symbol_t      *symbol      = token.v.symbol;
9479                 declaration_t *declaration = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
9480                 if (declaration != NULL) {
9481                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition at %P)",
9482                                 symbol, &declaration->source_position);
9483                 } else {
9484                         declaration = allocate_declaration_zero();
9485                         declaration->namespc         = NAMESPACE_LOCAL_LABEL;
9486                         declaration->source_position = token.source_position;
9487                         declaration->symbol          = symbol;
9488                         declaration->parent_scope    = scope;
9489                         declaration->init.statement  = NULL;
9490
9491                         if (end != NULL)
9492                                 end->next = declaration;
9493                         end = declaration;
9494                         if (begin == NULL)
9495                                 begin = declaration;
9496
9497                         local_label_push(declaration);
9498                 }
9499                 next_token();
9500
9501                 if (token.type != ',')
9502                         break;
9503                 next_token();
9504         }
9505         eat(';');
9506 end_error:
9507         statement->declaration.declarations_begin = begin;
9508         statement->declaration.declarations_end   = end;
9509         return statement;
9510 }
9511
9512 /**
9513  * Parse a statement.
9514  * There's also parse_statement() which additionally checks for
9515  * "statement has no effect" warnings
9516  */
9517 static statement_t *intern_parse_statement(void)
9518 {
9519         statement_t *statement = NULL;
9520
9521         /* declaration or statement */
9522         add_anchor_token(';');
9523         switch (token.type) {
9524         case T_IDENTIFIER: {
9525                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
9526                 if (la1_type == ':') {
9527                         statement = parse_label_statement();
9528                 } else if (is_typedef_symbol(token.v.symbol)) {
9529                         statement = parse_declaration_statement();
9530                 } else switch (la1_type) {
9531                         case '*':
9532                                 if (get_declaration(token.v.symbol, NAMESPACE_NORMAL) != NULL)
9533                                         goto expression_statment;
9534                                 /* FALLTHROUGH */
9535
9536                         DECLARATION_START
9537                         case T_IDENTIFIER:
9538                                 statement = parse_declaration_statement();
9539                                 break;
9540
9541                         default:
9542 expression_statment:
9543                                 statement = parse_expression_statement();
9544                                 break;
9545                 }
9546                 break;
9547         }
9548
9549         case T___extension__:
9550                 /* This can be a prefix to a declaration or an expression statement.
9551                  * We simply eat it now and parse the rest with tail recursion. */
9552                 do {
9553                         next_token();
9554                 } while (token.type == T___extension__);
9555                 bool old_gcc_extension = in_gcc_extension;
9556                 in_gcc_extension       = true;
9557                 statement = parse_statement();
9558                 in_gcc_extension = false;
9559                 break;
9560
9561         DECLARATION_START
9562                 statement = parse_declaration_statement();
9563                 break;
9564
9565         case T___label__:
9566                 statement = parse_local_label_declaration();
9567                 break;
9568
9569         case ';':        statement = parse_empty_statement();         break;
9570         case '{':        statement = parse_compound_statement(false); break;
9571         case T___leave:  statement = parse_leave_statement();         break;
9572         case T___try:    statement = parse_ms_try_statment();         break;
9573         case T_asm:      statement = parse_asm_statement();           break;
9574         case T_break:    statement = parse_break();                   break;
9575         case T_case:     statement = parse_case_statement();          break;
9576         case T_continue: statement = parse_continue();                break;
9577         case T_default:  statement = parse_default_statement();       break;
9578         case T_do:       statement = parse_do();                      break;
9579         case T_for:      statement = parse_for();                     break;
9580         case T_goto:     statement = parse_goto();                    break;
9581         case T_if:       statement = parse_if ();                     break;
9582         case T_return:   statement = parse_return();                  break;
9583         case T_switch:   statement = parse_switch();                  break;
9584         case T_while:    statement = parse_while();                   break;
9585
9586         case '!':
9587         case '&':
9588         case '(':
9589         case '*':
9590         case '+':
9591         case '-':
9592         case '~':
9593         case T_ANDAND:
9594         case T_CHARACTER_CONSTANT:
9595         case T_FLOATINGPOINT:
9596         case T_INTEGER:
9597         case T_MINUSMINUS:
9598         case T_PLUSPLUS:
9599         case T_STRING_LITERAL:
9600         case T_WIDE_CHARACTER_CONSTANT:
9601         case T_WIDE_STRING_LITERAL:
9602         case T___FUNCDNAME__:
9603         case T___FUNCSIG__:
9604         case T___FUNCTION__:
9605         case T___PRETTY_FUNCTION__:
9606         case T___builtin_alloca:
9607         case T___builtin_classify_type:
9608         case T___builtin_constant_p:
9609         case T___builtin_expect:
9610         case T___builtin_huge_val:
9611         case T___builtin_isgreater:
9612         case T___builtin_isgreaterequal:
9613         case T___builtin_isless:
9614         case T___builtin_islessequal:
9615         case T___builtin_islessgreater:
9616         case T___builtin_isunordered:
9617         case T___builtin_nan:
9618         case T___builtin_nand:
9619         case T___builtin_nanf:
9620         case T___builtin_offsetof:
9621         case T___builtin_prefetch:
9622         case T___builtin_va_arg:
9623         case T___builtin_va_end:
9624         case T___builtin_va_start:
9625         case T___func__:
9626         case T___noop:
9627         case T__assume:
9628                 statement = parse_expression_statement();
9629                 break;
9630
9631         default:
9632                 errorf(HERE, "unexpected token %K while parsing statement", &token);
9633                 statement = create_invalid_statement();
9634                 if (!at_anchor())
9635                         next_token();
9636                 break;
9637         }
9638         rem_anchor_token(';');
9639
9640         assert(statement != NULL
9641                         && statement->base.source_position.input_name != NULL);
9642
9643         return statement;
9644 }
9645
9646 /**
9647  * parse a statement and emits "statement has no effect" warning if needed
9648  * (This is really a wrapper around intern_parse_statement with check for 1
9649  *  single warning. It is needed, because for statement expressions we have
9650  *  to avoid the warning on the last statement)
9651  */
9652 static statement_t *parse_statement(void)
9653 {
9654         statement_t *statement = intern_parse_statement();
9655
9656         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
9657                 expression_t *expression = statement->expression.expression;
9658                 if (!expression_has_effect(expression)) {
9659                         warningf(&expression->base.source_position,
9660                                         "statement has no effect");
9661                 }
9662         }
9663
9664         return statement;
9665 }
9666
9667 /**
9668  * Parse a compound statement.
9669  */
9670 static statement_t *parse_compound_statement(bool inside_expression_statement)
9671 {
9672         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
9673         statement->base.source_position = token.source_position;
9674
9675         PUSH_PARENT(statement);
9676
9677         eat('{');
9678         add_anchor_token('}');
9679
9680         int      top        = environment_top();
9681         int      top_local  = local_label_top();
9682         scope_t *last_scope = scope;
9683         set_scope(&statement->compound.scope);
9684
9685         statement_t **anchor            = &statement->compound.statements;
9686         bool          only_decls_so_far = true;
9687         while (token.type != '}' && token.type != T_EOF) {
9688                 statement_t *sub_statement = intern_parse_statement();
9689                 if (is_invalid_statement(sub_statement)) {
9690                         /* an error occurred. if we are at an anchor, return */
9691                         if (at_anchor())
9692                                 goto end_error;
9693                         continue;
9694                 }
9695
9696                 if (warning.declaration_after_statement) {
9697                         if (sub_statement->kind != STATEMENT_DECLARATION) {
9698                                 only_decls_so_far = false;
9699                         } else if (!only_decls_so_far) {
9700                                 warningf(&sub_statement->base.source_position,
9701                                          "ISO C90 forbids mixed declarations and code");
9702                         }
9703                 }
9704
9705                 *anchor = sub_statement;
9706
9707                 while (sub_statement->base.next != NULL)
9708                         sub_statement = sub_statement->base.next;
9709
9710                 anchor = &sub_statement->base.next;
9711         }
9712
9713         if (token.type == '}') {
9714                 next_token();
9715         } else {
9716                 errorf(&statement->base.source_position,
9717                        "end of file while looking for closing '}'");
9718         }
9719
9720         /* look over all statements again to produce no effect warnings */
9721         if (warning.unused_value) {
9722                 statement_t *sub_statement = statement->compound.statements;
9723                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
9724                         if (sub_statement->kind != STATEMENT_EXPRESSION)
9725                                 continue;
9726                         /* don't emit a warning for the last expression in an expression
9727                          * statement as it has always an effect */
9728                         if (inside_expression_statement && sub_statement->base.next == NULL)
9729                                 continue;
9730
9731                         expression_t *expression = sub_statement->expression.expression;
9732                         if (!expression_has_effect(expression)) {
9733                                 warningf(&expression->base.source_position,
9734                                          "statement has no effect");
9735                         }
9736                 }
9737         }
9738
9739 end_error:
9740         rem_anchor_token('}');
9741         assert(scope == &statement->compound.scope);
9742         set_scope(last_scope);
9743         environment_pop_to(top);
9744         local_label_pop_to(top_local);
9745
9746         POP_PARENT;
9747         return statement;
9748 }
9749
9750 /**
9751  * Initialize builtin types.
9752  */
9753 static void initialize_builtin_types(void)
9754 {
9755         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
9756         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
9757         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
9758         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
9759         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
9760         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
9761         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
9762         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
9763
9764         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
9765         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
9766         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
9767         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
9768
9769         /* const version of wchar_t */
9770         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
9771         type_const_wchar_t->typedeft.declaration  = type_wchar_t->typedeft.declaration;
9772         type_const_wchar_t->base.qualifiers      |= TYPE_QUALIFIER_CONST;
9773
9774         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
9775 }
9776
9777 /**
9778  * Check for unused global static functions and variables
9779  */
9780 static void check_unused_globals(void)
9781 {
9782         if (!warning.unused_function && !warning.unused_variable)
9783                 return;
9784
9785         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
9786                 if (decl->used                  ||
9787                     decl->modifiers & DM_UNUSED ||
9788                     decl->modifiers & DM_USED   ||
9789                     decl->storage_class != STORAGE_CLASS_STATIC)
9790                         continue;
9791
9792                 type_t *const type = decl->type;
9793                 const char *s;
9794                 if (is_type_function(skip_typeref(type))) {
9795                         if (!warning.unused_function || decl->is_inline)
9796                                 continue;
9797
9798                         s = (decl->init.statement != NULL ? "defined" : "declared");
9799                 } else {
9800                         if (!warning.unused_variable)
9801                                 continue;
9802
9803                         s = "defined";
9804                 }
9805
9806                 warningf(&decl->source_position, "'%#T' %s but not used",
9807                         type, decl->symbol, s);
9808         }
9809 }
9810
9811 static void parse_global_asm(void)
9812 {
9813         eat(T_asm);
9814         expect('(');
9815
9816         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
9817         statement->base.source_position = token.source_position;
9818         statement->asms.asm_text        = parse_string_literals();
9819         statement->base.next            = unit->global_asm;
9820         unit->global_asm                = statement;
9821
9822         expect(')');
9823         expect(';');
9824
9825 end_error:;
9826 }
9827
9828 /**
9829  * Parse a translation unit.
9830  */
9831 static void parse_translation_unit(void)
9832 {
9833         for (;;) {
9834 #ifndef NDEBUG
9835                 bool anchor_leak = false;
9836                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
9837                         unsigned char count = token_anchor_set[i];
9838                         if (count != 0) {
9839                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
9840                                 anchor_leak = true;
9841                         }
9842                 }
9843                 if (in_gcc_extension) {
9844                         errorf(HERE, "Leaked __extension__");
9845                         anchor_leak = true;
9846                 }
9847
9848                 if (anchor_leak)
9849                         abort();
9850 #endif
9851
9852                 switch (token.type) {
9853                         DECLARATION_START
9854                         case T_IDENTIFIER:
9855                         case T___extension__:
9856                                 parse_external_declaration();
9857                                 break;
9858
9859                         case T_asm:
9860                                 parse_global_asm();
9861                                 break;
9862
9863                         case T_EOF:
9864                                 return;
9865
9866                         case ';':
9867                                 /* TODO error in strict mode */
9868                                 warningf(HERE, "stray ';' outside of function");
9869                                 next_token();
9870                                 break;
9871
9872                         default:
9873                                 errorf(HERE, "stray %K outside of function", &token);
9874                                 if (token.type == '(' || token.type == '{' || token.type == '[')
9875                                         eat_until_matching_token(token.type);
9876                                 next_token();
9877                                 break;
9878                 }
9879         }
9880 }
9881
9882 /**
9883  * Parse the input.
9884  *
9885  * @return  the translation unit or NULL if errors occurred.
9886  */
9887 void start_parsing(void)
9888 {
9889         environment_stack = NEW_ARR_F(stack_entry_t, 0);
9890         label_stack       = NEW_ARR_F(stack_entry_t, 0);
9891         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
9892         diagnostic_count  = 0;
9893         error_count       = 0;
9894         warning_count     = 0;
9895
9896         type_set_output(stderr);
9897         ast_set_output(stderr);
9898
9899         assert(unit == NULL);
9900         unit = allocate_ast_zero(sizeof(unit[0]));
9901
9902         assert(global_scope == NULL);
9903         global_scope = &unit->scope;
9904
9905         assert(scope == NULL);
9906         set_scope(&unit->scope);
9907
9908         initialize_builtin_types();
9909 }
9910
9911 translation_unit_t *finish_parsing(void)
9912 {
9913         assert(scope == &unit->scope);
9914         scope          = NULL;
9915         last_declaration = NULL;
9916
9917         assert(global_scope == &unit->scope);
9918         check_unused_globals();
9919         global_scope = NULL;
9920
9921         DEL_ARR_F(environment_stack);
9922         DEL_ARR_F(label_stack);
9923         DEL_ARR_F(local_label_stack);
9924
9925         translation_unit_t *result = unit;
9926         unit = NULL;
9927         return result;
9928 }
9929
9930 void parse(void)
9931 {
9932         lookahead_bufpos = 0;
9933         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
9934                 next_token();
9935         }
9936         parse_translation_unit();
9937 }
9938
9939 /**
9940  * Initialize the parser.
9941  */
9942 void init_parser(void)
9943 {
9944         sym_anonymous = symbol_table_insert("<anonymous>");
9945
9946         if (c_mode & _MS) {
9947                 /* add predefined symbols for extended-decl-modifier */
9948                 sym_align      = symbol_table_insert("align");
9949                 sym_allocate   = symbol_table_insert("allocate");
9950                 sym_dllimport  = symbol_table_insert("dllimport");
9951                 sym_dllexport  = symbol_table_insert("dllexport");
9952                 sym_naked      = symbol_table_insert("naked");
9953                 sym_noinline   = symbol_table_insert("noinline");
9954                 sym_noreturn   = symbol_table_insert("noreturn");
9955                 sym_nothrow    = symbol_table_insert("nothrow");
9956                 sym_novtable   = symbol_table_insert("novtable");
9957                 sym_property   = symbol_table_insert("property");
9958                 sym_get        = symbol_table_insert("get");
9959                 sym_put        = symbol_table_insert("put");
9960                 sym_selectany  = symbol_table_insert("selectany");
9961                 sym_thread     = symbol_table_insert("thread");
9962                 sym_uuid       = symbol_table_insert("uuid");
9963                 sym_deprecated = symbol_table_insert("deprecated");
9964                 sym_restrict   = symbol_table_insert("restrict");
9965                 sym_noalias    = symbol_table_insert("noalias");
9966         }
9967         memset(token_anchor_set, 0, sizeof(token_anchor_set));
9968
9969         init_expression_parsers();
9970         obstack_init(&temp_obst);
9971
9972         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
9973         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
9974 }
9975
9976 /**
9977  * Terminate the parser.
9978  */
9979 void exit_parser(void)
9980 {
9981         obstack_free(&temp_obst, NULL);
9982 }