Treat __thread as storage class.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 //#define PRINT_TOKENS
43 #define MAX_LOOKAHEAD 2
44
45 typedef struct {
46         declaration_t *old_declaration;
47         symbol_t      *symbol;
48         unsigned short namespc;
49 } stack_entry_t;
50
51 typedef struct argument_list_t argument_list_t;
52 struct argument_list_t {
53         long              argument;
54         argument_list_t  *next;
55 };
56
57 typedef struct gnu_attribute_t gnu_attribute_t;
58 struct gnu_attribute_t {
59         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
60         gnu_attribute_t     *next;
61         bool                 invalid;        /**< Set if this attribute had argument errors, */
62         bool                 have_arguments; /**< True, if this attribute has arguments. */
63         union {
64                 size_t              value;
65                 string_t            string;
66                 atomic_type_kind_t  akind;
67                 long                argument;  /**< Single argument. */
68                 argument_list_t    *arguments; /**< List of argument expressions. */
69         } u;
70 };
71
72 typedef struct declaration_specifiers_t  declaration_specifiers_t;
73 struct declaration_specifiers_t {
74         source_position_t  source_position;
75         unsigned char      declared_storage_class;
76         unsigned char      alignment;         /**< Alignment, 0 if not set. */
77         unsigned int       is_inline : 1;
78         unsigned int       deprecated : 1;
79         decl_modifiers_t   modifiers;         /**< declaration modifiers */
80         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
81         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
82         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
83         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
84         type_t            *type;
85 };
86
87 /**
88  * An environment for parsing initializers (and compound literals).
89  */
90 typedef struct parse_initializer_env_t {
91         type_t        *type;        /**< the type of the initializer. In case of an
92                                          array type with unspecified size this gets
93                                          adjusted to the actual size. */
94         declaration_t *declaration; /**< the declaration that is initialized if any */
95         bool           must_be_constant;
96 } parse_initializer_env_t;
97
98 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration);
99
100 static token_t             token;
101 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
102 static int                 lookahead_bufpos;
103 static stack_entry_t      *environment_stack = NULL;
104 static stack_entry_t      *label_stack       = NULL;
105 static scope_t            *global_scope      = NULL;
106 static scope_t            *scope             = NULL;
107 static declaration_t      *last_declaration  = NULL;
108 static declaration_t      *current_function  = NULL;
109 static switch_statement_t *current_switch    = NULL;
110 static statement_t        *current_loop      = NULL;
111 static ms_try_statement_t *current_try       = NULL;
112 static goto_statement_t   *goto_first        = NULL;
113 static goto_statement_t   *goto_last         = NULL;
114 static label_statement_t  *label_first       = NULL;
115 static label_statement_t  *label_last        = NULL;
116 static translation_unit_t *unit              = NULL;
117 static struct obstack      temp_obst;
118
119 static source_position_t null_position = { NULL, 0 };
120
121 /* symbols for Microsoft extended-decl-modifier */
122 static const symbol_t *sym_align      = NULL;
123 static const symbol_t *sym_allocate   = NULL;
124 static const symbol_t *sym_dllimport  = NULL;
125 static const symbol_t *sym_dllexport  = NULL;
126 static const symbol_t *sym_naked      = NULL;
127 static const symbol_t *sym_noinline   = NULL;
128 static const symbol_t *sym_noreturn   = NULL;
129 static const symbol_t *sym_nothrow    = NULL;
130 static const symbol_t *sym_novtable   = NULL;
131 static const symbol_t *sym_property   = NULL;
132 static const symbol_t *sym_get        = NULL;
133 static const symbol_t *sym_put        = NULL;
134 static const symbol_t *sym_selectany  = NULL;
135 static const symbol_t *sym_thread     = NULL;
136 static const symbol_t *sym_uuid       = NULL;
137 static const symbol_t *sym_deprecated = NULL;
138 static const symbol_t *sym_restrict   = NULL;
139 static const symbol_t *sym_noalias    = NULL;
140
141 /** The token anchor set */
142 static unsigned char token_anchor_set[T_LAST_TOKEN];
143
144 /** The current source position. */
145 #define HERE (&token.source_position)
146
147 static type_t *type_valist;
148
149 static statement_t *parse_compound_statement(bool inside_expression_statement);
150 static statement_t *parse_statement(void);
151
152 static expression_t *parse_sub_expression(unsigned precedence);
153 static expression_t *parse_expression(void);
154 static type_t       *parse_typename(void);
155
156 static void parse_compound_type_entries(declaration_t *compound_declaration);
157 static declaration_t *parse_declarator(
158                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
159 static declaration_t *record_declaration(declaration_t *declaration);
160
161 static void semantic_comparison(binary_expression_t *expression);
162
163 #define STORAGE_CLASSES     \
164         case T_typedef:         \
165         case T_extern:          \
166         case T_static:          \
167         case T_auto:            \
168         case T_register:        \
169         case T___thread:
170
171 #define TYPE_QUALIFIERS     \
172         case T_const:           \
173         case T_restrict:        \
174         case T_volatile:        \
175         case T_inline:          \
176         case T__forceinline:    \
177         case T___attribute__:
178
179 #ifdef PROVIDE_COMPLEX
180 #define COMPLEX_SPECIFIERS  \
181         case T__Complex:
182 #define IMAGINARY_SPECIFIERS \
183         case T__Imaginary:
184 #else
185 #define COMPLEX_SPECIFIERS
186 #define IMAGINARY_SPECIFIERS
187 #endif
188
189 #define TYPE_SPECIFIERS       \
190         case T_void:              \
191         case T_char:              \
192         case T_short:             \
193         case T_int:               \
194         case T_long:              \
195         case T_float:             \
196         case T_double:            \
197         case T_signed:            \
198         case T_unsigned:          \
199         case T__Bool:             \
200         case T_struct:            \
201         case T_union:             \
202         case T_enum:              \
203         case T___typeof__:        \
204         case T___builtin_va_list: \
205         case T__declspec:         \
206         COMPLEX_SPECIFIERS        \
207         IMAGINARY_SPECIFIERS
208
209 #define DECLARATION_START   \
210         STORAGE_CLASSES         \
211         TYPE_QUALIFIERS         \
212         TYPE_SPECIFIERS
213
214 #define TYPENAME_START      \
215         TYPE_QUALIFIERS         \
216         TYPE_SPECIFIERS
217
218 /**
219  * Allocate an AST node with given size and
220  * initialize all fields with zero.
221  */
222 static void *allocate_ast_zero(size_t size)
223 {
224         void *res = allocate_ast(size);
225         memset(res, 0, size);
226         return res;
227 }
228
229 static declaration_t *allocate_declaration_zero(void)
230 {
231         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
232         declaration->type      = type_error_type;
233         declaration->alignment = 0;
234         return declaration;
235 }
236
237 /**
238  * Returns the size of a statement node.
239  *
240  * @param kind  the statement kind
241  */
242 static size_t get_statement_struct_size(statement_kind_t kind)
243 {
244         static const size_t sizes[] = {
245                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
246                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
247                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
248                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
249                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
250                 [STATEMENT_IF]          = sizeof(if_statement_t),
251                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
252                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
253                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
254                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
255                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
256                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
257                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
258                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
259                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
260                 [STATEMENT_FOR]         = sizeof(for_statement_t),
261                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
262                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
263                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
264         };
265         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
266         assert(sizes[kind] != 0);
267         return sizes[kind];
268 }
269
270 /**
271  * Returns the size of an expression node.
272  *
273  * @param kind  the expression kind
274  */
275 static size_t get_expression_struct_size(expression_kind_t kind)
276 {
277         static const size_t sizes[] = {
278                 [EXPR_INVALID]                 = sizeof(expression_base_t),
279                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
280                 [EXPR_CONST]                   = sizeof(const_expression_t),
281                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
282                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
283                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
284                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
285                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
286                 [EXPR_CALL]                    = sizeof(call_expression_t),
287                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
288                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
289                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
290                 [EXPR_SELECT]                  = sizeof(select_expression_t),
291                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
292                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
293                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
294                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
295                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
296                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
297                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
298                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
299                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
300                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
301                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
302                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
303         };
304         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
305                 return sizes[EXPR_UNARY_FIRST];
306         }
307         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
308                 return sizes[EXPR_BINARY_FIRST];
309         }
310         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
311         assert(sizes[kind] != 0);
312         return sizes[kind];
313 }
314
315 /**
316  * Allocate a statement node of given kind and initialize all
317  * fields with zero.
318  */
319 static statement_t *allocate_statement_zero(statement_kind_t kind)
320 {
321         size_t       size = get_statement_struct_size(kind);
322         statement_t *res  = allocate_ast_zero(size);
323
324         res->base.kind = kind;
325         return res;
326 }
327
328 /**
329  * Allocate an expression node of given kind and initialize all
330  * fields with zero.
331  */
332 static expression_t *allocate_expression_zero(expression_kind_t kind)
333 {
334         size_t        size = get_expression_struct_size(kind);
335         expression_t *res  = allocate_ast_zero(size);
336
337         res->base.kind = kind;
338         res->base.type = type_error_type;
339         return res;
340 }
341
342 /**
343  * Creates a new invalid expression.
344  */
345 static expression_t *create_invalid_expression(void)
346 {
347         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
348         expression->base.source_position = token.source_position;
349         return expression;
350 }
351
352 /**
353  * Creates a new invalid statement.
354  */
355 static statement_t *create_invalid_statement(void)
356 {
357         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
358         statement->base.source_position = token.source_position;
359         return statement;
360 }
361
362 /**
363  * Allocate a new empty statement.
364  */
365 static statement_t *create_empty_statement(void)
366 {
367         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
368         statement->base.source_position = token.source_position;
369         return statement;
370 }
371
372 /**
373  * Returns the size of a type node.
374  *
375  * @param kind  the type kind
376  */
377 static size_t get_type_struct_size(type_kind_t kind)
378 {
379         static const size_t sizes[] = {
380                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
381                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
382                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
383                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
384                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
385                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
386                 [TYPE_ENUM]            = sizeof(enum_type_t),
387                 [TYPE_FUNCTION]        = sizeof(function_type_t),
388                 [TYPE_POINTER]         = sizeof(pointer_type_t),
389                 [TYPE_ARRAY]           = sizeof(array_type_t),
390                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
391                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
392                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
393         };
394         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
395         assert(kind <= TYPE_TYPEOF);
396         assert(sizes[kind] != 0);
397         return sizes[kind];
398 }
399
400 /**
401  * Allocate a type node of given kind and initialize all
402  * fields with zero.
403  *
404  * @param kind             type kind to allocate
405  * @param source_position  the source position of the type definition
406  */
407 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
408 {
409         size_t  size = get_type_struct_size(kind);
410         type_t *res  = obstack_alloc(type_obst, size);
411         memset(res, 0, size);
412
413         res->base.kind            = kind;
414         res->base.source_position = *source_position;
415         return res;
416 }
417
418 /**
419  * Returns the size of an initializer node.
420  *
421  * @param kind  the initializer kind
422  */
423 static size_t get_initializer_size(initializer_kind_t kind)
424 {
425         static const size_t sizes[] = {
426                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
427                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
428                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
429                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
430                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
431         };
432         assert(kind < sizeof(sizes) / sizeof(*sizes));
433         assert(sizes[kind] != 0);
434         return sizes[kind];
435 }
436
437 /**
438  * Allocate an initializer node of given kind and initialize all
439  * fields with zero.
440  */
441 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
442 {
443         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
444         result->kind          = kind;
445
446         return result;
447 }
448
449 /**
450  * Free a type from the type obstack.
451  */
452 static void free_type(void *type)
453 {
454         obstack_free(type_obst, type);
455 }
456
457 /**
458  * Returns the index of the top element of the environment stack.
459  */
460 static size_t environment_top(void)
461 {
462         return ARR_LEN(environment_stack);
463 }
464
465 /**
466  * Returns the index of the top element of the label stack.
467  */
468 static size_t label_top(void)
469 {
470         return ARR_LEN(label_stack);
471 }
472
473 /**
474  * Return the next token.
475  */
476 static inline void next_token(void)
477 {
478         token                              = lookahead_buffer[lookahead_bufpos];
479         lookahead_buffer[lookahead_bufpos] = lexer_token;
480         lexer_next_token();
481
482         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
483
484 #ifdef PRINT_TOKENS
485         print_token(stderr, &token);
486         fprintf(stderr, "\n");
487 #endif
488 }
489
490 /**
491  * Return the next token with a given lookahead.
492  */
493 static inline const token_t *look_ahead(int num)
494 {
495         assert(num > 0 && num <= MAX_LOOKAHEAD);
496         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
497         return &lookahead_buffer[pos];
498 }
499
500 /**
501  * Adds a token to the token anchor set (a multi-set).
502  */
503 static void add_anchor_token(int token_type)
504 {
505         assert(0 <= token_type && token_type < T_LAST_TOKEN);
506         ++token_anchor_set[token_type];
507 }
508
509 static int save_and_reset_anchor_state(int token_type)
510 {
511         assert(0 <= token_type && token_type < T_LAST_TOKEN);
512         int count = token_anchor_set[token_type];
513         token_anchor_set[token_type] = 0;
514         return count;
515 }
516
517 static void restore_anchor_state(int token_type, int count)
518 {
519         assert(0 <= token_type && token_type < T_LAST_TOKEN);
520         token_anchor_set[token_type] = count;
521 }
522
523 /**
524  * Remove a token from the token anchor set (a multi-set).
525  */
526 static void rem_anchor_token(int token_type)
527 {
528         assert(0 <= token_type && token_type < T_LAST_TOKEN);
529         --token_anchor_set[token_type];
530 }
531
532 static bool at_anchor(void)
533 {
534         if (token.type < 0)
535                 return false;
536         return token_anchor_set[token.type];
537 }
538
539 /**
540  * Eat tokens until a matching token is found.
541  */
542 static void eat_until_matching_token(int type)
543 {
544         int end_token;
545         switch (type) {
546                 case '(': end_token = ')';  break;
547                 case '{': end_token = '}';  break;
548                 case '[': end_token = ']';  break;
549                 default:  end_token = type; break;
550         }
551
552         unsigned parenthesis_count = 0;
553         unsigned brace_count       = 0;
554         unsigned bracket_count     = 0;
555         while (token.type        != end_token ||
556                parenthesis_count != 0         ||
557                brace_count       != 0         ||
558                bracket_count     != 0) {
559                 switch (token.type) {
560                 case T_EOF: return;
561                 case '(': ++parenthesis_count; break;
562                 case '{': ++brace_count;       break;
563                 case '[': ++bracket_count;     break;
564
565                 case ')':
566                         if (parenthesis_count > 0)
567                                 --parenthesis_count;
568                         goto check_stop;
569
570                 case '}':
571                         if (brace_count > 0)
572                                 --brace_count;
573                         goto check_stop;
574
575                 case ']':
576                         if (bracket_count > 0)
577                                 --bracket_count;
578 check_stop:
579                         if (token.type        == end_token &&
580                             parenthesis_count == 0         &&
581                             brace_count       == 0         &&
582                             bracket_count     == 0)
583                                 return;
584                         break;
585
586                 default:
587                         break;
588                 }
589                 next_token();
590         }
591 }
592
593 /**
594  * Eat input tokens until an anchor is found.
595  */
596 static void eat_until_anchor(void)
597 {
598         if (token.type == T_EOF)
599                 return;
600         while (token_anchor_set[token.type] == 0) {
601                 if (token.type == '(' || token.type == '{' || token.type == '[')
602                         eat_until_matching_token(token.type);
603                 if (token.type == T_EOF)
604                         break;
605                 next_token();
606         }
607 }
608
609 static void eat_block(void)
610 {
611         eat_until_matching_token('{');
612         if (token.type == '}')
613                 next_token();
614 }
615
616 /**
617  * eat all token until a ';' is reached or a stop token is found.
618  */
619 static void eat_statement(void)
620 {
621         eat_until_matching_token(';');
622         if (token.type == ';')
623                 next_token();
624 }
625
626 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
627
628 /**
629  * Report a parse error because an expected token was not found.
630  */
631 static
632 #if defined __GNUC__ && __GNUC__ >= 4
633 __attribute__((sentinel))
634 #endif
635 void parse_error_expected(const char *message, ...)
636 {
637         if (message != NULL) {
638                 errorf(HERE, "%s", message);
639         }
640         va_list ap;
641         va_start(ap, message);
642         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
643         va_end(ap);
644 }
645
646 /**
647  * Report a type error.
648  */
649 static void type_error(const char *msg, const source_position_t *source_position,
650                        type_t *type)
651 {
652         errorf(source_position, "%s, but found type '%T'", msg, type);
653 }
654
655 /**
656  * Report an incompatible type.
657  */
658 static void type_error_incompatible(const char *msg,
659                 const source_position_t *source_position, type_t *type1, type_t *type2)
660 {
661         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
662                msg, type1, type2);
663 }
664
665 /**
666  * Expect the the current token is the expected token.
667  * If not, generate an error, eat the current statement,
668  * and goto the end_error label.
669  */
670 #define expect(expected)                              \
671         do {                                              \
672     if (UNLIKELY(token.type != (expected))) {          \
673         parse_error_expected(NULL, (expected), NULL); \
674                 add_anchor_token(expected);                   \
675         eat_until_anchor();                           \
676         if (token.type == expected)                   \
677                 next_token();                             \
678                 rem_anchor_token(expected);                   \
679         goto end_error;                               \
680     }                                                 \
681     next_token();                                     \
682         } while (0)
683
684 static void set_scope(scope_t *new_scope)
685 {
686         if (scope != NULL) {
687                 scope->last_declaration = last_declaration;
688         }
689         scope = new_scope;
690
691         last_declaration = new_scope->last_declaration;
692 }
693
694 /**
695  * Search a symbol in a given namespace and returns its declaration or
696  * NULL if this symbol was not found.
697  */
698 static declaration_t *get_declaration(const symbol_t *const symbol,
699                                       const namespace_t namespc)
700 {
701         declaration_t *declaration = symbol->declaration;
702         for( ; declaration != NULL; declaration = declaration->symbol_next) {
703                 if (declaration->namespc == namespc)
704                         return declaration;
705         }
706
707         return NULL;
708 }
709
710 /**
711  * pushs an environment_entry on the environment stack and links the
712  * corresponding symbol to the new entry
713  */
714 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
715 {
716         symbol_t    *symbol  = declaration->symbol;
717         namespace_t  namespc = (namespace_t) declaration->namespc;
718
719         /* replace/add declaration into declaration list of the symbol */
720         declaration_t *iter = symbol->declaration;
721         if (iter == NULL) {
722                 symbol->declaration = declaration;
723         } else {
724                 declaration_t *iter_last = NULL;
725                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
726                         /* replace an entry? */
727                         if (iter->namespc == namespc) {
728                                 if (iter_last == NULL) {
729                                         symbol->declaration = declaration;
730                                 } else {
731                                         iter_last->symbol_next = declaration;
732                                 }
733                                 declaration->symbol_next = iter->symbol_next;
734                                 break;
735                         }
736                 }
737                 if (iter == NULL) {
738                         assert(iter_last->symbol_next == NULL);
739                         iter_last->symbol_next = declaration;
740                 }
741         }
742
743         /* remember old declaration */
744         stack_entry_t entry;
745         entry.symbol          = symbol;
746         entry.old_declaration = iter;
747         entry.namespc         = (unsigned short) namespc;
748         ARR_APP1(stack_entry_t, *stack_ptr, entry);
749 }
750
751 static void environment_push(declaration_t *declaration)
752 {
753         assert(declaration->source_position.input_name != NULL);
754         assert(declaration->parent_scope != NULL);
755         stack_push(&environment_stack, declaration);
756 }
757
758 /**
759  * Push a declaration of the label stack.
760  *
761  * @param declaration  the declaration
762  */
763 static void label_push(declaration_t *declaration)
764 {
765         declaration->parent_scope = &current_function->scope;
766         stack_push(&label_stack, declaration);
767 }
768
769 /**
770  * pops symbols from the environment stack until @p new_top is the top element
771  */
772 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
773 {
774         stack_entry_t *stack = *stack_ptr;
775         size_t         top   = ARR_LEN(stack);
776         size_t         i;
777
778         assert(new_top <= top);
779         if (new_top == top)
780                 return;
781
782         for(i = top; i > new_top; --i) {
783                 stack_entry_t *entry = &stack[i - 1];
784
785                 declaration_t *old_declaration = entry->old_declaration;
786                 symbol_t      *symbol          = entry->symbol;
787                 namespace_t    namespc         = (namespace_t)entry->namespc;
788
789                 /* replace/remove declaration */
790                 declaration_t *declaration = symbol->declaration;
791                 assert(declaration != NULL);
792                 if (declaration->namespc == namespc) {
793                         if (old_declaration == NULL) {
794                                 symbol->declaration = declaration->symbol_next;
795                         } else {
796                                 symbol->declaration = old_declaration;
797                         }
798                 } else {
799                         declaration_t *iter_last = declaration;
800                         declaration_t *iter      = declaration->symbol_next;
801                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
802                                 /* replace an entry? */
803                                 if (iter->namespc == namespc) {
804                                         assert(iter_last != NULL);
805                                         iter_last->symbol_next = old_declaration;
806                                         if (old_declaration != NULL) {
807                                                 old_declaration->symbol_next = iter->symbol_next;
808                                         }
809                                         break;
810                                 }
811                         }
812                         assert(iter != NULL);
813                 }
814         }
815
816         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
817 }
818
819 static void environment_pop_to(size_t new_top)
820 {
821         stack_pop_to(&environment_stack, new_top);
822 }
823
824 /**
825  * Pop all entries on the label stack until the new_top
826  * is reached.
827  *
828  * @param new_top  the new stack top
829  */
830 static void label_pop_to(size_t new_top)
831 {
832         stack_pop_to(&label_stack, new_top);
833 }
834
835
836 static int get_rank(const type_t *type)
837 {
838         assert(!is_typeref(type));
839         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
840          * and esp. footnote 108). However we can't fold constants (yet), so we
841          * can't decide whether unsigned int is possible, while int always works.
842          * (unsigned int would be preferable when possible... for stuff like
843          *  struct { enum { ... } bla : 4; } ) */
844         if (type->kind == TYPE_ENUM)
845                 return ATOMIC_TYPE_INT;
846
847         assert(type->kind == TYPE_ATOMIC);
848         return type->atomic.akind;
849 }
850
851 static type_t *promote_integer(type_t *type)
852 {
853         if (type->kind == TYPE_BITFIELD)
854                 type = type->bitfield.base_type;
855
856         if (get_rank(type) < ATOMIC_TYPE_INT)
857                 type = type_int;
858
859         return type;
860 }
861
862 /**
863  * Create a cast expression.
864  *
865  * @param expression  the expression to cast
866  * @param dest_type   the destination type
867  */
868 static expression_t *create_cast_expression(expression_t *expression,
869                                             type_t *dest_type)
870 {
871         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
872
873         cast->unary.value = expression;
874         cast->base.type   = dest_type;
875
876         return cast;
877 }
878
879 /**
880  * Check if a given expression represents the 0 pointer constant.
881  */
882 static bool is_null_pointer_constant(const expression_t *expression)
883 {
884         /* skip void* cast */
885         if (expression->kind == EXPR_UNARY_CAST
886                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
887                 expression = expression->unary.value;
888         }
889
890         /* TODO: not correct yet, should be any constant integer expression
891          * which evaluates to 0 */
892         if (expression->kind != EXPR_CONST)
893                 return false;
894
895         type_t *const type = skip_typeref(expression->base.type);
896         if (!is_type_integer(type))
897                 return false;
898
899         return expression->conste.v.int_value == 0;
900 }
901
902 /**
903  * Create an implicit cast expression.
904  *
905  * @param expression  the expression to cast
906  * @param dest_type   the destination type
907  */
908 static expression_t *create_implicit_cast(expression_t *expression,
909                                           type_t *dest_type)
910 {
911         type_t *const source_type = expression->base.type;
912
913         if (source_type == dest_type)
914                 return expression;
915
916         return create_cast_expression(expression, dest_type);
917 }
918
919 typedef enum assign_error_t {
920         ASSIGN_SUCCESS,
921         ASSIGN_ERROR_INCOMPATIBLE,
922         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
923         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
924         ASSIGN_WARNING_POINTER_FROM_INT,
925         ASSIGN_WARNING_INT_FROM_POINTER
926 } assign_error_t;
927
928 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
929                                 const expression_t *const right,
930                                 const char *context,
931                                 const source_position_t *source_position)
932 {
933         type_t *const orig_type_right = right->base.type;
934         type_t *const type_left       = skip_typeref(orig_type_left);
935         type_t *const type_right      = skip_typeref(orig_type_right);
936
937         switch (error) {
938         case ASSIGN_SUCCESS:
939                 return;
940         case ASSIGN_ERROR_INCOMPATIBLE:
941                 errorf(source_position,
942                        "destination type '%T' in %s is incompatible with type '%T'",
943                        orig_type_left, context, orig_type_right);
944                 return;
945
946         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
947                 type_t *points_to_left
948                         = skip_typeref(type_left->pointer.points_to);
949                 type_t *points_to_right
950                         = skip_typeref(type_right->pointer.points_to);
951
952                 /* the left type has all qualifiers from the right type */
953                 unsigned missing_qualifiers
954                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
955                 errorf(source_position,
956                        "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointed-to type",
957                        orig_type_left, context, orig_type_right, missing_qualifiers);
958                 return;
959         }
960
961         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
962                 warningf(source_position,
963                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
964                                  orig_type_left, context, right, orig_type_right);
965                 return;
966
967         case ASSIGN_WARNING_POINTER_FROM_INT:
968                 warningf(source_position,
969                          "%s makes integer '%T' from pointer '%T' without a cast",
970                                  context, orig_type_left, orig_type_right);
971                 return;
972
973         case ASSIGN_WARNING_INT_FROM_POINTER:
974                 warningf(source_position,
975                                 "%s makes integer '%T' from pointer '%T' without a cast",
976                                 context, orig_type_left, orig_type_right);
977                 return;
978
979         default:
980                 panic("invalid error value");
981         }
982 }
983
984 /** Implements the rules from Â§ 6.5.16.1 */
985 static assign_error_t semantic_assign(type_t *orig_type_left,
986                                       const expression_t *const right)
987 {
988         type_t *const orig_type_right = right->base.type;
989         type_t *const type_left       = skip_typeref(orig_type_left);
990         type_t *const type_right      = skip_typeref(orig_type_right);
991
992         if (is_type_pointer(type_left)) {
993                 if (is_null_pointer_constant(right)) {
994                         return ASSIGN_SUCCESS;
995                 } else if (is_type_pointer(type_right)) {
996                         type_t *points_to_left
997                                 = skip_typeref(type_left->pointer.points_to);
998                         type_t *points_to_right
999                                 = skip_typeref(type_right->pointer.points_to);
1000
1001                         /* the left type has all qualifiers from the right type */
1002                         unsigned missing_qualifiers
1003                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1004                         if (missing_qualifiers != 0) {
1005                                 return ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1006                         }
1007
1008                         points_to_left  = get_unqualified_type(points_to_left);
1009                         points_to_right = get_unqualified_type(points_to_right);
1010
1011                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1012                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1013                                 return ASSIGN_SUCCESS;
1014                         }
1015
1016                         if (!types_compatible(points_to_left, points_to_right)) {
1017                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1018                         }
1019
1020                         return ASSIGN_SUCCESS;
1021                 } else if (is_type_integer(type_right)) {
1022                         return ASSIGN_WARNING_POINTER_FROM_INT;
1023                 }
1024         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1025             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1026                 && is_type_pointer(type_right))) {
1027                 return ASSIGN_SUCCESS;
1028         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1029                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1030                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1031                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1032                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1033                         return ASSIGN_SUCCESS;
1034                 }
1035         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1036                 return ASSIGN_WARNING_INT_FROM_POINTER;
1037         }
1038
1039         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1040                 return ASSIGN_SUCCESS;
1041
1042         return ASSIGN_ERROR_INCOMPATIBLE;
1043 }
1044
1045 static expression_t *parse_constant_expression(void)
1046 {
1047         /* start parsing at precedence 7 (conditional expression) */
1048         expression_t *result = parse_sub_expression(7);
1049
1050         if (!is_constant_expression(result)) {
1051                 errorf(&result->base.source_position,
1052                        "expression '%E' is not constant\n", result);
1053         }
1054
1055         return result;
1056 }
1057
1058 static expression_t *parse_assignment_expression(void)
1059 {
1060         /* start parsing at precedence 2 (assignment expression) */
1061         return parse_sub_expression(2);
1062 }
1063
1064 static type_t *make_global_typedef(const char *name, type_t *type)
1065 {
1066         symbol_t *const symbol       = symbol_table_insert(name);
1067
1068         declaration_t *const declaration = allocate_declaration_zero();
1069         declaration->namespc                = NAMESPACE_NORMAL;
1070         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1071         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1072         declaration->type                   = type;
1073         declaration->symbol                 = symbol;
1074         declaration->source_position        = builtin_source_position;
1075
1076         record_declaration(declaration);
1077
1078         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1079         typedef_type->typedeft.declaration = declaration;
1080
1081         return typedef_type;
1082 }
1083
1084 static string_t parse_string_literals(void)
1085 {
1086         assert(token.type == T_STRING_LITERAL);
1087         string_t result = token.v.string;
1088
1089         next_token();
1090
1091         while (token.type == T_STRING_LITERAL) {
1092                 result = concat_strings(&result, &token.v.string);
1093                 next_token();
1094         }
1095
1096         return result;
1097 }
1098
1099 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1100         [GNU_AK_CONST]                  = "const",
1101         [GNU_AK_VOLATILE]               = "volatile",
1102         [GNU_AK_CDECL]                  = "cdecl",
1103         [GNU_AK_STDCALL]                = "stdcall",
1104         [GNU_AK_FASTCALL]               = "fastcall",
1105         [GNU_AK_DEPRECATED]             = "deprecated",
1106         [GNU_AK_NOINLINE]               = "noinline",
1107         [GNU_AK_NORETURN]               = "noreturn",
1108         [GNU_AK_NAKED]                  = "naked",
1109         [GNU_AK_PURE]                   = "pure",
1110         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1111         [GNU_AK_MALLOC]                 = "malloc",
1112         [GNU_AK_WEAK]                   = "weak",
1113         [GNU_AK_CONSTRUCTOR]            = "constructor",
1114         [GNU_AK_DESTRUCTOR]             = "destructor",
1115         [GNU_AK_NOTHROW]                = "nothrow",
1116         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1117         [GNU_AK_COMMON]                 = "common",
1118         [GNU_AK_NOCOMMON]               = "nocommon",
1119         [GNU_AK_PACKED]                 = "packed",
1120         [GNU_AK_SHARED]                 = "shared",
1121         [GNU_AK_NOTSHARED]              = "notshared",
1122         [GNU_AK_USED]                   = "used",
1123         [GNU_AK_UNUSED]                 = "unused",
1124         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1125         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1126         [GNU_AK_LONGCALL]               = "longcall",
1127         [GNU_AK_SHORTCALL]              = "shortcall",
1128         [GNU_AK_LONG_CALL]              = "long_call",
1129         [GNU_AK_SHORT_CALL]             = "short_call",
1130         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1131         [GNU_AK_INTERRUPT]              = "interrupt",
1132         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1133         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1134         [GNU_AK_NESTING]                = "nesting",
1135         [GNU_AK_NEAR]                   = "near",
1136         [GNU_AK_FAR]                    = "far",
1137         [GNU_AK_SIGNAL]                 = "signal",
1138         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1139         [GNU_AK_TINY_DATA]              = "tiny_data",
1140         [GNU_AK_SAVEALL]                = "saveall",
1141         [GNU_AK_FLATTEN]                = "flatten",
1142         [GNU_AK_SSEREGPARM]             = "sseregparm",
1143         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1144         [GNU_AK_RETURN_TWICE]           = "return_twice",
1145         [GNU_AK_MAY_ALIAS]              = "may_alias",
1146         [GNU_AK_MS_STRUCT]              = "ms_struct",
1147         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1148         [GNU_AK_DLLIMPORT]              = "dllimport",
1149         [GNU_AK_DLLEXPORT]              = "dllexport",
1150         [GNU_AK_ALIGNED]                = "aligned",
1151         [GNU_AK_ALIAS]                  = "alias",
1152         [GNU_AK_SECTION]                = "section",
1153         [GNU_AK_FORMAT]                 = "format",
1154         [GNU_AK_FORMAT_ARG]             = "format_arg",
1155         [GNU_AK_WEAKREF]                = "weakref",
1156         [GNU_AK_NONNULL]                = "nonnull",
1157         [GNU_AK_TLS_MODEL]              = "tls_model",
1158         [GNU_AK_VISIBILITY]             = "visibility",
1159         [GNU_AK_REGPARM]                = "regparm",
1160         [GNU_AK_MODE]                   = "mode",
1161         [GNU_AK_MODEL]                  = "model",
1162         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1163         [GNU_AK_SP_SWITCH]              = "sp_switch",
1164         [GNU_AK_SENTINEL]               = "sentinel"
1165 };
1166
1167 /**
1168  * compare two string, ignoring double underscores on the second.
1169  */
1170 static int strcmp_underscore(const char *s1, const char *s2)
1171 {
1172         if (s2[0] == '_' && s2[1] == '_') {
1173                 size_t len2 = strlen(s2);
1174                 size_t len1 = strlen(s1);
1175                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1176                         return strncmp(s1, s2+2, len2-4);
1177                 }
1178         }
1179
1180         return strcmp(s1, s2);
1181 }
1182
1183 /**
1184  * Allocate a new gnu temporal attribute.
1185  */
1186 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1187 {
1188         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1189         attribute->kind            = kind;
1190         attribute->next            = NULL;
1191         attribute->invalid         = false;
1192         attribute->have_arguments  = false;
1193
1194         return attribute;
1195 }
1196
1197 /**
1198  * parse one constant expression argument.
1199  */
1200 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1201 {
1202         expression_t *expression;
1203         add_anchor_token(')');
1204         expression = parse_constant_expression();
1205         rem_anchor_token(')');
1206         expect(')');
1207         attribute->u.argument = fold_constant(expression);
1208         return;
1209 end_error:
1210         attribute->invalid = true;
1211 }
1212
1213 /**
1214  * parse a list of constant expressions arguments.
1215  */
1216 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1217 {
1218         argument_list_t **list = &attribute->u.arguments;
1219         argument_list_t  *entry;
1220         expression_t     *expression;
1221         add_anchor_token(')');
1222         add_anchor_token(',');
1223         while (true) {
1224                 expression = parse_constant_expression();
1225                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1226                 entry->argument = fold_constant(expression);
1227                 entry->next     = NULL;
1228                 *list = entry;
1229                 list = &entry->next;
1230                 if (token.type != ',')
1231                         break;
1232                 next_token();
1233         }
1234         rem_anchor_token(',');
1235         rem_anchor_token(')');
1236         expect(')');
1237         return;
1238 end_error:
1239         attribute->invalid = true;
1240 }
1241
1242 /**
1243  * parse one string literal argument.
1244  */
1245 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1246                                            string_t *string)
1247 {
1248         add_anchor_token('(');
1249         if (token.type != T_STRING_LITERAL) {
1250                 parse_error_expected("while parsing attribute directive",
1251                                      T_STRING_LITERAL, NULL);
1252                 goto end_error;
1253         }
1254         *string = parse_string_literals();
1255         rem_anchor_token('(');
1256         expect(')');
1257         return;
1258 end_error:
1259         attribute->invalid = true;
1260 }
1261
1262 /**
1263  * parse one tls model.
1264  */
1265 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1266 {
1267         static const char *const tls_models[] = {
1268                 "global-dynamic",
1269                 "local-dynamic",
1270                 "initial-exec",
1271                 "local-exec"
1272         };
1273         string_t string = { NULL, 0 };
1274         parse_gnu_attribute_string_arg(attribute, &string);
1275         if (string.begin != NULL) {
1276                 for(size_t i = 0; i < 4; ++i) {
1277                         if (strcmp(tls_models[i], string.begin) == 0) {
1278                                 attribute->u.value = i;
1279                                 return;
1280                         }
1281                 }
1282                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1283         }
1284         attribute->invalid = true;
1285 }
1286
1287 /**
1288  * parse one tls model.
1289  */
1290 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1291 {
1292         static const char *const visibilities[] = {
1293                 "default",
1294                 "protected",
1295                 "hidden",
1296                 "internal"
1297         };
1298         string_t string = { NULL, 0 };
1299         parse_gnu_attribute_string_arg(attribute, &string);
1300         if (string.begin != NULL) {
1301                 for(size_t i = 0; i < 4; ++i) {
1302                         if (strcmp(visibilities[i], string.begin) == 0) {
1303                                 attribute->u.value = i;
1304                                 return;
1305                         }
1306                 }
1307                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1308         }
1309         attribute->invalid = true;
1310 }
1311
1312 /**
1313  * parse one (code) model.
1314  */
1315 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1316 {
1317         static const char *const visibilities[] = {
1318                 "small",
1319                 "medium",
1320                 "large"
1321         };
1322         string_t string = { NULL, 0 };
1323         parse_gnu_attribute_string_arg(attribute, &string);
1324         if (string.begin != NULL) {
1325                 for(int i = 0; i < 3; ++i) {
1326                         if (strcmp(visibilities[i], string.begin) == 0) {
1327                                 attribute->u.value = i;
1328                                 return;
1329                         }
1330                 }
1331                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1332         }
1333         attribute->invalid = true;
1334 }
1335
1336 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1337 {
1338         /* TODO: find out what is allowed here... */
1339
1340         /* at least: byte, word, pointer, list of machine modes
1341          * __XXX___ is interpreted as XXX */
1342         add_anchor_token(')');
1343
1344         if (token.type != T_IDENTIFIER) {
1345                 expect(T_IDENTIFIER);
1346         }
1347
1348         /* This isn't really correct, the backend should provide a list of machine
1349          * specific modes (according to gcc philosophy that is...) */
1350         const char *symbol_str = token.v.symbol->string;
1351         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1352             strcmp_underscore("byte", symbol_str) == 0) {
1353                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1354         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1355                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1356         } else if (strcmp_underscore("SI",      symbol_str) == 0
1357                 || strcmp_underscore("word",    symbol_str) == 0
1358                 || strcmp_underscore("pointer", symbol_str) == 0) {
1359                 attribute->u.akind = ATOMIC_TYPE_INT;
1360         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1361                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1362         } else {
1363                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1364                 attribute->invalid = true;
1365         }
1366         next_token();
1367
1368         rem_anchor_token(')');
1369         expect(')');
1370         return;
1371 end_error:
1372         attribute->invalid = true;
1373 }
1374
1375 /**
1376  * parse one interrupt argument.
1377  */
1378 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1379 {
1380         static const char *const interrupts[] = {
1381                 "IRQ",
1382                 "FIQ",
1383                 "SWI",
1384                 "ABORT",
1385                 "UNDEF"
1386         };
1387         string_t string = { NULL, 0 };
1388         parse_gnu_attribute_string_arg(attribute, &string);
1389         if (string.begin != NULL) {
1390                 for(size_t i = 0; i < 5; ++i) {
1391                         if (strcmp(interrupts[i], string.begin) == 0) {
1392                                 attribute->u.value = i;
1393                                 return;
1394                         }
1395                 }
1396                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1397         }
1398         attribute->invalid = true;
1399 }
1400
1401 /**
1402  * parse ( identifier, const expression, const expression )
1403  */
1404 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1405 {
1406         static const char *const format_names[] = {
1407                 "printf",
1408                 "scanf",
1409                 "strftime",
1410                 "strfmon"
1411         };
1412         int i;
1413
1414         if (token.type != T_IDENTIFIER) {
1415                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1416                 goto end_error;
1417         }
1418         const char *name = token.v.symbol->string;
1419         for(i = 0; i < 4; ++i) {
1420                 if (strcmp_underscore(format_names[i], name) == 0)
1421                         break;
1422         }
1423         if (i >= 4) {
1424                 if (warning.attribute)
1425                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1426         }
1427         next_token();
1428
1429         expect(',');
1430         add_anchor_token(')');
1431         add_anchor_token(',');
1432         parse_constant_expression();
1433         rem_anchor_token(',');
1434         rem_anchor_token('(');
1435
1436         expect(',');
1437         add_anchor_token(')');
1438         parse_constant_expression();
1439         rem_anchor_token('(');
1440         expect(')');
1441         return;
1442 end_error:
1443         attribute->u.value = true;
1444 }
1445
1446 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1447 {
1448         if (!attribute->have_arguments)
1449                 return;
1450
1451         /* should have no arguments */
1452         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1453         eat_until_matching_token('(');
1454         /* we have already consumed '(', so we stop before ')', eat it */
1455         eat(')');
1456         attribute->invalid = true;
1457 }
1458
1459 /**
1460  * Parse one GNU attribute.
1461  *
1462  * Note that attribute names can be specified WITH or WITHOUT
1463  * double underscores, ie const or __const__.
1464  *
1465  * The following attributes are parsed without arguments
1466  *  const
1467  *  volatile
1468  *  cdecl
1469  *  stdcall
1470  *  fastcall
1471  *  deprecated
1472  *  noinline
1473  *  noreturn
1474  *  naked
1475  *  pure
1476  *  always_inline
1477  *  malloc
1478  *  weak
1479  *  constructor
1480  *  destructor
1481  *  nothrow
1482  *  transparent_union
1483  *  common
1484  *  nocommon
1485  *  packed
1486  *  shared
1487  *  notshared
1488  *  used
1489  *  unused
1490  *  no_instrument_function
1491  *  warn_unused_result
1492  *  longcall
1493  *  shortcall
1494  *  long_call
1495  *  short_call
1496  *  function_vector
1497  *  interrupt_handler
1498  *  nmi_handler
1499  *  nesting
1500  *  near
1501  *  far
1502  *  signal
1503  *  eightbit_data
1504  *  tiny_data
1505  *  saveall
1506  *  flatten
1507  *  sseregparm
1508  *  externally_visible
1509  *  return_twice
1510  *  may_alias
1511  *  ms_struct
1512  *  gcc_struct
1513  *  dllimport
1514  *  dllexport
1515  *
1516  * The following attributes are parsed with arguments
1517  *  aligned( const expression )
1518  *  alias( string literal )
1519  *  section( string literal )
1520  *  format( identifier, const expression, const expression )
1521  *  format_arg( const expression )
1522  *  tls_model( string literal )
1523  *  visibility( string literal )
1524  *  regparm( const expression )
1525  *  model( string leteral )
1526  *  trap_exit( const expression )
1527  *  sp_switch( string literal )
1528  *
1529  * The following attributes might have arguments
1530  *  weak_ref( string literal )
1531  *  non_null( const expression // ',' )
1532  *  interrupt( string literal )
1533  *  sentinel( constant expression )
1534  */
1535 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1536 {
1537         gnu_attribute_t *head      = *attributes;
1538         gnu_attribute_t *last      = *attributes;
1539         decl_modifiers_t modifiers = 0;
1540         gnu_attribute_t *attribute;
1541
1542         eat(T___attribute__);
1543         expect('(');
1544         expect('(');
1545
1546         if (token.type != ')') {
1547                 /* find the end of the list */
1548                 if (last != NULL) {
1549                         while (last->next != NULL)
1550                                 last = last->next;
1551                 }
1552
1553                 /* non-empty attribute list */
1554                 while (true) {
1555                         const char *name;
1556                         if (token.type == T_const) {
1557                                 name = "const";
1558                         } else if (token.type == T_volatile) {
1559                                 name = "volatile";
1560                         } else if (token.type == T_cdecl) {
1561                                 /* __attribute__((cdecl)), WITH ms mode */
1562                                 name = "cdecl";
1563                         } else if (token.type == T_IDENTIFIER) {
1564                                 const symbol_t *sym = token.v.symbol;
1565                                 name = sym->string;
1566                         } else {
1567                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1568                                 break;
1569                         }
1570
1571                         next_token();
1572
1573                         int i;
1574                         for(i = 0; i < GNU_AK_LAST; ++i) {
1575                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1576                                         break;
1577                         }
1578                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1579
1580                         attribute = NULL;
1581                         if (kind == GNU_AK_LAST) {
1582                                 if (warning.attribute)
1583                                         warningf(HERE, "'%s' attribute directive ignored", name);
1584
1585                                 /* skip possible arguments */
1586                                 if (token.type == '(') {
1587                                         eat_until_matching_token(')');
1588                                 }
1589                         } else {
1590                                 /* check for arguments */
1591                                 attribute = allocate_gnu_attribute(kind);
1592                                 if (token.type == '(') {
1593                                         next_token();
1594                                         if (token.type == ')') {
1595                                                 /* empty args are allowed */
1596                                                 next_token();
1597                                         } else
1598                                                 attribute->have_arguments = true;
1599                                 }
1600
1601                                 switch(kind) {
1602                                 case GNU_AK_CONST:
1603                                 case GNU_AK_VOLATILE:
1604                                 case GNU_AK_DEPRECATED:
1605                                 case GNU_AK_NAKED:
1606                                 case GNU_AK_MALLOC:
1607                                 case GNU_AK_WEAK:
1608                                 case GNU_AK_COMMON:
1609                                 case GNU_AK_NOCOMMON:
1610                                 case GNU_AK_SHARED:
1611                                 case GNU_AK_NOTSHARED:
1612                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1613                                 case GNU_AK_WARN_UNUSED_RESULT:
1614                                 case GNU_AK_LONGCALL:
1615                                 case GNU_AK_SHORTCALL:
1616                                 case GNU_AK_LONG_CALL:
1617                                 case GNU_AK_SHORT_CALL:
1618                                 case GNU_AK_FUNCTION_VECTOR:
1619                                 case GNU_AK_INTERRUPT_HANDLER:
1620                                 case GNU_AK_NMI_HANDLER:
1621                                 case GNU_AK_NESTING:
1622                                 case GNU_AK_NEAR:
1623                                 case GNU_AK_FAR:
1624                                 case GNU_AK_SIGNAL:
1625                                 case GNU_AK_EIGTHBIT_DATA:
1626                                 case GNU_AK_TINY_DATA:
1627                                 case GNU_AK_SAVEALL:
1628                                 case GNU_AK_FLATTEN:
1629                                 case GNU_AK_SSEREGPARM:
1630                                 case GNU_AK_EXTERNALLY_VISIBLE:
1631                                 case GNU_AK_RETURN_TWICE:
1632                                 case GNU_AK_MAY_ALIAS:
1633                                 case GNU_AK_MS_STRUCT:
1634                                 case GNU_AK_GCC_STRUCT:
1635                                         goto no_arg;
1636
1637                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1638                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1639                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1640                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1641                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1642                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1643                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1644                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1645                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1646                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1647                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1648                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1649                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1650                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1651                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1652                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1653
1654                                 case GNU_AK_ALIGNED:
1655                                         /* __align__ may be used without an argument */
1656                                         if (attribute->have_arguments) {
1657                                                 parse_gnu_attribute_const_arg(attribute);
1658                                         }
1659                                         break;
1660
1661                                 case GNU_AK_FORMAT_ARG:
1662                                 case GNU_AK_REGPARM:
1663                                 case GNU_AK_TRAP_EXIT:
1664                                         if (!attribute->have_arguments) {
1665                                                 /* should have arguments */
1666                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1667                                                 attribute->invalid = true;
1668                                         } else
1669                                                 parse_gnu_attribute_const_arg(attribute);
1670                                         break;
1671                                 case GNU_AK_ALIAS:
1672                                 case GNU_AK_SECTION:
1673                                 case GNU_AK_SP_SWITCH:
1674                                         if (!attribute->have_arguments) {
1675                                                 /* should have arguments */
1676                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1677                                                 attribute->invalid = true;
1678                                         } else
1679                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1680                                         break;
1681                                 case GNU_AK_FORMAT:
1682                                         if (!attribute->have_arguments) {
1683                                                 /* should have arguments */
1684                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1685                                                 attribute->invalid = true;
1686                                         } else
1687                                                 parse_gnu_attribute_format_args(attribute);
1688                                         break;
1689                                 case GNU_AK_WEAKREF:
1690                                         /* may have one string argument */
1691                                         if (attribute->have_arguments)
1692                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1693                                         break;
1694                                 case GNU_AK_NONNULL:
1695                                         if (attribute->have_arguments)
1696                                                 parse_gnu_attribute_const_arg_list(attribute);
1697                                         break;
1698                                 case GNU_AK_TLS_MODEL:
1699                                         if (!attribute->have_arguments) {
1700                                                 /* should have arguments */
1701                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1702                                         } else
1703                                                 parse_gnu_attribute_tls_model_arg(attribute);
1704                                         break;
1705                                 case GNU_AK_VISIBILITY:
1706                                         if (!attribute->have_arguments) {
1707                                                 /* should have arguments */
1708                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1709                                         } else
1710                                                 parse_gnu_attribute_visibility_arg(attribute);
1711                                         break;
1712                                 case GNU_AK_MODEL:
1713                                         if (!attribute->have_arguments) {
1714                                                 /* should have arguments */
1715                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1716                                         } else {
1717                                                 parse_gnu_attribute_model_arg(attribute);
1718                                         }
1719                                         break;
1720                                 case GNU_AK_MODE:
1721                                         if (!attribute->have_arguments) {
1722                                                 /* should have arguments */
1723                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1724                                         } else {
1725                                                 parse_gnu_attribute_mode_arg(attribute);
1726                                         }
1727                                         break;
1728                                 case GNU_AK_INTERRUPT:
1729                                         /* may have one string argument */
1730                                         if (attribute->have_arguments)
1731                                                 parse_gnu_attribute_interrupt_arg(attribute);
1732                                         break;
1733                                 case GNU_AK_SENTINEL:
1734                                         /* may have one string argument */
1735                                         if (attribute->have_arguments)
1736                                                 parse_gnu_attribute_const_arg(attribute);
1737                                         break;
1738                                 case GNU_AK_LAST:
1739                                         /* already handled */
1740                                         break;
1741
1742 no_arg:
1743                                         check_no_argument(attribute, name);
1744                                 }
1745                         }
1746                         if (attribute != NULL) {
1747                                 if (last != NULL) {
1748                                         last->next = attribute;
1749                                         last       = attribute;
1750                                 } else {
1751                                         head = last = attribute;
1752                                 }
1753                         }
1754
1755                         if (token.type != ',')
1756                                 break;
1757                         next_token();
1758                 }
1759         }
1760         expect(')');
1761         expect(')');
1762 end_error:
1763         *attributes = head;
1764
1765         return modifiers;
1766 }
1767
1768 /**
1769  * Parse GNU attributes.
1770  */
1771 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1772 {
1773         decl_modifiers_t modifiers = 0;
1774
1775         while (true) {
1776                 switch(token.type) {
1777                 case T___attribute__:
1778                         modifiers |= parse_gnu_attribute(attributes);
1779                         continue;
1780
1781                 case T_asm:
1782                         next_token();
1783                         expect('(');
1784                         if (token.type != T_STRING_LITERAL) {
1785                                 parse_error_expected("while parsing assembler attribute",
1786                                                      T_STRING_LITERAL, NULL);
1787                                 eat_until_matching_token('(');
1788                                 break;
1789                         } else {
1790                                 parse_string_literals();
1791                         }
1792                         expect(')');
1793                         continue;
1794
1795                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1796                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1797                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1798
1799                 case T___thiscall:
1800                         /* TODO record modifier */
1801                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1802                         break;
1803
1804 end_error:
1805                 default: return modifiers;
1806                 }
1807
1808                 next_token();
1809         }
1810 }
1811
1812 static designator_t *parse_designation(void)
1813 {
1814         designator_t *result = NULL;
1815         designator_t *last   = NULL;
1816
1817         while (true) {
1818                 designator_t *designator;
1819                 switch(token.type) {
1820                 case '[':
1821                         designator = allocate_ast_zero(sizeof(designator[0]));
1822                         designator->source_position = token.source_position;
1823                         next_token();
1824                         add_anchor_token(']');
1825                         designator->array_index = parse_constant_expression();
1826                         rem_anchor_token(']');
1827                         expect(']');
1828                         break;
1829                 case '.':
1830                         designator = allocate_ast_zero(sizeof(designator[0]));
1831                         designator->source_position = token.source_position;
1832                         next_token();
1833                         if (token.type != T_IDENTIFIER) {
1834                                 parse_error_expected("while parsing designator",
1835                                                      T_IDENTIFIER, NULL);
1836                                 return NULL;
1837                         }
1838                         designator->symbol = token.v.symbol;
1839                         next_token();
1840                         break;
1841                 default:
1842                         expect('=');
1843                         return result;
1844                 }
1845
1846                 assert(designator != NULL);
1847                 if (last != NULL) {
1848                         last->next = designator;
1849                 } else {
1850                         result = designator;
1851                 }
1852                 last = designator;
1853         }
1854 end_error:
1855         return NULL;
1856 }
1857
1858 static initializer_t *initializer_from_string(array_type_t *type,
1859                                               const string_t *const string)
1860 {
1861         /* TODO: check len vs. size of array type */
1862         (void) type;
1863
1864         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1865         initializer->string.string = *string;
1866
1867         return initializer;
1868 }
1869
1870 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1871                                                    wide_string_t *const string)
1872 {
1873         /* TODO: check len vs. size of array type */
1874         (void) type;
1875
1876         initializer_t *const initializer =
1877                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1878         initializer->wide_string.string = *string;
1879
1880         return initializer;
1881 }
1882
1883 /**
1884  * Build an initializer from a given expression.
1885  */
1886 static initializer_t *initializer_from_expression(type_t *orig_type,
1887                                                   expression_t *expression)
1888 {
1889         /* TODO check that expression is a constant expression */
1890
1891         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1892         type_t *type           = skip_typeref(orig_type);
1893         type_t *expr_type_orig = expression->base.type;
1894         type_t *expr_type      = skip_typeref(expr_type_orig);
1895         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1896                 array_type_t *const array_type   = &type->array;
1897                 type_t       *const element_type = skip_typeref(array_type->element_type);
1898
1899                 if (element_type->kind == TYPE_ATOMIC) {
1900                         atomic_type_kind_t akind = element_type->atomic.akind;
1901                         switch (expression->kind) {
1902                                 case EXPR_STRING_LITERAL:
1903                                         if (akind == ATOMIC_TYPE_CHAR
1904                                                         || akind == ATOMIC_TYPE_SCHAR
1905                                                         || akind == ATOMIC_TYPE_UCHAR) {
1906                                                 return initializer_from_string(array_type,
1907                                                         &expression->string.value);
1908                                         }
1909
1910                                 case EXPR_WIDE_STRING_LITERAL: {
1911                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1912                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1913                                                 return initializer_from_wide_string(array_type,
1914                                                         &expression->wide_string.value);
1915                                         }
1916                                 }
1917
1918                                 default:
1919                                         break;
1920                         }
1921                 }
1922         }
1923
1924         assign_error_t error = semantic_assign(type, expression);
1925         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1926                 return NULL;
1927         report_assign_error(error, type, expression, "initializer",
1928                             &expression->base.source_position);
1929
1930         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1931         result->value.value = create_implicit_cast(expression, type);
1932
1933         return result;
1934 }
1935
1936 /**
1937  * Checks if a given expression can be used as an constant initializer.
1938  */
1939 static bool is_initializer_constant(const expression_t *expression)
1940 {
1941         return is_constant_expression(expression)
1942                 || is_address_constant(expression);
1943 }
1944
1945 /**
1946  * Parses an scalar initializer.
1947  *
1948  * Â§ 6.7.8.11; eat {} without warning
1949  */
1950 static initializer_t *parse_scalar_initializer(type_t *type,
1951                                                bool must_be_constant)
1952 {
1953         /* there might be extra {} hierarchies */
1954         int braces = 0;
1955         if (token.type == '{') {
1956                 warningf(HERE, "extra curly braces around scalar initializer");
1957                 do {
1958                         ++braces;
1959                         next_token();
1960                 } while (token.type == '{');
1961         }
1962
1963         expression_t *expression = parse_assignment_expression();
1964         if (must_be_constant && !is_initializer_constant(expression)) {
1965                 errorf(&expression->base.source_position,
1966                        "Initialisation expression '%E' is not constant\n",
1967                        expression);
1968         }
1969
1970         initializer_t *initializer = initializer_from_expression(type, expression);
1971
1972         if (initializer == NULL) {
1973                 errorf(&expression->base.source_position,
1974                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1975                        expression, expression->base.type, type);
1976                 /* TODO */
1977                 return NULL;
1978         }
1979
1980         bool additional_warning_displayed = false;
1981         while (braces > 0) {
1982                 if (token.type == ',') {
1983                         next_token();
1984                 }
1985                 if (token.type != '}') {
1986                         if (!additional_warning_displayed) {
1987                                 warningf(HERE, "additional elements in scalar initializer");
1988                                 additional_warning_displayed = true;
1989                         }
1990                 }
1991                 eat_block();
1992                 braces--;
1993         }
1994
1995         return initializer;
1996 }
1997
1998 /**
1999  * An entry in the type path.
2000  */
2001 typedef struct type_path_entry_t type_path_entry_t;
2002 struct type_path_entry_t {
2003         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2004         union {
2005                 size_t         index;          /**< For array types: the current index. */
2006                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2007         } v;
2008 };
2009
2010 /**
2011  * A type path expression a position inside compound or array types.
2012  */
2013 typedef struct type_path_t type_path_t;
2014 struct type_path_t {
2015         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2016         type_t            *top_type;     /**< type of the element the path points */
2017         size_t             max_index;    /**< largest index in outermost array */
2018 };
2019
2020 /**
2021  * Prints a type path for debugging.
2022  */
2023 static __attribute__((unused)) void debug_print_type_path(
2024                 const type_path_t *path)
2025 {
2026         size_t len = ARR_LEN(path->path);
2027
2028         for(size_t i = 0; i < len; ++i) {
2029                 const type_path_entry_t *entry = & path->path[i];
2030
2031                 type_t *type = skip_typeref(entry->type);
2032                 if (is_type_compound(type)) {
2033                         /* in gcc mode structs can have no members */
2034                         if (entry->v.compound_entry == NULL) {
2035                                 assert(i == len-1);
2036                                 continue;
2037                         }
2038                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2039                 } else if (is_type_array(type)) {
2040                         fprintf(stderr, "[%zu]", entry->v.index);
2041                 } else {
2042                         fprintf(stderr, "-INVALID-");
2043                 }
2044         }
2045         if (path->top_type != NULL) {
2046                 fprintf(stderr, "  (");
2047                 print_type(path->top_type);
2048                 fprintf(stderr, ")");
2049         }
2050 }
2051
2052 /**
2053  * Return the top type path entry, ie. in a path
2054  * (type).a.b returns the b.
2055  */
2056 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2057 {
2058         size_t len = ARR_LEN(path->path);
2059         assert(len > 0);
2060         return &path->path[len-1];
2061 }
2062
2063 /**
2064  * Enlarge the type path by an (empty) element.
2065  */
2066 static type_path_entry_t *append_to_type_path(type_path_t *path)
2067 {
2068         size_t len = ARR_LEN(path->path);
2069         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2070
2071         type_path_entry_t *result = & path->path[len];
2072         memset(result, 0, sizeof(result[0]));
2073         return result;
2074 }
2075
2076 /**
2077  * Descending into a sub-type. Enter the scope of the current
2078  * top_type.
2079  */
2080 static void descend_into_subtype(type_path_t *path)
2081 {
2082         type_t *orig_top_type = path->top_type;
2083         type_t *top_type      = skip_typeref(orig_top_type);
2084
2085         assert(is_type_compound(top_type) || is_type_array(top_type));
2086
2087         type_path_entry_t *top = append_to_type_path(path);
2088         top->type              = top_type;
2089
2090         if (is_type_compound(top_type)) {
2091                 declaration_t *declaration = top_type->compound.declaration;
2092                 declaration_t *entry       = declaration->scope.declarations;
2093                 top->v.compound_entry      = entry;
2094
2095                 if (entry != NULL) {
2096                         path->top_type         = entry->type;
2097                 } else {
2098                         path->top_type         = NULL;
2099                 }
2100         } else {
2101                 assert(is_type_array(top_type));
2102
2103                 top->v.index   = 0;
2104                 path->top_type = top_type->array.element_type;
2105         }
2106 }
2107
2108 /**
2109  * Pop an entry from the given type path, ie. returning from
2110  * (type).a.b to (type).a
2111  */
2112 static void ascend_from_subtype(type_path_t *path)
2113 {
2114         type_path_entry_t *top = get_type_path_top(path);
2115
2116         path->top_type = top->type;
2117
2118         size_t len = ARR_LEN(path->path);
2119         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2120 }
2121
2122 /**
2123  * Pop entries from the given type path until the given
2124  * path level is reached.
2125  */
2126 static void ascend_to(type_path_t *path, size_t top_path_level)
2127 {
2128         size_t len = ARR_LEN(path->path);
2129
2130         while (len > top_path_level) {
2131                 ascend_from_subtype(path);
2132                 len = ARR_LEN(path->path);
2133         }
2134 }
2135
2136 static bool walk_designator(type_path_t *path, const designator_t *designator,
2137                             bool used_in_offsetof)
2138 {
2139         for( ; designator != NULL; designator = designator->next) {
2140                 type_path_entry_t *top       = get_type_path_top(path);
2141                 type_t            *orig_type = top->type;
2142
2143                 type_t *type = skip_typeref(orig_type);
2144
2145                 if (designator->symbol != NULL) {
2146                         symbol_t *symbol = designator->symbol;
2147                         if (!is_type_compound(type)) {
2148                                 if (is_type_valid(type)) {
2149                                         errorf(&designator->source_position,
2150                                                "'.%Y' designator used for non-compound type '%T'",
2151                                                symbol, orig_type);
2152                                 }
2153                                 goto failed;
2154                         }
2155
2156                         declaration_t *declaration = type->compound.declaration;
2157                         declaration_t *iter        = declaration->scope.declarations;
2158                         for( ; iter != NULL; iter = iter->next) {
2159                                 if (iter->symbol == symbol) {
2160                                         break;
2161                                 }
2162                         }
2163                         if (iter == NULL) {
2164                                 errorf(&designator->source_position,
2165                                        "'%T' has no member named '%Y'", orig_type, symbol);
2166                                 goto failed;
2167                         }
2168                         if (used_in_offsetof) {
2169                                 type_t *real_type = skip_typeref(iter->type);
2170                                 if (real_type->kind == TYPE_BITFIELD) {
2171                                         errorf(&designator->source_position,
2172                                                "offsetof designator '%Y' may not specify bitfield",
2173                                                symbol);
2174                                         goto failed;
2175                                 }
2176                         }
2177
2178                         top->type             = orig_type;
2179                         top->v.compound_entry = iter;
2180                         orig_type             = iter->type;
2181                 } else {
2182                         expression_t *array_index = designator->array_index;
2183                         assert(designator->array_index != NULL);
2184
2185                         if (!is_type_array(type)) {
2186                                 if (is_type_valid(type)) {
2187                                         errorf(&designator->source_position,
2188                                                "[%E] designator used for non-array type '%T'",
2189                                                array_index, orig_type);
2190                                 }
2191                                 goto failed;
2192                         }
2193                         if (!is_type_valid(array_index->base.type)) {
2194                                 goto failed;
2195                         }
2196
2197                         long index = fold_constant(array_index);
2198                         if (!used_in_offsetof) {
2199                                 if (index < 0) {
2200                                         errorf(&designator->source_position,
2201                                                "array index [%E] must be positive", array_index);
2202                                         goto failed;
2203                                 }
2204                                 if (type->array.size_constant == true) {
2205                                         long array_size = type->array.size;
2206                                         if (index >= array_size) {
2207                                                 errorf(&designator->source_position,
2208                                                        "designator [%E] (%d) exceeds array size %d",
2209                                                        array_index, index, array_size);
2210                                                 goto failed;
2211                                         }
2212                                 }
2213                         }
2214
2215                         top->type    = orig_type;
2216                         top->v.index = (size_t) index;
2217                         orig_type    = type->array.element_type;
2218                 }
2219                 path->top_type = orig_type;
2220
2221                 if (designator->next != NULL) {
2222                         descend_into_subtype(path);
2223                 }
2224         }
2225         return true;
2226
2227 failed:
2228         return false;
2229 }
2230
2231 static void advance_current_object(type_path_t *path, size_t top_path_level)
2232 {
2233         type_path_entry_t *top = get_type_path_top(path);
2234
2235         type_t *type = skip_typeref(top->type);
2236         if (is_type_union(type)) {
2237                 /* in unions only the first element is initialized */
2238                 top->v.compound_entry = NULL;
2239         } else if (is_type_struct(type)) {
2240                 declaration_t *entry = top->v.compound_entry;
2241
2242                 entry                 = entry->next;
2243                 top->v.compound_entry = entry;
2244                 if (entry != NULL) {
2245                         path->top_type = entry->type;
2246                         return;
2247                 }
2248         } else {
2249                 assert(is_type_array(type));
2250
2251                 top->v.index++;
2252
2253                 if (!type->array.size_constant || top->v.index < type->array.size) {
2254                         return;
2255                 }
2256         }
2257
2258         /* we're past the last member of the current sub-aggregate, try if we
2259          * can ascend in the type hierarchy and continue with another subobject */
2260         size_t len = ARR_LEN(path->path);
2261
2262         if (len > top_path_level) {
2263                 ascend_from_subtype(path);
2264                 advance_current_object(path, top_path_level);
2265         } else {
2266                 path->top_type = NULL;
2267         }
2268 }
2269
2270 /**
2271  * skip until token is found.
2272  */
2273 static void skip_until(int type)
2274 {
2275         while (token.type != type) {
2276                 if (token.type == T_EOF)
2277                         return;
2278                 next_token();
2279         }
2280 }
2281
2282 /**
2283  * skip any {...} blocks until a closing bracket is reached.
2284  */
2285 static void skip_initializers(void)
2286 {
2287         if (token.type == '{')
2288                 next_token();
2289
2290         while (token.type != '}') {
2291                 if (token.type == T_EOF)
2292                         return;
2293                 if (token.type == '{') {
2294                         eat_block();
2295                         continue;
2296                 }
2297                 next_token();
2298         }
2299 }
2300
2301 static initializer_t *create_empty_initializer(void)
2302 {
2303         static initializer_t empty_initializer
2304                 = { .list = { { INITIALIZER_LIST }, 0 } };
2305         return &empty_initializer;
2306 }
2307
2308 /**
2309  * Parse a part of an initialiser for a struct or union,
2310  */
2311 static initializer_t *parse_sub_initializer(type_path_t *path,
2312                 type_t *outer_type, size_t top_path_level,
2313                 parse_initializer_env_t *env)
2314 {
2315         if (token.type == '}') {
2316                 /* empty initializer */
2317                 return create_empty_initializer();
2318         }
2319
2320         type_t *orig_type = path->top_type;
2321         type_t *type      = NULL;
2322
2323         if (orig_type == NULL) {
2324                 /* We are initializing an empty compound. */
2325         } else {
2326                 type = skip_typeref(orig_type);
2327
2328                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2329                  * initializers in this case. */
2330                 if (!is_type_valid(type)) {
2331                         skip_initializers();
2332                         return create_empty_initializer();
2333                 }
2334         }
2335
2336         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2337
2338         while (true) {
2339                 designator_t *designator = NULL;
2340                 if (token.type == '.' || token.type == '[') {
2341                         designator = parse_designation();
2342
2343                         /* reset path to toplevel, evaluate designator from there */
2344                         ascend_to(path, top_path_level);
2345                         if (!walk_designator(path, designator, false)) {
2346                                 /* can't continue after designation error */
2347                                 goto end_error;
2348                         }
2349
2350                         initializer_t *designator_initializer
2351                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2352                         designator_initializer->designator.designator = designator;
2353                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2354
2355                         orig_type = path->top_type;
2356                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2357                 }
2358
2359                 initializer_t *sub;
2360
2361                 if (token.type == '{') {
2362                         if (type != NULL && is_type_scalar(type)) {
2363                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2364                         } else {
2365                                 eat('{');
2366                                 if (type == NULL) {
2367                                         if (env->declaration != NULL) {
2368                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2369                                                        env->declaration->symbol);
2370                                         } else {
2371                                                 errorf(HERE, "extra brace group at end of initializer");
2372                                         }
2373                                 } else
2374                                         descend_into_subtype(path);
2375
2376                                 add_anchor_token('}');
2377                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2378                                                             env);
2379                                 rem_anchor_token('}');
2380
2381                                 if (type != NULL) {
2382                                         ascend_from_subtype(path);
2383                                         expect('}');
2384                                 } else {
2385                                         expect('}');
2386                                         goto error_parse_next;
2387                                 }
2388                         }
2389                 } else {
2390                         /* must be an expression */
2391                         expression_t *expression = parse_assignment_expression();
2392
2393                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2394                                 errorf(&expression->base.source_position,
2395                                        "Initialisation expression '%E' is not constant\n",
2396                                        expression);
2397                         }
2398
2399                         if (type == NULL) {
2400                                 /* we are already outside, ... */
2401                                 goto error_excess;
2402                         }
2403
2404                         /* handle { "string" } special case */
2405                         if ((expression->kind == EXPR_STRING_LITERAL
2406                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2407                                         && outer_type != NULL) {
2408                                 sub = initializer_from_expression(outer_type, expression);
2409                                 if (sub != NULL) {
2410                                         if (token.type == ',') {
2411                                                 next_token();
2412                                         }
2413                                         if (token.type != '}') {
2414                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2415                                                                  orig_type);
2416                                         }
2417                                         /* TODO: eat , ... */
2418                                         return sub;
2419                                 }
2420                         }
2421
2422                         /* descend into subtypes until expression matches type */
2423                         while (true) {
2424                                 orig_type = path->top_type;
2425                                 type      = skip_typeref(orig_type);
2426
2427                                 sub = initializer_from_expression(orig_type, expression);
2428                                 if (sub != NULL) {
2429                                         break;
2430                                 }
2431                                 if (!is_type_valid(type)) {
2432                                         goto end_error;
2433                                 }
2434                                 if (is_type_scalar(type)) {
2435                                         errorf(&expression->base.source_position,
2436                                                         "expression '%E' doesn't match expected type '%T'",
2437                                                         expression, orig_type);
2438                                         goto end_error;
2439                                 }
2440
2441                                 descend_into_subtype(path);
2442                         }
2443                 }
2444
2445                 /* update largest index of top array */
2446                 const type_path_entry_t *first      = &path->path[0];
2447                 type_t                  *first_type = first->type;
2448                 first_type                          = skip_typeref(first_type);
2449                 if (is_type_array(first_type)) {
2450                         size_t index = first->v.index;
2451                         if (index > path->max_index)
2452                                 path->max_index = index;
2453                 }
2454
2455                 if (type != NULL) {
2456                         /* append to initializers list */
2457                         ARR_APP1(initializer_t*, initializers, sub);
2458                 } else {
2459 error_excess:
2460                         if (env->declaration != NULL)
2461                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2462                                  env->declaration->symbol);
2463                         else
2464                                 warningf(HERE, "excess elements in struct initializer");
2465                 }
2466
2467 error_parse_next:
2468                 if (token.type == '}') {
2469                         break;
2470                 }
2471                 expect(',');
2472                 if (token.type == '}') {
2473                         break;
2474                 }
2475
2476                 if (type != NULL) {
2477                         /* advance to the next declaration if we are not at the end */
2478                         advance_current_object(path, top_path_level);
2479                         orig_type = path->top_type;
2480                         if (orig_type != NULL)
2481                                 type = skip_typeref(orig_type);
2482                         else
2483                                 type = NULL;
2484                 }
2485         }
2486
2487         size_t len  = ARR_LEN(initializers);
2488         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2489         initializer_t *result = allocate_ast_zero(size);
2490         result->kind          = INITIALIZER_LIST;
2491         result->list.len      = len;
2492         memcpy(&result->list.initializers, initializers,
2493                len * sizeof(initializers[0]));
2494
2495         DEL_ARR_F(initializers);
2496         ascend_to(path, top_path_level+1);
2497
2498         return result;
2499
2500 end_error:
2501         skip_initializers();
2502         DEL_ARR_F(initializers);
2503         ascend_to(path, top_path_level+1);
2504         return NULL;
2505 }
2506
2507 /**
2508  * Parses an initializer. Parsers either a compound literal
2509  * (env->declaration == NULL) or an initializer of a declaration.
2510  */
2511 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2512 {
2513         type_t        *type   = skip_typeref(env->type);
2514         initializer_t *result = NULL;
2515         size_t         max_index;
2516
2517         if (is_type_scalar(type)) {
2518                 result = parse_scalar_initializer(type, env->must_be_constant);
2519         } else if (token.type == '{') {
2520                 eat('{');
2521
2522                 type_path_t path;
2523                 memset(&path, 0, sizeof(path));
2524                 path.top_type = env->type;
2525                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2526
2527                 descend_into_subtype(&path);
2528
2529                 add_anchor_token('}');
2530                 result = parse_sub_initializer(&path, env->type, 1, env);
2531                 rem_anchor_token('}');
2532
2533                 max_index = path.max_index;
2534                 DEL_ARR_F(path.path);
2535
2536                 expect('}');
2537         } else {
2538                 /* parse_scalar_initializer() also works in this case: we simply
2539                  * have an expression without {} around it */
2540                 result = parse_scalar_initializer(type, env->must_be_constant);
2541         }
2542
2543         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2544          * the array type size */
2545         if (is_type_array(type) && type->array.size_expression == NULL
2546                         && result != NULL) {
2547                 size_t size;
2548                 switch (result->kind) {
2549                 case INITIALIZER_LIST:
2550                         size = max_index + 1;
2551                         break;
2552
2553                 case INITIALIZER_STRING:
2554                         size = result->string.string.size;
2555                         break;
2556
2557                 case INITIALIZER_WIDE_STRING:
2558                         size = result->wide_string.string.size;
2559                         break;
2560
2561                 case INITIALIZER_DESIGNATOR:
2562                 case INITIALIZER_VALUE:
2563                         /* can happen for parse errors */
2564                         size = 0;
2565                         break;
2566
2567                 default:
2568                         internal_errorf(HERE, "invalid initializer type");
2569                 }
2570
2571                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2572                 cnst->base.type          = type_size_t;
2573                 cnst->conste.v.int_value = size;
2574
2575                 type_t *new_type = duplicate_type(type);
2576
2577                 new_type->array.size_expression = cnst;
2578                 new_type->array.size_constant   = true;
2579                 new_type->array.size            = size;
2580                 env->type = new_type;
2581         }
2582
2583         return result;
2584 end_error:
2585         return NULL;
2586 }
2587
2588 static declaration_t *append_declaration(declaration_t *declaration);
2589
2590 static declaration_t *parse_compound_type_specifier(bool is_struct)
2591 {
2592         gnu_attribute_t  *attributes = NULL;
2593         decl_modifiers_t  modifiers  = 0;
2594         if (is_struct) {
2595                 eat(T_struct);
2596         } else {
2597                 eat(T_union);
2598         }
2599
2600         symbol_t      *symbol      = NULL;
2601         declaration_t *declaration = NULL;
2602
2603         if (token.type == T___attribute__) {
2604                 modifiers |= parse_attributes(&attributes);
2605         }
2606
2607         if (token.type == T_IDENTIFIER) {
2608                 symbol = token.v.symbol;
2609                 next_token();
2610
2611                 namespace_t const namespc =
2612                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2613                 declaration = get_declaration(symbol, namespc);
2614                 if (declaration != NULL) {
2615                         if (declaration->parent_scope != scope &&
2616                             (token.type == '{' || token.type == ';')) {
2617                                 declaration = NULL;
2618                         } else if (declaration->init.complete &&
2619                                    token.type == '{') {
2620                                 assert(symbol != NULL);
2621                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2622                                        is_struct ? "struct" : "union", symbol,
2623                                        &declaration->source_position);
2624                                 declaration->scope.declarations = NULL;
2625                         }
2626                 }
2627         } else if (token.type != '{') {
2628                 if (is_struct) {
2629                         parse_error_expected("while parsing struct type specifier",
2630                                              T_IDENTIFIER, '{', NULL);
2631                 } else {
2632                         parse_error_expected("while parsing union type specifier",
2633                                              T_IDENTIFIER, '{', NULL);
2634                 }
2635
2636                 return NULL;
2637         }
2638
2639         if (declaration == NULL) {
2640                 declaration = allocate_declaration_zero();
2641                 declaration->namespc         =
2642                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2643                 declaration->source_position = token.source_position;
2644                 declaration->symbol          = symbol;
2645                 declaration->parent_scope    = scope;
2646                 if (symbol != NULL) {
2647                         environment_push(declaration);
2648                 }
2649                 append_declaration(declaration);
2650         }
2651
2652         if (token.type == '{') {
2653                 declaration->init.complete = true;
2654
2655                 parse_compound_type_entries(declaration);
2656                 modifiers |= parse_attributes(&attributes);
2657         }
2658
2659         declaration->modifiers |= modifiers;
2660         return declaration;
2661 }
2662
2663 static void parse_enum_entries(type_t *const enum_type)
2664 {
2665         eat('{');
2666
2667         if (token.type == '}') {
2668                 next_token();
2669                 errorf(HERE, "empty enum not allowed");
2670                 return;
2671         }
2672
2673         add_anchor_token('}');
2674         do {
2675                 if (token.type != T_IDENTIFIER) {
2676                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2677                         eat_block();
2678                         rem_anchor_token('}');
2679                         return;
2680                 }
2681
2682                 declaration_t *const entry = allocate_declaration_zero();
2683                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2684                 entry->type            = enum_type;
2685                 entry->symbol          = token.v.symbol;
2686                 entry->source_position = token.source_position;
2687                 next_token();
2688
2689                 if (token.type == '=') {
2690                         next_token();
2691                         expression_t *value = parse_constant_expression();
2692
2693                         value = create_implicit_cast(value, enum_type);
2694                         entry->init.enum_value = value;
2695
2696                         /* TODO semantic */
2697                 }
2698
2699                 record_declaration(entry);
2700
2701                 if (token.type != ',')
2702                         break;
2703                 next_token();
2704         } while (token.type != '}');
2705         rem_anchor_token('}');
2706
2707         expect('}');
2708
2709 end_error:
2710         ;
2711 }
2712
2713 static type_t *parse_enum_specifier(void)
2714 {
2715         gnu_attribute_t *attributes = NULL;
2716         declaration_t   *declaration;
2717         symbol_t        *symbol;
2718
2719         eat(T_enum);
2720         if (token.type == T_IDENTIFIER) {
2721                 symbol = token.v.symbol;
2722                 next_token();
2723
2724                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2725         } else if (token.type != '{') {
2726                 parse_error_expected("while parsing enum type specifier",
2727                                      T_IDENTIFIER, '{', NULL);
2728                 return NULL;
2729         } else {
2730                 declaration = NULL;
2731                 symbol      = NULL;
2732         }
2733
2734         if (declaration == NULL) {
2735                 declaration = allocate_declaration_zero();
2736                 declaration->namespc         = NAMESPACE_ENUM;
2737                 declaration->source_position = token.source_position;
2738                 declaration->symbol          = symbol;
2739                 declaration->parent_scope  = scope;
2740         }
2741
2742         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2743         type->enumt.declaration = declaration;
2744
2745         if (token.type == '{') {
2746                 if (declaration->init.complete) {
2747                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2748                 }
2749                 if (symbol != NULL) {
2750                         environment_push(declaration);
2751                 }
2752                 append_declaration(declaration);
2753                 declaration->init.complete = true;
2754
2755                 parse_enum_entries(type);
2756                 parse_attributes(&attributes);
2757         }
2758
2759         return type;
2760 }
2761
2762 /**
2763  * if a symbol is a typedef to another type, return true
2764  */
2765 static bool is_typedef_symbol(symbol_t *symbol)
2766 {
2767         const declaration_t *const declaration =
2768                 get_declaration(symbol, NAMESPACE_NORMAL);
2769         return
2770                 declaration != NULL &&
2771                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2772 }
2773
2774 static type_t *parse_typeof(void)
2775 {
2776         eat(T___typeof__);
2777
2778         type_t *type;
2779
2780         expect('(');
2781         add_anchor_token(')');
2782
2783         expression_t *expression  = NULL;
2784
2785 restart:
2786         switch(token.type) {
2787         case T___extension__:
2788                 /* This can be a prefix to a typename or an expression.  We simply eat
2789                  * it now. */
2790                 do {
2791                         next_token();
2792                 } while (token.type == T___extension__);
2793                 goto restart;
2794
2795         case T_IDENTIFIER:
2796                 if (is_typedef_symbol(token.v.symbol)) {
2797                         type = parse_typename();
2798                 } else {
2799                         expression = parse_expression();
2800                         type       = expression->base.type;
2801                 }
2802                 break;
2803
2804         TYPENAME_START
2805                 type = parse_typename();
2806                 break;
2807
2808         default:
2809                 expression = parse_expression();
2810                 type       = expression->base.type;
2811                 break;
2812         }
2813
2814         rem_anchor_token(')');
2815         expect(')');
2816
2817         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2818         typeof_type->typeoft.expression  = expression;
2819         typeof_type->typeoft.typeof_type = type;
2820
2821         return typeof_type;
2822 end_error:
2823         return NULL;
2824 }
2825
2826 typedef enum specifiers_t {
2827         SPECIFIER_SIGNED    = 1 << 0,
2828         SPECIFIER_UNSIGNED  = 1 << 1,
2829         SPECIFIER_LONG      = 1 << 2,
2830         SPECIFIER_INT       = 1 << 3,
2831         SPECIFIER_DOUBLE    = 1 << 4,
2832         SPECIFIER_CHAR      = 1 << 5,
2833         SPECIFIER_SHORT     = 1 << 6,
2834         SPECIFIER_LONG_LONG = 1 << 7,
2835         SPECIFIER_FLOAT     = 1 << 8,
2836         SPECIFIER_BOOL      = 1 << 9,
2837         SPECIFIER_VOID      = 1 << 10,
2838         SPECIFIER_INT8      = 1 << 11,
2839         SPECIFIER_INT16     = 1 << 12,
2840         SPECIFIER_INT32     = 1 << 13,
2841         SPECIFIER_INT64     = 1 << 14,
2842         SPECIFIER_INT128    = 1 << 15,
2843         SPECIFIER_COMPLEX   = 1 << 16,
2844         SPECIFIER_IMAGINARY = 1 << 17,
2845 } specifiers_t;
2846
2847 static type_t *create_builtin_type(symbol_t *const symbol,
2848                                    type_t *const real_type)
2849 {
2850         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2851         type->builtin.symbol    = symbol;
2852         type->builtin.real_type = real_type;
2853
2854         type_t *result = typehash_insert(type);
2855         if (type != result) {
2856                 free_type(type);
2857         }
2858
2859         return result;
2860 }
2861
2862 static type_t *get_typedef_type(symbol_t *symbol)
2863 {
2864         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2865         if (declaration == NULL ||
2866            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2867                 return NULL;
2868
2869         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2870         type->typedeft.declaration = declaration;
2871
2872         return type;
2873 }
2874
2875 /**
2876  * check for the allowed MS alignment values.
2877  */
2878 static bool check_alignment_value(long long intvalue)
2879 {
2880         if (intvalue < 1 || intvalue > 8192) {
2881                 errorf(HERE, "illegal alignment value");
2882                 return false;
2883         }
2884         unsigned v = (unsigned)intvalue;
2885         for(unsigned i = 1; i <= 8192; i += i) {
2886                 if (i == v)
2887                         return true;
2888         }
2889         errorf(HERE, "alignment must be power of two");
2890         return false;
2891 }
2892
2893 #define DET_MOD(name, tag) do { \
2894         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2895         *modifiers |= tag; \
2896 } while (0)
2897
2898 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2899 {
2900         decl_modifiers_t *modifiers = &specifiers->modifiers;
2901
2902         while (true) {
2903                 if (token.type == T_restrict) {
2904                         next_token();
2905                         DET_MOD(restrict, DM_RESTRICT);
2906                         goto end_loop;
2907                 } else if (token.type != T_IDENTIFIER)
2908                         break;
2909                 symbol_t *symbol = token.v.symbol;
2910                 if (symbol == sym_align) {
2911                         next_token();
2912                         expect('(');
2913                         if (token.type != T_INTEGER)
2914                                 goto end_error;
2915                         if (check_alignment_value(token.v.intvalue)) {
2916                                 if (specifiers->alignment != 0)
2917                                         warningf(HERE, "align used more than once");
2918                                 specifiers->alignment = (unsigned char)token.v.intvalue;
2919                         }
2920                         next_token();
2921                         expect(')');
2922                 } else if (symbol == sym_allocate) {
2923                         next_token();
2924                         expect('(');
2925                         if (token.type != T_IDENTIFIER)
2926                                 goto end_error;
2927                         (void)token.v.symbol;
2928                         expect(')');
2929                 } else if (symbol == sym_dllimport) {
2930                         next_token();
2931                         DET_MOD(dllimport, DM_DLLIMPORT);
2932                 } else if (symbol == sym_dllexport) {
2933                         next_token();
2934                         DET_MOD(dllexport, DM_DLLEXPORT);
2935                 } else if (symbol == sym_thread) {
2936                         next_token();
2937                         DET_MOD(thread, DM_THREAD);
2938                 } else if (symbol == sym_naked) {
2939                         next_token();
2940                         DET_MOD(naked, DM_NAKED);
2941                 } else if (symbol == sym_noinline) {
2942                         next_token();
2943                         DET_MOD(noinline, DM_NOINLINE);
2944                 } else if (symbol == sym_noreturn) {
2945                         next_token();
2946                         DET_MOD(noreturn, DM_NORETURN);
2947                 } else if (symbol == sym_nothrow) {
2948                         next_token();
2949                         DET_MOD(nothrow, DM_NOTHROW);
2950                 } else if (symbol == sym_novtable) {
2951                         next_token();
2952                         DET_MOD(novtable, DM_NOVTABLE);
2953                 } else if (symbol == sym_property) {
2954                         next_token();
2955                         expect('(');
2956                         for(;;) {
2957                                 bool is_get = false;
2958                                 if (token.type != T_IDENTIFIER)
2959                                         goto end_error;
2960                                 if (token.v.symbol == sym_get) {
2961                                         is_get = true;
2962                                 } else if (token.v.symbol == sym_put) {
2963                                 } else {
2964                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
2965                                         goto end_error;
2966                                 }
2967                                 next_token();
2968                                 expect('=');
2969                                 if (token.type != T_IDENTIFIER)
2970                                         goto end_error;
2971                                 if (is_get) {
2972                                         if (specifiers->get_property_sym != NULL) {
2973                                                 errorf(HERE, "get property name already specified");
2974                                         } else {
2975                                                 specifiers->get_property_sym = token.v.symbol;
2976                                         }
2977                                 } else {
2978                                         if (specifiers->put_property_sym != NULL) {
2979                                                 errorf(HERE, "put property name already specified");
2980                                         } else {
2981                                                 specifiers->put_property_sym = token.v.symbol;
2982                                         }
2983                                 }
2984                                 next_token();
2985                                 if (token.type == ',') {
2986                                         next_token();
2987                                         continue;
2988                                 }
2989                                 break;
2990                         }
2991                         expect(')');
2992                 } else if (symbol == sym_selectany) {
2993                         next_token();
2994                         DET_MOD(selectany, DM_SELECTANY);
2995                 } else if (symbol == sym_uuid) {
2996                         next_token();
2997                         expect('(');
2998                         if (token.type != T_STRING_LITERAL)
2999                                 goto end_error;
3000                         next_token();
3001                         expect(')');
3002                 } else if (symbol == sym_deprecated) {
3003                         next_token();
3004                         if (specifiers->deprecated != 0)
3005                                 warningf(HERE, "deprecated used more than once");
3006                         specifiers->deprecated = 1;
3007                         if (token.type == '(') {
3008                                 next_token();
3009                                 if (token.type == T_STRING_LITERAL) {
3010                                         specifiers->deprecated_string = token.v.string.begin;
3011                                         next_token();
3012                                 } else {
3013                                         errorf(HERE, "string literal expected");
3014                                 }
3015                                 expect(')');
3016                         }
3017                 } else if (symbol == sym_noalias) {
3018                         next_token();
3019                         DET_MOD(noalias, DM_NOALIAS);
3020                 } else {
3021                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3022                         next_token();
3023                         if (token.type == '(')
3024                                 skip_until(')');
3025                 }
3026 end_loop:
3027                 if (token.type == ',')
3028                         next_token();
3029         }
3030 end_error:
3031         return;
3032 }
3033
3034 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3035 {
3036         type_t            *type            = NULL;
3037         type_qualifiers_t  qualifiers      = TYPE_QUALIFIER_NONE;
3038         type_modifiers_t   modifiers       = TYPE_MODIFIER_NONE;
3039         unsigned           type_specifiers = 0;
3040         int                newtype         = 0;
3041
3042         specifiers->source_position = token.source_position;
3043
3044         while (true) {
3045                 specifiers->modifiers
3046                         |= parse_attributes(&specifiers->gnu_attributes);
3047                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3048                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3049
3050                 switch(token.type) {
3051
3052                 /* storage class */
3053 #define MATCH_STORAGE_CLASS(token, class)                                  \
3054                 case token:                                                        \
3055                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3056                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3057                         }                                                              \
3058                         specifiers->declared_storage_class = class;                    \
3059                         next_token();                                                  \
3060                         break;
3061
3062                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3063                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3064                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3065                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3066                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3067
3068                 case T__declspec:
3069                         next_token();
3070                         expect('(');
3071                         add_anchor_token(')');
3072                         parse_microsoft_extended_decl_modifier(specifiers);
3073                         rem_anchor_token(')');
3074                         expect(')');
3075                         break;
3076
3077                 case T___thread:
3078                         switch (specifiers->declared_storage_class) {
3079                         case STORAGE_CLASS_NONE:
3080                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3081                                 break;
3082
3083                         case STORAGE_CLASS_EXTERN:
3084                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3085                                 break;
3086
3087                         case STORAGE_CLASS_STATIC:
3088                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3089                                 break;
3090
3091                         default:
3092                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3093                                 break;
3094                         }
3095                         next_token();
3096                         break;
3097
3098                 /* type qualifiers */
3099 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3100                 case token:                                                     \
3101                         qualifiers |= qualifier;                                    \
3102                         next_token();                                               \
3103                         break
3104
3105                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3106                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3107                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3108                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3109                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3110                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3111                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3112                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3113
3114                 case T___extension__:
3115                         /* TODO */
3116                         next_token();
3117                         break;
3118
3119                 /* type specifiers */
3120 #define MATCH_SPECIFIER(token, specifier, name)                         \
3121                 case token:                                                     \
3122                         next_token();                                               \
3123                         if (type_specifiers & specifier) {                           \
3124                                 errorf(HERE, "multiple " name " type specifiers given"); \
3125                         } else {                                                    \
3126                                 type_specifiers |= specifier;                           \
3127                         }                                                           \
3128                         break
3129
3130                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3131                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3132                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3133                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3134                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3135                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3136                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3137                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3138                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3139                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3140                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3141                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3142                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3143                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3144                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3145                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3146
3147                 case T__forceinline:
3148                         /* only in microsoft mode */
3149                         specifiers->modifiers |= DM_FORCEINLINE;
3150
3151                 case T_inline:
3152                         next_token();
3153                         specifiers->is_inline = true;
3154                         break;
3155
3156                 case T_long:
3157                         next_token();
3158                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3159                                 errorf(HERE, "multiple type specifiers given");
3160                         } else if (type_specifiers & SPECIFIER_LONG) {
3161                                 type_specifiers |= SPECIFIER_LONG_LONG;
3162                         } else {
3163                                 type_specifiers |= SPECIFIER_LONG;
3164                         }
3165                         break;
3166
3167                 case T_struct: {
3168                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3169
3170                         type->compound.declaration = parse_compound_type_specifier(true);
3171                         break;
3172                 }
3173                 case T_union: {
3174                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3175                         type->compound.declaration = parse_compound_type_specifier(false);
3176                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3177                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3178                         break;
3179                 }
3180                 case T_enum:
3181                         type = parse_enum_specifier();
3182                         break;
3183                 case T___typeof__:
3184                         type = parse_typeof();
3185                         break;
3186                 case T___builtin_va_list:
3187                         type = duplicate_type(type_valist);
3188                         next_token();
3189                         break;
3190
3191                 case T_IDENTIFIER: {
3192                         /* only parse identifier if we haven't found a type yet */
3193                         if (type != NULL || type_specifiers != 0)
3194                                 goto finish_specifiers;
3195
3196                         type_t *typedef_type = get_typedef_type(token.v.symbol);
3197
3198                         if (typedef_type == NULL)
3199                                 goto finish_specifiers;
3200
3201                         next_token();
3202                         type = typedef_type;
3203                         break;
3204                 }
3205
3206                 /* function specifier */
3207                 default:
3208                         goto finish_specifiers;
3209                 }
3210         }
3211
3212 finish_specifiers:
3213
3214         if (type == NULL) {
3215                 atomic_type_kind_t atomic_type;
3216
3217                 /* match valid basic types */
3218                 switch(type_specifiers) {
3219                 case SPECIFIER_VOID:
3220                         atomic_type = ATOMIC_TYPE_VOID;
3221                         break;
3222                 case SPECIFIER_CHAR:
3223                         atomic_type = ATOMIC_TYPE_CHAR;
3224                         break;
3225                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3226                         atomic_type = ATOMIC_TYPE_SCHAR;
3227                         break;
3228                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3229                         atomic_type = ATOMIC_TYPE_UCHAR;
3230                         break;
3231                 case SPECIFIER_SHORT:
3232                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3233                 case SPECIFIER_SHORT | SPECIFIER_INT:
3234                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3235                         atomic_type = ATOMIC_TYPE_SHORT;
3236                         break;
3237                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3238                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3239                         atomic_type = ATOMIC_TYPE_USHORT;
3240                         break;
3241                 case SPECIFIER_INT:
3242                 case SPECIFIER_SIGNED:
3243                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3244                         atomic_type = ATOMIC_TYPE_INT;
3245                         break;
3246                 case SPECIFIER_UNSIGNED:
3247                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3248                         atomic_type = ATOMIC_TYPE_UINT;
3249                         break;
3250                 case SPECIFIER_LONG:
3251                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3252                 case SPECIFIER_LONG | SPECIFIER_INT:
3253                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3254                         atomic_type = ATOMIC_TYPE_LONG;
3255                         break;
3256                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3257                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3258                         atomic_type = ATOMIC_TYPE_ULONG;
3259                         break;
3260                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3261                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3262                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3263                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3264                         | SPECIFIER_INT:
3265                         atomic_type = ATOMIC_TYPE_LONGLONG;
3266                         break;
3267                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3268                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3269                         | SPECIFIER_INT:
3270                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3271                         break;
3272
3273                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3274                         atomic_type = unsigned_int8_type_kind;
3275                         break;
3276
3277                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3278                         atomic_type = unsigned_int16_type_kind;
3279                         break;
3280
3281                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3282                         atomic_type = unsigned_int32_type_kind;
3283                         break;
3284
3285                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3286                         atomic_type = unsigned_int64_type_kind;
3287                         break;
3288
3289                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3290                         atomic_type = unsigned_int128_type_kind;
3291                         break;
3292
3293                 case SPECIFIER_INT8:
3294                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3295                         atomic_type = int8_type_kind;
3296                         break;
3297
3298                 case SPECIFIER_INT16:
3299                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3300                         atomic_type = int16_type_kind;
3301                         break;
3302
3303                 case SPECIFIER_INT32:
3304                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3305                         atomic_type = int32_type_kind;
3306                         break;
3307
3308                 case SPECIFIER_INT64:
3309                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3310                         atomic_type = int64_type_kind;
3311                         break;
3312
3313                 case SPECIFIER_INT128:
3314                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3315                         atomic_type = int128_type_kind;
3316                         break;
3317
3318                 case SPECIFIER_FLOAT:
3319                         atomic_type = ATOMIC_TYPE_FLOAT;
3320                         break;
3321                 case SPECIFIER_DOUBLE:
3322                         atomic_type = ATOMIC_TYPE_DOUBLE;
3323                         break;
3324                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3325                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3326                         break;
3327                 case SPECIFIER_BOOL:
3328                         atomic_type = ATOMIC_TYPE_BOOL;
3329                         break;
3330                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3331                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3332                         atomic_type = ATOMIC_TYPE_FLOAT;
3333                         break;
3334                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3335                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3336                         atomic_type = ATOMIC_TYPE_DOUBLE;
3337                         break;
3338                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3339                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3340                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3341                         break;
3342                 default:
3343                         /* invalid specifier combination, give an error message */
3344                         if (type_specifiers == 0) {
3345                                 if (! strict_mode) {
3346                                         if (warning.implicit_int) {
3347                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3348                                         }
3349                                         atomic_type = ATOMIC_TYPE_INT;
3350                                         break;
3351                                 } else {
3352                                         errorf(HERE, "no type specifiers given in declaration");
3353                                 }
3354                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3355                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3356                                 errorf(HERE, "signed and unsigned specifiers gives");
3357                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3358                                 errorf(HERE, "only integer types can be signed or unsigned");
3359                         } else {
3360                                 errorf(HERE, "multiple datatypes in declaration");
3361                         }
3362                         atomic_type = ATOMIC_TYPE_INVALID;
3363                 }
3364
3365                 if (type_specifiers & SPECIFIER_COMPLEX &&
3366                    atomic_type != ATOMIC_TYPE_INVALID) {
3367                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3368                         type->complex.akind = atomic_type;
3369                 } else if (type_specifiers & SPECIFIER_IMAGINARY &&
3370                           atomic_type != ATOMIC_TYPE_INVALID) {
3371                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3372                         type->imaginary.akind = atomic_type;
3373                 } else {
3374                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3375                         type->atomic.akind = atomic_type;
3376                 }
3377                 newtype = 1;
3378         } else {
3379                 if (type_specifiers != 0) {
3380                         errorf(HERE, "multiple datatypes in declaration");
3381                 }
3382         }
3383
3384         /* FIXME: check type qualifiers here */
3385
3386         type->base.qualifiers = qualifiers;
3387         type->base.modifiers  = modifiers;
3388
3389         type_t *result = typehash_insert(type);
3390         if (newtype && result != type) {
3391                 free_type(type);
3392         }
3393
3394         specifiers->type = result;
3395 end_error:
3396         return;
3397 }
3398
3399 static type_qualifiers_t parse_type_qualifiers(void)
3400 {
3401         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3402
3403         while (true) {
3404                 switch(token.type) {
3405                 /* type qualifiers */
3406                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3407                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3408                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3409                 /* microsoft extended type modifiers */
3410                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3411                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3412                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3413                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3414                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3415
3416                 default:
3417                         return qualifiers;
3418                 }
3419         }
3420 }
3421
3422 static declaration_t *parse_identifier_list(void)
3423 {
3424         declaration_t *declarations     = NULL;
3425         declaration_t *last_declaration = NULL;
3426         do {
3427                 declaration_t *const declaration = allocate_declaration_zero();
3428                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3429                 declaration->source_position = token.source_position;
3430                 declaration->symbol          = token.v.symbol;
3431                 next_token();
3432
3433                 if (last_declaration != NULL) {
3434                         last_declaration->next = declaration;
3435                 } else {
3436                         declarations = declaration;
3437                 }
3438                 last_declaration = declaration;
3439
3440                 if (token.type != ',') {
3441                         break;
3442                 }
3443                 next_token();
3444         } while (token.type == T_IDENTIFIER);
3445
3446         return declarations;
3447 }
3448
3449 static type_t *automatic_type_conversion(type_t *orig_type);
3450
3451 static void semantic_parameter(declaration_t *declaration)
3452 {
3453         /* TODO: improve error messages */
3454
3455         if (declaration->declared_storage_class == STORAGE_CLASS_TYPEDEF) {
3456                 errorf(HERE, "typedef not allowed in parameter list");
3457         } else if (declaration->declared_storage_class != STORAGE_CLASS_NONE
3458                         && declaration->declared_storage_class != STORAGE_CLASS_REGISTER) {
3459                 errorf(HERE, "parameter may only have none or register storage class");
3460         }
3461
3462         type_t *const orig_type = declaration->type;
3463         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3464          * sugar.  Turn it into a pointer.
3465          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3466          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3467          */
3468         type_t *const type = automatic_type_conversion(orig_type);
3469         declaration->type = type;
3470
3471         if (is_type_incomplete(skip_typeref(type))) {
3472                 errorf(HERE, "incomplete type '%T' not allowed for parameter '%Y'",
3473                        orig_type, declaration->symbol);
3474         }
3475 }
3476
3477 static declaration_t *parse_parameter(void)
3478 {
3479         declaration_specifiers_t specifiers;
3480         memset(&specifiers, 0, sizeof(specifiers));
3481
3482         parse_declaration_specifiers(&specifiers);
3483
3484         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3485
3486         return declaration;
3487 }
3488
3489 static declaration_t *parse_parameters(function_type_t *type)
3490 {
3491         declaration_t *declarations = NULL;
3492
3493         eat('(');
3494         add_anchor_token(')');
3495         int saved_comma_state = save_and_reset_anchor_state(',');
3496
3497         if (token.type == T_IDENTIFIER) {
3498                 symbol_t *symbol = token.v.symbol;
3499                 if (!is_typedef_symbol(symbol)) {
3500                         type->kr_style_parameters = true;
3501                         declarations = parse_identifier_list();
3502                         goto parameters_finished;
3503                 }
3504         }
3505
3506         if (token.type == ')') {
3507                 type->unspecified_parameters = 1;
3508                 goto parameters_finished;
3509         }
3510
3511         declaration_t        *declaration;
3512         declaration_t        *last_declaration = NULL;
3513         function_parameter_t *parameter;
3514         function_parameter_t *last_parameter = NULL;
3515
3516         while (true) {
3517                 switch(token.type) {
3518                 case T_DOTDOTDOT:
3519                         next_token();
3520                         type->variadic = 1;
3521                         goto parameters_finished;
3522
3523                 case T_IDENTIFIER:
3524                 case T___extension__:
3525                 DECLARATION_START
3526                         declaration = parse_parameter();
3527
3528                         /* func(void) is not a parameter */
3529                         if (last_parameter == NULL
3530                                         && token.type == ')'
3531                                         && declaration->symbol == NULL
3532                                         && skip_typeref(declaration->type) == type_void) {
3533                                 goto parameters_finished;
3534                         }
3535                         semantic_parameter(declaration);
3536
3537                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3538                         memset(parameter, 0, sizeof(parameter[0]));
3539                         parameter->type = declaration->type;
3540
3541                         if (last_parameter != NULL) {
3542                                 last_declaration->next = declaration;
3543                                 last_parameter->next   = parameter;
3544                         } else {
3545                                 type->parameters = parameter;
3546                                 declarations     = declaration;
3547                         }
3548                         last_parameter   = parameter;
3549                         last_declaration = declaration;
3550                         break;
3551
3552                 default:
3553                         goto parameters_finished;
3554                 }
3555                 if (token.type != ',') {
3556                         goto parameters_finished;
3557                 }
3558                 next_token();
3559         }
3560
3561
3562 parameters_finished:
3563         rem_anchor_token(')');
3564         expect(')');
3565
3566         restore_anchor_state(',', saved_comma_state);
3567         return declarations;
3568
3569 end_error:
3570         restore_anchor_state(',', saved_comma_state);
3571         return NULL;
3572 }
3573
3574 typedef enum construct_type_kind_t {
3575         CONSTRUCT_INVALID,
3576         CONSTRUCT_POINTER,
3577         CONSTRUCT_FUNCTION,
3578         CONSTRUCT_ARRAY
3579 } construct_type_kind_t;
3580
3581 typedef struct construct_type_t construct_type_t;
3582 struct construct_type_t {
3583         construct_type_kind_t  kind;
3584         construct_type_t      *next;
3585 };
3586
3587 typedef struct parsed_pointer_t parsed_pointer_t;
3588 struct parsed_pointer_t {
3589         construct_type_t  construct_type;
3590         type_qualifiers_t type_qualifiers;
3591 };
3592
3593 typedef struct construct_function_type_t construct_function_type_t;
3594 struct construct_function_type_t {
3595         construct_type_t  construct_type;
3596         type_t           *function_type;
3597 };
3598
3599 typedef struct parsed_array_t parsed_array_t;
3600 struct parsed_array_t {
3601         construct_type_t  construct_type;
3602         type_qualifiers_t type_qualifiers;
3603         bool              is_static;
3604         bool              is_variable;
3605         expression_t     *size;
3606 };
3607
3608 typedef struct construct_base_type_t construct_base_type_t;
3609 struct construct_base_type_t {
3610         construct_type_t  construct_type;
3611         type_t           *type;
3612 };
3613
3614 static construct_type_t *parse_pointer_declarator(void)
3615 {
3616         eat('*');
3617
3618         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3619         memset(pointer, 0, sizeof(pointer[0]));
3620         pointer->construct_type.kind = CONSTRUCT_POINTER;
3621         pointer->type_qualifiers     = parse_type_qualifiers();
3622
3623         return (construct_type_t*) pointer;
3624 }
3625
3626 static construct_type_t *parse_array_declarator(void)
3627 {
3628         eat('[');
3629         add_anchor_token(']');
3630
3631         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3632         memset(array, 0, sizeof(array[0]));
3633         array->construct_type.kind = CONSTRUCT_ARRAY;
3634
3635         if (token.type == T_static) {
3636                 array->is_static = true;
3637                 next_token();
3638         }
3639
3640         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3641         if (type_qualifiers != 0) {
3642                 if (token.type == T_static) {
3643                         array->is_static = true;
3644                         next_token();
3645                 }
3646         }
3647         array->type_qualifiers = type_qualifiers;
3648
3649         if (token.type == '*' && look_ahead(1)->type == ']') {
3650                 array->is_variable = true;
3651                 next_token();
3652         } else if (token.type != ']') {
3653                 array->size = parse_assignment_expression();
3654         }
3655
3656         rem_anchor_token(']');
3657         expect(']');
3658
3659         return (construct_type_t*) array;
3660 end_error:
3661         return NULL;
3662 }
3663
3664 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3665 {
3666         type_t *type;
3667         if (declaration != NULL) {
3668                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3669
3670                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3671
3672                 if (mask & (mask-1)) {
3673                         const char *first = NULL, *second = NULL;
3674
3675                         /* more than one calling convention set */
3676                         if (declaration->modifiers & DM_CDECL) {
3677                                 if (first == NULL)       first = "cdecl";
3678                                 else if (second == NULL) second = "cdecl";
3679                         }
3680                         if (declaration->modifiers & DM_STDCALL) {
3681                                 if (first == NULL)       first = "stdcall";
3682                                 else if (second == NULL) second = "stdcall";
3683                         }
3684                         if (declaration->modifiers & DM_FASTCALL) {
3685                                 if (first == NULL)       first = "faslcall";
3686                                 else if (second == NULL) second = "fastcall";
3687                         }
3688                         if (declaration->modifiers & DM_THISCALL) {
3689                                 if (first == NULL)       first = "thiscall";
3690                                 else if (second == NULL) second = "thiscall";
3691                         }
3692                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3693                 }
3694
3695                 if (declaration->modifiers & DM_CDECL)
3696                         type->function.calling_convention = CC_CDECL;
3697                 else if (declaration->modifiers & DM_STDCALL)
3698                         type->function.calling_convention = CC_STDCALL;
3699                 else if (declaration->modifiers & DM_FASTCALL)
3700                         type->function.calling_convention = CC_FASTCALL;
3701                 else if (declaration->modifiers & DM_THISCALL)
3702                         type->function.calling_convention = CC_THISCALL;
3703         } else {
3704                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3705         }
3706
3707         declaration_t *parameters = parse_parameters(&type->function);
3708         if (declaration != NULL) {
3709                 declaration->scope.declarations = parameters;
3710         }
3711
3712         construct_function_type_t *construct_function_type =
3713                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3714         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3715         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3716         construct_function_type->function_type       = type;
3717
3718         return &construct_function_type->construct_type;
3719 }
3720
3721 static void fix_declaration_type(declaration_t *declaration)
3722 {
3723         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3724         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3725
3726         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3727                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3728
3729         if (declaration->type->base.modifiers == type_modifiers)
3730                 return;
3731
3732         type_t *copy = duplicate_type(declaration->type);
3733         copy->base.modifiers = type_modifiers;
3734
3735         type_t *result = typehash_insert(copy);
3736         if (result != copy) {
3737                 obstack_free(type_obst, copy);
3738         }
3739
3740         declaration->type = result;
3741 }
3742
3743 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
3744                 bool may_be_abstract)
3745 {
3746         /* construct a single linked list of construct_type_t's which describe
3747          * how to construct the final declarator type */
3748         construct_type_t *first = NULL;
3749         construct_type_t *last  = NULL;
3750         gnu_attribute_t  *attributes = NULL;
3751
3752         decl_modifiers_t modifiers = parse_attributes(&attributes);
3753
3754         /* pointers */
3755         while (token.type == '*') {
3756                 construct_type_t *type = parse_pointer_declarator();
3757
3758                 if (last == NULL) {
3759                         first = type;
3760                         last  = type;
3761                 } else {
3762                         last->next = type;
3763                         last       = type;
3764                 }
3765
3766                 /* TODO: find out if this is correct */
3767                 modifiers |= parse_attributes(&attributes);
3768         }
3769
3770         construct_type_t *inner_types = NULL;
3771
3772         switch(token.type) {
3773         case T_IDENTIFIER:
3774                 if (declaration == NULL) {
3775                         errorf(HERE, "no identifier expected in typename");
3776                 } else {
3777                         declaration->symbol          = token.v.symbol;
3778                         declaration->source_position = token.source_position;
3779                 }
3780                 next_token();
3781                 break;
3782         case '(':
3783                 next_token();
3784                 add_anchor_token(')');
3785                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
3786                 rem_anchor_token(')');
3787                 expect(')');
3788                 break;
3789         default:
3790                 if (may_be_abstract)
3791                         break;
3792                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3793                 /* avoid a loop in the outermost scope, because eat_statement doesn't
3794                  * eat '}' */
3795                 if (token.type == '}' && current_function == NULL) {
3796                         next_token();
3797                 } else {
3798                         eat_statement();
3799                 }
3800                 return NULL;
3801         }
3802
3803         construct_type_t *p = last;
3804
3805         while(true) {
3806                 construct_type_t *type;
3807                 switch(token.type) {
3808                 case '(':
3809                         type = parse_function_declarator(declaration);
3810                         break;
3811                 case '[':
3812                         type = parse_array_declarator();
3813                         break;
3814                 default:
3815                         goto declarator_finished;
3816                 }
3817
3818                 /* insert in the middle of the list (behind p) */
3819                 if (p != NULL) {
3820                         type->next = p->next;
3821                         p->next    = type;
3822                 } else {
3823                         type->next = first;
3824                         first      = type;
3825                 }
3826                 if (last == p) {
3827                         last = type;
3828                 }
3829         }
3830
3831 declarator_finished:
3832         /* append inner_types at the end of the list, we don't to set last anymore
3833          * as it's not needed anymore */
3834         if (last == NULL) {
3835                 assert(first == NULL);
3836                 first = inner_types;
3837         } else {
3838                 last->next = inner_types;
3839         }
3840
3841         return first;
3842 end_error:
3843         return NULL;
3844 }
3845
3846 static void parse_declaration_attributes(declaration_t *declaration)
3847 {
3848         gnu_attribute_t  *attributes = NULL;
3849         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
3850
3851         if (declaration == NULL)
3852                 return;
3853
3854         declaration->modifiers |= modifiers;
3855         /* check if we have these stupid mode attributes... */
3856         type_t *old_type = declaration->type;
3857         if (old_type == NULL)
3858                 return;
3859
3860         gnu_attribute_t *attribute = attributes;
3861         for ( ; attribute != NULL; attribute = attribute->next) {
3862                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
3863                         continue;
3864
3865                 atomic_type_kind_t  akind = attribute->u.akind;
3866                 if (!is_type_signed(old_type)) {
3867                         switch(akind) {
3868                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
3869                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
3870                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
3871                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
3872                         default:
3873                                 panic("invalid akind in mode attribute");
3874                         }
3875                 }
3876                 declaration->type
3877                         = make_atomic_type(akind, old_type->base.qualifiers);
3878         }
3879 }
3880
3881 static type_t *construct_declarator_type(construct_type_t *construct_list,
3882                                          type_t *type)
3883 {
3884         construct_type_t *iter = construct_list;
3885         for( ; iter != NULL; iter = iter->next) {
3886                 switch(iter->kind) {
3887                 case CONSTRUCT_INVALID:
3888                         internal_errorf(HERE, "invalid type construction found");
3889                 case CONSTRUCT_FUNCTION: {
3890                         construct_function_type_t *construct_function_type
3891                                 = (construct_function_type_t*) iter;
3892
3893                         type_t *function_type = construct_function_type->function_type;
3894
3895                         function_type->function.return_type = type;
3896
3897                         type_t *skipped_return_type = skip_typeref(type);
3898                         if (is_type_function(skipped_return_type)) {
3899                                 errorf(HERE, "function returning function is not allowed");
3900                                 type = type_error_type;
3901                         } else if (is_type_array(skipped_return_type)) {
3902                                 errorf(HERE, "function returning array is not allowed");
3903                                 type = type_error_type;
3904                         } else {
3905                                 type = function_type;
3906                         }
3907                         break;
3908                 }
3909
3910                 case CONSTRUCT_POINTER: {
3911                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
3912                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
3913                         pointer_type->pointer.points_to  = type;
3914                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
3915
3916                         type = pointer_type;
3917                         break;
3918                 }
3919
3920                 case CONSTRUCT_ARRAY: {
3921                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
3922                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
3923
3924                         expression_t *size_expression = parsed_array->size;
3925                         if (size_expression != NULL) {
3926                                 size_expression
3927                                         = create_implicit_cast(size_expression, type_size_t);
3928                         }
3929
3930                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
3931                         array_type->array.element_type    = type;
3932                         array_type->array.is_static       = parsed_array->is_static;
3933                         array_type->array.is_variable     = parsed_array->is_variable;
3934                         array_type->array.size_expression = size_expression;
3935
3936                         if (size_expression != NULL) {
3937                                 if (is_constant_expression(size_expression)) {
3938                                         array_type->array.size_constant = true;
3939                                         array_type->array.size
3940                                                 = fold_constant(size_expression);
3941                                 } else {
3942                                         array_type->array.is_vla = true;
3943                                 }
3944                         }
3945
3946                         type_t *skipped_type = skip_typeref(type);
3947                         if (is_type_atomic(skipped_type, ATOMIC_TYPE_VOID)) {
3948                                 errorf(HERE, "array of void is not allowed");
3949                                 type = type_error_type;
3950                         } else {
3951                                 type = array_type;
3952                         }
3953                         break;
3954                 }
3955                 }
3956
3957                 type_t *hashed_type = typehash_insert(type);
3958                 if (hashed_type != type) {
3959                         /* the function type was constructed earlier freeing it here will
3960                          * destroy other types... */
3961                         if (iter->kind != CONSTRUCT_FUNCTION) {
3962                                 free_type(type);
3963                         }
3964                         type = hashed_type;
3965                 }
3966         }
3967
3968         return type;
3969 }
3970
3971 static declaration_t *parse_declarator(
3972                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
3973 {
3974         declaration_t *const declaration    = allocate_declaration_zero();
3975         declaration->declared_storage_class = specifiers->declared_storage_class;
3976         declaration->modifiers              = specifiers->modifiers;
3977         declaration->deprecated             = specifiers->deprecated;
3978         declaration->deprecated_string      = specifiers->deprecated_string;
3979         declaration->get_property_sym       = specifiers->get_property_sym;
3980         declaration->put_property_sym       = specifiers->put_property_sym;
3981         declaration->is_inline              = specifiers->is_inline;
3982
3983         declaration->storage_class          = specifiers->declared_storage_class;
3984         if (declaration->storage_class == STORAGE_CLASS_NONE
3985                         && scope != global_scope) {
3986                 declaration->storage_class = STORAGE_CLASS_AUTO;
3987         }
3988
3989         if (specifiers->alignment != 0) {
3990                 /* TODO: add checks here */
3991                 declaration->alignment = specifiers->alignment;
3992         }
3993
3994         construct_type_t *construct_type
3995                 = parse_inner_declarator(declaration, may_be_abstract);
3996         type_t *const type = specifiers->type;
3997         declaration->type = construct_declarator_type(construct_type, type);
3998
3999         parse_declaration_attributes(declaration);
4000
4001         fix_declaration_type(declaration);
4002
4003         if (construct_type != NULL) {
4004                 obstack_free(&temp_obst, construct_type);
4005         }
4006
4007         return declaration;
4008 }
4009
4010 static type_t *parse_abstract_declarator(type_t *base_type)
4011 {
4012         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4013
4014         type_t *result = construct_declarator_type(construct_type, base_type);
4015         if (construct_type != NULL) {
4016                 obstack_free(&temp_obst, construct_type);
4017         }
4018
4019         return result;
4020 }
4021
4022 static declaration_t *append_declaration(declaration_t* const declaration)
4023 {
4024         if (last_declaration != NULL) {
4025                 last_declaration->next = declaration;
4026         } else {
4027                 scope->declarations = declaration;
4028         }
4029         last_declaration = declaration;
4030         return declaration;
4031 }
4032
4033 /**
4034  * Check if the declaration of main is suspicious.  main should be a
4035  * function with external linkage, returning int, taking either zero
4036  * arguments, two, or three arguments of appropriate types, ie.
4037  *
4038  * int main([ int argc, char **argv [, char **env ] ]).
4039  *
4040  * @param decl    the declaration to check
4041  * @param type    the function type of the declaration
4042  */
4043 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4044 {
4045         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4046                 warningf(&decl->source_position,
4047                          "'main' is normally a non-static function");
4048         }
4049         if (skip_typeref(func_type->return_type) != type_int) {
4050                 warningf(&decl->source_position,
4051                          "return type of 'main' should be 'int', but is '%T'",
4052                          func_type->return_type);
4053         }
4054         const function_parameter_t *parm = func_type->parameters;
4055         if (parm != NULL) {
4056                 type_t *const first_type = parm->type;
4057                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4058                         warningf(&decl->source_position,
4059                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4060                 }
4061                 parm = parm->next;
4062                 if (parm != NULL) {
4063                         type_t *const second_type = parm->type;
4064                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4065                                 warningf(&decl->source_position,
4066                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4067                         }
4068                         parm = parm->next;
4069                         if (parm != NULL) {
4070                                 type_t *const third_type = parm->type;
4071                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4072                                         warningf(&decl->source_position,
4073                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4074                                 }
4075                                 parm = parm->next;
4076                                 if (parm != NULL)
4077                                         goto warn_arg_count;
4078                         }
4079                 } else {
4080 warn_arg_count:
4081                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4082                 }
4083         }
4084 }
4085
4086 /**
4087  * Check if a symbol is the equal to "main".
4088  */
4089 static bool is_sym_main(const symbol_t *const sym)
4090 {
4091         return strcmp(sym->string, "main") == 0;
4092 }
4093
4094 static declaration_t *internal_record_declaration(
4095         declaration_t *const declaration,
4096         const bool is_definition)
4097 {
4098         const symbol_t *const symbol  = declaration->symbol;
4099         const namespace_t     namespc = (namespace_t)declaration->namespc;
4100
4101         assert(declaration->symbol != NULL);
4102         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4103
4104         type_t *const orig_type = declaration->type;
4105         type_t *const type      = skip_typeref(orig_type);
4106         if (is_type_function(type) &&
4107                         type->function.unspecified_parameters &&
4108                         warning.strict_prototypes &&
4109                         previous_declaration == NULL) {
4110                 warningf(&declaration->source_position,
4111                          "function declaration '%#T' is not a prototype",
4112                          orig_type, declaration->symbol);
4113         }
4114
4115         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4116                 check_type_of_main(declaration, &type->function);
4117         }
4118
4119         assert(declaration != previous_declaration);
4120         if (previous_declaration != NULL
4121                         && previous_declaration->parent_scope == scope) {
4122                 /* can happen for K&R style declarations */
4123                 if (previous_declaration->type == NULL) {
4124                         previous_declaration->type = declaration->type;
4125                 }
4126
4127                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4128                 if (!types_compatible(type, prev_type)) {
4129                         errorf(&declaration->source_position,
4130                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4131                                    orig_type, symbol, previous_declaration->type, symbol,
4132                                    &previous_declaration->source_position);
4133                 } else {
4134                         unsigned old_storage_class = previous_declaration->storage_class;
4135                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4136                                 errorf(&declaration->source_position,
4137                                            "redeclaration of enum entry '%Y' (declared %P)",
4138                                            symbol, &previous_declaration->source_position);
4139                                 return previous_declaration;
4140                         }
4141
4142                         if (warning.redundant_decls                                     &&
4143                             is_definition                                               &&
4144                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4145                             !(previous_declaration->modifiers & DM_USED)                &&
4146                             !previous_declaration->used) {
4147                                 warningf(&previous_declaration->source_position,
4148                                          "unnecessary static forward declaration for '%#T'",
4149                                          previous_declaration->type, symbol);
4150                         }
4151
4152                         unsigned new_storage_class = declaration->storage_class;
4153
4154                         if (is_type_incomplete(prev_type)) {
4155                                 previous_declaration->type = type;
4156                                 prev_type                  = type;
4157                         }
4158
4159                         /* pretend no storage class means extern for function
4160                          * declarations (except if the previous declaration is neither
4161                          * none nor extern) */
4162                         if (is_type_function(type)) {
4163                                 if (prev_type->function.unspecified_parameters) {
4164                                         previous_declaration->type = type;
4165                                         prev_type                  = type;
4166                                 }
4167
4168                                 switch (old_storage_class) {
4169                                 case STORAGE_CLASS_NONE:
4170                                         old_storage_class = STORAGE_CLASS_EXTERN;
4171                                         /* FALLTHROUGH */
4172
4173                                 case STORAGE_CLASS_EXTERN:
4174                                         if (is_definition) {
4175                                                 if (warning.missing_prototypes &&
4176                                                     prev_type->function.unspecified_parameters &&
4177                                                     !is_sym_main(symbol)) {
4178                                                         warningf(&declaration->source_position,
4179                                                                          "no previous prototype for '%#T'",
4180                                                                          orig_type, symbol);
4181                                                 }
4182                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4183                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4184                                         }
4185                                         break;
4186
4187                                 default:
4188                                         break;
4189                                 }
4190                         }
4191
4192                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4193                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4194 warn_redundant_declaration:
4195                                 if (!is_definition          &&
4196                                     warning.redundant_decls &&
4197                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4198                                         warningf(&declaration->source_position,
4199                                                  "redundant declaration for '%Y' (declared %P)",
4200                                                  symbol, &previous_declaration->source_position);
4201                                 }
4202                         } else if (current_function == NULL) {
4203                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4204                                     new_storage_class == STORAGE_CLASS_STATIC) {
4205                                         errorf(&declaration->source_position,
4206                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4207                                                symbol, &previous_declaration->source_position);
4208                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4209                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4210                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4211                                 } else {
4212                                         goto warn_redundant_declaration;
4213                                 }
4214                         } else if (old_storage_class == new_storage_class) {
4215                                 errorf(&declaration->source_position,
4216                                        "redeclaration of '%Y' (declared %P)",
4217                                        symbol, &previous_declaration->source_position);
4218                         } else {
4219                                 errorf(&declaration->source_position,
4220                                        "redeclaration of '%Y' with different linkage (declared %P)",
4221                                        symbol, &previous_declaration->source_position);
4222                         }
4223                 }
4224
4225                 if (declaration->is_inline)
4226                         previous_declaration->is_inline = true;
4227                 return previous_declaration;
4228         } else if (is_type_function(type)) {
4229                 if (is_definition &&
4230                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4231                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4232                                 warningf(&declaration->source_position,
4233                                          "no previous prototype for '%#T'", orig_type, symbol);
4234                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4235                                 warningf(&declaration->source_position,
4236                                          "no previous declaration for '%#T'", orig_type,
4237                                          symbol);
4238                         }
4239                 }
4240         } else {
4241                 if (warning.missing_declarations &&
4242                     scope == global_scope && (
4243                       declaration->storage_class == STORAGE_CLASS_NONE ||
4244                       declaration->storage_class == STORAGE_CLASS_THREAD
4245                     )) {
4246                         warningf(&declaration->source_position,
4247                                  "no previous declaration for '%#T'", orig_type, symbol);
4248                 }
4249         }
4250
4251         assert(declaration->parent_scope == NULL);
4252         assert(scope != NULL);
4253
4254         declaration->parent_scope = scope;
4255
4256         environment_push(declaration);
4257         return append_declaration(declaration);
4258 }
4259
4260 static declaration_t *record_declaration(declaration_t *declaration)
4261 {
4262         return internal_record_declaration(declaration, false);
4263 }
4264
4265 static declaration_t *record_definition(declaration_t *declaration)
4266 {
4267         return internal_record_declaration(declaration, true);
4268 }
4269
4270 static void parser_error_multiple_definition(declaration_t *declaration,
4271                 const source_position_t *source_position)
4272 {
4273         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4274                declaration->symbol, &declaration->source_position);
4275 }
4276
4277 static bool is_declaration_specifier(const token_t *token,
4278                                      bool only_specifiers_qualifiers)
4279 {
4280         switch(token->type) {
4281                 TYPE_SPECIFIERS
4282                 TYPE_QUALIFIERS
4283                         return true;
4284                 case T_IDENTIFIER:
4285                         return is_typedef_symbol(token->v.symbol);
4286
4287                 case T___extension__:
4288                 STORAGE_CLASSES
4289                         return !only_specifiers_qualifiers;
4290
4291                 default:
4292                         return false;
4293         }
4294 }
4295
4296 static void parse_init_declarator_rest(declaration_t *declaration)
4297 {
4298         eat('=');
4299
4300         type_t *orig_type = declaration->type;
4301         type_t *type      = skip_typeref(orig_type);
4302
4303         if (declaration->init.initializer != NULL) {
4304                 parser_error_multiple_definition(declaration, HERE);
4305         }
4306
4307         bool must_be_constant = false;
4308         if (declaration->storage_class == STORAGE_CLASS_STATIC
4309                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4310                         || declaration->parent_scope == global_scope) {
4311                 must_be_constant = true;
4312         }
4313
4314         parse_initializer_env_t env;
4315         env.type             = orig_type;
4316         env.must_be_constant = must_be_constant;
4317         env.declaration      = declaration;
4318
4319         initializer_t *initializer = parse_initializer(&env);
4320
4321         if (env.type != orig_type) {
4322                 orig_type         = env.type;
4323                 type              = skip_typeref(orig_type);
4324                 declaration->type = env.type;
4325         }
4326
4327         if (is_type_function(type)) {
4328                 errorf(&declaration->source_position,
4329                        "initializers not allowed for function types at declator '%Y' (type '%T')",
4330                        declaration->symbol, orig_type);
4331         } else {
4332                 declaration->init.initializer = initializer;
4333         }
4334 }
4335
4336 /* parse rest of a declaration without any declarator */
4337 static void parse_anonymous_declaration_rest(
4338                 const declaration_specifiers_t *specifiers,
4339                 parsed_declaration_func finished_declaration)
4340 {
4341         eat(';');
4342
4343         declaration_t *const declaration    = allocate_declaration_zero();
4344         declaration->type                   = specifiers->type;
4345         declaration->declared_storage_class = specifiers->declared_storage_class;
4346         declaration->source_position        = specifiers->source_position;
4347         declaration->modifiers              = specifiers->modifiers;
4348
4349         if (declaration->declared_storage_class != STORAGE_CLASS_NONE) {
4350                 warningf(&declaration->source_position,
4351                          "useless storage class in empty declaration");
4352         }
4353         declaration->storage_class = STORAGE_CLASS_NONE;
4354
4355         type_t *type = declaration->type;
4356         switch (type->kind) {
4357                 case TYPE_COMPOUND_STRUCT:
4358                 case TYPE_COMPOUND_UNION: {
4359                         if (type->compound.declaration->symbol == NULL) {
4360                                 warningf(&declaration->source_position,
4361                                          "unnamed struct/union that defines no instances");
4362                         }
4363                         break;
4364                 }
4365
4366                 case TYPE_ENUM:
4367                         break;
4368
4369                 default:
4370                         warningf(&declaration->source_position, "empty declaration");
4371                         break;
4372         }
4373
4374         finished_declaration(declaration);
4375 }
4376
4377 static void parse_declaration_rest(declaration_t *ndeclaration,
4378                 const declaration_specifiers_t *specifiers,
4379                 parsed_declaration_func finished_declaration)
4380 {
4381         add_anchor_token(';');
4382         add_anchor_token('=');
4383         add_anchor_token(',');
4384         while(true) {
4385                 declaration_t *declaration = finished_declaration(ndeclaration);
4386
4387                 type_t *orig_type = declaration->type;
4388                 type_t *type      = skip_typeref(orig_type);
4389
4390                 if (type->kind != TYPE_FUNCTION &&
4391                     declaration->is_inline &&
4392                     is_type_valid(type)) {
4393                         warningf(&declaration->source_position,
4394                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4395                 }
4396
4397                 if (token.type == '=') {
4398                         parse_init_declarator_rest(declaration);
4399                 }
4400
4401                 if (token.type != ',')
4402                         break;
4403                 eat(',');
4404
4405                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4406         }
4407         expect(';');
4408
4409 end_error:
4410         rem_anchor_token(';');
4411         rem_anchor_token('=');
4412         rem_anchor_token(',');
4413 }
4414
4415 static declaration_t *finished_kr_declaration(declaration_t *declaration)
4416 {
4417         symbol_t *symbol  = declaration->symbol;
4418         if (symbol == NULL) {
4419                 errorf(HERE, "anonymous declaration not valid as function parameter");
4420                 return declaration;
4421         }
4422         namespace_t namespc = (namespace_t) declaration->namespc;
4423         if (namespc != NAMESPACE_NORMAL) {
4424                 return record_declaration(declaration);
4425         }
4426
4427         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4428         if (previous_declaration == NULL ||
4429                         previous_declaration->parent_scope != scope) {
4430                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4431                        symbol);
4432                 return declaration;
4433         }
4434
4435         if (previous_declaration->type == NULL) {
4436                 previous_declaration->type          = declaration->type;
4437                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4438                 previous_declaration->storage_class = declaration->storage_class;
4439                 previous_declaration->parent_scope  = scope;
4440                 return previous_declaration;
4441         } else {
4442                 return record_declaration(declaration);
4443         }
4444 }
4445
4446 static void parse_declaration(parsed_declaration_func finished_declaration)
4447 {
4448         declaration_specifiers_t specifiers;
4449         memset(&specifiers, 0, sizeof(specifiers));
4450         parse_declaration_specifiers(&specifiers);
4451
4452         if (token.type == ';') {
4453                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4454         } else {
4455                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4456                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4457         }
4458 }
4459
4460 static type_t *get_default_promoted_type(type_t *orig_type)
4461 {
4462         type_t *result = orig_type;
4463
4464         type_t *type = skip_typeref(orig_type);
4465         if (is_type_integer(type)) {
4466                 result = promote_integer(type);
4467         } else if (type == type_float) {
4468                 result = type_double;
4469         }
4470
4471         return result;
4472 }
4473
4474 static void parse_kr_declaration_list(declaration_t *declaration)
4475 {
4476         type_t *type = skip_typeref(declaration->type);
4477         if (!is_type_function(type))
4478                 return;
4479
4480         if (!type->function.kr_style_parameters)
4481                 return;
4482
4483         /* push function parameters */
4484         int       top        = environment_top();
4485         scope_t  *last_scope = scope;
4486         set_scope(&declaration->scope);
4487
4488         declaration_t *parameter = declaration->scope.declarations;
4489         for ( ; parameter != NULL; parameter = parameter->next) {
4490                 assert(parameter->parent_scope == NULL);
4491                 parameter->parent_scope = scope;
4492                 environment_push(parameter);
4493         }
4494
4495         /* parse declaration list */
4496         while (is_declaration_specifier(&token, false)) {
4497                 parse_declaration(finished_kr_declaration);
4498         }
4499
4500         /* pop function parameters */
4501         assert(scope == &declaration->scope);
4502         set_scope(last_scope);
4503         environment_pop_to(top);
4504
4505         /* update function type */
4506         type_t *new_type = duplicate_type(type);
4507
4508         function_parameter_t *parameters     = NULL;
4509         function_parameter_t *last_parameter = NULL;
4510
4511         declaration_t *parameter_declaration = declaration->scope.declarations;
4512         for( ; parameter_declaration != NULL;
4513                         parameter_declaration = parameter_declaration->next) {
4514                 type_t *parameter_type = parameter_declaration->type;
4515                 if (parameter_type == NULL) {
4516                         if (strict_mode) {
4517                                 errorf(HERE, "no type specified for function parameter '%Y'",
4518                                        parameter_declaration->symbol);
4519                         } else {
4520                                 if (warning.implicit_int) {
4521                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4522                                                 parameter_declaration->symbol);
4523                                 }
4524                                 parameter_type              = type_int;
4525                                 parameter_declaration->type = parameter_type;
4526                         }
4527                 }
4528
4529                 semantic_parameter(parameter_declaration);
4530                 parameter_type = parameter_declaration->type;
4531
4532                 /*
4533                  * we need the default promoted types for the function type
4534                  */
4535                 parameter_type = get_default_promoted_type(parameter_type);
4536
4537                 function_parameter_t *function_parameter
4538                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4539                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4540
4541                 function_parameter->type = parameter_type;
4542                 if (last_parameter != NULL) {
4543                         last_parameter->next = function_parameter;
4544                 } else {
4545                         parameters = function_parameter;
4546                 }
4547                 last_parameter = function_parameter;
4548         }
4549
4550         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4551          * prototype */
4552         new_type->function.parameters             = parameters;
4553         new_type->function.unspecified_parameters = true;
4554
4555         type = typehash_insert(new_type);
4556         if (type != new_type) {
4557                 obstack_free(type_obst, new_type);
4558         }
4559
4560         declaration->type = type;
4561 }
4562
4563 static bool first_err = true;
4564
4565 /**
4566  * When called with first_err set, prints the name of the current function,
4567  * else does noting.
4568  */
4569 static void print_in_function(void)
4570 {
4571         if (first_err) {
4572                 first_err = false;
4573                 diagnosticf("%s: In function '%Y':\n",
4574                         current_function->source_position.input_name,
4575                         current_function->symbol);
4576         }
4577 }
4578
4579 /**
4580  * Check if all labels are defined in the current function.
4581  * Check if all labels are used in the current function.
4582  */
4583 static void check_labels(void)
4584 {
4585         for (const goto_statement_t *goto_statement = goto_first;
4586             goto_statement != NULL;
4587             goto_statement = goto_statement->next) {
4588                 declaration_t *label = goto_statement->label;
4589
4590                 label->used = true;
4591                 if (label->source_position.input_name == NULL) {
4592                         print_in_function();
4593                         errorf(&goto_statement->base.source_position,
4594                                "label '%Y' used but not defined", label->symbol);
4595                  }
4596         }
4597         goto_first = goto_last = NULL;
4598
4599         if (warning.unused_label) {
4600                 for (const label_statement_t *label_statement = label_first;
4601                          label_statement != NULL;
4602                          label_statement = label_statement->next) {
4603                         const declaration_t *label = label_statement->label;
4604
4605                         if (! label->used) {
4606                                 print_in_function();
4607                                 warningf(&label_statement->base.source_position,
4608                                         "label '%Y' defined but not used", label->symbol);
4609                         }
4610                 }
4611         }
4612         label_first = label_last = NULL;
4613 }
4614
4615 /**
4616  * Check declarations of current_function for unused entities.
4617  */
4618 static void check_declarations(void)
4619 {
4620         if (warning.unused_parameter) {
4621                 const scope_t *scope = &current_function->scope;
4622
4623                 const declaration_t *parameter = scope->declarations;
4624                 for (; parameter != NULL; parameter = parameter->next) {
4625                         if (! parameter->used) {
4626                                 print_in_function();
4627                                 warningf(&parameter->source_position,
4628                                          "unused parameter '%Y'", parameter->symbol);
4629                         }
4630                 }
4631         }
4632         if (warning.unused_variable) {
4633         }
4634 }
4635
4636 static void parse_external_declaration(void)
4637 {
4638         /* function-definitions and declarations both start with declaration
4639          * specifiers */
4640         declaration_specifiers_t specifiers;
4641         memset(&specifiers, 0, sizeof(specifiers));
4642
4643         add_anchor_token(';');
4644         parse_declaration_specifiers(&specifiers);
4645         rem_anchor_token(';');
4646
4647         /* must be a declaration */
4648         if (token.type == ';') {
4649                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4650                 return;
4651         }
4652
4653         add_anchor_token(',');
4654         add_anchor_token('=');
4655         rem_anchor_token(';');
4656
4657         /* declarator is common to both function-definitions and declarations */
4658         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4659
4660         rem_anchor_token(',');
4661         rem_anchor_token('=');
4662         rem_anchor_token(';');
4663
4664         /* must be a declaration */
4665         switch (token.type) {
4666                 case ',':
4667                 case ';':
4668                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
4669                         return;
4670
4671                 case '=':
4672                         parse_declaration_rest(ndeclaration, &specifiers, record_definition);
4673                         return;
4674         }
4675
4676         /* must be a function definition */
4677         parse_kr_declaration_list(ndeclaration);
4678
4679         if (token.type != '{') {
4680                 parse_error_expected("while parsing function definition", '{', NULL);
4681                 eat_until_matching_token(';');
4682                 return;
4683         }
4684
4685         type_t *type = ndeclaration->type;
4686
4687         /* note that we don't skip typerefs: the standard doesn't allow them here
4688          * (so we can't use is_type_function here) */
4689         if (type->kind != TYPE_FUNCTION) {
4690                 if (is_type_valid(type)) {
4691                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
4692                                type, ndeclaration->symbol);
4693                 }
4694                 eat_block();
4695                 return;
4696         }
4697
4698         /* Â§ 6.7.5.3 (14) a function definition with () means no
4699          * parameters (and not unspecified parameters) */
4700         if (type->function.unspecified_parameters
4701                         && type->function.parameters == NULL
4702                         && !type->function.kr_style_parameters) {
4703                 type_t *duplicate = duplicate_type(type);
4704                 duplicate->function.unspecified_parameters = false;
4705
4706                 type = typehash_insert(duplicate);
4707                 if (type != duplicate) {
4708                         obstack_free(type_obst, duplicate);
4709                 }
4710                 ndeclaration->type = type;
4711         }
4712
4713         declaration_t *const declaration = record_definition(ndeclaration);
4714         if (ndeclaration != declaration) {
4715                 declaration->scope = ndeclaration->scope;
4716         }
4717         type = skip_typeref(declaration->type);
4718
4719         /* push function parameters and switch scope */
4720         int       top        = environment_top();
4721         scope_t  *last_scope = scope;
4722         set_scope(&declaration->scope);
4723
4724         declaration_t *parameter = declaration->scope.declarations;
4725         for( ; parameter != NULL; parameter = parameter->next) {
4726                 if (parameter->parent_scope == &ndeclaration->scope) {
4727                         parameter->parent_scope = scope;
4728                 }
4729                 assert(parameter->parent_scope == NULL
4730                                 || parameter->parent_scope == scope);
4731                 parameter->parent_scope = scope;
4732                 if (parameter->symbol == NULL) {
4733                         errorf(&ndeclaration->source_position, "parameter name omitted");
4734                         continue;
4735                 }
4736                 environment_push(parameter);
4737         }
4738
4739         if (declaration->init.statement != NULL) {
4740                 parser_error_multiple_definition(declaration, HERE);
4741                 eat_block();
4742         } else {
4743                 /* parse function body */
4744                 int            label_stack_top      = label_top();
4745                 declaration_t *old_current_function = current_function;
4746                 current_function                    = declaration;
4747
4748                 declaration->init.statement = parse_compound_statement(false);
4749                 first_err = true;
4750                 check_labels();
4751                 check_declarations();
4752
4753                 assert(current_function == declaration);
4754                 current_function = old_current_function;
4755                 label_pop_to(label_stack_top);
4756         }
4757
4758         assert(scope == &declaration->scope);
4759         set_scope(last_scope);
4760         environment_pop_to(top);
4761 }
4762
4763 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
4764                                   source_position_t *source_position)
4765 {
4766         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
4767
4768         type->bitfield.base_type = base_type;
4769         type->bitfield.size      = size;
4770
4771         return type;
4772 }
4773
4774 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
4775                                           symbol_t *symbol)
4776 {
4777         declaration_t *iter = compound_declaration->scope.declarations;
4778         for( ; iter != NULL; iter = iter->next) {
4779                 if (iter->namespc != NAMESPACE_NORMAL)
4780                         continue;
4781
4782                 if (iter->symbol == NULL) {
4783                         type_t *type = skip_typeref(iter->type);
4784                         if (is_type_compound(type)) {
4785                                 declaration_t *result
4786                                         = find_compound_entry(type->compound.declaration, symbol);
4787                                 if (result != NULL)
4788                                         return result;
4789                         }
4790                         continue;
4791                 }
4792
4793                 if (iter->symbol == symbol) {
4794                         return iter;
4795                 }
4796         }
4797
4798         return NULL;
4799 }
4800
4801 static void parse_compound_declarators(declaration_t *struct_declaration,
4802                 const declaration_specifiers_t *specifiers)
4803 {
4804         declaration_t *last_declaration = struct_declaration->scope.declarations;
4805         if (last_declaration != NULL) {
4806                 while(last_declaration->next != NULL) {
4807                         last_declaration = last_declaration->next;
4808                 }
4809         }
4810
4811         while(1) {
4812                 declaration_t *declaration;
4813
4814                 if (token.type == ':') {
4815                         source_position_t source_position = *HERE;
4816                         next_token();
4817
4818                         type_t *base_type = specifiers->type;
4819                         expression_t *size = parse_constant_expression();
4820
4821                         if (!is_type_integer(skip_typeref(base_type))) {
4822                                 errorf(HERE, "bitfield base type '%T' is not an integer type",
4823                                        base_type);
4824                         }
4825
4826                         type_t *type = make_bitfield_type(base_type, size, &source_position);
4827
4828                         declaration                         = allocate_declaration_zero();
4829                         declaration->namespc                = NAMESPACE_NORMAL;
4830                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
4831                         declaration->storage_class          = STORAGE_CLASS_NONE;
4832                         declaration->source_position        = source_position;
4833                         declaration->modifiers              = specifiers->modifiers;
4834                         declaration->type                   = type;
4835                 } else {
4836                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
4837
4838                         type_t *orig_type = declaration->type;
4839                         type_t *type      = skip_typeref(orig_type);
4840
4841                         if (token.type == ':') {
4842                                 source_position_t source_position = *HERE;
4843                                 next_token();
4844                                 expression_t *size = parse_constant_expression();
4845
4846                                 if (!is_type_integer(type)) {
4847                                         errorf(HERE, "bitfield base type '%T' is not an "
4848                                                "integer type", orig_type);
4849                                 }
4850
4851                                 type_t *bitfield_type = make_bitfield_type(orig_type, size, &source_position);
4852                                 declaration->type = bitfield_type;
4853                         } else {
4854                                 /* TODO we ignore arrays for now... what is missing is a check
4855                                  * that they're at the end of the struct */
4856                                 if (is_type_incomplete(type) && !is_type_array(type)) {
4857                                         errorf(HERE,
4858                                                "compound member '%Y' has incomplete type '%T'",
4859                                                declaration->symbol, orig_type);
4860                                 } else if (is_type_function(type)) {
4861                                         errorf(HERE, "compound member '%Y' must not have function "
4862                                                "type '%T'", declaration->symbol, orig_type);
4863                                 }
4864                         }
4865                 }
4866
4867                 /* make sure we don't define a symbol multiple times */
4868                 symbol_t *symbol = declaration->symbol;
4869                 if (symbol != NULL) {
4870                         declaration_t *prev_decl
4871                                 = find_compound_entry(struct_declaration, symbol);
4872
4873                         if (prev_decl != NULL) {
4874                                 assert(prev_decl->symbol == symbol);
4875                                 errorf(&declaration->source_position,
4876                                        "multiple declarations of symbol '%Y' (declared %P)",
4877                                        symbol, &prev_decl->source_position);
4878                         }
4879                 }
4880
4881                 /* append declaration */
4882                 if (last_declaration != NULL) {
4883                         last_declaration->next = declaration;
4884                 } else {
4885                         struct_declaration->scope.declarations = declaration;
4886                 }
4887                 last_declaration = declaration;
4888
4889                 if (token.type != ',')
4890                         break;
4891                 next_token();
4892         }
4893         expect(';');
4894
4895 end_error:
4896         ;
4897 }
4898
4899 static void parse_compound_type_entries(declaration_t *compound_declaration)
4900 {
4901         eat('{');
4902         add_anchor_token('}');
4903
4904         while(token.type != '}' && token.type != T_EOF) {
4905                 declaration_specifiers_t specifiers;
4906                 memset(&specifiers, 0, sizeof(specifiers));
4907                 parse_declaration_specifiers(&specifiers);
4908
4909                 parse_compound_declarators(compound_declaration, &specifiers);
4910         }
4911         rem_anchor_token('}');
4912
4913         if (token.type == T_EOF) {
4914                 errorf(HERE, "EOF while parsing struct");
4915         }
4916         next_token();
4917 }
4918
4919 static type_t *parse_typename(void)
4920 {
4921         declaration_specifiers_t specifiers;
4922         memset(&specifiers, 0, sizeof(specifiers));
4923         parse_declaration_specifiers(&specifiers);
4924         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
4925                 /* TODO: improve error message, user does probably not know what a
4926                  * storage class is...
4927                  */
4928                 errorf(HERE, "typename may not have a storage class");
4929         }
4930
4931         type_t *result = parse_abstract_declarator(specifiers.type);
4932
4933         return result;
4934 }
4935
4936
4937
4938
4939 typedef expression_t* (*parse_expression_function) (unsigned precedence);
4940 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
4941                                                           expression_t *left);
4942
4943 typedef struct expression_parser_function_t expression_parser_function_t;
4944 struct expression_parser_function_t {
4945         unsigned                         precedence;
4946         parse_expression_function        parser;
4947         unsigned                         infix_precedence;
4948         parse_expression_infix_function  infix_parser;
4949 };
4950
4951 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
4952
4953 /**
4954  * Prints an error message if an expression was expected but not read
4955  */
4956 static expression_t *expected_expression_error(void)
4957 {
4958         /* skip the error message if the error token was read */
4959         if (token.type != T_ERROR) {
4960                 errorf(HERE, "expected expression, got token '%K'", &token);
4961         }
4962         next_token();
4963
4964         return create_invalid_expression();
4965 }
4966
4967 /**
4968  * Parse a string constant.
4969  */
4970 static expression_t *parse_string_const(void)
4971 {
4972         wide_string_t wres;
4973         if (token.type == T_STRING_LITERAL) {
4974                 string_t res = token.v.string;
4975                 next_token();
4976                 while (token.type == T_STRING_LITERAL) {
4977                         res = concat_strings(&res, &token.v.string);
4978                         next_token();
4979                 }
4980                 if (token.type != T_WIDE_STRING_LITERAL) {
4981                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
4982                         /* note: that we use type_char_ptr here, which is already the
4983                          * automatic converted type. revert_automatic_type_conversion
4984                          * will construct the array type */
4985                         cnst->base.type    = type_char_ptr;
4986                         cnst->string.value = res;
4987                         return cnst;
4988                 }
4989
4990                 wres = concat_string_wide_string(&res, &token.v.wide_string);
4991         } else {
4992                 wres = token.v.wide_string;
4993         }
4994         next_token();
4995
4996         for (;;) {
4997                 switch (token.type) {
4998                         case T_WIDE_STRING_LITERAL:
4999                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5000                                 break;
5001
5002                         case T_STRING_LITERAL:
5003                                 wres = concat_wide_string_string(&wres, &token.v.string);
5004                                 break;
5005
5006                         default: {
5007                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5008                                 cnst->base.type         = type_wchar_t_ptr;
5009                                 cnst->wide_string.value = wres;
5010                                 return cnst;
5011                         }
5012                 }
5013                 next_token();
5014         }
5015 }
5016
5017 /**
5018  * Parse an integer constant.
5019  */
5020 static expression_t *parse_int_const(void)
5021 {
5022         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5023         cnst->base.source_position = *HERE;
5024         cnst->base.type            = token.datatype;
5025         cnst->conste.v.int_value   = token.v.intvalue;
5026
5027         next_token();
5028
5029         return cnst;
5030 }
5031
5032 /**
5033  * Parse a character constant.
5034  */
5035 static expression_t *parse_character_constant(void)
5036 {
5037         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5038
5039         cnst->base.source_position = *HERE;
5040         cnst->base.type            = token.datatype;
5041         cnst->conste.v.character   = token.v.string;
5042
5043         if (cnst->conste.v.character.size != 1) {
5044                 if (warning.multichar && (c_mode & _GNUC)) {
5045                         /* TODO */
5046                         warningf(HERE, "multi-character character constant");
5047                 } else {
5048                         errorf(HERE, "more than 1 characters in character constant");
5049                 }
5050         }
5051         next_token();
5052
5053         return cnst;
5054 }
5055
5056 /**
5057  * Parse a wide character constant.
5058  */
5059 static expression_t *parse_wide_character_constant(void)
5060 {
5061         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5062
5063         cnst->base.source_position    = *HERE;
5064         cnst->base.type               = token.datatype;
5065         cnst->conste.v.wide_character = token.v.wide_string;
5066
5067         if (cnst->conste.v.wide_character.size != 1) {
5068                 if (warning.multichar && (c_mode & _GNUC)) {
5069                         /* TODO */
5070                         warningf(HERE, "multi-character character constant");
5071                 } else {
5072                         errorf(HERE, "more than 1 characters in character constant");
5073                 }
5074         }
5075         next_token();
5076
5077         return cnst;
5078 }
5079
5080 /**
5081  * Parse a float constant.
5082  */
5083 static expression_t *parse_float_const(void)
5084 {
5085         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5086         cnst->base.type            = token.datatype;
5087         cnst->conste.v.float_value = token.v.floatvalue;
5088
5089         next_token();
5090
5091         return cnst;
5092 }
5093
5094 static declaration_t *create_implicit_function(symbol_t *symbol,
5095                 const source_position_t *source_position)
5096 {
5097         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5098         ntype->function.return_type            = type_int;
5099         ntype->function.unspecified_parameters = true;
5100
5101         type_t *type = typehash_insert(ntype);
5102         if (type != ntype) {
5103                 free_type(ntype);
5104         }
5105
5106         declaration_t *const declaration    = allocate_declaration_zero();
5107         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5108         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5109         declaration->type                   = type;
5110         declaration->symbol                 = symbol;
5111         declaration->source_position        = *source_position;
5112
5113         bool strict_prototypes_old = warning.strict_prototypes;
5114         warning.strict_prototypes  = false;
5115         record_declaration(declaration);
5116         warning.strict_prototypes = strict_prototypes_old;
5117
5118         return declaration;
5119 }
5120
5121 /**
5122  * Creates a return_type (func)(argument_type) function type if not
5123  * already exists.
5124  */
5125 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5126                                     type_t *argument_type2)
5127 {
5128         function_parameter_t *parameter2
5129                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5130         memset(parameter2, 0, sizeof(parameter2[0]));
5131         parameter2->type = argument_type2;
5132
5133         function_parameter_t *parameter1
5134                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5135         memset(parameter1, 0, sizeof(parameter1[0]));
5136         parameter1->type = argument_type1;
5137         parameter1->next = parameter2;
5138
5139         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5140         type->function.return_type = return_type;
5141         type->function.parameters  = parameter1;
5142
5143         type_t *result = typehash_insert(type);
5144         if (result != type) {
5145                 free_type(type);
5146         }
5147
5148         return result;
5149 }
5150
5151 /**
5152  * Creates a return_type (func)(argument_type) function type if not
5153  * already exists.
5154  *
5155  * @param return_type    the return type
5156  * @param argument_type  the argument type
5157  */
5158 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5159 {
5160         function_parameter_t *parameter
5161                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5162         memset(parameter, 0, sizeof(parameter[0]));
5163         parameter->type = argument_type;
5164
5165         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5166         type->function.return_type = return_type;
5167         type->function.parameters  = parameter;
5168
5169         type_t *result = typehash_insert(type);
5170         if (result != type) {
5171                 free_type(type);
5172         }
5173
5174         return result;
5175 }
5176
5177 static type_t *make_function_0_type(type_t *return_type)
5178 {
5179         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5180         type->function.return_type = return_type;
5181         type->function.parameters  = NULL;
5182
5183         type_t *result = typehash_insert(type);
5184         if (result != type) {
5185                 free_type(type);
5186         }
5187
5188         return result;
5189 }
5190
5191 /**
5192  * Creates a function type for some function like builtins.
5193  *
5194  * @param symbol   the symbol describing the builtin
5195  */
5196 static type_t *get_builtin_symbol_type(symbol_t *symbol)
5197 {
5198         switch(symbol->ID) {
5199         case T___builtin_alloca:
5200                 return make_function_1_type(type_void_ptr, type_size_t);
5201         case T___builtin_huge_val:
5202                 return make_function_0_type(type_double);
5203         case T___builtin_nan:
5204                 return make_function_1_type(type_double, type_char_ptr);
5205         case T___builtin_nanf:
5206                 return make_function_1_type(type_float, type_char_ptr);
5207         case T___builtin_nand:
5208                 return make_function_1_type(type_long_double, type_char_ptr);
5209         case T___builtin_va_end:
5210                 return make_function_1_type(type_void, type_valist);
5211         case T___builtin_expect:
5212                 return make_function_2_type(type_long, type_long, type_long);
5213         default:
5214                 internal_errorf(HERE, "not implemented builtin symbol found");
5215         }
5216 }
5217
5218 /**
5219  * Performs automatic type cast as described in Â§ 6.3.2.1.
5220  *
5221  * @param orig_type  the original type
5222  */
5223 static type_t *automatic_type_conversion(type_t *orig_type)
5224 {
5225         type_t *type = skip_typeref(orig_type);
5226         if (is_type_array(type)) {
5227                 array_type_t *array_type   = &type->array;
5228                 type_t       *element_type = array_type->element_type;
5229                 unsigned      qualifiers   = array_type->base.qualifiers;
5230
5231                 return make_pointer_type(element_type, qualifiers);
5232         }
5233
5234         if (is_type_function(type)) {
5235                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
5236         }
5237
5238         return orig_type;
5239 }
5240
5241 /**
5242  * reverts the automatic casts of array to pointer types and function
5243  * to function-pointer types as defined Â§ 6.3.2.1
5244  */
5245 type_t *revert_automatic_type_conversion(const expression_t *expression)
5246 {
5247         switch (expression->kind) {
5248                 case EXPR_REFERENCE: return expression->reference.declaration->type;
5249                 case EXPR_SELECT:    return expression->select.compound_entry->type;
5250
5251                 case EXPR_UNARY_DEREFERENCE: {
5252                         const expression_t *const value = expression->unary.value;
5253                         type_t             *const type  = skip_typeref(value->base.type);
5254                         assert(is_type_pointer(type));
5255                         return type->pointer.points_to;
5256                 }
5257
5258                 case EXPR_BUILTIN_SYMBOL:
5259                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
5260
5261                 case EXPR_ARRAY_ACCESS: {
5262                         const expression_t *array_ref = expression->array_access.array_ref;
5263                         type_t             *type_left = skip_typeref(array_ref->base.type);
5264                         if (!is_type_valid(type_left))
5265                                 return type_left;
5266                         assert(is_type_pointer(type_left));
5267                         return type_left->pointer.points_to;
5268                 }
5269
5270                 case EXPR_STRING_LITERAL: {
5271                         size_t size = expression->string.value.size;
5272                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
5273                 }
5274
5275                 case EXPR_WIDE_STRING_LITERAL: {
5276                         size_t size = expression->wide_string.value.size;
5277                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
5278                 }
5279
5280                 case EXPR_COMPOUND_LITERAL:
5281                         return expression->compound_literal.type;
5282
5283                 default: break;
5284         }
5285
5286         return expression->base.type;
5287 }
5288
5289 static expression_t *parse_reference(void)
5290 {
5291         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
5292
5293         reference_expression_t *ref = &expression->reference;
5294         symbol_t *const symbol = token.v.symbol;
5295
5296         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
5297
5298         source_position_t source_position = token.source_position;
5299         next_token();
5300
5301         if (declaration == NULL) {
5302                 if (! strict_mode && token.type == '(') {
5303                         /* an implicitly defined function */
5304                         if (warning.implicit_function_declaration) {
5305                                 warningf(HERE, "implicit declaration of function '%Y'",
5306                                         symbol);
5307                         }
5308
5309                         declaration = create_implicit_function(symbol,
5310                                                                &source_position);
5311                 } else {
5312                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
5313                         return create_invalid_expression();
5314                 }
5315         }
5316
5317         type_t *type         = declaration->type;
5318
5319         /* we always do the auto-type conversions; the & and sizeof parser contains
5320          * code to revert this! */
5321         type = automatic_type_conversion(type);
5322
5323         ref->declaration = declaration;
5324         ref->base.type   = type;
5325
5326         /* this declaration is used */
5327         declaration->used = true;
5328
5329         /* check for deprecated functions */
5330         if (declaration->deprecated != 0) {
5331                 const char *prefix = "";
5332                 if (is_type_function(declaration->type))
5333                         prefix = "function ";
5334
5335                 if (declaration->deprecated_string != NULL) {
5336                         warningf(&source_position,
5337                                 "%s'%Y' was declared 'deprecated(\"%s\")'", prefix, declaration->symbol,
5338                                 declaration->deprecated_string);
5339                 } else {
5340                         warningf(&source_position,
5341                                 "%s'%Y' was declared 'deprecated'", prefix, declaration->symbol);
5342                 }
5343         }
5344
5345         return expression;
5346 }
5347
5348 static void check_cast_allowed(expression_t *expression, type_t *dest_type)
5349 {
5350         (void) expression;
5351         (void) dest_type;
5352         /* TODO check if explicit cast is allowed and issue warnings/errors */
5353 }
5354
5355 static expression_t *parse_compound_literal(type_t *type)
5356 {
5357         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
5358
5359         parse_initializer_env_t env;
5360         env.type             = type;
5361         env.declaration      = NULL;
5362         env.must_be_constant = false;
5363         initializer_t *initializer = parse_initializer(&env);
5364         type = env.type;
5365
5366         expression->compound_literal.initializer = initializer;
5367         expression->compound_literal.type        = type;
5368         expression->base.type                    = automatic_type_conversion(type);
5369
5370         return expression;
5371 }
5372
5373 /**
5374  * Parse a cast expression.
5375  */
5376 static expression_t *parse_cast(void)
5377 {
5378         source_position_t source_position = token.source_position;
5379
5380         type_t *type  = parse_typename();
5381
5382         /* matching add_anchor_token() is at call site */
5383         rem_anchor_token(')');
5384         expect(')');
5385
5386         if (token.type == '{') {
5387                 return parse_compound_literal(type);
5388         }
5389
5390         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
5391         cast->base.source_position = source_position;
5392
5393         expression_t *value = parse_sub_expression(20);
5394
5395         check_cast_allowed(value, type);
5396
5397         cast->base.type   = type;
5398         cast->unary.value = value;
5399
5400         return cast;
5401 end_error:
5402         return create_invalid_expression();
5403 }
5404
5405 /**
5406  * Parse a statement expression.
5407  */
5408 static expression_t *parse_statement_expression(void)
5409 {
5410         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
5411
5412         statement_t *statement           = parse_compound_statement(true);
5413         expression->statement.statement  = statement;
5414         expression->base.source_position = statement->base.source_position;
5415
5416         /* find last statement and use its type */
5417         type_t *type = type_void;
5418         const statement_t *stmt = statement->compound.statements;
5419         if (stmt != NULL) {
5420                 while (stmt->base.next != NULL)
5421                         stmt = stmt->base.next;
5422
5423                 if (stmt->kind == STATEMENT_EXPRESSION) {
5424                         type = stmt->expression.expression->base.type;
5425                 }
5426         } else {
5427                 warningf(&expression->base.source_position, "empty statement expression ({})");
5428         }
5429         expression->base.type = type;
5430
5431         expect(')');
5432
5433         return expression;
5434 end_error:
5435         return create_invalid_expression();
5436 }
5437
5438 /**
5439  * Parse a braced expression.
5440  */
5441 static expression_t *parse_brace_expression(void)
5442 {
5443         eat('(');
5444         add_anchor_token(')');
5445
5446         switch(token.type) {
5447         case '{':
5448                 /* gcc extension: a statement expression */
5449                 return parse_statement_expression();
5450
5451         TYPE_QUALIFIERS
5452         TYPE_SPECIFIERS
5453                 return parse_cast();
5454         case T_IDENTIFIER:
5455                 if (is_typedef_symbol(token.v.symbol)) {
5456                         return parse_cast();
5457                 }
5458         }
5459
5460         expression_t *result = parse_expression();
5461         rem_anchor_token(')');
5462         expect(')');
5463
5464         return result;
5465 end_error:
5466         return create_invalid_expression();
5467 }
5468
5469 static expression_t *parse_function_keyword(void)
5470 {
5471         next_token();
5472         /* TODO */
5473
5474         if (current_function == NULL) {
5475                 errorf(HERE, "'__func__' used outside of a function");
5476         }
5477
5478         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5479         expression->base.type     = type_char_ptr;
5480         expression->funcname.kind = FUNCNAME_FUNCTION;
5481
5482         return expression;
5483 }
5484
5485 static expression_t *parse_pretty_function_keyword(void)
5486 {
5487         eat(T___PRETTY_FUNCTION__);
5488
5489         if (current_function == NULL) {
5490                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
5491         }
5492
5493         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5494         expression->base.type     = type_char_ptr;
5495         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
5496
5497         return expression;
5498 }
5499
5500 static expression_t *parse_funcsig_keyword(void)
5501 {
5502         eat(T___FUNCSIG__);
5503
5504         if (current_function == NULL) {
5505                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
5506         }
5507
5508         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5509         expression->base.type     = type_char_ptr;
5510         expression->funcname.kind = FUNCNAME_FUNCSIG;
5511
5512         return expression;
5513 }
5514
5515 static expression_t *parse_funcdname_keyword(void)
5516 {
5517         eat(T___FUNCDNAME__);
5518
5519         if (current_function == NULL) {
5520                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
5521         }
5522
5523         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5524         expression->base.type     = type_char_ptr;
5525         expression->funcname.kind = FUNCNAME_FUNCDNAME;
5526
5527         return expression;
5528 }
5529
5530 static designator_t *parse_designator(void)
5531 {
5532         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
5533         result->source_position = *HERE;
5534
5535         if (token.type != T_IDENTIFIER) {
5536                 parse_error_expected("while parsing member designator",
5537                                      T_IDENTIFIER, NULL);
5538                 return NULL;
5539         }
5540         result->symbol = token.v.symbol;
5541         next_token();
5542
5543         designator_t *last_designator = result;
5544         while(true) {
5545                 if (token.type == '.') {
5546                         next_token();
5547                         if (token.type != T_IDENTIFIER) {
5548                                 parse_error_expected("while parsing member designator",
5549                                                      T_IDENTIFIER, NULL);
5550                                 return NULL;
5551                         }
5552                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
5553                         designator->source_position = *HERE;
5554                         designator->symbol          = token.v.symbol;
5555                         next_token();
5556
5557                         last_designator->next = designator;
5558                         last_designator       = designator;
5559                         continue;
5560                 }
5561                 if (token.type == '[') {
5562                         next_token();
5563                         add_anchor_token(']');
5564                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
5565                         designator->source_position = *HERE;
5566                         designator->array_index     = parse_expression();
5567                         rem_anchor_token(']');
5568                         expect(']');
5569                         if (designator->array_index == NULL) {
5570                                 return NULL;
5571                         }
5572
5573                         last_designator->next = designator;
5574                         last_designator       = designator;
5575                         continue;
5576                 }
5577                 break;
5578         }
5579
5580         return result;
5581 end_error:
5582         return NULL;
5583 }
5584
5585 /**
5586  * Parse the __builtin_offsetof() expression.
5587  */
5588 static expression_t *parse_offsetof(void)
5589 {
5590         eat(T___builtin_offsetof);
5591
5592         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
5593         expression->base.type    = type_size_t;
5594
5595         expect('(');
5596         add_anchor_token(',');
5597         type_t *type = parse_typename();
5598         rem_anchor_token(',');
5599         expect(',');
5600         add_anchor_token(')');
5601         designator_t *designator = parse_designator();
5602         rem_anchor_token(')');
5603         expect(')');
5604
5605         expression->offsetofe.type       = type;
5606         expression->offsetofe.designator = designator;
5607
5608         type_path_t path;
5609         memset(&path, 0, sizeof(path));
5610         path.top_type = type;
5611         path.path     = NEW_ARR_F(type_path_entry_t, 0);
5612
5613         descend_into_subtype(&path);
5614
5615         if (!walk_designator(&path, designator, true)) {
5616                 return create_invalid_expression();
5617         }
5618
5619         DEL_ARR_F(path.path);
5620
5621         return expression;
5622 end_error:
5623         return create_invalid_expression();
5624 }
5625
5626 /**
5627  * Parses a _builtin_va_start() expression.
5628  */
5629 static expression_t *parse_va_start(void)
5630 {
5631         eat(T___builtin_va_start);
5632
5633         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
5634
5635         expect('(');
5636         add_anchor_token(',');
5637         expression->va_starte.ap = parse_assignment_expression();
5638         rem_anchor_token(',');
5639         expect(',');
5640         expression_t *const expr = parse_assignment_expression();
5641         if (expr->kind == EXPR_REFERENCE) {
5642                 declaration_t *const decl = expr->reference.declaration;
5643                 if (decl == NULL)
5644                         return create_invalid_expression();
5645                 if (decl->parent_scope == &current_function->scope &&
5646                     decl->next == NULL) {
5647                         expression->va_starte.parameter = decl;
5648                         expect(')');
5649                         return expression;
5650                 }
5651         }
5652         errorf(&expr->base.source_position,
5653                "second argument of 'va_start' must be last parameter of the current function");
5654 end_error:
5655         return create_invalid_expression();
5656 }
5657
5658 /**
5659  * Parses a _builtin_va_arg() expression.
5660  */
5661 static expression_t *parse_va_arg(void)
5662 {
5663         eat(T___builtin_va_arg);
5664
5665         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
5666
5667         expect('(');
5668         expression->va_arge.ap = parse_assignment_expression();
5669         expect(',');
5670         expression->base.type = parse_typename();
5671         expect(')');
5672
5673         return expression;
5674 end_error:
5675         return create_invalid_expression();
5676 }
5677
5678 static expression_t *parse_builtin_symbol(void)
5679 {
5680         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
5681
5682         symbol_t *symbol = token.v.symbol;
5683
5684         expression->builtin_symbol.symbol = symbol;
5685         next_token();
5686
5687         type_t *type = get_builtin_symbol_type(symbol);
5688         type = automatic_type_conversion(type);
5689
5690         expression->base.type = type;
5691         return expression;
5692 }
5693
5694 /**
5695  * Parses a __builtin_constant() expression.
5696  */
5697 static expression_t *parse_builtin_constant(void)
5698 {
5699         eat(T___builtin_constant_p);
5700
5701         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
5702
5703         expect('(');
5704         add_anchor_token(')');
5705         expression->builtin_constant.value = parse_assignment_expression();
5706         rem_anchor_token(')');
5707         expect(')');
5708         expression->base.type = type_int;
5709
5710         return expression;
5711 end_error:
5712         return create_invalid_expression();
5713 }
5714
5715 /**
5716  * Parses a __builtin_prefetch() expression.
5717  */
5718 static expression_t *parse_builtin_prefetch(void)
5719 {
5720         eat(T___builtin_prefetch);
5721
5722         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
5723
5724         expect('(');
5725         add_anchor_token(')');
5726         expression->builtin_prefetch.adr = parse_assignment_expression();
5727         if (token.type == ',') {
5728                 next_token();
5729                 expression->builtin_prefetch.rw = parse_assignment_expression();
5730         }
5731         if (token.type == ',') {
5732                 next_token();
5733                 expression->builtin_prefetch.locality = parse_assignment_expression();
5734         }
5735         rem_anchor_token(')');
5736         expect(')');
5737         expression->base.type = type_void;
5738
5739         return expression;
5740 end_error:
5741         return create_invalid_expression();
5742 }
5743
5744 /**
5745  * Parses a __builtin_is_*() compare expression.
5746  */
5747 static expression_t *parse_compare_builtin(void)
5748 {
5749         expression_t *expression;
5750
5751         switch(token.type) {
5752         case T___builtin_isgreater:
5753                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
5754                 break;
5755         case T___builtin_isgreaterequal:
5756                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
5757                 break;
5758         case T___builtin_isless:
5759                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
5760                 break;
5761         case T___builtin_islessequal:
5762                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
5763                 break;
5764         case T___builtin_islessgreater:
5765                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
5766                 break;
5767         case T___builtin_isunordered:
5768                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
5769                 break;
5770         default:
5771                 internal_errorf(HERE, "invalid compare builtin found");
5772                 break;
5773         }
5774         expression->base.source_position = *HERE;
5775         next_token();
5776
5777         expect('(');
5778         expression->binary.left = parse_assignment_expression();
5779         expect(',');
5780         expression->binary.right = parse_assignment_expression();
5781         expect(')');
5782
5783         type_t *const orig_type_left  = expression->binary.left->base.type;
5784         type_t *const orig_type_right = expression->binary.right->base.type;
5785
5786         type_t *const type_left  = skip_typeref(orig_type_left);
5787         type_t *const type_right = skip_typeref(orig_type_right);
5788         if (!is_type_float(type_left) && !is_type_float(type_right)) {
5789                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
5790                         type_error_incompatible("invalid operands in comparison",
5791                                 &expression->base.source_position, orig_type_left, orig_type_right);
5792                 }
5793         } else {
5794                 semantic_comparison(&expression->binary);
5795         }
5796
5797         return expression;
5798 end_error:
5799         return create_invalid_expression();
5800 }
5801
5802 #if 0
5803 /**
5804  * Parses a __builtin_expect() expression.
5805  */
5806 static expression_t *parse_builtin_expect(void)
5807 {
5808         eat(T___builtin_expect);
5809
5810         expression_t *expression
5811                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
5812
5813         expect('(');
5814         expression->binary.left = parse_assignment_expression();
5815         expect(',');
5816         expression->binary.right = parse_constant_expression();
5817         expect(')');
5818
5819         expression->base.type = expression->binary.left->base.type;
5820
5821         return expression;
5822 end_error:
5823         return create_invalid_expression();
5824 }
5825 #endif
5826
5827 /**
5828  * Parses a MS assume() expression.
5829  */
5830 static expression_t *parse_assume(void)
5831 {
5832         eat(T__assume);
5833
5834         expression_t *expression
5835                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
5836
5837         expect('(');
5838         add_anchor_token(')');
5839         expression->unary.value = parse_assignment_expression();
5840         rem_anchor_token(')');
5841         expect(')');
5842
5843         expression->base.type = type_void;
5844         return expression;
5845 end_error:
5846         return create_invalid_expression();
5847 }
5848
5849 /**
5850  * Parse a microsoft __noop expression.
5851  */
5852 static expression_t *parse_noop_expression(void)
5853 {
5854         source_position_t source_position = *HERE;
5855         eat(T___noop);
5856
5857         if (token.type == '(') {
5858                 /* parse arguments */
5859                 eat('(');
5860                 add_anchor_token(')');
5861                 add_anchor_token(',');
5862
5863                 if (token.type != ')') {
5864                         while(true) {
5865                                 (void)parse_assignment_expression();
5866                                 if (token.type != ',')
5867                                         break;
5868                                 next_token();
5869                         }
5870                 }
5871         }
5872         rem_anchor_token(',');
5873         rem_anchor_token(')');
5874         expect(')');
5875
5876         /* the result is a (int)0 */
5877         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5878         cnst->base.source_position = source_position;
5879         cnst->base.type            = type_int;
5880         cnst->conste.v.int_value   = 0;
5881         cnst->conste.is_ms_noop    = true;
5882
5883         return cnst;
5884
5885 end_error:
5886         return create_invalid_expression();
5887 }
5888
5889 /**
5890  * Parses a primary expression.
5891  */
5892 static expression_t *parse_primary_expression(void)
5893 {
5894         switch (token.type) {
5895                 case T_INTEGER:                  return parse_int_const();
5896                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
5897                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
5898                 case T_FLOATINGPOINT:            return parse_float_const();
5899                 case T_STRING_LITERAL:
5900                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
5901                 case T_IDENTIFIER:               return parse_reference();
5902                 case T___FUNCTION__:
5903                 case T___func__:                 return parse_function_keyword();
5904                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
5905                 case T___FUNCSIG__:              return parse_funcsig_keyword();
5906                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
5907                 case T___builtin_offsetof:       return parse_offsetof();
5908                 case T___builtin_va_start:       return parse_va_start();
5909                 case T___builtin_va_arg:         return parse_va_arg();
5910                 case T___builtin_expect:
5911                 case T___builtin_alloca:
5912                 case T___builtin_nan:
5913                 case T___builtin_nand:
5914                 case T___builtin_nanf:
5915                 case T___builtin_huge_val:
5916                 case T___builtin_va_end:         return parse_builtin_symbol();
5917                 case T___builtin_isgreater:
5918                 case T___builtin_isgreaterequal:
5919                 case T___builtin_isless:
5920                 case T___builtin_islessequal:
5921                 case T___builtin_islessgreater:
5922                 case T___builtin_isunordered:    return parse_compare_builtin();
5923                 case T___builtin_constant_p:     return parse_builtin_constant();
5924                 case T___builtin_prefetch:       return parse_builtin_prefetch();
5925                 case T__assume:                  return parse_assume();
5926
5927                 case '(':                        return parse_brace_expression();
5928                 case T___noop:                   return parse_noop_expression();
5929         }
5930
5931         errorf(HERE, "unexpected token %K, expected an expression", &token);
5932         return create_invalid_expression();
5933 }
5934
5935 /**
5936  * Check if the expression has the character type and issue a warning then.
5937  */
5938 static void check_for_char_index_type(const expression_t *expression)
5939 {
5940         type_t       *const type      = expression->base.type;
5941         const type_t *const base_type = skip_typeref(type);
5942
5943         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
5944                         warning.char_subscripts) {
5945                 warningf(&expression->base.source_position,
5946                          "array subscript has type '%T'", type);
5947         }
5948 }
5949
5950 static expression_t *parse_array_expression(unsigned precedence,
5951                                             expression_t *left)
5952 {
5953         (void) precedence;
5954
5955         eat('[');
5956         add_anchor_token(']');
5957
5958         expression_t *inside = parse_expression();
5959
5960         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
5961
5962         array_access_expression_t *array_access = &expression->array_access;
5963
5964         type_t *const orig_type_left   = left->base.type;
5965         type_t *const orig_type_inside = inside->base.type;
5966
5967         type_t *const type_left   = skip_typeref(orig_type_left);
5968         type_t *const type_inside = skip_typeref(orig_type_inside);
5969
5970         type_t *return_type;
5971         if (is_type_pointer(type_left)) {
5972                 return_type             = type_left->pointer.points_to;
5973                 array_access->array_ref = left;
5974                 array_access->index     = inside;
5975                 check_for_char_index_type(inside);
5976         } else if (is_type_pointer(type_inside)) {
5977                 return_type             = type_inside->pointer.points_to;
5978                 array_access->array_ref = inside;
5979                 array_access->index     = left;
5980                 array_access->flipped   = true;
5981                 check_for_char_index_type(left);
5982         } else {
5983                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
5984                         errorf(HERE,
5985                                 "array access on object with non-pointer types '%T', '%T'",
5986                                 orig_type_left, orig_type_inside);
5987                 }
5988                 return_type             = type_error_type;
5989                 array_access->array_ref = create_invalid_expression();
5990         }
5991
5992         rem_anchor_token(']');
5993         if (token.type != ']') {
5994                 parse_error_expected("Problem while parsing array access", ']', NULL);
5995                 return expression;
5996         }
5997         next_token();
5998
5999         return_type           = automatic_type_conversion(return_type);
6000         expression->base.type = return_type;
6001
6002         return expression;
6003 }
6004
6005 static expression_t *parse_typeprop(expression_kind_t const kind,
6006                                     source_position_t const pos,
6007                                     unsigned const precedence)
6008 {
6009         expression_t *tp_expression = allocate_expression_zero(kind);
6010         tp_expression->base.type            = type_size_t;
6011         tp_expression->base.source_position = pos;
6012
6013         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6014
6015         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6016                 next_token();
6017                 add_anchor_token(')');
6018                 type_t* const orig_type = parse_typename();
6019                 tp_expression->typeprop.type = orig_type;
6020
6021                 type_t const* const type = skip_typeref(orig_type);
6022                 char const* const wrong_type =
6023                         is_type_incomplete(type)    ? "incomplete"          :
6024                         type->kind == TYPE_FUNCTION ? "function designator" :
6025                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6026                         NULL;
6027                 if (wrong_type != NULL) {
6028                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6029                                what, wrong_type, type);
6030                 }
6031
6032                 rem_anchor_token(')');
6033                 expect(')');
6034         } else {
6035                 expression_t *expression = parse_sub_expression(precedence);
6036
6037                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6038                 expression->base.type = orig_type;
6039
6040                 type_t const* const type = skip_typeref(orig_type);
6041                 char const* const wrong_type =
6042                         is_type_incomplete(type)    ? "incomplete"          :
6043                         type->kind == TYPE_FUNCTION ? "function designator" :
6044                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6045                         NULL;
6046                 if (wrong_type != NULL) {
6047                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
6048                 }
6049
6050                 tp_expression->typeprop.type          = expression->base.type;
6051                 tp_expression->typeprop.tp_expression = expression;
6052         }
6053
6054         return tp_expression;
6055 end_error:
6056         return create_invalid_expression();
6057 }
6058
6059 static expression_t *parse_sizeof(unsigned precedence)
6060 {
6061         source_position_t pos = *HERE;
6062         eat(T_sizeof);
6063         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
6064 }
6065
6066 static expression_t *parse_alignof(unsigned precedence)
6067 {
6068         source_position_t pos = *HERE;
6069         eat(T___alignof__);
6070         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
6071 }
6072
6073 static expression_t *parse_select_expression(unsigned precedence,
6074                                              expression_t *compound)
6075 {
6076         (void) precedence;
6077         assert(token.type == '.' || token.type == T_MINUSGREATER);
6078
6079         bool is_pointer = (token.type == T_MINUSGREATER);
6080         next_token();
6081
6082         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
6083         select->select.compound = compound;
6084
6085         if (token.type != T_IDENTIFIER) {
6086                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
6087                 return select;
6088         }
6089         symbol_t *symbol      = token.v.symbol;
6090         select->select.symbol = symbol;
6091         next_token();
6092
6093         type_t *const orig_type = compound->base.type;
6094         type_t *const type      = skip_typeref(orig_type);
6095
6096         type_t *type_left = type;
6097         if (is_pointer) {
6098                 if (!is_type_pointer(type)) {
6099                         if (is_type_valid(type)) {
6100                                 errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
6101                         }
6102                         return create_invalid_expression();
6103                 }
6104                 type_left = type->pointer.points_to;
6105         }
6106         type_left = skip_typeref(type_left);
6107
6108         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
6109             type_left->kind != TYPE_COMPOUND_UNION) {
6110                 if (is_type_valid(type_left)) {
6111                         errorf(HERE, "request for member '%Y' in something not a struct or "
6112                                "union, but '%T'", symbol, type_left);
6113                 }
6114                 return create_invalid_expression();
6115         }
6116
6117         declaration_t *const declaration = type_left->compound.declaration;
6118
6119         if (!declaration->init.complete) {
6120                 errorf(HERE, "request for member '%Y' of incomplete type '%T'",
6121                        symbol, type_left);
6122                 return create_invalid_expression();
6123         }
6124
6125         declaration_t *iter = find_compound_entry(declaration, symbol);
6126         if (iter == NULL) {
6127                 errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
6128                 return create_invalid_expression();
6129         }
6130
6131         /* we always do the auto-type conversions; the & and sizeof parser contains
6132          * code to revert this! */
6133         type_t *expression_type = automatic_type_conversion(iter->type);
6134
6135         select->select.compound_entry = iter;
6136         select->base.type             = expression_type;
6137
6138         type_t *skipped = skip_typeref(iter->type);
6139         if (skipped->kind == TYPE_BITFIELD) {
6140                 select->base.type = skipped->bitfield.base_type;
6141         }
6142
6143         return select;
6144 }
6145
6146 static void check_call_argument(const function_parameter_t *parameter,
6147                                 call_argument_t *argument)
6148 {
6149         type_t         *expected_type      = parameter->type;
6150         type_t         *expected_type_skip = skip_typeref(expected_type);
6151         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
6152         expression_t   *arg_expr           = argument->expression;
6153
6154         /* handle transparent union gnu extension */
6155         if (is_type_union(expected_type_skip)
6156                         && (expected_type_skip->base.modifiers
6157                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
6158                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
6159
6160                 declaration_t *declaration = union_decl->scope.declarations;
6161                 type_t        *best_type   = NULL;
6162                 for ( ; declaration != NULL; declaration = declaration->next) {
6163                         type_t *decl_type = declaration->type;
6164                         error = semantic_assign(decl_type, arg_expr);
6165                         if (error == ASSIGN_ERROR_INCOMPATIBLE
6166                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
6167                                 continue;
6168
6169                         if (error == ASSIGN_SUCCESS) {
6170                                 best_type = decl_type;
6171                         } else if (best_type == NULL) {
6172                                 best_type = decl_type;
6173                         }
6174                 }
6175
6176                 if (best_type != NULL) {
6177                         expected_type = best_type;
6178                 }
6179         }
6180
6181         error                = semantic_assign(expected_type, arg_expr);
6182         argument->expression = create_implicit_cast(argument->expression,
6183                                                     expected_type);
6184
6185         /* TODO report exact scope in error messages (like "in 3rd parameter") */
6186         report_assign_error(error, expected_type, arg_expr,     "function call",
6187                             &arg_expr->base.source_position);
6188 }
6189
6190 /**
6191  * Parse a call expression, ie. expression '( ... )'.
6192  *
6193  * @param expression  the function address
6194  */
6195 static expression_t *parse_call_expression(unsigned precedence,
6196                                            expression_t *expression)
6197 {
6198         (void) precedence;
6199         expression_t *result = allocate_expression_zero(EXPR_CALL);
6200         result->base.source_position = expression->base.source_position;
6201
6202         call_expression_t *call = &result->call;
6203         call->function          = expression;
6204
6205         type_t *const orig_type = expression->base.type;
6206         type_t *const type      = skip_typeref(orig_type);
6207
6208         function_type_t *function_type = NULL;
6209         if (is_type_pointer(type)) {
6210                 type_t *const to_type = skip_typeref(type->pointer.points_to);
6211
6212                 if (is_type_function(to_type)) {
6213                         function_type   = &to_type->function;
6214                         call->base.type = function_type->return_type;
6215                 }
6216         }
6217
6218         if (function_type == NULL && is_type_valid(type)) {
6219                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
6220         }
6221
6222         /* parse arguments */
6223         eat('(');
6224         add_anchor_token(')');
6225         add_anchor_token(',');
6226
6227         if (token.type != ')') {
6228                 call_argument_t *last_argument = NULL;
6229
6230                 while(true) {
6231                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
6232
6233                         argument->expression = parse_assignment_expression();
6234                         if (last_argument == NULL) {
6235                                 call->arguments = argument;
6236                         } else {
6237                                 last_argument->next = argument;
6238                         }
6239                         last_argument = argument;
6240
6241                         if (token.type != ',')
6242                                 break;
6243                         next_token();
6244                 }
6245         }
6246         rem_anchor_token(',');
6247         rem_anchor_token(')');
6248         expect(')');
6249
6250         if (function_type == NULL)
6251                 return result;
6252
6253         function_parameter_t *parameter = function_type->parameters;
6254         call_argument_t      *argument  = call->arguments;
6255         if (!function_type->unspecified_parameters) {
6256                 for( ; parameter != NULL && argument != NULL;
6257                                 parameter = parameter->next, argument = argument->next) {
6258                         check_call_argument(parameter, argument);
6259                 }
6260
6261                 if (parameter != NULL) {
6262                         errorf(HERE, "too few arguments to function '%E'", expression);
6263                 } else if (argument != NULL && !function_type->variadic) {
6264                         errorf(HERE, "too many arguments to function '%E'", expression);
6265                 }
6266         }
6267
6268         /* do default promotion */
6269         for( ; argument != NULL; argument = argument->next) {
6270                 type_t *type = argument->expression->base.type;
6271
6272                 type = get_default_promoted_type(type);
6273
6274                 argument->expression
6275                         = create_implicit_cast(argument->expression, type);
6276         }
6277
6278         check_format(&result->call);
6279
6280         return result;
6281 end_error:
6282         return create_invalid_expression();
6283 }
6284
6285 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
6286
6287 static bool same_compound_type(const type_t *type1, const type_t *type2)
6288 {
6289         return
6290                 is_type_compound(type1) &&
6291                 type1->kind == type2->kind &&
6292                 type1->compound.declaration == type2->compound.declaration;
6293 }
6294
6295 /**
6296  * Parse a conditional expression, ie. 'expression ? ... : ...'.
6297  *
6298  * @param expression  the conditional expression
6299  */
6300 static expression_t *parse_conditional_expression(unsigned precedence,
6301                                                   expression_t *expression)
6302 {
6303         eat('?');
6304         add_anchor_token(':');
6305
6306         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
6307
6308         conditional_expression_t *conditional = &result->conditional;
6309         conditional->condition = expression;
6310
6311         /* 6.5.15.2 */
6312         type_t *const condition_type_orig = expression->base.type;
6313         type_t *const condition_type      = skip_typeref(condition_type_orig);
6314         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
6315                 type_error("expected a scalar type in conditional condition",
6316                            &expression->base.source_position, condition_type_orig);
6317         }
6318
6319         expression_t *true_expression = parse_expression();
6320         rem_anchor_token(':');
6321         expect(':');
6322         expression_t *false_expression = parse_sub_expression(precedence);
6323
6324         type_t *const orig_true_type  = true_expression->base.type;
6325         type_t *const orig_false_type = false_expression->base.type;
6326         type_t *const true_type       = skip_typeref(orig_true_type);
6327         type_t *const false_type      = skip_typeref(orig_false_type);
6328
6329         /* 6.5.15.3 */
6330         type_t *result_type;
6331         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
6332                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
6333                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
6334                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
6335                         warningf(&expression->base.source_position,
6336                                         "ISO C forbids conditional expression with only one void side");
6337                 }
6338                 result_type = type_void;
6339         } else if (is_type_arithmetic(true_type)
6340                    && is_type_arithmetic(false_type)) {
6341                 result_type = semantic_arithmetic(true_type, false_type);
6342
6343                 true_expression  = create_implicit_cast(true_expression, result_type);
6344                 false_expression = create_implicit_cast(false_expression, result_type);
6345
6346                 conditional->true_expression  = true_expression;
6347                 conditional->false_expression = false_expression;
6348                 conditional->base.type        = result_type;
6349         } else if (same_compound_type(true_type, false_type)) {
6350                 /* just take 1 of the 2 types */
6351                 result_type = true_type;
6352         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
6353                 type_t *pointer_type;
6354                 type_t *other_type;
6355                 expression_t *other_expression;
6356                 if (is_type_pointer(true_type) &&
6357                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
6358                         pointer_type     = true_type;
6359                         other_type       = false_type;
6360                         other_expression = false_expression;
6361                 } else {
6362                         pointer_type     = false_type;
6363                         other_type       = true_type;
6364                         other_expression = true_expression;
6365                 }
6366
6367                 if (is_null_pointer_constant(other_expression)) {
6368                         result_type = pointer_type;
6369                 } else if (is_type_pointer(other_type)) {
6370                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
6371                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
6372
6373                         type_t *to;
6374                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
6375                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
6376                                 to = type_void;
6377                         } else if (types_compatible(get_unqualified_type(to1),
6378                                                     get_unqualified_type(to2))) {
6379                                 to = to1;
6380                         } else {
6381                                 warningf(&expression->base.source_position,
6382                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
6383                                         true_type, false_type);
6384                                 to = type_void;
6385                         }
6386
6387                         type_t *const copy = duplicate_type(to);
6388                         copy->base.qualifiers = to1->base.qualifiers | to2->base.qualifiers;
6389
6390                         type_t *const type = typehash_insert(copy);
6391                         if (type != copy)
6392                                 free_type(copy);
6393
6394                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
6395                 } else if (is_type_integer(other_type)) {
6396                         warningf(&expression->base.source_position,
6397                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
6398                         result_type = pointer_type;
6399                 } else {
6400                         type_error_incompatible("while parsing conditional",
6401                                         &expression->base.source_position, true_type, false_type);
6402                         result_type = type_error_type;
6403                 }
6404         } else {
6405                 /* TODO: one pointer to void*, other some pointer */
6406
6407                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
6408                         type_error_incompatible("while parsing conditional",
6409                                                 &expression->base.source_position, true_type,
6410                                                 false_type);
6411                 }
6412                 result_type = type_error_type;
6413         }
6414
6415         conditional->true_expression
6416                 = create_implicit_cast(true_expression, result_type);
6417         conditional->false_expression
6418                 = create_implicit_cast(false_expression, result_type);
6419         conditional->base.type = result_type;
6420         return result;
6421 end_error:
6422         return create_invalid_expression();
6423 }
6424
6425 /**
6426  * Parse an extension expression.
6427  */
6428 static expression_t *parse_extension(unsigned precedence)
6429 {
6430         eat(T___extension__);
6431
6432         /* TODO enable extensions */
6433         expression_t *expression = parse_sub_expression(precedence);
6434         /* TODO disable extensions */
6435         return expression;
6436 }
6437
6438 /**
6439  * Parse a __builtin_classify_type() expression.
6440  */
6441 static expression_t *parse_builtin_classify_type(const unsigned precedence)
6442 {
6443         eat(T___builtin_classify_type);
6444
6445         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
6446         result->base.type    = type_int;
6447
6448         expect('(');
6449         add_anchor_token(')');
6450         expression_t *expression = parse_sub_expression(precedence);
6451         rem_anchor_token(')');
6452         expect(')');
6453         result->classify_type.type_expression = expression;
6454
6455         return result;
6456 end_error:
6457         return create_invalid_expression();
6458 }
6459
6460 static void check_pointer_arithmetic(const source_position_t *source_position,
6461                                      type_t *pointer_type,
6462                                      type_t *orig_pointer_type)
6463 {
6464         type_t *points_to = pointer_type->pointer.points_to;
6465         points_to = skip_typeref(points_to);
6466
6467         if (is_type_incomplete(points_to) &&
6468                         (! (c_mode & _GNUC)
6469                          || !is_type_atomic(points_to, ATOMIC_TYPE_VOID))) {
6470                 errorf(source_position,
6471                            "arithmetic with pointer to incomplete type '%T' not allowed",
6472                            orig_pointer_type);
6473         } else if (is_type_function(points_to)) {
6474                 errorf(source_position,
6475                            "arithmetic with pointer to function type '%T' not allowed",
6476                            orig_pointer_type);
6477         }
6478 }
6479
6480 static void semantic_incdec(unary_expression_t *expression)
6481 {
6482         type_t *const orig_type = expression->value->base.type;
6483         type_t *const type      = skip_typeref(orig_type);
6484         if (is_type_pointer(type)) {
6485                 check_pointer_arithmetic(&expression->base.source_position,
6486                                          type, orig_type);
6487         } else if (!is_type_real(type) && is_type_valid(type)) {
6488                 /* TODO: improve error message */
6489                 errorf(HERE, "operation needs an arithmetic or pointer type");
6490         }
6491         expression->base.type = orig_type;
6492 }
6493
6494 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
6495 {
6496         type_t *const orig_type = expression->value->base.type;
6497         type_t *const type      = skip_typeref(orig_type);
6498         if (!is_type_arithmetic(type)) {
6499                 if (is_type_valid(type)) {
6500                         /* TODO: improve error message */
6501                         errorf(HERE, "operation needs an arithmetic type");
6502                 }
6503                 return;
6504         }
6505
6506         expression->base.type = orig_type;
6507 }
6508
6509 static void semantic_unexpr_scalar(unary_expression_t *expression)
6510 {
6511         type_t *const orig_type = expression->value->base.type;
6512         type_t *const type      = skip_typeref(orig_type);
6513         if (!is_type_scalar(type)) {
6514                 if (is_type_valid(type)) {
6515                         errorf(HERE, "operand of ! must be of scalar type");
6516                 }
6517                 return;
6518         }
6519
6520         expression->base.type = orig_type;
6521 }
6522
6523 static void semantic_unexpr_integer(unary_expression_t *expression)
6524 {
6525         type_t *const orig_type = expression->value->base.type;
6526         type_t *const type      = skip_typeref(orig_type);
6527         if (!is_type_integer(type)) {
6528                 if (is_type_valid(type)) {
6529                         errorf(HERE, "operand of ~ must be of integer type");
6530                 }
6531                 return;
6532         }
6533
6534         expression->base.type = orig_type;
6535 }
6536
6537 static void semantic_dereference(unary_expression_t *expression)
6538 {
6539         type_t *const orig_type = expression->value->base.type;
6540         type_t *const type      = skip_typeref(orig_type);
6541         if (!is_type_pointer(type)) {
6542                 if (is_type_valid(type)) {
6543                         errorf(HERE, "Unary '*' needs pointer or arrray type, but type '%T' given", orig_type);
6544                 }
6545                 return;
6546         }
6547
6548         type_t *result_type   = type->pointer.points_to;
6549         result_type           = automatic_type_conversion(result_type);
6550         expression->base.type = result_type;
6551 }
6552
6553 static void set_address_taken(expression_t *expression, bool may_be_register)
6554 {
6555         if (expression->kind != EXPR_REFERENCE)
6556                 return;
6557
6558         declaration_t *const declaration = expression->reference.declaration;
6559         /* happens for parse errors */
6560         if (declaration == NULL)
6561                 return;
6562
6563         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
6564                 errorf(&expression->base.source_position,
6565                                 "address of register variable '%Y' requested",
6566                                 declaration->symbol);
6567         } else {
6568                 declaration->address_taken = 1;
6569         }
6570 }
6571
6572 /**
6573  * Check the semantic of the address taken expression.
6574  */
6575 static void semantic_take_addr(unary_expression_t *expression)
6576 {
6577         expression_t *value = expression->value;
6578         value->base.type    = revert_automatic_type_conversion(value);
6579
6580         type_t *orig_type = value->base.type;
6581         if (!is_type_valid(orig_type))
6582                 return;
6583
6584         set_address_taken(value, false);
6585
6586         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6587 }
6588
6589 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
6590 static expression_t *parse_##unexpression_type(unsigned precedence)            \
6591 {                                                                              \
6592         eat(token_type);                                                           \
6593                                                                                    \
6594         expression_t *unary_expression                                             \
6595                 = allocate_expression_zero(unexpression_type);                         \
6596         unary_expression->base.source_position = *HERE;                            \
6597         unary_expression->unary.value = parse_sub_expression(precedence);          \
6598                                                                                    \
6599         sfunc(&unary_expression->unary);                                           \
6600                                                                                    \
6601         return unary_expression;                                                   \
6602 }
6603
6604 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
6605                                semantic_unexpr_arithmetic)
6606 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
6607                                semantic_unexpr_arithmetic)
6608 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
6609                                semantic_unexpr_scalar)
6610 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
6611                                semantic_dereference)
6612 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
6613                                semantic_take_addr)
6614 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
6615                                semantic_unexpr_integer)
6616 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
6617                                semantic_incdec)
6618 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
6619                                semantic_incdec)
6620
6621 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
6622                                                sfunc)                         \
6623 static expression_t *parse_##unexpression_type(unsigned precedence,           \
6624                                                expression_t *left)            \
6625 {                                                                             \
6626         (void) precedence;                                                        \
6627         eat(token_type);                                                          \
6628                                                                               \
6629         expression_t *unary_expression                                            \
6630                 = allocate_expression_zero(unexpression_type);                        \
6631         unary_expression->unary.value = left;                                     \
6632                                                                                   \
6633         sfunc(&unary_expression->unary);                                          \
6634                                                                               \
6635         return unary_expression;                                                  \
6636 }
6637
6638 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
6639                                        EXPR_UNARY_POSTFIX_INCREMENT,
6640                                        semantic_incdec)
6641 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
6642                                        EXPR_UNARY_POSTFIX_DECREMENT,
6643                                        semantic_incdec)
6644
6645 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
6646 {
6647         /* TODO: handle complex + imaginary types */
6648
6649         /* Â§ 6.3.1.8 Usual arithmetic conversions */
6650         if (type_left == type_long_double || type_right == type_long_double) {
6651                 return type_long_double;
6652         } else if (type_left == type_double || type_right == type_double) {
6653                 return type_double;
6654         } else if (type_left == type_float || type_right == type_float) {
6655                 return type_float;
6656         }
6657
6658         type_left  = promote_integer(type_left);
6659         type_right = promote_integer(type_right);
6660
6661         if (type_left == type_right)
6662                 return type_left;
6663
6664         bool const signed_left  = is_type_signed(type_left);
6665         bool const signed_right = is_type_signed(type_right);
6666         int  const rank_left    = get_rank(type_left);
6667         int  const rank_right   = get_rank(type_right);
6668
6669         if (signed_left == signed_right)
6670                 return rank_left >= rank_right ? type_left : type_right;
6671
6672         int     s_rank;
6673         int     u_rank;
6674         type_t *s_type;
6675         type_t *u_type;
6676         if (signed_left) {
6677                 s_rank = rank_left;
6678                 s_type = type_left;
6679                 u_rank = rank_right;
6680                 u_type = type_right;
6681         } else {
6682                 s_rank = rank_right;
6683                 s_type = type_right;
6684                 u_rank = rank_left;
6685                 u_type = type_left;
6686         }
6687
6688         if (u_rank >= s_rank)
6689                 return u_type;
6690
6691         if (get_atomic_type_size(s_rank) > get_atomic_type_size(u_rank))
6692                 return s_type;
6693
6694         /* FIXME ugly */
6695         type_t *const type = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
6696         switch (s_rank) {
6697                 case ATOMIC_TYPE_INT:      type->atomic.akind = ATOMIC_TYPE_UINT;      break;
6698                 case ATOMIC_TYPE_LONG:     type->atomic.akind = ATOMIC_TYPE_ULONG;     break;
6699                 case ATOMIC_TYPE_LONGLONG: type->atomic.akind = ATOMIC_TYPE_ULONGLONG; break;
6700
6701                 default: panic("invalid atomic type");
6702         }
6703
6704         type_t* const result = typehash_insert(type);
6705         if (result != type)
6706                 free_type(type);
6707
6708         return result;
6709 }
6710
6711 /**
6712  * Check the semantic restrictions for a binary expression.
6713  */
6714 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
6715 {
6716         expression_t *const left            = expression->left;
6717         expression_t *const right           = expression->right;
6718         type_t       *const orig_type_left  = left->base.type;
6719         type_t       *const orig_type_right = right->base.type;
6720         type_t       *const type_left       = skip_typeref(orig_type_left);
6721         type_t       *const type_right      = skip_typeref(orig_type_right);
6722
6723         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
6724                 /* TODO: improve error message */
6725                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6726                         errorf(HERE, "operation needs arithmetic types");
6727                 }
6728                 return;
6729         }
6730
6731         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6732         expression->left      = create_implicit_cast(left, arithmetic_type);
6733         expression->right     = create_implicit_cast(right, arithmetic_type);
6734         expression->base.type = arithmetic_type;
6735 }
6736
6737 static void semantic_shift_op(binary_expression_t *expression)
6738 {
6739         expression_t *const left            = expression->left;
6740         expression_t *const right           = expression->right;
6741         type_t       *const orig_type_left  = left->base.type;
6742         type_t       *const orig_type_right = right->base.type;
6743         type_t       *      type_left       = skip_typeref(orig_type_left);
6744         type_t       *      type_right      = skip_typeref(orig_type_right);
6745
6746         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
6747                 /* TODO: improve error message */
6748                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6749                         errorf(HERE, "operation needs integer types");
6750                 }
6751                 return;
6752         }
6753
6754         type_left  = promote_integer(type_left);
6755         type_right = promote_integer(type_right);
6756
6757         expression->left      = create_implicit_cast(left, type_left);
6758         expression->right     = create_implicit_cast(right, type_right);
6759         expression->base.type = type_left;
6760 }
6761
6762 static void semantic_add(binary_expression_t *expression)
6763 {
6764         expression_t *const left            = expression->left;
6765         expression_t *const right           = expression->right;
6766         type_t       *const orig_type_left  = left->base.type;
6767         type_t       *const orig_type_right = right->base.type;
6768         type_t       *const type_left       = skip_typeref(orig_type_left);
6769         type_t       *const type_right      = skip_typeref(orig_type_right);
6770
6771         /* Â§ 6.5.6 */
6772         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6773                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6774                 expression->left  = create_implicit_cast(left, arithmetic_type);
6775                 expression->right = create_implicit_cast(right, arithmetic_type);
6776                 expression->base.type = arithmetic_type;
6777                 return;
6778         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
6779                 check_pointer_arithmetic(&expression->base.source_position,
6780                                          type_left, orig_type_left);
6781                 expression->base.type = type_left;
6782         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
6783                 check_pointer_arithmetic(&expression->base.source_position,
6784                                          type_right, orig_type_right);
6785                 expression->base.type = type_right;
6786         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6787                 errorf(&expression->base.source_position,
6788                        "invalid operands to binary + ('%T', '%T')",
6789                        orig_type_left, orig_type_right);
6790         }
6791 }
6792
6793 static void semantic_sub(binary_expression_t *expression)
6794 {
6795         expression_t *const left            = expression->left;
6796         expression_t *const right           = expression->right;
6797         type_t       *const orig_type_left  = left->base.type;
6798         type_t       *const orig_type_right = right->base.type;
6799         type_t       *const type_left       = skip_typeref(orig_type_left);
6800         type_t       *const type_right      = skip_typeref(orig_type_right);
6801
6802         /* Â§ 5.6.5 */
6803         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6804                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6805                 expression->left        = create_implicit_cast(left, arithmetic_type);
6806                 expression->right       = create_implicit_cast(right, arithmetic_type);
6807                 expression->base.type =  arithmetic_type;
6808                 return;
6809         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
6810                 check_pointer_arithmetic(&expression->base.source_position,
6811                                          type_left, orig_type_left);
6812                 expression->base.type = type_left;
6813         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
6814                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
6815                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
6816                 if (!types_compatible(unqual_left, unqual_right)) {
6817                         errorf(&expression->base.source_position,
6818                                "subtracting pointers to incompatible types '%T' and '%T'",
6819                                orig_type_left, orig_type_right);
6820                 } else if (!is_type_object(unqual_left)) {
6821                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
6822                                 warningf(&expression->base.source_position,
6823                                          "subtracting pointers to void");
6824                         } else {
6825                                 errorf(&expression->base.source_position,
6826                                        "subtracting pointers to non-object types '%T'",
6827                                        orig_type_left);
6828                         }
6829                 }
6830                 expression->base.type = type_ptrdiff_t;
6831         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6832                 errorf(HERE, "invalid operands of types '%T' and '%T' to binary '-'",
6833                        orig_type_left, orig_type_right);
6834         }
6835 }
6836
6837 /**
6838  * Check the semantics of comparison expressions.
6839  *
6840  * @param expression   The expression to check.
6841  */
6842 static void semantic_comparison(binary_expression_t *expression)
6843 {
6844         expression_t *left            = expression->left;
6845         expression_t *right           = expression->right;
6846         type_t       *orig_type_left  = left->base.type;
6847         type_t       *orig_type_right = right->base.type;
6848
6849         type_t *type_left  = skip_typeref(orig_type_left);
6850         type_t *type_right = skip_typeref(orig_type_right);
6851
6852         /* TODO non-arithmetic types */
6853         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6854                 /* test for signed vs unsigned compares */
6855                 if (warning.sign_compare &&
6856                     (expression->base.kind != EXPR_BINARY_EQUAL &&
6857                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
6858                     (is_type_signed(type_left) != is_type_signed(type_right))) {
6859
6860                         /* check if 1 of the operands is a constant, in this case we just
6861                          * check wether we can safely represent the resulting constant in
6862                          * the type of the other operand. */
6863                         expression_t *const_expr = NULL;
6864                         expression_t *other_expr = NULL;
6865
6866                         if (is_constant_expression(left)) {
6867                                 const_expr = left;
6868                                 other_expr = right;
6869                         } else if (is_constant_expression(right)) {
6870                                 const_expr = right;
6871                                 other_expr = left;
6872                         }
6873
6874                         if (const_expr != NULL) {
6875                                 type_t *other_type = skip_typeref(other_expr->base.type);
6876                                 long    val        = fold_constant(const_expr);
6877                                 /* TODO: check if val can be represented by other_type */
6878                                 (void) other_type;
6879                                 (void) val;
6880                         }
6881                         warningf(&expression->base.source_position,
6882                                  "comparison between signed and unsigned");
6883                 }
6884                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6885                 expression->left        = create_implicit_cast(left, arithmetic_type);
6886                 expression->right       = create_implicit_cast(right, arithmetic_type);
6887                 expression->base.type   = arithmetic_type;
6888                 if (warning.float_equal &&
6889                     (expression->base.kind == EXPR_BINARY_EQUAL ||
6890                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
6891                     is_type_float(arithmetic_type)) {
6892                         warningf(&expression->base.source_position,
6893                                  "comparing floating point with == or != is unsafe");
6894                 }
6895         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
6896                 /* TODO check compatibility */
6897         } else if (is_type_pointer(type_left)) {
6898                 expression->right = create_implicit_cast(right, type_left);
6899         } else if (is_type_pointer(type_right)) {
6900                 expression->left = create_implicit_cast(left, type_right);
6901         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6902                 type_error_incompatible("invalid operands in comparison",
6903                                         &expression->base.source_position,
6904                                         type_left, type_right);
6905         }
6906         expression->base.type = type_int;
6907 }
6908
6909 /**
6910  * Checks if a compound type has constant fields.
6911  */
6912 static bool has_const_fields(const compound_type_t *type)
6913 {
6914         const scope_t       *scope       = &type->declaration->scope;
6915         const declaration_t *declaration = scope->declarations;
6916
6917         for (; declaration != NULL; declaration = declaration->next) {
6918                 if (declaration->namespc != NAMESPACE_NORMAL)
6919                         continue;
6920
6921                 const type_t *decl_type = skip_typeref(declaration->type);
6922                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
6923                         return true;
6924         }
6925         /* TODO */
6926         return false;
6927 }
6928
6929 static bool is_lvalue(const expression_t *expression)
6930 {
6931         switch (expression->kind) {
6932         case EXPR_REFERENCE:
6933         case EXPR_ARRAY_ACCESS:
6934         case EXPR_SELECT:
6935         case EXPR_UNARY_DEREFERENCE:
6936                 return true;
6937
6938         default:
6939                 return false;
6940         }
6941 }
6942
6943 static bool is_valid_assignment_lhs(expression_t const* const left)
6944 {
6945         type_t *const orig_type_left = revert_automatic_type_conversion(left);
6946         type_t *const type_left      = skip_typeref(orig_type_left);
6947
6948         if (!is_lvalue(left)) {
6949                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
6950                        left);
6951                 return false;
6952         }
6953
6954         if (is_type_array(type_left)) {
6955                 errorf(HERE, "cannot assign to arrays ('%E')", left);
6956                 return false;
6957         }
6958         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
6959                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
6960                        orig_type_left);
6961                 return false;
6962         }
6963         if (is_type_incomplete(type_left)) {
6964                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
6965                        left, orig_type_left);
6966                 return false;
6967         }
6968         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
6969                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
6970                        left, orig_type_left);
6971                 return false;
6972         }
6973
6974         return true;
6975 }
6976
6977 static void semantic_arithmetic_assign(binary_expression_t *expression)
6978 {
6979         expression_t *left            = expression->left;
6980         expression_t *right           = expression->right;
6981         type_t       *orig_type_left  = left->base.type;
6982         type_t       *orig_type_right = right->base.type;
6983
6984         if (!is_valid_assignment_lhs(left))
6985                 return;
6986
6987         type_t *type_left  = skip_typeref(orig_type_left);
6988         type_t *type_right = skip_typeref(orig_type_right);
6989
6990         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
6991                 /* TODO: improve error message */
6992                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6993                         errorf(HERE, "operation needs arithmetic types");
6994                 }
6995                 return;
6996         }
6997
6998         /* combined instructions are tricky. We can't create an implicit cast on
6999          * the left side, because we need the uncasted form for the store.
7000          * The ast2firm pass has to know that left_type must be right_type
7001          * for the arithmetic operation and create a cast by itself */
7002         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7003         expression->right       = create_implicit_cast(right, arithmetic_type);
7004         expression->base.type   = type_left;
7005 }
7006
7007 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
7008 {
7009         expression_t *const left            = expression->left;
7010         expression_t *const right           = expression->right;
7011         type_t       *const orig_type_left  = left->base.type;
7012         type_t       *const orig_type_right = right->base.type;
7013         type_t       *const type_left       = skip_typeref(orig_type_left);
7014         type_t       *const type_right      = skip_typeref(orig_type_right);
7015
7016         if (!is_valid_assignment_lhs(left))
7017                 return;
7018
7019         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7020                 /* combined instructions are tricky. We can't create an implicit cast on
7021                  * the left side, because we need the uncasted form for the store.
7022                  * The ast2firm pass has to know that left_type must be right_type
7023                  * for the arithmetic operation and create a cast by itself */
7024                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
7025                 expression->right     = create_implicit_cast(right, arithmetic_type);
7026                 expression->base.type = type_left;
7027         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7028                 check_pointer_arithmetic(&expression->base.source_position,
7029                                          type_left, orig_type_left);
7030                 expression->base.type = type_left;
7031         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7032                 errorf(HERE, "incompatible types '%T' and '%T' in assignment", orig_type_left, orig_type_right);
7033         }
7034 }
7035
7036 /**
7037  * Check the semantic restrictions of a logical expression.
7038  */
7039 static void semantic_logical_op(binary_expression_t *expression)
7040 {
7041         expression_t *const left            = expression->left;
7042         expression_t *const right           = expression->right;
7043         type_t       *const orig_type_left  = left->base.type;
7044         type_t       *const orig_type_right = right->base.type;
7045         type_t       *const type_left       = skip_typeref(orig_type_left);
7046         type_t       *const type_right      = skip_typeref(orig_type_right);
7047
7048         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
7049                 /* TODO: improve error message */
7050                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7051                         errorf(HERE, "operation needs scalar types");
7052                 }
7053                 return;
7054         }
7055
7056         expression->base.type = type_int;
7057 }
7058
7059 /**
7060  * Check the semantic restrictions of a binary assign expression.
7061  */
7062 static void semantic_binexpr_assign(binary_expression_t *expression)
7063 {
7064         expression_t *left           = expression->left;
7065         type_t       *orig_type_left = left->base.type;
7066
7067         type_t *type_left = revert_automatic_type_conversion(left);
7068         type_left         = skip_typeref(orig_type_left);
7069
7070         if (!is_valid_assignment_lhs(left))
7071                 return;
7072
7073         assign_error_t error = semantic_assign(orig_type_left, expression->right);
7074         report_assign_error(error, orig_type_left, expression->right,
7075                         "assignment", &left->base.source_position);
7076         expression->right = create_implicit_cast(expression->right, orig_type_left);
7077         expression->base.type = orig_type_left;
7078 }
7079
7080 /**
7081  * Determine if the outermost operation (or parts thereof) of the given
7082  * expression has no effect in order to generate a warning about this fact.
7083  * Therefore in some cases this only examines some of the operands of the
7084  * expression (see comments in the function and examples below).
7085  * Examples:
7086  *   f() + 23;    // warning, because + has no effect
7087  *   x || f();    // no warning, because x controls execution of f()
7088  *   x ? y : f(); // warning, because y has no effect
7089  *   (void)x;     // no warning to be able to suppress the warning
7090  * This function can NOT be used for an "expression has definitely no effect"-
7091  * analysis. */
7092 static bool expression_has_effect(const expression_t *const expr)
7093 {
7094         switch (expr->kind) {
7095                 case EXPR_UNKNOWN:                   break;
7096                 case EXPR_INVALID:                   return true; /* do NOT warn */
7097                 case EXPR_REFERENCE:                 return false;
7098                 /* suppress the warning for microsoft __noop operations */
7099                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
7100                 case EXPR_CHARACTER_CONSTANT:        return false;
7101                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
7102                 case EXPR_STRING_LITERAL:            return false;
7103                 case EXPR_WIDE_STRING_LITERAL:       return false;
7104
7105                 case EXPR_CALL: {
7106                         const call_expression_t *const call = &expr->call;
7107                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
7108                                 return true;
7109
7110                         switch (call->function->builtin_symbol.symbol->ID) {
7111                                 case T___builtin_va_end: return true;
7112                                 default:                 return false;
7113                         }
7114                 }
7115
7116                 /* Generate the warning if either the left or right hand side of a
7117                  * conditional expression has no effect */
7118                 case EXPR_CONDITIONAL: {
7119                         const conditional_expression_t *const cond = &expr->conditional;
7120                         return
7121                                 expression_has_effect(cond->true_expression) &&
7122                                 expression_has_effect(cond->false_expression);
7123                 }
7124
7125                 case EXPR_SELECT:                    return false;
7126                 case EXPR_ARRAY_ACCESS:              return false;
7127                 case EXPR_SIZEOF:                    return false;
7128                 case EXPR_CLASSIFY_TYPE:             return false;
7129                 case EXPR_ALIGNOF:                   return false;
7130
7131                 case EXPR_FUNCNAME:                  return false;
7132                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
7133                 case EXPR_BUILTIN_CONSTANT_P:        return false;
7134                 case EXPR_BUILTIN_PREFETCH:          return true;
7135                 case EXPR_OFFSETOF:                  return false;
7136                 case EXPR_VA_START:                  return true;
7137                 case EXPR_VA_ARG:                    return true;
7138                 case EXPR_STATEMENT:                 return true; // TODO
7139                 case EXPR_COMPOUND_LITERAL:          return false;
7140
7141                 case EXPR_UNARY_NEGATE:              return false;
7142                 case EXPR_UNARY_PLUS:                return false;
7143                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
7144                 case EXPR_UNARY_NOT:                 return false;
7145                 case EXPR_UNARY_DEREFERENCE:         return false;
7146                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
7147                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
7148                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
7149                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
7150                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
7151
7152                 /* Treat void casts as if they have an effect in order to being able to
7153                  * suppress the warning */
7154                 case EXPR_UNARY_CAST: {
7155                         type_t *const type = skip_typeref(expr->base.type);
7156                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
7157                 }
7158
7159                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
7160                 case EXPR_UNARY_ASSUME:              return true;
7161
7162                 case EXPR_BINARY_ADD:                return false;
7163                 case EXPR_BINARY_SUB:                return false;
7164                 case EXPR_BINARY_MUL:                return false;
7165                 case EXPR_BINARY_DIV:                return false;
7166                 case EXPR_BINARY_MOD:                return false;
7167                 case EXPR_BINARY_EQUAL:              return false;
7168                 case EXPR_BINARY_NOTEQUAL:           return false;
7169                 case EXPR_BINARY_LESS:               return false;
7170                 case EXPR_BINARY_LESSEQUAL:          return false;
7171                 case EXPR_BINARY_GREATER:            return false;
7172                 case EXPR_BINARY_GREATEREQUAL:       return false;
7173                 case EXPR_BINARY_BITWISE_AND:        return false;
7174                 case EXPR_BINARY_BITWISE_OR:         return false;
7175                 case EXPR_BINARY_BITWISE_XOR:        return false;
7176                 case EXPR_BINARY_SHIFTLEFT:          return false;
7177                 case EXPR_BINARY_SHIFTRIGHT:         return false;
7178                 case EXPR_BINARY_ASSIGN:             return true;
7179                 case EXPR_BINARY_MUL_ASSIGN:         return true;
7180                 case EXPR_BINARY_DIV_ASSIGN:         return true;
7181                 case EXPR_BINARY_MOD_ASSIGN:         return true;
7182                 case EXPR_BINARY_ADD_ASSIGN:         return true;
7183                 case EXPR_BINARY_SUB_ASSIGN:         return true;
7184                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
7185                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
7186                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
7187                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
7188                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
7189
7190                 /* Only examine the right hand side of && and ||, because the left hand
7191                  * side already has the effect of controlling the execution of the right
7192                  * hand side */
7193                 case EXPR_BINARY_LOGICAL_AND:
7194                 case EXPR_BINARY_LOGICAL_OR:
7195                 /* Only examine the right hand side of a comma expression, because the left
7196                  * hand side has a separate warning */
7197                 case EXPR_BINARY_COMMA:
7198                         return expression_has_effect(expr->binary.right);
7199
7200                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
7201                 case EXPR_BINARY_ISGREATER:          return false;
7202                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
7203                 case EXPR_BINARY_ISLESS:             return false;
7204                 case EXPR_BINARY_ISLESSEQUAL:        return false;
7205                 case EXPR_BINARY_ISLESSGREATER:      return false;
7206                 case EXPR_BINARY_ISUNORDERED:        return false;
7207         }
7208
7209         internal_errorf(HERE, "unexpected expression");
7210 }
7211
7212 static void semantic_comma(binary_expression_t *expression)
7213 {
7214         if (warning.unused_value) {
7215                 const expression_t *const left = expression->left;
7216                 if (!expression_has_effect(left)) {
7217                         warningf(&left->base.source_position,
7218                                  "left-hand operand of comma expression has no effect");
7219                 }
7220         }
7221         expression->base.type = expression->right->base.type;
7222 }
7223
7224 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
7225 static expression_t *parse_##binexpression_type(unsigned precedence,      \
7226                                                 expression_t *left)       \
7227 {                                                                         \
7228         eat(token_type);                                                      \
7229         source_position_t pos = *HERE;                                        \
7230                                                                           \
7231         expression_t *right = parse_sub_expression(precedence + lr);          \
7232                                                                           \
7233         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
7234         binexpr->base.source_position = pos;                                  \
7235         binexpr->binary.left  = left;                                         \
7236         binexpr->binary.right = right;                                        \
7237         sfunc(&binexpr->binary);                                              \
7238                                                                           \
7239         return binexpr;                                                       \
7240 }
7241
7242 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
7243 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
7244 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_binexpr_arithmetic, 1)
7245 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_binexpr_arithmetic, 1)
7246 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
7247 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
7248 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
7249 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
7250 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
7251
7252 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
7253                       semantic_comparison, 1)
7254 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
7255                       semantic_comparison, 1)
7256 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
7257                       semantic_comparison, 1)
7258 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
7259                       semantic_comparison, 1)
7260
7261 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
7262                       semantic_binexpr_arithmetic, 1)
7263 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
7264                       semantic_binexpr_arithmetic, 1)
7265 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
7266                       semantic_binexpr_arithmetic, 1)
7267 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
7268                       semantic_logical_op, 1)
7269 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
7270                       semantic_logical_op, 1)
7271 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
7272                       semantic_shift_op, 1)
7273 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
7274                       semantic_shift_op, 1)
7275 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
7276                       semantic_arithmetic_addsubb_assign, 0)
7277 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
7278                       semantic_arithmetic_addsubb_assign, 0)
7279 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
7280                       semantic_arithmetic_assign, 0)
7281 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
7282                       semantic_arithmetic_assign, 0)
7283 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
7284                       semantic_arithmetic_assign, 0)
7285 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
7286                       semantic_arithmetic_assign, 0)
7287 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
7288                       semantic_arithmetic_assign, 0)
7289 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
7290                       semantic_arithmetic_assign, 0)
7291 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
7292                       semantic_arithmetic_assign, 0)
7293 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
7294                       semantic_arithmetic_assign, 0)
7295
7296 static expression_t *parse_sub_expression(unsigned precedence)
7297 {
7298         if (token.type < 0) {
7299                 return expected_expression_error();
7300         }
7301
7302         expression_parser_function_t *parser
7303                 = &expression_parsers[token.type];
7304         source_position_t             source_position = token.source_position;
7305         expression_t                 *left;
7306
7307         if (parser->parser != NULL) {
7308                 left = parser->parser(parser->precedence);
7309         } else {
7310                 left = parse_primary_expression();
7311         }
7312         assert(left != NULL);
7313         left->base.source_position = source_position;
7314
7315         while(true) {
7316                 if (token.type < 0) {
7317                         return expected_expression_error();
7318                 }
7319
7320                 parser = &expression_parsers[token.type];
7321                 if (parser->infix_parser == NULL)
7322                         break;
7323                 if (parser->infix_precedence < precedence)
7324                         break;
7325
7326                 left = parser->infix_parser(parser->infix_precedence, left);
7327
7328                 assert(left != NULL);
7329                 assert(left->kind != EXPR_UNKNOWN);
7330                 left->base.source_position = source_position;
7331         }
7332
7333         return left;
7334 }
7335
7336 /**
7337  * Parse an expression.
7338  */
7339 static expression_t *parse_expression(void)
7340 {
7341         return parse_sub_expression(1);
7342 }
7343
7344 /**
7345  * Register a parser for a prefix-like operator with given precedence.
7346  *
7347  * @param parser      the parser function
7348  * @param token_type  the token type of the prefix token
7349  * @param precedence  the precedence of the operator
7350  */
7351 static void register_expression_parser(parse_expression_function parser,
7352                                        int token_type, unsigned precedence)
7353 {
7354         expression_parser_function_t *entry = &expression_parsers[token_type];
7355
7356         if (entry->parser != NULL) {
7357                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
7358                 panic("trying to register multiple expression parsers for a token");
7359         }
7360         entry->parser     = parser;
7361         entry->precedence = precedence;
7362 }
7363
7364 /**
7365  * Register a parser for an infix operator with given precedence.
7366  *
7367  * @param parser      the parser function
7368  * @param token_type  the token type of the infix operator
7369  * @param precedence  the precedence of the operator
7370  */
7371 static void register_infix_parser(parse_expression_infix_function parser,
7372                 int token_type, unsigned precedence)
7373 {
7374         expression_parser_function_t *entry = &expression_parsers[token_type];
7375
7376         if (entry->infix_parser != NULL) {
7377                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
7378                 panic("trying to register multiple infix expression parsers for a "
7379                       "token");
7380         }
7381         entry->infix_parser     = parser;
7382         entry->infix_precedence = precedence;
7383 }
7384
7385 /**
7386  * Initialize the expression parsers.
7387  */
7388 static void init_expression_parsers(void)
7389 {
7390         memset(&expression_parsers, 0, sizeof(expression_parsers));
7391
7392         register_infix_parser(parse_array_expression,         '[',              30);
7393         register_infix_parser(parse_call_expression,          '(',              30);
7394         register_infix_parser(parse_select_expression,        '.',              30);
7395         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
7396         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
7397                                                               T_PLUSPLUS,       30);
7398         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
7399                                                               T_MINUSMINUS,     30);
7400
7401         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
7402         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
7403         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
7404         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
7405         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
7406         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
7407         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
7408         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
7409         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
7410         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
7411         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
7412         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
7413         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
7414                                                     T_EXCLAMATIONMARKEQUAL, 13);
7415         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
7416         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
7417         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
7418         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
7419         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
7420         register_infix_parser(parse_conditional_expression,   '?',               7);
7421         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
7422         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
7423         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
7424         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
7425         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
7426         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
7427         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
7428                                                                 T_LESSLESSEQUAL, 2);
7429         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
7430                                                           T_GREATERGREATEREQUAL, 2);
7431         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
7432                                                                      T_ANDEQUAL, 2);
7433         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
7434                                                                     T_PIPEEQUAL, 2);
7435         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
7436                                                                    T_CARETEQUAL, 2);
7437
7438         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
7439
7440         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
7441         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
7442         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
7443         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
7444         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
7445         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
7446         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
7447                                                                   T_PLUSPLUS,   25);
7448         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
7449                                                                   T_MINUSMINUS, 25);
7450         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
7451         register_expression_parser(parse_alignof,                T___alignof__, 25);
7452         register_expression_parser(parse_extension,            T___extension__, 25);
7453         register_expression_parser(parse_builtin_classify_type,
7454                                                      T___builtin_classify_type, 25);
7455 }
7456
7457 /**
7458  * Parse a asm statement arguments specification.
7459  */
7460 static asm_argument_t *parse_asm_arguments(bool is_out)
7461 {
7462         asm_argument_t *result = NULL;
7463         asm_argument_t *last   = NULL;
7464
7465         while (token.type == T_STRING_LITERAL || token.type == '[') {
7466                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7467                 memset(argument, 0, sizeof(argument[0]));
7468
7469                 if (token.type == '[') {
7470                         eat('[');
7471                         if (token.type != T_IDENTIFIER) {
7472                                 parse_error_expected("while parsing asm argument",
7473                                                      T_IDENTIFIER, NULL);
7474                                 return NULL;
7475                         }
7476                         argument->symbol = token.v.symbol;
7477
7478                         expect(']');
7479                 }
7480
7481                 argument->constraints = parse_string_literals();
7482                 expect('(');
7483                 add_anchor_token(')');
7484                 expression_t *expression = parse_expression();
7485                 rem_anchor_token(')');
7486                 if (is_out) {
7487                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
7488                          * change size or type representation (e.g. int -> long is ok, but
7489                          * int -> float is not) */
7490                         if (expression->kind == EXPR_UNARY_CAST) {
7491                                 type_t      *const type = expression->base.type;
7492                                 type_kind_t  const kind = type->kind;
7493                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
7494                                         unsigned flags;
7495                                         unsigned size;
7496                                         if (kind == TYPE_ATOMIC) {
7497                                                 atomic_type_kind_t const akind = type->atomic.akind;
7498                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
7499                                                 size  = get_atomic_type_size(akind);
7500                                         } else {
7501                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
7502                                                 size  = get_atomic_type_size(get_intptr_kind());
7503                                         }
7504
7505                                         do {
7506                                                 expression_t *const value      = expression->unary.value;
7507                                                 type_t       *const value_type = value->base.type;
7508                                                 type_kind_t   const value_kind = value_type->kind;
7509
7510                                                 unsigned value_flags;
7511                                                 unsigned value_size;
7512                                                 if (value_kind == TYPE_ATOMIC) {
7513                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
7514                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
7515                                                         value_size  = get_atomic_type_size(value_akind);
7516                                                 } else if (value_kind == TYPE_POINTER) {
7517                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
7518                                                         value_size  = get_atomic_type_size(get_intptr_kind());
7519                                                 } else {
7520                                                         break;
7521                                                 }
7522
7523                                                 if (value_flags != flags || value_size != size)
7524                                                         break;
7525
7526                                                 expression = value;
7527                                         } while (expression->kind == EXPR_UNARY_CAST);
7528                                 }
7529                         }
7530
7531                         if (!is_lvalue(expression)) {
7532                                 errorf(&expression->base.source_position,
7533                                        "asm output argument is not an lvalue");
7534                         }
7535                 }
7536                 argument->expression = expression;
7537                 expect(')');
7538
7539                 set_address_taken(expression, true);
7540
7541                 if (last != NULL) {
7542                         last->next = argument;
7543                 } else {
7544                         result = argument;
7545                 }
7546                 last = argument;
7547
7548                 if (token.type != ',')
7549                         break;
7550                 eat(',');
7551         }
7552
7553         return result;
7554 end_error:
7555         return NULL;
7556 }
7557
7558 /**
7559  * Parse a asm statement clobber specification.
7560  */
7561 static asm_clobber_t *parse_asm_clobbers(void)
7562 {
7563         asm_clobber_t *result = NULL;
7564         asm_clobber_t *last   = NULL;
7565
7566         while(token.type == T_STRING_LITERAL) {
7567                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
7568                 clobber->clobber       = parse_string_literals();
7569
7570                 if (last != NULL) {
7571                         last->next = clobber;
7572                 } else {
7573                         result = clobber;
7574                 }
7575                 last = clobber;
7576
7577                 if (token.type != ',')
7578                         break;
7579                 eat(',');
7580         }
7581
7582         return result;
7583 }
7584
7585 /**
7586  * Parse an asm statement.
7587  */
7588 static statement_t *parse_asm_statement(void)
7589 {
7590         eat(T_asm);
7591
7592         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
7593         statement->base.source_position = token.source_position;
7594
7595         asm_statement_t *asm_statement = &statement->asms;
7596
7597         if (token.type == T_volatile) {
7598                 next_token();
7599                 asm_statement->is_volatile = true;
7600         }
7601
7602         expect('(');
7603         add_anchor_token(')');
7604         add_anchor_token(':');
7605         asm_statement->asm_text = parse_string_literals();
7606
7607         if (token.type != ':') {
7608                 rem_anchor_token(':');
7609                 goto end_of_asm;
7610         }
7611         eat(':');
7612
7613         asm_statement->outputs = parse_asm_arguments(true);
7614         if (token.type != ':') {
7615                 rem_anchor_token(':');
7616                 goto end_of_asm;
7617         }
7618         eat(':');
7619
7620         asm_statement->inputs = parse_asm_arguments(false);
7621         if (token.type != ':') {
7622                 rem_anchor_token(':');
7623                 goto end_of_asm;
7624         }
7625         rem_anchor_token(':');
7626         eat(':');
7627
7628         asm_statement->clobbers = parse_asm_clobbers();
7629
7630 end_of_asm:
7631         rem_anchor_token(')');
7632         expect(')');
7633         expect(';');
7634
7635         if (asm_statement->outputs == NULL) {
7636                 /* GCC: An 'asm' instruction without any output operands will be treated
7637                  * identically to a volatile 'asm' instruction. */
7638                 asm_statement->is_volatile = true;
7639         }
7640
7641         return statement;
7642 end_error:
7643         return create_invalid_statement();
7644 }
7645
7646 /**
7647  * Parse a case statement.
7648  */
7649 static statement_t *parse_case_statement(void)
7650 {
7651         eat(T_case);
7652
7653         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
7654
7655         statement->base.source_position  = token.source_position;
7656         statement->case_label.expression = parse_expression();
7657
7658         if (c_mode & _GNUC) {
7659                 if (token.type == T_DOTDOTDOT) {
7660                         next_token();
7661                         statement->case_label.end_range = parse_expression();
7662                 }
7663         }
7664
7665         expect(':');
7666
7667         if (! is_constant_expression(statement->case_label.expression)) {
7668                 errorf(&statement->base.source_position,
7669                        "case label does not reduce to an integer constant");
7670         } else {
7671                 /* TODO: check if the case label is already known */
7672                 if (current_switch != NULL) {
7673                         /* link all cases into the switch statement */
7674                         if (current_switch->last_case == NULL) {
7675                                 current_switch->first_case =
7676                                 current_switch->last_case  = &statement->case_label;
7677                         } else {
7678                                 current_switch->last_case->next = &statement->case_label;
7679                         }
7680                 } else {
7681                         errorf(&statement->base.source_position,
7682                                "case label not within a switch statement");
7683                 }
7684         }
7685         statement->case_label.statement = parse_statement();
7686
7687         return statement;
7688 end_error:
7689         return create_invalid_statement();
7690 }
7691
7692 /**
7693  * Finds an existing default label of a switch statement.
7694  */
7695 static case_label_statement_t *
7696 find_default_label(const switch_statement_t *statement)
7697 {
7698         case_label_statement_t *label = statement->first_case;
7699         for ( ; label != NULL; label = label->next) {
7700                 if (label->expression == NULL)
7701                         return label;
7702         }
7703         return NULL;
7704 }
7705
7706 /**
7707  * Parse a default statement.
7708  */
7709 static statement_t *parse_default_statement(void)
7710 {
7711         eat(T_default);
7712
7713         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
7714
7715         statement->base.source_position = token.source_position;
7716
7717         expect(':');
7718         if (current_switch != NULL) {
7719                 const case_label_statement_t *def_label = find_default_label(current_switch);
7720                 if (def_label != NULL) {
7721                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
7722                                &def_label->base.source_position);
7723                 } else {
7724                         /* link all cases into the switch statement */
7725                         if (current_switch->last_case == NULL) {
7726                                 current_switch->first_case =
7727                                         current_switch->last_case  = &statement->case_label;
7728                         } else {
7729                                 current_switch->last_case->next = &statement->case_label;
7730                         }
7731                 }
7732         } else {
7733                 errorf(&statement->base.source_position,
7734                         "'default' label not within a switch statement");
7735         }
7736         statement->case_label.statement = parse_statement();
7737
7738         return statement;
7739 end_error:
7740         return create_invalid_statement();
7741 }
7742
7743 /**
7744  * Return the declaration for a given label symbol or create a new one.
7745  *
7746  * @param symbol  the symbol of the label
7747  */
7748 static declaration_t *get_label(symbol_t *symbol)
7749 {
7750         declaration_t *candidate = get_declaration(symbol, NAMESPACE_LABEL);
7751         assert(current_function != NULL);
7752         /* if we found a label in the same function, then we already created the
7753          * declaration */
7754         if (candidate != NULL
7755                         && candidate->parent_scope == &current_function->scope) {
7756                 return candidate;
7757         }
7758
7759         /* otherwise we need to create a new one */
7760         declaration_t *const declaration = allocate_declaration_zero();
7761         declaration->namespc       = NAMESPACE_LABEL;
7762         declaration->symbol        = symbol;
7763
7764         label_push(declaration);
7765
7766         return declaration;
7767 }
7768
7769 /**
7770  * Parse a label statement.
7771  */
7772 static statement_t *parse_label_statement(void)
7773 {
7774         assert(token.type == T_IDENTIFIER);
7775         symbol_t *symbol = token.v.symbol;
7776         next_token();
7777
7778         declaration_t *label = get_label(symbol);
7779
7780         /* if source position is already set then the label is defined twice,
7781          * otherwise it was just mentioned in a goto so far */
7782         if (label->source_position.input_name != NULL) {
7783                 errorf(HERE, "duplicate label '%Y' (declared %P)",
7784                        symbol, &label->source_position);
7785         } else {
7786                 label->source_position = token.source_position;
7787         }
7788
7789         statement_t *statement = allocate_statement_zero(STATEMENT_LABEL);
7790
7791         statement->base.source_position = token.source_position;
7792         statement->label.label          = label;
7793
7794         eat(':');
7795
7796         if (token.type == '}') {
7797                 /* TODO only warn? */
7798                 if (false) {
7799                         warningf(HERE, "label at end of compound statement");
7800                         statement->label.statement = create_empty_statement();
7801                 } else {
7802                         errorf(HERE, "label at end of compound statement");
7803                         statement->label.statement = create_invalid_statement();
7804                 }
7805         } else if (token.type == ';') {
7806                 /* Eat an empty statement here, to avoid the warning about an empty
7807                  * statement after a label.  label:; is commonly used to have a label
7808                  * before a closing brace. */
7809                 statement->label.statement = create_empty_statement();
7810                 next_token();
7811         } else {
7812                 statement->label.statement = parse_statement();
7813         }
7814
7815         /* remember the labels in a list for later checking */
7816         if (label_last == NULL) {
7817                 label_first = &statement->label;
7818         } else {
7819                 label_last->next = &statement->label;
7820         }
7821         label_last = &statement->label;
7822
7823         return statement;
7824 }
7825
7826 /**
7827  * Parse an if statement.
7828  */
7829 static statement_t *parse_if(void)
7830 {
7831         eat(T_if);
7832
7833         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
7834         statement->base.source_position = token.source_position;
7835
7836         expect('(');
7837         add_anchor_token(')');
7838         statement->ifs.condition = parse_expression();
7839         rem_anchor_token(')');
7840         expect(')');
7841
7842         add_anchor_token(T_else);
7843         statement->ifs.true_statement = parse_statement();
7844         rem_anchor_token(T_else);
7845
7846         if (token.type == T_else) {
7847                 next_token();
7848                 statement->ifs.false_statement = parse_statement();
7849         }
7850
7851         return statement;
7852 end_error:
7853         return create_invalid_statement();
7854 }
7855
7856 /**
7857  * Parse a switch statement.
7858  */
7859 static statement_t *parse_switch(void)
7860 {
7861         eat(T_switch);
7862
7863         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
7864         statement->base.source_position = token.source_position;
7865
7866         expect('(');
7867         expression_t *const expr = parse_expression();
7868         type_t       *      type = skip_typeref(expr->base.type);
7869         if (is_type_integer(type)) {
7870                 type = promote_integer(type);
7871         } else if (is_type_valid(type)) {
7872                 errorf(&expr->base.source_position,
7873                        "switch quantity is not an integer, but '%T'", type);
7874                 type = type_error_type;
7875         }
7876         statement->switchs.expression = create_implicit_cast(expr, type);
7877         expect(')');
7878
7879         switch_statement_t *rem = current_switch;
7880         current_switch          = &statement->switchs;
7881         statement->switchs.body = parse_statement();
7882         current_switch          = rem;
7883
7884         if (warning.switch_default &&
7885            find_default_label(&statement->switchs) == NULL) {
7886                 warningf(&statement->base.source_position, "switch has no default case");
7887         }
7888
7889         return statement;
7890 end_error:
7891         return create_invalid_statement();
7892 }
7893
7894 static statement_t *parse_loop_body(statement_t *const loop)
7895 {
7896         statement_t *const rem = current_loop;
7897         current_loop = loop;
7898
7899         statement_t *const body = parse_statement();
7900
7901         current_loop = rem;
7902         return body;
7903 }
7904
7905 /**
7906  * Parse a while statement.
7907  */
7908 static statement_t *parse_while(void)
7909 {
7910         eat(T_while);
7911
7912         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
7913         statement->base.source_position = token.source_position;
7914
7915         expect('(');
7916         add_anchor_token(')');
7917         statement->whiles.condition = parse_expression();
7918         rem_anchor_token(')');
7919         expect(')');
7920
7921         statement->whiles.body = parse_loop_body(statement);
7922
7923         return statement;
7924 end_error:
7925         return create_invalid_statement();
7926 }
7927
7928 /**
7929  * Parse a do statement.
7930  */
7931 static statement_t *parse_do(void)
7932 {
7933         eat(T_do);
7934
7935         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
7936
7937         statement->base.source_position = token.source_position;
7938
7939         add_anchor_token(T_while);
7940         statement->do_while.body = parse_loop_body(statement);
7941         rem_anchor_token(T_while);
7942
7943         expect(T_while);
7944         expect('(');
7945         add_anchor_token(')');
7946         statement->do_while.condition = parse_expression();
7947         rem_anchor_token(')');
7948         expect(')');
7949         expect(';');
7950
7951         return statement;
7952 end_error:
7953         return create_invalid_statement();
7954 }
7955
7956 /**
7957  * Parse a for statement.
7958  */
7959 static statement_t *parse_for(void)
7960 {
7961         eat(T_for);
7962
7963         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
7964         statement->base.source_position = token.source_position;
7965
7966         int      top        = environment_top();
7967         scope_t *last_scope = scope;
7968         set_scope(&statement->fors.scope);
7969
7970         expect('(');
7971         add_anchor_token(')');
7972
7973         if (token.type != ';') {
7974                 if (is_declaration_specifier(&token, false)) {
7975                         parse_declaration(record_declaration);
7976                 } else {
7977                         add_anchor_token(';');
7978                         expression_t *const init = parse_expression();
7979                         statement->fors.initialisation = init;
7980                         if (warning.unused_value && !expression_has_effect(init)) {
7981                                 warningf(&init->base.source_position,
7982                                          "initialisation of 'for'-statement has no effect");
7983                         }
7984                         rem_anchor_token(';');
7985                         expect(';');
7986                 }
7987         } else {
7988                 expect(';');
7989         }
7990
7991         if (token.type != ';') {
7992                 add_anchor_token(';');
7993                 statement->fors.condition = parse_expression();
7994                 rem_anchor_token(';');
7995         }
7996         expect(';');
7997         if (token.type != ')') {
7998                 expression_t *const step = parse_expression();
7999                 statement->fors.step = step;
8000                 if (warning.unused_value && !expression_has_effect(step)) {
8001                         warningf(&step->base.source_position,
8002                                  "step of 'for'-statement has no effect");
8003                 }
8004         }
8005         rem_anchor_token(')');
8006         expect(')');
8007         statement->fors.body = parse_loop_body(statement);
8008
8009         assert(scope == &statement->fors.scope);
8010         set_scope(last_scope);
8011         environment_pop_to(top);
8012
8013         return statement;
8014
8015 end_error:
8016         rem_anchor_token(')');
8017         assert(scope == &statement->fors.scope);
8018         set_scope(last_scope);
8019         environment_pop_to(top);
8020
8021         return create_invalid_statement();
8022 }
8023
8024 /**
8025  * Parse a goto statement.
8026  */
8027 static statement_t *parse_goto(void)
8028 {
8029         eat(T_goto);
8030
8031         if (token.type != T_IDENTIFIER) {
8032                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
8033                 eat_statement();
8034                 goto end_error;
8035         }
8036         symbol_t *symbol = token.v.symbol;
8037         next_token();
8038
8039         declaration_t *label = get_label(symbol);
8040
8041         statement_t *statement          = allocate_statement_zero(STATEMENT_GOTO);
8042         statement->base.source_position = token.source_position;
8043
8044         statement->gotos.label = label;
8045
8046         /* remember the goto's in a list for later checking */
8047         if (goto_last == NULL) {
8048                 goto_first = &statement->gotos;
8049         } else {
8050                 goto_last->next = &statement->gotos;
8051         }
8052         goto_last = &statement->gotos;
8053
8054         expect(';');
8055
8056         return statement;
8057 end_error:
8058         return create_invalid_statement();
8059 }
8060
8061 /**
8062  * Parse a continue statement.
8063  */
8064 static statement_t *parse_continue(void)
8065 {
8066         statement_t *statement;
8067         if (current_loop == NULL) {
8068                 errorf(HERE, "continue statement not within loop");
8069                 statement = create_invalid_statement();
8070         } else {
8071                 statement = allocate_statement_zero(STATEMENT_CONTINUE);
8072
8073                 statement->base.source_position = token.source_position;
8074         }
8075
8076         eat(T_continue);
8077         expect(';');
8078
8079         return statement;
8080 end_error:
8081         return create_invalid_statement();
8082 }
8083
8084 /**
8085  * Parse a break statement.
8086  */
8087 static statement_t *parse_break(void)
8088 {
8089         statement_t *statement;
8090         if (current_switch == NULL && current_loop == NULL) {
8091                 errorf(HERE, "break statement not within loop or switch");
8092                 statement = create_invalid_statement();
8093         } else {
8094                 statement = allocate_statement_zero(STATEMENT_BREAK);
8095
8096                 statement->base.source_position = token.source_position;
8097         }
8098
8099         eat(T_break);
8100         expect(';');
8101
8102         return statement;
8103 end_error:
8104         return create_invalid_statement();
8105 }
8106
8107 /**
8108  * Parse a __leave statement.
8109  */
8110 static statement_t *parse_leave(void)
8111 {
8112         statement_t *statement;
8113         if (current_try == NULL) {
8114                 errorf(HERE, "__leave statement not within __try");
8115                 statement = create_invalid_statement();
8116         } else {
8117                 statement = allocate_statement_zero(STATEMENT_LEAVE);
8118
8119                 statement->base.source_position = token.source_position;
8120         }
8121
8122         eat(T___leave);
8123         expect(';');
8124
8125         return statement;
8126 end_error:
8127         return create_invalid_statement();
8128 }
8129
8130 /**
8131  * Check if a given declaration represents a local variable.
8132  */
8133 static bool is_local_var_declaration(const declaration_t *declaration)
8134 {
8135         switch ((storage_class_tag_t) declaration->storage_class) {
8136         case STORAGE_CLASS_AUTO:
8137         case STORAGE_CLASS_REGISTER: {
8138                 const type_t *type = skip_typeref(declaration->type);
8139                 if (is_type_function(type)) {
8140                         return false;
8141                 } else {
8142                         return true;
8143                 }
8144         }
8145         default:
8146                 return false;
8147         }
8148 }
8149
8150 /**
8151  * Check if a given declaration represents a variable.
8152  */
8153 static bool is_var_declaration(const declaration_t *declaration)
8154 {
8155         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
8156                 return false;
8157
8158         const type_t *type = skip_typeref(declaration->type);
8159         return !is_type_function(type);
8160 }
8161
8162 /**
8163  * Check if a given expression represents a local variable.
8164  */
8165 static bool is_local_variable(const expression_t *expression)
8166 {
8167         if (expression->base.kind != EXPR_REFERENCE) {
8168                 return false;
8169         }
8170         const declaration_t *declaration = expression->reference.declaration;
8171         return is_local_var_declaration(declaration);
8172 }
8173
8174 /**
8175  * Check if a given expression represents a local variable and
8176  * return its declaration then, else return NULL.
8177  */
8178 declaration_t *expr_is_variable(const expression_t *expression)
8179 {
8180         if (expression->base.kind != EXPR_REFERENCE) {
8181                 return NULL;
8182         }
8183         declaration_t *declaration = expression->reference.declaration;
8184         if (is_var_declaration(declaration))
8185                 return declaration;
8186         return NULL;
8187 }
8188
8189 /**
8190  * Parse a return statement.
8191  */
8192 static statement_t *parse_return(void)
8193 {
8194         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
8195         statement->base.source_position = token.source_position;
8196
8197         eat(T_return);
8198
8199         expression_t *return_value = NULL;
8200         if (token.type != ';') {
8201                 return_value = parse_expression();
8202         }
8203         expect(';');
8204
8205         const type_t *const func_type = current_function->type;
8206         assert(is_type_function(func_type));
8207         type_t *const return_type = skip_typeref(func_type->function.return_type);
8208
8209         if (return_value != NULL) {
8210                 type_t *return_value_type = skip_typeref(return_value->base.type);
8211
8212                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
8213                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
8214                         warningf(&statement->base.source_position,
8215                                  "'return' with a value, in function returning void");
8216                         return_value = NULL;
8217                 } else {
8218                         assign_error_t error = semantic_assign(return_type, return_value);
8219                         report_assign_error(error, return_type, return_value, "'return'",
8220                                             &statement->base.source_position);
8221                         return_value = create_implicit_cast(return_value, return_type);
8222                 }
8223                 /* check for returning address of a local var */
8224                 if (return_value != NULL &&
8225                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
8226                         const expression_t *expression = return_value->unary.value;
8227                         if (is_local_variable(expression)) {
8228                                 warningf(&statement->base.source_position,
8229                                          "function returns address of local variable");
8230                         }
8231                 }
8232         } else {
8233                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
8234                         warningf(&statement->base.source_position,
8235                                  "'return' without value, in function returning non-void");
8236                 }
8237         }
8238         statement->returns.value = return_value;
8239
8240         return statement;
8241 end_error:
8242         return create_invalid_statement();
8243 }
8244
8245 /**
8246  * Parse a declaration statement.
8247  */
8248 static statement_t *parse_declaration_statement(void)
8249 {
8250         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
8251
8252         statement->base.source_position = token.source_position;
8253
8254         declaration_t *before = last_declaration;
8255         parse_declaration(record_declaration);
8256
8257         if (before == NULL) {
8258                 statement->declaration.declarations_begin = scope->declarations;
8259         } else {
8260                 statement->declaration.declarations_begin = before->next;
8261         }
8262         statement->declaration.declarations_end = last_declaration;
8263
8264         return statement;
8265 }
8266
8267 /**
8268  * Parse an expression statement, ie. expr ';'.
8269  */
8270 static statement_t *parse_expression_statement(void)
8271 {
8272         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
8273
8274         statement->base.source_position  = token.source_position;
8275         expression_t *const expr         = parse_expression();
8276         statement->expression.expression = expr;
8277
8278         expect(';');
8279
8280         return statement;
8281 end_error:
8282         return create_invalid_statement();
8283 }
8284
8285 /**
8286  * Parse a microsoft __try { } __finally { } or
8287  * __try{ } __except() { }
8288  */
8289 static statement_t *parse_ms_try_statment(void)
8290 {
8291         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
8292
8293         statement->base.source_position  = token.source_position;
8294         eat(T___try);
8295
8296         ms_try_statement_t *rem = current_try;
8297         current_try = &statement->ms_try;
8298         statement->ms_try.try_statement = parse_compound_statement(false);
8299         current_try = rem;
8300
8301         if (token.type == T___except) {
8302                 eat(T___except);
8303                 expect('(');
8304                 add_anchor_token(')');
8305                 expression_t *const expr = parse_expression();
8306                 type_t       *      type = skip_typeref(expr->base.type);
8307                 if (is_type_integer(type)) {
8308                         type = promote_integer(type);
8309                 } else if (is_type_valid(type)) {
8310                         errorf(&expr->base.source_position,
8311                                "__expect expression is not an integer, but '%T'", type);
8312                         type = type_error_type;
8313                 }
8314                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
8315                 rem_anchor_token(')');
8316                 expect(')');
8317                 statement->ms_try.final_statement = parse_compound_statement(false);
8318         } else if (token.type == T__finally) {
8319                 eat(T___finally);
8320                 statement->ms_try.final_statement = parse_compound_statement(false);
8321         } else {
8322                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
8323                 return create_invalid_statement();
8324         }
8325         return statement;
8326 end_error:
8327         return create_invalid_statement();
8328 }
8329
8330 static statement_t *parse_empty_statement(void)
8331 {
8332         if (warning.empty_statement) {
8333                 warningf(HERE, "statement is empty");
8334         }
8335         eat(';');
8336         return create_empty_statement();
8337 }
8338
8339 /**
8340  * Parse a statement.
8341  * There's also parse_statement() which additionally checks for
8342  * "statement has no effect" warnings
8343  */
8344 static statement_t *intern_parse_statement(void)
8345 {
8346         statement_t *statement = NULL;
8347
8348         /* declaration or statement */
8349         add_anchor_token(';');
8350         switch (token.type) {
8351         case T_IDENTIFIER:
8352                 if (look_ahead(1)->type == ':') {
8353                         statement = parse_label_statement();
8354                 } else if (is_typedef_symbol(token.v.symbol)) {
8355                         statement = parse_declaration_statement();
8356                 } else {
8357                         statement = parse_expression_statement();
8358                 }
8359                 break;
8360
8361         case T___extension__:
8362                 /* This can be a prefix to a declaration or an expression statement.
8363                  * We simply eat it now and parse the rest with tail recursion. */
8364                 do {
8365                         next_token();
8366                 } while (token.type == T___extension__);
8367                 statement = parse_statement();
8368                 break;
8369
8370         DECLARATION_START
8371                 statement = parse_declaration_statement();
8372                 break;
8373
8374         case ';':        statement = parse_empty_statement();         break;
8375         case '{':        statement = parse_compound_statement(false); break;
8376         case T___leave:  statement = parse_leave();                   break;
8377         case T___try:    statement = parse_ms_try_statment();         break;
8378         case T_asm:      statement = parse_asm_statement();           break;
8379         case T_break:    statement = parse_break();                   break;
8380         case T_case:     statement = parse_case_statement();          break;
8381         case T_continue: statement = parse_continue();                break;
8382         case T_default:  statement = parse_default_statement();       break;
8383         case T_do:       statement = parse_do();                      break;
8384         case T_for:      statement = parse_for();                     break;
8385         case T_goto:     statement = parse_goto();                    break;
8386         case T_if:       statement = parse_if ();                     break;
8387         case T_return:   statement = parse_return();                  break;
8388         case T_switch:   statement = parse_switch();                  break;
8389         case T_while:    statement = parse_while();                   break;
8390         default:         statement = parse_expression_statement();    break;
8391         }
8392         rem_anchor_token(';');
8393
8394         assert(statement != NULL
8395                         && statement->base.source_position.input_name != NULL);
8396
8397         return statement;
8398 }
8399
8400 /**
8401  * parse a statement and emits "statement has no effect" warning if needed
8402  * (This is really a wrapper around intern_parse_statement with check for 1
8403  *  single warning. It is needed, because for statement expressions we have
8404  *  to avoid the warning on the last statement)
8405  */
8406 static statement_t *parse_statement(void)
8407 {
8408         statement_t *statement = intern_parse_statement();
8409
8410         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
8411                 expression_t *expression = statement->expression.expression;
8412                 if (!expression_has_effect(expression)) {
8413                         warningf(&expression->base.source_position,
8414                                         "statement has no effect");
8415                 }
8416         }
8417
8418         return statement;
8419 }
8420
8421 /**
8422  * Parse a compound statement.
8423  */
8424 static statement_t *parse_compound_statement(bool inside_expression_statement)
8425 {
8426         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
8427
8428         statement->base.source_position = token.source_position;
8429
8430         eat('{');
8431         add_anchor_token('}');
8432
8433         int      top        = environment_top();
8434         scope_t *last_scope = scope;
8435         set_scope(&statement->compound.scope);
8436
8437         statement_t *last_statement = NULL;
8438
8439         while (token.type != '}' && token.type != T_EOF) {
8440                 statement_t *sub_statement = intern_parse_statement();
8441                 if (is_invalid_statement(sub_statement)) {
8442                         /* an error occurred. if we are at an anchor, return */
8443                         if (at_anchor())
8444                                 goto end_error;
8445                         continue;
8446                 }
8447
8448                 if (last_statement != NULL) {
8449                         last_statement->base.next = sub_statement;
8450                 } else {
8451                         statement->compound.statements = sub_statement;
8452                 }
8453
8454                 while (sub_statement->base.next != NULL)
8455                         sub_statement = sub_statement->base.next;
8456
8457                 last_statement = sub_statement;
8458         }
8459
8460         if (token.type == '}') {
8461                 next_token();
8462         } else {
8463                 errorf(&statement->base.source_position,
8464                        "end of file while looking for closing '}'");
8465         }
8466
8467         /* look over all statements again to produce no effect warnings */
8468         if (warning.unused_value) {
8469                 statement_t *sub_statement = statement->compound.statements;
8470                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
8471                         if (sub_statement->kind != STATEMENT_EXPRESSION)
8472                                 continue;
8473                         /* don't emit a warning for the last expression in an expression
8474                          * statement as it has always an effect */
8475                         if (inside_expression_statement && sub_statement->base.next == NULL)
8476                                 continue;
8477
8478                         expression_t *expression = sub_statement->expression.expression;
8479                         if (!expression_has_effect(expression)) {
8480                                 warningf(&expression->base.source_position,
8481                                          "statement has no effect");
8482                         }
8483                 }
8484         }
8485
8486 end_error:
8487         rem_anchor_token('}');
8488         assert(scope == &statement->compound.scope);
8489         set_scope(last_scope);
8490         environment_pop_to(top);
8491
8492         return statement;
8493 }
8494
8495 /**
8496  * Initialize builtin types.
8497  */
8498 static void initialize_builtin_types(void)
8499 {
8500         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
8501         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
8502         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
8503         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
8504         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
8505         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
8506         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    type_int);
8507         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
8508
8509         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
8510         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
8511         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
8512         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
8513 }
8514
8515 /**
8516  * Check for unused global static functions and variables
8517  */
8518 static void check_unused_globals(void)
8519 {
8520         if (!warning.unused_function && !warning.unused_variable)
8521                 return;
8522
8523         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
8524                 if (decl->used                  ||
8525                     decl->modifiers & DM_UNUSED ||
8526                     decl->modifiers & DM_USED   ||
8527                     decl->storage_class != STORAGE_CLASS_STATIC)
8528                         continue;
8529
8530                 type_t *const type = decl->type;
8531                 const char *s;
8532                 if (is_type_function(skip_typeref(type))) {
8533                         if (!warning.unused_function || decl->is_inline)
8534                                 continue;
8535
8536                         s = (decl->init.statement != NULL ? "defined" : "declared");
8537                 } else {
8538                         if (!warning.unused_variable)
8539                                 continue;
8540
8541                         s = "defined";
8542                 }
8543
8544                 warningf(&decl->source_position, "'%#T' %s but not used",
8545                         type, decl->symbol, s);
8546         }
8547 }
8548
8549 static void parse_global_asm(void)
8550 {
8551         eat(T_asm);
8552         expect('(');
8553
8554         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
8555         statement->base.source_position = token.source_position;
8556         statement->asms.asm_text        = parse_string_literals();
8557         statement->base.next            = unit->global_asm;
8558         unit->global_asm                = statement;
8559
8560         expect(')');
8561         expect(';');
8562
8563 end_error:;
8564 }
8565
8566 /**
8567  * Parse a translation unit.
8568  */
8569 static void parse_translation_unit(void)
8570 {
8571         while (token.type != T_EOF) {
8572                 switch (token.type) {
8573                         case ';':
8574                                 /* TODO error in strict mode */
8575                                 warningf(HERE, "stray ';' outside of function");
8576                                 next_token();
8577                                 break;
8578
8579                         case T_asm:
8580                                 parse_global_asm();
8581                                 break;
8582
8583                         default:
8584                                 parse_external_declaration();
8585                                 break;
8586                 }
8587         }
8588 }
8589
8590 /**
8591  * Parse the input.
8592  *
8593  * @return  the translation unit or NULL if errors occurred.
8594  */
8595 void start_parsing(void)
8596 {
8597         environment_stack = NEW_ARR_F(stack_entry_t, 0);
8598         label_stack       = NEW_ARR_F(stack_entry_t, 0);
8599         diagnostic_count  = 0;
8600         error_count       = 0;
8601         warning_count     = 0;
8602
8603         type_set_output(stderr);
8604         ast_set_output(stderr);
8605
8606         assert(unit == NULL);
8607         unit = allocate_ast_zero(sizeof(unit[0]));
8608
8609         assert(global_scope == NULL);
8610         global_scope = &unit->scope;
8611
8612         assert(scope == NULL);
8613         set_scope(&unit->scope);
8614
8615         initialize_builtin_types();
8616 }
8617
8618 translation_unit_t *finish_parsing(void)
8619 {
8620         assert(scope == &unit->scope);
8621         scope          = NULL;
8622         last_declaration = NULL;
8623
8624         assert(global_scope == &unit->scope);
8625         check_unused_globals();
8626         global_scope = NULL;
8627
8628         DEL_ARR_F(environment_stack);
8629         DEL_ARR_F(label_stack);
8630
8631         translation_unit_t *result = unit;
8632         unit = NULL;
8633         return result;
8634 }
8635
8636 void parse(void)
8637 {
8638         lookahead_bufpos = 0;
8639         for(int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
8640                 next_token();
8641         }
8642         parse_translation_unit();
8643 }
8644
8645 /**
8646  * Initialize the parser.
8647  */
8648 void init_parser(void)
8649 {
8650         if (c_mode & _MS) {
8651                 /* add predefined symbols for extended-decl-modifier */
8652                 sym_align      = symbol_table_insert("align");
8653                 sym_allocate   = symbol_table_insert("allocate");
8654                 sym_dllimport  = symbol_table_insert("dllimport");
8655                 sym_dllexport  = symbol_table_insert("dllexport");
8656                 sym_naked      = symbol_table_insert("naked");
8657                 sym_noinline   = symbol_table_insert("noinline");
8658                 sym_noreturn   = symbol_table_insert("noreturn");
8659                 sym_nothrow    = symbol_table_insert("nothrow");
8660                 sym_novtable   = symbol_table_insert("novtable");
8661                 sym_property   = symbol_table_insert("property");
8662                 sym_get        = symbol_table_insert("get");
8663                 sym_put        = symbol_table_insert("put");
8664                 sym_selectany  = symbol_table_insert("selectany");
8665                 sym_thread     = symbol_table_insert("thread");
8666                 sym_uuid       = symbol_table_insert("uuid");
8667                 sym_deprecated = symbol_table_insert("deprecated");
8668                 sym_restrict   = symbol_table_insert("restrict");
8669                 sym_noalias    = symbol_table_insert("noalias");
8670         }
8671         memset(token_anchor_set, 0, sizeof(token_anchor_set));
8672
8673         init_expression_parsers();
8674         obstack_init(&temp_obst);
8675
8676         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
8677         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
8678 }
8679
8680 /**
8681  * Terminate the parser.
8682  */
8683 void exit_parser(void)
8684 {
8685         obstack_free(&temp_obst, NULL);
8686 }