Remove T_ERROR and TP_ERROR.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "adt/strutil.h"
27 #include "parser.h"
28 #include "diagnostic.h"
29 #include "format_check.h"
30 #include "lexer.h"
31 #include "symbol_t.h"
32 #include "token_t.h"
33 #include "types.h"
34 #include "type_t.h"
35 #include "type_hash.h"
36 #include "ast_t.h"
37 #include "entity_t.h"
38 #include "attribute_t.h"
39 #include "lang_features.h"
40 #include "walk.h"
41 #include "warning.h"
42 #include "printer.h"
43 #include "adt/bitfiddle.h"
44 #include "adt/error.h"
45 #include "adt/array.h"
46
47 //#define PRINT_TOKENS
48 #define MAX_LOOKAHEAD 1
49
50 typedef struct {
51         entity_t           *old_entity;
52         symbol_t           *symbol;
53         entity_namespace_t  namespc;
54 } stack_entry_t;
55
56 typedef struct declaration_specifiers_t  declaration_specifiers_t;
57 struct declaration_specifiers_t {
58         source_position_t  source_position;
59         storage_class_t    storage_class;
60         unsigned char      alignment;         /**< Alignment, 0 if not set. */
61         bool               is_inline    : 1;
62         bool               thread_local : 1;  /**< GCC __thread */
63         attribute_t       *attributes;        /**< list of attributes */
64         type_t            *type;
65 };
66
67 /**
68  * An environment for parsing initializers (and compound literals).
69  */
70 typedef struct parse_initializer_env_t {
71         type_t     *type;   /**< the type of the initializer. In case of an
72                                  array type with unspecified size this gets
73                                  adjusted to the actual size. */
74         entity_t   *entity; /**< the variable that is initialized if any */
75         bool        must_be_constant;
76 } parse_initializer_env_t;
77
78 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
79
80 /** The current token. */
81 static token_t              token;
82 /** The lookahead ring-buffer. */
83 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
84 /** Position of the next token in the lookahead buffer. */
85 static size_t               lookahead_bufpos;
86 static stack_entry_t       *environment_stack = NULL;
87 static stack_entry_t       *label_stack       = NULL;
88 static scope_t             *file_scope        = NULL;
89 static scope_t             *current_scope     = NULL;
90 /** Point to the current function declaration if inside a function. */
91 static function_t          *current_function  = NULL;
92 static entity_t            *current_entity    = NULL;
93 static switch_statement_t  *current_switch    = NULL;
94 static statement_t         *current_loop      = NULL;
95 static statement_t         *current_parent    = NULL;
96 static ms_try_statement_t  *current_try       = NULL;
97 static linkage_kind_t       current_linkage;
98 static goto_statement_t    *goto_first        = NULL;
99 static goto_statement_t   **goto_anchor       = NULL;
100 static label_statement_t   *label_first       = NULL;
101 static label_statement_t  **label_anchor      = NULL;
102 /** current translation unit. */
103 static translation_unit_t  *unit              = NULL;
104 /** true if we are in an __extension__ context. */
105 static bool                 in_gcc_extension  = false;
106 static struct obstack       temp_obst;
107 static entity_t            *anonymous_entity;
108 static declaration_t      **incomplete_arrays;
109 static elf_visibility_tag_t default_visibility = ELF_VISIBILITY_DEFAULT;
110
111
112 #define PUSH_PARENT(stmt) \
113         statement_t *const new_parent = (stmt); \
114         statement_t *const old_parent = current_parent; \
115         ((void)(current_parent = new_parent))
116 #define POP_PARENT() (assert(current_parent == new_parent), (void)(current_parent = old_parent))
117
118 #define PUSH_SCOPE(scope) \
119         size_t   const top       = environment_top(); \
120         scope_t *const new_scope = (scope); \
121         scope_t *const old_scope = (new_scope ? scope_push(new_scope) : NULL)
122 #define PUSH_SCOPE_STATEMENT(scope) PUSH_SCOPE(c_mode & (_C99 | _CXX) ? (scope) : NULL)
123 #define POP_SCOPE() (new_scope ? assert(current_scope == new_scope), scope_pop(old_scope), environment_pop_to(top) : (void)0)
124
125 #define PUSH_EXTENSION() \
126         (void)0; \
127         bool const old_gcc_extension = in_gcc_extension; \
128         while (next_if(T___extension__)) { \
129                 in_gcc_extension = true; \
130         } \
131         do {} while (0)
132 #define POP_EXTENSION() \
133         ((void)(in_gcc_extension = old_gcc_extension))
134
135 /** special symbol used for anonymous entities. */
136 static symbol_t *sym_anonymous = NULL;
137
138 /** The token anchor set */
139 static unsigned short token_anchor_set[T_LAST_TOKEN];
140
141 /** The current source position. */
142 #define HERE (&token.base.source_position)
143
144 /** true if we are in GCC mode. */
145 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
146
147 static statement_t *parse_compound_statement(bool inside_expression_statement);
148 static statement_t *parse_statement(void);
149
150 static expression_t *parse_subexpression(precedence_t);
151 static expression_t *parse_expression(void);
152 static type_t       *parse_typename(void);
153 static void          parse_externals(void);
154 static void          parse_external(void);
155
156 static void parse_compound_type_entries(compound_t *compound_declaration);
157
158 static void check_call_argument(type_t          *expected_type,
159                                                                 call_argument_t *argument, unsigned pos);
160
161 typedef enum declarator_flags_t {
162         DECL_FLAGS_NONE             = 0,
163         DECL_MAY_BE_ABSTRACT        = 1U << 0,
164         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
165         DECL_IS_PARAMETER           = 1U << 2
166 } declarator_flags_t;
167
168 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
169                                   declarator_flags_t flags);
170
171 static void semantic_comparison(binary_expression_t *expression);
172
173 #define STORAGE_CLASSES       \
174         STORAGE_CLASSES_NO_EXTERN \
175         case T_extern:
176
177 #define STORAGE_CLASSES_NO_EXTERN \
178         case T_typedef:         \
179         case T_static:          \
180         case T_auto:            \
181         case T_register:        \
182         case T___thread:
183
184 #define TYPE_QUALIFIERS     \
185         case T_const:           \
186         case T_restrict:        \
187         case T_volatile:        \
188         case T_inline:          \
189         case T__forceinline:    \
190         case T___attribute__:
191
192 #define COMPLEX_SPECIFIERS  \
193         case T__Complex:
194 #define IMAGINARY_SPECIFIERS \
195         case T__Imaginary:
196
197 #define TYPE_SPECIFIERS       \
198         case T__Bool:             \
199         case T___builtin_va_list: \
200         case T___typeof__:        \
201         case T__declspec:         \
202         case T_bool:              \
203         case T_char:              \
204         case T_double:            \
205         case T_enum:              \
206         case T_float:             \
207         case T_int:               \
208         case T_long:              \
209         case T_short:             \
210         case T_signed:            \
211         case T_struct:            \
212         case T_union:             \
213         case T_unsigned:          \
214         case T_void:              \
215         case T_wchar_t:           \
216         case T__int8:             \
217         case T__int16:            \
218         case T__int32:            \
219         case T__int64:            \
220         case T__int128:           \
221         COMPLEX_SPECIFIERS        \
222         IMAGINARY_SPECIFIERS
223
224 #define DECLARATION_START   \
225         STORAGE_CLASSES         \
226         TYPE_QUALIFIERS         \
227         TYPE_SPECIFIERS
228
229 #define DECLARATION_START_NO_EXTERN \
230         STORAGE_CLASSES_NO_EXTERN       \
231         TYPE_QUALIFIERS                 \
232         TYPE_SPECIFIERS
233
234 #define EXPRESSION_START              \
235         case '!':                         \
236         case '&':                         \
237         case '(':                         \
238         case '*':                         \
239         case '+':                         \
240         case '-':                         \
241         case '~':                         \
242         case T_ANDAND:                    \
243         case T_CHARACTER_CONSTANT:        \
244         case T_FLOATINGPOINT:             \
245         case T_FLOATINGPOINT_HEXADECIMAL: \
246         case T_INTEGER:                   \
247         case T_INTEGER_HEXADECIMAL:       \
248         case T_INTEGER_OCTAL:             \
249         case T_MINUSMINUS:                \
250         case T_PLUSPLUS:                  \
251         case T_STRING_LITERAL:            \
252         case T_WIDE_CHARACTER_CONSTANT:   \
253         case T_WIDE_STRING_LITERAL:       \
254         case T___FUNCDNAME__:             \
255         case T___FUNCSIG__:               \
256         case T___FUNCTION__:              \
257         case T___PRETTY_FUNCTION__:       \
258         case T___alignof__:               \
259         case T___builtin_classify_type:   \
260         case T___builtin_constant_p:      \
261         case T___builtin_isgreater:       \
262         case T___builtin_isgreaterequal:  \
263         case T___builtin_isless:          \
264         case T___builtin_islessequal:     \
265         case T___builtin_islessgreater:   \
266         case T___builtin_isunordered:     \
267         case T___builtin_offsetof:        \
268         case T___builtin_va_arg:          \
269         case T___builtin_va_copy:         \
270         case T___builtin_va_start:        \
271         case T___func__:                  \
272         case T___noop:                    \
273         case T__assume:                   \
274         case T_delete:                    \
275         case T_false:                     \
276         case T_sizeof:                    \
277         case T_throw:                     \
278         case T_true:
279
280 /**
281  * Returns the size of a statement node.
282  *
283  * @param kind  the statement kind
284  */
285 static size_t get_statement_struct_size(statement_kind_t kind)
286 {
287         static const size_t sizes[] = {
288                 [STATEMENT_ERROR]         = sizeof(statement_base_t),
289                 [STATEMENT_EMPTY]         = sizeof(statement_base_t),
290                 [STATEMENT_COMPOUND]      = sizeof(compound_statement_t),
291                 [STATEMENT_RETURN]        = sizeof(return_statement_t),
292                 [STATEMENT_DECLARATION]   = sizeof(declaration_statement_t),
293                 [STATEMENT_IF]            = sizeof(if_statement_t),
294                 [STATEMENT_SWITCH]        = sizeof(switch_statement_t),
295                 [STATEMENT_EXPRESSION]    = sizeof(expression_statement_t),
296                 [STATEMENT_CONTINUE]      = sizeof(statement_base_t),
297                 [STATEMENT_BREAK]         = sizeof(statement_base_t),
298                 [STATEMENT_COMPUTED_GOTO] = sizeof(computed_goto_statement_t),
299                 [STATEMENT_GOTO]          = sizeof(goto_statement_t),
300                 [STATEMENT_LABEL]         = sizeof(label_statement_t),
301                 [STATEMENT_CASE_LABEL]    = sizeof(case_label_statement_t),
302                 [STATEMENT_WHILE]         = sizeof(while_statement_t),
303                 [STATEMENT_DO_WHILE]      = sizeof(do_while_statement_t),
304                 [STATEMENT_FOR]           = sizeof(for_statement_t),
305                 [STATEMENT_ASM]           = sizeof(asm_statement_t),
306                 [STATEMENT_MS_TRY]        = sizeof(ms_try_statement_t),
307                 [STATEMENT_LEAVE]         = sizeof(leave_statement_t)
308         };
309         assert((size_t)kind < lengthof(sizes));
310         assert(sizes[kind] != 0);
311         return sizes[kind];
312 }
313
314 /**
315  * Returns the size of an expression node.
316  *
317  * @param kind  the expression kind
318  */
319 static size_t get_expression_struct_size(expression_kind_t kind)
320 {
321         static const size_t sizes[] = {
322                 [EXPR_ERROR]                      = sizeof(expression_base_t),
323                 [EXPR_REFERENCE]                  = sizeof(reference_expression_t),
324                 [EXPR_ENUM_CONSTANT]              = sizeof(reference_expression_t),
325                 [EXPR_LITERAL_BOOLEAN]            = sizeof(literal_expression_t),
326                 [EXPR_LITERAL_INTEGER]            = sizeof(literal_expression_t),
327                 [EXPR_LITERAL_INTEGER_OCTAL]      = sizeof(literal_expression_t),
328                 [EXPR_LITERAL_INTEGER_HEXADECIMAL]= sizeof(literal_expression_t),
329                 [EXPR_LITERAL_FLOATINGPOINT]      = sizeof(literal_expression_t),
330                 [EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL] = sizeof(literal_expression_t),
331                 [EXPR_LITERAL_CHARACTER]          = sizeof(literal_expression_t),
332                 [EXPR_LITERAL_WIDE_CHARACTER]     = sizeof(literal_expression_t),
333                 [EXPR_STRING_LITERAL]             = sizeof(string_literal_expression_t),
334                 [EXPR_WIDE_STRING_LITERAL]        = sizeof(string_literal_expression_t),
335                 [EXPR_COMPOUND_LITERAL]           = sizeof(compound_literal_expression_t),
336                 [EXPR_CALL]                       = sizeof(call_expression_t),
337                 [EXPR_UNARY_FIRST]                = sizeof(unary_expression_t),
338                 [EXPR_BINARY_FIRST]               = sizeof(binary_expression_t),
339                 [EXPR_CONDITIONAL]                = sizeof(conditional_expression_t),
340                 [EXPR_SELECT]                     = sizeof(select_expression_t),
341                 [EXPR_ARRAY_ACCESS]               = sizeof(array_access_expression_t),
342                 [EXPR_SIZEOF]                     = sizeof(typeprop_expression_t),
343                 [EXPR_ALIGNOF]                    = sizeof(typeprop_expression_t),
344                 [EXPR_CLASSIFY_TYPE]              = sizeof(classify_type_expression_t),
345                 [EXPR_FUNCNAME]                   = sizeof(funcname_expression_t),
346                 [EXPR_BUILTIN_CONSTANT_P]         = sizeof(builtin_constant_expression_t),
347                 [EXPR_BUILTIN_TYPES_COMPATIBLE_P] = sizeof(builtin_types_compatible_expression_t),
348                 [EXPR_OFFSETOF]                   = sizeof(offsetof_expression_t),
349                 [EXPR_VA_START]                   = sizeof(va_start_expression_t),
350                 [EXPR_VA_ARG]                     = sizeof(va_arg_expression_t),
351                 [EXPR_VA_COPY]                    = sizeof(va_copy_expression_t),
352                 [EXPR_STATEMENT]                  = sizeof(statement_expression_t),
353                 [EXPR_LABEL_ADDRESS]              = sizeof(label_address_expression_t),
354         };
355         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
356                 return sizes[EXPR_UNARY_FIRST];
357         }
358         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
359                 return sizes[EXPR_BINARY_FIRST];
360         }
361         assert((size_t)kind < lengthof(sizes));
362         assert(sizes[kind] != 0);
363         return sizes[kind];
364 }
365
366 /**
367  * Allocate a statement node of given kind and initialize all
368  * fields with zero. Sets its source position to the position
369  * of the current token.
370  */
371 static statement_t *allocate_statement_zero(statement_kind_t kind)
372 {
373         size_t       size = get_statement_struct_size(kind);
374         statement_t *res  = allocate_ast_zero(size);
375
376         res->base.kind            = kind;
377         res->base.parent          = current_parent;
378         res->base.source_position = token.base.source_position;
379         return res;
380 }
381
382 /**
383  * Allocate an expression node of given kind and initialize all
384  * fields with zero.
385  *
386  * @param kind  the kind of the expression to allocate
387  */
388 static expression_t *allocate_expression_zero(expression_kind_t kind)
389 {
390         size_t        size = get_expression_struct_size(kind);
391         expression_t *res  = allocate_ast_zero(size);
392
393         res->base.kind            = kind;
394         res->base.type            = type_error_type;
395         res->base.source_position = token.base.source_position;
396         return res;
397 }
398
399 /**
400  * Creates a new invalid expression at the source position
401  * of the current token.
402  */
403 static expression_t *create_error_expression(void)
404 {
405         expression_t *expression = allocate_expression_zero(EXPR_ERROR);
406         expression->base.type = type_error_type;
407         return expression;
408 }
409
410 /**
411  * Creates a new invalid statement.
412  */
413 static statement_t *create_error_statement(void)
414 {
415         return allocate_statement_zero(STATEMENT_ERROR);
416 }
417
418 /**
419  * Allocate a new empty statement.
420  */
421 static statement_t *create_empty_statement(void)
422 {
423         return allocate_statement_zero(STATEMENT_EMPTY);
424 }
425
426 /**
427  * Returns the size of an initializer node.
428  *
429  * @param kind  the initializer kind
430  */
431 static size_t get_initializer_size(initializer_kind_t kind)
432 {
433         static const size_t sizes[] = {
434                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
435                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
436                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
437                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
438                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
439         };
440         assert((size_t)kind < lengthof(sizes));
441         assert(sizes[kind] != 0);
442         return sizes[kind];
443 }
444
445 /**
446  * Allocate an initializer node of given kind and initialize all
447  * fields with zero.
448  */
449 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
450 {
451         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
452         result->kind          = kind;
453
454         return result;
455 }
456
457 /**
458  * Returns the index of the top element of the environment stack.
459  */
460 static size_t environment_top(void)
461 {
462         return ARR_LEN(environment_stack);
463 }
464
465 /**
466  * Returns the index of the top element of the global label stack.
467  */
468 static size_t label_top(void)
469 {
470         return ARR_LEN(label_stack);
471 }
472
473 /**
474  * Return the next token.
475  */
476 static inline void next_token(void)
477 {
478         token                              = lookahead_buffer[lookahead_bufpos];
479         lookahead_buffer[lookahead_bufpos] = lexer_token;
480         lexer_next_token();
481
482         lookahead_bufpos = (lookahead_bufpos + 1) % MAX_LOOKAHEAD;
483
484 #ifdef PRINT_TOKENS
485         print_token(stderr, &token);
486         fprintf(stderr, "\n");
487 #endif
488 }
489
490 static inline bool next_if(token_kind_t const type)
491 {
492         if (token.kind == type) {
493                 next_token();
494                 return true;
495         } else {
496                 return false;
497         }
498 }
499
500 /**
501  * Return the next token with a given lookahead.
502  */
503 static inline const token_t *look_ahead(size_t num)
504 {
505         assert(0 < num && num <= MAX_LOOKAHEAD);
506         size_t pos = (lookahead_bufpos + num - 1) % MAX_LOOKAHEAD;
507         return &lookahead_buffer[pos];
508 }
509
510 /**
511  * Adds a token type to the token type anchor set (a multi-set).
512  */
513 static void add_anchor_token(token_kind_t const token_kind)
514 {
515         assert(token_kind < T_LAST_TOKEN);
516         ++token_anchor_set[token_kind];
517 }
518
519 /**
520  * Remove a token type from the token type anchor set (a multi-set).
521  */
522 static void rem_anchor_token(token_kind_t const token_kind)
523 {
524         assert(token_kind < T_LAST_TOKEN);
525         assert(token_anchor_set[token_kind] != 0);
526         --token_anchor_set[token_kind];
527 }
528
529 /**
530  * Eat tokens until a matching token type is found.
531  */
532 static void eat_until_matching_token(token_kind_t const type)
533 {
534         token_kind_t end_token;
535         switch (type) {
536                 case '(': end_token = ')';  break;
537                 case '{': end_token = '}';  break;
538                 case '[': end_token = ']';  break;
539                 default:  end_token = type; break;
540         }
541
542         unsigned parenthesis_count = 0;
543         unsigned brace_count       = 0;
544         unsigned bracket_count     = 0;
545         while (token.kind        != end_token ||
546                parenthesis_count != 0         ||
547                brace_count       != 0         ||
548                bracket_count     != 0) {
549                 switch (token.kind) {
550                 case T_EOF: return;
551                 case '(': ++parenthesis_count; break;
552                 case '{': ++brace_count;       break;
553                 case '[': ++bracket_count;     break;
554
555                 case ')':
556                         if (parenthesis_count > 0)
557                                 --parenthesis_count;
558                         goto check_stop;
559
560                 case '}':
561                         if (brace_count > 0)
562                                 --brace_count;
563                         goto check_stop;
564
565                 case ']':
566                         if (bracket_count > 0)
567                                 --bracket_count;
568 check_stop:
569                         if (token.kind        == end_token &&
570                             parenthesis_count == 0         &&
571                             brace_count       == 0         &&
572                             bracket_count     == 0)
573                                 return;
574                         break;
575
576                 default:
577                         break;
578                 }
579                 next_token();
580         }
581 }
582
583 /**
584  * Eat input tokens until an anchor is found.
585  */
586 static void eat_until_anchor(void)
587 {
588         while (token_anchor_set[token.kind] == 0) {
589                 if (token.kind == '(' || token.kind == '{' || token.kind == '[')
590                         eat_until_matching_token(token.kind);
591                 next_token();
592         }
593 }
594
595 /**
596  * Eat a whole block from input tokens.
597  */
598 static void eat_block(void)
599 {
600         eat_until_matching_token('{');
601         next_if('}');
602 }
603
604 #define eat(token_kind) (assert(token.kind == (token_kind)), next_token())
605
606 /**
607  * Report a parse error because an expected token was not found.
608  */
609 static
610 #if defined __GNUC__ && __GNUC__ >= 4
611 __attribute__((sentinel))
612 #endif
613 void parse_error_expected(const char *message, ...)
614 {
615         if (message != NULL) {
616                 errorf(HERE, "%s", message);
617         }
618         va_list ap;
619         va_start(ap, message);
620         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
621         va_end(ap);
622 }
623
624 /**
625  * Report an incompatible type.
626  */
627 static void type_error_incompatible(const char *msg,
628                 const source_position_t *source_position, type_t *type1, type_t *type2)
629 {
630         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
631                msg, type1, type2);
632 }
633
634 /**
635  * Expect the current token is the expected token.
636  * If not, generate an error and skip until the next anchor.
637  */
638 static void expect(token_kind_t const expected)
639 {
640         if (UNLIKELY(token.kind != expected)) {
641                 parse_error_expected(NULL, expected, NULL);
642                 add_anchor_token(expected);
643                 eat_until_anchor();
644                 rem_anchor_token(expected);
645                 if (token.kind != expected)
646                         return;
647         }
648         eat(expected);
649 }
650
651 static symbol_t *expect_identifier(char const *const context, source_position_t *const pos)
652 {
653         if (token.kind != T_IDENTIFIER) {
654                 parse_error_expected(context, T_IDENTIFIER, NULL);
655                 add_anchor_token(T_IDENTIFIER);
656                 eat_until_anchor();
657                 rem_anchor_token(T_IDENTIFIER);
658                 if (token.kind != T_IDENTIFIER)
659                         return NULL;
660         }
661         symbol_t *const sym = token.identifier.symbol;
662         if (pos)
663                 *pos = *HERE;
664         eat(T_IDENTIFIER);
665         return sym;
666 }
667
668 /**
669  * Push a given scope on the scope stack and make it the
670  * current scope
671  */
672 static scope_t *scope_push(scope_t *new_scope)
673 {
674         if (current_scope != NULL) {
675                 new_scope->depth = current_scope->depth + 1;
676         }
677
678         scope_t *old_scope = current_scope;
679         current_scope      = new_scope;
680         return old_scope;
681 }
682
683 /**
684  * Pop the current scope from the scope stack.
685  */
686 static void scope_pop(scope_t *old_scope)
687 {
688         current_scope = old_scope;
689 }
690
691 /**
692  * Search an entity by its symbol in a given namespace.
693  */
694 static entity_t *get_entity(const symbol_t *const symbol,
695                             namespace_tag_t namespc)
696 {
697         entity_t *entity = symbol->entity;
698         for (; entity != NULL; entity = entity->base.symbol_next) {
699                 if ((namespace_tag_t)entity->base.namespc == namespc)
700                         return entity;
701         }
702
703         return NULL;
704 }
705
706 /* §6.2.3:1 24)  There is only one name space for tags even though three are
707  * possible. */
708 static entity_t *get_tag(symbol_t const *const symbol,
709                          entity_kind_tag_t const kind)
710 {
711         entity_t *entity = get_entity(symbol, NAMESPACE_TAG);
712         if (entity != NULL && (entity_kind_tag_t)entity->kind != kind) {
713                 errorf(HERE,
714                                 "'%Y' defined as wrong kind of tag (previous definition %P)",
715                                 symbol, &entity->base.source_position);
716                 entity = NULL;
717         }
718         return entity;
719 }
720
721 /**
722  * pushs an entity on the environment stack and links the corresponding symbol
723  * it.
724  */
725 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
726 {
727         symbol_t           *symbol  = entity->base.symbol;
728         entity_namespace_t  namespc = entity->base.namespc;
729         assert(namespc != 0);
730
731         /* replace/add entity into entity list of the symbol */
732         entity_t **anchor;
733         entity_t  *iter;
734         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
735                 iter = *anchor;
736                 if (iter == NULL)
737                         break;
738
739                 /* replace an entry? */
740                 if (iter->base.namespc == namespc) {
741                         entity->base.symbol_next = iter->base.symbol_next;
742                         break;
743                 }
744         }
745         *anchor = entity;
746
747         /* remember old declaration */
748         stack_entry_t entry;
749         entry.symbol     = symbol;
750         entry.old_entity = iter;
751         entry.namespc    = namespc;
752         ARR_APP1(stack_entry_t, *stack_ptr, entry);
753 }
754
755 /**
756  * Push an entity on the environment stack.
757  */
758 static void environment_push(entity_t *entity)
759 {
760         assert(entity->base.source_position.input_name != NULL);
761         assert(entity->base.parent_scope != NULL);
762         stack_push(&environment_stack, entity);
763 }
764
765 /**
766  * Push a declaration on the global label stack.
767  *
768  * @param declaration  the declaration
769  */
770 static void label_push(entity_t *label)
771 {
772         /* we abuse the parameters scope as parent for the labels */
773         label->base.parent_scope = &current_function->parameters;
774         stack_push(&label_stack, label);
775 }
776
777 /**
778  * pops symbols from the environment stack until @p new_top is the top element
779  */
780 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
781 {
782         stack_entry_t *stack = *stack_ptr;
783         size_t         top   = ARR_LEN(stack);
784         size_t         i;
785
786         assert(new_top <= top);
787         if (new_top == top)
788                 return;
789
790         for (i = top; i > new_top; --i) {
791                 stack_entry_t *entry = &stack[i - 1];
792
793                 entity_t           *old_entity = entry->old_entity;
794                 symbol_t           *symbol     = entry->symbol;
795                 entity_namespace_t  namespc    = entry->namespc;
796
797                 /* replace with old_entity/remove */
798                 entity_t **anchor;
799                 entity_t  *iter;
800                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
801                         iter = *anchor;
802                         assert(iter != NULL);
803                         /* replace an entry? */
804                         if (iter->base.namespc == namespc)
805                                 break;
806                 }
807
808                 /* restore definition from outer scopes (if there was one) */
809                 if (old_entity != NULL) {
810                         old_entity->base.symbol_next = iter->base.symbol_next;
811                         *anchor                      = old_entity;
812                 } else {
813                         /* remove entry from list */
814                         *anchor = iter->base.symbol_next;
815                 }
816         }
817
818         ARR_SHRINKLEN(*stack_ptr, new_top);
819 }
820
821 /**
822  * Pop all entries from the environment stack until the new_top
823  * is reached.
824  *
825  * @param new_top  the new stack top
826  */
827 static void environment_pop_to(size_t new_top)
828 {
829         stack_pop_to(&environment_stack, new_top);
830 }
831
832 /**
833  * Pop all entries from the global label stack until the new_top
834  * is reached.
835  *
836  * @param new_top  the new stack top
837  */
838 static void label_pop_to(size_t new_top)
839 {
840         stack_pop_to(&label_stack, new_top);
841 }
842
843 static atomic_type_kind_t get_akind(const type_t *type)
844 {
845         assert(type->kind == TYPE_ATOMIC || type->kind == TYPE_COMPLEX
846                || type->kind == TYPE_IMAGINARY || type->kind == TYPE_ENUM);
847         return type->atomic.akind;
848 }
849
850 /**
851  * §6.3.1.1:2  Do integer promotion for a given type.
852  *
853  * @param type  the type to promote
854  * @return the promoted type
855  */
856 static type_t *promote_integer(type_t *type)
857 {
858         if (get_akind_rank(get_akind(type)) < get_akind_rank(ATOMIC_TYPE_INT))
859                 type = type_int;
860
861         return type;
862 }
863
864 /**
865  * Check if a given expression represents a null pointer constant.
866  *
867  * @param expression  the expression to check
868  */
869 static bool is_null_pointer_constant(const expression_t *expression)
870 {
871         /* skip void* cast */
872         if (expression->kind == EXPR_UNARY_CAST) {
873                 type_t *const type = skip_typeref(expression->base.type);
874                 if (types_compatible(type, type_void_ptr))
875                         expression = expression->unary.value;
876         }
877
878         type_t *const type = skip_typeref(expression->base.type);
879         if (!is_type_integer(type))
880                 return false;
881         switch (is_constant_expression(expression)) {
882                 case EXPR_CLASS_ERROR:    return true;
883                 case EXPR_CLASS_CONSTANT: return !fold_constant_to_bool(expression);
884                 default:                  return false;
885         }
886 }
887
888 /**
889  * Create an implicit cast expression.
890  *
891  * @param expression  the expression to cast
892  * @param dest_type   the destination type
893  */
894 static expression_t *create_implicit_cast(expression_t *expression,
895                                           type_t *dest_type)
896 {
897         type_t *const source_type = expression->base.type;
898
899         if (source_type == dest_type)
900                 return expression;
901
902         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
903         cast->unary.value   = expression;
904         cast->base.type     = dest_type;
905         cast->base.implicit = true;
906
907         return cast;
908 }
909
910 typedef enum assign_error_t {
911         ASSIGN_SUCCESS,
912         ASSIGN_ERROR_INCOMPATIBLE,
913         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
914         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
915         ASSIGN_WARNING_POINTER_FROM_INT,
916         ASSIGN_WARNING_INT_FROM_POINTER
917 } assign_error_t;
918
919 static void report_assign_error(assign_error_t error, type_t *orig_type_left, expression_t const *const right, char const *const context, source_position_t const *const pos)
920 {
921         type_t *const orig_type_right = right->base.type;
922         type_t *const type_left       = skip_typeref(orig_type_left);
923         type_t *const type_right      = skip_typeref(orig_type_right);
924
925         switch (error) {
926         case ASSIGN_SUCCESS:
927                 return;
928         case ASSIGN_ERROR_INCOMPATIBLE:
929                 errorf(pos, "destination type '%T' in %s is incompatible with type '%T'", orig_type_left, context, orig_type_right);
930                 return;
931
932         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
933                 type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
934                 type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
935
936                 /* the left type has all qualifiers from the right type */
937                 unsigned missing_qualifiers = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
938                 warningf(WARN_OTHER, pos, "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type", orig_type_left, context, orig_type_right, missing_qualifiers);
939                 return;
940         }
941
942         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
943                 warningf(WARN_OTHER, pos, "destination type '%T' in %s is incompatible with '%E' of type '%T'", orig_type_left, context, right, orig_type_right);
944                 return;
945
946         case ASSIGN_WARNING_POINTER_FROM_INT:
947                 warningf(WARN_OTHER, pos, "%s makes pointer '%T' from integer '%T' without a cast", context, orig_type_left, orig_type_right);
948                 return;
949
950         case ASSIGN_WARNING_INT_FROM_POINTER:
951                 warningf(WARN_OTHER, pos, "%s makes integer '%T' from pointer '%T' without a cast", context, orig_type_left, orig_type_right);
952                 return;
953
954         default:
955                 panic("invalid error value");
956         }
957 }
958
959 /** Implements the rules from §6.5.16.1 */
960 static assign_error_t semantic_assign(type_t *orig_type_left,
961                                       const expression_t *const right)
962 {
963         type_t *const orig_type_right = right->base.type;
964         type_t *const type_left       = skip_typeref(orig_type_left);
965         type_t *const type_right      = skip_typeref(orig_type_right);
966
967         if (is_type_pointer(type_left)) {
968                 if (is_null_pointer_constant(right)) {
969                         return ASSIGN_SUCCESS;
970                 } else if (is_type_pointer(type_right)) {
971                         type_t *points_to_left
972                                 = skip_typeref(type_left->pointer.points_to);
973                         type_t *points_to_right
974                                 = skip_typeref(type_right->pointer.points_to);
975                         assign_error_t res = ASSIGN_SUCCESS;
976
977                         /* the left type has all qualifiers from the right type */
978                         unsigned missing_qualifiers
979                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
980                         if (missing_qualifiers != 0) {
981                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
982                         }
983
984                         points_to_left  = get_unqualified_type(points_to_left);
985                         points_to_right = get_unqualified_type(points_to_right);
986
987                         if (is_type_void(points_to_left))
988                                 return res;
989
990                         if (is_type_void(points_to_right)) {
991                                 /* ISO/IEC 14882:1998(E) §C.1.2:6 */
992                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
993                         }
994
995                         if (!types_compatible(points_to_left, points_to_right)) {
996                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
997                         }
998
999                         return res;
1000                 } else if (is_type_integer(type_right)) {
1001                         return ASSIGN_WARNING_POINTER_FROM_INT;
1002                 }
1003         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1004                         (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1005                                 && is_type_pointer(type_right))) {
1006                 return ASSIGN_SUCCESS;
1007         } else if (is_type_compound(type_left) && is_type_compound(type_right)) {
1008                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1009                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1010                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1011                         return ASSIGN_SUCCESS;
1012                 }
1013         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1014                 return ASSIGN_WARNING_INT_FROM_POINTER;
1015         }
1016
1017         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1018                 return ASSIGN_SUCCESS;
1019
1020         return ASSIGN_ERROR_INCOMPATIBLE;
1021 }
1022
1023 static expression_t *parse_constant_expression(void)
1024 {
1025         expression_t *result = parse_subexpression(PREC_CONDITIONAL);
1026
1027         if (is_constant_expression(result) == EXPR_CLASS_VARIABLE) {
1028                 errorf(&result->base.source_position,
1029                        "expression '%E' is not constant", result);
1030         }
1031
1032         return result;
1033 }
1034
1035 static expression_t *parse_assignment_expression(void)
1036 {
1037         return parse_subexpression(PREC_ASSIGNMENT);
1038 }
1039
1040 static void warn_string_concat(const source_position_t *pos)
1041 {
1042         warningf(WARN_TRADITIONAL, pos, "traditional C rejects string constant concatenation");
1043 }
1044
1045 static string_t parse_string_literals(void)
1046 {
1047         assert(token.kind == T_STRING_LITERAL);
1048         string_t result = token.string.string;
1049
1050         next_token();
1051
1052         while (token.kind == T_STRING_LITERAL) {
1053                 warn_string_concat(&token.base.source_position);
1054                 result = concat_strings(&result, &token.string.string);
1055                 next_token();
1056         }
1057
1058         return result;
1059 }
1060
1061 static attribute_t *allocate_attribute_zero(attribute_kind_t kind)
1062 {
1063         attribute_t *attribute = allocate_ast_zero(sizeof(*attribute));
1064         attribute->kind            = kind;
1065         attribute->source_position = *HERE;
1066         return attribute;
1067 }
1068
1069 /**
1070  * Parse (gcc) attribute argument. From gcc comments in gcc source:
1071  *
1072  *  attribute:
1073  *    __attribute__ ( ( attribute-list ) )
1074  *
1075  *  attribute-list:
1076  *    attrib
1077  *    attribute_list , attrib
1078  *
1079  *  attrib:
1080  *    empty
1081  *    any-word
1082  *    any-word ( identifier )
1083  *    any-word ( identifier , nonempty-expr-list )
1084  *    any-word ( expr-list )
1085  *
1086  *  where the "identifier" must not be declared as a type, and
1087  *  "any-word" may be any identifier (including one declared as a
1088  *  type), a reserved word storage class specifier, type specifier or
1089  *  type qualifier.  ??? This still leaves out most reserved keywords
1090  *  (following the old parser), shouldn't we include them, and why not
1091  *  allow identifiers declared as types to start the arguments?
1092  *
1093  *  Matze: this all looks confusing and little systematic, so we're even less
1094  *  strict and parse any list of things which are identifiers or
1095  *  (assignment-)expressions.
1096  */
1097 static attribute_argument_t *parse_attribute_arguments(void)
1098 {
1099         attribute_argument_t  *first  = NULL;
1100         attribute_argument_t **anchor = &first;
1101         if (token.kind != ')') do {
1102                 attribute_argument_t *argument = allocate_ast_zero(sizeof(*argument));
1103
1104                 /* is it an identifier */
1105                 if (token.kind == T_IDENTIFIER
1106                                 && (look_ahead(1)->kind == ',' || look_ahead(1)->kind == ')')) {
1107                         symbol_t *symbol   = token.identifier.symbol;
1108                         argument->kind     = ATTRIBUTE_ARGUMENT_SYMBOL;
1109                         argument->v.symbol = symbol;
1110                         next_token();
1111                 } else {
1112                         /* must be an expression */
1113                         expression_t *expression = parse_assignment_expression();
1114
1115                         argument->kind         = ATTRIBUTE_ARGUMENT_EXPRESSION;
1116                         argument->v.expression = expression;
1117                 }
1118
1119                 /* append argument */
1120                 *anchor = argument;
1121                 anchor  = &argument->next;
1122         } while (next_if(','));
1123         expect(')');
1124         return first;
1125 }
1126
1127 static attribute_t *parse_attribute_asm(void)
1128 {
1129         attribute_t *attribute = allocate_attribute_zero(ATTRIBUTE_GNU_ASM);
1130         eat(T_asm);
1131         expect('(');
1132         attribute->a.arguments = parse_attribute_arguments();
1133         return attribute;
1134 }
1135
1136 static symbol_t *get_symbol_from_token(void)
1137 {
1138         switch(token.kind) {
1139         case T_IDENTIFIER:
1140                 return token.identifier.symbol;
1141         case T_auto:
1142         case T_char:
1143         case T_double:
1144         case T_enum:
1145         case T_extern:
1146         case T_float:
1147         case T_int:
1148         case T_long:
1149         case T_register:
1150         case T_short:
1151         case T_static:
1152         case T_struct:
1153         case T_union:
1154         case T_unsigned:
1155         case T_void:
1156         case T_bool:
1157         case T__Bool:
1158         case T_class:
1159         case T_explicit:
1160         case T_export:
1161         case T_wchar_t:
1162         case T_const:
1163         case T_signed:
1164         case T___real__:
1165         case T___imag__:
1166         case T_restrict:
1167         case T_volatile:
1168         case T_inline:
1169                 /* maybe we need more tokens ... add them on demand */
1170                 return get_token_kind_symbol(token.kind);
1171         default:
1172                 return NULL;
1173         }
1174 }
1175
1176 static attribute_t *parse_attribute_gnu_single(void)
1177 {
1178         /* parse "any-word" */
1179         symbol_t *symbol = get_symbol_from_token();
1180         if (symbol == NULL) {
1181                 parse_error_expected("while parsing attribute((", T_IDENTIFIER, NULL);
1182                 return NULL;
1183         }
1184
1185         attribute_kind_t  kind;
1186         char const *const name = symbol->string;
1187         for (kind = ATTRIBUTE_GNU_FIRST;; ++kind) {
1188                 if (kind > ATTRIBUTE_GNU_LAST) {
1189                         warningf(WARN_ATTRIBUTE, HERE, "unknown attribute '%s' ignored", name);
1190                         /* TODO: we should still save the attribute in the list... */
1191                         kind = ATTRIBUTE_UNKNOWN;
1192                         break;
1193                 }
1194
1195                 const char *attribute_name = get_attribute_name(kind);
1196                 if (attribute_name != NULL && streq_underscore(attribute_name, name))
1197                         break;
1198         }
1199
1200         attribute_t *attribute = allocate_attribute_zero(kind);
1201         next_token();
1202
1203         /* parse arguments */
1204         if (next_if('('))
1205                 attribute->a.arguments = parse_attribute_arguments();
1206
1207         return attribute;
1208 }
1209
1210 static attribute_t *parse_attribute_gnu(void)
1211 {
1212         attribute_t  *first  = NULL;
1213         attribute_t **anchor = &first;
1214
1215         eat(T___attribute__);
1216         expect('(');
1217         expect('(');
1218
1219         add_anchor_token(')');
1220         add_anchor_token(',');
1221         if (token.kind != ')') do {
1222                 attribute_t *attribute = parse_attribute_gnu_single();
1223                 if (attribute) {
1224                         *anchor = attribute;
1225                         anchor  = &attribute->next;
1226                 }
1227         } while (next_if(','));
1228         rem_anchor_token(',');
1229         rem_anchor_token(')');
1230
1231         expect(')');
1232         expect(')');
1233         return first;
1234 }
1235
1236 /** Parse attributes. */
1237 static attribute_t *parse_attributes(attribute_t *first)
1238 {
1239         attribute_t **anchor = &first;
1240         for (;;) {
1241                 while (*anchor != NULL)
1242                         anchor = &(*anchor)->next;
1243
1244                 attribute_t *attribute;
1245                 switch (token.kind) {
1246                 case T___attribute__:
1247                         attribute = parse_attribute_gnu();
1248                         if (attribute == NULL)
1249                                 continue;
1250                         break;
1251
1252                 case T_asm:
1253                         attribute = parse_attribute_asm();
1254                         break;
1255
1256                 case T_cdecl:
1257                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_CDECL);
1258                         eat(T_cdecl);
1259                         break;
1260
1261                 case T__fastcall:
1262                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FASTCALL);
1263                         eat(T__fastcall);
1264                         break;
1265
1266                 case T__forceinline:
1267                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FORCEINLINE);
1268                         eat(T__forceinline);
1269                         break;
1270
1271                 case T__stdcall:
1272                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_STDCALL);
1273                         eat(T__stdcall);
1274                         break;
1275
1276                 case T___thiscall:
1277                         /* TODO record modifier */
1278                         warningf(WARN_OTHER, HERE, "Ignoring declaration modifier %K", &token);
1279                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_THISCALL);
1280                         eat(T___thiscall);
1281                         break;
1282
1283                 default:
1284                         return first;
1285                 }
1286
1287                 *anchor = attribute;
1288                 anchor  = &attribute->next;
1289         }
1290 }
1291
1292 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1293
1294 static entity_t *determine_lhs_ent(expression_t *const expr,
1295                                    entity_t *lhs_ent)
1296 {
1297         switch (expr->kind) {
1298                 case EXPR_REFERENCE: {
1299                         entity_t *const entity = expr->reference.entity;
1300                         /* we should only find variables as lvalues... */
1301                         if (entity->base.kind != ENTITY_VARIABLE
1302                                         && entity->base.kind != ENTITY_PARAMETER)
1303                                 return NULL;
1304
1305                         return entity;
1306                 }
1307
1308                 case EXPR_ARRAY_ACCESS: {
1309                         expression_t *const ref = expr->array_access.array_ref;
1310                         entity_t     *      ent = NULL;
1311                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1312                                 ent     = determine_lhs_ent(ref, lhs_ent);
1313                                 lhs_ent = ent;
1314                         } else {
1315                                 mark_vars_read(ref, lhs_ent);
1316                         }
1317                         mark_vars_read(expr->array_access.index, lhs_ent);
1318                         return ent;
1319                 }
1320
1321                 case EXPR_SELECT: {
1322                         mark_vars_read(expr->select.compound, lhs_ent);
1323                         if (is_type_compound(skip_typeref(expr->base.type)))
1324                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1325                         return NULL;
1326                 }
1327
1328                 case EXPR_UNARY_DEREFERENCE: {
1329                         expression_t *const val = expr->unary.value;
1330                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1331                                 /* *&x is a NOP */
1332                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1333                         } else {
1334                                 mark_vars_read(val, NULL);
1335                                 return NULL;
1336                         }
1337                 }
1338
1339                 default:
1340                         mark_vars_read(expr, NULL);
1341                         return NULL;
1342         }
1343 }
1344
1345 #define ENT_ANY ((entity_t*)-1)
1346
1347 /**
1348  * Mark declarations, which are read.  This is used to detect variables, which
1349  * are never read.
1350  * Example:
1351  * x = x + 1;
1352  *   x is not marked as "read", because it is only read to calculate its own new
1353  *   value.
1354  *
1355  * x += y; y += x;
1356  *   x and y are not detected as "not read", because multiple variables are
1357  *   involved.
1358  */
1359 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
1360 {
1361         switch (expr->kind) {
1362                 case EXPR_REFERENCE: {
1363                         entity_t *const entity = expr->reference.entity;
1364                         if (entity->kind != ENTITY_VARIABLE
1365                                         && entity->kind != ENTITY_PARAMETER)
1366                                 return;
1367
1368                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
1369                                 if (entity->kind == ENTITY_VARIABLE) {
1370                                         entity->variable.read = true;
1371                                 } else {
1372                                         entity->parameter.read = true;
1373                                 }
1374                         }
1375                         return;
1376                 }
1377
1378                 case EXPR_CALL:
1379                         // TODO respect pure/const
1380                         mark_vars_read(expr->call.function, NULL);
1381                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
1382                                 mark_vars_read(arg->expression, NULL);
1383                         }
1384                         return;
1385
1386                 case EXPR_CONDITIONAL:
1387                         // TODO lhs_decl should depend on whether true/false have an effect
1388                         mark_vars_read(expr->conditional.condition, NULL);
1389                         if (expr->conditional.true_expression != NULL)
1390                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
1391                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
1392                         return;
1393
1394                 case EXPR_SELECT:
1395                         if (lhs_ent == ENT_ANY
1396                                         && !is_type_compound(skip_typeref(expr->base.type)))
1397                                 lhs_ent = NULL;
1398                         mark_vars_read(expr->select.compound, lhs_ent);
1399                         return;
1400
1401                 case EXPR_ARRAY_ACCESS: {
1402                         mark_vars_read(expr->array_access.index, lhs_ent);
1403                         expression_t *const ref = expr->array_access.array_ref;
1404                         if (!is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1405                                 if (lhs_ent == ENT_ANY)
1406                                         lhs_ent = NULL;
1407                         }
1408                         mark_vars_read(ref, lhs_ent);
1409                         return;
1410                 }
1411
1412                 case EXPR_VA_ARG:
1413                         mark_vars_read(expr->va_arge.ap, lhs_ent);
1414                         return;
1415
1416                 case EXPR_VA_COPY:
1417                         mark_vars_read(expr->va_copye.src, lhs_ent);
1418                         return;
1419
1420                 case EXPR_UNARY_CAST:
1421                         /* Special case: Use void cast to mark a variable as "read" */
1422                         if (is_type_void(skip_typeref(expr->base.type)))
1423                                 lhs_ent = NULL;
1424                         goto unary;
1425
1426
1427                 case EXPR_UNARY_THROW:
1428                         if (expr->unary.value == NULL)
1429                                 return;
1430                         /* FALLTHROUGH */
1431                 case EXPR_UNARY_DEREFERENCE:
1432                 case EXPR_UNARY_DELETE:
1433                 case EXPR_UNARY_DELETE_ARRAY:
1434                         if (lhs_ent == ENT_ANY)
1435                                 lhs_ent = NULL;
1436                         goto unary;
1437
1438                 case EXPR_UNARY_NEGATE:
1439                 case EXPR_UNARY_PLUS:
1440                 case EXPR_UNARY_BITWISE_NEGATE:
1441                 case EXPR_UNARY_NOT:
1442                 case EXPR_UNARY_TAKE_ADDRESS:
1443                 case EXPR_UNARY_POSTFIX_INCREMENT:
1444                 case EXPR_UNARY_POSTFIX_DECREMENT:
1445                 case EXPR_UNARY_PREFIX_INCREMENT:
1446                 case EXPR_UNARY_PREFIX_DECREMENT:
1447                 case EXPR_UNARY_ASSUME:
1448 unary:
1449                         mark_vars_read(expr->unary.value, lhs_ent);
1450                         return;
1451
1452                 case EXPR_BINARY_ADD:
1453                 case EXPR_BINARY_SUB:
1454                 case EXPR_BINARY_MUL:
1455                 case EXPR_BINARY_DIV:
1456                 case EXPR_BINARY_MOD:
1457                 case EXPR_BINARY_EQUAL:
1458                 case EXPR_BINARY_NOTEQUAL:
1459                 case EXPR_BINARY_LESS:
1460                 case EXPR_BINARY_LESSEQUAL:
1461                 case EXPR_BINARY_GREATER:
1462                 case EXPR_BINARY_GREATEREQUAL:
1463                 case EXPR_BINARY_BITWISE_AND:
1464                 case EXPR_BINARY_BITWISE_OR:
1465                 case EXPR_BINARY_BITWISE_XOR:
1466                 case EXPR_BINARY_LOGICAL_AND:
1467                 case EXPR_BINARY_LOGICAL_OR:
1468                 case EXPR_BINARY_SHIFTLEFT:
1469                 case EXPR_BINARY_SHIFTRIGHT:
1470                 case EXPR_BINARY_COMMA:
1471                 case EXPR_BINARY_ISGREATER:
1472                 case EXPR_BINARY_ISGREATEREQUAL:
1473                 case EXPR_BINARY_ISLESS:
1474                 case EXPR_BINARY_ISLESSEQUAL:
1475                 case EXPR_BINARY_ISLESSGREATER:
1476                 case EXPR_BINARY_ISUNORDERED:
1477                         mark_vars_read(expr->binary.left,  lhs_ent);
1478                         mark_vars_read(expr->binary.right, lhs_ent);
1479                         return;
1480
1481                 case EXPR_BINARY_ASSIGN:
1482                 case EXPR_BINARY_MUL_ASSIGN:
1483                 case EXPR_BINARY_DIV_ASSIGN:
1484                 case EXPR_BINARY_MOD_ASSIGN:
1485                 case EXPR_BINARY_ADD_ASSIGN:
1486                 case EXPR_BINARY_SUB_ASSIGN:
1487                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1488                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1489                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
1490                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1491                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
1492                         if (lhs_ent == ENT_ANY)
1493                                 lhs_ent = NULL;
1494                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
1495                         mark_vars_read(expr->binary.right, lhs_ent);
1496                         return;
1497                 }
1498
1499                 case EXPR_VA_START:
1500                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
1501                         return;
1502
1503                 case EXPR_LITERAL_CASES:
1504                 case EXPR_ERROR:
1505                 case EXPR_STRING_LITERAL:
1506                 case EXPR_WIDE_STRING_LITERAL:
1507                 case EXPR_COMPOUND_LITERAL: // TODO init?
1508                 case EXPR_SIZEOF:
1509                 case EXPR_CLASSIFY_TYPE:
1510                 case EXPR_ALIGNOF:
1511                 case EXPR_FUNCNAME:
1512                 case EXPR_BUILTIN_CONSTANT_P:
1513                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
1514                 case EXPR_OFFSETOF:
1515                 case EXPR_STATEMENT: // TODO
1516                 case EXPR_LABEL_ADDRESS:
1517                 case EXPR_ENUM_CONSTANT:
1518                         return;
1519         }
1520
1521         panic("unhandled expression");
1522 }
1523
1524 static designator_t *parse_designation(void)
1525 {
1526         designator_t  *result = NULL;
1527         designator_t **anchor = &result;
1528
1529         for (;;) {
1530                 designator_t *designator;
1531                 switch (token.kind) {
1532                 case '[':
1533                         designator = allocate_ast_zero(sizeof(designator[0]));
1534                         designator->source_position = token.base.source_position;
1535                         next_token();
1536                         add_anchor_token(']');
1537                         designator->array_index = parse_constant_expression();
1538                         rem_anchor_token(']');
1539                         expect(']');
1540                         break;
1541                 case '.':
1542                         designator = allocate_ast_zero(sizeof(designator[0]));
1543                         designator->source_position = token.base.source_position;
1544                         next_token();
1545                         designator->symbol = expect_identifier("while parsing designator", NULL);
1546                         if (!designator->symbol)
1547                                 return NULL;
1548                         break;
1549                 default:
1550                         expect('=');
1551                         return result;
1552                 }
1553
1554                 assert(designator != NULL);
1555                 *anchor = designator;
1556                 anchor  = &designator->next;
1557         }
1558 }
1559
1560 static initializer_t *initializer_from_string(array_type_t *const type,
1561                                               const string_t *const string)
1562 {
1563         /* TODO: check len vs. size of array type */
1564         (void) type;
1565
1566         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1567         initializer->string.string = *string;
1568
1569         return initializer;
1570 }
1571
1572 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1573                                                    const string_t *const string)
1574 {
1575         /* TODO: check len vs. size of array type */
1576         (void) type;
1577
1578         initializer_t *const initializer =
1579                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1580         initializer->wide_string.string = *string;
1581
1582         return initializer;
1583 }
1584
1585 /**
1586  * Build an initializer from a given expression.
1587  */
1588 static initializer_t *initializer_from_expression(type_t *orig_type,
1589                                                   expression_t *expression)
1590 {
1591         /* TODO check that expression is a constant expression */
1592
1593         /* §6.7.8.14/15 char array may be initialized by string literals */
1594         type_t *type           = skip_typeref(orig_type);
1595         type_t *expr_type_orig = expression->base.type;
1596         type_t *expr_type      = skip_typeref(expr_type_orig);
1597
1598         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1599                 array_type_t *const array_type   = &type->array;
1600                 type_t       *const element_type = skip_typeref(array_type->element_type);
1601
1602                 if (element_type->kind == TYPE_ATOMIC) {
1603                         atomic_type_kind_t akind = element_type->atomic.akind;
1604                         switch (expression->kind) {
1605                         case EXPR_STRING_LITERAL:
1606                                 if (akind == ATOMIC_TYPE_CHAR
1607                                                 || akind == ATOMIC_TYPE_SCHAR
1608                                                 || akind == ATOMIC_TYPE_UCHAR) {
1609                                         return initializer_from_string(array_type,
1610                                                         &expression->string_literal.value);
1611                                 }
1612                                 break;
1613
1614                         case EXPR_WIDE_STRING_LITERAL: {
1615                                 type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1616                                 if (get_unqualified_type(element_type) == bare_wchar_type) {
1617                                         return initializer_from_wide_string(array_type,
1618                                                         &expression->string_literal.value);
1619                                 }
1620                                 break;
1621                         }
1622
1623                         default:
1624                                 break;
1625                         }
1626                 }
1627         }
1628
1629         assign_error_t error = semantic_assign(type, expression);
1630         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1631                 return NULL;
1632         report_assign_error(error, type, expression, "initializer",
1633                             &expression->base.source_position);
1634
1635         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1636         result->value.value = create_implicit_cast(expression, type);
1637
1638         return result;
1639 }
1640
1641 /**
1642  * Parses an scalar initializer.
1643  *
1644  * §6.7.8.11; eat {} without warning
1645  */
1646 static initializer_t *parse_scalar_initializer(type_t *type,
1647                                                bool must_be_constant)
1648 {
1649         /* there might be extra {} hierarchies */
1650         int braces = 0;
1651         if (token.kind == '{') {
1652                 warningf(WARN_OTHER, HERE, "extra curly braces around scalar initializer");
1653                 do {
1654                         eat('{');
1655                         ++braces;
1656                 } while (token.kind == '{');
1657         }
1658
1659         expression_t *expression = parse_assignment_expression();
1660         mark_vars_read(expression, NULL);
1661         if (must_be_constant && !is_linker_constant(expression)) {
1662                 errorf(&expression->base.source_position,
1663                        "initialisation expression '%E' is not constant",
1664                        expression);
1665         }
1666
1667         initializer_t *initializer = initializer_from_expression(type, expression);
1668
1669         if (initializer == NULL) {
1670                 errorf(&expression->base.source_position,
1671                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1672                        expression, expression->base.type, type);
1673                 /* TODO */
1674                 return NULL;
1675         }
1676
1677         bool additional_warning_displayed = false;
1678         while (braces > 0) {
1679                 next_if(',');
1680                 if (token.kind != '}') {
1681                         if (!additional_warning_displayed) {
1682                                 warningf(WARN_OTHER, HERE, "additional elements in scalar initializer");
1683                                 additional_warning_displayed = true;
1684                         }
1685                 }
1686                 eat_block();
1687                 braces--;
1688         }
1689
1690         return initializer;
1691 }
1692
1693 /**
1694  * An entry in the type path.
1695  */
1696 typedef struct type_path_entry_t type_path_entry_t;
1697 struct type_path_entry_t {
1698         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
1699         union {
1700                 size_t         index;          /**< For array types: the current index. */
1701                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
1702         } v;
1703 };
1704
1705 /**
1706  * A type path expression a position inside compound or array types.
1707  */
1708 typedef struct type_path_t type_path_t;
1709 struct type_path_t {
1710         type_path_entry_t *path;         /**< An flexible array containing the current path. */
1711         type_t            *top_type;     /**< type of the element the path points */
1712         size_t             max_index;    /**< largest index in outermost array */
1713 };
1714
1715 /**
1716  * Prints a type path for debugging.
1717  */
1718 static __attribute__((unused)) void debug_print_type_path(
1719                 const type_path_t *path)
1720 {
1721         size_t len = ARR_LEN(path->path);
1722
1723         for (size_t i = 0; i < len; ++i) {
1724                 const type_path_entry_t *entry = & path->path[i];
1725
1726                 type_t *type = skip_typeref(entry->type);
1727                 if (is_type_compound(type)) {
1728                         /* in gcc mode structs can have no members */
1729                         if (entry->v.compound_entry == NULL) {
1730                                 assert(i == len-1);
1731                                 continue;
1732                         }
1733                         fprintf(stderr, ".%s",
1734                                 entry->v.compound_entry->base.symbol->string);
1735                 } else if (is_type_array(type)) {
1736                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
1737                 } else {
1738                         fprintf(stderr, "-INVALID-");
1739                 }
1740         }
1741         if (path->top_type != NULL) {
1742                 fprintf(stderr, "  (");
1743                 print_type(path->top_type);
1744                 fprintf(stderr, ")");
1745         }
1746 }
1747
1748 /**
1749  * Return the top type path entry, ie. in a path
1750  * (type).a.b returns the b.
1751  */
1752 static type_path_entry_t *get_type_path_top(const type_path_t *path)
1753 {
1754         size_t len = ARR_LEN(path->path);
1755         assert(len > 0);
1756         return &path->path[len-1];
1757 }
1758
1759 /**
1760  * Enlarge the type path by an (empty) element.
1761  */
1762 static type_path_entry_t *append_to_type_path(type_path_t *path)
1763 {
1764         size_t len = ARR_LEN(path->path);
1765         ARR_RESIZE(type_path_entry_t, path->path, len+1);
1766
1767         type_path_entry_t *result = & path->path[len];
1768         memset(result, 0, sizeof(result[0]));
1769         return result;
1770 }
1771
1772 /**
1773  * Descending into a sub-type. Enter the scope of the current top_type.
1774  */
1775 static void descend_into_subtype(type_path_t *path)
1776 {
1777         type_t *orig_top_type = path->top_type;
1778         type_t *top_type      = skip_typeref(orig_top_type);
1779
1780         type_path_entry_t *top = append_to_type_path(path);
1781         top->type              = top_type;
1782
1783         if (is_type_compound(top_type)) {
1784                 compound_t *const compound = top_type->compound.compound;
1785                 entity_t   *const entry    = skip_unnamed_bitfields(compound->members.entities);
1786
1787                 if (entry != NULL) {
1788                         top->v.compound_entry = &entry->declaration;
1789                         path->top_type = entry->declaration.type;
1790                 } else {
1791                         path->top_type = NULL;
1792                 }
1793         } else if (is_type_array(top_type)) {
1794                 top->v.index   = 0;
1795                 path->top_type = top_type->array.element_type;
1796         } else {
1797                 assert(!is_type_valid(top_type));
1798         }
1799 }
1800
1801 /**
1802  * Pop an entry from the given type path, ie. returning from
1803  * (type).a.b to (type).a
1804  */
1805 static void ascend_from_subtype(type_path_t *path)
1806 {
1807         type_path_entry_t *top = get_type_path_top(path);
1808
1809         path->top_type = top->type;
1810
1811         size_t len = ARR_LEN(path->path);
1812         ARR_RESIZE(type_path_entry_t, path->path, len-1);
1813 }
1814
1815 /**
1816  * Pop entries from the given type path until the given
1817  * path level is reached.
1818  */
1819 static void ascend_to(type_path_t *path, size_t top_path_level)
1820 {
1821         size_t len = ARR_LEN(path->path);
1822
1823         while (len > top_path_level) {
1824                 ascend_from_subtype(path);
1825                 len = ARR_LEN(path->path);
1826         }
1827 }
1828
1829 static bool walk_designator(type_path_t *path, const designator_t *designator,
1830                             bool used_in_offsetof)
1831 {
1832         for (; designator != NULL; designator = designator->next) {
1833                 type_path_entry_t *top       = get_type_path_top(path);
1834                 type_t            *orig_type = top->type;
1835
1836                 type_t *type = skip_typeref(orig_type);
1837
1838                 if (designator->symbol != NULL) {
1839                         symbol_t *symbol = designator->symbol;
1840                         if (!is_type_compound(type)) {
1841                                 if (is_type_valid(type)) {
1842                                         errorf(&designator->source_position,
1843                                                "'.%Y' designator used for non-compound type '%T'",
1844                                                symbol, orig_type);
1845                                 }
1846
1847                                 top->type             = type_error_type;
1848                                 top->v.compound_entry = NULL;
1849                                 orig_type             = type_error_type;
1850                         } else {
1851                                 compound_t *compound = type->compound.compound;
1852                                 entity_t   *iter     = compound->members.entities;
1853                                 for (; iter != NULL; iter = iter->base.next) {
1854                                         if (iter->base.symbol == symbol) {
1855                                                 break;
1856                                         }
1857                                 }
1858                                 if (iter == NULL) {
1859                                         errorf(&designator->source_position,
1860                                                "'%T' has no member named '%Y'", orig_type, symbol);
1861                                         return false;
1862                                 }
1863                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
1864                                 if (used_in_offsetof && iter->compound_member.bitfield) {
1865                                         errorf(&designator->source_position,
1866                                                    "offsetof designator '%Y' must not specify bitfield",
1867                                                    symbol);
1868                                         return false;
1869                                 }
1870
1871                                 top->type             = orig_type;
1872                                 top->v.compound_entry = &iter->declaration;
1873                                 orig_type             = iter->declaration.type;
1874                         }
1875                 } else {
1876                         expression_t *array_index = designator->array_index;
1877                         assert(designator->array_index != NULL);
1878
1879                         if (!is_type_array(type)) {
1880                                 if (is_type_valid(type)) {
1881                                         errorf(&designator->source_position,
1882                                                "[%E] designator used for non-array type '%T'",
1883                                                array_index, orig_type);
1884                                 }
1885                                 return false;
1886                         }
1887
1888                         long index = fold_constant_to_int(array_index);
1889                         if (!used_in_offsetof) {
1890                                 if (index < 0) {
1891                                         errorf(&designator->source_position,
1892                                                "array index [%E] must be positive", array_index);
1893                                 } else if (type->array.size_constant) {
1894                                         long array_size = type->array.size;
1895                                         if (index >= array_size) {
1896                                                 errorf(&designator->source_position,
1897                                                        "designator [%E] (%d) exceeds array size %d",
1898                                                        array_index, index, array_size);
1899                                         }
1900                                 }
1901                         }
1902
1903                         top->type    = orig_type;
1904                         top->v.index = (size_t) index;
1905                         orig_type    = type->array.element_type;
1906                 }
1907                 path->top_type = orig_type;
1908
1909                 if (designator->next != NULL) {
1910                         descend_into_subtype(path);
1911                 }
1912         }
1913         return true;
1914 }
1915
1916 static void advance_current_object(type_path_t *path, size_t top_path_level)
1917 {
1918         type_path_entry_t *top = get_type_path_top(path);
1919
1920         type_t *type = skip_typeref(top->type);
1921         if (is_type_union(type)) {
1922                 /* in unions only the first element is initialized */
1923                 top->v.compound_entry = NULL;
1924         } else if (is_type_struct(type)) {
1925                 declaration_t *entry = top->v.compound_entry;
1926
1927                 entity_t *const next_entity = skip_unnamed_bitfields(entry->base.next);
1928                 if (next_entity != NULL) {
1929                         assert(is_declaration(next_entity));
1930                         entry = &next_entity->declaration;
1931                 } else {
1932                         entry = NULL;
1933                 }
1934
1935                 top->v.compound_entry = entry;
1936                 if (entry != NULL) {
1937                         path->top_type = entry->type;
1938                         return;
1939                 }
1940         } else if (is_type_array(type)) {
1941                 assert(is_type_array(type));
1942
1943                 top->v.index++;
1944
1945                 if (!type->array.size_constant || top->v.index < type->array.size) {
1946                         return;
1947                 }
1948         } else {
1949                 assert(!is_type_valid(type));
1950                 return;
1951         }
1952
1953         /* we're past the last member of the current sub-aggregate, try if we
1954          * can ascend in the type hierarchy and continue with another subobject */
1955         size_t len = ARR_LEN(path->path);
1956
1957         if (len > top_path_level) {
1958                 ascend_from_subtype(path);
1959                 advance_current_object(path, top_path_level);
1960         } else {
1961                 path->top_type = NULL;
1962         }
1963 }
1964
1965 /**
1966  * skip any {...} blocks until a closing bracket is reached.
1967  */
1968 static void skip_initializers(void)
1969 {
1970         next_if('{');
1971
1972         while (token.kind != '}') {
1973                 if (token.kind == T_EOF)
1974                         return;
1975                 if (token.kind == '{') {
1976                         eat_block();
1977                         continue;
1978                 }
1979                 next_token();
1980         }
1981 }
1982
1983 static initializer_t *create_empty_initializer(void)
1984 {
1985         static initializer_t empty_initializer
1986                 = { .list = { { INITIALIZER_LIST }, 0 } };
1987         return &empty_initializer;
1988 }
1989
1990 /**
1991  * Parse a part of an initialiser for a struct or union,
1992  */
1993 static initializer_t *parse_sub_initializer(type_path_t *path,
1994                 type_t *outer_type, size_t top_path_level,
1995                 parse_initializer_env_t *env)
1996 {
1997         if (token.kind == '}') {
1998                 /* empty initializer */
1999                 return create_empty_initializer();
2000         }
2001
2002         type_t *orig_type = path->top_type;
2003         type_t *type      = NULL;
2004
2005         if (orig_type == NULL) {
2006                 /* We are initializing an empty compound. */
2007         } else {
2008                 type = skip_typeref(orig_type);
2009         }
2010
2011         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2012
2013         while (true) {
2014                 designator_t *designator = NULL;
2015                 if (token.kind == '.' || token.kind == '[') {
2016                         designator = parse_designation();
2017                         goto finish_designator;
2018                 } else if (token.kind == T_IDENTIFIER && look_ahead(1)->kind == ':') {
2019                         /* GNU-style designator ("identifier: value") */
2020                         designator = allocate_ast_zero(sizeof(designator[0]));
2021                         designator->source_position = token.base.source_position;
2022                         designator->symbol          = token.identifier.symbol;
2023                         eat(T_IDENTIFIER);
2024                         eat(':');
2025
2026 finish_designator:
2027                         /* reset path to toplevel, evaluate designator from there */
2028                         ascend_to(path, top_path_level);
2029                         if (!walk_designator(path, designator, false)) {
2030                                 /* can't continue after designation error */
2031                                 goto end_error;
2032                         }
2033
2034                         initializer_t *designator_initializer
2035                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2036                         designator_initializer->designator.designator = designator;
2037                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2038
2039                         orig_type = path->top_type;
2040                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2041                 }
2042
2043                 initializer_t *sub;
2044
2045                 if (token.kind == '{') {
2046                         if (type != NULL && is_type_scalar(type)) {
2047                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2048                         } else {
2049                                 if (type == NULL) {
2050                                         if (env->entity != NULL) {
2051                                                 errorf(HERE,
2052                                                      "extra brace group at end of initializer for '%Y'",
2053                                                      env->entity->base.symbol);
2054                                         } else {
2055                                                 errorf(HERE, "extra brace group at end of initializer");
2056                                         }
2057                                         eat('{');
2058                                 } else {
2059                                         eat('{');
2060                                         descend_into_subtype(path);
2061                                 }
2062
2063                                 add_anchor_token('}');
2064                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2065                                                             env);
2066                                 rem_anchor_token('}');
2067
2068                                 expect('}');
2069
2070                                 if (!type)
2071                                         goto error_parse_next;
2072
2073                                 ascend_from_subtype(path);
2074                         }
2075                 } else {
2076                         /* must be an expression */
2077                         expression_t *expression = parse_assignment_expression();
2078                         mark_vars_read(expression, NULL);
2079
2080                         if (env->must_be_constant && !is_linker_constant(expression)) {
2081                                 errorf(&expression->base.source_position,
2082                                        "Initialisation expression '%E' is not constant",
2083                                        expression);
2084                         }
2085
2086                         if (type == NULL) {
2087                                 /* we are already outside, ... */
2088                                 if (outer_type == NULL)
2089                                         goto error_parse_next;
2090                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2091                                 if (is_type_compound(outer_type_skip) &&
2092                                                 !outer_type_skip->compound.compound->complete) {
2093                                         goto error_parse_next;
2094                                 }
2095
2096                                 source_position_t const* const pos = &expression->base.source_position;
2097                                 if (env->entity != NULL) {
2098                                         warningf(WARN_OTHER, pos, "excess elements in initializer for '%Y'", env->entity->base.symbol);
2099                                 } else {
2100                                         warningf(WARN_OTHER, pos, "excess elements in initializer");
2101                                 }
2102                                 goto error_parse_next;
2103                         }
2104
2105                         /* handle { "string" } special case */
2106                         if ((expression->kind == EXPR_STRING_LITERAL
2107                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2108                                         && outer_type != NULL) {
2109                                 sub = initializer_from_expression(outer_type, expression);
2110                                 if (sub != NULL) {
2111                                         next_if(',');
2112                                         if (token.kind != '}') {
2113                                                 warningf(WARN_OTHER, HERE, "excessive elements in initializer for type '%T'", orig_type);
2114                                         }
2115                                         /* TODO: eat , ... */
2116                                         return sub;
2117                                 }
2118                         }
2119
2120                         /* descend into subtypes until expression matches type */
2121                         while (true) {
2122                                 orig_type = path->top_type;
2123                                 type      = skip_typeref(orig_type);
2124
2125                                 sub = initializer_from_expression(orig_type, expression);
2126                                 if (sub != NULL) {
2127                                         break;
2128                                 }
2129                                 if (!is_type_valid(type)) {
2130                                         goto end_error;
2131                                 }
2132                                 if (is_type_scalar(type)) {
2133                                         errorf(&expression->base.source_position,
2134                                                         "expression '%E' doesn't match expected type '%T'",
2135                                                         expression, orig_type);
2136                                         goto end_error;
2137                                 }
2138
2139                                 descend_into_subtype(path);
2140                         }
2141                 }
2142
2143                 /* update largest index of top array */
2144                 const type_path_entry_t *first      = &path->path[0];
2145                 type_t                  *first_type = first->type;
2146                 first_type                          = skip_typeref(first_type);
2147                 if (is_type_array(first_type)) {
2148                         size_t index = first->v.index;
2149                         if (index > path->max_index)
2150                                 path->max_index = index;
2151                 }
2152
2153                 /* append to initializers list */
2154                 ARR_APP1(initializer_t*, initializers, sub);
2155
2156 error_parse_next:
2157                 if (token.kind == '}') {
2158                         break;
2159                 }
2160                 add_anchor_token('}');
2161                 expect(',');
2162                 rem_anchor_token('}');
2163                 if (token.kind == '}') {
2164                         break;
2165                 }
2166
2167                 if (type != NULL) {
2168                         /* advance to the next declaration if we are not at the end */
2169                         advance_current_object(path, top_path_level);
2170                         orig_type = path->top_type;
2171                         if (orig_type != NULL)
2172                                 type = skip_typeref(orig_type);
2173                         else
2174                                 type = NULL;
2175                 }
2176         }
2177
2178         size_t len  = ARR_LEN(initializers);
2179         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2180         initializer_t *result = allocate_ast_zero(size);
2181         result->kind          = INITIALIZER_LIST;
2182         result->list.len      = len;
2183         memcpy(&result->list.initializers, initializers,
2184                len * sizeof(initializers[0]));
2185
2186         DEL_ARR_F(initializers);
2187         ascend_to(path, top_path_level+1);
2188
2189         return result;
2190
2191 end_error:
2192         skip_initializers();
2193         DEL_ARR_F(initializers);
2194         ascend_to(path, top_path_level+1);
2195         return NULL;
2196 }
2197
2198 static expression_t *make_size_literal(size_t value)
2199 {
2200         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_INTEGER);
2201         literal->base.type    = type_size_t;
2202
2203         char buf[128];
2204         snprintf(buf, sizeof(buf), "%u", (unsigned) value);
2205         literal->literal.value = make_string(buf);
2206
2207         return literal;
2208 }
2209
2210 /**
2211  * Parses an initializer. Parsers either a compound literal
2212  * (env->declaration == NULL) or an initializer of a declaration.
2213  */
2214 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2215 {
2216         type_t        *type      = skip_typeref(env->type);
2217         size_t         max_index = 0;
2218         initializer_t *result;
2219
2220         if (is_type_scalar(type)) {
2221                 result = parse_scalar_initializer(type, env->must_be_constant);
2222         } else if (token.kind == '{') {
2223                 eat('{');
2224
2225                 type_path_t path;
2226                 memset(&path, 0, sizeof(path));
2227                 path.top_type = env->type;
2228                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2229
2230                 descend_into_subtype(&path);
2231
2232                 add_anchor_token('}');
2233                 result = parse_sub_initializer(&path, env->type, 1, env);
2234                 rem_anchor_token('}');
2235
2236                 max_index = path.max_index;
2237                 DEL_ARR_F(path.path);
2238
2239                 expect('}');
2240         } else {
2241                 /* parse_scalar_initializer() also works in this case: we simply
2242                  * have an expression without {} around it */
2243                 result = parse_scalar_initializer(type, env->must_be_constant);
2244         }
2245
2246         /* §6.7.8:22 array initializers for arrays with unknown size determine
2247          * the array type size */
2248         if (is_type_array(type) && type->array.size_expression == NULL
2249                         && result != NULL) {
2250                 size_t size;
2251                 switch (result->kind) {
2252                 case INITIALIZER_LIST:
2253                         assert(max_index != 0xdeadbeaf);
2254                         size = max_index + 1;
2255                         break;
2256
2257                 case INITIALIZER_STRING:
2258                         size = result->string.string.size;
2259                         break;
2260
2261                 case INITIALIZER_WIDE_STRING:
2262                         size = result->wide_string.string.size;
2263                         break;
2264
2265                 case INITIALIZER_DESIGNATOR:
2266                 case INITIALIZER_VALUE:
2267                         /* can happen for parse errors */
2268                         size = 0;
2269                         break;
2270
2271                 default:
2272                         internal_errorf(HERE, "invalid initializer type");
2273                 }
2274
2275                 type_t *new_type = duplicate_type(type);
2276
2277                 new_type->array.size_expression   = make_size_literal(size);
2278                 new_type->array.size_constant     = true;
2279                 new_type->array.has_implicit_size = true;
2280                 new_type->array.size              = size;
2281                 env->type = new_type;
2282         }
2283
2284         return result;
2285 }
2286
2287 static void append_entity(scope_t *scope, entity_t *entity)
2288 {
2289         if (scope->last_entity != NULL) {
2290                 scope->last_entity->base.next = entity;
2291         } else {
2292                 scope->entities = entity;
2293         }
2294         entity->base.parent_entity = current_entity;
2295         scope->last_entity         = entity;
2296 }
2297
2298
2299 static compound_t *parse_compound_type_specifier(bool is_struct)
2300 {
2301         source_position_t const pos = *HERE;
2302         eat(is_struct ? T_struct : T_union);
2303
2304         symbol_t    *symbol     = NULL;
2305         entity_t    *entity     = NULL;
2306         attribute_t *attributes = NULL;
2307
2308         if (token.kind == T___attribute__) {
2309                 attributes = parse_attributes(NULL);
2310         }
2311
2312         entity_kind_tag_t const kind = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
2313         if (token.kind == T_IDENTIFIER) {
2314                 /* the compound has a name, check if we have seen it already */
2315                 symbol = token.identifier.symbol;
2316                 entity = get_tag(symbol, kind);
2317                 next_token();
2318
2319                 if (entity != NULL) {
2320                         if (entity->base.parent_scope != current_scope &&
2321                             (token.kind == '{' || token.kind == ';')) {
2322                                 /* we're in an inner scope and have a definition. Shadow
2323                                  * existing definition in outer scope */
2324                                 entity = NULL;
2325                         } else if (entity->compound.complete && token.kind == '{') {
2326                                 source_position_t const *const ppos = &entity->base.source_position;
2327                                 errorf(&pos, "multiple definitions of '%N' (previous definition %P)", entity, ppos);
2328                                 /* clear members in the hope to avoid further errors */
2329                                 entity->compound.members.entities = NULL;
2330                         }
2331                 }
2332         } else if (token.kind != '{') {
2333                 char const *const msg =
2334                         is_struct ? "while parsing struct type specifier" :
2335                                     "while parsing union type specifier";
2336                 parse_error_expected(msg, T_IDENTIFIER, '{', NULL);
2337
2338                 return NULL;
2339         }
2340
2341         if (entity == NULL) {
2342                 entity = allocate_entity_zero(kind, NAMESPACE_TAG, symbol, &pos);
2343                 entity->compound.alignment = 1;
2344                 entity->base.parent_scope  = current_scope;
2345                 if (symbol != NULL) {
2346                         environment_push(entity);
2347                 }
2348                 append_entity(current_scope, entity);
2349         }
2350
2351         if (token.kind == '{') {
2352                 parse_compound_type_entries(&entity->compound);
2353
2354                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2355                 if (symbol == NULL) {
2356                         assert(anonymous_entity == NULL);
2357                         anonymous_entity = entity;
2358                 }
2359         }
2360
2361         if (attributes != NULL) {
2362                 handle_entity_attributes(attributes, entity);
2363         }
2364
2365         return &entity->compound;
2366 }
2367
2368 static void parse_enum_entries(type_t *const enum_type)
2369 {
2370         eat('{');
2371
2372         if (token.kind == '}') {
2373                 errorf(HERE, "empty enum not allowed");
2374                 next_token();
2375                 return;
2376         }
2377
2378         add_anchor_token('}');
2379         add_anchor_token(',');
2380         do {
2381                 add_anchor_token('=');
2382                 source_position_t pos;
2383                 symbol_t *const symbol = expect_identifier("while parsing enum entry", &pos);
2384                 entity_t *const entity = allocate_entity_zero(ENTITY_ENUM_VALUE, NAMESPACE_NORMAL, symbol, &pos);
2385                 entity->enum_value.enum_type = enum_type;
2386                 rem_anchor_token('=');
2387
2388                 if (next_if('=')) {
2389                         expression_t *value = parse_constant_expression();
2390
2391                         value = create_implicit_cast(value, enum_type);
2392                         entity->enum_value.value = value;
2393
2394                         /* TODO semantic */
2395                 }
2396
2397                 record_entity(entity, false);
2398         } while (next_if(',') && token.kind != '}');
2399         rem_anchor_token(',');
2400         rem_anchor_token('}');
2401
2402         expect('}');
2403 }
2404
2405 static type_t *parse_enum_specifier(void)
2406 {
2407         source_position_t const pos = *HERE;
2408         entity_t               *entity;
2409         symbol_t               *symbol;
2410
2411         eat(T_enum);
2412         switch (token.kind) {
2413                 case T_IDENTIFIER:
2414                         symbol = token.identifier.symbol;
2415                         entity = get_tag(symbol, ENTITY_ENUM);
2416                         next_token();
2417
2418                         if (entity != NULL) {
2419                                 if (entity->base.parent_scope != current_scope &&
2420                                                 (token.kind == '{' || token.kind == ';')) {
2421                                         /* we're in an inner scope and have a definition. Shadow
2422                                          * existing definition in outer scope */
2423                                         entity = NULL;
2424                                 } else if (entity->enume.complete && token.kind == '{') {
2425                                         source_position_t const *const ppos = &entity->base.source_position;
2426                                         errorf(&pos, "multiple definitions of '%N' (previous definition %P)", entity, ppos);
2427                                 }
2428                         }
2429                         break;
2430
2431                 case '{':
2432                         entity = NULL;
2433                         symbol = NULL;
2434                         break;
2435
2436                 default:
2437                         parse_error_expected("while parsing enum type specifier",
2438                                         T_IDENTIFIER, '{', NULL);
2439                         return NULL;
2440         }
2441
2442         if (entity == NULL) {
2443                 entity = allocate_entity_zero(ENTITY_ENUM, NAMESPACE_TAG, symbol, &pos);
2444                 entity->base.parent_scope = current_scope;
2445         }
2446
2447         type_t *const type     = allocate_type_zero(TYPE_ENUM);
2448         type->enumt.enume      = &entity->enume;
2449         type->enumt.base.akind = ATOMIC_TYPE_INT;
2450
2451         if (token.kind == '{') {
2452                 if (symbol != NULL) {
2453                         environment_push(entity);
2454                 }
2455                 append_entity(current_scope, entity);
2456                 entity->enume.complete = true;
2457
2458                 parse_enum_entries(type);
2459                 parse_attributes(NULL);
2460
2461                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2462                 if (symbol == NULL) {
2463                         assert(anonymous_entity == NULL);
2464                         anonymous_entity = entity;
2465                 }
2466         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
2467                 errorf(HERE, "'%T' used before definition (incomplete enums are a GNU extension)", type);
2468         }
2469
2470         return type;
2471 }
2472
2473 /**
2474  * if a symbol is a typedef to another type, return true
2475  */
2476 static bool is_typedef_symbol(symbol_t *symbol)
2477 {
2478         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
2479         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
2480 }
2481
2482 static type_t *parse_typeof(void)
2483 {
2484         eat(T___typeof__);
2485
2486         type_t *type;
2487
2488         expect('(');
2489         add_anchor_token(')');
2490
2491         expression_t *expression  = NULL;
2492
2493         switch (token.kind) {
2494         case T_IDENTIFIER:
2495                 if (is_typedef_symbol(token.identifier.symbol)) {
2496         DECLARATION_START
2497                         type = parse_typename();
2498                 } else {
2499         default:
2500                         expression = parse_expression();
2501                         type       = revert_automatic_type_conversion(expression);
2502                 }
2503                 break;
2504         }
2505
2506         rem_anchor_token(')');
2507         expect(')');
2508
2509         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
2510         typeof_type->typeoft.expression  = expression;
2511         typeof_type->typeoft.typeof_type = type;
2512
2513         return typeof_type;
2514 }
2515
2516 typedef enum specifiers_t {
2517         SPECIFIER_SIGNED    = 1 << 0,
2518         SPECIFIER_UNSIGNED  = 1 << 1,
2519         SPECIFIER_LONG      = 1 << 2,
2520         SPECIFIER_INT       = 1 << 3,
2521         SPECIFIER_DOUBLE    = 1 << 4,
2522         SPECIFIER_CHAR      = 1 << 5,
2523         SPECIFIER_WCHAR_T   = 1 << 6,
2524         SPECIFIER_SHORT     = 1 << 7,
2525         SPECIFIER_LONG_LONG = 1 << 8,
2526         SPECIFIER_FLOAT     = 1 << 9,
2527         SPECIFIER_BOOL      = 1 << 10,
2528         SPECIFIER_VOID      = 1 << 11,
2529         SPECIFIER_INT8      = 1 << 12,
2530         SPECIFIER_INT16     = 1 << 13,
2531         SPECIFIER_INT32     = 1 << 14,
2532         SPECIFIER_INT64     = 1 << 15,
2533         SPECIFIER_INT128    = 1 << 16,
2534         SPECIFIER_COMPLEX   = 1 << 17,
2535         SPECIFIER_IMAGINARY = 1 << 18,
2536 } specifiers_t;
2537
2538 static type_t *get_typedef_type(symbol_t *symbol)
2539 {
2540         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
2541         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
2542                 return NULL;
2543
2544         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
2545         type->typedeft.typedefe = &entity->typedefe;
2546
2547         return type;
2548 }
2549
2550 static attribute_t *parse_attribute_ms_property(attribute_t *attribute)
2551 {
2552         attribute_property_argument_t *const property = allocate_ast_zero(sizeof(*property));
2553
2554         expect('(');
2555
2556         add_anchor_token(')');
2557         add_anchor_token(',');
2558         do {
2559                 add_anchor_token('=');
2560                 source_position_t pos;
2561                 symbol_t *const prop_sym = expect_identifier("while parsing property declspec", &pos);
2562                 rem_anchor_token('=');
2563
2564                 symbol_t **prop = NULL;
2565                 if (prop_sym) {
2566                         if (streq(prop_sym->string, "put")) {
2567                                 prop = &property->put_symbol;
2568                         } else if (streq(prop_sym->string, "get")) {
2569                                 prop = &property->get_symbol;
2570                         } else {
2571                                 errorf(&pos, "expected put or get in property declspec, but got '%Y'", prop_sym);
2572                         }
2573                 }
2574
2575                 add_anchor_token(T_IDENTIFIER);
2576                 expect('=');
2577                 rem_anchor_token(T_IDENTIFIER);
2578
2579                 symbol_t *const sym = expect_identifier("while parsing property declspec", NULL);
2580                 if (prop != NULL)
2581                         *prop = sym ? sym : sym_anonymous;
2582         } while (next_if(','));
2583         rem_anchor_token(',');
2584         rem_anchor_token(')');
2585
2586         attribute->a.property = property;
2587
2588         expect(')');
2589         return attribute;
2590 }
2591
2592 static attribute_t *parse_microsoft_extended_decl_modifier_single(void)
2593 {
2594         attribute_kind_t kind = ATTRIBUTE_UNKNOWN;
2595         if (next_if(T_restrict)) {
2596                 kind = ATTRIBUTE_MS_RESTRICT;
2597         } else if (token.kind == T_IDENTIFIER) {
2598                 const char *name = token.identifier.symbol->string;
2599                 for (attribute_kind_t k = ATTRIBUTE_MS_FIRST; k <= ATTRIBUTE_MS_LAST;
2600                      ++k) {
2601                         const char *attribute_name = get_attribute_name(k);
2602                         if (attribute_name != NULL && streq(attribute_name, name)) {
2603                                 kind = k;
2604                                 break;
2605                         }
2606                 }
2607
2608                 if (kind == ATTRIBUTE_UNKNOWN) {
2609                         warningf(WARN_ATTRIBUTE, HERE, "unknown __declspec '%s' ignored", name);
2610                 }
2611         } else {
2612                 parse_error_expected("while parsing __declspec", T_IDENTIFIER, NULL);
2613                 return NULL;
2614         }
2615
2616         attribute_t *attribute = allocate_attribute_zero(kind);
2617         eat(T_IDENTIFIER);
2618
2619         if (kind == ATTRIBUTE_MS_PROPERTY) {
2620                 return parse_attribute_ms_property(attribute);
2621         }
2622
2623         /* parse arguments */
2624         if (next_if('('))
2625                 attribute->a.arguments = parse_attribute_arguments();
2626
2627         return attribute;
2628 }
2629
2630 static attribute_t *parse_microsoft_extended_decl_modifier(attribute_t *first)
2631 {
2632         eat(T__declspec);
2633
2634         expect('(');
2635         if (token.kind != ')') {
2636                 add_anchor_token(')');
2637
2638                 attribute_t **anchor = &first;
2639                 do {
2640                         while (*anchor != NULL)
2641                                 anchor = &(*anchor)->next;
2642
2643                         attribute_t *attribute
2644                                 = parse_microsoft_extended_decl_modifier_single();
2645                         if (attribute == NULL)
2646                                 break;
2647
2648                         *anchor = attribute;
2649                         anchor  = &attribute->next;
2650                 } while (next_if(','));
2651
2652                 rem_anchor_token(')');
2653         }
2654         expect(')');
2655         return first;
2656 }
2657
2658 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
2659 {
2660         entity_t *const entity = allocate_entity_zero(kind, NAMESPACE_NORMAL, symbol, HERE);
2661         if (is_declaration(entity)) {
2662                 entity->declaration.type     = type_error_type;
2663                 entity->declaration.implicit = true;
2664         } else if (kind == ENTITY_TYPEDEF) {
2665                 entity->typedefe.type    = type_error_type;
2666                 entity->typedefe.builtin = true;
2667         }
2668         if (kind != ENTITY_COMPOUND_MEMBER)
2669                 record_entity(entity, false);
2670         return entity;
2671 }
2672
2673 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
2674 {
2675         type_t            *type            = NULL;
2676         type_qualifiers_t  qualifiers      = TYPE_QUALIFIER_NONE;
2677         unsigned           type_specifiers = 0;
2678         bool               newtype         = false;
2679         bool               saw_error       = false;
2680
2681         memset(specifiers, 0, sizeof(*specifiers));
2682         specifiers->source_position = token.base.source_position;
2683
2684         while (true) {
2685                 specifiers->attributes = parse_attributes(specifiers->attributes);
2686
2687                 switch (token.kind) {
2688                 /* storage class */
2689 #define MATCH_STORAGE_CLASS(token, class)                                  \
2690                 case token:                                                        \
2691                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
2692                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
2693                         }                                                              \
2694                         specifiers->storage_class = class;                             \
2695                         if (specifiers->thread_local)                                  \
2696                                 goto check_thread_storage_class;                           \
2697                         next_token();                                                  \
2698                         break;
2699
2700                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
2701                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
2702                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
2703                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
2704                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
2705
2706                 case T__declspec:
2707                         specifiers->attributes
2708                                 = parse_microsoft_extended_decl_modifier(specifiers->attributes);
2709                         break;
2710
2711                 case T___thread:
2712                         if (specifiers->thread_local) {
2713                                 errorf(HERE, "duplicate '__thread'");
2714                         } else {
2715                                 specifiers->thread_local = true;
2716 check_thread_storage_class:
2717                                 switch (specifiers->storage_class) {
2718                                         case STORAGE_CLASS_EXTERN:
2719                                         case STORAGE_CLASS_NONE:
2720                                         case STORAGE_CLASS_STATIC:
2721                                                 break;
2722
2723                                                 char const* wrong;
2724                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_storage_class;
2725                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_storage_class;
2726                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_storage_class;
2727 wrong_thread_storage_class:
2728                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
2729                                                 break;
2730                                 }
2731                         }
2732                         next_token();
2733                         break;
2734
2735                 /* type qualifiers */
2736 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
2737                 case token:                                                     \
2738                         qualifiers |= qualifier;                                    \
2739                         next_token();                                               \
2740                         break
2741
2742                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
2743                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
2744                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
2745                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
2746                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
2747                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
2748                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
2749                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
2750
2751                 /* type specifiers */
2752 #define MATCH_SPECIFIER(token, specifier, name)                         \
2753                 case token:                                                     \
2754                         if (type_specifiers & specifier) {                           \
2755                                 errorf(HERE, "multiple " name " type specifiers given"); \
2756                         } else {                                                    \
2757                                 type_specifiers |= specifier;                           \
2758                         }                                                           \
2759                         next_token();                                               \
2760                         break
2761
2762                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
2763                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
2764                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
2765                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
2766                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
2767                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
2768                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
2769                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
2770                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
2771                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
2772                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
2773                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
2774                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
2775                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
2776                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
2777                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
2778                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
2779                 MATCH_SPECIFIER(T_wchar_t,    SPECIFIER_WCHAR_T,   "wchar_t");
2780
2781                 case T_inline:
2782                         next_token();
2783                         specifiers->is_inline = true;
2784                         break;
2785
2786 #if 0
2787                 case T__forceinline:
2788                         next_token();
2789                         specifiers->modifiers |= DM_FORCEINLINE;
2790                         break;
2791 #endif
2792
2793                 case T_long:
2794                         if (type_specifiers & SPECIFIER_LONG_LONG) {
2795                                 errorf(HERE, "too many long type specifiers given");
2796                         } else if (type_specifiers & SPECIFIER_LONG) {
2797                                 type_specifiers |= SPECIFIER_LONG_LONG;
2798                         } else {
2799                                 type_specifiers |= SPECIFIER_LONG;
2800                         }
2801                         next_token();
2802                         break;
2803
2804 #define CHECK_DOUBLE_TYPE() \
2805         (type != NULL ? errorf(HERE, "multiple types in declaration specifiers") : (void)0)
2806
2807                 case T_struct:
2808                         CHECK_DOUBLE_TYPE();
2809                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
2810
2811                         type->compound.compound = parse_compound_type_specifier(true);
2812                         break;
2813                 case T_union:
2814                         CHECK_DOUBLE_TYPE();
2815                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
2816                         type->compound.compound = parse_compound_type_specifier(false);
2817                         break;
2818                 case T_enum:
2819                         CHECK_DOUBLE_TYPE();
2820                         type = parse_enum_specifier();
2821                         break;
2822                 case T___typeof__:
2823                         CHECK_DOUBLE_TYPE();
2824                         type = parse_typeof();
2825                         break;
2826                 case T___builtin_va_list:
2827                         CHECK_DOUBLE_TYPE();
2828                         type = duplicate_type(type_valist);
2829                         next_token();
2830                         break;
2831
2832                 case T_IDENTIFIER: {
2833                         /* only parse identifier if we haven't found a type yet */
2834                         if (type != NULL || type_specifiers != 0) {
2835                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
2836                                  * declaration, so it doesn't generate errors about expecting '(' or
2837                                  * '{' later on. */
2838                                 switch (look_ahead(1)->kind) {
2839                                         STORAGE_CLASSES
2840                                         TYPE_SPECIFIERS
2841                                         case T_const:
2842                                         case T_restrict:
2843                                         case T_volatile:
2844                                         case T_inline:
2845                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
2846                                         case T_IDENTIFIER:
2847                                         case '&':
2848                                         case '*':
2849                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
2850                                                 next_token();
2851                                                 continue;
2852
2853                                         default:
2854                                                 goto finish_specifiers;
2855                                 }
2856                         }
2857
2858                         type_t *const typedef_type = get_typedef_type(token.identifier.symbol);
2859                         if (typedef_type == NULL) {
2860                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
2861                                  * declaration, so it doesn't generate 'implicit int' followed by more
2862                                  * errors later on. */
2863                                 token_kind_t const la1_type = (token_kind_t)look_ahead(1)->kind;
2864                                 switch (la1_type) {
2865                                         DECLARATION_START
2866                                         case T_IDENTIFIER:
2867                                         case '&':
2868                                         case '*': {
2869                                                 errorf(HERE, "%K does not name a type", &token);
2870
2871                                                 symbol_t *symbol = token.identifier.symbol;
2872                                                 entity_t *entity
2873                                                         = create_error_entity(symbol, ENTITY_TYPEDEF);
2874
2875                                                 type = allocate_type_zero(TYPE_TYPEDEF);
2876                                                 type->typedeft.typedefe = &entity->typedefe;
2877
2878                                                 next_token();
2879                                                 saw_error = true;
2880                                                 continue;
2881                                         }
2882
2883                                         default:
2884                                                 goto finish_specifiers;
2885                                 }
2886                         }
2887
2888                         next_token();
2889                         type = typedef_type;
2890                         break;
2891                 }
2892
2893                 /* function specifier */
2894                 default:
2895                         goto finish_specifiers;
2896                 }
2897         }
2898
2899 finish_specifiers:
2900         specifiers->attributes = parse_attributes(specifiers->attributes);
2901
2902         if (type == NULL || (saw_error && type_specifiers != 0)) {
2903                 atomic_type_kind_t atomic_type;
2904
2905                 /* match valid basic types */
2906                 switch (type_specifiers) {
2907                 case SPECIFIER_VOID:
2908                         atomic_type = ATOMIC_TYPE_VOID;
2909                         break;
2910                 case SPECIFIER_WCHAR_T:
2911                         atomic_type = ATOMIC_TYPE_WCHAR_T;
2912                         break;
2913                 case SPECIFIER_CHAR:
2914                         atomic_type = ATOMIC_TYPE_CHAR;
2915                         break;
2916                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
2917                         atomic_type = ATOMIC_TYPE_SCHAR;
2918                         break;
2919                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
2920                         atomic_type = ATOMIC_TYPE_UCHAR;
2921                         break;
2922                 case SPECIFIER_SHORT:
2923                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
2924                 case SPECIFIER_SHORT | SPECIFIER_INT:
2925                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
2926                         atomic_type = ATOMIC_TYPE_SHORT;
2927                         break;
2928                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
2929                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
2930                         atomic_type = ATOMIC_TYPE_USHORT;
2931                         break;
2932                 case SPECIFIER_INT:
2933                 case SPECIFIER_SIGNED:
2934                 case SPECIFIER_SIGNED | SPECIFIER_INT:
2935                         atomic_type = ATOMIC_TYPE_INT;
2936                         break;
2937                 case SPECIFIER_UNSIGNED:
2938                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
2939                         atomic_type = ATOMIC_TYPE_UINT;
2940                         break;
2941                 case SPECIFIER_LONG:
2942                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
2943                 case SPECIFIER_LONG | SPECIFIER_INT:
2944                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
2945                         atomic_type = ATOMIC_TYPE_LONG;
2946                         break;
2947                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
2948                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
2949                         atomic_type = ATOMIC_TYPE_ULONG;
2950                         break;
2951
2952                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
2953                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
2954                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
2955                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
2956                         | SPECIFIER_INT:
2957                         atomic_type = ATOMIC_TYPE_LONGLONG;
2958                         goto warn_about_long_long;
2959
2960                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
2961                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
2962                         | SPECIFIER_INT:
2963                         atomic_type = ATOMIC_TYPE_ULONGLONG;
2964 warn_about_long_long:
2965                         warningf(WARN_LONG_LONG, &specifiers->source_position, "ISO C90 does not support 'long long'");
2966                         break;
2967
2968                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
2969                         atomic_type = unsigned_int8_type_kind;
2970                         break;
2971
2972                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
2973                         atomic_type = unsigned_int16_type_kind;
2974                         break;
2975
2976                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
2977                         atomic_type = unsigned_int32_type_kind;
2978                         break;
2979
2980                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
2981                         atomic_type = unsigned_int64_type_kind;
2982                         break;
2983
2984                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
2985                         atomic_type = unsigned_int128_type_kind;
2986                         break;
2987
2988                 case SPECIFIER_INT8:
2989                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
2990                         atomic_type = int8_type_kind;
2991                         break;
2992
2993                 case SPECIFIER_INT16:
2994                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
2995                         atomic_type = int16_type_kind;
2996                         break;
2997
2998                 case SPECIFIER_INT32:
2999                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3000                         atomic_type = int32_type_kind;
3001                         break;
3002
3003                 case SPECIFIER_INT64:
3004                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3005                         atomic_type = int64_type_kind;
3006                         break;
3007
3008                 case SPECIFIER_INT128:
3009                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3010                         atomic_type = int128_type_kind;
3011                         break;
3012
3013                 case SPECIFIER_FLOAT:
3014                         atomic_type = ATOMIC_TYPE_FLOAT;
3015                         break;
3016                 case SPECIFIER_DOUBLE:
3017                         atomic_type = ATOMIC_TYPE_DOUBLE;
3018                         break;
3019                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3020                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3021                         break;
3022                 case SPECIFIER_BOOL:
3023                         atomic_type = ATOMIC_TYPE_BOOL;
3024                         break;
3025                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3026                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3027                         atomic_type = ATOMIC_TYPE_FLOAT;
3028                         break;
3029                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3030                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3031                         atomic_type = ATOMIC_TYPE_DOUBLE;
3032                         break;
3033                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3034                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3035                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3036                         break;
3037                 default: {
3038                         /* invalid specifier combination, give an error message */
3039                         source_position_t const* const pos = &specifiers->source_position;
3040                         if (type_specifiers == 0) {
3041                                 if (!saw_error) {
3042                                         /* ISO/IEC 14882:1998(E) §C.1.5:4 */
3043                                         if (!(c_mode & _CXX) && !strict_mode) {
3044                                                 warningf(WARN_IMPLICIT_INT, pos, "no type specifiers in declaration, using 'int'");
3045                                                 atomic_type = ATOMIC_TYPE_INT;
3046                                                 break;
3047                                         } else {
3048                                                 errorf(pos, "no type specifiers given in declaration");
3049                                         }
3050                                 }
3051                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3052                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3053                                 errorf(pos, "signed and unsigned specifiers given");
3054                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3055                                 errorf(pos, "only integer types can be signed or unsigned");
3056                         } else {
3057                                 errorf(pos, "multiple datatypes in declaration");
3058                         }
3059                         goto end_error;
3060                 }
3061                 }
3062
3063                 if (type_specifiers & SPECIFIER_COMPLEX) {
3064                         type = allocate_type_zero(TYPE_COMPLEX);
3065                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3066                         type = allocate_type_zero(TYPE_IMAGINARY);
3067                 } else {
3068                         type = allocate_type_zero(TYPE_ATOMIC);
3069                 }
3070                 type->atomic.akind = atomic_type;
3071                 newtype = true;
3072         } else if (type_specifiers != 0) {
3073                 errorf(&specifiers->source_position, "multiple datatypes in declaration");
3074         }
3075
3076         /* FIXME: check type qualifiers here */
3077         type->base.qualifiers = qualifiers;
3078
3079         if (newtype) {
3080                 type = identify_new_type(type);
3081         } else {
3082                 type = typehash_insert(type);
3083         }
3084
3085         if (specifiers->attributes != NULL)
3086                 type = handle_type_attributes(specifiers->attributes, type);
3087         specifiers->type = type;
3088         return;
3089
3090 end_error:
3091         specifiers->type = type_error_type;
3092 }
3093
3094 static type_qualifiers_t parse_type_qualifiers(void)
3095 {
3096         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3097
3098         while (true) {
3099                 switch (token.kind) {
3100                 /* type qualifiers */
3101                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3102                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3103                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3104                 /* microsoft extended type modifiers */
3105                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3106                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3107                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3108                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3109                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3110
3111                 default:
3112                         return qualifiers;
3113                 }
3114         }
3115 }
3116
3117 /**
3118  * Parses an K&R identifier list
3119  */
3120 static void parse_identifier_list(scope_t *scope)
3121 {
3122         assert(token.kind == T_IDENTIFIER);
3123         do {
3124                 entity_t *const entity = allocate_entity_zero(ENTITY_PARAMETER, NAMESPACE_NORMAL, token.identifier.symbol, HERE);
3125                 /* a K&R parameter has no type, yet */
3126                 next_token();
3127
3128                 if (scope != NULL)
3129                         append_entity(scope, entity);
3130         } while (next_if(',') && token.kind == T_IDENTIFIER);
3131 }
3132
3133 static entity_t *parse_parameter(void)
3134 {
3135         declaration_specifiers_t specifiers;
3136         parse_declaration_specifiers(&specifiers);
3137
3138         entity_t *entity = parse_declarator(&specifiers,
3139                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
3140         anonymous_entity = NULL;
3141         return entity;
3142 }
3143
3144 static void semantic_parameter_incomplete(const entity_t *entity)
3145 {
3146         assert(entity->kind == ENTITY_PARAMETER);
3147
3148         /* §6.7.5.3:4  After adjustment, the parameters in a parameter type
3149          *             list in a function declarator that is part of a
3150          *             definition of that function shall not have
3151          *             incomplete type. */
3152         type_t *type = skip_typeref(entity->declaration.type);
3153         if (is_type_incomplete(type)) {
3154                 errorf(&entity->base.source_position, "'%N' has incomplete type", entity);
3155         }
3156 }
3157
3158 static bool has_parameters(void)
3159 {
3160         /* func(void) is not a parameter */
3161         if (look_ahead(1)->kind != ')')
3162                 return true;
3163         if (token.kind == T_IDENTIFIER) {
3164                 entity_t const *const entity
3165                         = get_entity(token.identifier.symbol, NAMESPACE_NORMAL);
3166                 if (entity == NULL)
3167                         return true;
3168                 if (entity->kind != ENTITY_TYPEDEF)
3169                         return true;
3170                 type_t const *const type = skip_typeref(entity->typedefe.type);
3171                 if (!is_type_void(type))
3172                         return true;
3173                 if (c_mode & _CXX) {
3174                         /* ISO/IEC 14882:1998(E) §8.3.5:2  It must be literally (void).  A typedef
3175                          * is not allowed. */
3176                         errorf(HERE, "empty parameter list defined with a typedef of 'void' not allowed in C++");
3177                 } else if (type->base.qualifiers != TYPE_QUALIFIER_NONE) {
3178                         /* §6.7.5.3:10  Qualification is not allowed here. */
3179                         errorf(HERE, "'void' as parameter must not have type qualifiers");
3180                 }
3181         } else if (token.kind != T_void) {
3182                 return true;
3183         }
3184         next_token();
3185         return false;
3186 }
3187
3188 /**
3189  * Parses function type parameters (and optionally creates variable_t entities
3190  * for them in a scope)
3191  */
3192 static void parse_parameters(function_type_t *type, scope_t *scope)
3193 {
3194         eat('(');
3195         add_anchor_token(')');
3196
3197         if (token.kind == T_IDENTIFIER                  &&
3198             !is_typedef_symbol(token.identifier.symbol) &&
3199             (look_ahead(1)->kind == ',' || look_ahead(1)->kind == ')')) {
3200                 type->kr_style_parameters = true;
3201                 parse_identifier_list(scope);
3202         } else if (token.kind == ')') {
3203                 /* ISO/IEC 14882:1998(E) §C.1.6:1 */
3204                 if (!(c_mode & _CXX))
3205                         type->unspecified_parameters = true;
3206         } else if (has_parameters()) {
3207                 function_parameter_t **anchor = &type->parameters;
3208                 add_anchor_token(',');
3209                 do {
3210                         switch (token.kind) {
3211                         case T_DOTDOTDOT:
3212                                 next_token();
3213                                 type->variadic = true;
3214                                 goto parameters_finished;
3215
3216                         case T_IDENTIFIER:
3217                         DECLARATION_START
3218                         {
3219                                 entity_t *entity = parse_parameter();
3220                                 if (entity->kind == ENTITY_TYPEDEF) {
3221                                         errorf(&entity->base.source_position,
3222                                                         "typedef not allowed as function parameter");
3223                                         break;
3224                                 }
3225                                 assert(is_declaration(entity));
3226
3227                                 semantic_parameter_incomplete(entity);
3228
3229                                 function_parameter_t *const parameter =
3230                                         allocate_parameter(entity->declaration.type);
3231
3232                                 if (scope != NULL) {
3233                                         append_entity(scope, entity);
3234                                 }
3235
3236                                 *anchor = parameter;
3237                                 anchor  = &parameter->next;
3238                                 break;
3239                         }
3240
3241                         default:
3242                                 goto parameters_finished;
3243                         }
3244                 } while (next_if(','));
3245 parameters_finished:
3246                 rem_anchor_token(',');
3247         }
3248
3249         rem_anchor_token(')');
3250         expect(')');
3251 }
3252
3253 typedef enum construct_type_kind_t {
3254         CONSTRUCT_POINTER = 1,
3255         CONSTRUCT_REFERENCE,
3256         CONSTRUCT_FUNCTION,
3257         CONSTRUCT_ARRAY
3258 } construct_type_kind_t;
3259
3260 typedef union construct_type_t construct_type_t;
3261
3262 typedef struct construct_type_base_t {
3263         construct_type_kind_t  kind;
3264         source_position_t      pos;
3265         construct_type_t      *next;
3266 } construct_type_base_t;
3267
3268 typedef struct parsed_pointer_t {
3269         construct_type_base_t  base;
3270         type_qualifiers_t      type_qualifiers;
3271         variable_t            *base_variable;  /**< MS __based extension. */
3272 } parsed_pointer_t;
3273
3274 typedef struct parsed_reference_t {
3275         construct_type_base_t base;
3276 } parsed_reference_t;
3277
3278 typedef struct construct_function_type_t {
3279         construct_type_base_t  base;
3280         type_t                *function_type;
3281 } construct_function_type_t;
3282
3283 typedef struct parsed_array_t {
3284         construct_type_base_t  base;
3285         type_qualifiers_t      type_qualifiers;
3286         bool                   is_static;
3287         bool                   is_variable;
3288         expression_t          *size;
3289 } parsed_array_t;
3290
3291 union construct_type_t {
3292         construct_type_kind_t     kind;
3293         construct_type_base_t     base;
3294         parsed_pointer_t          pointer;
3295         parsed_reference_t        reference;
3296         construct_function_type_t function;
3297         parsed_array_t            array;
3298 };
3299
3300 static construct_type_t *allocate_declarator_zero(construct_type_kind_t const kind, size_t const size)
3301 {
3302         construct_type_t *const cons = obstack_alloc(&temp_obst, size);
3303         memset(cons, 0, size);
3304         cons->kind     = kind;
3305         cons->base.pos = *HERE;
3306         return cons;
3307 }
3308
3309 /* §6.7.5.1 */
3310 static construct_type_t *parse_pointer_declarator(void)
3311 {
3312         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_POINTER, sizeof(parsed_pointer_t));
3313         eat('*');
3314         cons->pointer.type_qualifiers = parse_type_qualifiers();
3315         //cons->pointer.base_variable   = base_variable;
3316
3317         return cons;
3318 }
3319
3320 /* ISO/IEC 14882:1998(E) §8.3.2 */
3321 static construct_type_t *parse_reference_declarator(void)
3322 {
3323         if (!(c_mode & _CXX))
3324                 errorf(HERE, "references are only available for C++");
3325
3326         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_REFERENCE, sizeof(parsed_reference_t));
3327         eat('&');
3328
3329         return cons;
3330 }
3331
3332 /* §6.7.5.2 */
3333 static construct_type_t *parse_array_declarator(void)
3334 {
3335         construct_type_t *const cons  = allocate_declarator_zero(CONSTRUCT_ARRAY, sizeof(parsed_array_t));
3336         parsed_array_t   *const array = &cons->array;
3337
3338         eat('[');
3339         add_anchor_token(']');
3340
3341         bool is_static = next_if(T_static);
3342
3343         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3344
3345         if (!is_static)
3346                 is_static = next_if(T_static);
3347
3348         array->type_qualifiers = type_qualifiers;
3349         array->is_static       = is_static;
3350
3351         expression_t *size = NULL;
3352         if (token.kind == '*' && look_ahead(1)->kind == ']') {
3353                 array->is_variable = true;
3354                 next_token();
3355         } else if (token.kind != ']') {
3356                 size = parse_assignment_expression();
3357
3358                 /* §6.7.5.2:1  Array size must have integer type */
3359                 type_t *const orig_type = size->base.type;
3360                 type_t *const type      = skip_typeref(orig_type);
3361                 if (!is_type_integer(type) && is_type_valid(type)) {
3362                         errorf(&size->base.source_position,
3363                                "array size '%E' must have integer type but has type '%T'",
3364                                size, orig_type);
3365                 }
3366
3367                 array->size = size;
3368                 mark_vars_read(size, NULL);
3369         }
3370
3371         if (is_static && size == NULL)
3372                 errorf(&array->base.pos, "static array parameters require a size");
3373
3374         rem_anchor_token(']');
3375         expect(']');
3376         return cons;
3377 }
3378
3379 /* §6.7.5.3 */
3380 static construct_type_t *parse_function_declarator(scope_t *scope)
3381 {
3382         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_FUNCTION, sizeof(construct_function_type_t));
3383
3384         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
3385         function_type_t *ftype = &type->function;
3386
3387         ftype->linkage            = current_linkage;
3388         ftype->calling_convention = CC_DEFAULT;
3389
3390         parse_parameters(ftype, scope);
3391
3392         cons->function.function_type = type;
3393
3394         return cons;
3395 }
3396
3397 typedef struct parse_declarator_env_t {
3398         bool               may_be_abstract : 1;
3399         bool               must_be_abstract : 1;
3400         decl_modifiers_t   modifiers;
3401         symbol_t          *symbol;
3402         source_position_t  source_position;
3403         scope_t            parameters;
3404         attribute_t       *attributes;
3405 } parse_declarator_env_t;
3406
3407 /* §6.7.5 */
3408 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env)
3409 {
3410         /* construct a single linked list of construct_type_t's which describe
3411          * how to construct the final declarator type */
3412         construct_type_t  *first      = NULL;
3413         construct_type_t **anchor     = &first;
3414
3415         env->attributes = parse_attributes(env->attributes);
3416
3417         for (;;) {
3418                 construct_type_t *type;
3419                 //variable_t       *based = NULL; /* MS __based extension */
3420                 switch (token.kind) {
3421                         case '&':
3422                                 type = parse_reference_declarator();
3423                                 break;
3424
3425                         case T__based: {
3426                                 panic("based not supported anymore");
3427                                 /* FALLTHROUGH */
3428                         }
3429
3430                         case '*':
3431                                 type = parse_pointer_declarator();
3432                                 break;
3433
3434                         default:
3435                                 goto ptr_operator_end;
3436                 }
3437
3438                 *anchor = type;
3439                 anchor  = &type->base.next;
3440
3441                 /* TODO: find out if this is correct */
3442                 env->attributes = parse_attributes(env->attributes);
3443         }
3444
3445 ptr_operator_end: ;
3446         construct_type_t *inner_types = NULL;
3447
3448         switch (token.kind) {
3449         case T_IDENTIFIER:
3450                 if (env->must_be_abstract) {
3451                         errorf(HERE, "no identifier expected in typename");
3452                 } else {
3453                         env->symbol          = token.identifier.symbol;
3454                         env->source_position = token.base.source_position;
3455                 }
3456                 next_token();
3457                 break;
3458
3459         case '(': {
3460                 /* Parenthesized declarator or function declarator? */
3461                 token_t const *const la1 = look_ahead(1);
3462                 switch (la1->kind) {
3463                         case T_IDENTIFIER:
3464                                 if (is_typedef_symbol(la1->identifier.symbol)) {
3465                         case ')':
3466                                         /* §6.7.6:2 footnote 126:  Empty parentheses in a type name are
3467                                          * interpreted as ``function with no parameter specification'', rather
3468                                          * than redundant parentheses around the omitted identifier. */
3469                         default:
3470                                         /* Function declarator. */
3471                                         if (!env->may_be_abstract) {
3472                                                 errorf(HERE, "function declarator must have a name");
3473                                         }
3474                                 } else {
3475                         case '&':
3476                         case '(':
3477                         case '*':
3478                         case '[':
3479                         case T___attribute__: /* FIXME __attribute__ might also introduce a parameter of a function declarator. */
3480                                         /* Paranthesized declarator. */
3481                                         next_token();
3482                                         add_anchor_token(')');
3483                                         inner_types = parse_inner_declarator(env);
3484                                         if (inner_types != NULL) {
3485                                                 /* All later declarators only modify the return type */
3486                                                 env->must_be_abstract = true;
3487                                         }
3488                                         rem_anchor_token(')');
3489                                         expect(')');
3490                                 }
3491                                 break;
3492                 }
3493                 break;
3494         }
3495
3496         default:
3497                 if (env->may_be_abstract)
3498                         break;
3499                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3500                 eat_until_anchor();
3501                 return NULL;
3502         }
3503
3504         construct_type_t **const p = anchor;
3505
3506         for (;;) {
3507                 construct_type_t *type;
3508                 switch (token.kind) {
3509                 case '(': {
3510                         scope_t *scope = NULL;
3511                         if (!env->must_be_abstract) {
3512                                 scope = &env->parameters;
3513                         }
3514
3515                         type = parse_function_declarator(scope);
3516                         break;
3517                 }
3518                 case '[':
3519                         type = parse_array_declarator();
3520                         break;
3521                 default:
3522                         goto declarator_finished;
3523                 }
3524
3525                 /* insert in the middle of the list (at p) */
3526                 type->base.next = *p;
3527                 *p              = type;
3528                 if (anchor == p)
3529                         anchor = &type->base.next;
3530         }
3531
3532 declarator_finished:
3533         /* append inner_types at the end of the list, we don't to set anchor anymore
3534          * as it's not needed anymore */
3535         *anchor = inner_types;
3536
3537         return first;
3538 }
3539
3540 static type_t *construct_declarator_type(construct_type_t *construct_list,
3541                                          type_t *type)
3542 {
3543         construct_type_t *iter = construct_list;
3544         for (; iter != NULL; iter = iter->base.next) {
3545                 source_position_t const* const pos = &iter->base.pos;
3546                 switch (iter->kind) {
3547                 case CONSTRUCT_FUNCTION: {
3548                         construct_function_type_t *function      = &iter->function;
3549                         type_t                    *function_type = function->function_type;
3550
3551                         function_type->function.return_type = type;
3552
3553                         type_t *skipped_return_type = skip_typeref(type);
3554                         /* §6.7.5.3:1 */
3555                         if (is_type_function(skipped_return_type)) {
3556                                 errorf(pos, "function returning function is not allowed");
3557                         } else if (is_type_array(skipped_return_type)) {
3558                                 errorf(pos, "function returning array is not allowed");
3559                         } else {
3560                                 if (skipped_return_type->base.qualifiers != 0) {
3561                                         warningf(WARN_IGNORED_QUALIFIERS, pos, "type qualifiers in return type of function type are meaningless");
3562                                 }
3563                         }
3564
3565                         /* The function type was constructed earlier.  Freeing it here will
3566                          * destroy other types. */
3567                         type = typehash_insert(function_type);
3568                         continue;
3569                 }
3570
3571                 case CONSTRUCT_POINTER: {
3572                         if (is_type_reference(skip_typeref(type)))
3573                                 errorf(pos, "cannot declare a pointer to reference");
3574
3575                         parsed_pointer_t *pointer = &iter->pointer;
3576                         type = make_based_pointer_type(type, pointer->type_qualifiers, pointer->base_variable);
3577                         continue;
3578                 }
3579
3580                 case CONSTRUCT_REFERENCE:
3581                         if (is_type_reference(skip_typeref(type)))
3582                                 errorf(pos, "cannot declare a reference to reference");
3583
3584                         type = make_reference_type(type);
3585                         continue;
3586
3587                 case CONSTRUCT_ARRAY: {
3588                         if (is_type_reference(skip_typeref(type)))
3589                                 errorf(pos, "cannot declare an array of references");
3590
3591                         parsed_array_t *array      = &iter->array;
3592                         type_t         *array_type = allocate_type_zero(TYPE_ARRAY);
3593
3594                         expression_t *size_expression = array->size;
3595                         if (size_expression != NULL) {
3596                                 size_expression
3597                                         = create_implicit_cast(size_expression, type_size_t);
3598                         }
3599
3600                         array_type->base.qualifiers       = array->type_qualifiers;
3601                         array_type->array.element_type    = type;
3602                         array_type->array.is_static       = array->is_static;
3603                         array_type->array.is_variable     = array->is_variable;
3604                         array_type->array.size_expression = size_expression;
3605
3606                         if (size_expression != NULL) {
3607                                 switch (is_constant_expression(size_expression)) {
3608                                 case EXPR_CLASS_CONSTANT: {
3609                                         long const size = fold_constant_to_int(size_expression);
3610                                         array_type->array.size          = size;
3611                                         array_type->array.size_constant = true;
3612                                         /* §6.7.5.2:1  If the expression is a constant expression,
3613                                          * it shall have a value greater than zero. */
3614                                         if (size < 0) {
3615                                                 errorf(&size_expression->base.source_position,
3616                                                            "size of array must be greater than zero");
3617                                         } else if (size == 0 && !GNU_MODE) {
3618                                                 errorf(&size_expression->base.source_position,
3619                                                            "size of array must be greater than zero (zero length arrays are a GCC extension)");
3620                                         }
3621                                         break;
3622                                 }
3623
3624                                 case EXPR_CLASS_VARIABLE:
3625                                         array_type->array.is_vla = true;
3626                                         break;
3627
3628                                 case EXPR_CLASS_ERROR:
3629                                         break;
3630                                 }
3631                         }
3632
3633                         type_t *skipped_type = skip_typeref(type);
3634                         /* §6.7.5.2:1 */
3635                         if (is_type_incomplete(skipped_type)) {
3636                                 errorf(pos, "array of incomplete type '%T' is not allowed", type);
3637                         } else if (is_type_function(skipped_type)) {
3638                                 errorf(pos, "array of functions is not allowed");
3639                         }
3640                         type = identify_new_type(array_type);
3641                         continue;
3642                 }
3643                 }
3644                 internal_errorf(pos, "invalid type construction found");
3645         }
3646
3647         return type;
3648 }
3649
3650 static type_t *automatic_type_conversion(type_t *orig_type);
3651
3652 static type_t *semantic_parameter(const source_position_t *pos,
3653                                   type_t *type,
3654                                   const declaration_specifiers_t *specifiers,
3655                                   entity_t const *const param)
3656 {
3657         /* §6.7.5.3:7  A declaration of a parameter as ``array of type''
3658          *             shall be adjusted to ``qualified pointer to type'',
3659          *             [...]
3660          * §6.7.5.3:8  A declaration of a parameter as ``function returning
3661          *             type'' shall be adjusted to ``pointer to function
3662          *             returning type'', as in 6.3.2.1. */
3663         type = automatic_type_conversion(type);
3664
3665         if (specifiers->is_inline && is_type_valid(type)) {
3666                 errorf(pos, "'%N' declared 'inline'", param);
3667         }
3668
3669         /* §6.9.1:6  The declarations in the declaration list shall contain
3670          *           no storage-class specifier other than register and no
3671          *           initializations. */
3672         if (specifiers->thread_local || (
3673                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3674                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
3675            ) {
3676                 errorf(pos, "invalid storage class for '%N'", param);
3677         }
3678
3679         /* delay test for incomplete type, because we might have (void)
3680          * which is legal but incomplete... */
3681
3682         return type;
3683 }
3684
3685 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
3686                                   declarator_flags_t flags)
3687 {
3688         parse_declarator_env_t env;
3689         memset(&env, 0, sizeof(env));
3690         env.may_be_abstract = (flags & DECL_MAY_BE_ABSTRACT) != 0;
3691
3692         construct_type_t *construct_type = parse_inner_declarator(&env);
3693         type_t           *orig_type      =
3694                 construct_declarator_type(construct_type, specifiers->type);
3695         type_t           *type           = skip_typeref(orig_type);
3696
3697         if (construct_type != NULL) {
3698                 obstack_free(&temp_obst, construct_type);
3699         }
3700
3701         attribute_t *attributes = parse_attributes(env.attributes);
3702         /* append (shared) specifier attribute behind attributes of this
3703          * declarator */
3704         attribute_t **anchor = &attributes;
3705         while (*anchor != NULL)
3706                 anchor = &(*anchor)->next;
3707         *anchor = specifiers->attributes;
3708
3709         entity_t *entity;
3710         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
3711                 entity = allocate_entity_zero(ENTITY_TYPEDEF, NAMESPACE_NORMAL, env.symbol, &env.source_position);
3712                 entity->typedefe.type = orig_type;
3713
3714                 if (anonymous_entity != NULL) {
3715                         if (is_type_compound(type)) {
3716                                 assert(anonymous_entity->compound.alias == NULL);
3717                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
3718                                        anonymous_entity->kind == ENTITY_UNION);
3719                                 anonymous_entity->compound.alias = entity;
3720                                 anonymous_entity = NULL;
3721                         } else if (is_type_enum(type)) {
3722                                 assert(anonymous_entity->enume.alias == NULL);
3723                                 assert(anonymous_entity->kind == ENTITY_ENUM);
3724                                 anonymous_entity->enume.alias = entity;
3725                                 anonymous_entity = NULL;
3726                         }
3727                 }
3728         } else {
3729                 /* create a declaration type entity */
3730                 source_position_t const *const pos = env.symbol ? &env.source_position : &specifiers->source_position;
3731                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
3732                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER, NAMESPACE_NORMAL, env.symbol, pos);
3733
3734                         if (env.symbol != NULL) {
3735                                 if (specifiers->is_inline && is_type_valid(type)) {
3736                                         errorf(&env.source_position,
3737                                                         "compound member '%Y' declared 'inline'", env.symbol);
3738                                 }
3739
3740                                 if (specifiers->thread_local ||
3741                                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
3742                                         errorf(&env.source_position,
3743                                                         "compound member '%Y' must have no storage class",
3744                                                         env.symbol);
3745                                 }
3746                         }
3747                 } else if (flags & DECL_IS_PARAMETER) {
3748                         entity    = allocate_entity_zero(ENTITY_PARAMETER, NAMESPACE_NORMAL, env.symbol, pos);
3749                         orig_type = semantic_parameter(&env.source_position, orig_type, specifiers, entity);
3750                 } else if (is_type_function(type)) {
3751                         entity = allocate_entity_zero(ENTITY_FUNCTION, NAMESPACE_NORMAL, env.symbol, pos);
3752                         entity->function.is_inline      = specifiers->is_inline;
3753                         entity->function.elf_visibility = default_visibility;
3754                         entity->function.parameters     = env.parameters;
3755
3756                         if (env.symbol != NULL) {
3757                                 /* this needs fixes for C++ */
3758                                 bool in_function_scope = current_function != NULL;
3759
3760                                 if (specifiers->thread_local || (
3761                                                         specifiers->storage_class != STORAGE_CLASS_EXTERN &&
3762                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3763                                                         (in_function_scope || specifiers->storage_class != STORAGE_CLASS_STATIC)
3764                                                 )) {
3765                                         errorf(&env.source_position, "invalid storage class for '%N'", entity);
3766                                 }
3767                         }
3768                 } else {
3769                         entity = allocate_entity_zero(ENTITY_VARIABLE, NAMESPACE_NORMAL, env.symbol, pos);
3770                         entity->variable.elf_visibility = default_visibility;
3771                         entity->variable.thread_local   = specifiers->thread_local;
3772
3773                         if (env.symbol != NULL) {
3774                                 if (specifiers->is_inline && is_type_valid(type)) {
3775                                         errorf(&env.source_position, "'%N' declared 'inline'", entity);
3776                                 }
3777
3778                                 bool invalid_storage_class = false;
3779                                 if (current_scope == file_scope) {
3780                                         if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
3781                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3782                                                         specifiers->storage_class != STORAGE_CLASS_STATIC) {
3783                                                 invalid_storage_class = true;
3784                                         }
3785                                 } else {
3786                                         if (specifiers->thread_local &&
3787                                                         specifiers->storage_class == STORAGE_CLASS_NONE) {
3788                                                 invalid_storage_class = true;
3789                                         }
3790                                 }
3791                                 if (invalid_storage_class) {
3792                                         errorf(&env.source_position, "invalid storage class for variable '%N'", entity);
3793                                 }
3794                         }
3795                 }
3796
3797                 entity->declaration.type       = orig_type;
3798                 entity->declaration.alignment  = get_type_alignment(orig_type);
3799                 entity->declaration.modifiers  = env.modifiers;
3800                 entity->declaration.attributes = attributes;
3801
3802                 storage_class_t storage_class = specifiers->storage_class;
3803                 entity->declaration.declared_storage_class = storage_class;
3804
3805                 if (storage_class == STORAGE_CLASS_NONE && current_function != NULL)
3806                         storage_class = STORAGE_CLASS_AUTO;
3807                 entity->declaration.storage_class = storage_class;
3808         }
3809
3810         if (attributes != NULL) {
3811                 handle_entity_attributes(attributes, entity);
3812         }
3813
3814         if (entity->kind == ENTITY_FUNCTION && !freestanding) {
3815                 adapt_special_functions(&entity->function);
3816         }
3817
3818         return entity;
3819 }
3820
3821 static type_t *parse_abstract_declarator(type_t *base_type)
3822 {
3823         parse_declarator_env_t env;
3824         memset(&env, 0, sizeof(env));
3825         env.may_be_abstract = true;
3826         env.must_be_abstract = true;
3827
3828         construct_type_t *construct_type = parse_inner_declarator(&env);
3829
3830         type_t *result = construct_declarator_type(construct_type, base_type);
3831         if (construct_type != NULL) {
3832                 obstack_free(&temp_obst, construct_type);
3833         }
3834         result = handle_type_attributes(env.attributes, result);
3835
3836         return result;
3837 }
3838
3839 /**
3840  * Check if the declaration of main is suspicious.  main should be a
3841  * function with external linkage, returning int, taking either zero
3842  * arguments, two, or three arguments of appropriate types, ie.
3843  *
3844  * int main([ int argc, char **argv [, char **env ] ]).
3845  *
3846  * @param decl    the declaration to check
3847  * @param type    the function type of the declaration
3848  */
3849 static void check_main(const entity_t *entity)
3850 {
3851         const source_position_t *pos = &entity->base.source_position;
3852         if (entity->kind != ENTITY_FUNCTION) {
3853                 warningf(WARN_MAIN, pos, "'main' is not a function");
3854                 return;
3855         }
3856
3857         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
3858                 warningf(WARN_MAIN, pos, "'main' is normally a non-static function");
3859         }
3860
3861         type_t *type = skip_typeref(entity->declaration.type);
3862         assert(is_type_function(type));
3863
3864         function_type_t const *const func_type = &type->function;
3865         type_t                *const ret_type  = func_type->return_type;
3866         if (!types_compatible(skip_typeref(ret_type), type_int)) {
3867                 warningf(WARN_MAIN, pos, "return type of 'main' should be 'int', but is '%T'", ret_type);
3868         }
3869         const function_parameter_t *parm = func_type->parameters;
3870         if (parm != NULL) {
3871                 type_t *const first_type        = skip_typeref(parm->type);
3872                 type_t *const first_type_unqual = get_unqualified_type(first_type);
3873                 if (!types_compatible(first_type_unqual, type_int)) {
3874                         warningf(WARN_MAIN, pos, "first argument of 'main' should be 'int', but is '%T'", parm->type);
3875                 }
3876                 parm = parm->next;
3877                 if (parm != NULL) {
3878                         type_t *const second_type = skip_typeref(parm->type);
3879                         type_t *const second_type_unqual
3880                                 = get_unqualified_type(second_type);
3881                         if (!types_compatible(second_type_unqual, type_char_ptr_ptr)) {
3882                                 warningf(WARN_MAIN, pos, "second argument of 'main' should be 'char**', but is '%T'", parm->type);
3883                         }
3884                         parm = parm->next;
3885                         if (parm != NULL) {
3886                                 type_t *const third_type = skip_typeref(parm->type);
3887                                 type_t *const third_type_unqual
3888                                         = get_unqualified_type(third_type);
3889                                 if (!types_compatible(third_type_unqual, type_char_ptr_ptr)) {
3890                                         warningf(WARN_MAIN, pos, "third argument of 'main' should be 'char**', but is '%T'", parm->type);
3891                                 }
3892                                 parm = parm->next;
3893                                 if (parm != NULL)
3894                                         goto warn_arg_count;
3895                         }
3896                 } else {
3897 warn_arg_count:
3898                         warningf(WARN_MAIN, pos, "'main' takes only zero, two or three arguments");
3899                 }
3900         }
3901 }
3902
3903 /**
3904  * Check if a symbol is the equal to "main".
3905  */
3906 static bool is_sym_main(const symbol_t *const sym)
3907 {
3908         return streq(sym->string, "main");
3909 }
3910
3911 static void error_redefined_as_different_kind(const source_position_t *pos,
3912                 const entity_t *old, entity_kind_t new_kind)
3913 {
3914         char              const *const what = get_entity_kind_name(new_kind);
3915         source_position_t const *const ppos = &old->base.source_position;
3916         errorf(pos, "redeclaration of '%N' as %s (declared %P)", old, what, ppos);
3917 }
3918
3919 static bool is_entity_valid(entity_t *const ent)
3920 {
3921         if (is_declaration(ent)) {
3922                 return is_type_valid(skip_typeref(ent->declaration.type));
3923         } else if (ent->kind == ENTITY_TYPEDEF) {
3924                 return is_type_valid(skip_typeref(ent->typedefe.type));
3925         }
3926         return true;
3927 }
3928
3929 static bool contains_attribute(const attribute_t *list, const attribute_t *attr)
3930 {
3931         for (const attribute_t *tattr = list; tattr != NULL; tattr = tattr->next) {
3932                 if (attributes_equal(tattr, attr))
3933                         return true;
3934         }
3935         return false;
3936 }
3937
3938 /**
3939  * test wether new_list contains any attributes not included in old_list
3940  */
3941 static bool has_new_attributes(const attribute_t *old_list,
3942                                const attribute_t *new_list)
3943 {
3944         for (const attribute_t *attr = new_list; attr != NULL; attr = attr->next) {
3945                 if (!contains_attribute(old_list, attr))
3946                         return true;
3947         }
3948         return false;
3949 }
3950
3951 /**
3952  * Merge in attributes from an attribute list (probably from a previous
3953  * declaration with the same name). Warning: destroys the old structure
3954  * of the attribute list - don't reuse attributes after this call.
3955  */
3956 static void merge_in_attributes(declaration_t *decl, attribute_t *attributes)
3957 {
3958         attribute_t *next;
3959         for (attribute_t *attr = attributes; attr != NULL; attr = next) {
3960                 next = attr->next;
3961                 if (contains_attribute(decl->attributes, attr))
3962                         continue;
3963
3964                 /* move attribute to new declarations attributes list */
3965                 attr->next       = decl->attributes;
3966                 decl->attributes = attr;
3967         }
3968 }
3969
3970 /**
3971  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
3972  * for various problems that occur for multiple definitions
3973  */
3974 entity_t *record_entity(entity_t *entity, const bool is_definition)
3975 {
3976         const symbol_t *const    symbol  = entity->base.symbol;
3977         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
3978         const source_position_t *pos     = &entity->base.source_position;
3979
3980         /* can happen in error cases */
3981         if (symbol == NULL)
3982                 return entity;
3983
3984         entity_t *const previous_entity = get_entity(symbol, namespc);
3985         /* pushing the same entity twice will break the stack structure */
3986         assert(previous_entity != entity);
3987
3988         if (entity->kind == ENTITY_FUNCTION) {
3989                 type_t *const orig_type = entity->declaration.type;
3990                 type_t *const type      = skip_typeref(orig_type);
3991
3992                 assert(is_type_function(type));
3993                 if (type->function.unspecified_parameters &&
3994                     previous_entity == NULL               &&
3995                     !entity->declaration.implicit) {
3996                         warningf(WARN_STRICT_PROTOTYPES, pos, "function declaration '%#N' is not a prototype", entity);
3997                 }
3998
3999                 if (current_scope == file_scope && is_sym_main(symbol)) {
4000                         check_main(entity);
4001                 }
4002         }
4003
4004         if (is_declaration(entity)                                    &&
4005             entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
4006             current_scope != file_scope                               &&
4007             !entity->declaration.implicit) {
4008                 warningf(WARN_NESTED_EXTERNS, pos, "nested extern declaration of '%#N'", entity);
4009         }
4010
4011         if (previous_entity != NULL) {
4012                 source_position_t const *const ppos = &previous_entity->base.source_position;
4013
4014                 if (previous_entity->base.parent_scope == &current_function->parameters &&
4015                                 previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
4016                         assert(previous_entity->kind == ENTITY_PARAMETER);
4017                         errorf(pos, "declaration of '%N' redeclares the '%N' (declared %P)", entity, previous_entity, ppos);
4018                         goto finish;
4019                 }
4020
4021                 if (previous_entity->base.parent_scope == current_scope) {
4022                         if (previous_entity->kind != entity->kind) {
4023                                 if (is_entity_valid(previous_entity) && is_entity_valid(entity)) {
4024                                         error_redefined_as_different_kind(pos, previous_entity,
4025                                                         entity->kind);
4026                                 }
4027                                 goto finish;
4028                         }
4029                         if (previous_entity->kind == ENTITY_ENUM_VALUE) {
4030                                 errorf(pos, "redeclaration of '%N' (declared %P)", entity, ppos);
4031                                 goto finish;
4032                         }
4033                         if (previous_entity->kind == ENTITY_TYPEDEF) {
4034                                 type_t *const type      = skip_typeref(entity->typedefe.type);
4035                                 type_t *const prev_type
4036                                         = skip_typeref(previous_entity->typedefe.type);
4037                                 if (c_mode & _CXX) {
4038                                         /* C++ allows double typedef if they are identical
4039                                          * (after skipping typedefs) */
4040                                         if (type == prev_type)
4041                                                 goto finish;
4042                                 } else {
4043                                         /* GCC extension: redef in system headers is allowed */
4044                                         if ((pos->is_system_header || ppos->is_system_header) &&
4045                                             types_compatible(type, prev_type))
4046                                                 goto finish;
4047                                 }
4048                                 errorf(pos, "redefinition of '%N' (declared %P)",
4049                                        entity, ppos);
4050                                 goto finish;
4051                         }
4052
4053                         /* at this point we should have only VARIABLES or FUNCTIONS */
4054                         assert(is_declaration(previous_entity) && is_declaration(entity));
4055
4056                         declaration_t *const prev_decl = &previous_entity->declaration;
4057                         declaration_t *const decl      = &entity->declaration;
4058
4059                         /* can happen for K&R style declarations */
4060                         if (prev_decl->type       == NULL             &&
4061                                         previous_entity->kind == ENTITY_PARAMETER &&
4062                                         entity->kind          == ENTITY_PARAMETER) {
4063                                 prev_decl->type                   = decl->type;
4064                                 prev_decl->storage_class          = decl->storage_class;
4065                                 prev_decl->declared_storage_class = decl->declared_storage_class;
4066                                 prev_decl->modifiers              = decl->modifiers;
4067                                 return previous_entity;
4068                         }
4069
4070                         type_t *const type      = skip_typeref(decl->type);
4071                         type_t *const prev_type = skip_typeref(prev_decl->type);
4072
4073                         if (!types_compatible(type, prev_type)) {
4074                                 errorf(pos, "declaration '%#N' is incompatible with '%#N' (declared %P)", entity, previous_entity, ppos);
4075                         } else {
4076                                 unsigned old_storage_class = prev_decl->storage_class;
4077
4078                                 if (is_definition                     &&
4079                                                 !prev_decl->used                  &&
4080                                                 !(prev_decl->modifiers & DM_USED) &&
4081                                                 prev_decl->storage_class == STORAGE_CLASS_STATIC) {
4082                                         warningf(WARN_REDUNDANT_DECLS, ppos, "unnecessary static forward declaration for '%#N'", previous_entity);
4083                                 }
4084
4085                                 storage_class_t new_storage_class = decl->storage_class;
4086
4087                                 /* pretend no storage class means extern for function
4088                                  * declarations (except if the previous declaration is neither
4089                                  * none nor extern) */
4090                                 if (entity->kind == ENTITY_FUNCTION) {
4091                                         /* the previous declaration could have unspecified parameters or
4092                                          * be a typedef, so use the new type */
4093                                         if (prev_type->function.unspecified_parameters || is_definition)
4094                                                 prev_decl->type = type;
4095
4096                                         switch (old_storage_class) {
4097                                                 case STORAGE_CLASS_NONE:
4098                                                         old_storage_class = STORAGE_CLASS_EXTERN;
4099                                                         /* FALLTHROUGH */
4100
4101                                                 case STORAGE_CLASS_EXTERN:
4102                                                         if (is_definition) {
4103                                                                 if (prev_type->function.unspecified_parameters && !is_sym_main(symbol)) {
4104                                                                         warningf(WARN_MISSING_PROTOTYPES, pos, "no previous prototype for '%#N'", entity);
4105                                                                 }
4106                                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4107                                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4108                                                         }
4109                                                         break;
4110
4111                                                 default:
4112                                                         break;
4113                                         }
4114                                 } else if (is_type_incomplete(prev_type)) {
4115                                         prev_decl->type = type;
4116                                 }
4117
4118                                 if (old_storage_class == STORAGE_CLASS_EXTERN &&
4119                                                 new_storage_class == STORAGE_CLASS_EXTERN) {
4120
4121 warn_redundant_declaration: ;
4122                                         bool has_new_attrs
4123                                                 = has_new_attributes(prev_decl->attributes,
4124                                                                      decl->attributes);
4125                                         if (has_new_attrs) {
4126                                                 merge_in_attributes(decl, prev_decl->attributes);
4127                                         } else if (!is_definition        &&
4128                                                         is_type_valid(prev_type) &&
4129                                                         !pos->is_system_header) {
4130                                                 warningf(WARN_REDUNDANT_DECLS, pos, "redundant declaration for '%Y' (declared %P)", symbol, ppos);
4131                                         }
4132                                 } else if (current_function == NULL) {
4133                                         if (old_storage_class != STORAGE_CLASS_STATIC &&
4134                                                         new_storage_class == STORAGE_CLASS_STATIC) {
4135                                                 errorf(pos, "static declaration of '%Y' follows non-static declaration (declared %P)", symbol, ppos);
4136                                         } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4137                                                 prev_decl->storage_class          = STORAGE_CLASS_NONE;
4138                                                 prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
4139                                         } else {
4140                                                 /* ISO/IEC 14882:1998(E) §C.1.2:1 */
4141                                                 if (c_mode & _CXX)
4142                                                         goto error_redeclaration;
4143                                                 goto warn_redundant_declaration;
4144                                         }
4145                                 } else if (is_type_valid(prev_type)) {
4146                                         if (old_storage_class == new_storage_class) {
4147 error_redeclaration:
4148                                                 errorf(pos, "redeclaration of '%Y' (declared %P)", symbol, ppos);
4149                                         } else {
4150                                                 errorf(pos, "redeclaration of '%Y' with different linkage (declared %P)", symbol, ppos);
4151                                         }
4152                                 }
4153                         }
4154
4155                         prev_decl->modifiers |= decl->modifiers;
4156                         if (entity->kind == ENTITY_FUNCTION) {
4157                                 previous_entity->function.is_inline |= entity->function.is_inline;
4158                         }
4159                         return previous_entity;
4160                 }
4161
4162                 warning_t why;
4163                 if (is_warn_on(why = WARN_SHADOW) ||
4164                     (is_warn_on(why = WARN_SHADOW_LOCAL) && previous_entity->base.parent_scope != file_scope)) {
4165                         char const *const what = get_entity_kind_name(previous_entity->kind);
4166                         warningf(why, pos, "'%N' shadows %s (declared %P)", entity, what, ppos);
4167                 }
4168         }
4169
4170         if (entity->kind == ENTITY_FUNCTION) {
4171                 if (is_definition &&
4172                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC &&
4173                                 !is_sym_main(symbol)) {
4174                         if (is_warn_on(WARN_MISSING_PROTOTYPES)) {
4175                                 warningf(WARN_MISSING_PROTOTYPES, pos, "no previous prototype for '%#N'", entity);
4176                         } else {
4177                                 goto warn_missing_declaration;
4178                         }
4179                 }
4180         } else if (entity->kind == ENTITY_VARIABLE) {
4181                 if (current_scope                     == file_scope &&
4182                                 entity->declaration.storage_class == STORAGE_CLASS_NONE &&
4183                                 !entity->declaration.implicit) {
4184 warn_missing_declaration:
4185                         warningf(WARN_MISSING_DECLARATIONS, pos, "no previous declaration for '%#N'", entity);
4186                 }
4187         }
4188
4189 finish:
4190         assert(entity->base.parent_scope == NULL);
4191         assert(current_scope != NULL);
4192
4193         entity->base.parent_scope = current_scope;
4194         environment_push(entity);
4195         append_entity(current_scope, entity);
4196
4197         return entity;
4198 }
4199
4200 static void parser_error_multiple_definition(entity_t *entity,
4201                 const source_position_t *source_position)
4202 {
4203         errorf(source_position, "multiple definition of '%Y' (declared %P)",
4204                entity->base.symbol, &entity->base.source_position);
4205 }
4206
4207 static bool is_declaration_specifier(const token_t *token)
4208 {
4209         switch (token->kind) {
4210                 DECLARATION_START
4211                         return true;
4212                 case T_IDENTIFIER:
4213                         return is_typedef_symbol(token->identifier.symbol);
4214
4215                 default:
4216                         return false;
4217         }
4218 }
4219
4220 static void parse_init_declarator_rest(entity_t *entity)
4221 {
4222         type_t *orig_type = type_error_type;
4223
4224         if (entity->base.kind == ENTITY_TYPEDEF) {
4225                 source_position_t const *const pos = &entity->base.source_position;
4226                 errorf(pos, "'%N' is initialized (use __typeof__ instead)", entity);
4227         } else {
4228                 assert(is_declaration(entity));
4229                 orig_type = entity->declaration.type;
4230         }
4231
4232         type_t *type = skip_typeref(orig_type);
4233
4234         if (entity->kind == ENTITY_VARIABLE
4235                         && entity->variable.initializer != NULL) {
4236                 parser_error_multiple_definition(entity, HERE);
4237         }
4238         eat('=');
4239
4240         declaration_t *const declaration = &entity->declaration;
4241         bool must_be_constant = false;
4242         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
4243             entity->base.parent_scope  == file_scope) {
4244                 must_be_constant = true;
4245         }
4246
4247         if (is_type_function(type)) {
4248                 source_position_t const *const pos = &entity->base.source_position;
4249                 errorf(pos, "'%N' is initialized like a variable", entity);
4250                 orig_type = type_error_type;
4251         }
4252
4253         parse_initializer_env_t env;
4254         env.type             = orig_type;
4255         env.must_be_constant = must_be_constant;
4256         env.entity           = entity;
4257
4258         initializer_t *initializer = parse_initializer(&env);
4259
4260         if (entity->kind == ENTITY_VARIABLE) {
4261                 /* §6.7.5:22  array initializers for arrays with unknown size
4262                  * determine the array type size */
4263                 declaration->type            = env.type;
4264                 entity->variable.initializer = initializer;
4265         }
4266 }
4267
4268 /* parse rest of a declaration without any declarator */
4269 static void parse_anonymous_declaration_rest(
4270                 const declaration_specifiers_t *specifiers)
4271 {
4272         eat(';');
4273         anonymous_entity = NULL;
4274
4275         source_position_t const *const pos = &specifiers->source_position;
4276         if (specifiers->storage_class != STORAGE_CLASS_NONE ||
4277                         specifiers->thread_local) {
4278                 warningf(WARN_OTHER, pos, "useless storage class in empty declaration");
4279         }
4280
4281         type_t *type = specifiers->type;
4282         switch (type->kind) {
4283                 case TYPE_COMPOUND_STRUCT:
4284                 case TYPE_COMPOUND_UNION: {
4285                         if (type->compound.compound->base.symbol == NULL) {
4286                                 warningf(WARN_OTHER, pos, "unnamed struct/union that defines no instances");
4287                         }
4288                         break;
4289                 }
4290
4291                 case TYPE_ENUM:
4292                         break;
4293
4294                 default:
4295                         warningf(WARN_OTHER, pos, "empty declaration");
4296                         break;
4297         }
4298 }
4299
4300 static void check_variable_type_complete(entity_t *ent)
4301 {
4302         if (ent->kind != ENTITY_VARIABLE)
4303                 return;
4304
4305         /* §6.7:7  If an identifier for an object is declared with no linkage, the
4306          *         type for the object shall be complete [...] */
4307         declaration_t *decl = &ent->declaration;
4308         if (decl->storage_class == STORAGE_CLASS_EXTERN ||
4309                         decl->storage_class == STORAGE_CLASS_STATIC)
4310                 return;
4311
4312         type_t *const type = skip_typeref(decl->type);
4313         if (!is_type_incomplete(type))
4314                 return;
4315
4316         /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
4317          * are given length one. */
4318         if (is_type_array(type) && ent->base.parent_scope == file_scope) {
4319                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
4320                 return;
4321         }
4322
4323         errorf(&ent->base.source_position, "variable '%#N' has incomplete type", ent);
4324 }
4325
4326
4327 static void parse_declaration_rest(entity_t *ndeclaration,
4328                 const declaration_specifiers_t *specifiers,
4329                 parsed_declaration_func         finished_declaration,
4330                 declarator_flags_t              flags)
4331 {
4332         add_anchor_token(';');
4333         add_anchor_token(',');
4334         while (true) {
4335                 entity_t *entity = finished_declaration(ndeclaration, token.kind == '=');
4336
4337                 if (token.kind == '=') {
4338                         parse_init_declarator_rest(entity);
4339                 } else if (entity->kind == ENTITY_VARIABLE) {
4340                         /* ISO/IEC 14882:1998(E) §8.5.3:3  The initializer can be omitted
4341                          * [...] where the extern specifier is explicitly used. */
4342                         declaration_t *decl = &entity->declaration;
4343                         if (decl->storage_class != STORAGE_CLASS_EXTERN &&
4344                             is_type_reference(skip_typeref(decl->type))) {
4345                                 source_position_t const *const pos = &entity->base.source_position;
4346                                 errorf(pos, "reference '%#N' must be initialized", entity);
4347                         }
4348                 }
4349
4350                 check_variable_type_complete(entity);
4351
4352                 if (!next_if(','))
4353                         break;
4354
4355                 add_anchor_token('=');
4356                 ndeclaration = parse_declarator(specifiers, flags);
4357                 rem_anchor_token('=');
4358         }
4359         rem_anchor_token(',');
4360         rem_anchor_token(';');
4361         expect(';');
4362
4363         anonymous_entity = NULL;
4364 }
4365
4366 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
4367 {
4368         symbol_t *symbol = entity->base.symbol;
4369         if (symbol == NULL)
4370                 return entity;
4371
4372         assert(entity->base.namespc == NAMESPACE_NORMAL);
4373         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
4374         if (previous_entity == NULL
4375                         || previous_entity->base.parent_scope != current_scope) {
4376                 errorf(&entity->base.source_position, "expected declaration of a function parameter, found '%Y'",
4377                        symbol);
4378                 return entity;
4379         }
4380
4381         if (is_definition) {
4382                 errorf(HERE, "'%N' is initialised", entity);
4383         }
4384
4385         return record_entity(entity, false);
4386 }
4387
4388 static void parse_declaration(parsed_declaration_func finished_declaration,
4389                               declarator_flags_t      flags)
4390 {
4391         add_anchor_token(';');
4392         declaration_specifiers_t specifiers;
4393         parse_declaration_specifiers(&specifiers);
4394         rem_anchor_token(';');
4395
4396         if (token.kind == ';') {
4397                 parse_anonymous_declaration_rest(&specifiers);
4398         } else {
4399                 entity_t *entity = parse_declarator(&specifiers, flags);
4400                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
4401         }
4402 }
4403
4404 /* §6.5.2.2:6 */
4405 static type_t *get_default_promoted_type(type_t *orig_type)
4406 {
4407         type_t *result = orig_type;
4408
4409         type_t *type = skip_typeref(orig_type);
4410         if (is_type_integer(type)) {
4411                 result = promote_integer(type);
4412         } else if (is_type_atomic(type, ATOMIC_TYPE_FLOAT)) {
4413                 result = type_double;
4414         }
4415
4416         return result;
4417 }
4418
4419 static void parse_kr_declaration_list(entity_t *entity)
4420 {
4421         if (entity->kind != ENTITY_FUNCTION)
4422                 return;
4423
4424         type_t *type = skip_typeref(entity->declaration.type);
4425         assert(is_type_function(type));
4426         if (!type->function.kr_style_parameters)
4427                 return;
4428
4429         add_anchor_token('{');
4430
4431         PUSH_SCOPE(&entity->function.parameters);
4432
4433         entity_t *parameter = entity->function.parameters.entities;
4434         for ( ; parameter != NULL; parameter = parameter->base.next) {
4435                 assert(parameter->base.parent_scope == NULL);
4436                 parameter->base.parent_scope = current_scope;
4437                 environment_push(parameter);
4438         }
4439
4440         /* parse declaration list */
4441         for (;;) {
4442                 switch (token.kind) {
4443                         DECLARATION_START
4444                         /* This covers symbols, which are no type, too, and results in
4445                          * better error messages.  The typical cases are misspelled type
4446                          * names and missing includes. */
4447                         case T_IDENTIFIER:
4448                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
4449                                 break;
4450                         default:
4451                                 goto decl_list_end;
4452                 }
4453         }
4454 decl_list_end:
4455
4456         POP_SCOPE();
4457
4458         /* update function type */
4459         type_t *new_type = duplicate_type(type);
4460
4461         function_parameter_t  *parameters = NULL;
4462         function_parameter_t **anchor     = &parameters;
4463
4464         /* did we have an earlier prototype? */
4465         entity_t *proto_type = get_entity(entity->base.symbol, NAMESPACE_NORMAL);
4466         if (proto_type != NULL && proto_type->kind != ENTITY_FUNCTION)
4467                 proto_type = NULL;
4468
4469         function_parameter_t *proto_parameter = NULL;
4470         if (proto_type != NULL) {
4471                 type_t *proto_type_type = proto_type->declaration.type;
4472                 proto_parameter         = proto_type_type->function.parameters;
4473                 /* If a K&R function definition has a variadic prototype earlier, then
4474                  * make the function definition variadic, too. This should conform to
4475                  * §6.7.5.3:15 and §6.9.1:8. */
4476                 new_type->function.variadic = proto_type_type->function.variadic;
4477         } else {
4478                 /* §6.9.1.7: A K&R style parameter list does NOT act as a function
4479                  * prototype */
4480                 new_type->function.unspecified_parameters = true;
4481         }
4482
4483         bool need_incompatible_warning = false;
4484         parameter = entity->function.parameters.entities;
4485         for (; parameter != NULL; parameter = parameter->base.next,
4486                         proto_parameter =
4487                                 proto_parameter == NULL ? NULL : proto_parameter->next) {
4488                 if (parameter->kind != ENTITY_PARAMETER)
4489                         continue;
4490
4491                 type_t *parameter_type = parameter->declaration.type;
4492                 if (parameter_type == NULL) {
4493                         source_position_t const* const pos = &parameter->base.source_position;
4494                         if (strict_mode) {
4495                                 errorf(pos, "no type specified for function '%N'", parameter);
4496                                 parameter_type = type_error_type;
4497                         } else {
4498                                 warningf(WARN_IMPLICIT_INT, pos, "no type specified for function parameter '%N', using 'int'", parameter);
4499                                 parameter_type = type_int;
4500                         }
4501                         parameter->declaration.type = parameter_type;
4502                 }
4503
4504                 semantic_parameter_incomplete(parameter);
4505
4506                 /* we need the default promoted types for the function type */
4507                 type_t *not_promoted = parameter_type;
4508                 parameter_type       = get_default_promoted_type(parameter_type);
4509
4510                 /* gcc special: if the type of the prototype matches the unpromoted
4511                  * type don't promote */
4512                 if (!strict_mode && proto_parameter != NULL) {
4513                         type_t *proto_p_type = skip_typeref(proto_parameter->type);
4514                         type_t *promo_skip   = skip_typeref(parameter_type);
4515                         type_t *param_skip   = skip_typeref(not_promoted);
4516                         if (!types_compatible(proto_p_type, promo_skip)
4517                                 && types_compatible(proto_p_type, param_skip)) {
4518                                 /* don't promote */
4519                                 need_incompatible_warning = true;
4520                                 parameter_type = not_promoted;
4521                         }
4522                 }
4523                 function_parameter_t *const function_parameter
4524                         = allocate_parameter(parameter_type);
4525
4526                 *anchor = function_parameter;
4527                 anchor  = &function_parameter->next;
4528         }
4529
4530         new_type->function.parameters = parameters;
4531         new_type = identify_new_type(new_type);
4532
4533         if (need_incompatible_warning) {
4534                 symbol_t          const *const sym  = entity->base.symbol;
4535                 source_position_t const *const pos  = &entity->base.source_position;
4536                 source_position_t const *const ppos = &proto_type->base.source_position;
4537                 warningf(WARN_OTHER, pos, "declaration '%#N' is incompatible with '%#T' (declared %P)", proto_type, new_type, sym, ppos);
4538         }
4539         entity->declaration.type = new_type;
4540
4541         rem_anchor_token('{');
4542 }
4543
4544 static bool first_err = true;
4545
4546 /**
4547  * When called with first_err set, prints the name of the current function,
4548  * else does noting.
4549  */
4550 static void print_in_function(void)
4551 {
4552         if (first_err) {
4553                 first_err = false;
4554                 char const *const file = current_function->base.base.source_position.input_name;
4555                 diagnosticf("%s: In '%N':\n", file, (entity_t const*)current_function);
4556         }
4557 }
4558
4559 /**
4560  * Check if all labels are defined in the current function.
4561  * Check if all labels are used in the current function.
4562  */
4563 static void check_labels(void)
4564 {
4565         for (const goto_statement_t *goto_statement = goto_first;
4566             goto_statement != NULL;
4567             goto_statement = goto_statement->next) {
4568                 label_t *label = goto_statement->label;
4569                 if (label->base.source_position.input_name == NULL) {
4570                         print_in_function();
4571                         source_position_t const *const pos = &goto_statement->base.source_position;
4572                         errorf(pos, "'%N' used but not defined", (entity_t const*)label);
4573                  }
4574         }
4575
4576         if (is_warn_on(WARN_UNUSED_LABEL)) {
4577                 for (const label_statement_t *label_statement = label_first;
4578                          label_statement != NULL;
4579                          label_statement = label_statement->next) {
4580                         label_t *label = label_statement->label;
4581
4582                         if (! label->used) {
4583                                 print_in_function();
4584                                 source_position_t const *const pos = &label_statement->base.source_position;
4585                                 warningf(WARN_UNUSED_LABEL, pos, "'%N' defined but not used", (entity_t const*)label);
4586                         }
4587                 }
4588         }
4589 }
4590
4591 static void warn_unused_entity(warning_t const why, entity_t *entity, entity_t *const last)
4592 {
4593         entity_t const *const end = last != NULL ? last->base.next : NULL;
4594         for (; entity != end; entity = entity->base.next) {
4595                 if (!is_declaration(entity))
4596                         continue;
4597
4598                 declaration_t *declaration = &entity->declaration;
4599                 if (declaration->implicit)
4600                         continue;
4601
4602                 if (!declaration->used) {
4603                         print_in_function();
4604                         warningf(why, &entity->base.source_position, "'%N' is unused", entity);
4605                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
4606                         print_in_function();
4607                         warningf(why, &entity->base.source_position, "'%N' is never read", entity);
4608                 }
4609         }
4610 }
4611
4612 static void check_unused_variables(statement_t *const stmt, void *const env)
4613 {
4614         (void)env;
4615
4616         switch (stmt->kind) {
4617                 case STATEMENT_DECLARATION: {
4618                         declaration_statement_t const *const decls = &stmt->declaration;
4619                         warn_unused_entity(WARN_UNUSED_VARIABLE, decls->declarations_begin, decls->declarations_end);
4620                         return;
4621                 }
4622
4623                 case STATEMENT_FOR:
4624                         warn_unused_entity(WARN_UNUSED_VARIABLE, stmt->fors.scope.entities, NULL);
4625                         return;
4626
4627                 default:
4628                         return;
4629         }
4630 }
4631
4632 /**
4633  * Check declarations of current_function for unused entities.
4634  */
4635 static void check_declarations(void)
4636 {
4637         if (is_warn_on(WARN_UNUSED_PARAMETER)) {
4638                 const scope_t *scope = &current_function->parameters;
4639
4640                 /* do not issue unused warnings for main */
4641                 if (!is_sym_main(current_function->base.base.symbol)) {
4642                         warn_unused_entity(WARN_UNUSED_PARAMETER, scope->entities, NULL);
4643                 }
4644         }
4645         if (is_warn_on(WARN_UNUSED_VARIABLE)) {
4646                 walk_statements(current_function->statement, check_unused_variables,
4647                                 NULL);
4648         }
4649 }
4650
4651 static int determine_truth(expression_t const* const cond)
4652 {
4653         return
4654                 is_constant_expression(cond) != EXPR_CLASS_CONSTANT ? 0 :
4655                 fold_constant_to_bool(cond)                         ? 1 :
4656                 -1;
4657 }
4658
4659 static void check_reachable(statement_t *);
4660 static bool reaches_end;
4661
4662 static bool expression_returns(expression_t const *const expr)
4663 {
4664         switch (expr->kind) {
4665                 case EXPR_CALL: {
4666                         expression_t const *const func = expr->call.function;
4667                         type_t       const *const type = skip_typeref(func->base.type);
4668                         if (type->kind == TYPE_POINTER) {
4669                                 type_t const *const points_to
4670                                         = skip_typeref(type->pointer.points_to);
4671                                 if (points_to->kind == TYPE_FUNCTION
4672                                     && points_to->function.modifiers & DM_NORETURN)
4673                                         return false;
4674                         }
4675
4676                         if (!expression_returns(func))
4677                                 return false;
4678
4679                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
4680                                 if (!expression_returns(arg->expression))
4681                                         return false;
4682                         }
4683
4684                         return true;
4685                 }
4686
4687                 case EXPR_REFERENCE:
4688                 case EXPR_ENUM_CONSTANT:
4689                 case EXPR_LITERAL_CASES:
4690                 case EXPR_STRING_LITERAL:
4691                 case EXPR_WIDE_STRING_LITERAL:
4692                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
4693                 case EXPR_LABEL_ADDRESS:
4694                 case EXPR_CLASSIFY_TYPE:
4695                 case EXPR_SIZEOF: // TODO handle obscure VLA case
4696                 case EXPR_ALIGNOF:
4697                 case EXPR_FUNCNAME:
4698                 case EXPR_BUILTIN_CONSTANT_P:
4699                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
4700                 case EXPR_OFFSETOF:
4701                 case EXPR_ERROR:
4702                         return true;
4703
4704                 case EXPR_STATEMENT: {
4705                         bool old_reaches_end = reaches_end;
4706                         reaches_end = false;
4707                         check_reachable(expr->statement.statement);
4708                         bool returns = reaches_end;
4709                         reaches_end = old_reaches_end;
4710                         return returns;
4711                 }
4712
4713                 case EXPR_CONDITIONAL:
4714                         // TODO handle constant expression
4715
4716                         if (!expression_returns(expr->conditional.condition))
4717                                 return false;
4718
4719                         if (expr->conditional.true_expression != NULL
4720                                         && expression_returns(expr->conditional.true_expression))
4721                                 return true;
4722
4723                         return expression_returns(expr->conditional.false_expression);
4724
4725                 case EXPR_SELECT:
4726                         return expression_returns(expr->select.compound);
4727
4728                 case EXPR_ARRAY_ACCESS:
4729                         return
4730                                 expression_returns(expr->array_access.array_ref) &&
4731                                 expression_returns(expr->array_access.index);
4732
4733                 case EXPR_VA_START:
4734                         return expression_returns(expr->va_starte.ap);
4735
4736                 case EXPR_VA_ARG:
4737                         return expression_returns(expr->va_arge.ap);
4738
4739                 case EXPR_VA_COPY:
4740                         return expression_returns(expr->va_copye.src);
4741
4742                 case EXPR_UNARY_CASES_MANDATORY:
4743                         return expression_returns(expr->unary.value);
4744
4745                 case EXPR_UNARY_THROW:
4746                         return false;
4747
4748                 case EXPR_BINARY_CASES:
4749                         // TODO handle constant lhs of && and ||
4750                         return
4751                                 expression_returns(expr->binary.left) &&
4752                                 expression_returns(expr->binary.right);
4753         }
4754
4755         panic("unhandled expression");
4756 }
4757
4758 static bool initializer_returns(initializer_t const *const init)
4759 {
4760         switch (init->kind) {
4761                 case INITIALIZER_VALUE:
4762                         return expression_returns(init->value.value);
4763
4764                 case INITIALIZER_LIST: {
4765                         initializer_t * const*       i       = init->list.initializers;
4766                         initializer_t * const* const end     = i + init->list.len;
4767                         bool                         returns = true;
4768                         for (; i != end; ++i) {
4769                                 if (!initializer_returns(*i))
4770                                         returns = false;
4771                         }
4772                         return returns;
4773                 }
4774
4775                 case INITIALIZER_STRING:
4776                 case INITIALIZER_WIDE_STRING:
4777                 case INITIALIZER_DESIGNATOR: // designators have no payload
4778                         return true;
4779         }
4780         panic("unhandled initializer");
4781 }
4782
4783 static bool noreturn_candidate;
4784
4785 static void check_reachable(statement_t *const stmt)
4786 {
4787         if (stmt->base.reachable)
4788                 return;
4789         if (stmt->kind != STATEMENT_DO_WHILE)
4790                 stmt->base.reachable = true;
4791
4792         statement_t *last = stmt;
4793         statement_t *next;
4794         switch (stmt->kind) {
4795                 case STATEMENT_ERROR:
4796                 case STATEMENT_EMPTY:
4797                 case STATEMENT_ASM:
4798                         next = stmt->base.next;
4799                         break;
4800
4801                 case STATEMENT_DECLARATION: {
4802                         declaration_statement_t const *const decl = &stmt->declaration;
4803                         entity_t                const *      ent  = decl->declarations_begin;
4804                         entity_t                const *const last_decl = decl->declarations_end;
4805                         if (ent != NULL) {
4806                                 for (;; ent = ent->base.next) {
4807                                         if (ent->kind                 == ENTITY_VARIABLE &&
4808                                             ent->variable.initializer != NULL            &&
4809                                             !initializer_returns(ent->variable.initializer)) {
4810                                                 return;
4811                                         }
4812                                         if (ent == last_decl)
4813                                                 break;
4814                                 }
4815                         }
4816                         next = stmt->base.next;
4817                         break;
4818                 }
4819
4820                 case STATEMENT_COMPOUND:
4821                         next = stmt->compound.statements;
4822                         if (next == NULL)
4823                                 next = stmt->base.next;
4824                         break;
4825
4826                 case STATEMENT_RETURN: {
4827                         expression_t const *const val = stmt->returns.value;
4828                         if (val == NULL || expression_returns(val))
4829                                 noreturn_candidate = false;
4830                         return;
4831                 }
4832
4833                 case STATEMENT_IF: {
4834                         if_statement_t const *const ifs  = &stmt->ifs;
4835                         expression_t   const *const cond = ifs->condition;
4836
4837                         if (!expression_returns(cond))
4838                                 return;
4839
4840                         int const val = determine_truth(cond);
4841
4842                         if (val >= 0)
4843                                 check_reachable(ifs->true_statement);
4844
4845                         if (val > 0)
4846                                 return;
4847
4848                         if (ifs->false_statement != NULL) {
4849                                 check_reachable(ifs->false_statement);
4850                                 return;
4851                         }
4852
4853                         next = stmt->base.next;
4854                         break;
4855                 }
4856
4857                 case STATEMENT_SWITCH: {
4858                         switch_statement_t const *const switchs = &stmt->switchs;
4859                         expression_t       const *const expr    = switchs->expression;
4860
4861                         if (!expression_returns(expr))
4862                                 return;
4863
4864                         if (is_constant_expression(expr) == EXPR_CLASS_CONSTANT) {
4865                                 long                    const val      = fold_constant_to_int(expr);
4866                                 case_label_statement_t *      defaults = NULL;
4867                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4868                                         if (i->expression == NULL) {
4869                                                 defaults = i;
4870                                                 continue;
4871                                         }
4872
4873                                         if (i->first_case <= val && val <= i->last_case) {
4874                                                 check_reachable((statement_t*)i);
4875                                                 return;
4876                                         }
4877                                 }
4878
4879                                 if (defaults != NULL) {
4880                                         check_reachable((statement_t*)defaults);
4881                                         return;
4882                                 }
4883                         } else {
4884                                 bool has_default = false;
4885                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4886                                         if (i->expression == NULL)
4887                                                 has_default = true;
4888
4889                                         check_reachable((statement_t*)i);
4890                                 }
4891
4892                                 if (has_default)
4893                                         return;
4894                         }
4895
4896                         next = stmt->base.next;
4897                         break;
4898                 }
4899
4900                 case STATEMENT_EXPRESSION: {
4901                         /* Check for noreturn function call */
4902                         expression_t const *const expr = stmt->expression.expression;
4903                         if (!expression_returns(expr))
4904                                 return;
4905
4906                         next = stmt->base.next;
4907                         break;
4908                 }
4909
4910                 case STATEMENT_CONTINUE:
4911                         for (statement_t *parent = stmt;;) {
4912                                 parent = parent->base.parent;
4913                                 if (parent == NULL) /* continue not within loop */
4914                                         return;
4915
4916                                 next = parent;
4917                                 switch (parent->kind) {
4918                                         case STATEMENT_WHILE:    goto continue_while;
4919                                         case STATEMENT_DO_WHILE: goto continue_do_while;
4920                                         case STATEMENT_FOR:      goto continue_for;
4921
4922                                         default: break;
4923                                 }
4924                         }
4925
4926                 case STATEMENT_BREAK:
4927                         for (statement_t *parent = stmt;;) {
4928                                 parent = parent->base.parent;
4929                                 if (parent == NULL) /* break not within loop/switch */
4930                                         return;
4931
4932                                 switch (parent->kind) {
4933                                         case STATEMENT_SWITCH:
4934                                         case STATEMENT_WHILE:
4935                                         case STATEMENT_DO_WHILE:
4936                                         case STATEMENT_FOR:
4937                                                 last = parent;
4938                                                 next = parent->base.next;
4939                                                 goto found_break_parent;
4940
4941                                         default: break;
4942                                 }
4943                         }
4944 found_break_parent:
4945                         break;
4946
4947                 case STATEMENT_COMPUTED_GOTO: {
4948                         if (!expression_returns(stmt->computed_goto.expression))
4949                                 return;
4950
4951                         statement_t *parent = stmt->base.parent;
4952                         if (parent == NULL) /* top level goto */
4953                                 return;
4954                         next = parent;
4955                         break;
4956                 }
4957
4958                 case STATEMENT_GOTO:
4959                         next = stmt->gotos.label->statement;
4960                         if (next == NULL) /* missing label */
4961                                 return;
4962                         break;
4963
4964                 case STATEMENT_LABEL:
4965                         next = stmt->label.statement;
4966                         break;
4967
4968                 case STATEMENT_CASE_LABEL:
4969                         next = stmt->case_label.statement;
4970                         break;
4971
4972                 case STATEMENT_WHILE: {
4973                         while_statement_t const *const whiles = &stmt->whiles;
4974                         expression_t      const *const cond   = whiles->condition;
4975
4976                         if (!expression_returns(cond))
4977                                 return;
4978
4979                         int const val = determine_truth(cond);
4980
4981                         if (val >= 0)
4982                                 check_reachable(whiles->body);
4983
4984                         if (val > 0)
4985                                 return;
4986
4987                         next = stmt->base.next;
4988                         break;
4989                 }
4990
4991                 case STATEMENT_DO_WHILE:
4992                         next = stmt->do_while.body;
4993                         break;
4994
4995                 case STATEMENT_FOR: {
4996                         for_statement_t *const fors = &stmt->fors;
4997
4998                         if (fors->condition_reachable)
4999                                 return;
5000                         fors->condition_reachable = true;
5001
5002                         expression_t const *const cond = fors->condition;
5003
5004                         int val;
5005                         if (cond == NULL) {
5006                                 val = 1;
5007                         } else if (expression_returns(cond)) {
5008                                 val = determine_truth(cond);
5009                         } else {
5010                                 return;
5011                         }
5012
5013                         if (val >= 0)
5014                                 check_reachable(fors->body);
5015
5016                         if (val > 0)
5017                                 return;
5018
5019                         next = stmt->base.next;
5020                         break;
5021                 }
5022
5023                 case STATEMENT_MS_TRY: {
5024                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5025                         check_reachable(ms_try->try_statement);
5026                         next = ms_try->final_statement;
5027                         break;
5028                 }
5029
5030                 case STATEMENT_LEAVE: {
5031                         statement_t *parent = stmt;
5032                         for (;;) {
5033                                 parent = parent->base.parent;
5034                                 if (parent == NULL) /* __leave not within __try */
5035                                         return;
5036
5037                                 if (parent->kind == STATEMENT_MS_TRY) {
5038                                         last = parent;
5039                                         next = parent->ms_try.final_statement;
5040                                         break;
5041                                 }
5042                         }
5043                         break;
5044                 }
5045
5046                 default:
5047                         panic("invalid statement kind");
5048         }
5049
5050         while (next == NULL) {
5051                 next = last->base.parent;
5052                 if (next == NULL) {
5053                         noreturn_candidate = false;
5054
5055                         type_t *const type = skip_typeref(current_function->base.type);
5056                         assert(is_type_function(type));
5057                         type_t *const ret  = skip_typeref(type->function.return_type);
5058                         if (!is_type_void(ret) &&
5059                             is_type_valid(ret) &&
5060                             !is_sym_main(current_function->base.base.symbol)) {
5061                                 source_position_t const *const pos = &stmt->base.source_position;
5062                                 warningf(WARN_RETURN_TYPE, pos, "control reaches end of non-void function");
5063                         }
5064                         return;
5065                 }
5066
5067                 switch (next->kind) {
5068                         case STATEMENT_ERROR:
5069                         case STATEMENT_EMPTY:
5070                         case STATEMENT_DECLARATION:
5071                         case STATEMENT_EXPRESSION:
5072                         case STATEMENT_ASM:
5073                         case STATEMENT_RETURN:
5074                         case STATEMENT_CONTINUE:
5075                         case STATEMENT_BREAK:
5076                         case STATEMENT_COMPUTED_GOTO:
5077                         case STATEMENT_GOTO:
5078                         case STATEMENT_LEAVE:
5079                                 panic("invalid control flow in function");
5080
5081                         case STATEMENT_COMPOUND:
5082                                 if (next->compound.stmt_expr) {
5083                                         reaches_end = true;
5084                                         return;
5085                                 }
5086                                 /* FALLTHROUGH */
5087                         case STATEMENT_IF:
5088                         case STATEMENT_SWITCH:
5089                         case STATEMENT_LABEL:
5090                         case STATEMENT_CASE_LABEL:
5091                                 last = next;
5092                                 next = next->base.next;
5093                                 break;
5094
5095                         case STATEMENT_WHILE: {
5096 continue_while:
5097                                 if (next->base.reachable)
5098                                         return;
5099                                 next->base.reachable = true;
5100
5101                                 while_statement_t const *const whiles = &next->whiles;
5102                                 expression_t      const *const cond   = whiles->condition;
5103
5104                                 if (!expression_returns(cond))
5105                                         return;
5106
5107                                 int const val = determine_truth(cond);
5108
5109                                 if (val >= 0)
5110                                         check_reachable(whiles->body);
5111
5112                                 if (val > 0)
5113                                         return;
5114
5115                                 last = next;
5116                                 next = next->base.next;
5117                                 break;
5118                         }
5119
5120                         case STATEMENT_DO_WHILE: {
5121 continue_do_while:
5122                                 if (next->base.reachable)
5123                                         return;
5124                                 next->base.reachable = true;
5125
5126                                 do_while_statement_t const *const dw   = &next->do_while;
5127                                 expression_t         const *const cond = dw->condition;
5128
5129                                 if (!expression_returns(cond))
5130                                         return;
5131
5132                                 int const val = determine_truth(cond);
5133
5134                                 if (val >= 0)
5135                                         check_reachable(dw->body);
5136
5137                                 if (val > 0)
5138                                         return;
5139
5140                                 last = next;
5141                                 next = next->base.next;
5142                                 break;
5143                         }
5144
5145                         case STATEMENT_FOR: {
5146 continue_for:;
5147                                 for_statement_t *const fors = &next->fors;
5148
5149                                 fors->step_reachable = true;
5150
5151                                 if (fors->condition_reachable)
5152                                         return;
5153                                 fors->condition_reachable = true;
5154
5155                                 expression_t const *const cond = fors->condition;
5156
5157                                 int val;
5158                                 if (cond == NULL) {
5159                                         val = 1;
5160                                 } else if (expression_returns(cond)) {
5161                                         val = determine_truth(cond);
5162                                 } else {
5163                                         return;
5164                                 }
5165
5166                                 if (val >= 0)
5167                                         check_reachable(fors->body);
5168
5169                                 if (val > 0)
5170                                         return;
5171
5172                                 last = next;
5173                                 next = next->base.next;
5174                                 break;
5175                         }
5176
5177                         case STATEMENT_MS_TRY:
5178                                 last = next;
5179                                 next = next->ms_try.final_statement;
5180                                 break;
5181                 }
5182         }
5183
5184         check_reachable(next);
5185 }
5186
5187 static void check_unreachable(statement_t* const stmt, void *const env)
5188 {
5189         (void)env;
5190
5191         switch (stmt->kind) {
5192                 case STATEMENT_DO_WHILE:
5193                         if (!stmt->base.reachable) {
5194                                 expression_t const *const cond = stmt->do_while.condition;
5195                                 if (determine_truth(cond) >= 0) {
5196                                         source_position_t const *const pos = &cond->base.source_position;
5197                                         warningf(WARN_UNREACHABLE_CODE, pos, "condition of do-while-loop is unreachable");
5198                                 }
5199                         }
5200                         return;
5201
5202                 case STATEMENT_FOR: {
5203                         for_statement_t const* const fors = &stmt->fors;
5204
5205                         // if init and step are unreachable, cond is unreachable, too
5206                         if (!stmt->base.reachable && !fors->step_reachable) {
5207                                 goto warn_unreachable;
5208                         } else {
5209                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5210                                         source_position_t const *const pos = &fors->initialisation->base.source_position;
5211                                         warningf(WARN_UNREACHABLE_CODE, pos, "initialisation of for-statement is unreachable");
5212                                 }
5213
5214                                 if (!fors->condition_reachable && fors->condition != NULL) {
5215                                         source_position_t const *const pos = &fors->condition->base.source_position;
5216                                         warningf(WARN_UNREACHABLE_CODE, pos, "condition of for-statement is unreachable");
5217                                 }
5218
5219                                 if (!fors->step_reachable && fors->step != NULL) {
5220                                         source_position_t const *const pos = &fors->step->base.source_position;
5221                                         warningf(WARN_UNREACHABLE_CODE, pos, "step of for-statement is unreachable");
5222                                 }
5223                         }
5224                         return;
5225                 }
5226
5227                 case STATEMENT_COMPOUND:
5228                         if (stmt->compound.statements != NULL)
5229                                 return;
5230                         goto warn_unreachable;
5231
5232                 case STATEMENT_DECLARATION: {
5233                         /* Only warn if there is at least one declarator with an initializer.
5234                          * This typically occurs in switch statements. */
5235                         declaration_statement_t const *const decl = &stmt->declaration;
5236                         entity_t                const *      ent  = decl->declarations_begin;
5237                         entity_t                const *const last = decl->declarations_end;
5238                         if (ent != NULL) {
5239                                 for (;; ent = ent->base.next) {
5240                                         if (ent->kind                 == ENTITY_VARIABLE &&
5241                                                         ent->variable.initializer != NULL) {
5242                                                 goto warn_unreachable;
5243                                         }
5244                                         if (ent == last)
5245                                                 return;
5246                                 }
5247                         }
5248                 }
5249
5250                 default:
5251 warn_unreachable:
5252                         if (!stmt->base.reachable) {
5253                                 source_position_t const *const pos = &stmt->base.source_position;
5254                                 warningf(WARN_UNREACHABLE_CODE, pos, "statement is unreachable");
5255                         }
5256                         return;
5257         }
5258 }
5259
5260 static bool is_main(entity_t *entity)
5261 {
5262         static symbol_t *sym_main = NULL;
5263         if (sym_main == NULL) {
5264                 sym_main = symbol_table_insert("main");
5265         }
5266
5267         if (entity->base.symbol != sym_main)
5268                 return false;
5269         /* must be in outermost scope */
5270         if (entity->base.parent_scope != file_scope)
5271                 return false;
5272
5273         return true;
5274 }
5275
5276 static void parse_external_declaration(void)
5277 {
5278         /* function-definitions and declarations both start with declaration
5279          * specifiers */
5280         add_anchor_token(';');
5281         declaration_specifiers_t specifiers;
5282         parse_declaration_specifiers(&specifiers);
5283         rem_anchor_token(';');
5284
5285         /* must be a declaration */
5286         if (token.kind == ';') {
5287                 parse_anonymous_declaration_rest(&specifiers);
5288                 return;
5289         }
5290
5291         add_anchor_token(',');
5292         add_anchor_token('=');
5293         add_anchor_token(';');
5294         add_anchor_token('{');
5295
5296         /* declarator is common to both function-definitions and declarations */
5297         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
5298
5299         rem_anchor_token('{');
5300         rem_anchor_token(';');
5301         rem_anchor_token('=');
5302         rem_anchor_token(',');
5303
5304         /* must be a declaration */
5305         switch (token.kind) {
5306                 case ',':
5307                 case ';':
5308                 case '=':
5309                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
5310                                         DECL_FLAGS_NONE);
5311                         return;
5312         }
5313
5314         /* must be a function definition */
5315         parse_kr_declaration_list(ndeclaration);
5316
5317         if (token.kind != '{') {
5318                 parse_error_expected("while parsing function definition", '{', NULL);
5319                 eat_until_matching_token(';');
5320                 return;
5321         }
5322
5323         assert(is_declaration(ndeclaration));
5324         type_t *const orig_type = ndeclaration->declaration.type;
5325         type_t *      type      = skip_typeref(orig_type);
5326
5327         if (!is_type_function(type)) {
5328                 if (is_type_valid(type)) {
5329                         errorf(HERE, "declarator '%#N' has a body but is not a function type", ndeclaration);
5330                 }
5331                 eat_block();
5332                 return;
5333         }
5334
5335         source_position_t const *const pos = &ndeclaration->base.source_position;
5336         if (is_typeref(orig_type)) {
5337                 /* §6.9.1:2 */
5338                 errorf(pos, "type of function definition '%#N' is a typedef", ndeclaration);
5339         }
5340
5341         if (is_type_compound(skip_typeref(type->function.return_type))) {
5342                 warningf(WARN_AGGREGATE_RETURN, pos, "'%N' returns an aggregate", ndeclaration);
5343         }
5344         if (type->function.unspecified_parameters) {
5345                 warningf(WARN_OLD_STYLE_DEFINITION, pos, "old-style definition of '%N'", ndeclaration);
5346         } else {
5347                 warningf(WARN_TRADITIONAL, pos, "traditional C rejects ISO C style definition of '%N'", ndeclaration);
5348         }
5349
5350         /* §6.7.5.3:14 a function definition with () means no
5351          * parameters (and not unspecified parameters) */
5352         if (type->function.unspecified_parameters &&
5353                         type->function.parameters == NULL) {
5354                 type_t *copy                          = duplicate_type(type);
5355                 copy->function.unspecified_parameters = false;
5356                 type                                  = identify_new_type(copy);
5357
5358                 ndeclaration->declaration.type = type;
5359         }
5360
5361         entity_t *const entity = record_entity(ndeclaration, true);
5362         assert(entity->kind == ENTITY_FUNCTION);
5363         assert(ndeclaration->kind == ENTITY_FUNCTION);
5364
5365         function_t *const function = &entity->function;
5366         if (ndeclaration != entity) {
5367                 function->parameters = ndeclaration->function.parameters;
5368         }
5369         assert(is_declaration(entity));
5370         type = skip_typeref(entity->declaration.type);
5371
5372         PUSH_SCOPE(&function->parameters);
5373
5374         entity_t *parameter = function->parameters.entities;
5375         for (; parameter != NULL; parameter = parameter->base.next) {
5376                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
5377                         parameter->base.parent_scope = current_scope;
5378                 }
5379                 assert(parameter->base.parent_scope == NULL
5380                                 || parameter->base.parent_scope == current_scope);
5381                 parameter->base.parent_scope = current_scope;
5382                 if (parameter->base.symbol == NULL) {
5383                         errorf(&parameter->base.source_position, "parameter name omitted");
5384                         continue;
5385                 }
5386                 environment_push(parameter);
5387         }
5388
5389         if (function->statement != NULL) {
5390                 parser_error_multiple_definition(entity, HERE);
5391                 eat_block();
5392         } else {
5393                 /* parse function body */
5394                 int         label_stack_top      = label_top();
5395                 function_t *old_current_function = current_function;
5396                 entity_t   *old_current_entity   = current_entity;
5397                 current_function                 = function;
5398                 current_entity                   = entity;
5399                 PUSH_PARENT(NULL);
5400
5401                 goto_first   = NULL;
5402                 goto_anchor  = &goto_first;
5403                 label_first  = NULL;
5404                 label_anchor = &label_first;
5405
5406                 statement_t *const body = parse_compound_statement(false);
5407                 function->statement = body;
5408                 first_err = true;
5409                 check_labels();
5410                 check_declarations();
5411                 if (is_warn_on(WARN_RETURN_TYPE)      ||
5412                     is_warn_on(WARN_UNREACHABLE_CODE) ||
5413                     (is_warn_on(WARN_MISSING_NORETURN) && !(function->base.modifiers & DM_NORETURN))) {
5414                         noreturn_candidate = true;
5415                         check_reachable(body);
5416                         if (is_warn_on(WARN_UNREACHABLE_CODE))
5417                                 walk_statements(body, check_unreachable, NULL);
5418                         if (noreturn_candidate &&
5419                             !(function->base.modifiers & DM_NORETURN)) {
5420                                 source_position_t const *const pos = &body->base.source_position;
5421                                 warningf(WARN_MISSING_NORETURN, pos, "function '%#N' is candidate for attribute 'noreturn'", entity);
5422                         }
5423                 }
5424
5425                 if (is_main(entity) && enable_main_collect2_hack)
5426                         prepare_main_collect2(entity);
5427
5428                 POP_PARENT();
5429                 assert(current_function == function);
5430                 assert(current_entity   == entity);
5431                 current_entity   = old_current_entity;
5432                 current_function = old_current_function;
5433                 label_pop_to(label_stack_top);
5434         }
5435
5436         POP_SCOPE();
5437 }
5438
5439 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
5440 {
5441         entity_t *iter = compound->members.entities;
5442         for (; iter != NULL; iter = iter->base.next) {
5443                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5444                         continue;
5445
5446                 if (iter->base.symbol == symbol) {
5447                         return iter;
5448                 } else if (iter->base.symbol == NULL) {
5449                         /* search in anonymous structs and unions */
5450                         type_t *type = skip_typeref(iter->declaration.type);
5451                         if (is_type_compound(type)) {
5452                                 if (find_compound_entry(type->compound.compound, symbol)
5453                                                 != NULL)
5454                                         return iter;
5455                         }
5456                         continue;
5457                 }
5458         }
5459
5460         return NULL;
5461 }
5462
5463 static void check_deprecated(const source_position_t *source_position,
5464                              const entity_t *entity)
5465 {
5466         if (!is_declaration(entity))
5467                 return;
5468         if ((entity->declaration.modifiers & DM_DEPRECATED) == 0)
5469                 return;
5470
5471         source_position_t const *const epos = &entity->base.source_position;
5472         char              const *const msg  = get_deprecated_string(entity->declaration.attributes);
5473         if (msg != NULL) {
5474                 warningf(WARN_DEPRECATED_DECLARATIONS, source_position, "'%N' is deprecated (declared %P): \"%s\"", entity, epos, msg);
5475         } else {
5476                 warningf(WARN_DEPRECATED_DECLARATIONS, source_position, "'%N' is deprecated (declared %P)", entity, epos);
5477         }
5478 }
5479
5480
5481 static expression_t *create_select(const source_position_t *pos,
5482                                    expression_t *addr,
5483                                    type_qualifiers_t qualifiers,
5484                                                                    entity_t *entry)
5485 {
5486         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
5487
5488         check_deprecated(pos, entry);
5489
5490         expression_t *select          = allocate_expression_zero(EXPR_SELECT);
5491         select->select.compound       = addr;
5492         select->select.compound_entry = entry;
5493
5494         type_t *entry_type = entry->declaration.type;
5495         type_t *res_type   = get_qualified_type(entry_type, qualifiers);
5496
5497         /* bitfields need special treatment */
5498         if (entry->compound_member.bitfield) {
5499                 unsigned bit_size = entry->compound_member.bit_size;
5500                 /* if fewer bits than an int, convert to int (see §6.3.1.1) */
5501                 if (bit_size < get_atomic_type_size(ATOMIC_TYPE_INT) * BITS_PER_BYTE) {
5502                         res_type = type_int;
5503                 }
5504         }
5505
5506         /* we always do the auto-type conversions; the & and sizeof parser contains
5507          * code to revert this! */
5508         select->base.type = automatic_type_conversion(res_type);
5509
5510
5511         return select;
5512 }
5513
5514 /**
5515  * Find entry with symbol in compound. Search anonymous structs and unions and
5516  * creates implicit select expressions for them.
5517  * Returns the adress for the innermost compound.
5518  */
5519 static expression_t *find_create_select(const source_position_t *pos,
5520                                         expression_t *addr,
5521                                         type_qualifiers_t qualifiers,
5522                                         compound_t *compound, symbol_t *symbol)
5523 {
5524         entity_t *iter = compound->members.entities;
5525         for (; iter != NULL; iter = iter->base.next) {
5526                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5527                         continue;
5528
5529                 symbol_t *iter_symbol = iter->base.symbol;
5530                 if (iter_symbol == NULL) {
5531                         type_t *type = iter->declaration.type;
5532                         if (type->kind != TYPE_COMPOUND_STRUCT
5533                                         && type->kind != TYPE_COMPOUND_UNION)
5534                                 continue;
5535
5536                         compound_t *sub_compound = type->compound.compound;
5537
5538                         if (find_compound_entry(sub_compound, symbol) == NULL)
5539                                 continue;
5540
5541                         expression_t *sub_addr = create_select(pos, addr, qualifiers, iter);
5542                         sub_addr->base.source_position = *pos;
5543                         sub_addr->base.implicit        = true;
5544                         return find_create_select(pos, sub_addr, qualifiers, sub_compound,
5545                                                   symbol);
5546                 }
5547
5548                 if (iter_symbol == symbol) {
5549                         return create_select(pos, addr, qualifiers, iter);
5550                 }
5551         }
5552
5553         return NULL;
5554 }
5555
5556 static void parse_bitfield_member(entity_t *entity)
5557 {
5558         eat(':');
5559
5560         expression_t *size = parse_constant_expression();
5561         long          size_long;
5562
5563         assert(entity->kind == ENTITY_COMPOUND_MEMBER);
5564         type_t *type = entity->declaration.type;
5565         if (!is_type_integer(skip_typeref(type))) {
5566                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5567                            type);
5568         }
5569
5570         if (is_constant_expression(size) != EXPR_CLASS_CONSTANT) {
5571                 /* error already reported by parse_constant_expression */
5572                 size_long = get_type_size(type) * 8;
5573         } else {
5574                 size_long = fold_constant_to_int(size);
5575
5576                 const symbol_t *symbol = entity->base.symbol;
5577                 const symbol_t *user_symbol
5578                         = symbol == NULL ? sym_anonymous : symbol;
5579                 unsigned bit_size = get_type_size(type) * 8;
5580                 if (size_long < 0) {
5581                         errorf(HERE, "negative width in bit-field '%Y'", user_symbol);
5582                 } else if (size_long == 0 && symbol != NULL) {
5583                         errorf(HERE, "zero width for bit-field '%Y'", user_symbol);
5584                 } else if (bit_size > 0 && (unsigned)size_long > bit_size) {
5585                         errorf(HERE, "width of bitfield '%Y' exceeds its type",
5586                                    user_symbol);
5587                 } else {
5588                         /* hope that people don't invent crazy types with more bits
5589                          * than our struct can hold */
5590                         assert(size_long <
5591                                    (1 << sizeof(entity->compound_member.bit_size)*8));
5592                 }
5593         }
5594
5595         entity->compound_member.bitfield = true;
5596         entity->compound_member.bit_size = (unsigned char)size_long;
5597 }
5598
5599 static void parse_compound_declarators(compound_t *compound,
5600                 const declaration_specifiers_t *specifiers)
5601 {
5602         add_anchor_token(';');
5603         add_anchor_token(',');
5604         do {
5605                 entity_t *entity;
5606
5607                 if (token.kind == ':') {
5608                         /* anonymous bitfield */
5609                         type_t *type = specifiers->type;
5610                         entity_t *const entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER, NAMESPACE_NORMAL, NULL, HERE);
5611                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
5612                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
5613                         entity->declaration.type                   = type;
5614
5615                         parse_bitfield_member(entity);
5616
5617                         attribute_t  *attributes = parse_attributes(NULL);
5618                         attribute_t **anchor     = &attributes;
5619                         while (*anchor != NULL)
5620                                 anchor = &(*anchor)->next;
5621                         *anchor = specifiers->attributes;
5622                         if (attributes != NULL) {
5623                                 handle_entity_attributes(attributes, entity);
5624                         }
5625                         entity->declaration.attributes = attributes;
5626
5627                         append_entity(&compound->members, entity);
5628                 } else {
5629                         entity = parse_declarator(specifiers,
5630                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
5631                         source_position_t const *const pos = &entity->base.source_position;
5632                         if (entity->kind == ENTITY_TYPEDEF) {
5633                                 errorf(pos, "typedef not allowed as compound member");
5634                         } else {
5635                                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
5636
5637                                 /* make sure we don't define a symbol multiple times */
5638                                 symbol_t *symbol = entity->base.symbol;
5639                                 if (symbol != NULL) {
5640                                         entity_t *prev = find_compound_entry(compound, symbol);
5641                                         if (prev != NULL) {
5642                                                 source_position_t const *const ppos = &prev->base.source_position;
5643                                                 errorf(pos, "multiple declarations of symbol '%Y' (declared %P)", symbol, ppos);
5644                                         }
5645                                 }
5646
5647                                 if (token.kind == ':') {
5648                                         parse_bitfield_member(entity);
5649
5650                                         attribute_t *attributes = parse_attributes(NULL);
5651                                         handle_entity_attributes(attributes, entity);
5652                                 } else {
5653                                         type_t *orig_type = entity->declaration.type;
5654                                         type_t *type      = skip_typeref(orig_type);
5655                                         if (is_type_function(type)) {
5656                                                 errorf(pos, "'%N' must not have function type '%T'", entity, orig_type);
5657                                         } else if (is_type_incomplete(type)) {
5658                                                 /* §6.7.2.1:16 flexible array member */
5659                                                 if (!is_type_array(type)       ||
5660                                                                 token.kind          != ';' ||
5661                                                                 look_ahead(1)->kind != '}') {
5662                                                         errorf(pos, "'%N' has incomplete type '%T'", entity, orig_type);
5663                                                 } else if (compound->members.entities == NULL) {
5664                                                         errorf(pos, "flexible array member in otherwise empty struct");
5665                                                 }
5666                                         }
5667                                 }
5668
5669                                 append_entity(&compound->members, entity);
5670                         }
5671                 }
5672         } while (next_if(','));
5673         rem_anchor_token(',');
5674         rem_anchor_token(';');
5675         expect(';');
5676
5677         anonymous_entity = NULL;
5678 }
5679
5680 static void parse_compound_type_entries(compound_t *compound)
5681 {
5682         eat('{');
5683         add_anchor_token('}');
5684
5685         for (;;) {
5686                 switch (token.kind) {
5687                         DECLARATION_START
5688                         case T___extension__:
5689                         case T_IDENTIFIER: {
5690                                 PUSH_EXTENSION();
5691                                 declaration_specifiers_t specifiers;
5692                                 parse_declaration_specifiers(&specifiers);
5693                                 parse_compound_declarators(compound, &specifiers);
5694                                 POP_EXTENSION();
5695                                 break;
5696                         }
5697
5698                         default:
5699                                 rem_anchor_token('}');
5700                                 expect('}');
5701                                 /* §6.7.2.1:7 */
5702                                 compound->complete = true;
5703                                 return;
5704                 }
5705         }
5706 }
5707
5708 static type_t *parse_typename(void)
5709 {
5710         declaration_specifiers_t specifiers;
5711         parse_declaration_specifiers(&specifiers);
5712         if (specifiers.storage_class != STORAGE_CLASS_NONE
5713                         || specifiers.thread_local) {
5714                 /* TODO: improve error message, user does probably not know what a
5715                  * storage class is...
5716                  */
5717                 errorf(&specifiers.source_position, "typename must not have a storage class");
5718         }
5719
5720         type_t *result = parse_abstract_declarator(specifiers.type);
5721
5722         return result;
5723 }
5724
5725
5726
5727
5728 typedef expression_t* (*parse_expression_function)(void);
5729 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
5730
5731 typedef struct expression_parser_function_t expression_parser_function_t;
5732 struct expression_parser_function_t {
5733         parse_expression_function        parser;
5734         precedence_t                     infix_precedence;
5735         parse_expression_infix_function  infix_parser;
5736 };
5737
5738 static expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5739
5740 static type_t *get_string_type(void)
5741 {
5742         return is_warn_on(WARN_WRITE_STRINGS) ? type_const_char_ptr : type_char_ptr;
5743 }
5744
5745 static type_t *get_wide_string_type(void)
5746 {
5747         return is_warn_on(WARN_WRITE_STRINGS) ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5748 }
5749
5750 /**
5751  * Parse a string constant.
5752  */
5753 static expression_t *parse_string_literal(void)
5754 {
5755         source_position_t begin   = token.base.source_position;
5756         string_t          res     = token.string.string;
5757         bool              is_wide = (token.kind == T_WIDE_STRING_LITERAL);
5758
5759         next_token();
5760         while (token.kind == T_STRING_LITERAL
5761                         || token.kind == T_WIDE_STRING_LITERAL) {
5762                 warn_string_concat(&token.base.source_position);
5763                 res = concat_strings(&res, &token.string.string);
5764                 next_token();
5765                 is_wide |= token.kind == T_WIDE_STRING_LITERAL;
5766         }
5767
5768         expression_t *literal;
5769         if (is_wide) {
5770                 literal = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5771                 literal->base.type = get_wide_string_type();
5772         } else {
5773                 literal = allocate_expression_zero(EXPR_STRING_LITERAL);
5774                 literal->base.type = get_string_type();
5775         }
5776         literal->base.source_position = begin;
5777         literal->literal.value        = res;
5778
5779         return literal;
5780 }
5781
5782 /**
5783  * Parse a boolean constant.
5784  */
5785 static expression_t *parse_boolean_literal(bool value)
5786 {
5787         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_BOOLEAN);
5788         literal->base.type           = type_bool;
5789         literal->literal.value.begin = value ? "true" : "false";
5790         literal->literal.value.size  = value ? 4 : 5;
5791
5792         next_token();
5793         return literal;
5794 }
5795
5796 static void warn_traditional_suffix(void)
5797 {
5798         warningf(WARN_TRADITIONAL, HERE, "traditional C rejects the '%S' suffix",
5799                  &token.number.suffix);
5800 }
5801
5802 static void check_integer_suffix(void)
5803 {
5804         const string_t *suffix = &token.number.suffix;
5805         if (suffix->size == 0)
5806                 return;
5807
5808         bool not_traditional = false;
5809         const char *c = suffix->begin;
5810         if (*c == 'l' || *c == 'L') {
5811                 ++c;
5812                 if (*c == *(c-1)) {
5813                         not_traditional = true;
5814                         ++c;
5815                         if (*c == 'u' || *c == 'U') {
5816                                 ++c;
5817                         }
5818                 } else if (*c == 'u' || *c == 'U') {
5819                         not_traditional = true;
5820                         ++c;
5821                 }
5822         } else if (*c == 'u' || *c == 'U') {
5823                 not_traditional = true;
5824                 ++c;
5825                 if (*c == 'l' || *c == 'L') {
5826                         ++c;
5827                         if (*c == *(c-1)) {
5828                                 ++c;
5829                         }
5830                 }
5831         }
5832         if (*c != '\0') {
5833                 errorf(&token.base.source_position,
5834                        "invalid suffix '%S' on integer constant", suffix);
5835         } else if (not_traditional) {
5836                 warn_traditional_suffix();
5837         }
5838 }
5839
5840 static type_t *check_floatingpoint_suffix(void)
5841 {
5842         const string_t *suffix = &token.number.suffix;
5843         type_t         *type   = type_double;
5844         if (suffix->size == 0)
5845                 return type;
5846
5847         bool not_traditional = false;
5848         const char *c = suffix->begin;
5849         if (*c == 'f' || *c == 'F') {
5850                 ++c;
5851                 type = type_float;
5852         } else if (*c == 'l' || *c == 'L') {
5853                 ++c;
5854                 type = type_long_double;
5855         }
5856         if (*c != '\0') {
5857                 errorf(&token.base.source_position,
5858                        "invalid suffix '%S' on floatingpoint constant", suffix);
5859         } else if (not_traditional) {
5860                 warn_traditional_suffix();
5861         }
5862
5863         return type;
5864 }
5865
5866 /**
5867  * Parse an integer constant.
5868  */
5869 static expression_t *parse_number_literal(void)
5870 {
5871         expression_kind_t  kind;
5872         type_t            *type;
5873
5874         switch (token.kind) {
5875         case T_INTEGER:
5876                 kind = EXPR_LITERAL_INTEGER;
5877                 check_integer_suffix();
5878                 type = type_int;
5879                 break;
5880         case T_INTEGER_OCTAL:
5881                 kind = EXPR_LITERAL_INTEGER_OCTAL;
5882                 check_integer_suffix();
5883                 type = type_int;
5884                 break;
5885         case T_INTEGER_HEXADECIMAL:
5886                 kind = EXPR_LITERAL_INTEGER_HEXADECIMAL;
5887                 check_integer_suffix();
5888                 type = type_int;
5889                 break;
5890         case T_FLOATINGPOINT:
5891                 kind = EXPR_LITERAL_FLOATINGPOINT;
5892                 type = check_floatingpoint_suffix();
5893                 break;
5894         case T_FLOATINGPOINT_HEXADECIMAL:
5895                 kind = EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL;
5896                 type = check_floatingpoint_suffix();
5897                 break;
5898         default:
5899                 panic("unexpected token type in parse_number_literal");
5900         }
5901
5902         expression_t *literal = allocate_expression_zero(kind);
5903         literal->base.type      = type;
5904         literal->literal.value  = token.number.number;
5905         literal->literal.suffix = token.number.suffix;
5906         next_token();
5907
5908         /* integer type depends on the size of the number and the size
5909          * representable by the types. The backend/codegeneration has to determine
5910          * that
5911          */
5912         determine_literal_type(&literal->literal);
5913         return literal;
5914 }
5915
5916 /**
5917  * Parse a character constant.
5918  */
5919 static expression_t *parse_character_constant(void)
5920 {
5921         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_CHARACTER);
5922         literal->base.type     = c_mode & _CXX ? type_char : type_int;
5923         literal->literal.value = token.string.string;
5924
5925         size_t len = literal->literal.value.size;
5926         if (len > 1) {
5927                 if (!GNU_MODE && !(c_mode & _C99)) {
5928                         errorf(HERE, "more than 1 character in character constant");
5929                 } else {
5930                         literal->base.type = type_int;
5931                         warningf(WARN_MULTICHAR, HERE, "multi-character character constant");
5932                 }
5933         }
5934
5935         next_token();
5936         return literal;
5937 }
5938
5939 /**
5940  * Parse a wide character constant.
5941  */
5942 static expression_t *parse_wide_character_constant(void)
5943 {
5944         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_WIDE_CHARACTER);
5945         literal->base.type     = type_int;
5946         literal->literal.value = token.string.string;
5947
5948         size_t len = wstrlen(&literal->literal.value);
5949         if (len > 1) {
5950                 warningf(WARN_MULTICHAR, HERE, "multi-character character constant");
5951         }
5952
5953         next_token();
5954         return literal;
5955 }
5956
5957 static entity_t *create_implicit_function(symbol_t *symbol, source_position_t const *const pos)
5958 {
5959         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
5960         ntype->function.return_type            = type_int;
5961         ntype->function.unspecified_parameters = true;
5962         ntype->function.linkage                = LINKAGE_C;
5963         type_t *type                           = identify_new_type(ntype);
5964
5965         entity_t *const entity = allocate_entity_zero(ENTITY_FUNCTION, NAMESPACE_NORMAL, symbol, pos);
5966         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
5967         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
5968         entity->declaration.type                   = type;
5969         entity->declaration.implicit               = true;
5970
5971         if (current_scope != NULL)
5972                 record_entity(entity, false);
5973
5974         return entity;
5975 }
5976
5977 /**
5978  * Performs automatic type cast as described in §6.3.2.1.
5979  *
5980  * @param orig_type  the original type
5981  */
5982 static type_t *automatic_type_conversion(type_t *orig_type)
5983 {
5984         type_t *type = skip_typeref(orig_type);
5985         if (is_type_array(type)) {
5986                 array_type_t *array_type   = &type->array;
5987                 type_t       *element_type = array_type->element_type;
5988                 unsigned      qualifiers   = array_type->base.qualifiers;
5989
5990                 return make_pointer_type(element_type, qualifiers);
5991         }
5992
5993         if (is_type_function(type)) {
5994                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
5995         }
5996
5997         return orig_type;
5998 }
5999
6000 /**
6001  * reverts the automatic casts of array to pointer types and function
6002  * to function-pointer types as defined §6.3.2.1
6003  */
6004 type_t *revert_automatic_type_conversion(const expression_t *expression)
6005 {
6006         switch (expression->kind) {
6007         case EXPR_REFERENCE: {
6008                 entity_t *entity = expression->reference.entity;
6009                 if (is_declaration(entity)) {
6010                         return entity->declaration.type;
6011                 } else if (entity->kind == ENTITY_ENUM_VALUE) {
6012                         return entity->enum_value.enum_type;
6013                 } else {
6014                         panic("no declaration or enum in reference");
6015                 }
6016         }
6017
6018         case EXPR_SELECT: {
6019                 entity_t *entity = expression->select.compound_entry;
6020                 assert(is_declaration(entity));
6021                 type_t   *type   = entity->declaration.type;
6022                 return get_qualified_type(type, expression->base.type->base.qualifiers);
6023         }
6024
6025         case EXPR_UNARY_DEREFERENCE: {
6026                 const expression_t *const value = expression->unary.value;
6027                 type_t             *const type  = skip_typeref(value->base.type);
6028                 if (!is_type_pointer(type))
6029                         return type_error_type;
6030                 return type->pointer.points_to;
6031         }
6032
6033         case EXPR_ARRAY_ACCESS: {
6034                 const expression_t *array_ref = expression->array_access.array_ref;
6035                 type_t             *type_left = skip_typeref(array_ref->base.type);
6036                 if (!is_type_pointer(type_left))
6037                         return type_error_type;
6038                 return type_left->pointer.points_to;
6039         }
6040
6041         case EXPR_STRING_LITERAL: {
6042                 size_t size = expression->string_literal.value.size;
6043                 return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6044         }
6045
6046         case EXPR_WIDE_STRING_LITERAL: {
6047                 size_t size = wstrlen(&expression->string_literal.value);
6048                 return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6049         }
6050
6051         case EXPR_COMPOUND_LITERAL:
6052                 return expression->compound_literal.type;
6053
6054         default:
6055                 break;
6056         }
6057         return expression->base.type;
6058 }
6059
6060 /**
6061  * Find an entity matching a symbol in a scope.
6062  * Uses current scope if scope is NULL
6063  */
6064 static entity_t *lookup_entity(const scope_t *scope, symbol_t *symbol,
6065                                namespace_tag_t namespc)
6066 {
6067         if (scope == NULL) {
6068                 return get_entity(symbol, namespc);
6069         }
6070
6071         /* we should optimize here, if scope grows above a certain size we should
6072            construct a hashmap here... */
6073         entity_t *entity = scope->entities;
6074         for ( ; entity != NULL; entity = entity->base.next) {
6075                 if (entity->base.symbol == symbol
6076                     && (namespace_tag_t)entity->base.namespc == namespc)
6077                         break;
6078         }
6079
6080         return entity;
6081 }
6082
6083 static entity_t *parse_qualified_identifier(void)
6084 {
6085         /* namespace containing the symbol */
6086         symbol_t          *symbol;
6087         source_position_t  pos;
6088         const scope_t     *lookup_scope = NULL;
6089
6090         if (next_if(T_COLONCOLON))
6091                 lookup_scope = &unit->scope;
6092
6093         entity_t *entity;
6094         while (true) {
6095                 symbol = expect_identifier("while parsing identifier", &pos);
6096                 if (!symbol)
6097                         return create_error_entity(sym_anonymous, ENTITY_VARIABLE);
6098
6099                 /* lookup entity */
6100                 entity = lookup_entity(lookup_scope, symbol, NAMESPACE_NORMAL);
6101
6102                 if (!next_if(T_COLONCOLON))
6103                         break;
6104
6105                 switch (entity->kind) {
6106                 case ENTITY_NAMESPACE:
6107                         lookup_scope = &entity->namespacee.members;
6108                         break;
6109                 case ENTITY_STRUCT:
6110                 case ENTITY_UNION:
6111                 case ENTITY_CLASS:
6112                         lookup_scope = &entity->compound.members;
6113                         break;
6114                 default:
6115                         errorf(&pos, "'%Y' must be a namespace, class, struct or union (but is a %s)",
6116                                symbol, get_entity_kind_name(entity->kind));
6117
6118                         /* skip further qualifications */
6119                         while (next_if(T_IDENTIFIER) && next_if(T_COLONCOLON)) {}
6120
6121                         return create_error_entity(sym_anonymous, ENTITY_VARIABLE);
6122                 }
6123         }
6124
6125         if (entity == NULL) {
6126                 if (!strict_mode && token.kind == '(') {
6127                         /* an implicitly declared function */
6128                         warningf(WARN_IMPLICIT_FUNCTION_DECLARATION, &pos,
6129                                  "implicit declaration of function '%Y'", symbol);
6130                         entity = create_implicit_function(symbol, &pos);
6131                 } else {
6132                         errorf(&pos, "unknown identifier '%Y' found.", symbol);
6133                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6134                 }
6135         }
6136
6137         return entity;
6138 }
6139
6140 static expression_t *parse_reference(void)
6141 {
6142         source_position_t const pos    = token.base.source_position;
6143         entity_t         *const entity = parse_qualified_identifier();
6144
6145         type_t *orig_type;
6146         if (is_declaration(entity)) {
6147                 orig_type = entity->declaration.type;
6148         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6149                 orig_type = entity->enum_value.enum_type;
6150         } else {
6151                 panic("expected declaration or enum value in reference");
6152         }
6153
6154         /* we always do the auto-type conversions; the & and sizeof parser contains
6155          * code to revert this! */
6156         type_t *type = automatic_type_conversion(orig_type);
6157
6158         expression_kind_t kind = EXPR_REFERENCE;
6159         if (entity->kind == ENTITY_ENUM_VALUE)
6160                 kind = EXPR_ENUM_CONSTANT;
6161
6162         expression_t *expression         = allocate_expression_zero(kind);
6163         expression->base.source_position = pos;
6164         expression->base.type            = type;
6165         expression->reference.entity     = entity;
6166
6167         /* this declaration is used */
6168         if (is_declaration(entity)) {
6169                 entity->declaration.used = true;
6170         }
6171
6172         if (entity->base.parent_scope != file_scope
6173                 && (current_function != NULL
6174                         && entity->base.parent_scope->depth < current_function->parameters.depth)
6175                 && (entity->kind == ENTITY_VARIABLE || entity->kind == ENTITY_PARAMETER)) {
6176                 if (entity->kind == ENTITY_VARIABLE) {
6177                         /* access of a variable from an outer function */
6178                         entity->variable.address_taken = true;
6179                 } else if (entity->kind == ENTITY_PARAMETER) {
6180                         entity->parameter.address_taken = true;
6181                 }
6182                 current_function->need_closure = true;
6183         }
6184
6185         check_deprecated(&pos, entity);
6186
6187         return expression;
6188 }
6189
6190 static bool semantic_cast(expression_t *cast)
6191 {
6192         expression_t            *expression      = cast->unary.value;
6193         type_t                  *orig_dest_type  = cast->base.type;
6194         type_t                  *orig_type_right = expression->base.type;
6195         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6196         type_t            const *src_type        = skip_typeref(orig_type_right);
6197         source_position_t const *pos             = &cast->base.source_position;
6198
6199         /* §6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6200         if (is_type_void(dst_type))
6201                 return true;
6202
6203         /* only integer and pointer can be casted to pointer */
6204         if (is_type_pointer(dst_type)  &&
6205             !is_type_pointer(src_type) &&
6206             !is_type_integer(src_type) &&
6207             is_type_valid(src_type)) {
6208                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6209                 return false;
6210         }
6211
6212         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6213                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6214                 return false;
6215         }
6216
6217         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6218                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6219                 return false;
6220         }
6221
6222         if (is_type_pointer(src_type) && is_type_pointer(dst_type)) {
6223                 type_t *src = skip_typeref(src_type->pointer.points_to);
6224                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6225                 unsigned missing_qualifiers =
6226                         src->base.qualifiers & ~dst->base.qualifiers;
6227                 if (missing_qualifiers != 0) {
6228                         warningf(WARN_CAST_QUAL, pos, "cast discards qualifiers '%Q' in pointer target type of '%T'", missing_qualifiers, orig_type_right);
6229                 }
6230         }
6231         return true;
6232 }
6233
6234 static expression_t *parse_compound_literal(source_position_t const *const pos, type_t *type)
6235 {
6236         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6237         expression->base.source_position = *pos;
6238
6239         parse_initializer_env_t env;
6240         env.type             = type;
6241         env.entity           = NULL;
6242         env.must_be_constant = false;
6243         initializer_t *initializer = parse_initializer(&env);
6244         type = env.type;
6245
6246         expression->compound_literal.initializer = initializer;
6247         expression->compound_literal.type        = type;
6248         expression->base.type                    = automatic_type_conversion(type);
6249
6250         return expression;
6251 }
6252
6253 /**
6254  * Parse a cast expression.
6255  */
6256 static expression_t *parse_cast(void)
6257 {
6258         source_position_t const pos = *HERE;
6259
6260         eat('(');
6261         add_anchor_token(')');
6262
6263         type_t *type = parse_typename();
6264
6265         rem_anchor_token(')');
6266         expect(')');
6267
6268         if (token.kind == '{') {
6269                 return parse_compound_literal(&pos, type);
6270         }
6271
6272         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6273         cast->base.source_position = pos;
6274
6275         expression_t *value = parse_subexpression(PREC_CAST);
6276         cast->base.type   = type;
6277         cast->unary.value = value;
6278
6279         if (! semantic_cast(cast)) {
6280                 /* TODO: record the error in the AST. else it is impossible to detect it */
6281         }
6282
6283         return cast;
6284 }
6285
6286 /**
6287  * Parse a statement expression.
6288  */
6289 static expression_t *parse_statement_expression(void)
6290 {
6291         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6292
6293         eat('(');
6294         add_anchor_token(')');
6295
6296         statement_t *statement          = parse_compound_statement(true);
6297         statement->compound.stmt_expr   = true;
6298         expression->statement.statement = statement;
6299
6300         /* find last statement and use its type */
6301         type_t *type = type_void;
6302         const statement_t *stmt = statement->compound.statements;
6303         if (stmt != NULL) {
6304                 while (stmt->base.next != NULL)
6305                         stmt = stmt->base.next;
6306
6307                 if (stmt->kind == STATEMENT_EXPRESSION) {
6308                         type = stmt->expression.expression->base.type;
6309                 }
6310         } else {
6311                 source_position_t const *const pos = &expression->base.source_position;
6312                 warningf(WARN_OTHER, pos, "empty statement expression ({})");
6313         }
6314         expression->base.type = type;
6315
6316         rem_anchor_token(')');
6317         expect(')');
6318         return expression;
6319 }
6320
6321 /**
6322  * Parse a parenthesized expression.
6323  */
6324 static expression_t *parse_parenthesized_expression(void)
6325 {
6326         token_t const* const la1 = look_ahead(1);
6327         switch (la1->kind) {
6328         case '{':
6329                 /* gcc extension: a statement expression */
6330                 return parse_statement_expression();
6331
6332         case T_IDENTIFIER:
6333                 if (is_typedef_symbol(la1->identifier.symbol)) {
6334         DECLARATION_START
6335                         return parse_cast();
6336                 }
6337         }
6338
6339         eat('(');
6340         add_anchor_token(')');
6341         expression_t *result = parse_expression();
6342         result->base.parenthesized = true;
6343         rem_anchor_token(')');
6344         expect(')');
6345
6346         return result;
6347 }
6348
6349 static expression_t *parse_function_keyword(void)
6350 {
6351         /* TODO */
6352
6353         if (current_function == NULL) {
6354                 errorf(HERE, "'__func__' used outside of a function");
6355         }
6356
6357         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6358         expression->base.type     = type_char_ptr;
6359         expression->funcname.kind = FUNCNAME_FUNCTION;
6360
6361         next_token();
6362
6363         return expression;
6364 }
6365
6366 static expression_t *parse_pretty_function_keyword(void)
6367 {
6368         if (current_function == NULL) {
6369                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6370         }
6371
6372         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6373         expression->base.type     = type_char_ptr;
6374         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6375
6376         eat(T___PRETTY_FUNCTION__);
6377
6378         return expression;
6379 }
6380
6381 static expression_t *parse_funcsig_keyword(void)
6382 {
6383         if (current_function == NULL) {
6384                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6385         }
6386
6387         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6388         expression->base.type     = type_char_ptr;
6389         expression->funcname.kind = FUNCNAME_FUNCSIG;
6390
6391         eat(T___FUNCSIG__);
6392
6393         return expression;
6394 }
6395
6396 static expression_t *parse_funcdname_keyword(void)
6397 {
6398         if (current_function == NULL) {
6399                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6400         }
6401
6402         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6403         expression->base.type     = type_char_ptr;
6404         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6405
6406         eat(T___FUNCDNAME__);
6407
6408         return expression;
6409 }
6410
6411 static designator_t *parse_designator(void)
6412 {
6413         designator_t *const result = allocate_ast_zero(sizeof(result[0]));
6414         result->symbol = expect_identifier("while parsing member designator", &result->source_position);
6415         if (!result->symbol)
6416                 return NULL;
6417
6418         designator_t *last_designator = result;
6419         while (true) {
6420                 if (next_if('.')) {
6421                         designator_t *const designator = allocate_ast_zero(sizeof(result[0]));
6422                         designator->symbol = expect_identifier("while parsing member designator", &designator->source_position);
6423                         if (!designator->symbol)
6424                                 return NULL;
6425
6426                         last_designator->next = designator;
6427                         last_designator       = designator;
6428                         continue;
6429                 }
6430                 if (next_if('[')) {
6431                         add_anchor_token(']');
6432                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6433                         designator->source_position = *HERE;
6434                         designator->array_index     = parse_expression();
6435                         rem_anchor_token(']');
6436                         expect(']');
6437                         if (designator->array_index == NULL) {
6438                                 return NULL;
6439                         }
6440
6441                         last_designator->next = designator;
6442                         last_designator       = designator;
6443                         continue;
6444                 }
6445                 break;
6446         }
6447
6448         return result;
6449 }
6450
6451 /**
6452  * Parse the __builtin_offsetof() expression.
6453  */
6454 static expression_t *parse_offsetof(void)
6455 {
6456         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6457         expression->base.type    = type_size_t;
6458
6459         eat(T___builtin_offsetof);
6460
6461         expect('(');
6462         add_anchor_token(')');
6463         add_anchor_token(',');
6464         type_t *type = parse_typename();
6465         rem_anchor_token(',');
6466         expect(',');
6467         designator_t *designator = parse_designator();
6468         rem_anchor_token(')');
6469         expect(')');
6470
6471         expression->offsetofe.type       = type;
6472         expression->offsetofe.designator = designator;
6473
6474         type_path_t path;
6475         memset(&path, 0, sizeof(path));
6476         path.top_type = type;
6477         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6478
6479         descend_into_subtype(&path);
6480
6481         if (!walk_designator(&path, designator, true)) {
6482                 return create_error_expression();
6483         }
6484
6485         DEL_ARR_F(path.path);
6486
6487         return expression;
6488 }
6489
6490 /**
6491  * Parses a _builtin_va_start() expression.
6492  */
6493 static expression_t *parse_va_start(void)
6494 {
6495         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6496
6497         eat(T___builtin_va_start);
6498
6499         expect('(');
6500         add_anchor_token(')');
6501         add_anchor_token(',');
6502         expression->va_starte.ap = parse_assignment_expression();
6503         rem_anchor_token(',');
6504         expect(',');
6505         expression_t *const expr = parse_assignment_expression();
6506         if (expr->kind == EXPR_REFERENCE) {
6507                 entity_t *const entity = expr->reference.entity;
6508                 if (!current_function->base.type->function.variadic) {
6509                         errorf(&expr->base.source_position,
6510                                         "'va_start' used in non-variadic function");
6511                 } else if (entity->base.parent_scope != &current_function->parameters ||
6512                                 entity->base.next != NULL ||
6513                                 entity->kind != ENTITY_PARAMETER) {
6514                         errorf(&expr->base.source_position,
6515                                "second argument of 'va_start' must be last parameter of the current function");
6516                 } else {
6517                         expression->va_starte.parameter = &entity->variable;
6518                 }
6519         } else {
6520                 expression = create_error_expression();
6521         }
6522         rem_anchor_token(')');
6523         expect(')');
6524         return expression;
6525 }
6526
6527 /**
6528  * Parses a __builtin_va_arg() expression.
6529  */
6530 static expression_t *parse_va_arg(void)
6531 {
6532         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6533
6534         eat(T___builtin_va_arg);
6535
6536         expect('(');
6537         add_anchor_token(')');
6538         add_anchor_token(',');
6539         call_argument_t ap;
6540         ap.expression = parse_assignment_expression();
6541         expression->va_arge.ap = ap.expression;
6542         check_call_argument(type_valist, &ap, 1);
6543
6544         rem_anchor_token(',');
6545         expect(',');
6546         expression->base.type = parse_typename();
6547         rem_anchor_token(')');
6548         expect(')');
6549
6550         return expression;
6551 }
6552
6553 /**
6554  * Parses a __builtin_va_copy() expression.
6555  */
6556 static expression_t *parse_va_copy(void)
6557 {
6558         expression_t *expression = allocate_expression_zero(EXPR_VA_COPY);
6559
6560         eat(T___builtin_va_copy);
6561
6562         expect('(');
6563         add_anchor_token(')');
6564         add_anchor_token(',');
6565         expression_t *dst = parse_assignment_expression();
6566         assign_error_t error = semantic_assign(type_valist, dst);
6567         report_assign_error(error, type_valist, dst, "call argument 1",
6568                             &dst->base.source_position);
6569         expression->va_copye.dst = dst;
6570
6571         rem_anchor_token(',');
6572         expect(',');
6573
6574         call_argument_t src;
6575         src.expression = parse_assignment_expression();
6576         check_call_argument(type_valist, &src, 2);
6577         expression->va_copye.src = src.expression;
6578         rem_anchor_token(')');
6579         expect(')');
6580
6581         return expression;
6582 }
6583
6584 /**
6585  * Parses a __builtin_constant_p() expression.
6586  */
6587 static expression_t *parse_builtin_constant(void)
6588 {
6589         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6590
6591         eat(T___builtin_constant_p);
6592
6593         expect('(');
6594         add_anchor_token(')');
6595         expression->builtin_constant.value = parse_assignment_expression();
6596         rem_anchor_token(')');
6597         expect(')');
6598         expression->base.type = type_int;
6599
6600         return expression;
6601 }
6602
6603 /**
6604  * Parses a __builtin_types_compatible_p() expression.
6605  */
6606 static expression_t *parse_builtin_types_compatible(void)
6607 {
6608         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_TYPES_COMPATIBLE_P);
6609
6610         eat(T___builtin_types_compatible_p);
6611
6612         expect('(');
6613         add_anchor_token(')');
6614         add_anchor_token(',');
6615         expression->builtin_types_compatible.left = parse_typename();
6616         rem_anchor_token(',');
6617         expect(',');
6618         expression->builtin_types_compatible.right = parse_typename();
6619         rem_anchor_token(')');
6620         expect(')');
6621         expression->base.type = type_int;
6622
6623         return expression;
6624 }
6625
6626 /**
6627  * Parses a __builtin_is_*() compare expression.
6628  */
6629 static expression_t *parse_compare_builtin(void)
6630 {
6631         expression_t *expression;
6632
6633         switch (token.kind) {
6634         case T___builtin_isgreater:
6635                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6636                 break;
6637         case T___builtin_isgreaterequal:
6638                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6639                 break;
6640         case T___builtin_isless:
6641                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6642                 break;
6643         case T___builtin_islessequal:
6644                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6645                 break;
6646         case T___builtin_islessgreater:
6647                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6648                 break;
6649         case T___builtin_isunordered:
6650                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6651                 break;
6652         default:
6653                 internal_errorf(HERE, "invalid compare builtin found");
6654         }
6655         expression->base.source_position = *HERE;
6656         next_token();
6657
6658         expect('(');
6659         add_anchor_token(')');
6660         add_anchor_token(',');
6661         expression->binary.left = parse_assignment_expression();
6662         rem_anchor_token(',');
6663         expect(',');
6664         expression->binary.right = parse_assignment_expression();
6665         rem_anchor_token(')');
6666         expect(')');
6667
6668         type_t *const orig_type_left  = expression->binary.left->base.type;
6669         type_t *const orig_type_right = expression->binary.right->base.type;
6670
6671         type_t *const type_left  = skip_typeref(orig_type_left);
6672         type_t *const type_right = skip_typeref(orig_type_right);
6673         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6674                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6675                         type_error_incompatible("invalid operands in comparison",
6676                                 &expression->base.source_position, orig_type_left, orig_type_right);
6677                 }
6678         } else {
6679                 semantic_comparison(&expression->binary);
6680         }
6681
6682         return expression;
6683 }
6684
6685 /**
6686  * Parses a MS assume() expression.
6687  */
6688 static expression_t *parse_assume(void)
6689 {
6690         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
6691
6692         eat(T__assume);
6693
6694         expect('(');
6695         add_anchor_token(')');
6696         expression->unary.value = parse_assignment_expression();
6697         rem_anchor_token(')');
6698         expect(')');
6699
6700         expression->base.type = type_void;
6701         return expression;
6702 }
6703
6704 /**
6705  * Return the label for the current symbol or create a new one.
6706  */
6707 static label_t *get_label(void)
6708 {
6709         assert(token.kind == T_IDENTIFIER);
6710         assert(current_function != NULL);
6711
6712         entity_t *label = get_entity(token.identifier.symbol, NAMESPACE_LABEL);
6713         /* If we find a local label, we already created the declaration. */
6714         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
6715                 if (label->base.parent_scope != current_scope) {
6716                         assert(label->base.parent_scope->depth < current_scope->depth);
6717                         current_function->goto_to_outer = true;
6718                 }
6719         } else if (label == NULL || label->base.parent_scope != &current_function->parameters) {
6720                 /* There is no matching label in the same function, so create a new one. */
6721                 source_position_t const nowhere = { NULL, 0, 0, false };
6722                 label = allocate_entity_zero(ENTITY_LABEL, NAMESPACE_LABEL, token.identifier.symbol, &nowhere);
6723                 label_push(label);
6724         }
6725
6726         eat(T_IDENTIFIER);
6727         return &label->label;
6728 }
6729
6730 /**
6731  * Parses a GNU && label address expression.
6732  */
6733 static expression_t *parse_label_address(void)
6734 {
6735         source_position_t source_position = token.base.source_position;
6736         eat(T_ANDAND);
6737         if (token.kind != T_IDENTIFIER) {
6738                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6739                 return create_error_expression();
6740         }
6741
6742         label_t *const label = get_label();
6743         label->used          = true;
6744         label->address_taken = true;
6745
6746         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6747         expression->base.source_position = source_position;
6748
6749         /* label address is treated as a void pointer */
6750         expression->base.type           = type_void_ptr;
6751         expression->label_address.label = label;
6752         return expression;
6753 }
6754
6755 /**
6756  * Parse a microsoft __noop expression.
6757  */
6758 static expression_t *parse_noop_expression(void)
6759 {
6760         /* the result is a (int)0 */
6761         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_MS_NOOP);
6762         literal->base.type           = type_int;
6763         literal->literal.value.begin = "__noop";
6764         literal->literal.value.size  = 6;
6765
6766         eat(T___noop);
6767
6768         if (token.kind == '(') {
6769                 /* parse arguments */
6770                 eat('(');
6771                 add_anchor_token(')');
6772                 add_anchor_token(',');
6773
6774                 if (token.kind != ')') do {
6775                         (void)parse_assignment_expression();
6776                 } while (next_if(','));
6777
6778                 rem_anchor_token(',');
6779                 rem_anchor_token(')');
6780         }
6781         expect(')');
6782
6783         return literal;
6784 }
6785
6786 /**
6787  * Parses a primary expression.
6788  */
6789 static expression_t *parse_primary_expression(void)
6790 {
6791         switch (token.kind) {
6792         case T_false:                        return parse_boolean_literal(false);
6793         case T_true:                         return parse_boolean_literal(true);
6794         case T_INTEGER:
6795         case T_INTEGER_OCTAL:
6796         case T_INTEGER_HEXADECIMAL:
6797         case T_FLOATINGPOINT:
6798         case T_FLOATINGPOINT_HEXADECIMAL:    return parse_number_literal();
6799         case T_CHARACTER_CONSTANT:           return parse_character_constant();
6800         case T_WIDE_CHARACTER_CONSTANT:      return parse_wide_character_constant();
6801         case T_STRING_LITERAL:
6802         case T_WIDE_STRING_LITERAL:          return parse_string_literal();
6803         case T___FUNCTION__:
6804         case T___func__:                     return parse_function_keyword();
6805         case T___PRETTY_FUNCTION__:          return parse_pretty_function_keyword();
6806         case T___FUNCSIG__:                  return parse_funcsig_keyword();
6807         case T___FUNCDNAME__:                return parse_funcdname_keyword();
6808         case T___builtin_offsetof:           return parse_offsetof();
6809         case T___builtin_va_start:           return parse_va_start();
6810         case T___builtin_va_arg:             return parse_va_arg();
6811         case T___builtin_va_copy:            return parse_va_copy();
6812         case T___builtin_isgreater:
6813         case T___builtin_isgreaterequal:
6814         case T___builtin_isless:
6815         case T___builtin_islessequal:
6816         case T___builtin_islessgreater:
6817         case T___builtin_isunordered:        return parse_compare_builtin();
6818         case T___builtin_constant_p:         return parse_builtin_constant();
6819         case T___builtin_types_compatible_p: return parse_builtin_types_compatible();
6820         case T__assume:                      return parse_assume();
6821         case T_ANDAND:
6822                 if (GNU_MODE)
6823                         return parse_label_address();
6824                 break;
6825
6826         case '(':                            return parse_parenthesized_expression();
6827         case T___noop:                       return parse_noop_expression();
6828
6829         /* Gracefully handle type names while parsing expressions. */
6830         case T_COLONCOLON:
6831                 return parse_reference();
6832         case T_IDENTIFIER:
6833                 if (!is_typedef_symbol(token.identifier.symbol)) {
6834                         return parse_reference();
6835                 }
6836                 /* FALLTHROUGH */
6837         DECLARATION_START {
6838                 source_position_t const  pos = *HERE;
6839                 declaration_specifiers_t specifiers;
6840                 parse_declaration_specifiers(&specifiers);
6841                 type_t const *const type = parse_abstract_declarator(specifiers.type);
6842                 errorf(&pos, "encountered type '%T' while parsing expression", type);
6843                 return create_error_expression();
6844         }
6845         }
6846
6847         errorf(HERE, "unexpected token %K, expected an expression", &token);
6848         eat_until_anchor();
6849         return create_error_expression();
6850 }
6851
6852 static expression_t *parse_array_expression(expression_t *left)
6853 {
6854         expression_t              *const expr = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6855         array_access_expression_t *const arr  = &expr->array_access;
6856
6857         eat('[');
6858         add_anchor_token(']');
6859
6860         expression_t *const inside = parse_expression();
6861
6862         type_t *const orig_type_left   = left->base.type;
6863         type_t *const orig_type_inside = inside->base.type;
6864
6865         type_t *const type_left   = skip_typeref(orig_type_left);
6866         type_t *const type_inside = skip_typeref(orig_type_inside);
6867
6868         expression_t *ref;
6869         expression_t *idx;
6870         type_t       *idx_type;
6871         type_t       *res_type;
6872         if (is_type_pointer(type_left)) {
6873                 ref      = left;
6874                 idx      = inside;
6875                 idx_type = type_inside;
6876                 res_type = type_left->pointer.points_to;
6877                 goto check_idx;
6878         } else if (is_type_pointer(type_inside)) {
6879                 arr->flipped = true;
6880                 ref      = inside;
6881                 idx      = left;
6882                 idx_type = type_left;
6883                 res_type = type_inside->pointer.points_to;
6884 check_idx:
6885                 res_type = automatic_type_conversion(res_type);
6886                 if (!is_type_integer(idx_type)) {
6887                         errorf(&idx->base.source_position, "array subscript must have integer type");
6888                 } else if (is_type_atomic(idx_type, ATOMIC_TYPE_CHAR)) {
6889                         source_position_t const *const pos = &idx->base.source_position;
6890                         warningf(WARN_CHAR_SUBSCRIPTS, pos, "array subscript has char type");
6891                 }
6892         } else {
6893                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6894                         errorf(&expr->base.source_position, "invalid types '%T[%T]' for array access", orig_type_left, orig_type_inside);
6895                 }
6896                 res_type = type_error_type;
6897                 ref      = left;
6898                 idx      = inside;
6899         }
6900
6901         arr->array_ref = ref;
6902         arr->index     = idx;
6903         arr->base.type = res_type;
6904
6905         rem_anchor_token(']');
6906         expect(']');
6907         return expr;
6908 }
6909
6910 static bool is_bitfield(const expression_t *expression)
6911 {
6912         return expression->kind == EXPR_SELECT
6913                 && expression->select.compound_entry->compound_member.bitfield;
6914 }
6915
6916 static expression_t *parse_typeprop(expression_kind_t const kind)
6917 {
6918         expression_t  *tp_expression = allocate_expression_zero(kind);
6919         tp_expression->base.type     = type_size_t;
6920
6921         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
6922
6923         type_t       *orig_type;
6924         expression_t *expression;
6925         if (token.kind == '(' && is_declaration_specifier(look_ahead(1))) {
6926                 source_position_t const pos = *HERE;
6927                 next_token();
6928                 add_anchor_token(')');
6929                 orig_type = parse_typename();
6930                 rem_anchor_token(')');
6931                 expect(')');
6932
6933                 if (token.kind == '{') {
6934                         /* It was not sizeof(type) after all.  It is sizeof of an expression
6935                          * starting with a compound literal */
6936                         expression = parse_compound_literal(&pos, orig_type);
6937                         goto typeprop_expression;
6938                 }
6939         } else {
6940                 expression = parse_subexpression(PREC_UNARY);
6941
6942 typeprop_expression:
6943                 if (is_bitfield(expression)) {
6944                         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6945                         errorf(&tp_expression->base.source_position,
6946                                    "operand of %s expression must not be a bitfield", what);
6947                 }
6948
6949                 tp_expression->typeprop.tp_expression = expression;
6950
6951                 orig_type = revert_automatic_type_conversion(expression);
6952                 expression->base.type = orig_type;
6953         }
6954
6955         tp_expression->typeprop.type   = orig_type;
6956         type_t const* const type       = skip_typeref(orig_type);
6957         char   const*       wrong_type = NULL;
6958         if (is_type_incomplete(type)) {
6959                 if (!is_type_void(type) || !GNU_MODE)
6960                         wrong_type = "incomplete";
6961         } else if (type->kind == TYPE_FUNCTION) {
6962                 if (GNU_MODE) {
6963                         /* function types are allowed (and return 1) */
6964                         source_position_t const *const pos  = &tp_expression->base.source_position;
6965                         char              const *const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6966                         warningf(WARN_OTHER, pos, "%s expression with function argument returns invalid result", what);
6967                 } else {
6968                         wrong_type = "function";
6969                 }
6970         }
6971
6972         if (wrong_type != NULL) {
6973                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6974                 errorf(&tp_expression->base.source_position,
6975                                 "operand of %s expression must not be of %s type '%T'",
6976                                 what, wrong_type, orig_type);
6977         }
6978
6979         return tp_expression;
6980 }
6981
6982 static expression_t *parse_sizeof(void)
6983 {
6984         return parse_typeprop(EXPR_SIZEOF);
6985 }
6986
6987 static expression_t *parse_alignof(void)
6988 {
6989         return parse_typeprop(EXPR_ALIGNOF);
6990 }
6991
6992 static expression_t *parse_select_expression(expression_t *addr)
6993 {
6994         assert(token.kind == '.' || token.kind == T_MINUSGREATER);
6995         bool select_left_arrow = (token.kind == T_MINUSGREATER);
6996         source_position_t const pos = *HERE;
6997         next_token();
6998
6999         symbol_t *const symbol = expect_identifier("while parsing select", NULL);
7000         if (!symbol)
7001                 return create_error_expression();
7002
7003         type_t *const orig_type = addr->base.type;
7004         type_t *const type      = skip_typeref(orig_type);
7005
7006         type_t *type_left;
7007         bool    saw_error = false;
7008         if (is_type_pointer(type)) {
7009                 if (!select_left_arrow) {
7010                         errorf(&pos,
7011                                "request for member '%Y' in something not a struct or union, but '%T'",
7012                                symbol, orig_type);
7013                         saw_error = true;
7014                 }
7015                 type_left = skip_typeref(type->pointer.points_to);
7016         } else {
7017                 if (select_left_arrow && is_type_valid(type)) {
7018                         errorf(&pos, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7019                         saw_error = true;
7020                 }
7021                 type_left = type;
7022         }
7023
7024         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
7025             type_left->kind != TYPE_COMPOUND_UNION) {
7026
7027                 if (is_type_valid(type_left) && !saw_error) {
7028                         errorf(&pos,
7029                                "request for member '%Y' in something not a struct or union, but '%T'",
7030                                symbol, type_left);
7031                 }
7032                 return create_error_expression();
7033         }
7034
7035         compound_t *compound = type_left->compound.compound;
7036         if (!compound->complete) {
7037                 errorf(&pos, "request for member '%Y' in incomplete type '%T'",
7038                        symbol, type_left);
7039                 return create_error_expression();
7040         }
7041
7042         type_qualifiers_t  qualifiers = type_left->base.qualifiers;
7043         expression_t      *result     =
7044                 find_create_select(&pos, addr, qualifiers, compound, symbol);
7045
7046         if (result == NULL) {
7047                 errorf(&pos, "'%T' has no member named '%Y'", orig_type, symbol);
7048                 return create_error_expression();
7049         }
7050
7051         return result;
7052 }
7053
7054 static void check_call_argument(type_t          *expected_type,
7055                                 call_argument_t *argument, unsigned pos)
7056 {
7057         type_t         *expected_type_skip = skip_typeref(expected_type);
7058         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7059         expression_t   *arg_expr           = argument->expression;
7060         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7061
7062         /* handle transparent union gnu extension */
7063         if (is_type_union(expected_type_skip)
7064                         && (get_type_modifiers(expected_type) & DM_TRANSPARENT_UNION)) {
7065                 compound_t *union_decl  = expected_type_skip->compound.compound;
7066                 type_t     *best_type   = NULL;
7067                 entity_t   *entry       = union_decl->members.entities;
7068                 for ( ; entry != NULL; entry = entry->base.next) {
7069                         assert(is_declaration(entry));
7070                         type_t *decl_type = entry->declaration.type;
7071                         error = semantic_assign(decl_type, arg_expr);
7072                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7073                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7074                                 continue;
7075
7076                         if (error == ASSIGN_SUCCESS) {
7077                                 best_type = decl_type;
7078                         } else if (best_type == NULL) {
7079                                 best_type = decl_type;
7080                         }
7081                 }
7082
7083                 if (best_type != NULL) {
7084                         expected_type = best_type;
7085                 }
7086         }
7087
7088         error                = semantic_assign(expected_type, arg_expr);
7089         argument->expression = create_implicit_cast(arg_expr, expected_type);
7090
7091         if (error != ASSIGN_SUCCESS) {
7092                 /* report exact scope in error messages (like "in argument 3") */
7093                 char buf[64];
7094                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7095                 report_assign_error(error, expected_type, arg_expr, buf,
7096                                     &arg_expr->base.source_position);
7097         } else {
7098                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7099                 if (!types_compatible(expected_type_skip, promoted_type) &&
7100                     !types_compatible(expected_type_skip, type_void_ptr) &&
7101                     !types_compatible(type_void_ptr,      promoted_type)) {
7102                         /* Deliberately show the skipped types in this warning */
7103                         source_position_t const *const apos = &arg_expr->base.source_position;
7104                         warningf(WARN_TRADITIONAL, apos, "passing call argument %u as '%T' rather than '%T' due to prototype", pos, expected_type_skip, promoted_type);
7105                 }
7106         }
7107 }
7108
7109 /**
7110  * Handle the semantic restrictions of builtin calls
7111  */
7112 static void handle_builtin_argument_restrictions(call_expression_t *call)
7113 {
7114         entity_t *entity = call->function->reference.entity;
7115         switch (entity->function.btk) {
7116         case BUILTIN_FIRM:
7117                 switch (entity->function.b.firm_builtin_kind) {
7118                 case ir_bk_return_address:
7119                 case ir_bk_frame_address: {
7120                         /* argument must be constant */
7121                         call_argument_t *argument = call->arguments;
7122
7123                         if (is_constant_expression(argument->expression) == EXPR_CLASS_VARIABLE) {
7124                                 errorf(&call->base.source_position,
7125                                            "argument of '%Y' must be a constant expression",
7126                                            call->function->reference.entity->base.symbol);
7127                         }
7128                         break;
7129                 }
7130                 case ir_bk_prefetch:
7131                         /* second and third argument must be constant if existent */
7132                         if (call->arguments == NULL)
7133                                 break;
7134                         call_argument_t *rw = call->arguments->next;
7135                         call_argument_t *locality = NULL;
7136
7137                         if (rw != NULL) {
7138                                 if (is_constant_expression(rw->expression) == EXPR_CLASS_VARIABLE) {
7139                                         errorf(&call->base.source_position,
7140                                                    "second argument of '%Y' must be a constant expression",
7141                                                    call->function->reference.entity->base.symbol);
7142                                 }
7143                                 locality = rw->next;
7144                         }
7145                         if (locality != NULL) {
7146                                 if (is_constant_expression(locality->expression) == EXPR_CLASS_VARIABLE) {
7147                                         errorf(&call->base.source_position,
7148                                                    "third argument of '%Y' must be a constant expression",
7149                                                    call->function->reference.entity->base.symbol);
7150                                 }
7151                                 locality = rw->next;
7152                         }
7153                         break;
7154                 default:
7155                         break;
7156                 }
7157
7158         case BUILTIN_OBJECT_SIZE:
7159                 if (call->arguments == NULL)
7160                         break;
7161
7162                 call_argument_t *arg = call->arguments->next;
7163                 if (arg != NULL && is_constant_expression(arg->expression) == EXPR_CLASS_VARIABLE) {
7164                         errorf(&call->base.source_position,
7165                                    "second argument of '%Y' must be a constant expression",
7166                                    call->function->reference.entity->base.symbol);
7167                 }
7168                 break;
7169         default:
7170                 break;
7171         }
7172 }
7173
7174 /**
7175  * Parse a call expression, ie. expression '( ... )'.
7176  *
7177  * @param expression  the function address
7178  */
7179 static expression_t *parse_call_expression(expression_t *expression)
7180 {
7181         expression_t      *result = allocate_expression_zero(EXPR_CALL);
7182         call_expression_t *call   = &result->call;
7183         call->function            = expression;
7184
7185         type_t *const orig_type = expression->base.type;
7186         type_t *const type      = skip_typeref(orig_type);
7187
7188         function_type_t *function_type = NULL;
7189         if (is_type_pointer(type)) {
7190                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7191
7192                 if (is_type_function(to_type)) {
7193                         function_type   = &to_type->function;
7194                         call->base.type = function_type->return_type;
7195                 }
7196         }
7197
7198         if (function_type == NULL && is_type_valid(type)) {
7199                 errorf(HERE,
7200                        "called object '%E' (type '%T') is not a pointer to a function",
7201                        expression, orig_type);
7202         }
7203
7204         /* parse arguments */
7205         eat('(');
7206         add_anchor_token(')');
7207         add_anchor_token(',');
7208
7209         if (token.kind != ')') {
7210                 call_argument_t **anchor = &call->arguments;
7211                 do {
7212                         call_argument_t *argument = allocate_ast_zero(sizeof(*argument));
7213                         argument->expression = parse_assignment_expression();
7214
7215                         *anchor = argument;
7216                         anchor  = &argument->next;
7217                 } while (next_if(','));
7218         }
7219         rem_anchor_token(',');
7220         rem_anchor_token(')');
7221         expect(')');
7222
7223         if (function_type == NULL)
7224                 return result;
7225
7226         /* check type and count of call arguments */
7227         function_parameter_t *parameter = function_type->parameters;
7228         call_argument_t      *argument  = call->arguments;
7229         if (!function_type->unspecified_parameters) {
7230                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7231                                 parameter = parameter->next, argument = argument->next) {
7232                         check_call_argument(parameter->type, argument, ++pos);
7233                 }
7234
7235                 if (parameter != NULL) {
7236                         errorf(&expression->base.source_position, "too few arguments to function '%E'", expression);
7237                 } else if (argument != NULL && !function_type->variadic) {
7238                         errorf(&argument->expression->base.source_position, "too many arguments to function '%E'", expression);
7239                 }
7240         }
7241
7242         /* do default promotion for other arguments */
7243         for (; argument != NULL; argument = argument->next) {
7244                 type_t *argument_type = argument->expression->base.type;
7245                 if (!is_type_object(skip_typeref(argument_type))) {
7246                         errorf(&argument->expression->base.source_position,
7247                                "call argument '%E' must not be void", argument->expression);
7248                 }
7249
7250                 argument_type = get_default_promoted_type(argument_type);
7251
7252                 argument->expression
7253                         = create_implicit_cast(argument->expression, argument_type);
7254         }
7255
7256         check_format(call);
7257
7258         if (is_type_compound(skip_typeref(function_type->return_type))) {
7259                 source_position_t const *const pos = &expression->base.source_position;
7260                 warningf(WARN_AGGREGATE_RETURN, pos, "function call has aggregate value");
7261         }
7262
7263         if (expression->kind == EXPR_REFERENCE) {
7264                 reference_expression_t *reference = &expression->reference;
7265                 if (reference->entity->kind == ENTITY_FUNCTION &&
7266                     reference->entity->function.btk != BUILTIN_NONE)
7267                         handle_builtin_argument_restrictions(call);
7268         }
7269
7270         return result;
7271 }
7272
7273 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7274
7275 static bool same_compound_type(const type_t *type1, const type_t *type2)
7276 {
7277         return
7278                 is_type_compound(type1) &&
7279                 type1->kind == type2->kind &&
7280                 type1->compound.compound == type2->compound.compound;
7281 }
7282
7283 static expression_t const *get_reference_address(expression_t const *expr)
7284 {
7285         bool regular_take_address = true;
7286         for (;;) {
7287                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7288                         expr = expr->unary.value;
7289                 } else {
7290                         regular_take_address = false;
7291                 }
7292
7293                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7294                         break;
7295
7296                 expr = expr->unary.value;
7297         }
7298
7299         if (expr->kind != EXPR_REFERENCE)
7300                 return NULL;
7301
7302         /* special case for functions which are automatically converted to a
7303          * pointer to function without an extra TAKE_ADDRESS operation */
7304         if (!regular_take_address &&
7305                         expr->reference.entity->kind != ENTITY_FUNCTION) {
7306                 return NULL;
7307         }
7308
7309         return expr;
7310 }
7311
7312 static void warn_reference_address_as_bool(expression_t const* expr)
7313 {
7314         expr = get_reference_address(expr);
7315         if (expr != NULL) {
7316                 source_position_t const *const pos = &expr->base.source_position;
7317                 entity_t          const *const ent = expr->reference.entity;
7318                 warningf(WARN_ADDRESS, pos, "the address of '%N' will always evaluate as 'true'", ent);
7319         }
7320 }
7321
7322 static void warn_assignment_in_condition(const expression_t *const expr)
7323 {
7324         if (expr->base.kind != EXPR_BINARY_ASSIGN)
7325                 return;
7326         if (expr->base.parenthesized)
7327                 return;
7328         source_position_t const *const pos = &expr->base.source_position;
7329         warningf(WARN_PARENTHESES, pos, "suggest parentheses around assignment used as truth value");
7330 }
7331
7332 static void semantic_condition(expression_t const *const expr,
7333                                char const *const context)
7334 {
7335         type_t *const type = skip_typeref(expr->base.type);
7336         if (is_type_scalar(type)) {
7337                 warn_reference_address_as_bool(expr);
7338                 warn_assignment_in_condition(expr);
7339         } else if (is_type_valid(type)) {
7340                 errorf(&expr->base.source_position,
7341                                 "%s must have scalar type", context);
7342         }
7343 }
7344
7345 /**
7346  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7347  *
7348  * @param expression  the conditional expression
7349  */
7350 static expression_t *parse_conditional_expression(expression_t *expression)
7351 {
7352         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7353
7354         conditional_expression_t *conditional = &result->conditional;
7355         conditional->condition                = expression;
7356
7357         eat('?');
7358         add_anchor_token(':');
7359
7360         /* §6.5.15:2  The first operand shall have scalar type. */
7361         semantic_condition(expression, "condition of conditional operator");
7362
7363         expression_t *true_expression = expression;
7364         bool          gnu_cond = false;
7365         if (GNU_MODE && token.kind == ':') {
7366                 gnu_cond = true;
7367         } else {
7368                 true_expression = parse_expression();
7369         }
7370         rem_anchor_token(':');
7371         expect(':');
7372         expression_t *false_expression =
7373                 parse_subexpression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
7374
7375         type_t *const orig_true_type  = true_expression->base.type;
7376         type_t *const orig_false_type = false_expression->base.type;
7377         type_t *const true_type       = skip_typeref(orig_true_type);
7378         type_t *const false_type      = skip_typeref(orig_false_type);
7379
7380         /* 6.5.15.3 */
7381         source_position_t const *const pos = &conditional->base.source_position;
7382         type_t                        *result_type;
7383         if (is_type_void(true_type) || is_type_void(false_type)) {
7384                 /* ISO/IEC 14882:1998(E) §5.16:2 */
7385                 if (true_expression->kind == EXPR_UNARY_THROW) {
7386                         result_type = false_type;
7387                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
7388                         result_type = true_type;
7389                 } else {
7390                         if (!is_type_void(true_type) || !is_type_void(false_type)) {
7391                                 warningf(WARN_OTHER, pos, "ISO C forbids conditional expression with only one void side");
7392                         }
7393                         result_type = type_void;
7394                 }
7395         } else if (is_type_arithmetic(true_type)
7396                    && is_type_arithmetic(false_type)) {
7397                 result_type = semantic_arithmetic(true_type, false_type);
7398         } else if (same_compound_type(true_type, false_type)) {
7399                 /* just take 1 of the 2 types */
7400                 result_type = true_type;
7401         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7402                 type_t *pointer_type;
7403                 type_t *other_type;
7404                 expression_t *other_expression;
7405                 if (is_type_pointer(true_type) &&
7406                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7407                         pointer_type     = true_type;
7408                         other_type       = false_type;
7409                         other_expression = false_expression;
7410                 } else {
7411                         pointer_type     = false_type;
7412                         other_type       = true_type;
7413                         other_expression = true_expression;
7414                 }
7415
7416                 if (is_null_pointer_constant(other_expression)) {
7417                         result_type = pointer_type;
7418                 } else if (is_type_pointer(other_type)) {
7419                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7420                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7421
7422                         type_t *to;
7423                         if (is_type_void(to1) || is_type_void(to2)) {
7424                                 to = type_void;
7425                         } else if (types_compatible(get_unqualified_type(to1),
7426                                                     get_unqualified_type(to2))) {
7427                                 to = to1;
7428                         } else {
7429                                 warningf(WARN_OTHER, pos, "pointer types '%T' and '%T' in conditional expression are incompatible", true_type, false_type);
7430                                 to = type_void;
7431                         }
7432
7433                         type_t *const type =
7434                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7435                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7436                 } else if (is_type_integer(other_type)) {
7437                         warningf(WARN_OTHER, pos, "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7438                         result_type = pointer_type;
7439                 } else {
7440                         goto types_incompatible;
7441                 }
7442         } else {
7443 types_incompatible:
7444                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7445                         type_error_incompatible("while parsing conditional", pos, true_type, false_type);
7446                 }
7447                 result_type = type_error_type;
7448         }
7449
7450         conditional->true_expression
7451                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7452         conditional->false_expression
7453                 = create_implicit_cast(false_expression, result_type);
7454         conditional->base.type = result_type;
7455         return result;
7456 }
7457
7458 /**
7459  * Parse an extension expression.
7460  */
7461 static expression_t *parse_extension(void)
7462 {
7463         PUSH_EXTENSION();
7464         expression_t *expression = parse_subexpression(PREC_UNARY);
7465         POP_EXTENSION();
7466         return expression;
7467 }
7468
7469 /**
7470  * Parse a __builtin_classify_type() expression.
7471  */
7472 static expression_t *parse_builtin_classify_type(void)
7473 {
7474         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7475         result->base.type    = type_int;
7476
7477         eat(T___builtin_classify_type);
7478
7479         expect('(');
7480         add_anchor_token(')');
7481         expression_t *expression = parse_expression();
7482         rem_anchor_token(')');
7483         expect(')');
7484         result->classify_type.type_expression = expression;
7485
7486         return result;
7487 }
7488
7489 /**
7490  * Parse a delete expression
7491  * ISO/IEC 14882:1998(E) §5.3.5
7492  */
7493 static expression_t *parse_delete(void)
7494 {
7495         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
7496         result->base.type          = type_void;
7497
7498         eat(T_delete);
7499
7500         if (next_if('[')) {
7501                 result->kind = EXPR_UNARY_DELETE_ARRAY;
7502                 expect(']');
7503         }
7504
7505         expression_t *const value = parse_subexpression(PREC_CAST);
7506         result->unary.value = value;
7507
7508         type_t *const type = skip_typeref(value->base.type);
7509         if (!is_type_pointer(type)) {
7510                 if (is_type_valid(type)) {
7511                         errorf(&value->base.source_position,
7512                                         "operand of delete must have pointer type");
7513                 }
7514         } else if (is_type_void(skip_typeref(type->pointer.points_to))) {
7515                 source_position_t const *const pos = &value->base.source_position;
7516                 warningf(WARN_OTHER, pos, "deleting 'void*' is undefined");
7517         }
7518
7519         return result;
7520 }
7521
7522 /**
7523  * Parse a throw expression
7524  * ISO/IEC 14882:1998(E) §15:1
7525  */
7526 static expression_t *parse_throw(void)
7527 {
7528         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
7529         result->base.type          = type_void;
7530
7531         eat(T_throw);
7532
7533         expression_t *value = NULL;
7534         switch (token.kind) {
7535                 EXPRESSION_START {
7536                         value = parse_assignment_expression();
7537                         /* ISO/IEC 14882:1998(E) §15.1:3 */
7538                         type_t *const orig_type = value->base.type;
7539                         type_t *const type      = skip_typeref(orig_type);
7540                         if (is_type_incomplete(type)) {
7541                                 errorf(&value->base.source_position,
7542                                                 "cannot throw object of incomplete type '%T'", orig_type);
7543                         } else if (is_type_pointer(type)) {
7544                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
7545                                 if (is_type_incomplete(points_to) && !is_type_void(points_to)) {
7546                                         errorf(&value->base.source_position,
7547                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
7548                                 }
7549                         }
7550                 }
7551
7552                 default:
7553                         break;
7554         }
7555         result->unary.value = value;
7556
7557         return result;
7558 }
7559
7560 static bool check_pointer_arithmetic(const source_position_t *source_position,
7561                                      type_t *pointer_type,
7562                                      type_t *orig_pointer_type)
7563 {
7564         type_t *points_to = pointer_type->pointer.points_to;
7565         points_to = skip_typeref(points_to);
7566
7567         if (is_type_incomplete(points_to)) {
7568                 if (!GNU_MODE || !is_type_void(points_to)) {
7569                         errorf(source_position,
7570                                "arithmetic with pointer to incomplete type '%T' not allowed",
7571                                orig_pointer_type);
7572                         return false;
7573                 } else {
7574                         warningf(WARN_POINTER_ARITH, source_position, "pointer of type '%T' used in arithmetic", orig_pointer_type);
7575                 }
7576         } else if (is_type_function(points_to)) {
7577                 if (!GNU_MODE) {
7578                         errorf(source_position,
7579                                "arithmetic with pointer to function type '%T' not allowed",
7580                                orig_pointer_type);
7581                         return false;
7582                 } else {
7583                         warningf(WARN_POINTER_ARITH, source_position, "pointer to a function '%T' used in arithmetic", orig_pointer_type);
7584                 }
7585         }
7586         return true;
7587 }
7588
7589 static bool is_lvalue(const expression_t *expression)
7590 {
7591         /* TODO: doesn't seem to be consistent with §6.3.2.1:1 */
7592         switch (expression->kind) {
7593         case EXPR_ARRAY_ACCESS:
7594         case EXPR_COMPOUND_LITERAL:
7595         case EXPR_REFERENCE:
7596         case EXPR_SELECT:
7597         case EXPR_UNARY_DEREFERENCE:
7598                 return true;
7599
7600         default: {
7601                 type_t *type = skip_typeref(expression->base.type);
7602                 return
7603                         /* ISO/IEC 14882:1998(E) §3.10:3 */
7604                         is_type_reference(type) ||
7605                         /* Claim it is an lvalue, if the type is invalid.  There was a parse
7606                          * error before, which maybe prevented properly recognizing it as
7607                          * lvalue. */
7608                         !is_type_valid(type);
7609         }
7610         }
7611 }
7612
7613 static void semantic_incdec(unary_expression_t *expression)
7614 {
7615         type_t *const orig_type = expression->value->base.type;
7616         type_t *const type      = skip_typeref(orig_type);
7617         if (is_type_pointer(type)) {
7618                 if (!check_pointer_arithmetic(&expression->base.source_position,
7619                                               type, orig_type)) {
7620                         return;
7621                 }
7622         } else if (!is_type_real(type) && is_type_valid(type)) {
7623                 /* TODO: improve error message */
7624                 errorf(&expression->base.source_position,
7625                        "operation needs an arithmetic or pointer type");
7626                 return;
7627         }
7628         if (!is_lvalue(expression->value)) {
7629                 /* TODO: improve error message */
7630                 errorf(&expression->base.source_position, "lvalue required as operand");
7631         }
7632         expression->base.type = orig_type;
7633 }
7634
7635 static void promote_unary_int_expr(unary_expression_t *const expr, type_t *const type)
7636 {
7637         type_t *const res_type = promote_integer(type);
7638         expr->base.type = res_type;
7639         expr->value     = create_implicit_cast(expr->value, res_type);
7640 }
7641
7642 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7643 {
7644         type_t *const orig_type = expression->value->base.type;
7645         type_t *const type      = skip_typeref(orig_type);
7646         if (!is_type_arithmetic(type)) {
7647                 if (is_type_valid(type)) {
7648                         /* TODO: improve error message */
7649                         errorf(&expression->base.source_position,
7650                                 "operation needs an arithmetic type");
7651                 }
7652                 return;
7653         } else if (is_type_integer(type)) {
7654                 promote_unary_int_expr(expression, type);
7655         } else {
7656                 expression->base.type = orig_type;
7657         }
7658 }
7659
7660 static void semantic_unexpr_plus(unary_expression_t *expression)
7661 {
7662         semantic_unexpr_arithmetic(expression);
7663         source_position_t const *const pos = &expression->base.source_position;
7664         warningf(WARN_TRADITIONAL, pos, "traditional C rejects the unary plus operator");
7665 }
7666
7667 static void semantic_not(unary_expression_t *expression)
7668 {
7669         /* §6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
7670         semantic_condition(expression->value, "operand of !");
7671         expression->base.type = c_mode & _CXX ? type_bool : type_int;
7672 }
7673
7674 static void semantic_unexpr_integer(unary_expression_t *expression)
7675 {
7676         type_t *const orig_type = expression->value->base.type;
7677         type_t *const type      = skip_typeref(orig_type);
7678         if (!is_type_integer(type)) {
7679                 if (is_type_valid(type)) {
7680                         errorf(&expression->base.source_position,
7681                                "operand of ~ must be of integer type");
7682                 }
7683                 return;
7684         }
7685
7686         promote_unary_int_expr(expression, type);
7687 }
7688
7689 static void semantic_dereference(unary_expression_t *expression)
7690 {
7691         type_t *const orig_type = expression->value->base.type;
7692         type_t *const type      = skip_typeref(orig_type);
7693         if (!is_type_pointer(type)) {
7694                 if (is_type_valid(type)) {
7695                         errorf(&expression->base.source_position,
7696                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7697                 }
7698                 return;
7699         }
7700
7701         type_t *result_type   = type->pointer.points_to;
7702         result_type           = automatic_type_conversion(result_type);
7703         expression->base.type = result_type;
7704 }
7705
7706 /**
7707  * Record that an address is taken (expression represents an lvalue).
7708  *
7709  * @param expression       the expression
7710  * @param may_be_register  if true, the expression might be an register
7711  */
7712 static void set_address_taken(expression_t *expression, bool may_be_register)
7713 {
7714         if (expression->kind != EXPR_REFERENCE)
7715                 return;
7716
7717         entity_t *const entity = expression->reference.entity;
7718
7719         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
7720                 return;
7721
7722         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
7723                         && !may_be_register) {
7724                 source_position_t const *const pos = &expression->base.source_position;
7725                 errorf(pos, "address of register '%N' requested", entity);
7726         }
7727
7728         if (entity->kind == ENTITY_VARIABLE) {
7729                 entity->variable.address_taken = true;
7730         } else {
7731                 assert(entity->kind == ENTITY_PARAMETER);
7732                 entity->parameter.address_taken = true;
7733         }
7734 }
7735
7736 /**
7737  * Check the semantic of the address taken expression.
7738  */
7739 static void semantic_take_addr(unary_expression_t *expression)
7740 {
7741         expression_t *value = expression->value;
7742         value->base.type    = revert_automatic_type_conversion(value);
7743
7744         type_t *orig_type = value->base.type;
7745         type_t *type      = skip_typeref(orig_type);
7746         if (!is_type_valid(type))
7747                 return;
7748
7749         /* §6.5.3.2 */
7750         if (!is_lvalue(value)) {
7751                 errorf(&expression->base.source_position, "'&' requires an lvalue");
7752         }
7753         if (is_bitfield(value)) {
7754                 errorf(&expression->base.source_position,
7755                        "'&' not allowed on bitfield");
7756         }
7757
7758         set_address_taken(value, false);
7759
7760         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7761 }
7762
7763 #define CREATE_UNARY_EXPRESSION_PARSER(token_kind, unexpression_type, sfunc) \
7764 static expression_t *parse_##unexpression_type(void)                         \
7765 {                                                                            \
7766         expression_t *unary_expression                                           \
7767                 = allocate_expression_zero(unexpression_type);                       \
7768         eat(token_kind);                                                         \
7769         unary_expression->unary.value = parse_subexpression(PREC_UNARY);         \
7770                                                                                  \
7771         sfunc(&unary_expression->unary);                                         \
7772                                                                                  \
7773         return unary_expression;                                                 \
7774 }
7775
7776 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7777                                semantic_unexpr_arithmetic)
7778 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7779                                semantic_unexpr_plus)
7780 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7781                                semantic_not)
7782 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7783                                semantic_dereference)
7784 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7785                                semantic_take_addr)
7786 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7787                                semantic_unexpr_integer)
7788 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7789                                semantic_incdec)
7790 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7791                                semantic_incdec)
7792
7793 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_kind, unexpression_type, \
7794                                                sfunc)                         \
7795 static expression_t *parse_##unexpression_type(expression_t *left)            \
7796 {                                                                             \
7797         expression_t *unary_expression                                            \
7798                 = allocate_expression_zero(unexpression_type);                        \
7799         eat(token_kind);                                                          \
7800         unary_expression->unary.value = left;                                     \
7801                                                                                   \
7802         sfunc(&unary_expression->unary);                                          \
7803                                                                               \
7804         return unary_expression;                                                  \
7805 }
7806
7807 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7808                                        EXPR_UNARY_POSTFIX_INCREMENT,
7809                                        semantic_incdec)
7810 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7811                                        EXPR_UNARY_POSTFIX_DECREMENT,
7812                                        semantic_incdec)
7813
7814 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7815 {
7816         /* TODO: handle complex + imaginary types */
7817
7818         type_left  = get_unqualified_type(type_left);
7819         type_right = get_unqualified_type(type_right);
7820
7821         /* §6.3.1.8 Usual arithmetic conversions */
7822         if (type_left == type_long_double || type_right == type_long_double) {
7823                 return type_long_double;
7824         } else if (type_left == type_double || type_right == type_double) {
7825                 return type_double;
7826         } else if (type_left == type_float || type_right == type_float) {
7827                 return type_float;
7828         }
7829
7830         type_left  = promote_integer(type_left);
7831         type_right = promote_integer(type_right);
7832
7833         if (type_left == type_right)
7834                 return type_left;
7835
7836         bool     const signed_left  = is_type_signed(type_left);
7837         bool     const signed_right = is_type_signed(type_right);
7838         unsigned const rank_left    = get_akind_rank(get_akind(type_left));
7839         unsigned const rank_right   = get_akind_rank(get_akind(type_right));
7840
7841         if (signed_left == signed_right)
7842                 return rank_left >= rank_right ? type_left : type_right;
7843
7844         unsigned           s_rank;
7845         unsigned           u_rank;
7846         atomic_type_kind_t s_akind;
7847         atomic_type_kind_t u_akind;
7848         type_t *s_type;
7849         type_t *u_type;
7850         if (signed_left) {
7851                 s_type = type_left;
7852                 u_type = type_right;
7853         } else {
7854                 s_type = type_right;
7855                 u_type = type_left;
7856         }
7857         s_akind = get_akind(s_type);
7858         u_akind = get_akind(u_type);
7859         s_rank  = get_akind_rank(s_akind);
7860         u_rank  = get_akind_rank(u_akind);
7861
7862         if (u_rank >= s_rank)
7863                 return u_type;
7864
7865         if (get_atomic_type_size(s_akind) > get_atomic_type_size(u_akind))
7866                 return s_type;
7867
7868         switch (s_akind) {
7869         case ATOMIC_TYPE_INT:      return type_unsigned_int;
7870         case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7871         case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7872
7873         default: panic("invalid atomic type");
7874         }
7875 }
7876
7877 /**
7878  * Check the semantic restrictions for a binary expression.
7879  */
7880 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7881 {
7882         expression_t *const left            = expression->left;
7883         expression_t *const right           = expression->right;
7884         type_t       *const orig_type_left  = left->base.type;
7885         type_t       *const orig_type_right = right->base.type;
7886         type_t       *const type_left       = skip_typeref(orig_type_left);
7887         type_t       *const type_right      = skip_typeref(orig_type_right);
7888
7889         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7890                 /* TODO: improve error message */
7891                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7892                         errorf(&expression->base.source_position,
7893                                "operation needs arithmetic types");
7894                 }
7895                 return;
7896         }
7897
7898         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7899         expression->left      = create_implicit_cast(left, arithmetic_type);
7900         expression->right     = create_implicit_cast(right, arithmetic_type);
7901         expression->base.type = arithmetic_type;
7902 }
7903
7904 static void semantic_binexpr_integer(binary_expression_t *const expression)
7905 {
7906         expression_t *const left            = expression->left;
7907         expression_t *const right           = expression->right;
7908         type_t       *const orig_type_left  = left->base.type;
7909         type_t       *const orig_type_right = right->base.type;
7910         type_t       *const type_left       = skip_typeref(orig_type_left);
7911         type_t       *const type_right      = skip_typeref(orig_type_right);
7912
7913         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7914                 /* TODO: improve error message */
7915                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7916                         errorf(&expression->base.source_position,
7917                                "operation needs integer types");
7918                 }
7919                 return;
7920         }
7921
7922         type_t *const result_type = semantic_arithmetic(type_left, type_right);
7923         expression->left      = create_implicit_cast(left, result_type);
7924         expression->right     = create_implicit_cast(right, result_type);
7925         expression->base.type = result_type;
7926 }
7927
7928 static void warn_div_by_zero(binary_expression_t const *const expression)
7929 {
7930         if (!is_type_integer(expression->base.type))
7931                 return;
7932
7933         expression_t const *const right = expression->right;
7934         /* The type of the right operand can be different for /= */
7935         if (is_type_integer(right->base.type)                    &&
7936             is_constant_expression(right) == EXPR_CLASS_CONSTANT &&
7937             !fold_constant_to_bool(right)) {
7938                 source_position_t const *const pos = &expression->base.source_position;
7939                 warningf(WARN_DIV_BY_ZERO, pos, "division by zero");
7940         }
7941 }
7942
7943 /**
7944  * Check the semantic restrictions for a div/mod expression.
7945  */
7946 static void semantic_divmod_arithmetic(binary_expression_t *expression)
7947 {
7948         semantic_binexpr_arithmetic(expression);
7949         warn_div_by_zero(expression);
7950 }
7951
7952 static void warn_addsub_in_shift(const expression_t *const expr)
7953 {
7954         if (expr->base.parenthesized)
7955                 return;
7956
7957         char op;
7958         switch (expr->kind) {
7959                 case EXPR_BINARY_ADD: op = '+'; break;
7960                 case EXPR_BINARY_SUB: op = '-'; break;
7961                 default:              return;
7962         }
7963
7964         source_position_t const *const pos = &expr->base.source_position;
7965         warningf(WARN_PARENTHESES, pos, "suggest parentheses around '%c' inside shift", op);
7966 }
7967
7968 static bool semantic_shift(binary_expression_t *expression)
7969 {
7970         expression_t *const left            = expression->left;
7971         expression_t *const right           = expression->right;
7972         type_t       *const orig_type_left  = left->base.type;
7973         type_t       *const orig_type_right = right->base.type;
7974         type_t       *      type_left       = skip_typeref(orig_type_left);
7975         type_t       *      type_right      = skip_typeref(orig_type_right);
7976
7977         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7978                 /* TODO: improve error message */
7979                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7980                         errorf(&expression->base.source_position,
7981                                "operands of shift operation must have integer types");
7982                 }
7983                 return false;
7984         }
7985
7986         type_left = promote_integer(type_left);
7987
7988         if (is_constant_expression(right) == EXPR_CLASS_CONSTANT) {
7989                 source_position_t const *const pos   = &right->base.source_position;
7990                 long                     const count = fold_constant_to_int(right);
7991                 if (count < 0) {
7992                         warningf(WARN_OTHER, pos, "shift count must be non-negative");
7993                 } else if ((unsigned long)count >=
7994                                 get_atomic_type_size(type_left->atomic.akind) * 8) {
7995                         warningf(WARN_OTHER, pos, "shift count must be less than type width");
7996                 }
7997         }
7998
7999         type_right        = promote_integer(type_right);
8000         expression->right = create_implicit_cast(right, type_right);
8001
8002         return true;
8003 }
8004
8005 static void semantic_shift_op(binary_expression_t *expression)
8006 {
8007         expression_t *const left  = expression->left;
8008         expression_t *const right = expression->right;
8009
8010         if (!semantic_shift(expression))
8011                 return;
8012
8013         warn_addsub_in_shift(left);
8014         warn_addsub_in_shift(right);
8015
8016         type_t *const orig_type_left = left->base.type;
8017         type_t *      type_left      = skip_typeref(orig_type_left);
8018
8019         type_left             = promote_integer(type_left);
8020         expression->left      = create_implicit_cast(left, type_left);
8021         expression->base.type = type_left;
8022 }
8023
8024 static void semantic_add(binary_expression_t *expression)
8025 {
8026         expression_t *const left            = expression->left;
8027         expression_t *const right           = expression->right;
8028         type_t       *const orig_type_left  = left->base.type;
8029         type_t       *const orig_type_right = right->base.type;
8030         type_t       *const type_left       = skip_typeref(orig_type_left);
8031         type_t       *const type_right      = skip_typeref(orig_type_right);
8032
8033         /* §6.5.6 */
8034         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8035                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8036                 expression->left  = create_implicit_cast(left, arithmetic_type);
8037                 expression->right = create_implicit_cast(right, arithmetic_type);
8038                 expression->base.type = arithmetic_type;
8039         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8040                 check_pointer_arithmetic(&expression->base.source_position,
8041                                          type_left, orig_type_left);
8042                 expression->base.type = type_left;
8043         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8044                 check_pointer_arithmetic(&expression->base.source_position,
8045                                          type_right, orig_type_right);
8046                 expression->base.type = type_right;
8047         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8048                 errorf(&expression->base.source_position,
8049                        "invalid operands to binary + ('%T', '%T')",
8050                        orig_type_left, orig_type_right);
8051         }
8052 }
8053
8054 static void semantic_sub(binary_expression_t *expression)
8055 {
8056         expression_t            *const left            = expression->left;
8057         expression_t            *const right           = expression->right;
8058         type_t                  *const orig_type_left  = left->base.type;
8059         type_t                  *const orig_type_right = right->base.type;
8060         type_t                  *const type_left       = skip_typeref(orig_type_left);
8061         type_t                  *const type_right      = skip_typeref(orig_type_right);
8062         source_position_t const *const pos             = &expression->base.source_position;
8063
8064         /* §5.6.5 */
8065         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8066                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8067                 expression->left        = create_implicit_cast(left, arithmetic_type);
8068                 expression->right       = create_implicit_cast(right, arithmetic_type);
8069                 expression->base.type =  arithmetic_type;
8070         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8071                 check_pointer_arithmetic(&expression->base.source_position,
8072                                          type_left, orig_type_left);
8073                 expression->base.type = type_left;
8074         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8075                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8076                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8077                 if (!types_compatible(unqual_left, unqual_right)) {
8078                         errorf(pos,
8079                                "subtracting pointers to incompatible types '%T' and '%T'",
8080                                orig_type_left, orig_type_right);
8081                 } else if (!is_type_object(unqual_left)) {
8082                         if (!is_type_void(unqual_left)) {
8083                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8084                                        orig_type_left);
8085                         } else {
8086                                 warningf(WARN_OTHER, pos, "subtracting pointers to void");
8087                         }
8088                 }
8089                 expression->base.type = type_ptrdiff_t;
8090         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8091                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8092                        orig_type_left, orig_type_right);
8093         }
8094 }
8095
8096 static void warn_string_literal_address(expression_t const* expr)
8097 {
8098         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8099                 expr = expr->unary.value;
8100                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8101                         return;
8102                 expr = expr->unary.value;
8103         }
8104
8105         if (expr->kind == EXPR_STRING_LITERAL
8106                         || expr->kind == EXPR_WIDE_STRING_LITERAL) {
8107                 source_position_t const *const pos = &expr->base.source_position;
8108                 warningf(WARN_ADDRESS, pos, "comparison with string literal results in unspecified behaviour");
8109         }
8110 }
8111
8112 static bool maybe_negative(expression_t const *const expr)
8113 {
8114         switch (is_constant_expression(expr)) {
8115                 case EXPR_CLASS_ERROR:    return false;
8116                 case EXPR_CLASS_CONSTANT: return constant_is_negative(expr);
8117                 default:                  return true;
8118         }
8119 }
8120
8121 static void warn_comparison(source_position_t const *const pos, expression_t const *const expr, expression_t const *const other)
8122 {
8123         warn_string_literal_address(expr);
8124
8125         expression_t const* const ref = get_reference_address(expr);
8126         if (ref != NULL && is_null_pointer_constant(other)) {
8127                 entity_t const *const ent = ref->reference.entity;
8128                 warningf(WARN_ADDRESS, pos, "the address of '%N' will never be NULL", ent);
8129         }
8130
8131         if (!expr->base.parenthesized) {
8132                 switch (expr->base.kind) {
8133                         case EXPR_BINARY_LESS:
8134                         case EXPR_BINARY_GREATER:
8135                         case EXPR_BINARY_LESSEQUAL:
8136                         case EXPR_BINARY_GREATEREQUAL:
8137                         case EXPR_BINARY_NOTEQUAL:
8138                         case EXPR_BINARY_EQUAL:
8139                                 warningf(WARN_PARENTHESES, pos, "comparisons like 'x <= y < z' do not have their mathematical meaning");
8140                                 break;
8141                         default:
8142                                 break;
8143                 }
8144         }
8145 }
8146
8147 /**
8148  * Check the semantics of comparison expressions.
8149  *
8150  * @param expression   The expression to check.
8151  */
8152 static void semantic_comparison(binary_expression_t *expression)
8153 {
8154         source_position_t const *const pos   = &expression->base.source_position;
8155         expression_t            *const left  = expression->left;
8156         expression_t            *const right = expression->right;
8157
8158         warn_comparison(pos, left, right);
8159         warn_comparison(pos, right, left);
8160
8161         type_t *orig_type_left  = left->base.type;
8162         type_t *orig_type_right = right->base.type;
8163         type_t *type_left       = skip_typeref(orig_type_left);
8164         type_t *type_right      = skip_typeref(orig_type_right);
8165
8166         /* TODO non-arithmetic types */
8167         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8168                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8169
8170                 /* test for signed vs unsigned compares */
8171                 if (is_type_integer(arithmetic_type)) {
8172                         bool const signed_left  = is_type_signed(type_left);
8173                         bool const signed_right = is_type_signed(type_right);
8174                         if (signed_left != signed_right) {
8175                                 /* FIXME long long needs better const folding magic */
8176                                 /* TODO check whether constant value can be represented by other type */
8177                                 if ((signed_left  && maybe_negative(left)) ||
8178                                                 (signed_right && maybe_negative(right))) {
8179                                         warningf(WARN_SIGN_COMPARE, pos, "comparison between signed and unsigned");
8180                                 }
8181                         }
8182                 }
8183
8184                 expression->left        = create_implicit_cast(left, arithmetic_type);
8185                 expression->right       = create_implicit_cast(right, arithmetic_type);
8186                 expression->base.type   = arithmetic_type;
8187                 if ((expression->base.kind == EXPR_BINARY_EQUAL ||
8188                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8189                     is_type_float(arithmetic_type)) {
8190                         warningf(WARN_FLOAT_EQUAL, pos, "comparing floating point with == or != is unsafe");
8191                 }
8192         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8193                 /* TODO check compatibility */
8194         } else if (is_type_pointer(type_left)) {
8195                 expression->right = create_implicit_cast(right, type_left);
8196         } else if (is_type_pointer(type_right)) {
8197                 expression->left = create_implicit_cast(left, type_right);
8198         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8199                 type_error_incompatible("invalid operands in comparison", pos, type_left, type_right);
8200         }
8201         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8202 }
8203
8204 /**
8205  * Checks if a compound type has constant fields.
8206  */
8207 static bool has_const_fields(const compound_type_t *type)
8208 {
8209         compound_t *compound = type->compound;
8210         entity_t   *entry    = compound->members.entities;
8211
8212         for (; entry != NULL; entry = entry->base.next) {
8213                 if (!is_declaration(entry))
8214                         continue;
8215
8216                 const type_t *decl_type = skip_typeref(entry->declaration.type);
8217                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8218                         return true;
8219         }
8220
8221         return false;
8222 }
8223
8224 static bool is_valid_assignment_lhs(expression_t const* const left)
8225 {
8226         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8227         type_t *const type_left      = skip_typeref(orig_type_left);
8228
8229         if (!is_lvalue(left)) {
8230                 errorf(&left->base.source_position, "left hand side '%E' of assignment is not an lvalue",
8231                        left);
8232                 return false;
8233         }
8234
8235         if (left->kind == EXPR_REFERENCE
8236                         && left->reference.entity->kind == ENTITY_FUNCTION) {
8237                 errorf(&left->base.source_position, "cannot assign to function '%E'", left);
8238                 return false;
8239         }
8240
8241         if (is_type_array(type_left)) {
8242                 errorf(&left->base.source_position, "cannot assign to array '%E'", left);
8243                 return false;
8244         }
8245         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8246                 errorf(&left->base.source_position, "assignment to read-only location '%E' (type '%T')", left,
8247                        orig_type_left);
8248                 return false;
8249         }
8250         if (is_type_incomplete(type_left)) {
8251                 errorf(&left->base.source_position, "left-hand side '%E' of assignment has incomplete type '%T'",
8252                        left, orig_type_left);
8253                 return false;
8254         }
8255         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8256                 errorf(&left->base.source_position, "cannot assign to '%E' because compound type '%T' has read-only fields",
8257                        left, orig_type_left);
8258                 return false;
8259         }
8260
8261         return true;
8262 }
8263
8264 static void semantic_arithmetic_assign(binary_expression_t *expression)
8265 {
8266         expression_t *left            = expression->left;
8267         expression_t *right           = expression->right;
8268         type_t       *orig_type_left  = left->base.type;
8269         type_t       *orig_type_right = right->base.type;
8270
8271         if (!is_valid_assignment_lhs(left))
8272                 return;
8273
8274         type_t *type_left  = skip_typeref(orig_type_left);
8275         type_t *type_right = skip_typeref(orig_type_right);
8276
8277         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8278                 /* TODO: improve error message */
8279                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8280                         errorf(&expression->base.source_position,
8281                                "operation needs arithmetic types");
8282                 }
8283                 return;
8284         }
8285
8286         /* combined instructions are tricky. We can't create an implicit cast on
8287          * the left side, because we need the uncasted form for the store.
8288          * The ast2firm pass has to know that left_type must be right_type
8289          * for the arithmetic operation and create a cast by itself */
8290         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8291         expression->right       = create_implicit_cast(right, arithmetic_type);
8292         expression->base.type   = type_left;
8293 }
8294
8295 static void semantic_divmod_assign(binary_expression_t *expression)
8296 {
8297         semantic_arithmetic_assign(expression);
8298         warn_div_by_zero(expression);
8299 }
8300
8301 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8302 {
8303         expression_t *const left            = expression->left;
8304         expression_t *const right           = expression->right;
8305         type_t       *const orig_type_left  = left->base.type;
8306         type_t       *const orig_type_right = right->base.type;
8307         type_t       *const type_left       = skip_typeref(orig_type_left);
8308         type_t       *const type_right      = skip_typeref(orig_type_right);
8309
8310         if (!is_valid_assignment_lhs(left))
8311                 return;
8312
8313         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8314                 /* combined instructions are tricky. We can't create an implicit cast on
8315                  * the left side, because we need the uncasted form for the store.
8316                  * The ast2firm pass has to know that left_type must be right_type
8317                  * for the arithmetic operation and create a cast by itself */
8318                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8319                 expression->right     = create_implicit_cast(right, arithmetic_type);
8320                 expression->base.type = type_left;
8321         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8322                 check_pointer_arithmetic(&expression->base.source_position,
8323                                          type_left, orig_type_left);
8324                 expression->base.type = type_left;
8325         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8326                 errorf(&expression->base.source_position,
8327                        "incompatible types '%T' and '%T' in assignment",
8328                        orig_type_left, orig_type_right);
8329         }
8330 }
8331
8332 static void semantic_integer_assign(binary_expression_t *expression)
8333 {
8334         expression_t *left            = expression->left;
8335         expression_t *right           = expression->right;
8336         type_t       *orig_type_left  = left->base.type;
8337         type_t       *orig_type_right = right->base.type;
8338
8339         if (!is_valid_assignment_lhs(left))
8340                 return;
8341
8342         type_t *type_left  = skip_typeref(orig_type_left);
8343         type_t *type_right = skip_typeref(orig_type_right);
8344
8345         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8346                 /* TODO: improve error message */
8347                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8348                         errorf(&expression->base.source_position,
8349                                "operation needs integer types");
8350                 }
8351                 return;
8352         }
8353
8354         /* combined instructions are tricky. We can't create an implicit cast on
8355          * the left side, because we need the uncasted form for the store.
8356          * The ast2firm pass has to know that left_type must be right_type
8357          * for the arithmetic operation and create a cast by itself */
8358         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8359         expression->right       = create_implicit_cast(right, arithmetic_type);
8360         expression->base.type   = type_left;
8361 }
8362
8363 static void semantic_shift_assign(binary_expression_t *expression)
8364 {
8365         expression_t *left           = expression->left;
8366
8367         if (!is_valid_assignment_lhs(left))
8368                 return;
8369
8370         if (!semantic_shift(expression))
8371                 return;
8372
8373         expression->base.type = skip_typeref(left->base.type);
8374 }
8375
8376 static void warn_logical_and_within_or(const expression_t *const expr)
8377 {
8378         if (expr->base.kind != EXPR_BINARY_LOGICAL_AND)
8379                 return;
8380         if (expr->base.parenthesized)
8381                 return;
8382         source_position_t const *const pos = &expr->base.source_position;
8383         warningf(WARN_PARENTHESES, pos, "suggest parentheses around && within ||");
8384 }
8385
8386 /**
8387  * Check the semantic restrictions of a logical expression.
8388  */
8389 static void semantic_logical_op(binary_expression_t *expression)
8390 {
8391         /* §6.5.13:2  Each of the operands shall have scalar type.
8392          * §6.5.14:2  Each of the operands shall have scalar type. */
8393         semantic_condition(expression->left,   "left operand of logical operator");
8394         semantic_condition(expression->right, "right operand of logical operator");
8395         if (expression->base.kind == EXPR_BINARY_LOGICAL_OR) {
8396                 warn_logical_and_within_or(expression->left);
8397                 warn_logical_and_within_or(expression->right);
8398         }
8399         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8400 }
8401
8402 /**
8403  * Check the semantic restrictions of a binary assign expression.
8404  */
8405 static void semantic_binexpr_assign(binary_expression_t *expression)
8406 {
8407         expression_t *left           = expression->left;
8408         type_t       *orig_type_left = left->base.type;
8409
8410         if (!is_valid_assignment_lhs(left))
8411                 return;
8412
8413         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8414         report_assign_error(error, orig_type_left, expression->right,
8415                         "assignment", &left->base.source_position);
8416         expression->right = create_implicit_cast(expression->right, orig_type_left);
8417         expression->base.type = orig_type_left;
8418 }
8419
8420 /**
8421  * Determine if the outermost operation (or parts thereof) of the given
8422  * expression has no effect in order to generate a warning about this fact.
8423  * Therefore in some cases this only examines some of the operands of the
8424  * expression (see comments in the function and examples below).
8425  * Examples:
8426  *   f() + 23;    // warning, because + has no effect
8427  *   x || f();    // no warning, because x controls execution of f()
8428  *   x ? y : f(); // warning, because y has no effect
8429  *   (void)x;     // no warning to be able to suppress the warning
8430  * This function can NOT be used for an "expression has definitely no effect"-
8431  * analysis. */
8432 static bool expression_has_effect(const expression_t *const expr)
8433 {
8434         switch (expr->kind) {
8435                 case EXPR_ERROR:                      return true; /* do NOT warn */
8436                 case EXPR_REFERENCE:                  return false;
8437                 case EXPR_ENUM_CONSTANT:              return false;
8438                 case EXPR_LABEL_ADDRESS:              return false;
8439
8440                 /* suppress the warning for microsoft __noop operations */
8441                 case EXPR_LITERAL_MS_NOOP:            return true;
8442                 case EXPR_LITERAL_BOOLEAN:
8443                 case EXPR_LITERAL_CHARACTER:
8444                 case EXPR_LITERAL_WIDE_CHARACTER:
8445                 case EXPR_LITERAL_INTEGER:
8446                 case EXPR_LITERAL_INTEGER_OCTAL:
8447                 case EXPR_LITERAL_INTEGER_HEXADECIMAL:
8448                 case EXPR_LITERAL_FLOATINGPOINT:
8449                 case EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL: return false;
8450                 case EXPR_STRING_LITERAL:             return false;
8451                 case EXPR_WIDE_STRING_LITERAL:        return false;
8452
8453                 case EXPR_CALL: {
8454                         const call_expression_t *const call = &expr->call;
8455                         if (call->function->kind != EXPR_REFERENCE)
8456                                 return true;
8457
8458                         switch (call->function->reference.entity->function.btk) {
8459                                 /* FIXME: which builtins have no effect? */
8460                                 default:                      return true;
8461                         }
8462                 }
8463
8464                 /* Generate the warning if either the left or right hand side of a
8465                  * conditional expression has no effect */
8466                 case EXPR_CONDITIONAL: {
8467                         conditional_expression_t const *const cond = &expr->conditional;
8468                         expression_t             const *const t    = cond->true_expression;
8469                         return
8470                                 (t == NULL || expression_has_effect(t)) &&
8471                                 expression_has_effect(cond->false_expression);
8472                 }
8473
8474                 case EXPR_SELECT:                     return false;
8475                 case EXPR_ARRAY_ACCESS:               return false;
8476                 case EXPR_SIZEOF:                     return false;
8477                 case EXPR_CLASSIFY_TYPE:              return false;
8478                 case EXPR_ALIGNOF:                    return false;
8479
8480                 case EXPR_FUNCNAME:                   return false;
8481                 case EXPR_BUILTIN_CONSTANT_P:         return false;
8482                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P: return false;
8483                 case EXPR_OFFSETOF:                   return false;
8484                 case EXPR_VA_START:                   return true;
8485                 case EXPR_VA_ARG:                     return true;
8486                 case EXPR_VA_COPY:                    return true;
8487                 case EXPR_STATEMENT:                  return true; // TODO
8488                 case EXPR_COMPOUND_LITERAL:           return false;
8489
8490                 case EXPR_UNARY_NEGATE:               return false;
8491                 case EXPR_UNARY_PLUS:                 return false;
8492                 case EXPR_UNARY_BITWISE_NEGATE:       return false;
8493                 case EXPR_UNARY_NOT:                  return false;
8494                 case EXPR_UNARY_DEREFERENCE:          return false;
8495                 case EXPR_UNARY_TAKE_ADDRESS:         return false;
8496                 case EXPR_UNARY_POSTFIX_INCREMENT:    return true;
8497                 case EXPR_UNARY_POSTFIX_DECREMENT:    return true;
8498                 case EXPR_UNARY_PREFIX_INCREMENT:     return true;
8499                 case EXPR_UNARY_PREFIX_DECREMENT:     return true;
8500
8501                 /* Treat void casts as if they have an effect in order to being able to
8502                  * suppress the warning */
8503                 case EXPR_UNARY_CAST: {
8504                         type_t *const type = skip_typeref(expr->base.type);
8505                         return is_type_void(type);
8506                 }
8507
8508                 case EXPR_UNARY_ASSUME:               return true;
8509                 case EXPR_UNARY_DELETE:               return true;
8510                 case EXPR_UNARY_DELETE_ARRAY:         return true;
8511                 case EXPR_UNARY_THROW:                return true;
8512
8513                 case EXPR_BINARY_ADD:                 return false;
8514                 case EXPR_BINARY_SUB:                 return false;
8515                 case EXPR_BINARY_MUL:                 return false;
8516                 case EXPR_BINARY_DIV:                 return false;
8517                 case EXPR_BINARY_MOD:                 return false;
8518                 case EXPR_BINARY_EQUAL:               return false;
8519                 case EXPR_BINARY_NOTEQUAL:            return false;
8520                 case EXPR_BINARY_LESS:                return false;
8521                 case EXPR_BINARY_LESSEQUAL:           return false;
8522                 case EXPR_BINARY_GREATER:             return false;
8523                 case EXPR_BINARY_GREATEREQUAL:        return false;
8524                 case EXPR_BINARY_BITWISE_AND:         return false;
8525                 case EXPR_BINARY_BITWISE_OR:          return false;
8526                 case EXPR_BINARY_BITWISE_XOR:         return false;
8527                 case EXPR_BINARY_SHIFTLEFT:           return false;
8528                 case EXPR_BINARY_SHIFTRIGHT:          return false;
8529                 case EXPR_BINARY_ASSIGN:              return true;
8530                 case EXPR_BINARY_MUL_ASSIGN:          return true;
8531                 case EXPR_BINARY_DIV_ASSIGN:          return true;
8532                 case EXPR_BINARY_MOD_ASSIGN:          return true;
8533                 case EXPR_BINARY_ADD_ASSIGN:          return true;
8534                 case EXPR_BINARY_SUB_ASSIGN:          return true;
8535                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:    return true;
8536                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:   return true;
8537                 case EXPR_BINARY_BITWISE_AND_ASSIGN:  return true;
8538                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:  return true;
8539                 case EXPR_BINARY_BITWISE_OR_ASSIGN:   return true;
8540
8541                 /* Only examine the right hand side of && and ||, because the left hand
8542                  * side already has the effect of controlling the execution of the right
8543                  * hand side */
8544                 case EXPR_BINARY_LOGICAL_AND:
8545                 case EXPR_BINARY_LOGICAL_OR:
8546                 /* Only examine the right hand side of a comma expression, because the left
8547                  * hand side has a separate warning */
8548                 case EXPR_BINARY_COMMA:
8549                         return expression_has_effect(expr->binary.right);
8550
8551                 case EXPR_BINARY_ISGREATER:           return false;
8552                 case EXPR_BINARY_ISGREATEREQUAL:      return false;
8553                 case EXPR_BINARY_ISLESS:              return false;
8554                 case EXPR_BINARY_ISLESSEQUAL:         return false;
8555                 case EXPR_BINARY_ISLESSGREATER:       return false;
8556                 case EXPR_BINARY_ISUNORDERED:         return false;
8557         }
8558
8559         internal_errorf(HERE, "unexpected expression");
8560 }
8561
8562 static void semantic_comma(binary_expression_t *expression)
8563 {
8564         const expression_t *const left = expression->left;
8565         if (!expression_has_effect(left)) {
8566                 source_position_t const *const pos = &left->base.source_position;
8567                 warningf(WARN_UNUSED_VALUE, pos, "left-hand operand of comma expression has no effect");
8568         }
8569         expression->base.type = expression->right->base.type;
8570 }
8571
8572 /**
8573  * @param prec_r precedence of the right operand
8574  */
8575 #define CREATE_BINEXPR_PARSER(token_kind, binexpression_type, prec_r, sfunc) \
8576 static expression_t *parse_##binexpression_type(expression_t *left)          \
8577 {                                                                            \
8578         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
8579         binexpr->binary.left  = left;                                            \
8580         eat(token_kind);                                                         \
8581                                                                              \
8582         expression_t *right = parse_subexpression(prec_r);                       \
8583                                                                              \
8584         binexpr->binary.right = right;                                           \
8585         sfunc(&binexpr->binary);                                                 \
8586                                                                              \
8587         return binexpr;                                                          \
8588 }
8589
8590 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
8591 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
8592 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
8593 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
8594 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
8595 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
8596 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
8597 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
8598 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
8599 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
8600 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
8601 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
8602 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
8603 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_integer)
8604 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_integer)
8605 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_integer)
8606 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
8607 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
8608 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
8609 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8610 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8611 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8612 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8613 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8614 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_shift_assign)
8615 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_shift_assign)
8616 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8617 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_integer_assign)
8618 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8619 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
8620
8621
8622 static expression_t *parse_subexpression(precedence_t precedence)
8623 {
8624         expression_parser_function_t *parser
8625                 = &expression_parsers[token.kind];
8626         expression_t                 *left;
8627
8628         if (parser->parser != NULL) {
8629                 left = parser->parser();
8630         } else {
8631                 left = parse_primary_expression();
8632         }
8633         assert(left != NULL);
8634
8635         while (true) {
8636                 parser = &expression_parsers[token.kind];
8637                 if (parser->infix_parser == NULL)
8638                         break;
8639                 if (parser->infix_precedence < precedence)
8640                         break;
8641
8642                 left = parser->infix_parser(left);
8643
8644                 assert(left != NULL);
8645         }
8646
8647         return left;
8648 }
8649
8650 /**
8651  * Parse an expression.
8652  */
8653 static expression_t *parse_expression(void)
8654 {
8655         return parse_subexpression(PREC_EXPRESSION);
8656 }
8657
8658 /**
8659  * Register a parser for a prefix-like operator.
8660  *
8661  * @param parser      the parser function
8662  * @param token_kind  the token type of the prefix token
8663  */
8664 static void register_expression_parser(parse_expression_function parser,
8665                                        int token_kind)
8666 {
8667         expression_parser_function_t *entry = &expression_parsers[token_kind];
8668
8669         if (entry->parser != NULL) {
8670                 diagnosticf("for token '%k'\n", (token_kind_t)token_kind);
8671                 panic("trying to register multiple expression parsers for a token");
8672         }
8673         entry->parser = parser;
8674 }
8675
8676 /**
8677  * Register a parser for an infix operator with given precedence.
8678  *
8679  * @param parser      the parser function
8680  * @param token_kind  the token type of the infix operator
8681  * @param precedence  the precedence of the operator
8682  */
8683 static void register_infix_parser(parse_expression_infix_function parser,
8684                                   int token_kind, precedence_t precedence)
8685 {
8686         expression_parser_function_t *entry = &expression_parsers[token_kind];
8687
8688         if (entry->infix_parser != NULL) {
8689                 diagnosticf("for token '%k'\n", (token_kind_t)token_kind);
8690                 panic("trying to register multiple infix expression parsers for a "
8691                       "token");
8692         }
8693         entry->infix_parser     = parser;
8694         entry->infix_precedence = precedence;
8695 }
8696
8697 /**
8698  * Initialize the expression parsers.
8699  */
8700 static void init_expression_parsers(void)
8701 {
8702         memset(&expression_parsers, 0, sizeof(expression_parsers));
8703
8704         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
8705         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
8706         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
8707         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
8708         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
8709         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
8710         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
8711         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
8712         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
8713         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
8714         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
8715         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
8716         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
8717         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
8718         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
8719         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
8720         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
8721         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
8722         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
8723         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
8724         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
8725         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
8726         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
8727         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
8728         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
8729         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
8730         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
8731         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
8732         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
8733         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
8734         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
8735         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
8736         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
8737         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
8738         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
8739         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
8740         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
8741
8742         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
8743         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
8744         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
8745         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
8746         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
8747         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
8748         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
8749         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
8750         register_expression_parser(parse_sizeof,                      T_sizeof);
8751         register_expression_parser(parse_alignof,                     T___alignof__);
8752         register_expression_parser(parse_extension,                   T___extension__);
8753         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
8754         register_expression_parser(parse_delete,                      T_delete);
8755         register_expression_parser(parse_throw,                       T_throw);
8756 }
8757
8758 /**
8759  * Parse a asm statement arguments specification.
8760  */
8761 static asm_argument_t *parse_asm_arguments(bool is_out)
8762 {
8763         asm_argument_t  *result = NULL;
8764         asm_argument_t **anchor = &result;
8765
8766         while (token.kind == T_STRING_LITERAL || token.kind == '[') {
8767                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8768
8769                 if (next_if('[')) {
8770                         add_anchor_token(']');
8771                         argument->symbol = expect_identifier("while parsing asm argument", NULL);
8772                         rem_anchor_token(']');
8773                         expect(']');
8774                         if (!argument->symbol)
8775                                 return NULL;
8776                 }
8777
8778                 argument->constraints = parse_string_literals();
8779                 expect('(');
8780                 add_anchor_token(')');
8781                 expression_t *expression = parse_expression();
8782                 rem_anchor_token(')');
8783                 if (is_out) {
8784                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8785                          * change size or type representation (e.g. int -> long is ok, but
8786                          * int -> float is not) */
8787                         if (expression->kind == EXPR_UNARY_CAST) {
8788                                 type_t      *const type = expression->base.type;
8789                                 type_kind_t  const kind = type->kind;
8790                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8791                                         unsigned flags;
8792                                         unsigned size;
8793                                         if (kind == TYPE_ATOMIC) {
8794                                                 atomic_type_kind_t const akind = type->atomic.akind;
8795                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8796                                                 size  = get_atomic_type_size(akind);
8797                                         } else {
8798                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8799                                                 size  = get_type_size(type_void_ptr);
8800                                         }
8801
8802                                         do {
8803                                                 expression_t *const value      = expression->unary.value;
8804                                                 type_t       *const value_type = value->base.type;
8805                                                 type_kind_t   const value_kind = value_type->kind;
8806
8807                                                 unsigned value_flags;
8808                                                 unsigned value_size;
8809                                                 if (value_kind == TYPE_ATOMIC) {
8810                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8811                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8812                                                         value_size  = get_atomic_type_size(value_akind);
8813                                                 } else if (value_kind == TYPE_POINTER) {
8814                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8815                                                         value_size  = get_type_size(type_void_ptr);
8816                                                 } else {
8817                                                         break;
8818                                                 }
8819
8820                                                 if (value_flags != flags || value_size != size)
8821                                                         break;
8822
8823                                                 expression = value;
8824                                         } while (expression->kind == EXPR_UNARY_CAST);
8825                                 }
8826                         }
8827
8828                         if (!is_lvalue(expression)) {
8829                                 errorf(&expression->base.source_position,
8830                                        "asm output argument is not an lvalue");
8831                         }
8832
8833                         if (argument->constraints.begin[0] == '=')
8834                                 determine_lhs_ent(expression, NULL);
8835                         else
8836                                 mark_vars_read(expression, NULL);
8837                 } else {
8838                         mark_vars_read(expression, NULL);
8839                 }
8840                 argument->expression = expression;
8841                 expect(')');
8842
8843                 set_address_taken(expression, true);
8844
8845                 *anchor = argument;
8846                 anchor  = &argument->next;
8847
8848                 if (!next_if(','))
8849                         break;
8850         }
8851
8852         return result;
8853 }
8854
8855 /**
8856  * Parse a asm statement clobber specification.
8857  */
8858 static asm_clobber_t *parse_asm_clobbers(void)
8859 {
8860         asm_clobber_t *result  = NULL;
8861         asm_clobber_t **anchor = &result;
8862
8863         while (token.kind == T_STRING_LITERAL) {
8864                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8865                 clobber->clobber       = parse_string_literals();
8866
8867                 *anchor = clobber;
8868                 anchor  = &clobber->next;
8869
8870                 if (!next_if(','))
8871                         break;
8872         }
8873
8874         return result;
8875 }
8876
8877 /**
8878  * Parse an asm statement.
8879  */
8880 static statement_t *parse_asm_statement(void)
8881 {
8882         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
8883         asm_statement_t *asm_statement = &statement->asms;
8884
8885         eat(T_asm);
8886
8887         if (next_if(T_volatile))
8888                 asm_statement->is_volatile = true;
8889
8890         expect('(');
8891         add_anchor_token(')');
8892         if (token.kind != T_STRING_LITERAL) {
8893                 parse_error_expected("after asm(", T_STRING_LITERAL, NULL);
8894                 goto end_of_asm;
8895         }
8896         asm_statement->asm_text = parse_string_literals();
8897
8898         add_anchor_token(':');
8899         if (!next_if(':')) {
8900                 rem_anchor_token(':');
8901                 goto end_of_asm;
8902         }
8903
8904         asm_statement->outputs = parse_asm_arguments(true);
8905         if (!next_if(':')) {
8906                 rem_anchor_token(':');
8907                 goto end_of_asm;
8908         }
8909
8910         asm_statement->inputs = parse_asm_arguments(false);
8911         if (!next_if(':')) {
8912                 rem_anchor_token(':');
8913                 goto end_of_asm;
8914         }
8915         rem_anchor_token(':');
8916
8917         asm_statement->clobbers = parse_asm_clobbers();
8918
8919 end_of_asm:
8920         rem_anchor_token(')');
8921         expect(')');
8922         expect(';');
8923
8924         if (asm_statement->outputs == NULL) {
8925                 /* GCC: An 'asm' instruction without any output operands will be treated
8926                  * identically to a volatile 'asm' instruction. */
8927                 asm_statement->is_volatile = true;
8928         }
8929
8930         return statement;
8931 }
8932
8933 static statement_t *parse_label_inner_statement(statement_t const *const label, char const *const label_kind)
8934 {
8935         statement_t *inner_stmt;
8936         switch (token.kind) {
8937                 case '}':
8938                         errorf(&label->base.source_position, "%s at end of compound statement", label_kind);
8939                         inner_stmt = create_error_statement();
8940                         break;
8941
8942                 case ';':
8943                         if (label->kind == STATEMENT_LABEL) {
8944                                 /* Eat an empty statement here, to avoid the warning about an empty
8945                                  * statement after a label.  label:; is commonly used to have a label
8946                                  * before a closing brace. */
8947                                 inner_stmt = create_empty_statement();
8948                                 next_token();
8949                                 break;
8950                         }
8951                         /* FALLTHROUGH */
8952
8953                 default:
8954                         inner_stmt = parse_statement();
8955                         /* ISO/IEC  9899:1999(E) §6.8:1/6.8.2:1  Declarations are no statements */
8956                         /* ISO/IEC 14882:1998(E) §6:1/§6.7       Declarations are statements */
8957                         if (inner_stmt->kind == STATEMENT_DECLARATION && !(c_mode & _CXX)) {
8958                                 errorf(&inner_stmt->base.source_position, "declaration after %s", label_kind);
8959                         }
8960                         break;
8961         }
8962         return inner_stmt;
8963 }
8964
8965 /**
8966  * Parse a case statement.
8967  */
8968 static statement_t *parse_case_statement(void)
8969 {
8970         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8971         source_position_t *const pos       = &statement->base.source_position;
8972
8973         eat(T_case);
8974         add_anchor_token(':');
8975
8976         expression_t *expression = parse_expression();
8977         type_t *expression_type = expression->base.type;
8978         type_t *skipped         = skip_typeref(expression_type);
8979         if (!is_type_integer(skipped) && is_type_valid(skipped)) {
8980                 errorf(pos, "case expression '%E' must have integer type but has type '%T'",
8981                        expression, expression_type);
8982         }
8983
8984         type_t *type = expression_type;
8985         if (current_switch != NULL) {
8986                 type_t *switch_type = current_switch->expression->base.type;
8987                 if (is_type_valid(switch_type)) {
8988                         expression = create_implicit_cast(expression, switch_type);
8989                 }
8990         }
8991
8992         statement->case_label.expression = expression;
8993         expression_classification_t const expr_class = is_constant_expression(expression);
8994         if (expr_class != EXPR_CLASS_CONSTANT) {
8995                 if (expr_class != EXPR_CLASS_ERROR) {
8996                         errorf(pos, "case label does not reduce to an integer constant");
8997                 }
8998                 statement->case_label.is_bad = true;
8999         } else {
9000                 long const val = fold_constant_to_int(expression);
9001                 statement->case_label.first_case = val;
9002                 statement->case_label.last_case  = val;
9003         }
9004
9005         if (GNU_MODE) {
9006                 if (next_if(T_DOTDOTDOT)) {
9007                         expression_t *end_range = parse_expression();
9008                         expression_type = expression->base.type;
9009                         skipped         = skip_typeref(expression_type);
9010                         if (!is_type_integer(skipped) && is_type_valid(skipped)) {
9011                                 errorf(pos, "case expression '%E' must have integer type but has type '%T'",
9012                                            expression, expression_type);
9013                         }
9014
9015                         end_range = create_implicit_cast(end_range, type);
9016                         statement->case_label.end_range = end_range;
9017                         expression_classification_t const end_class = is_constant_expression(end_range);
9018                         if (end_class != EXPR_CLASS_CONSTANT) {
9019                                 if (end_class != EXPR_CLASS_ERROR) {
9020                                         errorf(pos, "case range does not reduce to an integer constant");
9021                                 }
9022                                 statement->case_label.is_bad = true;
9023                         } else {
9024                                 long const val = fold_constant_to_int(end_range);
9025                                 statement->case_label.last_case = val;
9026
9027                                 if (val < statement->case_label.first_case) {
9028                                         statement->case_label.is_empty_range = true;
9029                                         warningf(WARN_OTHER, pos, "empty range specified");
9030                                 }
9031                         }
9032                 }
9033         }
9034
9035         PUSH_PARENT(statement);
9036
9037         rem_anchor_token(':');
9038         expect(':');
9039
9040         if (current_switch != NULL) {
9041                 if (! statement->case_label.is_bad) {
9042                         /* Check for duplicate case values */
9043                         case_label_statement_t *c = &statement->case_label;
9044                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9045                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9046                                         continue;
9047
9048                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9049                                         continue;
9050
9051                                 errorf(pos, "duplicate case value (previously used %P)",
9052                                        &l->base.source_position);
9053                                 break;
9054                         }
9055                 }
9056                 /* link all cases into the switch statement */
9057                 if (current_switch->last_case == NULL) {
9058                         current_switch->first_case      = &statement->case_label;
9059                 } else {
9060                         current_switch->last_case->next = &statement->case_label;
9061                 }
9062                 current_switch->last_case = &statement->case_label;
9063         } else {
9064                 errorf(pos, "case label not within a switch statement");
9065         }
9066
9067         statement->case_label.statement = parse_label_inner_statement(statement, "case label");
9068
9069         POP_PARENT();
9070         return statement;
9071 }
9072
9073 /**
9074  * Parse a default statement.
9075  */
9076 static statement_t *parse_default_statement(void)
9077 {
9078         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9079
9080         eat(T_default);
9081
9082         PUSH_PARENT(statement);
9083
9084         expect(':');
9085
9086         if (current_switch != NULL) {
9087                 const case_label_statement_t *def_label = current_switch->default_label;
9088                 if (def_label != NULL) {
9089                         errorf(&statement->base.source_position, "multiple default labels in one switch (previous declared %P)", &def_label->base.source_position);
9090                 } else {
9091                         current_switch->default_label = &statement->case_label;
9092
9093                         /* link all cases into the switch statement */
9094                         if (current_switch->last_case == NULL) {
9095                                 current_switch->first_case      = &statement->case_label;
9096                         } else {
9097                                 current_switch->last_case->next = &statement->case_label;
9098                         }
9099                         current_switch->last_case = &statement->case_label;
9100                 }
9101         } else {
9102                 errorf(&statement->base.source_position,
9103                         "'default' label not within a switch statement");
9104         }
9105
9106         statement->case_label.statement = parse_label_inner_statement(statement, "default label");
9107
9108         POP_PARENT();
9109         return statement;
9110 }
9111
9112 /**
9113  * Parse a label statement.
9114  */
9115 static statement_t *parse_label_statement(void)
9116 {
9117         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9118         label_t     *const label     = get_label();
9119         statement->label.label = label;
9120
9121         PUSH_PARENT(statement);
9122
9123         /* if statement is already set then the label is defined twice,
9124          * otherwise it was just mentioned in a goto/local label declaration so far
9125          */
9126         source_position_t const* const pos = &statement->base.source_position;
9127         if (label->statement != NULL) {
9128                 errorf(pos, "duplicate '%N' (declared %P)", (entity_t const*)label, &label->base.source_position);
9129         } else {
9130                 label->base.source_position = *pos;
9131                 label->statement            = statement;
9132         }
9133
9134         eat(':');
9135
9136         if (token.kind == T___attribute__ && !(c_mode & _CXX)) {
9137                 parse_attributes(NULL); // TODO process attributes
9138         }
9139
9140         statement->label.statement = parse_label_inner_statement(statement, "label");
9141
9142         /* remember the labels in a list for later checking */
9143         *label_anchor = &statement->label;
9144         label_anchor  = &statement->label.next;
9145
9146         POP_PARENT();
9147         return statement;
9148 }
9149
9150 static statement_t *parse_inner_statement(void)
9151 {
9152         statement_t *const stmt = parse_statement();
9153         /* ISO/IEC  9899:1999(E) §6.8:1/6.8.2:1  Declarations are no statements */
9154         /* ISO/IEC 14882:1998(E) §6:1/§6.7       Declarations are statements */
9155         if (stmt->kind == STATEMENT_DECLARATION && !(c_mode & _CXX)) {
9156                 errorf(&stmt->base.source_position, "declaration as inner statement, use {}");
9157         }
9158         return stmt;
9159 }
9160
9161 /**
9162  * Parse an expression in parentheses and mark its variables as read.
9163  */
9164 static expression_t *parse_condition(void)
9165 {
9166         expect('(');
9167         add_anchor_token(')');
9168         expression_t *const expr = parse_expression();
9169         mark_vars_read(expr, NULL);
9170         rem_anchor_token(')');
9171         expect(')');
9172         return expr;
9173 }
9174
9175 /**
9176  * Parse an if statement.
9177  */
9178 static statement_t *parse_if(void)
9179 {
9180         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9181
9182         eat(T_if);
9183
9184         PUSH_PARENT(statement);
9185         PUSH_SCOPE_STATEMENT(&statement->ifs.scope);
9186
9187         add_anchor_token(T_else);
9188
9189         expression_t *const expr = parse_condition();
9190         statement->ifs.condition = expr;
9191         /* §6.8.4.1:1  The controlling expression of an if statement shall have
9192          *             scalar type. */
9193         semantic_condition(expr, "condition of 'if'-statment");
9194
9195         statement_t *const true_stmt = parse_inner_statement();
9196         statement->ifs.true_statement = true_stmt;
9197         rem_anchor_token(T_else);
9198
9199         if (true_stmt->kind == STATEMENT_EMPTY) {
9200                 warningf(WARN_EMPTY_BODY, HERE,
9201                         "suggest braces around empty body in an ‘if’ statement");
9202         }
9203
9204         if (next_if(T_else)) {
9205                 statement->ifs.false_statement = parse_inner_statement();
9206
9207                 if (statement->ifs.false_statement->kind == STATEMENT_EMPTY) {
9208                         warningf(WARN_EMPTY_BODY, HERE,
9209                                         "suggest braces around empty body in an ‘if’ statement");
9210                 }
9211         } else if (true_stmt->kind == STATEMENT_IF &&
9212                         true_stmt->ifs.false_statement != NULL) {
9213                 source_position_t const *const pos = &true_stmt->base.source_position;
9214                 warningf(WARN_PARENTHESES, pos, "suggest explicit braces to avoid ambiguous 'else'");
9215         }
9216
9217         POP_SCOPE();
9218         POP_PARENT();
9219         return statement;
9220 }
9221
9222 /**
9223  * Check that all enums are handled in a switch.
9224  *
9225  * @param statement  the switch statement to check
9226  */
9227 static void check_enum_cases(const switch_statement_t *statement)
9228 {
9229         if (!is_warn_on(WARN_SWITCH_ENUM))
9230                 return;
9231         const type_t *type = skip_typeref(statement->expression->base.type);
9232         if (! is_type_enum(type))
9233                 return;
9234         const enum_type_t *enumt = &type->enumt;
9235
9236         /* if we have a default, no warnings */
9237         if (statement->default_label != NULL)
9238                 return;
9239
9240         /* FIXME: calculation of value should be done while parsing */
9241         /* TODO: quadratic algorithm here. Change to an n log n one */
9242         long            last_value = -1;
9243         const entity_t *entry      = enumt->enume->base.next;
9244         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9245              entry = entry->base.next) {
9246                 const expression_t *expression = entry->enum_value.value;
9247                 long                value      = expression != NULL ? fold_constant_to_int(expression) : last_value + 1;
9248                 bool                found      = false;
9249                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9250                         if (l->expression == NULL)
9251                                 continue;
9252                         if (l->first_case <= value && value <= l->last_case) {
9253                                 found = true;
9254                                 break;
9255                         }
9256                 }
9257                 if (!found) {
9258                         source_position_t const *const pos = &statement->base.source_position;
9259                         warningf(WARN_SWITCH_ENUM, pos, "'%N' not handled in switch", entry);
9260                 }
9261                 last_value = value;
9262         }
9263 }
9264
9265 /**
9266  * Parse a switch statement.
9267  */
9268 static statement_t *parse_switch(void)
9269 {
9270         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9271
9272         eat(T_switch);
9273
9274         PUSH_PARENT(statement);
9275         PUSH_SCOPE_STATEMENT(&statement->switchs.scope);
9276
9277         expression_t *const expr = parse_condition();
9278         type_t       *      type = skip_typeref(expr->base.type);
9279         if (is_type_integer(type)) {
9280                 type = promote_integer(type);
9281                 if (get_akind_rank(get_akind(type)) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9282                         warningf(WARN_TRADITIONAL, &expr->base.source_position, "'%T' switch expression not converted to '%T' in ISO C", type, type_int);
9283                 }
9284         } else if (is_type_valid(type)) {
9285                 errorf(&expr->base.source_position,
9286                        "switch quantity is not an integer, but '%T'", type);
9287                 type = type_error_type;
9288         }
9289         statement->switchs.expression = create_implicit_cast(expr, type);
9290
9291         switch_statement_t *rem = current_switch;
9292         current_switch          = &statement->switchs;
9293         statement->switchs.body = parse_inner_statement();
9294         current_switch          = rem;
9295
9296         if (statement->switchs.default_label == NULL) {
9297                 warningf(WARN_SWITCH_DEFAULT, &statement->base.source_position, "switch has no default case");
9298         }
9299         check_enum_cases(&statement->switchs);
9300
9301         POP_SCOPE();
9302         POP_PARENT();
9303         return statement;
9304 }
9305
9306 static statement_t *parse_loop_body(statement_t *const loop)
9307 {
9308         statement_t *const rem = current_loop;
9309         current_loop = loop;
9310
9311         statement_t *const body = parse_inner_statement();
9312
9313         current_loop = rem;
9314         return body;
9315 }
9316
9317 /**
9318  * Parse a while statement.
9319  */
9320 static statement_t *parse_while(void)
9321 {
9322         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9323
9324         eat(T_while);
9325
9326         PUSH_PARENT(statement);
9327         PUSH_SCOPE_STATEMENT(&statement->whiles.scope);
9328
9329         expression_t *const cond = parse_condition();
9330         statement->whiles.condition = cond;
9331         /* §6.8.5:2    The controlling expression of an iteration statement shall
9332          *             have scalar type. */
9333         semantic_condition(cond, "condition of 'while'-statement");
9334
9335         statement->whiles.body = parse_loop_body(statement);
9336
9337         POP_SCOPE();
9338         POP_PARENT();
9339         return statement;
9340 }
9341
9342 /**
9343  * Parse a do statement.
9344  */
9345 static statement_t *parse_do(void)
9346 {
9347         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9348
9349         eat(T_do);
9350
9351         PUSH_PARENT(statement);
9352         PUSH_SCOPE_STATEMENT(&statement->do_while.scope);
9353
9354         add_anchor_token(T_while);
9355         statement->do_while.body = parse_loop_body(statement);
9356         rem_anchor_token(T_while);
9357
9358         expect(T_while);
9359         expression_t *const cond = parse_condition();
9360         statement->do_while.condition = cond;
9361         /* §6.8.5:2    The controlling expression of an iteration statement shall
9362          *             have scalar type. */
9363         semantic_condition(cond, "condition of 'do-while'-statement");
9364         expect(';');
9365
9366         POP_SCOPE();
9367         POP_PARENT();
9368         return statement;
9369 }
9370
9371 /**
9372  * Parse a for statement.
9373  */
9374 static statement_t *parse_for(void)
9375 {
9376         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9377
9378         eat(T_for);
9379
9380         PUSH_PARENT(statement);
9381         PUSH_SCOPE_STATEMENT(&statement->fors.scope);
9382
9383         expect('(');
9384         add_anchor_token(')');
9385
9386         PUSH_EXTENSION();
9387
9388         if (next_if(';')) {
9389         } else if (is_declaration_specifier(&token)) {
9390                 parse_declaration(record_entity, DECL_FLAGS_NONE);
9391         } else {
9392                 add_anchor_token(';');
9393                 expression_t *const init = parse_expression();
9394                 statement->fors.initialisation = init;
9395                 mark_vars_read(init, ENT_ANY);
9396                 if (!expression_has_effect(init)) {
9397                         warningf(WARN_UNUSED_VALUE, &init->base.source_position, "initialisation of 'for'-statement has no effect");
9398                 }
9399                 rem_anchor_token(';');
9400                 expect(';');
9401         }
9402
9403         POP_EXTENSION();
9404
9405         if (token.kind != ';') {
9406                 add_anchor_token(';');
9407                 expression_t *const cond = parse_expression();
9408                 statement->fors.condition = cond;
9409                 /* §6.8.5:2    The controlling expression of an iteration statement
9410                  *             shall have scalar type. */
9411                 semantic_condition(cond, "condition of 'for'-statement");
9412                 mark_vars_read(cond, NULL);
9413                 rem_anchor_token(';');
9414         }
9415         expect(';');
9416         if (token.kind != ')') {
9417                 expression_t *const step = parse_expression();
9418                 statement->fors.step = step;
9419                 mark_vars_read(step, ENT_ANY);
9420                 if (!expression_has_effect(step)) {
9421                         warningf(WARN_UNUSED_VALUE, &step->base.source_position, "step of 'for'-statement has no effect");
9422                 }
9423         }
9424         rem_anchor_token(')');
9425         expect(')');
9426         statement->fors.body = parse_loop_body(statement);
9427
9428         POP_SCOPE();
9429         POP_PARENT();
9430         return statement;
9431 }
9432
9433 /**
9434  * Parse a goto statement.
9435  */
9436 static statement_t *parse_goto(void)
9437 {
9438         statement_t *statement;
9439         if (GNU_MODE && look_ahead(1)->kind == '*') {
9440                 statement = allocate_statement_zero(STATEMENT_COMPUTED_GOTO);
9441                 eat(T_goto);
9442                 eat('*');
9443
9444                 expression_t *expression = parse_expression();
9445                 mark_vars_read(expression, NULL);
9446
9447                 /* Argh: although documentation says the expression must be of type void*,
9448                  * gcc accepts anything that can be casted into void* without error */
9449                 type_t *type = expression->base.type;
9450
9451                 if (type != type_error_type) {
9452                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9453                                 errorf(&expression->base.source_position,
9454                                         "cannot convert to a pointer type");
9455                         } else if (type != type_void_ptr) {
9456                                 warningf(WARN_OTHER, &expression->base.source_position, "type of computed goto expression should be 'void*' not '%T'", type);
9457                         }
9458                         expression = create_implicit_cast(expression, type_void_ptr);
9459                 }
9460
9461                 statement->computed_goto.expression = expression;
9462         } else {
9463                 statement = allocate_statement_zero(STATEMENT_GOTO);
9464                 eat(T_goto);
9465                 if (token.kind == T_IDENTIFIER) {
9466                         label_t *const label = get_label();
9467                         label->used            = true;
9468                         statement->gotos.label = label;
9469
9470                         /* remember the goto's in a list for later checking */
9471                         *goto_anchor = &statement->gotos;
9472                         goto_anchor  = &statement->gotos.next;
9473                 } else {
9474                         if (GNU_MODE)
9475                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9476                         else
9477                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9478                         eat_until_anchor();
9479                         statement->gotos.label = &allocate_entity_zero(ENTITY_LABEL, NAMESPACE_LABEL, sym_anonymous, &builtin_source_position)->label;
9480                 }
9481         }
9482
9483         expect(';');
9484         return statement;
9485 }
9486
9487 /**
9488  * Parse a continue statement.
9489  */
9490 static statement_t *parse_continue(void)
9491 {
9492         if (current_loop == NULL) {
9493                 errorf(HERE, "continue statement not within loop");
9494         }
9495
9496         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9497
9498         eat(T_continue);
9499         expect(';');
9500         return statement;
9501 }
9502
9503 /**
9504  * Parse a break statement.
9505  */
9506 static statement_t *parse_break(void)
9507 {
9508         if (current_switch == NULL && current_loop == NULL) {
9509                 errorf(HERE, "break statement not within loop or switch");
9510         }
9511
9512         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9513
9514         eat(T_break);
9515         expect(';');
9516         return statement;
9517 }
9518
9519 /**
9520  * Parse a __leave statement.
9521  */
9522 static statement_t *parse_leave_statement(void)
9523 {
9524         if (current_try == NULL) {
9525                 errorf(HERE, "__leave statement not within __try");
9526         }
9527
9528         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9529
9530         eat(T___leave);
9531         expect(';');
9532         return statement;
9533 }
9534
9535 /**
9536  * Check if a given entity represents a local variable.
9537  */
9538 static bool is_local_variable(const entity_t *entity)
9539 {
9540         if (entity->kind != ENTITY_VARIABLE)
9541                 return false;
9542
9543         switch ((storage_class_tag_t) entity->declaration.storage_class) {
9544         case STORAGE_CLASS_AUTO:
9545         case STORAGE_CLASS_REGISTER: {
9546                 const type_t *type = skip_typeref(entity->declaration.type);
9547                 if (is_type_function(type)) {
9548                         return false;
9549                 } else {
9550                         return true;
9551                 }
9552         }
9553         default:
9554                 return false;
9555         }
9556 }
9557
9558 /**
9559  * Check if a given expression represents a local variable.
9560  */
9561 static bool expression_is_local_variable(const expression_t *expression)
9562 {
9563         if (expression->base.kind != EXPR_REFERENCE) {
9564                 return false;
9565         }
9566         const entity_t *entity = expression->reference.entity;
9567         return is_local_variable(entity);
9568 }
9569
9570 /**
9571  * Check if a given expression represents a local variable and
9572  * return its declaration then, else return NULL.
9573  */
9574 entity_t *expression_is_variable(const expression_t *expression)
9575 {
9576         if (expression->base.kind != EXPR_REFERENCE) {
9577                 return NULL;
9578         }
9579         entity_t *entity = expression->reference.entity;
9580         if (entity->kind != ENTITY_VARIABLE)
9581                 return NULL;
9582
9583         return entity;
9584 }
9585
9586 static void err_or_warn(source_position_t const *const pos, char const *const msg)
9587 {
9588         if (c_mode & _CXX || strict_mode) {
9589                 errorf(pos, msg);
9590         } else {
9591                 warningf(WARN_OTHER, pos, msg);
9592         }
9593 }
9594
9595 /**
9596  * Parse a return statement.
9597  */
9598 static statement_t *parse_return(void)
9599 {
9600         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9601         eat(T_return);
9602
9603         expression_t *return_value = NULL;
9604         if (token.kind != ';') {
9605                 return_value = parse_expression();
9606                 mark_vars_read(return_value, NULL);
9607         }
9608
9609         const type_t *const func_type = skip_typeref(current_function->base.type);
9610         assert(is_type_function(func_type));
9611         type_t *const return_type = skip_typeref(func_type->function.return_type);
9612
9613         source_position_t const *const pos = &statement->base.source_position;
9614         if (return_value != NULL) {
9615                 type_t *return_value_type = skip_typeref(return_value->base.type);
9616
9617                 if (is_type_void(return_type)) {
9618                         if (!is_type_void(return_value_type)) {
9619                                 /* ISO/IEC 14882:1998(E) §6.6.3:2 */
9620                                 /* Only warn in C mode, because GCC does the same */
9621                                 err_or_warn(pos, "'return' with a value, in function returning 'void'");
9622                         } else if (!(c_mode & _CXX)) { /* ISO/IEC 14882:1998(E) §6.6.3:3 */
9623                                 /* Only warn in C mode, because GCC does the same */
9624                                 err_or_warn(pos, "'return' with expression in function returning 'void'");
9625                         }
9626                 } else {
9627                         assign_error_t error = semantic_assign(return_type, return_value);
9628                         report_assign_error(error, return_type, return_value, "'return'",
9629                                             pos);
9630                 }
9631                 return_value = create_implicit_cast(return_value, return_type);
9632                 /* check for returning address of a local var */
9633                 if (return_value != NULL && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9634                         const expression_t *expression = return_value->unary.value;
9635                         if (expression_is_local_variable(expression)) {
9636                                 warningf(WARN_OTHER, pos, "function returns address of local variable");
9637                         }
9638                 }
9639         } else if (!is_type_void(return_type)) {
9640                 /* ISO/IEC 14882:1998(E) §6.6.3:3 */
9641                 err_or_warn(pos, "'return' without value, in function returning non-void");
9642         }
9643         statement->returns.value = return_value;
9644
9645         expect(';');
9646         return statement;
9647 }
9648
9649 /**
9650  * Parse a declaration statement.
9651  */
9652 static statement_t *parse_declaration_statement(void)
9653 {
9654         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9655
9656         entity_t *before = current_scope->last_entity;
9657         if (GNU_MODE) {
9658                 parse_external_declaration();
9659         } else {
9660                 parse_declaration(record_entity, DECL_FLAGS_NONE);
9661         }
9662
9663         declaration_statement_t *const decl  = &statement->declaration;
9664         entity_t                *const begin =
9665                 before != NULL ? before->base.next : current_scope->entities;
9666         decl->declarations_begin = begin;
9667         decl->declarations_end   = begin != NULL ? current_scope->last_entity : NULL;
9668
9669         return statement;
9670 }
9671
9672 /**
9673  * Parse an expression statement, ie. expr ';'.
9674  */
9675 static statement_t *parse_expression_statement(void)
9676 {
9677         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9678
9679         expression_t *const expr         = parse_expression();
9680         statement->expression.expression = expr;
9681         mark_vars_read(expr, ENT_ANY);
9682
9683         expect(';');
9684         return statement;
9685 }
9686
9687 /**
9688  * Parse a microsoft __try { } __finally { } or
9689  * __try{ } __except() { }
9690  */
9691 static statement_t *parse_ms_try_statment(void)
9692 {
9693         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9694         eat(T___try);
9695
9696         PUSH_PARENT(statement);
9697
9698         ms_try_statement_t *rem = current_try;
9699         current_try = &statement->ms_try;
9700         statement->ms_try.try_statement = parse_compound_statement(false);
9701         current_try = rem;
9702
9703         POP_PARENT();
9704
9705         if (next_if(T___except)) {
9706                 expression_t *const expr = parse_condition();
9707                 type_t       *      type = skip_typeref(expr->base.type);
9708                 if (is_type_integer(type)) {
9709                         type = promote_integer(type);
9710                 } else if (is_type_valid(type)) {
9711                         errorf(&expr->base.source_position,
9712                                "__expect expression is not an integer, but '%T'", type);
9713                         type = type_error_type;
9714                 }
9715                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9716         } else if (!next_if(T__finally)) {
9717                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9718         }
9719         statement->ms_try.final_statement = parse_compound_statement(false);
9720         return statement;
9721 }
9722
9723 static statement_t *parse_empty_statement(void)
9724 {
9725         warningf(WARN_EMPTY_STATEMENT, HERE, "statement is empty");
9726         statement_t *const statement = create_empty_statement();
9727         eat(';');
9728         return statement;
9729 }
9730
9731 static statement_t *parse_local_label_declaration(void)
9732 {
9733         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9734
9735         eat(T___label__);
9736
9737         entity_t *begin   = NULL;
9738         entity_t *end     = NULL;
9739         entity_t **anchor = &begin;
9740         do {
9741                 source_position_t pos;
9742                 symbol_t *const symbol = expect_identifier("while parsing local label declaration", &pos);
9743                 if (!symbol)
9744                         goto end_error;
9745
9746                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
9747                 if (entity != NULL && entity->base.parent_scope == current_scope) {
9748                         source_position_t const *const ppos = &entity->base.source_position;
9749                         errorf(&pos, "multiple definitions of '%N' (previous definition %P)", entity, ppos);
9750                 } else {
9751                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL, NAMESPACE_LABEL, symbol, &pos);
9752                         entity->base.parent_scope = current_scope;
9753
9754                         *anchor = entity;
9755                         anchor  = &entity->base.next;
9756                         end     = entity;
9757
9758                         environment_push(entity);
9759                 }
9760         } while (next_if(','));
9761         expect(';');
9762 end_error:
9763         statement->declaration.declarations_begin = begin;
9764         statement->declaration.declarations_end   = end;
9765         return statement;
9766 }
9767
9768 static void parse_namespace_definition(void)
9769 {
9770         eat(T_namespace);
9771
9772         entity_t *entity = NULL;
9773         symbol_t *symbol = NULL;
9774
9775         if (token.kind == T_IDENTIFIER) {
9776                 symbol = token.identifier.symbol;
9777                 next_token();
9778
9779                 entity = get_entity(symbol, NAMESPACE_NORMAL);
9780                 if (entity != NULL
9781                                 && entity->kind != ENTITY_NAMESPACE
9782                                 && entity->base.parent_scope == current_scope) {
9783                         if (is_entity_valid(entity)) {
9784                                 error_redefined_as_different_kind(&token.base.source_position,
9785                                                 entity, ENTITY_NAMESPACE);
9786                         }
9787                         entity = NULL;
9788                 }
9789         }
9790
9791         if (entity == NULL) {
9792                 entity = allocate_entity_zero(ENTITY_NAMESPACE, NAMESPACE_NORMAL, symbol, HERE);
9793                 entity->base.parent_scope = current_scope;
9794         }
9795
9796         if (token.kind == '=') {
9797                 /* TODO: parse namespace alias */
9798                 panic("namespace alias definition not supported yet");
9799         }
9800
9801         environment_push(entity);
9802         append_entity(current_scope, entity);
9803
9804         PUSH_SCOPE(&entity->namespacee.members);
9805
9806         entity_t     *old_current_entity = current_entity;
9807         current_entity = entity;
9808
9809         add_anchor_token('}');
9810         expect('{');
9811         parse_externals();
9812         rem_anchor_token('}');
9813         expect('}');
9814
9815         assert(current_entity == entity);
9816         current_entity = old_current_entity;
9817         POP_SCOPE();
9818 }
9819
9820 /**
9821  * Parse a statement.
9822  * There's also parse_statement() which additionally checks for
9823  * "statement has no effect" warnings
9824  */
9825 static statement_t *intern_parse_statement(void)
9826 {
9827         /* declaration or statement */
9828         statement_t *statement;
9829         switch (token.kind) {
9830         case T_IDENTIFIER: {
9831                 token_kind_t la1_type = (token_kind_t)look_ahead(1)->kind;
9832                 if (la1_type == ':') {
9833                         statement = parse_label_statement();
9834                 } else if (is_typedef_symbol(token.identifier.symbol)) {
9835                         statement = parse_declaration_statement();
9836                 } else {
9837                         /* it's an identifier, the grammar says this must be an
9838                          * expression statement. However it is common that users mistype
9839                          * declaration types, so we guess a bit here to improve robustness
9840                          * for incorrect programs */
9841                         switch (la1_type) {
9842                         case '&':
9843                         case '*':
9844                                 if (get_entity(token.identifier.symbol, NAMESPACE_NORMAL) != NULL) {
9845                         default:
9846                                         statement = parse_expression_statement();
9847                                 } else {
9848                         DECLARATION_START
9849                         case T_IDENTIFIER:
9850                                         statement = parse_declaration_statement();
9851                                 }
9852                                 break;
9853                         }
9854                 }
9855                 break;
9856         }
9857
9858         case T___extension__: {
9859                 /* This can be a prefix to a declaration or an expression statement.
9860                  * We simply eat it now and parse the rest with tail recursion. */
9861                 PUSH_EXTENSION();
9862                 statement = intern_parse_statement();
9863                 POP_EXTENSION();
9864                 break;
9865         }
9866
9867         DECLARATION_START
9868                 statement = parse_declaration_statement();
9869                 break;
9870
9871         case T___label__:
9872                 statement = parse_local_label_declaration();
9873                 break;
9874
9875         case ';':         statement = parse_empty_statement();         break;
9876         case '{':         statement = parse_compound_statement(false); break;
9877         case T___leave:   statement = parse_leave_statement();         break;
9878         case T___try:     statement = parse_ms_try_statment();         break;
9879         case T_asm:       statement = parse_asm_statement();           break;
9880         case T_break:     statement = parse_break();                   break;
9881         case T_case:      statement = parse_case_statement();          break;
9882         case T_continue:  statement = parse_continue();                break;
9883         case T_default:   statement = parse_default_statement();       break;
9884         case T_do:        statement = parse_do();                      break;
9885         case T_for:       statement = parse_for();                     break;
9886         case T_goto:      statement = parse_goto();                    break;
9887         case T_if:        statement = parse_if();                      break;
9888         case T_return:    statement = parse_return();                  break;
9889         case T_switch:    statement = parse_switch();                  break;
9890         case T_while:     statement = parse_while();                   break;
9891
9892         EXPRESSION_START
9893                 statement = parse_expression_statement();
9894                 break;
9895
9896         default:
9897                 errorf(HERE, "unexpected token %K while parsing statement", &token);
9898                 statement = create_error_statement();
9899                 eat_until_anchor();
9900                 break;
9901         }
9902
9903         return statement;
9904 }
9905
9906 /**
9907  * parse a statement and emits "statement has no effect" warning if needed
9908  * (This is really a wrapper around intern_parse_statement with check for 1
9909  *  single warning. It is needed, because for statement expressions we have
9910  *  to avoid the warning on the last statement)
9911  */
9912 static statement_t *parse_statement(void)
9913 {
9914         statement_t *statement = intern_parse_statement();
9915
9916         if (statement->kind == STATEMENT_EXPRESSION) {
9917                 expression_t *expression = statement->expression.expression;
9918                 if (!expression_has_effect(expression)) {
9919                         warningf(WARN_UNUSED_VALUE, &expression->base.source_position, "statement has no effect");
9920                 }
9921         }
9922
9923         return statement;
9924 }
9925
9926 /**
9927  * Parse a compound statement.
9928  */
9929 static statement_t *parse_compound_statement(bool inside_expression_statement)
9930 {
9931         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
9932
9933         PUSH_PARENT(statement);
9934         PUSH_SCOPE(&statement->compound.scope);
9935
9936         eat('{');
9937         add_anchor_token('}');
9938         /* tokens, which can start a statement */
9939         /* TODO MS, __builtin_FOO */
9940         add_anchor_token('!');
9941         add_anchor_token('&');
9942         add_anchor_token('(');
9943         add_anchor_token('*');
9944         add_anchor_token('+');
9945         add_anchor_token('-');
9946         add_anchor_token(';');
9947         add_anchor_token('{');
9948         add_anchor_token('~');
9949         add_anchor_token(T_CHARACTER_CONSTANT);
9950         add_anchor_token(T_COLONCOLON);
9951         add_anchor_token(T_FLOATINGPOINT);
9952         add_anchor_token(T_IDENTIFIER);
9953         add_anchor_token(T_INTEGER);
9954         add_anchor_token(T_MINUSMINUS);
9955         add_anchor_token(T_PLUSPLUS);
9956         add_anchor_token(T_STRING_LITERAL);
9957         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
9958         add_anchor_token(T_WIDE_STRING_LITERAL);
9959         add_anchor_token(T__Bool);
9960         add_anchor_token(T__Complex);
9961         add_anchor_token(T__Imaginary);
9962         add_anchor_token(T___FUNCTION__);
9963         add_anchor_token(T___PRETTY_FUNCTION__);
9964         add_anchor_token(T___alignof__);
9965         add_anchor_token(T___attribute__);
9966         add_anchor_token(T___builtin_va_start);
9967         add_anchor_token(T___extension__);
9968         add_anchor_token(T___func__);
9969         add_anchor_token(T___imag__);
9970         add_anchor_token(T___label__);
9971         add_anchor_token(T___real__);
9972         add_anchor_token(T___thread);
9973         add_anchor_token(T_asm);
9974         add_anchor_token(T_auto);
9975         add_anchor_token(T_bool);
9976         add_anchor_token(T_break);
9977         add_anchor_token(T_case);
9978         add_anchor_token(T_char);
9979         add_anchor_token(T_class);
9980         add_anchor_token(T_const);
9981         add_anchor_token(T_const_cast);
9982         add_anchor_token(T_continue);
9983         add_anchor_token(T_default);
9984         add_anchor_token(T_delete);
9985         add_anchor_token(T_double);
9986         add_anchor_token(T_do);
9987         add_anchor_token(T_dynamic_cast);
9988         add_anchor_token(T_enum);
9989         add_anchor_token(T_extern);
9990         add_anchor_token(T_false);
9991         add_anchor_token(T_float);
9992         add_anchor_token(T_for);
9993         add_anchor_token(T_goto);
9994         add_anchor_token(T_if);
9995         add_anchor_token(T_inline);
9996         add_anchor_token(T_int);
9997         add_anchor_token(T_long);
9998         add_anchor_token(T_new);
9999         add_anchor_token(T_operator);
10000         add_anchor_token(T_register);
10001         add_anchor_token(T_reinterpret_cast);
10002         add_anchor_token(T_restrict);
10003         add_anchor_token(T_return);
10004         add_anchor_token(T_short);
10005         add_anchor_token(T_signed);
10006         add_anchor_token(T_sizeof);
10007         add_anchor_token(T_static);
10008         add_anchor_token(T_static_cast);
10009         add_anchor_token(T_struct);
10010         add_anchor_token(T_switch);
10011         add_anchor_token(T_template);
10012         add_anchor_token(T_this);
10013         add_anchor_token(T_throw);
10014         add_anchor_token(T_true);
10015         add_anchor_token(T_try);
10016         add_anchor_token(T_typedef);
10017         add_anchor_token(T_typeid);
10018         add_anchor_token(T_typename);
10019         add_anchor_token(T_typeof);
10020         add_anchor_token(T_union);
10021         add_anchor_token(T_unsigned);
10022         add_anchor_token(T_using);
10023         add_anchor_token(T_void);
10024         add_anchor_token(T_volatile);
10025         add_anchor_token(T_wchar_t);
10026         add_anchor_token(T_while);
10027
10028         statement_t **anchor            = &statement->compound.statements;
10029         bool          only_decls_so_far = true;
10030         while (token.kind != '}' && token.kind != T_EOF) {
10031                 statement_t *sub_statement = intern_parse_statement();
10032                 if (sub_statement->kind == STATEMENT_ERROR) {
10033                         break;
10034                 }
10035
10036                 if (sub_statement->kind != STATEMENT_DECLARATION) {
10037                         only_decls_so_far = false;
10038                 } else if (!only_decls_so_far) {
10039                         source_position_t const *const pos = &sub_statement->base.source_position;
10040                         warningf(WARN_DECLARATION_AFTER_STATEMENT, pos, "ISO C90 forbids mixed declarations and code");
10041                 }
10042
10043                 *anchor = sub_statement;
10044                 anchor  = &sub_statement->base.next;
10045         }
10046         expect('}');
10047
10048         /* look over all statements again to produce no effect warnings */
10049         if (is_warn_on(WARN_UNUSED_VALUE)) {
10050                 statement_t *sub_statement = statement->compound.statements;
10051                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10052                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10053                                 continue;
10054                         /* don't emit a warning for the last expression in an expression
10055                          * statement as it has always an effect */
10056                         if (inside_expression_statement && sub_statement->base.next == NULL)
10057                                 continue;
10058
10059                         expression_t *expression = sub_statement->expression.expression;
10060                         if (!expression_has_effect(expression)) {
10061                                 warningf(WARN_UNUSED_VALUE, &expression->base.source_position, "statement has no effect");
10062                         }
10063                 }
10064         }
10065
10066         rem_anchor_token(T_while);
10067         rem_anchor_token(T_wchar_t);
10068         rem_anchor_token(T_volatile);
10069         rem_anchor_token(T_void);
10070         rem_anchor_token(T_using);
10071         rem_anchor_token(T_unsigned);
10072         rem_anchor_token(T_union);
10073         rem_anchor_token(T_typeof);
10074         rem_anchor_token(T_typename);
10075         rem_anchor_token(T_typeid);
10076         rem_anchor_token(T_typedef);
10077         rem_anchor_token(T_try);
10078         rem_anchor_token(T_true);
10079         rem_anchor_token(T_throw);
10080         rem_anchor_token(T_this);
10081         rem_anchor_token(T_template);
10082         rem_anchor_token(T_switch);
10083         rem_anchor_token(T_struct);
10084         rem_anchor_token(T_static_cast);
10085         rem_anchor_token(T_static);
10086         rem_anchor_token(T_sizeof);
10087         rem_anchor_token(T_signed);
10088         rem_anchor_token(T_short);
10089         rem_anchor_token(T_return);
10090         rem_anchor_token(T_restrict);
10091         rem_anchor_token(T_reinterpret_cast);
10092         rem_anchor_token(T_register);
10093         rem_anchor_token(T_operator);
10094         rem_anchor_token(T_new);
10095         rem_anchor_token(T_long);
10096         rem_anchor_token(T_int);
10097         rem_anchor_token(T_inline);
10098         rem_anchor_token(T_if);
10099         rem_anchor_token(T_goto);
10100         rem_anchor_token(T_for);
10101         rem_anchor_token(T_float);
10102         rem_anchor_token(T_false);
10103         rem_anchor_token(T_extern);
10104         rem_anchor_token(T_enum);
10105         rem_anchor_token(T_dynamic_cast);
10106         rem_anchor_token(T_do);
10107         rem_anchor_token(T_double);
10108         rem_anchor_token(T_delete);
10109         rem_anchor_token(T_default);
10110         rem_anchor_token(T_continue);
10111         rem_anchor_token(T_const_cast);
10112         rem_anchor_token(T_const);
10113         rem_anchor_token(T_class);
10114         rem_anchor_token(T_char);
10115         rem_anchor_token(T_case);
10116         rem_anchor_token(T_break);
10117         rem_anchor_token(T_bool);
10118         rem_anchor_token(T_auto);
10119         rem_anchor_token(T_asm);
10120         rem_anchor_token(T___thread);
10121         rem_anchor_token(T___real__);
10122         rem_anchor_token(T___label__);
10123         rem_anchor_token(T___imag__);
10124         rem_anchor_token(T___func__);
10125         rem_anchor_token(T___extension__);
10126         rem_anchor_token(T___builtin_va_start);
10127         rem_anchor_token(T___attribute__);
10128         rem_anchor_token(T___alignof__);
10129         rem_anchor_token(T___PRETTY_FUNCTION__);
10130         rem_anchor_token(T___FUNCTION__);
10131         rem_anchor_token(T__Imaginary);
10132         rem_anchor_token(T__Complex);
10133         rem_anchor_token(T__Bool);
10134         rem_anchor_token(T_WIDE_STRING_LITERAL);
10135         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10136         rem_anchor_token(T_STRING_LITERAL);
10137         rem_anchor_token(T_PLUSPLUS);
10138         rem_anchor_token(T_MINUSMINUS);
10139         rem_anchor_token(T_INTEGER);
10140         rem_anchor_token(T_IDENTIFIER);
10141         rem_anchor_token(T_FLOATINGPOINT);
10142         rem_anchor_token(T_COLONCOLON);
10143         rem_anchor_token(T_CHARACTER_CONSTANT);
10144         rem_anchor_token('~');
10145         rem_anchor_token('{');
10146         rem_anchor_token(';');
10147         rem_anchor_token('-');
10148         rem_anchor_token('+');
10149         rem_anchor_token('*');
10150         rem_anchor_token('(');
10151         rem_anchor_token('&');
10152         rem_anchor_token('!');
10153         rem_anchor_token('}');
10154
10155         POP_SCOPE();
10156         POP_PARENT();
10157         return statement;
10158 }
10159
10160 /**
10161  * Check for unused global static functions and variables
10162  */
10163 static void check_unused_globals(void)
10164 {
10165         if (!is_warn_on(WARN_UNUSED_FUNCTION) && !is_warn_on(WARN_UNUSED_VARIABLE))
10166                 return;
10167
10168         for (const entity_t *entity = file_scope->entities; entity != NULL;
10169              entity = entity->base.next) {
10170                 if (!is_declaration(entity))
10171                         continue;
10172
10173                 const declaration_t *declaration = &entity->declaration;
10174                 if (declaration->used                  ||
10175                     declaration->modifiers & DM_UNUSED ||
10176                     declaration->modifiers & DM_USED   ||
10177                     declaration->storage_class != STORAGE_CLASS_STATIC)
10178                         continue;
10179
10180                 warning_t   why;
10181                 char const *s;
10182                 if (entity->kind == ENTITY_FUNCTION) {
10183                         /* inhibit warning for static inline functions */
10184                         if (entity->function.is_inline)
10185                                 continue;
10186
10187                         why = WARN_UNUSED_FUNCTION;
10188                         s   = entity->function.statement != NULL ? "defined" : "declared";
10189                 } else {
10190                         why = WARN_UNUSED_VARIABLE;
10191                         s   = "defined";
10192                 }
10193
10194                 warningf(why, &declaration->base.source_position, "'%#N' %s but not used", entity, s);
10195         }
10196 }
10197
10198 static void parse_global_asm(void)
10199 {
10200         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
10201
10202         eat(T_asm);
10203         add_anchor_token(';');
10204         add_anchor_token(')');
10205         add_anchor_token(T_STRING_LITERAL);
10206         expect('(');
10207
10208         rem_anchor_token(T_STRING_LITERAL);
10209         statement->asms.asm_text = parse_string_literals();
10210         statement->base.next     = unit->global_asm;
10211         unit->global_asm         = statement;
10212
10213         rem_anchor_token(')');
10214         expect(')');
10215         rem_anchor_token(';');
10216         expect(';');
10217 }
10218
10219 static void parse_linkage_specification(void)
10220 {
10221         eat(T_extern);
10222
10223         source_position_t const pos     = *HERE;
10224         char const       *const linkage = parse_string_literals().begin;
10225
10226         linkage_kind_t old_linkage = current_linkage;
10227         linkage_kind_t new_linkage;
10228         if (streq(linkage, "C")) {
10229                 new_linkage = LINKAGE_C;
10230         } else if (streq(linkage, "C++")) {
10231                 new_linkage = LINKAGE_CXX;
10232         } else {
10233                 errorf(&pos, "linkage string \"%s\" not recognized", linkage);
10234                 new_linkage = LINKAGE_C;
10235         }
10236         current_linkage = new_linkage;
10237
10238         if (next_if('{')) {
10239                 parse_externals();
10240                 expect('}');
10241         } else {
10242                 parse_external();
10243         }
10244
10245         assert(current_linkage == new_linkage);
10246         current_linkage = old_linkage;
10247 }
10248
10249 static void parse_external(void)
10250 {
10251         switch (token.kind) {
10252                 case T_extern:
10253                         if (look_ahead(1)->kind == T_STRING_LITERAL) {
10254                                 parse_linkage_specification();
10255                         } else {
10256                 DECLARATION_START_NO_EXTERN
10257                 case T_IDENTIFIER:
10258                 case T___extension__:
10259                 /* tokens below are for implicit int */
10260                 case '&':  /* & x; -> int& x; (and error later, because C++ has no
10261                               implicit int) */
10262                 case '*':  /* * x; -> int* x; */
10263                 case '(':  /* (x); -> int (x); */
10264                                 PUSH_EXTENSION();
10265                                 parse_external_declaration();
10266                                 POP_EXTENSION();
10267                         }
10268                         return;
10269
10270                 case T_asm:
10271                         parse_global_asm();
10272                         return;
10273
10274                 case T_namespace:
10275                         parse_namespace_definition();
10276                         return;
10277
10278                 case ';':
10279                         if (!strict_mode) {
10280                                 warningf(WARN_STRAY_SEMICOLON, HERE, "stray ';' outside of function");
10281                                 next_token();
10282                                 return;
10283                         }
10284                         /* FALLTHROUGH */
10285
10286                 default:
10287                         errorf(HERE, "stray %K outside of function", &token);
10288                         if (token.kind == '(' || token.kind == '{' || token.kind == '[')
10289                                 eat_until_matching_token(token.kind);
10290                         next_token();
10291                         return;
10292         }
10293 }
10294
10295 static void parse_externals(void)
10296 {
10297         add_anchor_token('}');
10298         add_anchor_token(T_EOF);
10299
10300 #ifndef NDEBUG
10301         /* make a copy of the anchor set, so we can check if it is restored after parsing */
10302         unsigned short token_anchor_copy[T_LAST_TOKEN];
10303         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
10304 #endif
10305
10306         while (token.kind != T_EOF && token.kind != '}') {
10307 #ifndef NDEBUG
10308                 for (int i = 0; i < T_LAST_TOKEN; ++i) {
10309                         unsigned short count = token_anchor_set[i] - token_anchor_copy[i];
10310                         if (count != 0) {
10311                                 /* the anchor set and its copy differs */
10312                                 internal_errorf(HERE, "Leaked anchor token %k %d times", i, count);
10313                         }
10314                 }
10315                 if (in_gcc_extension) {
10316                         /* an gcc extension scope was not closed */
10317                         internal_errorf(HERE, "Leaked __extension__");
10318                 }
10319 #endif
10320
10321                 parse_external();
10322         }
10323
10324         rem_anchor_token(T_EOF);
10325         rem_anchor_token('}');
10326 }
10327
10328 /**
10329  * Parse a translation unit.
10330  */
10331 static void parse_translation_unit(void)
10332 {
10333         add_anchor_token(T_EOF);
10334
10335         while (true) {
10336                 parse_externals();
10337
10338                 if (token.kind == T_EOF)
10339                         break;
10340
10341                 errorf(HERE, "stray %K outside of function", &token);
10342                 if (token.kind == '(' || token.kind == '{' || token.kind == '[')
10343                         eat_until_matching_token(token.kind);
10344                 next_token();
10345         }
10346 }
10347
10348 void set_default_visibility(elf_visibility_tag_t visibility)
10349 {
10350         default_visibility = visibility;
10351 }
10352
10353 /**
10354  * Parse the input.
10355  *
10356  * @return  the translation unit or NULL if errors occurred.
10357  */
10358 void start_parsing(void)
10359 {
10360         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10361         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10362         diagnostic_count  = 0;
10363         error_count       = 0;
10364         warning_count     = 0;
10365
10366         print_to_file(stderr);
10367
10368         assert(unit == NULL);
10369         unit = allocate_ast_zero(sizeof(unit[0]));
10370
10371         assert(file_scope == NULL);
10372         file_scope = &unit->scope;
10373
10374         assert(current_scope == NULL);
10375         scope_push(&unit->scope);
10376
10377         create_gnu_builtins();
10378         if (c_mode & _MS)
10379                 create_microsoft_intrinsics();
10380 }
10381
10382 translation_unit_t *finish_parsing(void)
10383 {
10384         assert(current_scope == &unit->scope);
10385         scope_pop(NULL);
10386
10387         assert(file_scope == &unit->scope);
10388         check_unused_globals();
10389         file_scope = NULL;
10390
10391         DEL_ARR_F(environment_stack);
10392         DEL_ARR_F(label_stack);
10393
10394         translation_unit_t *result = unit;
10395         unit = NULL;
10396         return result;
10397 }
10398
10399 /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
10400  * are given length one. */
10401 static void complete_incomplete_arrays(void)
10402 {
10403         size_t n = ARR_LEN(incomplete_arrays);
10404         for (size_t i = 0; i != n; ++i) {
10405                 declaration_t *const decl = incomplete_arrays[i];
10406                 type_t        *const type = skip_typeref(decl->type);
10407
10408                 if (!is_type_incomplete(type))
10409                         continue;
10410
10411                 source_position_t const *const pos = &decl->base.source_position;
10412                 warningf(WARN_OTHER, pos, "array '%#N' assumed to have one element", (entity_t const*)decl);
10413
10414                 type_t *const new_type = duplicate_type(type);
10415                 new_type->array.size_constant     = true;
10416                 new_type->array.has_implicit_size = true;
10417                 new_type->array.size              = 1;
10418
10419                 type_t *const result = identify_new_type(new_type);
10420
10421                 decl->type = result;
10422         }
10423 }
10424
10425 void prepare_main_collect2(entity_t *entity)
10426 {
10427         PUSH_SCOPE(&entity->function.statement->compound.scope);
10428
10429         // create call to __main
10430         symbol_t *symbol         = symbol_table_insert("__main");
10431         entity_t *subsubmain_ent
10432                 = create_implicit_function(symbol, &builtin_source_position);
10433
10434         expression_t *ref         = allocate_expression_zero(EXPR_REFERENCE);
10435         type_t       *ftype       = subsubmain_ent->declaration.type;
10436         ref->base.source_position = builtin_source_position;
10437         ref->base.type            = make_pointer_type(ftype, TYPE_QUALIFIER_NONE);
10438         ref->reference.entity     = subsubmain_ent;
10439
10440         expression_t *call = allocate_expression_zero(EXPR_CALL);
10441         call->base.source_position = builtin_source_position;
10442         call->base.type            = type_void;
10443         call->call.function        = ref;
10444
10445         statement_t *expr_statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10446         expr_statement->base.source_position  = builtin_source_position;
10447         expr_statement->expression.expression = call;
10448
10449         statement_t *statement = entity->function.statement;
10450         assert(statement->kind == STATEMENT_COMPOUND);
10451         compound_statement_t *compounds = &statement->compound;
10452
10453         expr_statement->base.next = compounds->statements;
10454         compounds->statements     = expr_statement;
10455
10456         POP_SCOPE();
10457 }
10458
10459 void parse(void)
10460 {
10461         lookahead_bufpos = 0;
10462         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10463                 next_token();
10464         }
10465         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
10466         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
10467         parse_translation_unit();
10468         complete_incomplete_arrays();
10469         DEL_ARR_F(incomplete_arrays);
10470         incomplete_arrays = NULL;
10471 }
10472
10473 /**
10474  * Initialize the parser.
10475  */
10476 void init_parser(void)
10477 {
10478         sym_anonymous = symbol_table_insert("<anonymous>");
10479
10480         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10481
10482         init_expression_parsers();
10483         obstack_init(&temp_obst);
10484 }
10485
10486 /**
10487  * Terminate the parser.
10488  */
10489 void exit_parser(void)
10490 {
10491         obstack_free(&temp_obst, NULL);
10492 }