fix kr2.c
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 //#define PRINT_TOKENS
43 #define MAX_LOOKAHEAD 2
44
45 typedef struct {
46         declaration_t *old_declaration;
47         symbol_t      *symbol;
48         unsigned short namespc;
49 } stack_entry_t;
50
51 typedef struct gnu_attribute_t gnu_attribute_t;
52 struct gnu_attribute_t {
53         gnu_attribute_kind_t kind;
54         gnu_attribute_t     *next;
55         bool                 invalid;
56         bool                 have_arguments;
57         union {
58                 size_t   value;
59                 string_t string;
60         } u;
61 };
62
63 typedef struct declaration_specifiers_t  declaration_specifiers_t;
64 struct declaration_specifiers_t {
65         source_position_t  source_position;
66         unsigned char      declared_storage_class;
67         unsigned char      alignment;         /**< Alignment, 0 if not set. */
68         unsigned int       is_inline : 1;
69         unsigned int       deprecated : 1;
70         decl_modifiers_t   decl_modifiers;    /**< MS __declspec extended modifier mask */
71         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
72         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
73         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
74         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
75         type_t            *type;
76 };
77
78 /**
79  * An environment for parsing initializers (and compound literals).
80  */
81 typedef struct parse_initializer_env_t {
82         type_t        *type;        /**< the type of the initializer. In case of an
83                                          array type with unspecified size this gets
84                                          adjusted to the actual size. */
85         declaration_t *declaration; /**< the declaration that is initialized if any */
86         bool           must_be_constant;
87 } parse_initializer_env_t;
88
89 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration);
90
91 static token_t             token;
92 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
93 static int                 lookahead_bufpos;
94 static stack_entry_t      *environment_stack = NULL;
95 static stack_entry_t      *label_stack       = NULL;
96 static scope_t            *global_scope      = NULL;
97 static scope_t            *scope             = NULL;
98 static declaration_t      *last_declaration  = NULL;
99 static declaration_t      *current_function  = NULL;
100 static switch_statement_t *current_switch    = NULL;
101 static statement_t        *current_loop      = NULL;
102 static ms_try_statement_t *current_try       = NULL;
103 static goto_statement_t   *goto_first        = NULL;
104 static goto_statement_t   *goto_last         = NULL;
105 static label_statement_t  *label_first       = NULL;
106 static label_statement_t  *label_last        = NULL;
107 static struct obstack      temp_obst;
108
109 static source_position_t null_position = { NULL, 0 };
110
111 /* symbols for Microsoft extended-decl-modifier */
112 static const symbol_t *sym_align      = NULL;
113 static const symbol_t *sym_allocate   = NULL;
114 static const symbol_t *sym_dllimport  = NULL;
115 static const symbol_t *sym_dllexport  = NULL;
116 static const symbol_t *sym_naked      = NULL;
117 static const symbol_t *sym_noinline   = NULL;
118 static const symbol_t *sym_noreturn   = NULL;
119 static const symbol_t *sym_nothrow    = NULL;
120 static const symbol_t *sym_novtable   = NULL;
121 static const symbol_t *sym_property   = NULL;
122 static const symbol_t *sym_get        = NULL;
123 static const symbol_t *sym_put        = NULL;
124 static const symbol_t *sym_selectany  = NULL;
125 static const symbol_t *sym_thread     = NULL;
126 static const symbol_t *sym_uuid       = NULL;
127 static const symbol_t *sym_deprecated = NULL;
128 static const symbol_t *sym_restrict   = NULL;
129 static const symbol_t *sym_noalias    = NULL;
130
131 /** The token anchor set */
132 static unsigned char token_anchor_set[T_LAST_TOKEN];
133
134 /** The current source position. */
135 #define HERE (&token.source_position)
136
137 static type_t *type_valist;
138
139 static statement_t *parse_compound_statement(bool inside_expression_statement);
140 static statement_t *parse_statement(void);
141
142 static expression_t *parse_sub_expression(unsigned precedence);
143 static expression_t *parse_expression(void);
144 static type_t       *parse_typename(void);
145
146 static void parse_compound_type_entries(declaration_t *compound_declaration);
147 static declaration_t *parse_declarator(
148                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
149 static declaration_t *record_declaration(declaration_t *declaration);
150
151 static void semantic_comparison(binary_expression_t *expression);
152
153 #define STORAGE_CLASSES     \
154         case T_typedef:         \
155         case T_extern:          \
156         case T_static:          \
157         case T_auto:            \
158         case T_register:
159
160 #define TYPE_QUALIFIERS     \
161         case T_const:           \
162         case T_restrict:        \
163         case T_volatile:        \
164         case T_inline:          \
165         case T__forceinline:
166
167 #ifdef PROVIDE_COMPLEX
168 #define COMPLEX_SPECIFIERS  \
169         case T__Complex:
170 #define IMAGINARY_SPECIFIERS \
171         case T__Imaginary:
172 #else
173 #define COMPLEX_SPECIFIERS
174 #define IMAGINARY_SPECIFIERS
175 #endif
176
177 #define TYPE_SPECIFIERS       \
178         case T_void:              \
179         case T_char:              \
180         case T_short:             \
181         case T_int:               \
182         case T_long:              \
183         case T_float:             \
184         case T_double:            \
185         case T_signed:            \
186         case T_unsigned:          \
187         case T__Bool:             \
188         case T_struct:            \
189         case T_union:             \
190         case T_enum:              \
191         case T___typeof__:        \
192         case T___builtin_va_list: \
193         case T__declspec:         \
194         COMPLEX_SPECIFIERS        \
195         IMAGINARY_SPECIFIERS
196
197 #define DECLARATION_START   \
198         STORAGE_CLASSES         \
199         TYPE_QUALIFIERS         \
200         TYPE_SPECIFIERS
201
202 #define TYPENAME_START      \
203         TYPE_QUALIFIERS         \
204         TYPE_SPECIFIERS
205
206 /**
207  * Allocate an AST node with given size and
208  * initialize all fields with zero.
209  */
210 static void *allocate_ast_zero(size_t size)
211 {
212         void *res = allocate_ast(size);
213         memset(res, 0, size);
214         return res;
215 }
216
217 static declaration_t *allocate_declaration_zero(void)
218 {
219         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
220         declaration->type      = type_error_type;
221         declaration->alignment = 0;
222         return declaration;
223 }
224
225 /**
226  * Returns the size of a statement node.
227  *
228  * @param kind  the statement kind
229  */
230 static size_t get_statement_struct_size(statement_kind_t kind)
231 {
232         static const size_t sizes[] = {
233                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
234                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
235                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
236                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
237                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
238                 [STATEMENT_IF]          = sizeof(if_statement_t),
239                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
240                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
241                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
242                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
243                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
244                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
245                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
246                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
247                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
248                 [STATEMENT_FOR]         = sizeof(for_statement_t),
249                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
250                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
251                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
252         };
253         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
254         assert(sizes[kind] != 0);
255         return sizes[kind];
256 }
257
258 /**
259  * Returns the size of an expression node.
260  *
261  * @param kind  the expression kind
262  */
263 static size_t get_expression_struct_size(expression_kind_t kind)
264 {
265         static const size_t sizes[] = {
266                 [EXPR_INVALID]                 = sizeof(expression_base_t),
267                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
268                 [EXPR_CONST]                   = sizeof(const_expression_t),
269                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
270                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
271                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
272                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
273                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
274                 [EXPR_CALL]                    = sizeof(call_expression_t),
275                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
276                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
277                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
278                 [EXPR_SELECT]                  = sizeof(select_expression_t),
279                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
280                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
281                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
282                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
283                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
284                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
285                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
286                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
287                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
288                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
289                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
290                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
291         };
292         if(kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
293                 return sizes[EXPR_UNARY_FIRST];
294         }
295         if(kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
296                 return sizes[EXPR_BINARY_FIRST];
297         }
298         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
299         assert(sizes[kind] != 0);
300         return sizes[kind];
301 }
302
303 /**
304  * Allocate a statement node of given kind and initialize all
305  * fields with zero.
306  */
307 static statement_t *allocate_statement_zero(statement_kind_t kind)
308 {
309         size_t       size = get_statement_struct_size(kind);
310         statement_t *res  = allocate_ast_zero(size);
311
312         res->base.kind = kind;
313         return res;
314 }
315
316 /**
317  * Allocate an expression node of given kind and initialize all
318  * fields with zero.
319  */
320 static expression_t *allocate_expression_zero(expression_kind_t kind)
321 {
322         size_t        size = get_expression_struct_size(kind);
323         expression_t *res  = allocate_ast_zero(size);
324
325         res->base.kind = kind;
326         res->base.type = type_error_type;
327         return res;
328 }
329
330 /**
331  * Creates a new invalid expression.
332  */
333 static expression_t *create_invalid_expression(void)
334 {
335         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
336         expression->base.source_position = token.source_position;
337         return expression;
338 }
339
340 /**
341  * Creates a new invalid statement.
342  */
343 static statement_t *create_invalid_statement(void)
344 {
345         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
346         statement->base.source_position = token.source_position;
347         return statement;
348 }
349
350 /**
351  * Allocate a new empty statement.
352  */
353 static statement_t *create_empty_statement(void)
354 {
355         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
356         statement->base.source_position = token.source_position;
357         return statement;
358 }
359
360 /**
361  * Returns the size of a type node.
362  *
363  * @param kind  the type kind
364  */
365 static size_t get_type_struct_size(type_kind_t kind)
366 {
367         static const size_t sizes[] = {
368                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
369                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
370                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
371                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
372                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
373                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
374                 [TYPE_ENUM]            = sizeof(enum_type_t),
375                 [TYPE_FUNCTION]        = sizeof(function_type_t),
376                 [TYPE_POINTER]         = sizeof(pointer_type_t),
377                 [TYPE_ARRAY]           = sizeof(array_type_t),
378                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
379                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
380                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
381         };
382         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
383         assert(kind <= TYPE_TYPEOF);
384         assert(sizes[kind] != 0);
385         return sizes[kind];
386 }
387
388 /**
389  * Allocate a type node of given kind and initialize all
390  * fields with zero.
391  */
392 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
393 {
394         size_t  size = get_type_struct_size(kind);
395         type_t *res  = obstack_alloc(type_obst, size);
396         memset(res, 0, size);
397
398         res->base.kind            = kind;
399         res->base.source_position = *source_position;
400         return res;
401 }
402
403 /**
404  * Returns the size of an initializer node.
405  *
406  * @param kind  the initializer kind
407  */
408 static size_t get_initializer_size(initializer_kind_t kind)
409 {
410         static const size_t sizes[] = {
411                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
412                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
413                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
414                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
415                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
416         };
417         assert(kind < sizeof(sizes) / sizeof(*sizes));
418         assert(sizes[kind] != 0);
419         return sizes[kind];
420 }
421
422 /**
423  * Allocate an initializer node of given kind and initialize all
424  * fields with zero.
425  */
426 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
427 {
428         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
429         result->kind          = kind;
430
431         return result;
432 }
433
434 /**
435  * Free a type from the type obstack.
436  */
437 static void free_type(void *type)
438 {
439         obstack_free(type_obst, type);
440 }
441
442 /**
443  * Returns the index of the top element of the environment stack.
444  */
445 static size_t environment_top(void)
446 {
447         return ARR_LEN(environment_stack);
448 }
449
450 /**
451  * Returns the index of the top element of the label stack.
452  */
453 static size_t label_top(void)
454 {
455         return ARR_LEN(label_stack);
456 }
457
458 /**
459  * Return the next token.
460  */
461 static inline void next_token(void)
462 {
463         token                              = lookahead_buffer[lookahead_bufpos];
464         lookahead_buffer[lookahead_bufpos] = lexer_token;
465         lexer_next_token();
466
467         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
468
469 #ifdef PRINT_TOKENS
470         print_token(stderr, &token);
471         fprintf(stderr, "\n");
472 #endif
473 }
474
475 /**
476  * Return the next token with a given lookahead.
477  */
478 static inline const token_t *look_ahead(int num)
479 {
480         assert(num > 0 && num <= MAX_LOOKAHEAD);
481         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
482         return &lookahead_buffer[pos];
483 }
484
485 /**
486  * Adds a token to the token anchor set (a multi-set).
487  */
488 static void add_anchor_token(int token_type) {
489         assert(0 <= token_type && token_type < T_LAST_TOKEN);
490         ++token_anchor_set[token_type];
491 }
492
493 static int save_and_reset_anchor_state(int token_type) {
494         assert(0 <= token_type && token_type < T_LAST_TOKEN);
495         int count = token_anchor_set[token_type];
496         token_anchor_set[token_type] = 0;
497         return count;
498 }
499
500 static void restore_anchor_state(int token_type, int count) {
501         assert(0 <= token_type && token_type < T_LAST_TOKEN);
502         token_anchor_set[token_type] = count;
503 }
504
505 /**
506  * Remove a token from the token anchor set (a multi-set).
507  */
508 static void rem_anchor_token(int token_type) {
509         assert(0 <= token_type && token_type < T_LAST_TOKEN);
510         --token_anchor_set[token_type];
511 }
512
513 static bool at_anchor(void) {
514         if(token.type < 0)
515                 return false;
516         return token_anchor_set[token.type];
517 }
518
519 /**
520  * Eat tokens until a matching token is found.
521  */
522 static void eat_until_matching_token(int type) {
523         unsigned parenthesis_count = 0;
524         unsigned brace_count = 0;
525         unsigned bracket_count = 0;
526         int end_token = type;
527
528         if(type == '(')
529                 end_token = ')';
530         else if(type == '{')
531                 end_token = '}';
532         else if(type == '[')
533                 end_token = ']';
534
535         while(token.type != end_token ||
536               (parenthesis_count > 0 || brace_count > 0 || bracket_count > 0)) {
537
538                 switch(token.type) {
539                 case T_EOF: return;
540                 case '(': ++parenthesis_count; break;
541                 case '{': ++brace_count;       break;
542                 case '[': ++bracket_count;     break;
543                 case ')':
544                         if(parenthesis_count > 0)
545                                 --parenthesis_count;
546                         break;
547                 case '}':
548                         if(brace_count > 0)
549                                 --brace_count;
550                         break;
551                 case ']':
552                         if(bracket_count > 0)
553                                 --bracket_count;
554                         break;
555                 default:
556                         break;
557                 }
558                 next_token();
559         }
560 }
561
562 /**
563  * Eat input tokens until an anchor is found.
564  */
565 static void eat_until_anchor(void) {
566         if(token.type == T_EOF)
567                 return;
568         while(token_anchor_set[token.type] == 0) {
569                 if(token.type == '(' || token.type == '{' || token.type == '[')
570                         eat_until_matching_token(token.type);
571                 if(token.type == T_EOF)
572                         break;
573                 next_token();
574         }
575 }
576
577 static void eat_block(void) {
578         eat_until_matching_token('{');
579         if(token.type == '}')
580                 next_token();
581 }
582
583 /**
584  * eat all token until a ';' is reached or a stop token is found.
585  */
586 static void eat_statement(void) {
587         eat_until_matching_token(';');
588         if(token.type == ';')
589                 next_token();
590 }
591
592 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while(0)
593
594 /**
595  * Report a parse error because an expected token was not found.
596  */
597 static
598 #if defined __GNUC__ && __GNUC__ >= 4
599 __attribute__((sentinel))
600 #endif
601 void parse_error_expected(const char *message, ...)
602 {
603         if(message != NULL) {
604                 errorf(HERE, "%s", message);
605         }
606         va_list ap;
607         va_start(ap, message);
608         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
609         va_end(ap);
610 }
611
612 /**
613  * Report a type error.
614  */
615 static void type_error(const char *msg, const source_position_t *source_position,
616                        type_t *type)
617 {
618         errorf(source_position, "%s, but found type '%T'", msg, type);
619 }
620
621 /**
622  * Report an incompatible type.
623  */
624 static void type_error_incompatible(const char *msg,
625                 const source_position_t *source_position, type_t *type1, type_t *type2)
626 {
627         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
628                msg, type1, type2);
629 }
630
631 /**
632  * Expect the the current token is the expected token.
633  * If not, generate an error, eat the current statement,
634  * and goto the end_error label.
635  */
636 #define expect(expected)                              \
637         do {                                              \
638     if(UNLIKELY(token.type != (expected))) {          \
639         parse_error_expected(NULL, (expected), NULL); \
640                 add_anchor_token(expected);                   \
641         eat_until_anchor();                           \
642         if (token.type == expected)                   \
643                 next_token();                             \
644                 rem_anchor_token(expected);                   \
645         goto end_error;                               \
646     }                                                 \
647     next_token();                                     \
648         } while(0)
649
650 static void set_scope(scope_t *new_scope)
651 {
652         if(scope != NULL) {
653                 scope->last_declaration = last_declaration;
654         }
655         scope = new_scope;
656
657         last_declaration = new_scope->last_declaration;
658 }
659
660 /**
661  * Search a symbol in a given namespace and returns its declaration or
662  * NULL if this symbol was not found.
663  */
664 static declaration_t *get_declaration(const symbol_t *const symbol,
665                                       const namespace_t namespc)
666 {
667         declaration_t *declaration = symbol->declaration;
668         for( ; declaration != NULL; declaration = declaration->symbol_next) {
669                 if(declaration->namespc == namespc)
670                         return declaration;
671         }
672
673         return NULL;
674 }
675
676 /**
677  * pushs an environment_entry on the environment stack and links the
678  * corresponding symbol to the new entry
679  */
680 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
681 {
682         symbol_t    *symbol  = declaration->symbol;
683         namespace_t  namespc = (namespace_t) declaration->namespc;
684
685         /* replace/add declaration into declaration list of the symbol */
686         declaration_t *iter = symbol->declaration;
687         if (iter == NULL) {
688                 symbol->declaration = declaration;
689         } else {
690                 declaration_t *iter_last = NULL;
691                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
692                         /* replace an entry? */
693                         if(iter->namespc == namespc) {
694                                 if(iter_last == NULL) {
695                                         symbol->declaration = declaration;
696                                 } else {
697                                         iter_last->symbol_next = declaration;
698                                 }
699                                 declaration->symbol_next = iter->symbol_next;
700                                 break;
701                         }
702                 }
703                 if(iter == NULL) {
704                         assert(iter_last->symbol_next == NULL);
705                         iter_last->symbol_next = declaration;
706                 }
707         }
708
709         /* remember old declaration */
710         stack_entry_t entry;
711         entry.symbol          = symbol;
712         entry.old_declaration = iter;
713         entry.namespc         = (unsigned short) namespc;
714         ARR_APP1(stack_entry_t, *stack_ptr, entry);
715 }
716
717 static void environment_push(declaration_t *declaration)
718 {
719         assert(declaration->source_position.input_name != NULL);
720         assert(declaration->parent_scope != NULL);
721         stack_push(&environment_stack, declaration);
722 }
723
724 static void label_push(declaration_t *declaration)
725 {
726         declaration->parent_scope = &current_function->scope;
727         stack_push(&label_stack, declaration);
728 }
729
730 /**
731  * pops symbols from the environment stack until @p new_top is the top element
732  */
733 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
734 {
735         stack_entry_t *stack = *stack_ptr;
736         size_t         top   = ARR_LEN(stack);
737         size_t         i;
738
739         assert(new_top <= top);
740         if(new_top == top)
741                 return;
742
743         for(i = top; i > new_top; --i) {
744                 stack_entry_t *entry = &stack[i - 1];
745
746                 declaration_t *old_declaration = entry->old_declaration;
747                 symbol_t      *symbol          = entry->symbol;
748                 namespace_t    namespc         = (namespace_t)entry->namespc;
749
750                 /* replace/remove declaration */
751                 declaration_t *declaration = symbol->declaration;
752                 assert(declaration != NULL);
753                 if(declaration->namespc == namespc) {
754                         if(old_declaration == NULL) {
755                                 symbol->declaration = declaration->symbol_next;
756                         } else {
757                                 symbol->declaration = old_declaration;
758                         }
759                 } else {
760                         declaration_t *iter_last = declaration;
761                         declaration_t *iter      = declaration->symbol_next;
762                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
763                                 /* replace an entry? */
764                                 if(iter->namespc == namespc) {
765                                         assert(iter_last != NULL);
766                                         iter_last->symbol_next = old_declaration;
767                                         if(old_declaration != NULL) {
768                                                 old_declaration->symbol_next = iter->symbol_next;
769                                         }
770                                         break;
771                                 }
772                         }
773                         assert(iter != NULL);
774                 }
775         }
776
777         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
778 }
779
780 static void environment_pop_to(size_t new_top)
781 {
782         stack_pop_to(&environment_stack, new_top);
783 }
784
785 static void label_pop_to(size_t new_top)
786 {
787         stack_pop_to(&label_stack, new_top);
788 }
789
790
791 static int get_rank(const type_t *type)
792 {
793         assert(!is_typeref(type));
794         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
795          * and esp. footnote 108). However we can't fold constants (yet), so we
796          * can't decide whether unsigned int is possible, while int always works.
797          * (unsigned int would be preferable when possible... for stuff like
798          *  struct { enum { ... } bla : 4; } ) */
799         if(type->kind == TYPE_ENUM)
800                 return ATOMIC_TYPE_INT;
801
802         assert(type->kind == TYPE_ATOMIC);
803         return type->atomic.akind;
804 }
805
806 static type_t *promote_integer(type_t *type)
807 {
808         if(type->kind == TYPE_BITFIELD)
809                 type = type->bitfield.base_type;
810
811         if(get_rank(type) < ATOMIC_TYPE_INT)
812                 type = type_int;
813
814         return type;
815 }
816
817 /**
818  * Create a cast expression.
819  *
820  * @param expression  the expression to cast
821  * @param dest_type   the destination type
822  */
823 static expression_t *create_cast_expression(expression_t *expression,
824                                             type_t *dest_type)
825 {
826         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
827
828         cast->unary.value = expression;
829         cast->base.type   = dest_type;
830
831         return cast;
832 }
833
834 /**
835  * Check if a given expression represents the 0 pointer constant.
836  */
837 static bool is_null_pointer_constant(const expression_t *expression)
838 {
839         /* skip void* cast */
840         if(expression->kind == EXPR_UNARY_CAST
841                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
842                 expression = expression->unary.value;
843         }
844
845         /* TODO: not correct yet, should be any constant integer expression
846          * which evaluates to 0 */
847         if (expression->kind != EXPR_CONST)
848                 return false;
849
850         type_t *const type = skip_typeref(expression->base.type);
851         if (!is_type_integer(type))
852                 return false;
853
854         return expression->conste.v.int_value == 0;
855 }
856
857 /**
858  * Create an implicit cast expression.
859  *
860  * @param expression  the expression to cast
861  * @param dest_type   the destination type
862  */
863 static expression_t *create_implicit_cast(expression_t *expression,
864                                           type_t *dest_type)
865 {
866         type_t *const source_type = expression->base.type;
867
868         if (source_type == dest_type)
869                 return expression;
870
871         return create_cast_expression(expression, dest_type);
872 }
873
874 /** Implements the rules from Â§ 6.5.16.1 */
875 static type_t *semantic_assign(type_t *orig_type_left,
876                             const expression_t *const right,
877                             const char *context,
878                             const source_position_t *source_position)
879 {
880         type_t *const orig_type_right = right->base.type;
881         type_t *const type_left       = skip_typeref(orig_type_left);
882         type_t *const type_right      = skip_typeref(orig_type_right);
883
884         if(is_type_pointer(type_left)) {
885                 if(is_null_pointer_constant(right)) {
886                         return orig_type_left;
887                 } else if(is_type_pointer(type_right)) {
888                         type_t *points_to_left
889                                 = skip_typeref(type_left->pointer.points_to);
890                         type_t *points_to_right
891                                 = skip_typeref(type_right->pointer.points_to);
892
893                         /* the left type has all qualifiers from the right type */
894                         unsigned missing_qualifiers
895                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
896                         if(missing_qualifiers != 0) {
897                                 errorf(source_position,
898                                                 "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointed-to type", type_left, context, type_right, missing_qualifiers);
899                                 return orig_type_left;
900                         }
901
902                         points_to_left  = get_unqualified_type(points_to_left);
903                         points_to_right = get_unqualified_type(points_to_right);
904
905                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
906                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
907                                 return orig_type_left;
908                         }
909
910                         if (!types_compatible(points_to_left, points_to_right)) {
911                                 warningf(source_position,
912                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
913                                         orig_type_left, context, right, orig_type_right);
914                         }
915
916                         return orig_type_left;
917                 } else if(is_type_integer(type_right)) {
918                         warningf(source_position,
919                                         "%s makes pointer '%T' from integer '%T' without a cast",
920                                         context, orig_type_left, orig_type_right);
921                         return orig_type_left;
922                 }
923         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
924             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
925                 && is_type_pointer(type_right))) {
926                 return orig_type_left;
927         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
928                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
929                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
930                 type_t *const unqual_type_right = get_unqualified_type(type_right);
931                 if (types_compatible(unqual_type_left, unqual_type_right)) {
932                         return orig_type_left;
933                 }
934         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
935                 warningf(source_position,
936                                 "%s makes integer '%T' from pointer '%T' without a cast",
937                                 context, orig_type_left, orig_type_right);
938                 return orig_type_left;
939         }
940
941         if (!is_type_valid(type_left))
942                 return type_left;
943
944         if (!is_type_valid(type_right))
945                 return orig_type_right;
946
947         return NULL;
948 }
949
950 static expression_t *parse_constant_expression(void)
951 {
952         /* start parsing at precedence 7 (conditional expression) */
953         expression_t *result = parse_sub_expression(7);
954
955         if(!is_constant_expression(result)) {
956                 errorf(&result->base.source_position,
957                        "expression '%E' is not constant\n", result);
958         }
959
960         return result;
961 }
962
963 static expression_t *parse_assignment_expression(void)
964 {
965         /* start parsing at precedence 2 (assignment expression) */
966         return parse_sub_expression(2);
967 }
968
969 static type_t *make_global_typedef(const char *name, type_t *type)
970 {
971         symbol_t *const symbol       = symbol_table_insert(name);
972
973         declaration_t *const declaration = allocate_declaration_zero();
974         declaration->namespc                = NAMESPACE_NORMAL;
975         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
976         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
977         declaration->type                   = type;
978         declaration->symbol                 = symbol;
979         declaration->source_position        = builtin_source_position;
980
981         record_declaration(declaration);
982
983         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
984         typedef_type->typedeft.declaration = declaration;
985
986         return typedef_type;
987 }
988
989 static string_t parse_string_literals(void)
990 {
991         assert(token.type == T_STRING_LITERAL);
992         string_t result = token.v.string;
993
994         next_token();
995
996         while (token.type == T_STRING_LITERAL) {
997                 result = concat_strings(&result, &token.v.string);
998                 next_token();
999         }
1000
1001         return result;
1002 }
1003
1004 static const char *gnu_attribute_names[GNU_AK_LAST] = {
1005         [GNU_AK_CONST]                  = "const",
1006         [GNU_AK_VOLATILE]               = "volatile",
1007         [GNU_AK_CDECL]                  = "cdecl",
1008         [GNU_AK_STDCALL]                = "stdcall",
1009         [GNU_AK_FASTCALL]               = "fastcall",
1010         [GNU_AK_DEPRECATED]             = "deprecated",
1011         [GNU_AK_NOINLINE]               = "noinline",
1012         [GNU_AK_NORETURN]               = "noreturn",
1013         [GNU_AK_NAKED]                  = "naked",
1014         [GNU_AK_PURE]                   = "pure",
1015         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1016         [GNU_AK_MALLOC]                 = "malloc",
1017         [GNU_AK_WEAK]                   = "weak",
1018         [GNU_AK_CONSTRUCTOR]            = "constructor",
1019         [GNU_AK_DESTRUCTOR]             = "destructor",
1020         [GNU_AK_NOTHROW]                = "nothrow",
1021         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1022         [GNU_AK_COMMON]                 = "coommon",
1023         [GNU_AK_NOCOMMON]               = "nocommon",
1024         [GNU_AK_PACKED]                 = "packed",
1025         [GNU_AK_SHARED]                 = "shared",
1026         [GNU_AK_NOTSHARED]              = "notshared",
1027         [GNU_AK_USED]                   = "used",
1028         [GNU_AK_UNUSED]                 = "unused",
1029         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1030         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1031         [GNU_AK_LONGCALL]               = "longcall",
1032         [GNU_AK_SHORTCALL]              = "shortcall",
1033         [GNU_AK_LONG_CALL]              = "long_call",
1034         [GNU_AK_SHORT_CALL]             = "short_call",
1035         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1036         [GNU_AK_INTERRUPT]                              = "interrupt",
1037         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1038         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1039         [GNU_AK_NESTING]                = "nesting",
1040         [GNU_AK_NEAR]                   = "near",
1041         [GNU_AK_FAR]                    = "far",
1042         [GNU_AK_SIGNAL]                 = "signal",
1043         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1044         [GNU_AK_TINY_DATA]              = "tiny_data",
1045         [GNU_AK_SAVEALL]                = "saveall",
1046         [GNU_AK_FLATTEN]                = "flatten",
1047         [GNU_AK_SSEREGPARM]             = "sseregparm",
1048         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1049         [GNU_AK_RETURN_TWICE]           = "return_twice",
1050         [GNU_AK_MAY_ALIAS]              = "may_alias",
1051         [GNU_AK_MS_STRUCT]              = "ms_struct",
1052         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1053         [GNU_AK_DLLIMPORT]              = "dllimport",
1054         [GNU_AK_DLLEXPORT]              = "dllexport",
1055         [GNU_AK_ALIGNED]                = "aligned",
1056         [GNU_AK_ALIAS]                  = "alias",
1057         [GNU_AK_SECTION]                = "section",
1058         [GNU_AK_FORMAT]                 = "format",
1059         [GNU_AK_FORMAT_ARG]             = "format_arg",
1060         [GNU_AK_WEAKREF]                = "weakref",
1061         [GNU_AK_NONNULL]                = "nonnull",
1062         [GNU_AK_TLS_MODEL]              = "tls_model",
1063         [GNU_AK_VISIBILITY]             = "visibility",
1064         [GNU_AK_REGPARM]                = "regparm",
1065         [GNU_AK_MODE]                   = "mode",
1066         [GNU_AK_MODEL]                  = "model",
1067         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1068         [GNU_AK_SP_SWITCH]              = "sp_switch",
1069         [GNU_AK_SENTINEL]               = "sentinel"
1070 };
1071
1072 /**
1073  * compare two string, ignoring double underscores on the second.
1074  */
1075 static int strcmp_underscore(const char *s1, const char *s2) {
1076         if(s2[0] == '_' && s2[1] == '_') {
1077                 s2 += 2;
1078                 size_t l1 = strlen(s1);
1079                 if(l1 + 2 != strlen(s2)) {
1080                         /* not equal */
1081                         return 1;
1082                 }
1083                 return strncmp(s1, s2, l1);
1084         }
1085         return strcmp(s1, s2);
1086 }
1087
1088 /**
1089  * Allocate a new gnu temporal attribute.
1090  */
1091 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind) {
1092         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1093         attribute->kind            = kind;
1094         attribute->next            = NULL;
1095         attribute->invalid         = false;
1096         attribute->have_arguments  = false;
1097
1098         return attribute;
1099         return attribute;
1100 }
1101
1102 /**
1103  * parse one constant expression argument.
1104  */
1105 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute) {
1106         expression_t *expression;
1107         add_anchor_token(')');
1108         expression = parse_constant_expression();
1109         rem_anchor_token(')');
1110         expect(')');
1111         (void)expression;
1112         return;
1113 end_error:
1114         attribute->invalid = true;
1115 }
1116
1117 /**
1118  * parse a list of constant expressions arguments.
1119  */
1120 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute) {
1121         expression_t *expression;
1122         add_anchor_token(')');
1123         add_anchor_token(',');
1124         while(true){
1125                 expression = parse_constant_expression();
1126                 if(token.type != ',')
1127                         break;
1128                 next_token();
1129         }
1130         rem_anchor_token(',');
1131         rem_anchor_token(')');
1132         expect(')');
1133         (void)expression;
1134         return;
1135 end_error:
1136         attribute->invalid = true;
1137 }
1138
1139 /**
1140  * parse one string literal argument.
1141  */
1142 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1143                                            string_t *string)
1144 {
1145         add_anchor_token('(');
1146         if(token.type != T_STRING_LITERAL) {
1147                 parse_error_expected("while parsing attribute directive",
1148                                      T_STRING_LITERAL, NULL);
1149                 goto end_error;
1150         }
1151         *string = parse_string_literals();
1152         rem_anchor_token('(');
1153         expect(')');
1154         return;
1155 end_error:
1156         attribute->invalid = true;
1157 }
1158
1159 /**
1160  * parse one tls model.
1161  */
1162 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute) {
1163         static const char *tls_models[] = {
1164                 "global-dynamic",
1165                 "local-dynamic",
1166                 "initial-exec",
1167                 "local-exec"
1168         };
1169         string_t string = { NULL, 0 };
1170         parse_gnu_attribute_string_arg(attribute, &string);
1171         if(string.begin != NULL) {
1172                 for(size_t i = 0; i < 4; ++i) {
1173                         if(strcmp(tls_models[i], string.begin) == 0) {
1174                                 attribute->u.value = i;
1175                                 return;
1176                         }
1177                 }
1178         }
1179         errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1180         attribute->invalid = true;
1181 }
1182
1183 /**
1184  * parse one tls model.
1185  */
1186 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute) {
1187         static const char *visibilities[] = {
1188                 "default",
1189                 "protected",
1190                 "hidden",
1191                 "internal"
1192         };
1193         string_t string = { NULL, 0 };
1194         parse_gnu_attribute_string_arg(attribute, &string);
1195         if(string.begin != NULL) {
1196                 for(size_t i = 0; i < 4; ++i) {
1197                         if(strcmp(visibilities[i], string.begin) == 0) {
1198                                 attribute->u.value = i;
1199                                 return;
1200                         }
1201                 }
1202         }
1203         errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1204         attribute->invalid = true;
1205 }
1206
1207 /**
1208  * parse one (code) model.
1209  */
1210 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute) {
1211         static const char *visibilities[] = {
1212                 "small",
1213                 "medium",
1214                 "large"
1215         };
1216         string_t string = { NULL, 0 };
1217         parse_gnu_attribute_string_arg(attribute, &string);
1218         if(string.begin != NULL) {
1219                 for(int i = 0; i < 3; ++i) {
1220                         if(strcmp(visibilities[i], string.begin) == 0) {
1221                                 attribute->u.value = i;
1222                                 return;
1223                         }
1224                 }
1225         }
1226         errorf(HERE, "'%s' is an unrecognized model", string.begin);
1227         attribute->invalid = true;
1228 }
1229
1230 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1231 {
1232         /* TODO: find out what is allowed here... */
1233
1234         /* at least: byte, word, pointer, list of machine modes
1235          * __XXX___ is interpreted as XXX */
1236         add_anchor_token(')');
1237         expect(T_IDENTIFIER);
1238         rem_anchor_token(')');
1239         expect(')');
1240         return;
1241 end_error:
1242         attribute->invalid = true;
1243 }
1244
1245 /**
1246  * parse one interrupt argument.
1247  */
1248 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute) {
1249         static const char *interrupts[] = {
1250                 "IRQ",
1251                 "FIQ",
1252                 "SWI",
1253                 "ABORT",
1254                 "UNDEF"
1255         };
1256         string_t string = { NULL, 0 };
1257         parse_gnu_attribute_string_arg(attribute, &string);
1258         if(string.begin != NULL) {
1259                 for(size_t i = 0; i < 5; ++i) {
1260                         if(strcmp(interrupts[i], string.begin) == 0) {
1261                                 attribute->u.value = i;
1262                                 return;
1263                         }
1264                 }
1265         }
1266         errorf(HERE, "'%s' is an interrupt", string.begin);
1267         attribute->invalid = true;
1268 }
1269
1270 /**
1271  * parse ( identifier, const expression, const expression )
1272  */
1273 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute) {
1274         static const char *format_names[] = {
1275                 "printf",
1276                 "scanf",
1277                 "strftime",
1278                 "strfmon"
1279         };
1280         int i;
1281
1282         if(token.type != T_IDENTIFIER) {
1283                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1284                 goto end_error;
1285         }
1286         const char *name = token.v.symbol->string;
1287         for(i = 0; i < 4; ++i) {
1288                 if(strcmp_underscore(format_names[i], name) == 0)
1289                         break;
1290         }
1291         if(i >= 4) {
1292                 if(warning.attribute)
1293                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1294         }
1295         next_token();
1296
1297         expect(',');
1298         add_anchor_token(')');
1299         add_anchor_token(',');
1300         parse_constant_expression();
1301         rem_anchor_token(',');
1302         rem_anchor_token('(');
1303
1304         expect(',');
1305         add_anchor_token(')');
1306         parse_constant_expression();
1307         rem_anchor_token('(');
1308         expect(')');
1309         return;
1310 end_error:
1311         attribute->u.value = true;
1312 }
1313
1314 /**
1315  * Parse one GNU attribute.
1316  *
1317  * Note that attribute names can be specified WITH or WITHOUT
1318  * double underscores, ie const or __const__.
1319  *
1320  * The following attributes are parsed without arguments
1321  *  const
1322  *  volatile
1323  *  cdecl
1324  *  stdcall
1325  *  fastcall
1326  *  deprecated
1327  *  noinline
1328  *  noreturn
1329  *  naked
1330  *  pure
1331  *  always_inline
1332  *  malloc
1333  *  weak
1334  *  constructor
1335  *  destructor
1336  *  nothrow
1337  *  transparent_union
1338  *  common
1339  *  nocommon
1340  *  packed
1341  *  shared
1342  *  notshared
1343  *  used
1344  *  unused
1345  *  no_instrument_function
1346  *  warn_unused_result
1347  *  longcall
1348  *  shortcall
1349  *  long_call
1350  *  short_call
1351  *  function_vector
1352  *  interrupt_handler
1353  *  nmi_handler
1354  *  nesting
1355  *  near
1356  *  far
1357  *  signal
1358  *  eightbit_data
1359  *  tiny_data
1360  *  saveall
1361  *  flatten
1362  *  sseregparm
1363  *  externally_visible
1364  *  return_twice
1365  *  may_alias
1366  *  ms_struct
1367  *  gcc_struct
1368  *  dllimport
1369  *  dllexport
1370  *
1371  * The following attributes are parsed with arguments
1372  *  aligned( const expression )
1373  *  alias( string literal )
1374  *  section( string literal )
1375  *  format( identifier, const expression, const expression )
1376  *  format_arg( const expression )
1377  *  tls_model( string literal )
1378  *  visibility( string literal )
1379  *  regparm( const expression )
1380  *  model( string leteral )
1381  *  trap_exit( const expression )
1382  *  sp_switch( string literal )
1383  *
1384  * The following attributes might have arguments
1385  *  weak_ref( string literal )
1386  *  non_null( const expression // ',' )
1387  *  interrupt( string literal )
1388  *  sentinel( constant expression )
1389  */
1390 static void parse_gnu_attribute(gnu_attribute_t **attributes)
1391 {
1392         gnu_attribute_t *head = *attributes;
1393         gnu_attribute_t *last = *attributes;
1394         gnu_attribute_t *attribute;
1395
1396         eat(T___attribute__);
1397         expect('(');
1398         expect('(');
1399
1400         if(token.type != ')') {
1401                 /* find the end of the list */
1402                 if(last != NULL) {
1403                         while(last->next != NULL)
1404                                 last = last->next;
1405                 }
1406
1407                 /* non-empty attribute list */
1408                 while(true) {
1409                         const char *name;
1410                         if(token.type == T_const) {
1411                                 name = "const";
1412                         } else if(token.type == T_volatile) {
1413                                 name = "volatile";
1414                         } else if(token.type == T_cdecl) {
1415                                 /* __attribute__((cdecl)), WITH ms mode */
1416                                 name = "cdecl";
1417                         } else if(token.type != T_IDENTIFIER) {
1418                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1419                                 break;
1420                         }
1421                         const symbol_t *sym = token.v.symbol;
1422                         name = sym->string;
1423                         next_token();
1424
1425                         int i;
1426                         for(i = 0; i < GNU_AK_LAST; ++i) {
1427                                 if(strcmp_underscore(gnu_attribute_names[i], name) == 0)
1428                                         break;
1429                         }
1430                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1431
1432                         attribute = NULL;
1433                         if(kind == GNU_AK_LAST) {
1434                                 if(warning.attribute)
1435                                         warningf(HERE, "'%s' attribute directive ignored", name);
1436
1437                                 /* skip possible arguments */
1438                                 if(token.type == '(') {
1439                                         eat_until_matching_token(')');
1440                                 }
1441                         } else {
1442                                 /* check for arguments */
1443                                 attribute = allocate_gnu_attribute(kind);
1444                                 if(token.type == '(') {
1445                                         next_token();
1446                                         if(token.type == ')') {
1447                                                 /* empty args are allowed */
1448                                                 next_token();
1449                                         } else
1450                                                 attribute->have_arguments = true;
1451                                 }
1452
1453                                 switch(kind) {
1454                                 case GNU_AK_CONST:
1455                                 case GNU_AK_VOLATILE:
1456                                 case GNU_AK_CDECL:
1457                                 case GNU_AK_STDCALL:
1458                                 case GNU_AK_FASTCALL:
1459                                 case GNU_AK_DEPRECATED:
1460                                 case GNU_AK_NOINLINE:
1461                                 case GNU_AK_NORETURN:
1462                                 case GNU_AK_NAKED:
1463                                 case GNU_AK_PURE:
1464                                 case GNU_AK_ALWAYS_INLINE:
1465                                 case GNU_AK_MALLOC:
1466                                 case GNU_AK_WEAK:
1467                                 case GNU_AK_CONSTRUCTOR:
1468                                 case GNU_AK_DESTRUCTOR:
1469                                 case GNU_AK_NOTHROW:
1470                                 case GNU_AK_TRANSPARENT_UNION:
1471                                 case GNU_AK_COMMON:
1472                                 case GNU_AK_NOCOMMON:
1473                                 case GNU_AK_PACKED:
1474                                 case GNU_AK_SHARED:
1475                                 case GNU_AK_NOTSHARED:
1476                                 case GNU_AK_USED:
1477                                 case GNU_AK_UNUSED:
1478                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1479                                 case GNU_AK_WARN_UNUSED_RESULT:
1480                                 case GNU_AK_LONGCALL:
1481                                 case GNU_AK_SHORTCALL:
1482                                 case GNU_AK_LONG_CALL:
1483                                 case GNU_AK_SHORT_CALL:
1484                                 case GNU_AK_FUNCTION_VECTOR:
1485                                 case GNU_AK_INTERRUPT_HANDLER:
1486                                 case GNU_AK_NMI_HANDLER:
1487                                 case GNU_AK_NESTING:
1488                                 case GNU_AK_NEAR:
1489                                 case GNU_AK_FAR:
1490                                 case GNU_AK_SIGNAL:
1491                                 case GNU_AK_EIGTHBIT_DATA:
1492                                 case GNU_AK_TINY_DATA:
1493                                 case GNU_AK_SAVEALL:
1494                                 case GNU_AK_FLATTEN:
1495                                 case GNU_AK_SSEREGPARM:
1496                                 case GNU_AK_EXTERNALLY_VISIBLE:
1497                                 case GNU_AK_RETURN_TWICE:
1498                                 case GNU_AK_MAY_ALIAS:
1499                                 case GNU_AK_MS_STRUCT:
1500                                 case GNU_AK_GCC_STRUCT:
1501                                 case GNU_AK_DLLIMPORT:
1502                                 case GNU_AK_DLLEXPORT:
1503                                         if(attribute->have_arguments) {
1504                                                 /* should have no arguments */
1505                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1506                                                 eat_until_matching_token('(');
1507                                                 /* we have already consumed '(', so we stop before ')', eat it */
1508                                                 eat(')');
1509                                                 attribute->invalid = true;
1510                                         }
1511                                         break;
1512
1513                                 case GNU_AK_ALIGNED:
1514                                 case GNU_AK_FORMAT_ARG:
1515                                 case GNU_AK_REGPARM:
1516                                 case GNU_AK_TRAP_EXIT:
1517                                         if(!attribute->have_arguments) {
1518                                                 /* should have arguments */
1519                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1520                                                 attribute->invalid = true;
1521                                         } else
1522                                                 parse_gnu_attribute_const_arg(attribute);
1523                                         break;
1524                                 case GNU_AK_ALIAS:
1525                                 case GNU_AK_SECTION:
1526                                 case GNU_AK_SP_SWITCH:
1527                                         if(!attribute->have_arguments) {
1528                                                 /* should have arguments */
1529                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1530                                                 attribute->invalid = true;
1531                                         } else
1532                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1533                                         break;
1534                                 case GNU_AK_FORMAT:
1535                                         if(!attribute->have_arguments) {
1536                                                 /* should have arguments */
1537                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1538                                                 attribute->invalid = true;
1539                                         } else
1540                                                 parse_gnu_attribute_format_args(attribute);
1541                                         break;
1542                                 case GNU_AK_WEAKREF:
1543                                         /* may have one string argument */
1544                                         if(attribute->have_arguments)
1545                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1546                                         break;
1547                                 case GNU_AK_NONNULL:
1548                                         if(attribute->have_arguments)
1549                                                 parse_gnu_attribute_const_arg_list(attribute);
1550                                         break;
1551                                 case GNU_AK_TLS_MODEL:
1552                                         if(!attribute->have_arguments) {
1553                                                 /* should have arguments */
1554                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1555                                         } else
1556                                                 parse_gnu_attribute_tls_model_arg(attribute);
1557                                         break;
1558                                 case GNU_AK_VISIBILITY:
1559                                         if(!attribute->have_arguments) {
1560                                                 /* should have arguments */
1561                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1562                                         } else
1563                                                 parse_gnu_attribute_visibility_arg(attribute);
1564                                         break;
1565                                 case GNU_AK_MODEL:
1566                                         if(!attribute->have_arguments) {
1567                                                 /* should have arguments */
1568                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1569                                         } else {
1570                                                 parse_gnu_attribute_model_arg(attribute);
1571                                         }
1572                                         break;
1573                                 case GNU_AK_MODE:
1574                                         if(!attribute->have_arguments) {
1575                                                 /* should have arguments */
1576                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1577                                         } else {
1578                                                 parse_gnu_attribute_mode_arg(attribute);
1579                                         }
1580                                         break;
1581                                 case GNU_AK_INTERRUPT:
1582                                         /* may have one string argument */
1583                                         if(attribute->have_arguments)
1584                                                 parse_gnu_attribute_interrupt_arg(attribute);
1585                                         break;
1586                                 case GNU_AK_SENTINEL:
1587                                         /* may have one string argument */
1588                                         if(attribute->have_arguments)
1589                                                 parse_gnu_attribute_const_arg(attribute);
1590                                         break;
1591                                 case GNU_AK_LAST:
1592                                         /* already handled */
1593                                         break;
1594                                 }
1595                         }
1596                         if(attribute != NULL) {
1597                                 if(last != NULL) {
1598                                         last->next = attribute;
1599                                         last       = attribute;
1600                                 } else {
1601                                         head = last = attribute;
1602                                 }
1603                         }
1604
1605                         if(token.type != ',')
1606                                 break;
1607                         next_token();
1608                 }
1609         }
1610         expect(')');
1611         expect(')');
1612 end_error:
1613         *attributes = head;
1614 }
1615
1616 /**
1617  * Parse GNU attributes.
1618  */
1619 static void parse_attributes(gnu_attribute_t **attributes)
1620 {
1621         while(true) {
1622                 switch(token.type) {
1623                 case T___attribute__: {
1624                         parse_gnu_attribute(attributes);
1625                         break;
1626                 }
1627                 case T_asm:
1628                         next_token();
1629                         expect('(');
1630                         if(token.type != T_STRING_LITERAL) {
1631                                 parse_error_expected("while parsing assembler attribute",
1632                                                      T_STRING_LITERAL, NULL);
1633                                 eat_until_matching_token('(');
1634                                 break;
1635                         } else {
1636                                 parse_string_literals();
1637                         }
1638                         expect(')');
1639                         break;
1640                 default:
1641                         goto attributes_finished;
1642                 }
1643         }
1644
1645 attributes_finished:
1646 end_error:
1647         return;
1648 }
1649
1650 static designator_t *parse_designation(void)
1651 {
1652         designator_t *result = NULL;
1653         designator_t *last   = NULL;
1654
1655         while(true) {
1656                 designator_t *designator;
1657                 switch(token.type) {
1658                 case '[':
1659                         designator = allocate_ast_zero(sizeof(designator[0]));
1660                         designator->source_position = token.source_position;
1661                         next_token();
1662                         add_anchor_token(']');
1663                         designator->array_index = parse_constant_expression();
1664                         rem_anchor_token(']');
1665                         expect(']');
1666                         break;
1667                 case '.':
1668                         designator = allocate_ast_zero(sizeof(designator[0]));
1669                         designator->source_position = token.source_position;
1670                         next_token();
1671                         if(token.type != T_IDENTIFIER) {
1672                                 parse_error_expected("while parsing designator",
1673                                                      T_IDENTIFIER, NULL);
1674                                 return NULL;
1675                         }
1676                         designator->symbol = token.v.symbol;
1677                         next_token();
1678                         break;
1679                 default:
1680                         expect('=');
1681                         return result;
1682                 }
1683
1684                 assert(designator != NULL);
1685                 if(last != NULL) {
1686                         last->next = designator;
1687                 } else {
1688                         result = designator;
1689                 }
1690                 last = designator;
1691         }
1692 end_error:
1693         return NULL;
1694 }
1695
1696 static initializer_t *initializer_from_string(array_type_t *type,
1697                                               const string_t *const string)
1698 {
1699         /* TODO: check len vs. size of array type */
1700         (void) type;
1701
1702         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1703         initializer->string.string = *string;
1704
1705         return initializer;
1706 }
1707
1708 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1709                                                    wide_string_t *const string)
1710 {
1711         /* TODO: check len vs. size of array type */
1712         (void) type;
1713
1714         initializer_t *const initializer =
1715                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1716         initializer->wide_string.string = *string;
1717
1718         return initializer;
1719 }
1720
1721 /**
1722  * Build an initializer from a given expression.
1723  */
1724 static initializer_t *initializer_from_expression(type_t *orig_type,
1725                                                   expression_t *expression)
1726 {
1727         /* TODO check that expression is a constant expression */
1728
1729         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1730         type_t *type           = skip_typeref(orig_type);
1731         type_t *expr_type_orig = expression->base.type;
1732         type_t *expr_type      = skip_typeref(expr_type_orig);
1733         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1734                 array_type_t *const array_type   = &type->array;
1735                 type_t       *const element_type = skip_typeref(array_type->element_type);
1736
1737                 if (element_type->kind == TYPE_ATOMIC) {
1738                         atomic_type_kind_t akind = element_type->atomic.akind;
1739                         switch (expression->kind) {
1740                                 case EXPR_STRING_LITERAL:
1741                                         if (akind == ATOMIC_TYPE_CHAR
1742                                                         || akind == ATOMIC_TYPE_SCHAR
1743                                                         || akind == ATOMIC_TYPE_UCHAR) {
1744                                                 return initializer_from_string(array_type,
1745                                                         &expression->string.value);
1746                                         }
1747
1748                                 case EXPR_WIDE_STRING_LITERAL: {
1749                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1750                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1751                                                 return initializer_from_wide_string(array_type,
1752                                                         &expression->wide_string.value);
1753                                         }
1754                                 }
1755
1756                                 default:
1757                                         break;
1758                         }
1759                 }
1760         }
1761
1762         type_t *const res_type = semantic_assign(type, expression, "initializer",
1763                                                  &expression->base.source_position);
1764         if (res_type == NULL)
1765                 return NULL;
1766
1767         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1768         result->value.value = create_implicit_cast(expression, res_type);
1769
1770         return result;
1771 }
1772
1773 /**
1774  * Checks if a given expression can be used as an constant initializer.
1775  */
1776 static bool is_initializer_constant(const expression_t *expression)
1777 {
1778         return is_constant_expression(expression)
1779                 || is_address_constant(expression);
1780 }
1781
1782 /**
1783  * Parses an scalar initializer.
1784  *
1785  * Â§ 6.7.8.11; eat {} without warning
1786  */
1787 static initializer_t *parse_scalar_initializer(type_t *type,
1788                                                bool must_be_constant)
1789 {
1790         /* there might be extra {} hierarchies */
1791         int braces = 0;
1792         while(token.type == '{') {
1793                 next_token();
1794                 if(braces == 0) {
1795                         warningf(HERE, "extra curly braces around scalar initializer");
1796                 }
1797                 braces++;
1798         }
1799
1800         expression_t *expression = parse_assignment_expression();
1801         if(must_be_constant && !is_initializer_constant(expression)) {
1802                 errorf(&expression->base.source_position,
1803                        "Initialisation expression '%E' is not constant\n",
1804                        expression);
1805         }
1806
1807         initializer_t *initializer = initializer_from_expression(type, expression);
1808
1809         if(initializer == NULL) {
1810                 errorf(&expression->base.source_position,
1811                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1812                        expression, expression->base.type, type);
1813                 /* TODO */
1814                 return NULL;
1815         }
1816
1817         bool additional_warning_displayed = false;
1818         while(braces > 0) {
1819                 if(token.type == ',') {
1820                         next_token();
1821                 }
1822                 if(token.type != '}') {
1823                         if(!additional_warning_displayed) {
1824                                 warningf(HERE, "additional elements in scalar initializer");
1825                                 additional_warning_displayed = true;
1826                         }
1827                 }
1828                 eat_block();
1829                 braces--;
1830         }
1831
1832         return initializer;
1833 }
1834
1835 /**
1836  * An entry in the type path.
1837  */
1838 typedef struct type_path_entry_t type_path_entry_t;
1839 struct type_path_entry_t {
1840         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
1841         union {
1842                 size_t         index;          /**< For array types: the current index. */
1843                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
1844         } v;
1845 };
1846
1847 /**
1848  * A type path expression a position inside compound or array types.
1849  */
1850 typedef struct type_path_t type_path_t;
1851 struct type_path_t {
1852         type_path_entry_t *path;         /**< An flexible array containing the current path. */
1853         type_t            *top_type;     /**< type of the element the path points */
1854         size_t             max_index;    /**< largest index in outermost array */
1855 };
1856
1857 /**
1858  * Prints a type path for debugging.
1859  */
1860 static __attribute__((unused)) void debug_print_type_path(
1861                 const type_path_t *path)
1862 {
1863         size_t len = ARR_LEN(path->path);
1864
1865         for(size_t i = 0; i < len; ++i) {
1866                 const type_path_entry_t *entry = & path->path[i];
1867
1868                 type_t *type = skip_typeref(entry->type);
1869                 if(is_type_compound(type)) {
1870                         /* in gcc mode structs can have no members */
1871                         if(entry->v.compound_entry == NULL) {
1872                                 assert(i == len-1);
1873                                 continue;
1874                         }
1875                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
1876                 } else if(is_type_array(type)) {
1877                         fprintf(stderr, "[%zd]", entry->v.index);
1878                 } else {
1879                         fprintf(stderr, "-INVALID-");
1880                 }
1881         }
1882         if(path->top_type != NULL) {
1883                 fprintf(stderr, "  (");
1884                 print_type(path->top_type);
1885                 fprintf(stderr, ")");
1886         }
1887 }
1888
1889 /**
1890  * Return the top type path entry, ie. in a path
1891  * (type).a.b returns the b.
1892  */
1893 static type_path_entry_t *get_type_path_top(const type_path_t *path)
1894 {
1895         size_t len = ARR_LEN(path->path);
1896         assert(len > 0);
1897         return &path->path[len-1];
1898 }
1899
1900 /**
1901  * Enlarge the type path by an (empty) element.
1902  */
1903 static type_path_entry_t *append_to_type_path(type_path_t *path)
1904 {
1905         size_t len = ARR_LEN(path->path);
1906         ARR_RESIZE(type_path_entry_t, path->path, len+1);
1907
1908         type_path_entry_t *result = & path->path[len];
1909         memset(result, 0, sizeof(result[0]));
1910         return result;
1911 }
1912
1913 /**
1914  * Descending into a sub-type. Enter the scope of the current
1915  * top_type.
1916  */
1917 static void descend_into_subtype(type_path_t *path)
1918 {
1919         type_t *orig_top_type = path->top_type;
1920         type_t *top_type      = skip_typeref(orig_top_type);
1921
1922         assert(is_type_compound(top_type) || is_type_array(top_type));
1923
1924         type_path_entry_t *top = append_to_type_path(path);
1925         top->type              = top_type;
1926
1927         if(is_type_compound(top_type)) {
1928                 declaration_t *declaration = top_type->compound.declaration;
1929                 declaration_t *entry       = declaration->scope.declarations;
1930                 top->v.compound_entry      = entry;
1931
1932                 if(entry != NULL) {
1933                         path->top_type         = entry->type;
1934                 } else {
1935                         path->top_type         = NULL;
1936                 }
1937         } else {
1938                 assert(is_type_array(top_type));
1939
1940                 top->v.index   = 0;
1941                 path->top_type = top_type->array.element_type;
1942         }
1943 }
1944
1945 /**
1946  * Pop an entry from the given type path, ie. returning from
1947  * (type).a.b to (type).a
1948  */
1949 static void ascend_from_subtype(type_path_t *path)
1950 {
1951         type_path_entry_t *top = get_type_path_top(path);
1952
1953         path->top_type = top->type;
1954
1955         size_t len = ARR_LEN(path->path);
1956         ARR_RESIZE(type_path_entry_t, path->path, len-1);
1957 }
1958
1959 /**
1960  * Pop entries from the given type path until the given
1961  * path level is reached.
1962  */
1963 static void ascend_to(type_path_t *path, size_t top_path_level)
1964 {
1965         size_t len = ARR_LEN(path->path);
1966
1967         while(len > top_path_level) {
1968                 ascend_from_subtype(path);
1969                 len = ARR_LEN(path->path);
1970         }
1971 }
1972
1973 static bool walk_designator(type_path_t *path, const designator_t *designator,
1974                             bool used_in_offsetof)
1975 {
1976         for( ; designator != NULL; designator = designator->next) {
1977                 type_path_entry_t *top       = get_type_path_top(path);
1978                 type_t            *orig_type = top->type;
1979
1980                 type_t *type = skip_typeref(orig_type);
1981
1982                 if(designator->symbol != NULL) {
1983                         symbol_t *symbol = designator->symbol;
1984                         if(!is_type_compound(type)) {
1985                                 if(is_type_valid(type)) {
1986                                         errorf(&designator->source_position,
1987                                                "'.%Y' designator used for non-compound type '%T'",
1988                                                symbol, orig_type);
1989                                 }
1990                                 goto failed;
1991                         }
1992
1993                         declaration_t *declaration = type->compound.declaration;
1994                         declaration_t *iter        = declaration->scope.declarations;
1995                         for( ; iter != NULL; iter = iter->next) {
1996                                 if(iter->symbol == symbol) {
1997                                         break;
1998                                 }
1999                         }
2000                         if(iter == NULL) {
2001                                 errorf(&designator->source_position,
2002                                        "'%T' has no member named '%Y'", orig_type, symbol);
2003                                 goto failed;
2004                         }
2005                         if(used_in_offsetof) {
2006                                 type_t *real_type = skip_typeref(iter->type);
2007                                 if(real_type->kind == TYPE_BITFIELD) {
2008                                         errorf(&designator->source_position,
2009                                                "offsetof designator '%Y' may not specify bitfield",
2010                                                symbol);
2011                                         goto failed;
2012                                 }
2013                         }
2014
2015                         top->type             = orig_type;
2016                         top->v.compound_entry = iter;
2017                         orig_type             = iter->type;
2018                 } else {
2019                         expression_t *array_index = designator->array_index;
2020                         assert(designator->array_index != NULL);
2021
2022                         if(!is_type_array(type)) {
2023                                 if(is_type_valid(type)) {
2024                                         errorf(&designator->source_position,
2025                                                "[%E] designator used for non-array type '%T'",
2026                                                array_index, orig_type);
2027                                 }
2028                                 goto failed;
2029                         }
2030                         if(!is_type_valid(array_index->base.type)) {
2031                                 goto failed;
2032                         }
2033
2034                         long index = fold_constant(array_index);
2035                         if(!used_in_offsetof) {
2036                                 if(index < 0) {
2037                                         errorf(&designator->source_position,
2038                                                "array index [%E] must be positive", array_index);
2039                                         goto failed;
2040                                 }
2041                                 if(type->array.size_constant == true) {
2042                                         long array_size = type->array.size;
2043                                         if(index >= array_size) {
2044                                                 errorf(&designator->source_position,
2045                                                        "designator [%E] (%d) exceeds array size %d",
2046                                                        array_index, index, array_size);
2047                                                 goto failed;
2048                                         }
2049                                 }
2050                         }
2051
2052                         top->type    = orig_type;
2053                         top->v.index = (size_t) index;
2054                         orig_type    = type->array.element_type;
2055                 }
2056                 path->top_type = orig_type;
2057
2058                 if(designator->next != NULL) {
2059                         descend_into_subtype(path);
2060                 }
2061         }
2062         return true;
2063
2064 failed:
2065         return false;
2066 }
2067
2068 static void advance_current_object(type_path_t *path, size_t top_path_level)
2069 {
2070         type_path_entry_t *top = get_type_path_top(path);
2071
2072         type_t *type = skip_typeref(top->type);
2073         if(is_type_union(type)) {
2074                 /* in unions only the first element is initialized */
2075                 top->v.compound_entry = NULL;
2076         } else if(is_type_struct(type)) {
2077                 declaration_t *entry = top->v.compound_entry;
2078
2079                 entry                 = entry->next;
2080                 top->v.compound_entry = entry;
2081                 if(entry != NULL) {
2082                         path->top_type = entry->type;
2083                         return;
2084                 }
2085         } else {
2086                 assert(is_type_array(type));
2087
2088                 top->v.index++;
2089
2090                 if(!type->array.size_constant || top->v.index < type->array.size) {
2091                         return;
2092                 }
2093         }
2094
2095         /* we're past the last member of the current sub-aggregate, try if we
2096          * can ascend in the type hierarchy and continue with another subobject */
2097         size_t len = ARR_LEN(path->path);
2098
2099         if(len > top_path_level) {
2100                 ascend_from_subtype(path);
2101                 advance_current_object(path, top_path_level);
2102         } else {
2103                 path->top_type = NULL;
2104         }
2105 }
2106
2107 /**
2108  * skip until token is found.
2109  */
2110 static void skip_until(int type) {
2111         while(token.type != type) {
2112                 if(token.type == T_EOF)
2113                         return;
2114                 next_token();
2115         }
2116 }
2117
2118 /**
2119  * skip any {...} blocks until a closing bracket is reached.
2120  */
2121 static void skip_initializers(void)
2122 {
2123         if(token.type == '{')
2124                 next_token();
2125
2126         while(token.type != '}') {
2127                 if(token.type == T_EOF)
2128                         return;
2129                 if(token.type == '{') {
2130                         eat_block();
2131                         continue;
2132                 }
2133                 next_token();
2134         }
2135 }
2136
2137 static initializer_t *create_empty_initializer(void)
2138 {
2139         static initializer_t empty_initializer
2140                 = { .list = { { INITIALIZER_LIST }, 0 } };
2141         return &empty_initializer;
2142 }
2143
2144 /**
2145  * Parse a part of an initialiser for a struct or union,
2146  */
2147 static initializer_t *parse_sub_initializer(type_path_t *path,
2148                 type_t *outer_type, size_t top_path_level,
2149                 parse_initializer_env_t *env)
2150 {
2151         if(token.type == '}') {
2152                 /* empty initializer */
2153                 return create_empty_initializer();
2154         }
2155
2156         type_t *orig_type = path->top_type;
2157         type_t *type      = NULL;
2158
2159         if (orig_type == NULL) {
2160                 /* We are initializing an empty compound. */
2161         } else {
2162                 type = skip_typeref(orig_type);
2163
2164                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2165                  * initializers in this case. */
2166                 if(!is_type_valid(type)) {
2167                         skip_initializers();
2168                         return create_empty_initializer();
2169                 }
2170         }
2171
2172         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2173
2174         while(true) {
2175                 designator_t *designator = NULL;
2176                 if(token.type == '.' || token.type == '[') {
2177                         designator = parse_designation();
2178
2179                         /* reset path to toplevel, evaluate designator from there */
2180                         ascend_to(path, top_path_level);
2181                         if(!walk_designator(path, designator, false)) {
2182                                 /* can't continue after designation error */
2183                                 goto end_error;
2184                         }
2185
2186                         initializer_t *designator_initializer
2187                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2188                         designator_initializer->designator.designator = designator;
2189                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2190                 }
2191
2192                 initializer_t *sub;
2193
2194                 if(token.type == '{') {
2195                         if(type != NULL && is_type_scalar(type)) {
2196                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2197                         } else {
2198                                 eat('{');
2199                                 if(type == NULL) {
2200                                         if (env->declaration != NULL)
2201                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2202                                                 env->declaration->symbol);
2203                                 else
2204                                                 errorf(HERE, "extra brace group at end of initializer");
2205                                 } else
2206                                         descend_into_subtype(path);
2207
2208                                 add_anchor_token('}');
2209                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2210                                                             env);
2211                                 rem_anchor_token('}');
2212
2213                                 if(type != NULL) {
2214                                         ascend_from_subtype(path);
2215                                         expect('}');
2216                                 } else {
2217                                         expect('}');
2218                                         goto error_parse_next;
2219                                 }
2220                         }
2221                 } else {
2222                         /* must be an expression */
2223                         expression_t *expression = parse_assignment_expression();
2224
2225                         if(env->must_be_constant && !is_initializer_constant(expression)) {
2226                                 errorf(&expression->base.source_position,
2227                                        "Initialisation expression '%E' is not constant\n",
2228                                        expression);
2229                         }
2230
2231                         if(type == NULL) {
2232                                 /* we are already outside, ... */
2233                                 goto error_excess;
2234                         }
2235
2236                         /* handle { "string" } special case */
2237                         if((expression->kind == EXPR_STRING_LITERAL
2238                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2239                                         && outer_type != NULL) {
2240                                 sub = initializer_from_expression(outer_type, expression);
2241                                 if(sub != NULL) {
2242                                         if(token.type == ',') {
2243                                                 next_token();
2244                                         }
2245                                         if(token.type != '}') {
2246                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2247                                                                  orig_type);
2248                                         }
2249                                         /* TODO: eat , ... */
2250                                         return sub;
2251                                 }
2252                         }
2253
2254                         /* descend into subtypes until expression matches type */
2255                         while(true) {
2256                                 orig_type = path->top_type;
2257                                 type      = skip_typeref(orig_type);
2258
2259                                 sub = initializer_from_expression(orig_type, expression);
2260                                 if(sub != NULL) {
2261                                         break;
2262                                 }
2263                                 if(!is_type_valid(type)) {
2264                                         goto end_error;
2265                                 }
2266                                 if(is_type_scalar(type)) {
2267                                         errorf(&expression->base.source_position,
2268                                                         "expression '%E' doesn't match expected type '%T'",
2269                                                         expression, orig_type);
2270                                         goto end_error;
2271                                 }
2272
2273                                 descend_into_subtype(path);
2274                         }
2275                 }
2276
2277                 /* update largest index of top array */
2278                 const type_path_entry_t *first      = &path->path[0];
2279                 type_t                  *first_type = first->type;
2280                 first_type                          = skip_typeref(first_type);
2281                 if(is_type_array(first_type)) {
2282                         size_t index = first->v.index;
2283                         if(index > path->max_index)
2284                                 path->max_index = index;
2285                 }
2286
2287                 if(type != NULL) {
2288                         /* append to initializers list */
2289                         ARR_APP1(initializer_t*, initializers, sub);
2290                 } else {
2291 error_excess:
2292                         if(env->declaration != NULL)
2293                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2294                                  env->declaration->symbol);
2295                         else
2296                                 warningf(HERE, "excess elements in struct initializer");
2297                 }
2298
2299 error_parse_next:
2300                 if(token.type == '}') {
2301                         break;
2302                 }
2303                 expect(',');
2304                 if(token.type == '}') {
2305                         break;
2306                 }
2307
2308                 if(type != NULL) {
2309                         /* advance to the next declaration if we are not at the end */
2310                         advance_current_object(path, top_path_level);
2311                         orig_type = path->top_type;
2312                         if(orig_type != NULL)
2313                                 type = skip_typeref(orig_type);
2314                         else
2315                                 type = NULL;
2316                 }
2317         }
2318
2319         size_t len  = ARR_LEN(initializers);
2320         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2321         initializer_t *result = allocate_ast_zero(size);
2322         result->kind          = INITIALIZER_LIST;
2323         result->list.len      = len;
2324         memcpy(&result->list.initializers, initializers,
2325                len * sizeof(initializers[0]));
2326
2327         DEL_ARR_F(initializers);
2328         ascend_to(path, top_path_level+1);
2329
2330         return result;
2331
2332 end_error:
2333         skip_initializers();
2334         DEL_ARR_F(initializers);
2335         ascend_to(path, top_path_level+1);
2336         return NULL;
2337 }
2338
2339 /**
2340  * Parses an initializer. Parsers either a compound literal
2341  * (env->declaration == NULL) or an initializer of a declaration.
2342  */
2343 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2344 {
2345         type_t        *type   = skip_typeref(env->type);
2346         initializer_t *result = NULL;
2347         size_t         max_index;
2348
2349         if(is_type_scalar(type)) {
2350                 result = parse_scalar_initializer(type, env->must_be_constant);
2351         } else if(token.type == '{') {
2352                 eat('{');
2353
2354                 type_path_t path;
2355                 memset(&path, 0, sizeof(path));
2356                 path.top_type = env->type;
2357                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2358
2359                 descend_into_subtype(&path);
2360
2361                 add_anchor_token('}');
2362                 result = parse_sub_initializer(&path, env->type, 1, env);
2363                 rem_anchor_token('}');
2364
2365                 max_index = path.max_index;
2366                 DEL_ARR_F(path.path);
2367
2368                 expect('}');
2369         } else {
2370                 /* parse_scalar_initializer() also works in this case: we simply
2371                  * have an expression without {} around it */
2372                 result = parse_scalar_initializer(type, env->must_be_constant);
2373         }
2374
2375         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2376          * the array type size */
2377         if(is_type_array(type) && type->array.size_expression == NULL
2378                         && result != NULL) {
2379                 size_t size;
2380                 switch (result->kind) {
2381                 case INITIALIZER_LIST:
2382                         size = max_index + 1;
2383                         break;
2384
2385                 case INITIALIZER_STRING:
2386                         size = result->string.string.size;
2387                         break;
2388
2389                 case INITIALIZER_WIDE_STRING:
2390                         size = result->wide_string.string.size;
2391                         break;
2392
2393                 default:
2394                         internal_errorf(HERE, "invalid initializer type");
2395                 }
2396
2397                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2398                 cnst->base.type          = type_size_t;
2399                 cnst->conste.v.int_value = size;
2400
2401                 type_t *new_type = duplicate_type(type);
2402
2403                 new_type->array.size_expression = cnst;
2404                 new_type->array.size_constant   = true;
2405                 new_type->array.size            = size;
2406                 env->type = new_type;
2407         }
2408
2409         return result;
2410 end_error:
2411         return NULL;
2412 }
2413
2414 static declaration_t *append_declaration(declaration_t *declaration);
2415
2416 static declaration_t *parse_compound_type_specifier(bool is_struct)
2417 {
2418         gnu_attribute_t *attributes = NULL;
2419         if(is_struct) {
2420                 eat(T_struct);
2421         } else {
2422                 eat(T_union);
2423         }
2424
2425         symbol_t      *symbol      = NULL;
2426         declaration_t *declaration = NULL;
2427
2428         if (token.type == T___attribute__) {
2429                 parse_attributes(&attributes);
2430         }
2431
2432         if(token.type == T_IDENTIFIER) {
2433                 symbol = token.v.symbol;
2434                 next_token();
2435
2436                 if(is_struct) {
2437                         declaration = get_declaration(symbol, NAMESPACE_STRUCT);
2438                 } else {
2439                         declaration = get_declaration(symbol, NAMESPACE_UNION);
2440                 }
2441         } else if(token.type != '{') {
2442                 if(is_struct) {
2443                         parse_error_expected("while parsing struct type specifier",
2444                                              T_IDENTIFIER, '{', NULL);
2445                 } else {
2446                         parse_error_expected("while parsing union type specifier",
2447                                              T_IDENTIFIER, '{', NULL);
2448                 }
2449
2450                 return NULL;
2451         }
2452
2453         if(declaration == NULL) {
2454                 declaration = allocate_declaration_zero();
2455                 declaration->namespc         =
2456                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2457                 declaration->source_position = token.source_position;
2458                 declaration->symbol          = symbol;
2459                 declaration->parent_scope    = scope;
2460                 if (symbol != NULL) {
2461                         environment_push(declaration);
2462                 }
2463                 append_declaration(declaration);
2464         }
2465
2466         if(token.type == '{') {
2467                 if (declaration->init.complete) {
2468                         assert(symbol != NULL);
2469                         errorf(HERE, "multiple definitions of '%s %Y'",
2470                                is_struct ? "struct" : "union", symbol);
2471                         declaration->scope.declarations = NULL;
2472                 }
2473                 declaration->init.complete = true;
2474
2475                 parse_compound_type_entries(declaration);
2476                 parse_attributes(&attributes);
2477         }
2478
2479         return declaration;
2480 }
2481
2482 static void parse_enum_entries(type_t *const enum_type)
2483 {
2484         eat('{');
2485
2486         if(token.type == '}') {
2487                 next_token();
2488                 errorf(HERE, "empty enum not allowed");
2489                 return;
2490         }
2491
2492         add_anchor_token('}');
2493         do {
2494                 if(token.type != T_IDENTIFIER) {
2495                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2496                         eat_block();
2497                         rem_anchor_token('}');
2498                         return;
2499                 }
2500
2501                 declaration_t *const entry = allocate_declaration_zero();
2502                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2503                 entry->type            = enum_type;
2504                 entry->symbol          = token.v.symbol;
2505                 entry->source_position = token.source_position;
2506                 next_token();
2507
2508                 if(token.type == '=') {
2509                         next_token();
2510                         expression_t *value = parse_constant_expression();
2511
2512                         value = create_implicit_cast(value, enum_type);
2513                         entry->init.enum_value = value;
2514
2515                         /* TODO semantic */
2516                 }
2517
2518                 record_declaration(entry);
2519
2520                 if(token.type != ',')
2521                         break;
2522                 next_token();
2523         } while(token.type != '}');
2524         rem_anchor_token('}');
2525
2526         expect('}');
2527
2528 end_error:
2529         ;
2530 }
2531
2532 static type_t *parse_enum_specifier(void)
2533 {
2534         gnu_attribute_t *attributes = NULL;
2535         declaration_t   *declaration;
2536         symbol_t        *symbol;
2537
2538         eat(T_enum);
2539         if(token.type == T_IDENTIFIER) {
2540                 symbol = token.v.symbol;
2541                 next_token();
2542
2543                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2544         } else if(token.type != '{') {
2545                 parse_error_expected("while parsing enum type specifier",
2546                                      T_IDENTIFIER, '{', NULL);
2547                 return NULL;
2548         } else {
2549                 declaration = NULL;
2550                 symbol      = NULL;
2551         }
2552
2553         if(declaration == NULL) {
2554                 declaration = allocate_declaration_zero();
2555                 declaration->namespc         = NAMESPACE_ENUM;
2556                 declaration->source_position = token.source_position;
2557                 declaration->symbol          = symbol;
2558                 declaration->parent_scope  = scope;
2559         }
2560
2561         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2562         type->enumt.declaration = declaration;
2563
2564         if(token.type == '{') {
2565                 if(declaration->init.complete) {
2566                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2567                 }
2568                 if (symbol != NULL) {
2569                         environment_push(declaration);
2570                 }
2571                 append_declaration(declaration);
2572                 declaration->init.complete = true;
2573
2574                 parse_enum_entries(type);
2575                 parse_attributes(&attributes);
2576         }
2577
2578         return type;
2579 }
2580
2581 /**
2582  * if a symbol is a typedef to another type, return true
2583  */
2584 static bool is_typedef_symbol(symbol_t *symbol)
2585 {
2586         const declaration_t *const declaration =
2587                 get_declaration(symbol, NAMESPACE_NORMAL);
2588         return
2589                 declaration != NULL &&
2590                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2591 }
2592
2593 static type_t *parse_typeof(void)
2594 {
2595         eat(T___typeof__);
2596
2597         type_t *type;
2598
2599         expect('(');
2600         add_anchor_token(')');
2601
2602         expression_t *expression  = NULL;
2603
2604 restart:
2605         switch(token.type) {
2606         case T___extension__:
2607                 /* this can be a prefix to a typename or an expression */
2608                 /* we simply eat it now. */
2609                 do {
2610                         next_token();
2611                 } while(token.type == T___extension__);
2612                 goto restart;
2613
2614         case T_IDENTIFIER:
2615                 if(is_typedef_symbol(token.v.symbol)) {
2616                         type = parse_typename();
2617                 } else {
2618                         expression = parse_expression();
2619                         type       = expression->base.type;
2620                 }
2621                 break;
2622
2623         TYPENAME_START
2624                 type = parse_typename();
2625                 break;
2626
2627         default:
2628                 expression = parse_expression();
2629                 type       = expression->base.type;
2630                 break;
2631         }
2632
2633         rem_anchor_token(')');
2634         expect(')');
2635
2636         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2637         typeof_type->typeoft.expression  = expression;
2638         typeof_type->typeoft.typeof_type = type;
2639
2640         return typeof_type;
2641 end_error:
2642         return NULL;
2643 }
2644
2645 typedef enum {
2646         SPECIFIER_SIGNED    = 1 << 0,
2647         SPECIFIER_UNSIGNED  = 1 << 1,
2648         SPECIFIER_LONG      = 1 << 2,
2649         SPECIFIER_INT       = 1 << 3,
2650         SPECIFIER_DOUBLE    = 1 << 4,
2651         SPECIFIER_CHAR      = 1 << 5,
2652         SPECIFIER_SHORT     = 1 << 6,
2653         SPECIFIER_LONG_LONG = 1 << 7,
2654         SPECIFIER_FLOAT     = 1 << 8,
2655         SPECIFIER_BOOL      = 1 << 9,
2656         SPECIFIER_VOID      = 1 << 10,
2657         SPECIFIER_INT8      = 1 << 11,
2658         SPECIFIER_INT16     = 1 << 12,
2659         SPECIFIER_INT32     = 1 << 13,
2660         SPECIFIER_INT64     = 1 << 14,
2661         SPECIFIER_INT128    = 1 << 15,
2662         SPECIFIER_COMPLEX   = 1 << 16,
2663         SPECIFIER_IMAGINARY = 1 << 17,
2664 } specifiers_t;
2665
2666 static type_t *create_builtin_type(symbol_t *const symbol,
2667                                    type_t *const real_type)
2668 {
2669         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2670         type->builtin.symbol    = symbol;
2671         type->builtin.real_type = real_type;
2672
2673         type_t *result = typehash_insert(type);
2674         if(type != result) {
2675                 free_type(type);
2676         }
2677
2678         return result;
2679 }
2680
2681 static type_t *get_typedef_type(symbol_t *symbol)
2682 {
2683         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2684         if(declaration == NULL ||
2685            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2686                 return NULL;
2687
2688         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2689         type->typedeft.declaration = declaration;
2690
2691         return type;
2692 }
2693
2694 /**
2695  * check for the allowed MS alignment values.
2696  */
2697 static bool check_elignment_value(long long intvalue) {
2698         if(intvalue < 1 || intvalue > 8192) {
2699                 errorf(HERE, "illegal alignment value");
2700                 return false;
2701         }
2702         unsigned v = (unsigned)intvalue;
2703         for(unsigned i = 1; i <= 8192; i += i) {
2704                 if (i == v)
2705                         return true;
2706         }
2707         errorf(HERE, "alignment must be power of two");
2708         return false;
2709 }
2710
2711 #define DET_MOD(name, tag) do { \
2712         if(*modifiers & tag) warningf(HERE, #name " used more than once"); \
2713         *modifiers |= tag; \
2714 } while(0)
2715
2716 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2717 {
2718         decl_modifiers_t *modifiers = &specifiers->decl_modifiers;
2719
2720         while(true) {
2721                 if(token.type == T_restrict) {
2722                         next_token();
2723                         DET_MOD(restrict, DM_RESTRICT);
2724                         goto end_loop;
2725                 } else if(token.type != T_IDENTIFIER)
2726                         break;
2727                 symbol_t *symbol = token.v.symbol;
2728                 if(symbol == sym_align) {
2729                         next_token();
2730                         expect('(');
2731                         if(token.type != T_INTEGER)
2732                                 goto end_error;
2733                         if(check_elignment_value(token.v.intvalue)) {
2734                                 if(specifiers->alignment != 0)
2735                                         warningf(HERE, "align used more than once");
2736                                 specifiers->alignment = (unsigned char)token.v.intvalue;
2737                         }
2738                         next_token();
2739                         expect(')');
2740                 } else if(symbol == sym_allocate) {
2741                         next_token();
2742                         expect('(');
2743                         if(token.type != T_IDENTIFIER)
2744                                 goto end_error;
2745                         (void)token.v.symbol;
2746                         expect(')');
2747                 } else if(symbol == sym_dllimport) {
2748                         next_token();
2749                         DET_MOD(dllimport, DM_DLLIMPORT);
2750                 } else if(symbol == sym_dllexport) {
2751                         next_token();
2752                         DET_MOD(dllexport, DM_DLLEXPORT);
2753                 } else if(symbol == sym_thread) {
2754                         next_token();
2755                         DET_MOD(thread, DM_THREAD);
2756                 } else if(symbol == sym_naked) {
2757                         next_token();
2758                         DET_MOD(naked, DM_NAKED);
2759                 } else if(symbol == sym_noinline) {
2760                         next_token();
2761                         DET_MOD(noinline, DM_NOINLINE);
2762                 } else if(symbol == sym_noreturn) {
2763                         next_token();
2764                         DET_MOD(noreturn, DM_NORETURN);
2765                 } else if(symbol == sym_nothrow) {
2766                         next_token();
2767                         DET_MOD(nothrow, DM_NOTHROW);
2768                 } else if(symbol == sym_novtable) {
2769                         next_token();
2770                         DET_MOD(novtable, DM_NOVTABLE);
2771                 } else if(symbol == sym_property) {
2772                         next_token();
2773                         expect('(');
2774                         for(;;) {
2775                                 bool is_get = false;
2776                                 if(token.type != T_IDENTIFIER)
2777                                         goto end_error;
2778                                 if(token.v.symbol == sym_get) {
2779                                         is_get = true;
2780                                 } else if(token.v.symbol == sym_put) {
2781                                 } else {
2782                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
2783                                         goto end_error;
2784                                 }
2785                                 next_token();
2786                                 expect('=');
2787                                 if(token.type != T_IDENTIFIER)
2788                                         goto end_error;
2789                                 if(is_get) {
2790                                         if(specifiers->get_property_sym != NULL) {
2791                                                 errorf(HERE, "get property name already specified");
2792                                         } else {
2793                                                 specifiers->get_property_sym = token.v.symbol;
2794                                         }
2795                                 } else {
2796                                         if(specifiers->put_property_sym != NULL) {
2797                                                 errorf(HERE, "put property name already specified");
2798                                         } else {
2799                                                 specifiers->put_property_sym = token.v.symbol;
2800                                         }
2801                                 }
2802                                 next_token();
2803                                 if(token.type == ',') {
2804                                         next_token();
2805                                         continue;
2806                                 }
2807                                 break;
2808                         }
2809                         expect(')');
2810                 } else if(symbol == sym_selectany) {
2811                         next_token();
2812                         DET_MOD(selectany, DM_SELECTANY);
2813                 } else if(symbol == sym_uuid) {
2814                         next_token();
2815                         expect('(');
2816                         if(token.type != T_STRING_LITERAL)
2817                                 goto end_error;
2818                         next_token();
2819                         expect(')');
2820                 } else if(symbol == sym_deprecated) {
2821                         next_token();
2822                         if(specifiers->deprecated != 0)
2823                                 warningf(HERE, "deprecated used more than once");
2824                         specifiers->deprecated = 1;
2825                         if(token.type == '(') {
2826                                 next_token();
2827                                 if(token.type == T_STRING_LITERAL) {
2828                                         specifiers->deprecated_string = token.v.string.begin;
2829                                         next_token();
2830                                 } else {
2831                                         errorf(HERE, "string literal expected");
2832                                 }
2833                                 expect(')');
2834                         }
2835                 } else if(symbol == sym_noalias) {
2836                         next_token();
2837                         DET_MOD(noalias, DM_NOALIAS);
2838                 } else {
2839                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
2840                         next_token();
2841                         if(token.type == '(')
2842                                 skip_until(')');
2843                 }
2844 end_loop:
2845                 if (token.type == ',')
2846                         next_token();
2847         }
2848 end_error:
2849         return;
2850 }
2851
2852 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
2853 {
2854         type_t   *type            = NULL;
2855         unsigned  type_qualifiers = 0;
2856         unsigned  type_specifiers = 0;
2857         int       newtype         = 0;
2858
2859         specifiers->source_position = token.source_position;
2860
2861         while(true) {
2862                 switch(token.type) {
2863
2864                 /* storage class */
2865 #define MATCH_STORAGE_CLASS(token, class)                                  \
2866                 case token:                                                        \
2867                         if(specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
2868                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
2869                         }                                                              \
2870                         specifiers->declared_storage_class = class;                    \
2871                         next_token();                                                  \
2872                         break;
2873
2874                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
2875                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
2876                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
2877                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
2878                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
2879
2880                 case T__declspec:
2881                         next_token();
2882                         expect('(');
2883                         add_anchor_token(')');
2884                         parse_microsoft_extended_decl_modifier(specifiers);
2885                         rem_anchor_token(')');
2886                         expect(')');
2887                         break;
2888
2889                 case T___thread:
2890                         switch (specifiers->declared_storage_class) {
2891                         case STORAGE_CLASS_NONE:
2892                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
2893                                 break;
2894
2895                         case STORAGE_CLASS_EXTERN:
2896                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
2897                                 break;
2898
2899                         case STORAGE_CLASS_STATIC:
2900                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
2901                                 break;
2902
2903                         default:
2904                                 errorf(HERE, "multiple storage classes in declaration specifiers");
2905                                 break;
2906                         }
2907                         next_token();
2908                         break;
2909
2910                 /* type qualifiers */
2911 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
2912                 case token:                                                     \
2913                         type_qualifiers |= qualifier;                               \
2914                         next_token();                                               \
2915                         break;
2916
2917                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
2918                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
2919                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
2920                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
2921                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
2922                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
2923                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
2924                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
2925
2926                 case T___extension__:
2927                         /* TODO */
2928                         next_token();
2929                         break;
2930
2931                 /* type specifiers */
2932 #define MATCH_SPECIFIER(token, specifier, name)                         \
2933                 case token:                                                     \
2934                         next_token();                                               \
2935                         if(type_specifiers & specifier) {                           \
2936                                 errorf(HERE, "multiple " name " type specifiers given"); \
2937                         } else {                                                    \
2938                                 type_specifiers |= specifier;                           \
2939                         }                                                           \
2940                         break;
2941
2942                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void")
2943                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char")
2944                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short")
2945                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int")
2946                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float")
2947                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double")
2948                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed")
2949                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned")
2950                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool")
2951                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8")
2952                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16")
2953                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32")
2954                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64")
2955                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128")
2956                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex")
2957                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary")
2958
2959                 case T__forceinline:
2960                         /* only in microsoft mode */
2961                         specifiers->decl_modifiers |= DM_FORCEINLINE;
2962
2963                 case T_inline:
2964                         next_token();
2965                         specifiers->is_inline = true;
2966                         break;
2967
2968                 case T_long:
2969                         next_token();
2970                         if(type_specifiers & SPECIFIER_LONG_LONG) {
2971                                 errorf(HERE, "multiple type specifiers given");
2972                         } else if(type_specifiers & SPECIFIER_LONG) {
2973                                 type_specifiers |= SPECIFIER_LONG_LONG;
2974                         } else {
2975                                 type_specifiers |= SPECIFIER_LONG;
2976                         }
2977                         break;
2978
2979                 case T_struct: {
2980                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
2981
2982                         type->compound.declaration = parse_compound_type_specifier(true);
2983                         break;
2984                 }
2985                 case T_union: {
2986                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
2987
2988                         type->compound.declaration = parse_compound_type_specifier(false);
2989                         break;
2990                 }
2991                 case T_enum:
2992                         type = parse_enum_specifier();
2993                         break;
2994                 case T___typeof__:
2995                         type = parse_typeof();
2996                         break;
2997                 case T___builtin_va_list:
2998                         type = duplicate_type(type_valist);
2999                         next_token();
3000                         break;
3001
3002                 case T___attribute__:
3003                         parse_attributes(&specifiers->gnu_attributes);
3004                         break;
3005
3006                 case T_IDENTIFIER: {
3007                         /* only parse identifier if we haven't found a type yet */
3008                         if(type != NULL || type_specifiers != 0)
3009                                 goto finish_specifiers;
3010
3011                         type_t *typedef_type = get_typedef_type(token.v.symbol);
3012
3013                         if(typedef_type == NULL)
3014                                 goto finish_specifiers;
3015
3016                         next_token();
3017                         type = typedef_type;
3018                         break;
3019                 }
3020
3021                 /* function specifier */
3022                 default:
3023                         goto finish_specifiers;
3024                 }
3025         }
3026
3027 finish_specifiers:
3028
3029         if(type == NULL) {
3030                 atomic_type_kind_t atomic_type;
3031
3032                 /* match valid basic types */
3033                 switch(type_specifiers) {
3034                 case SPECIFIER_VOID:
3035                         atomic_type = ATOMIC_TYPE_VOID;
3036                         break;
3037                 case SPECIFIER_CHAR:
3038                         atomic_type = ATOMIC_TYPE_CHAR;
3039                         break;
3040                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3041                         atomic_type = ATOMIC_TYPE_SCHAR;
3042                         break;
3043                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3044                         atomic_type = ATOMIC_TYPE_UCHAR;
3045                         break;
3046                 case SPECIFIER_SHORT:
3047                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3048                 case SPECIFIER_SHORT | SPECIFIER_INT:
3049                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3050                         atomic_type = ATOMIC_TYPE_SHORT;
3051                         break;
3052                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3053                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3054                         atomic_type = ATOMIC_TYPE_USHORT;
3055                         break;
3056                 case SPECIFIER_INT:
3057                 case SPECIFIER_SIGNED:
3058                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3059                         atomic_type = ATOMIC_TYPE_INT;
3060                         break;
3061                 case SPECIFIER_UNSIGNED:
3062                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3063                         atomic_type = ATOMIC_TYPE_UINT;
3064                         break;
3065                 case SPECIFIER_LONG:
3066                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3067                 case SPECIFIER_LONG | SPECIFIER_INT:
3068                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3069                         atomic_type = ATOMIC_TYPE_LONG;
3070                         break;
3071                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3072                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3073                         atomic_type = ATOMIC_TYPE_ULONG;
3074                         break;
3075                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3076                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3077                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3078                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3079                         | SPECIFIER_INT:
3080                         atomic_type = ATOMIC_TYPE_LONGLONG;
3081                         break;
3082                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3083                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3084                         | SPECIFIER_INT:
3085                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3086                         break;
3087
3088                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3089                         atomic_type = unsigned_int8_type_kind;
3090                         break;
3091
3092                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3093                         atomic_type = unsigned_int16_type_kind;
3094                         break;
3095
3096                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3097                         atomic_type = unsigned_int32_type_kind;
3098                         break;
3099
3100                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3101                         atomic_type = unsigned_int64_type_kind;
3102                         break;
3103
3104                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3105                         atomic_type = unsigned_int128_type_kind;
3106                         break;
3107
3108                 case SPECIFIER_INT8:
3109                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3110                         atomic_type = int8_type_kind;
3111                         break;
3112
3113                 case SPECIFIER_INT16:
3114                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3115                         atomic_type = int16_type_kind;
3116                         break;
3117
3118                 case SPECIFIER_INT32:
3119                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3120                         atomic_type = int32_type_kind;
3121                         break;
3122
3123                 case SPECIFIER_INT64:
3124                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3125                         atomic_type = int64_type_kind;
3126                         break;
3127
3128                 case SPECIFIER_INT128:
3129                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3130                         atomic_type = int128_type_kind;
3131                         break;
3132
3133                 case SPECIFIER_FLOAT:
3134                         atomic_type = ATOMIC_TYPE_FLOAT;
3135                         break;
3136                 case SPECIFIER_DOUBLE:
3137                         atomic_type = ATOMIC_TYPE_DOUBLE;
3138                         break;
3139                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3140                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3141                         break;
3142                 case SPECIFIER_BOOL:
3143                         atomic_type = ATOMIC_TYPE_BOOL;
3144                         break;
3145                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3146                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3147                         atomic_type = ATOMIC_TYPE_FLOAT;
3148                         break;
3149                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3150                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3151                         atomic_type = ATOMIC_TYPE_DOUBLE;
3152                         break;
3153                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3154                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3155                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3156                         break;
3157                 default:
3158                         /* invalid specifier combination, give an error message */
3159                         if(type_specifiers == 0) {
3160                                 if (! strict_mode) {
3161                                         if (warning.implicit_int) {
3162                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3163                                         }
3164                                         atomic_type = ATOMIC_TYPE_INT;
3165                                         break;
3166                                 } else {
3167                                         errorf(HERE, "no type specifiers given in declaration");
3168                                 }
3169                         } else if((type_specifiers & SPECIFIER_SIGNED) &&
3170                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3171                                 errorf(HERE, "signed and unsigned specifiers gives");
3172                         } else if(type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3173                                 errorf(HERE, "only integer types can be signed or unsigned");
3174                         } else {
3175                                 errorf(HERE, "multiple datatypes in declaration");
3176                         }
3177                         atomic_type = ATOMIC_TYPE_INVALID;
3178                 }
3179
3180                 if(type_specifiers & SPECIFIER_COMPLEX &&
3181                    atomic_type != ATOMIC_TYPE_INVALID) {
3182                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3183                         type->complex.akind = atomic_type;
3184                 } else if(type_specifiers & SPECIFIER_IMAGINARY &&
3185                           atomic_type != ATOMIC_TYPE_INVALID) {
3186                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3187                         type->imaginary.akind = atomic_type;
3188                 } else {
3189                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3190                         type->atomic.akind = atomic_type;
3191                 }
3192                 newtype = 1;
3193         } else {
3194                 if(type_specifiers != 0) {
3195                         errorf(HERE, "multiple datatypes in declaration");
3196                 }
3197         }
3198
3199         type->base.qualifiers = type_qualifiers;
3200         /* FIXME: check type qualifiers here */
3201
3202         type_t *result = typehash_insert(type);
3203         if(newtype && result != type) {
3204                 free_type(type);
3205         }
3206
3207         specifiers->type = result;
3208 end_error:
3209         return;
3210 }
3211
3212 static type_qualifiers_t parse_type_qualifiers(void)
3213 {
3214         type_qualifiers_t type_qualifiers = TYPE_QUALIFIER_NONE;
3215
3216         while(true) {
3217                 switch(token.type) {
3218                 /* type qualifiers */
3219                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3220                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3221                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3222                 /* microsoft extended type modifiers */
3223                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3224                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3225                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3226                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3227                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3228
3229                 default:
3230                         return type_qualifiers;
3231                 }
3232         }
3233 }
3234
3235 static declaration_t *parse_identifier_list(void)
3236 {
3237         declaration_t *declarations     = NULL;
3238         declaration_t *last_declaration = NULL;
3239         do {
3240                 declaration_t *const declaration = allocate_declaration_zero();
3241                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3242                 declaration->source_position = token.source_position;
3243                 declaration->symbol          = token.v.symbol;
3244                 next_token();
3245
3246                 if(last_declaration != NULL) {
3247                         last_declaration->next = declaration;
3248                 } else {
3249                         declarations = declaration;
3250                 }
3251                 last_declaration = declaration;
3252
3253                 if (token.type != ',') {
3254                         break;
3255                 }
3256                 next_token();
3257         } while(token.type == T_IDENTIFIER);
3258
3259         return declarations;
3260 }
3261
3262 static void semantic_parameter(declaration_t *declaration)
3263 {
3264         /* TODO: improve error messages */
3265
3266         if(declaration->declared_storage_class == STORAGE_CLASS_TYPEDEF) {
3267                 errorf(HERE, "typedef not allowed in parameter list");
3268         } else if(declaration->declared_storage_class != STORAGE_CLASS_NONE
3269                         && declaration->declared_storage_class != STORAGE_CLASS_REGISTER) {
3270                 errorf(HERE, "parameter may only have none or register storage class");
3271         }
3272
3273         type_t *const orig_type = declaration->type;
3274         type_t *      type      = skip_typeref(orig_type);
3275
3276         /* Array as last part of a parameter type is just syntactic sugar.  Turn it
3277          * into a pointer. Â§ 6.7.5.3 (7) */
3278         if (is_type_array(type)) {
3279                 type_t *const element_type = type->array.element_type;
3280
3281                 type = make_pointer_type(element_type, type->base.qualifiers);
3282
3283                 declaration->type = type;
3284         }
3285
3286         if(is_type_incomplete(type)) {
3287                 errorf(HERE, "incomplete type '%T' not allowed for parameter '%Y'",
3288                        orig_type, declaration->symbol);
3289         }
3290 }
3291
3292 static declaration_t *parse_parameter(void)
3293 {
3294         declaration_specifiers_t specifiers;
3295         memset(&specifiers, 0, sizeof(specifiers));
3296
3297         parse_declaration_specifiers(&specifiers);
3298
3299         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3300
3301         semantic_parameter(declaration);
3302
3303         return declaration;
3304 }
3305
3306 static declaration_t *parse_parameters(function_type_t *type)
3307 {
3308         declaration_t *declarations = NULL;
3309
3310         eat('(');
3311         add_anchor_token(')');
3312         int saved_comma_state = save_and_reset_anchor_state(',');
3313
3314         if(token.type == T_IDENTIFIER) {
3315                 symbol_t *symbol = token.v.symbol;
3316                 if(!is_typedef_symbol(symbol)) {
3317                         type->kr_style_parameters = true;
3318                         declarations = parse_identifier_list();
3319                         goto parameters_finished;
3320                 }
3321         }
3322
3323         if(token.type == ')') {
3324                 type->unspecified_parameters = 1;
3325                 goto parameters_finished;
3326         }
3327         if(token.type == T_void && look_ahead(1)->type == ')') {
3328                 next_token();
3329                 goto parameters_finished;
3330         }
3331
3332         declaration_t        *declaration;
3333         declaration_t        *last_declaration = NULL;
3334         function_parameter_t *parameter;
3335         function_parameter_t *last_parameter = NULL;
3336
3337         while(true) {
3338                 switch(token.type) {
3339                 case T_DOTDOTDOT:
3340                         next_token();
3341                         type->variadic = 1;
3342                         goto parameters_finished;
3343
3344                 case T_IDENTIFIER:
3345                 case T___extension__:
3346                 DECLARATION_START
3347                         declaration = parse_parameter();
3348
3349                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3350                         memset(parameter, 0, sizeof(parameter[0]));
3351                         parameter->type = declaration->type;
3352
3353                         if(last_parameter != NULL) {
3354                                 last_declaration->next = declaration;
3355                                 last_parameter->next   = parameter;
3356                         } else {
3357                                 type->parameters = parameter;
3358                                 declarations     = declaration;
3359                         }
3360                         last_parameter   = parameter;
3361                         last_declaration = declaration;
3362                         break;
3363
3364                 default:
3365                         goto parameters_finished;
3366                 }
3367                 if (token.type != ',') {
3368                         goto parameters_finished;
3369                 }
3370                 next_token();
3371         }
3372
3373
3374 parameters_finished:
3375         rem_anchor_token(')');
3376         expect(')');
3377
3378         restore_anchor_state(',', saved_comma_state);
3379         return declarations;
3380
3381 end_error:
3382         restore_anchor_state(',', saved_comma_state);
3383         return NULL;
3384 }
3385
3386 typedef enum {
3387         CONSTRUCT_INVALID,
3388         CONSTRUCT_POINTER,
3389         CONSTRUCT_FUNCTION,
3390         CONSTRUCT_ARRAY
3391 } construct_type_kind_t;
3392
3393 typedef struct construct_type_t construct_type_t;
3394 struct construct_type_t {
3395         construct_type_kind_t  kind;
3396         construct_type_t      *next;
3397 };
3398
3399 typedef struct parsed_pointer_t parsed_pointer_t;
3400 struct parsed_pointer_t {
3401         construct_type_t  construct_type;
3402         type_qualifiers_t type_qualifiers;
3403 };
3404
3405 typedef struct construct_function_type_t construct_function_type_t;
3406 struct construct_function_type_t {
3407         construct_type_t  construct_type;
3408         type_t           *function_type;
3409 };
3410
3411 typedef struct parsed_array_t parsed_array_t;
3412 struct parsed_array_t {
3413         construct_type_t  construct_type;
3414         type_qualifiers_t type_qualifiers;
3415         bool              is_static;
3416         bool              is_variable;
3417         expression_t     *size;
3418 };
3419
3420 typedef struct construct_base_type_t construct_base_type_t;
3421 struct construct_base_type_t {
3422         construct_type_t  construct_type;
3423         type_t           *type;
3424 };
3425
3426 static construct_type_t *parse_pointer_declarator(void)
3427 {
3428         eat('*');
3429
3430         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3431         memset(pointer, 0, sizeof(pointer[0]));
3432         pointer->construct_type.kind = CONSTRUCT_POINTER;
3433         pointer->type_qualifiers     = parse_type_qualifiers();
3434
3435         return (construct_type_t*) pointer;
3436 }
3437
3438 static construct_type_t *parse_array_declarator(void)
3439 {
3440         eat('[');
3441         add_anchor_token(']');
3442
3443         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3444         memset(array, 0, sizeof(array[0]));
3445         array->construct_type.kind = CONSTRUCT_ARRAY;
3446
3447         if(token.type == T_static) {
3448                 array->is_static = true;
3449                 next_token();
3450         }
3451
3452         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3453         if(type_qualifiers != 0) {
3454                 if(token.type == T_static) {
3455                         array->is_static = true;
3456                         next_token();
3457                 }
3458         }
3459         array->type_qualifiers = type_qualifiers;
3460
3461         if(token.type == '*' && look_ahead(1)->type == ']') {
3462                 array->is_variable = true;
3463                 next_token();
3464         } else if(token.type != ']') {
3465                 array->size = parse_assignment_expression();
3466         }
3467
3468         rem_anchor_token(']');
3469         expect(']');
3470
3471         return (construct_type_t*) array;
3472 end_error:
3473         return NULL;
3474 }
3475
3476 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3477 {
3478         type_t *type;
3479         if(declaration != NULL) {
3480                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3481         } else {
3482                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3483         }
3484
3485         declaration_t *parameters = parse_parameters(&type->function);
3486         if(declaration != NULL) {
3487                 declaration->scope.declarations = parameters;
3488         }
3489
3490         construct_function_type_t *construct_function_type =
3491                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3492         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3493         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3494         construct_function_type->function_type       = type;
3495
3496         return (construct_type_t*) construct_function_type;
3497 }
3498
3499 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
3500                 bool may_be_abstract)
3501 {
3502         /* construct a single linked list of construct_type_t's which describe
3503          * how to construct the final declarator type */
3504         construct_type_t *first = NULL;
3505         construct_type_t *last  = NULL;
3506         gnu_attribute_t  *attributes = NULL;
3507
3508         /* pointers */
3509         while(token.type == '*') {
3510                 construct_type_t *type = parse_pointer_declarator();
3511
3512                 if(last == NULL) {
3513                         first = type;
3514                         last  = type;
3515                 } else {
3516                         last->next = type;
3517                         last       = type;
3518                 }
3519         }
3520
3521         /* TODO: find out if this is correct */
3522         parse_attributes(&attributes);
3523
3524         construct_type_t *inner_types = NULL;
3525
3526         switch(token.type) {
3527         case T_IDENTIFIER:
3528                 if(declaration == NULL) {
3529                         errorf(HERE, "no identifier expected in typename");
3530                 } else {
3531                         declaration->symbol          = token.v.symbol;
3532                         declaration->source_position = token.source_position;
3533                 }
3534                 next_token();
3535                 break;
3536         case '(':
3537                 next_token();
3538                 add_anchor_token(')');
3539                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
3540                 rem_anchor_token(')');
3541                 expect(')');
3542                 break;
3543         default:
3544                 if(may_be_abstract)
3545                         break;
3546                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3547                 /* avoid a loop in the outermost scope, because eat_statement doesn't
3548                  * eat '}' */
3549                 if(token.type == '}' && current_function == NULL) {
3550                         next_token();
3551                 } else {
3552                         eat_statement();
3553                 }
3554                 return NULL;
3555         }
3556
3557         construct_type_t *p = last;
3558
3559         while(true) {
3560                 construct_type_t *type;
3561                 switch(token.type) {
3562                 case '(':
3563                         type = parse_function_declarator(declaration);
3564                         break;
3565                 case '[':
3566                         type = parse_array_declarator();
3567                         break;
3568                 default:
3569                         goto declarator_finished;
3570                 }
3571
3572                 /* insert in the middle of the list (behind p) */
3573                 if(p != NULL) {
3574                         type->next = p->next;
3575                         p->next    = type;
3576                 } else {
3577                         type->next = first;
3578                         first      = type;
3579                 }
3580                 if(last == p) {
3581                         last = type;
3582                 }
3583         }
3584
3585 declarator_finished:
3586         parse_attributes(&attributes);
3587
3588         /* append inner_types at the end of the list, we don't to set last anymore
3589          * as it's not needed anymore */
3590         if(last == NULL) {
3591                 assert(first == NULL);
3592                 first = inner_types;
3593         } else {
3594                 last->next = inner_types;
3595         }
3596
3597         return first;
3598 end_error:
3599         return NULL;
3600 }
3601
3602 static type_t *construct_declarator_type(construct_type_t *construct_list,
3603                                          type_t *type)
3604 {
3605         construct_type_t *iter = construct_list;
3606         for( ; iter != NULL; iter = iter->next) {
3607                 switch(iter->kind) {
3608                 case CONSTRUCT_INVALID:
3609                         internal_errorf(HERE, "invalid type construction found");
3610                 case CONSTRUCT_FUNCTION: {
3611                         construct_function_type_t *construct_function_type
3612                                 = (construct_function_type_t*) iter;
3613
3614                         type_t *function_type = construct_function_type->function_type;
3615
3616                         function_type->function.return_type = type;
3617
3618                         type_t *skipped_return_type = skip_typeref(type);
3619                         if (is_type_function(skipped_return_type)) {
3620                                 errorf(HERE, "function returning function is not allowed");
3621                                 type = type_error_type;
3622                         } else if (is_type_array(skipped_return_type)) {
3623                                 errorf(HERE, "function returning array is not allowed");
3624                                 type = type_error_type;
3625                         } else {
3626                                 type = function_type;
3627                         }
3628                         break;
3629                 }
3630
3631                 case CONSTRUCT_POINTER: {
3632                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
3633                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
3634                         pointer_type->pointer.points_to  = type;
3635                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
3636
3637                         type = pointer_type;
3638                         break;
3639                 }
3640
3641                 case CONSTRUCT_ARRAY: {
3642                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
3643                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
3644
3645                         expression_t *size_expression = parsed_array->size;
3646                         if(size_expression != NULL) {
3647                                 size_expression
3648                                         = create_implicit_cast(size_expression, type_size_t);
3649                         }
3650
3651                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
3652                         array_type->array.element_type    = type;
3653                         array_type->array.is_static       = parsed_array->is_static;
3654                         array_type->array.is_variable     = parsed_array->is_variable;
3655                         array_type->array.size_expression = size_expression;
3656
3657                         if(size_expression != NULL) {
3658                                 if(is_constant_expression(size_expression)) {
3659                                         array_type->array.size_constant = true;
3660                                         array_type->array.size
3661                                                 = fold_constant(size_expression);
3662                                 } else {
3663                                         array_type->array.is_vla = true;
3664                                 }
3665                         }
3666
3667                         type_t *skipped_type = skip_typeref(type);
3668                         if (is_type_atomic(skipped_type, ATOMIC_TYPE_VOID)) {
3669                                 errorf(HERE, "array of void is not allowed");
3670                                 type = type_error_type;
3671                         } else {
3672                                 type = array_type;
3673                         }
3674                         break;
3675                 }
3676                 }
3677
3678                 type_t *hashed_type = typehash_insert(type);
3679                 if(hashed_type != type) {
3680                         /* the function type was constructed earlier freeing it here will
3681                          * destroy other types... */
3682                         if(iter->kind != CONSTRUCT_FUNCTION) {
3683                                 free_type(type);
3684                         }
3685                         type = hashed_type;
3686                 }
3687         }
3688
3689         return type;
3690 }
3691
3692 static declaration_t *parse_declarator(
3693                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
3694 {
3695         declaration_t *const declaration    = allocate_declaration_zero();
3696         declaration->declared_storage_class = specifiers->declared_storage_class;
3697         declaration->decl_modifiers         = specifiers->decl_modifiers;
3698         declaration->deprecated             = specifiers->deprecated;
3699         declaration->deprecated_string      = specifiers->deprecated_string;
3700         declaration->get_property_sym       = specifiers->get_property_sym;
3701         declaration->put_property_sym       = specifiers->put_property_sym;
3702         declaration->is_inline              = specifiers->is_inline;
3703
3704         declaration->storage_class          = specifiers->declared_storage_class;
3705         if(declaration->storage_class == STORAGE_CLASS_NONE
3706                         && scope != global_scope) {
3707                 declaration->storage_class = STORAGE_CLASS_AUTO;
3708         }
3709
3710         if(specifiers->alignment != 0) {
3711                 /* TODO: add checks here */
3712                 declaration->alignment = specifiers->alignment;
3713         }
3714
3715         construct_type_t *construct_type
3716                 = parse_inner_declarator(declaration, may_be_abstract);
3717         type_t *const type = specifiers->type;
3718         declaration->type = construct_declarator_type(construct_type, type);
3719
3720         if(construct_type != NULL) {
3721                 obstack_free(&temp_obst, construct_type);
3722         }
3723
3724         return declaration;
3725 }
3726
3727 static type_t *parse_abstract_declarator(type_t *base_type)
3728 {
3729         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
3730
3731         type_t *result = construct_declarator_type(construct_type, base_type);
3732         if(construct_type != NULL) {
3733                 obstack_free(&temp_obst, construct_type);
3734         }
3735
3736         return result;
3737 }
3738
3739 static declaration_t *append_declaration(declaration_t* const declaration)
3740 {
3741         if (last_declaration != NULL) {
3742                 last_declaration->next = declaration;
3743         } else {
3744                 scope->declarations = declaration;
3745         }
3746         last_declaration = declaration;
3747         return declaration;
3748 }
3749
3750 /**
3751  * Check if the declaration of main is suspicious.  main should be a
3752  * function with external linkage, returning int, taking either zero
3753  * arguments, two, or three arguments of appropriate types, ie.
3754  *
3755  * int main([ int argc, char **argv [, char **env ] ]).
3756  *
3757  * @param decl    the declaration to check
3758  * @param type    the function type of the declaration
3759  */
3760 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
3761 {
3762         if (decl->storage_class == STORAGE_CLASS_STATIC) {
3763                 warningf(&decl->source_position,
3764                          "'main' is normally a non-static function");
3765         }
3766         if (skip_typeref(func_type->return_type) != type_int) {
3767                 warningf(&decl->source_position,
3768                          "return type of 'main' should be 'int', but is '%T'",
3769                          func_type->return_type);
3770         }
3771         const function_parameter_t *parm = func_type->parameters;
3772         if (parm != NULL) {
3773                 type_t *const first_type = parm->type;
3774                 if (!types_compatible(skip_typeref(first_type), type_int)) {
3775                         warningf(&decl->source_position,
3776                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
3777                 }
3778                 parm = parm->next;
3779                 if (parm != NULL) {
3780                         type_t *const second_type = parm->type;
3781                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
3782                                 warningf(&decl->source_position,
3783                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
3784                         }
3785                         parm = parm->next;
3786                         if (parm != NULL) {
3787                                 type_t *const third_type = parm->type;
3788                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
3789                                         warningf(&decl->source_position,
3790                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
3791                                 }
3792                                 parm = parm->next;
3793                                 if (parm != NULL) {
3794                                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
3795                                 }
3796                         }
3797                 } else {
3798                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
3799                 }
3800         }
3801 }
3802
3803 /**
3804  * Check if a symbol is the equal to "main".
3805  */
3806 static bool is_sym_main(const symbol_t *const sym)
3807 {
3808         return strcmp(sym->string, "main") == 0;
3809 }
3810
3811 static declaration_t *internal_record_declaration(
3812         declaration_t *const declaration,
3813         const bool is_function_definition)
3814 {
3815         const symbol_t *const symbol  = declaration->symbol;
3816         const namespace_t     namespc = (namespace_t)declaration->namespc;
3817
3818         assert(declaration->symbol != NULL);
3819         declaration_t *previous_declaration = get_declaration(symbol, namespc);
3820
3821         type_t *const orig_type = declaration->type;
3822         type_t *const type      = skip_typeref(orig_type);
3823         if (is_type_function(type) &&
3824                         type->function.unspecified_parameters &&
3825                         warning.strict_prototypes &&
3826                         previous_declaration == NULL) {
3827                 warningf(&declaration->source_position,
3828                          "function declaration '%#T' is not a prototype",
3829                          orig_type, declaration->symbol);
3830         }
3831
3832         if (is_function_definition && warning.main && is_sym_main(symbol)) {
3833                 check_type_of_main(declaration, &type->function);
3834         }
3835
3836         assert(declaration != previous_declaration);
3837         if (previous_declaration != NULL
3838                         && previous_declaration->parent_scope == scope) {
3839                 /* can happen for K&R style declarations */
3840                 if (previous_declaration->type == NULL) {
3841                         previous_declaration->type = declaration->type;
3842                 }
3843
3844                 const type_t *prev_type = skip_typeref(previous_declaration->type);
3845                 if (!types_compatible(type, prev_type)) {
3846                         errorf(&declaration->source_position,
3847                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
3848                                    orig_type, symbol, previous_declaration->type, symbol,
3849                                    &previous_declaration->source_position);
3850                 } else {
3851                         unsigned old_storage_class = previous_declaration->storage_class;
3852                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
3853                                 errorf(&declaration->source_position,
3854                                            "redeclaration of enum entry '%Y' (declared %P)",
3855                                            symbol, &previous_declaration->source_position);
3856                                 return previous_declaration;
3857                         }
3858
3859                         unsigned new_storage_class = declaration->storage_class;
3860
3861                         if (is_type_incomplete(prev_type)) {
3862                                 previous_declaration->type = type;
3863                                 prev_type                  = type;
3864                         }
3865
3866                         /* pretend no storage class means extern for function
3867                          * declarations (except if the previous declaration is neither
3868                          * none nor extern) */
3869                         if (is_type_function(type)) {
3870                                 switch (old_storage_class) {
3871                                 case STORAGE_CLASS_NONE:
3872                                         old_storage_class = STORAGE_CLASS_EXTERN;
3873
3874                                 case STORAGE_CLASS_EXTERN:
3875                                         if (is_function_definition) {
3876                                                 if (warning.missing_prototypes &&
3877                                                         prev_type->function.unspecified_parameters &&
3878                                                         !is_sym_main(symbol)) {
3879                                                         warningf(&declaration->source_position,
3880                                                                          "no previous prototype for '%#T'",
3881                                                                          orig_type, symbol);
3882                                                 }
3883                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
3884                                                 new_storage_class = STORAGE_CLASS_EXTERN;
3885                                         }
3886                                         break;
3887
3888                                 default:
3889                                         break;
3890                                 }
3891                         }
3892
3893                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
3894                                         new_storage_class == STORAGE_CLASS_EXTERN) {
3895 warn_redundant_declaration:
3896                                 if (warning.redundant_decls) {
3897                                         warningf(&declaration->source_position,
3898                                                          "redundant declaration for '%Y' (declared %P)",
3899                                                          symbol, &previous_declaration->source_position);
3900                                 }
3901                         } else if (current_function == NULL) {
3902                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
3903                                                 new_storage_class == STORAGE_CLASS_STATIC) {
3904                                         errorf(&declaration->source_position,
3905                                                    "static declaration of '%Y' follows non-static declaration (declared %P)",
3906                                                    symbol, &previous_declaration->source_position);
3907                                 } else if (old_storage_class != STORAGE_CLASS_EXTERN
3908                                                 && !is_function_definition) {
3909                                         goto warn_redundant_declaration;
3910                                 } else if (new_storage_class == STORAGE_CLASS_NONE) {
3911                                                 previous_declaration->storage_class = STORAGE_CLASS_NONE;
3912                                                 previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
3913                                 }
3914                         } else if (old_storage_class == new_storage_class) {
3915                                 errorf(&declaration->source_position,
3916                                            "redeclaration of '%Y' (declared %P)",
3917                                            symbol, &previous_declaration->source_position);
3918                         } else {
3919                                 errorf(&declaration->source_position,
3920                                            "redeclaration of '%Y' with different linkage (declared %P)",
3921                                            symbol, &previous_declaration->source_position);
3922                         }
3923                 }
3924
3925                 if (declaration->is_inline)
3926                         previous_declaration->is_inline = true;
3927                 return previous_declaration;
3928         } else if (is_function_definition) {
3929                 if (declaration->storage_class != STORAGE_CLASS_STATIC) {
3930                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
3931                                 warningf(&declaration->source_position,
3932                                          "no previous prototype for '%#T'", orig_type, symbol);
3933                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
3934                                 warningf(&declaration->source_position,
3935                                          "no previous declaration for '%#T'", orig_type,
3936                                          symbol);
3937                         }
3938                 }
3939         } else if (warning.missing_declarations &&
3940             scope == global_scope &&
3941             !is_type_function(type) && (
3942               declaration->storage_class == STORAGE_CLASS_NONE ||
3943               declaration->storage_class == STORAGE_CLASS_THREAD
3944             )) {
3945                 warningf(&declaration->source_position,
3946                          "no previous declaration for '%#T'", orig_type, symbol);
3947         }
3948
3949         assert(declaration->parent_scope == NULL);
3950         assert(scope != NULL);
3951
3952         declaration->parent_scope = scope;
3953
3954         environment_push(declaration);
3955         return append_declaration(declaration);
3956 }
3957
3958 static declaration_t *record_declaration(declaration_t *declaration)
3959 {
3960         return internal_record_declaration(declaration, false);
3961 }
3962
3963 static declaration_t *record_function_definition(declaration_t *declaration)
3964 {
3965         return internal_record_declaration(declaration, true);
3966 }
3967
3968 static void parser_error_multiple_definition(declaration_t *declaration,
3969                 const source_position_t *source_position)
3970 {
3971         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
3972                declaration->symbol, &declaration->source_position);
3973 }
3974
3975 static bool is_declaration_specifier(const token_t *token,
3976                                      bool only_specifiers_qualifiers)
3977 {
3978         switch(token->type) {
3979                 TYPE_SPECIFIERS
3980                 TYPE_QUALIFIERS
3981                         return true;
3982                 case T_IDENTIFIER:
3983                         return is_typedef_symbol(token->v.symbol);
3984
3985                 case T___extension__:
3986                 STORAGE_CLASSES
3987                         return !only_specifiers_qualifiers;
3988
3989                 default:
3990                         return false;
3991         }
3992 }
3993
3994 static void parse_init_declarator_rest(declaration_t *declaration)
3995 {
3996         eat('=');
3997
3998         type_t *orig_type = declaration->type;
3999         type_t *type      = skip_typeref(orig_type);
4000
4001         if(declaration->init.initializer != NULL) {
4002                 parser_error_multiple_definition(declaration, HERE);
4003         }
4004
4005         bool must_be_constant = false;
4006         if(declaration->storage_class == STORAGE_CLASS_STATIC
4007                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4008                         || declaration->parent_scope == global_scope) {
4009                 must_be_constant = true;
4010         }
4011
4012         parse_initializer_env_t env;
4013         env.type             = orig_type;
4014         env.must_be_constant = must_be_constant;
4015         env.declaration      = declaration;
4016
4017         initializer_t *initializer = parse_initializer(&env);
4018
4019         if(env.type != orig_type) {
4020                 orig_type         = env.type;
4021                 type              = skip_typeref(orig_type);
4022                 declaration->type = env.type;
4023         }
4024
4025         if(is_type_function(type)) {
4026                 errorf(&declaration->source_position,
4027                        "initializers not allowed for function types at declator '%Y' (type '%T')",
4028                        declaration->symbol, orig_type);
4029         } else {
4030                 declaration->init.initializer = initializer;
4031         }
4032 }
4033
4034 /* parse rest of a declaration without any declarator */
4035 static void parse_anonymous_declaration_rest(
4036                 const declaration_specifiers_t *specifiers,
4037                 parsed_declaration_func finished_declaration)
4038 {
4039         eat(';');
4040
4041         declaration_t *const declaration    = allocate_declaration_zero();
4042         declaration->type                   = specifiers->type;
4043         declaration->declared_storage_class = specifiers->declared_storage_class;
4044         declaration->source_position        = specifiers->source_position;
4045         declaration->decl_modifiers         = specifiers->decl_modifiers;
4046
4047         if (declaration->declared_storage_class != STORAGE_CLASS_NONE) {
4048                 warningf(&declaration->source_position,
4049                          "useless storage class in empty declaration");
4050         }
4051         declaration->storage_class = STORAGE_CLASS_NONE;
4052
4053         type_t *type = declaration->type;
4054         switch (type->kind) {
4055                 case TYPE_COMPOUND_STRUCT:
4056                 case TYPE_COMPOUND_UNION: {
4057                         if (type->compound.declaration->symbol == NULL) {
4058                                 warningf(&declaration->source_position,
4059                                          "unnamed struct/union that defines no instances");
4060                         }
4061                         break;
4062                 }
4063
4064                 case TYPE_ENUM:
4065                         break;
4066
4067                 default:
4068                         warningf(&declaration->source_position, "empty declaration");
4069                         break;
4070         }
4071
4072         finished_declaration(declaration);
4073 }
4074
4075 static void parse_declaration_rest(declaration_t *ndeclaration,
4076                 const declaration_specifiers_t *specifiers,
4077                 parsed_declaration_func finished_declaration)
4078 {
4079         add_anchor_token(';');
4080         add_anchor_token('=');
4081         add_anchor_token(',');
4082         while(true) {
4083                 declaration_t *declaration = finished_declaration(ndeclaration);
4084
4085                 type_t *orig_type = declaration->type;
4086                 type_t *type      = skip_typeref(orig_type);
4087
4088                 if (type->kind != TYPE_FUNCTION &&
4089                     declaration->is_inline &&
4090                     is_type_valid(type)) {
4091                         warningf(&declaration->source_position,
4092                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4093                 }
4094
4095                 if(token.type == '=') {
4096                         parse_init_declarator_rest(declaration);
4097                 }
4098
4099                 if(token.type != ',')
4100                         break;
4101                 eat(',');
4102
4103                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4104         }
4105         expect(';');
4106
4107 end_error:
4108         rem_anchor_token(';');
4109         rem_anchor_token('=');
4110         rem_anchor_token(',');
4111 }
4112
4113 static declaration_t *finished_kr_declaration(declaration_t *declaration)
4114 {
4115         symbol_t *symbol  = declaration->symbol;
4116         if(symbol == NULL) {
4117                 errorf(HERE, "anonymous declaration not valid as function parameter");
4118                 return declaration;
4119         }
4120         namespace_t namespc = (namespace_t) declaration->namespc;
4121         if(namespc != NAMESPACE_NORMAL) {
4122                 return record_declaration(declaration);
4123         }
4124
4125         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4126         if(previous_declaration == NULL ||
4127                         previous_declaration->parent_scope != scope) {
4128                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4129                        symbol);
4130                 return declaration;
4131         }
4132
4133         if(previous_declaration->type == NULL) {
4134                 previous_declaration->type          = declaration->type;
4135                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4136                 previous_declaration->storage_class = declaration->storage_class;
4137                 previous_declaration->parent_scope  = scope;
4138                 return previous_declaration;
4139         } else {
4140                 return record_declaration(declaration);
4141         }
4142 }
4143
4144 static void parse_declaration(parsed_declaration_func finished_declaration)
4145 {
4146         declaration_specifiers_t specifiers;
4147         memset(&specifiers, 0, sizeof(specifiers));
4148         parse_declaration_specifiers(&specifiers);
4149
4150         if(token.type == ';') {
4151                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4152         } else {
4153                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4154                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4155         }
4156 }
4157
4158 static type_t *get_default_promoted_type(type_t *orig_type)
4159 {
4160         type_t *result = orig_type;
4161
4162         type_t *type = skip_typeref(orig_type);
4163         if(is_type_integer(type)) {
4164                 result = promote_integer(type);
4165         } else if(type == type_float) {
4166                 result = type_double;
4167         }
4168
4169         return result;
4170 }
4171
4172 static void parse_kr_declaration_list(declaration_t *declaration)
4173 {
4174         type_t *type = skip_typeref(declaration->type);
4175         if (!is_type_function(type))
4176                 return;
4177
4178         if (!type->function.kr_style_parameters)
4179                 return;
4180
4181         /* push function parameters */
4182         int       top        = environment_top();
4183         scope_t  *last_scope = scope;
4184         set_scope(&declaration->scope);
4185
4186         declaration_t *parameter = declaration->scope.declarations;
4187         for ( ; parameter != NULL; parameter = parameter->next) {
4188                 assert(parameter->parent_scope == NULL);
4189                 parameter->parent_scope = scope;
4190                 environment_push(parameter);
4191         }
4192
4193         /* parse declaration list */
4194         while (is_declaration_specifier(&token, false)) {
4195                 parse_declaration(finished_kr_declaration);
4196         }
4197
4198         /* pop function parameters */
4199         assert(scope == &declaration->scope);
4200         set_scope(last_scope);
4201         environment_pop_to(top);
4202
4203         /* update function type */
4204         type_t *new_type = duplicate_type(type);
4205
4206         function_parameter_t *parameters     = NULL;
4207         function_parameter_t *last_parameter = NULL;
4208
4209         declaration_t *parameter_declaration = declaration->scope.declarations;
4210         for( ; parameter_declaration != NULL;
4211                         parameter_declaration = parameter_declaration->next) {
4212                 type_t *parameter_type = parameter_declaration->type;
4213                 if(parameter_type == NULL) {
4214                         if (strict_mode) {
4215                                 errorf(HERE, "no type specified for function parameter '%Y'",
4216                                        parameter_declaration->symbol);
4217                         } else {
4218                                 if (warning.implicit_int) {
4219                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4220                                                 parameter_declaration->symbol);
4221                                 }
4222                                 parameter_type              = type_int;
4223                                 parameter_declaration->type = parameter_type;
4224                         }
4225                 }
4226
4227                 semantic_parameter(parameter_declaration);
4228                 parameter_type = parameter_declaration->type;
4229
4230                 /*
4231                  * we need the default promoted types for the function type
4232                  */
4233                 parameter_type = get_default_promoted_type(parameter_type);
4234
4235                 function_parameter_t *function_parameter
4236                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4237                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4238
4239                 function_parameter->type = parameter_type;
4240                 if(last_parameter != NULL) {
4241                         last_parameter->next = function_parameter;
4242                 } else {
4243                         parameters = function_parameter;
4244                 }
4245                 last_parameter = function_parameter;
4246         }
4247
4248         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4249          * prototype */
4250         new_type->function.parameters             = parameters;
4251         new_type->function.unspecified_parameters = true;
4252
4253         type = typehash_insert(new_type);
4254         if(type != new_type) {
4255                 obstack_free(type_obst, new_type);
4256         }
4257
4258         declaration->type = type;
4259 }
4260
4261 static bool first_err = true;
4262
4263 /**
4264  * When called with first_err set, prints the name of the current function,
4265  * else does noting.
4266  */
4267 static void print_in_function(void) {
4268         if (first_err) {
4269                 first_err = false;
4270                 diagnosticf("%s: In function '%Y':\n",
4271                         current_function->source_position.input_name,
4272                         current_function->symbol);
4273         }
4274 }
4275
4276 /**
4277  * Check if all labels are defined in the current function.
4278  * Check if all labels are used in the current function.
4279  */
4280 static void check_labels(void)
4281 {
4282         for (const goto_statement_t *goto_statement = goto_first;
4283             goto_statement != NULL;
4284             goto_statement = goto_statement->next) {
4285                 declaration_t *label = goto_statement->label;
4286
4287                 label->used = true;
4288                 if (label->source_position.input_name == NULL) {
4289                         print_in_function();
4290                         errorf(&goto_statement->base.source_position,
4291                                "label '%Y' used but not defined", label->symbol);
4292                  }
4293         }
4294         goto_first = goto_last = NULL;
4295
4296         if (warning.unused_label) {
4297                 for (const label_statement_t *label_statement = label_first;
4298                          label_statement != NULL;
4299                          label_statement = label_statement->next) {
4300                         const declaration_t *label = label_statement->label;
4301
4302                         if (! label->used) {
4303                                 print_in_function();
4304                                 warningf(&label_statement->base.source_position,
4305                                         "label '%Y' defined but not used", label->symbol);
4306                         }
4307                 }
4308         }
4309         label_first = label_last = NULL;
4310 }
4311
4312 /**
4313  * Check declarations of current_function for unused entities.
4314  */
4315 static void check_declarations(void)
4316 {
4317         if (warning.unused_parameter) {
4318                 const scope_t *scope = &current_function->scope;
4319
4320                 const declaration_t *parameter = scope->declarations;
4321                 for (; parameter != NULL; parameter = parameter->next) {
4322                         if (! parameter->used) {
4323                                 print_in_function();
4324                                 warningf(&parameter->source_position,
4325                                          "unused parameter '%Y'", parameter->symbol);
4326                         }
4327                 }
4328         }
4329         if (warning.unused_variable) {
4330         }
4331 }
4332
4333 static void parse_external_declaration(void)
4334 {
4335         /* function-definitions and declarations both start with declaration
4336          * specifiers */
4337         declaration_specifiers_t specifiers;
4338         memset(&specifiers, 0, sizeof(specifiers));
4339
4340         add_anchor_token(';');
4341         parse_declaration_specifiers(&specifiers);
4342         rem_anchor_token(';');
4343
4344         /* must be a declaration */
4345         if(token.type == ';') {
4346                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4347                 return;
4348         }
4349
4350         add_anchor_token(',');
4351         add_anchor_token('=');
4352         rem_anchor_token(';');
4353
4354         /* declarator is common to both function-definitions and declarations */
4355         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4356
4357         rem_anchor_token(',');
4358         rem_anchor_token('=');
4359         rem_anchor_token(';');
4360
4361         /* must be a declaration */
4362         if(token.type == ',' || token.type == '=' || token.type == ';') {
4363                 parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
4364                 return;
4365         }
4366
4367         /* must be a function definition */
4368         parse_kr_declaration_list(ndeclaration);
4369
4370         if(token.type != '{') {
4371                 parse_error_expected("while parsing function definition", '{', NULL);
4372                 eat_until_matching_token(';');
4373                 return;
4374         }
4375
4376         type_t *type = ndeclaration->type;
4377
4378         /* note that we don't skip typerefs: the standard doesn't allow them here
4379          * (so we can't use is_type_function here) */
4380         if(type->kind != TYPE_FUNCTION) {
4381                 if (is_type_valid(type)) {
4382                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
4383                                type, ndeclaration->symbol);
4384                 }
4385                 eat_block();
4386                 return;
4387         }
4388
4389         /* Â§ 6.7.5.3 (14) a function definition with () means no
4390          * parameters (and not unspecified parameters) */
4391         if(type->function.unspecified_parameters
4392                         && type->function.parameters == NULL
4393                         && !type->function.kr_style_parameters) {
4394                 type_t *duplicate = duplicate_type(type);
4395                 duplicate->function.unspecified_parameters = false;
4396
4397                 type = typehash_insert(duplicate);
4398                 if(type != duplicate) {
4399                         obstack_free(type_obst, duplicate);
4400                 }
4401                 ndeclaration->type = type;
4402         }
4403
4404         declaration_t *const declaration = record_function_definition(ndeclaration);
4405         if(ndeclaration != declaration) {
4406                 declaration->scope = ndeclaration->scope;
4407         }
4408         type = skip_typeref(declaration->type);
4409
4410         /* push function parameters and switch scope */
4411         int       top        = environment_top();
4412         scope_t  *last_scope = scope;
4413         set_scope(&declaration->scope);
4414
4415         declaration_t *parameter = declaration->scope.declarations;
4416         for( ; parameter != NULL; parameter = parameter->next) {
4417                 if(parameter->parent_scope == &ndeclaration->scope) {
4418                         parameter->parent_scope = scope;
4419                 }
4420                 assert(parameter->parent_scope == NULL
4421                                 || parameter->parent_scope == scope);
4422                 parameter->parent_scope = scope;
4423                 environment_push(parameter);
4424         }
4425
4426         if(declaration->init.statement != NULL) {
4427                 parser_error_multiple_definition(declaration, HERE);
4428                 eat_block();
4429                 goto end_of_parse_external_declaration;
4430         } else {
4431                 /* parse function body */
4432                 int            label_stack_top      = label_top();
4433                 declaration_t *old_current_function = current_function;
4434                 current_function                    = declaration;
4435
4436                 declaration->init.statement = parse_compound_statement(false);
4437                 first_err = true;
4438                 check_labels();
4439                 check_declarations();
4440
4441                 assert(current_function == declaration);
4442                 current_function = old_current_function;
4443                 label_pop_to(label_stack_top);
4444         }
4445
4446 end_of_parse_external_declaration:
4447         assert(scope == &declaration->scope);
4448         set_scope(last_scope);
4449         environment_pop_to(top);
4450 }
4451
4452 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
4453                                   source_position_t *source_position)
4454 {
4455         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
4456
4457         type->bitfield.base_type = base_type;
4458         type->bitfield.size      = size;
4459
4460         return type;
4461 }
4462
4463 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
4464                                           symbol_t *symbol)
4465 {
4466         declaration_t *iter = compound_declaration->scope.declarations;
4467         for( ; iter != NULL; iter = iter->next) {
4468                 if(iter->namespc != NAMESPACE_NORMAL)
4469                         continue;
4470
4471                 if(iter->symbol == NULL) {
4472                         type_t *type = skip_typeref(iter->type);
4473                         if(is_type_compound(type)) {
4474                                 declaration_t *result
4475                                         = find_compound_entry(type->compound.declaration, symbol);
4476                                 if(result != NULL)
4477                                         return result;
4478                         }
4479                         continue;
4480                 }
4481
4482                 if(iter->symbol == symbol) {
4483                         return iter;
4484                 }
4485         }
4486
4487         return NULL;
4488 }
4489
4490 static void parse_compound_declarators(declaration_t *struct_declaration,
4491                 const declaration_specifiers_t *specifiers)
4492 {
4493         declaration_t *last_declaration = struct_declaration->scope.declarations;
4494         if(last_declaration != NULL) {
4495                 while(last_declaration->next != NULL) {
4496                         last_declaration = last_declaration->next;
4497                 }
4498         }
4499
4500         while(1) {
4501                 declaration_t *declaration;
4502
4503                 if(token.type == ':') {
4504                         source_position_t source_position = *HERE;
4505                         next_token();
4506
4507                         type_t *base_type = specifiers->type;
4508                         expression_t *size = parse_constant_expression();
4509
4510                         if(!is_type_integer(skip_typeref(base_type))) {
4511                                 errorf(HERE, "bitfield base type '%T' is not an integer type",
4512                                        base_type);
4513                         }
4514
4515                         type_t *type = make_bitfield_type(base_type, size, &source_position);
4516
4517                         declaration                         = allocate_declaration_zero();
4518                         declaration->namespc                = NAMESPACE_NORMAL;
4519                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
4520                         declaration->storage_class          = STORAGE_CLASS_NONE;
4521                         declaration->source_position        = source_position;
4522                         declaration->decl_modifiers         = specifiers->decl_modifiers;
4523                         declaration->type                   = type;
4524                 } else {
4525                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
4526
4527                         type_t *orig_type = declaration->type;
4528                         type_t *type      = skip_typeref(orig_type);
4529
4530                         if(token.type == ':') {
4531                                 source_position_t source_position = *HERE;
4532                                 next_token();
4533                                 expression_t *size = parse_constant_expression();
4534
4535                                 if(!is_type_integer(type)) {
4536                                         errorf(HERE, "bitfield base type '%T' is not an "
4537                                                "integer type", orig_type);
4538                                 }
4539
4540                                 type_t *bitfield_type = make_bitfield_type(orig_type, size, &source_position);
4541                                 declaration->type = bitfield_type;
4542                         } else {
4543                                 /* TODO we ignore arrays for now... what is missing is a check
4544                                  * that they're at the end of the struct */
4545                                 if(is_type_incomplete(type) && !is_type_array(type)) {
4546                                         errorf(HERE,
4547                                                "compound member '%Y' has incomplete type '%T'",
4548                                                declaration->symbol, orig_type);
4549                                 } else if(is_type_function(type)) {
4550                                         errorf(HERE, "compound member '%Y' must not have function "
4551                                                "type '%T'", declaration->symbol, orig_type);
4552                                 }
4553                         }
4554                 }
4555
4556                 /* make sure we don't define a symbol multiple times */
4557                 symbol_t *symbol = declaration->symbol;
4558                 if(symbol != NULL) {
4559                         declaration_t *prev_decl
4560                                 = find_compound_entry(struct_declaration, symbol);
4561
4562                         if(prev_decl != NULL) {
4563                                 assert(prev_decl->symbol == symbol);
4564                                 errorf(&declaration->source_position,
4565                                        "multiple declarations of symbol '%Y' (declared %P)",
4566                                        symbol, &prev_decl->source_position);
4567                         }
4568                 }
4569
4570                 /* append declaration */
4571                 if(last_declaration != NULL) {
4572                         last_declaration->next = declaration;
4573                 } else {
4574                         struct_declaration->scope.declarations = declaration;
4575                 }
4576                 last_declaration = declaration;
4577
4578                 if(token.type != ',')
4579                         break;
4580                 next_token();
4581         }
4582         expect(';');
4583
4584 end_error:
4585         ;
4586 }
4587
4588 static void parse_compound_type_entries(declaration_t *compound_declaration)
4589 {
4590         eat('{');
4591         add_anchor_token('}');
4592
4593         while(token.type != '}' && token.type != T_EOF) {
4594                 declaration_specifiers_t specifiers;
4595                 memset(&specifiers, 0, sizeof(specifiers));
4596                 parse_declaration_specifiers(&specifiers);
4597
4598                 parse_compound_declarators(compound_declaration, &specifiers);
4599         }
4600         rem_anchor_token('}');
4601
4602         if(token.type == T_EOF) {
4603                 errorf(HERE, "EOF while parsing struct");
4604         }
4605         next_token();
4606 }
4607
4608 static type_t *parse_typename(void)
4609 {
4610         declaration_specifiers_t specifiers;
4611         memset(&specifiers, 0, sizeof(specifiers));
4612         parse_declaration_specifiers(&specifiers);
4613         if(specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
4614                 /* TODO: improve error message, user does probably not know what a
4615                  * storage class is...
4616                  */
4617                 errorf(HERE, "typename may not have a storage class");
4618         }
4619
4620         type_t *result = parse_abstract_declarator(specifiers.type);
4621
4622         return result;
4623 }
4624
4625
4626
4627
4628 typedef expression_t* (*parse_expression_function) (unsigned precedence);
4629 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
4630                                                           expression_t *left);
4631
4632 typedef struct expression_parser_function_t expression_parser_function_t;
4633 struct expression_parser_function_t {
4634         unsigned                         precedence;
4635         parse_expression_function        parser;
4636         unsigned                         infix_precedence;
4637         parse_expression_infix_function  infix_parser;
4638 };
4639
4640 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
4641
4642 /**
4643  * Prints an error message if an expression was expected but not read
4644  */
4645 static expression_t *expected_expression_error(void)
4646 {
4647         /* skip the error message if the error token was read */
4648         if (token.type != T_ERROR) {
4649                 errorf(HERE, "expected expression, got token '%K'", &token);
4650         }
4651         next_token();
4652
4653         return create_invalid_expression();
4654 }
4655
4656 /**
4657  * Parse a string constant.
4658  */
4659 static expression_t *parse_string_const(void)
4660 {
4661         wide_string_t wres;
4662         if (token.type == T_STRING_LITERAL) {
4663                 string_t res = token.v.string;
4664                 next_token();
4665                 while (token.type == T_STRING_LITERAL) {
4666                         res = concat_strings(&res, &token.v.string);
4667                         next_token();
4668                 }
4669                 if (token.type != T_WIDE_STRING_LITERAL) {
4670                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
4671                         /* note: that we use type_char_ptr here, which is already the
4672                          * automatic converted type. revert_automatic_type_conversion
4673                          * will construct the array type */
4674                         cnst->base.type    = type_char_ptr;
4675                         cnst->string.value = res;
4676                         return cnst;
4677                 }
4678
4679                 wres = concat_string_wide_string(&res, &token.v.wide_string);
4680         } else {
4681                 wres = token.v.wide_string;
4682         }
4683         next_token();
4684
4685         for (;;) {
4686                 switch (token.type) {
4687                         case T_WIDE_STRING_LITERAL:
4688                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
4689                                 break;
4690
4691                         case T_STRING_LITERAL:
4692                                 wres = concat_wide_string_string(&wres, &token.v.string);
4693                                 break;
4694
4695                         default: {
4696                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
4697                                 cnst->base.type         = type_wchar_t_ptr;
4698                                 cnst->wide_string.value = wres;
4699                                 return cnst;
4700                         }
4701                 }
4702                 next_token();
4703         }
4704 }
4705
4706 /**
4707  * Parse an integer constant.
4708  */
4709 static expression_t *parse_int_const(void)
4710 {
4711         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
4712         cnst->base.source_position = *HERE;
4713         cnst->base.type            = token.datatype;
4714         cnst->conste.v.int_value   = token.v.intvalue;
4715
4716         next_token();
4717
4718         return cnst;
4719 }
4720
4721 /**
4722  * Parse a character constant.
4723  */
4724 static expression_t *parse_character_constant(void)
4725 {
4726         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
4727
4728         cnst->base.source_position = *HERE;
4729         cnst->base.type            = token.datatype;
4730         cnst->conste.v.character   = token.v.string;
4731
4732         if (cnst->conste.v.character.size != 1) {
4733                 if (warning.multichar && (c_mode & _GNUC)) {
4734                         /* TODO */
4735                         warningf(HERE, "multi-character character constant");
4736                 } else {
4737                         errorf(HERE, "more than 1 characters in character constant");
4738                 }
4739         }
4740         next_token();
4741
4742         return cnst;
4743 }
4744
4745 /**
4746  * Parse a wide character constant.
4747  */
4748 static expression_t *parse_wide_character_constant(void)
4749 {
4750         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
4751
4752         cnst->base.source_position    = *HERE;
4753         cnst->base.type               = token.datatype;
4754         cnst->conste.v.wide_character = token.v.wide_string;
4755
4756         if (cnst->conste.v.wide_character.size != 1) {
4757                 if (warning.multichar && (c_mode & _GNUC)) {
4758                         /* TODO */
4759                         warningf(HERE, "multi-character character constant");
4760                 } else {
4761                         errorf(HERE, "more than 1 characters in character constant");
4762                 }
4763         }
4764         next_token();
4765
4766         return cnst;
4767 }
4768
4769 /**
4770  * Parse a float constant.
4771  */
4772 static expression_t *parse_float_const(void)
4773 {
4774         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
4775         cnst->base.type            = token.datatype;
4776         cnst->conste.v.float_value = token.v.floatvalue;
4777
4778         next_token();
4779
4780         return cnst;
4781 }
4782
4783 static declaration_t *create_implicit_function(symbol_t *symbol,
4784                 const source_position_t *source_position)
4785 {
4786         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
4787         ntype->function.return_type            = type_int;
4788         ntype->function.unspecified_parameters = true;
4789
4790         type_t *type = typehash_insert(ntype);
4791         if(type != ntype) {
4792                 free_type(ntype);
4793         }
4794
4795         declaration_t *const declaration    = allocate_declaration_zero();
4796         declaration->storage_class          = STORAGE_CLASS_EXTERN;
4797         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
4798         declaration->type                   = type;
4799         declaration->symbol                 = symbol;
4800         declaration->source_position        = *source_position;
4801
4802         bool strict_prototypes_old = warning.strict_prototypes;
4803         warning.strict_prototypes  = false;
4804         record_declaration(declaration);
4805         warning.strict_prototypes = strict_prototypes_old;
4806
4807         return declaration;
4808 }
4809
4810 /**
4811  * Creates a return_type (func)(argument_type) function type if not
4812  * already exists.
4813  *
4814  * @param return_type    the return type
4815  * @param argument_type  the argument type
4816  */
4817 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
4818 {
4819         function_parameter_t *parameter
4820                 = obstack_alloc(type_obst, sizeof(parameter[0]));
4821         memset(parameter, 0, sizeof(parameter[0]));
4822         parameter->type = argument_type;
4823
4824         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
4825         type->function.return_type = return_type;
4826         type->function.parameters  = parameter;
4827
4828         type_t *result = typehash_insert(type);
4829         if(result != type) {
4830                 free_type(type);
4831         }
4832
4833         return result;
4834 }
4835
4836 static type_t *make_function_0_type(type_t *return_type)
4837 {
4838         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
4839         type->function.return_type = return_type;
4840         type->function.parameters  = NULL;
4841
4842         type_t *result = typehash_insert(type);
4843         if(result != type) {
4844                 free_type(type);
4845         }
4846
4847         return result;
4848 }
4849
4850 /**
4851  * Creates a function type for some function like builtins.
4852  *
4853  * @param symbol   the symbol describing the builtin
4854  */
4855 static type_t *get_builtin_symbol_type(symbol_t *symbol)
4856 {
4857         switch(symbol->ID) {
4858         case T___builtin_alloca:
4859                 return make_function_1_type(type_void_ptr, type_size_t);
4860         case T___builtin_huge_val:
4861                 return make_function_0_type(type_double);
4862         case T___builtin_nan:
4863                 return make_function_1_type(type_double, type_char_ptr);
4864         case T___builtin_nanf:
4865                 return make_function_1_type(type_float, type_char_ptr);
4866         case T___builtin_nand:
4867                 return make_function_1_type(type_long_double, type_char_ptr);
4868         case T___builtin_va_end:
4869                 return make_function_1_type(type_void, type_valist);
4870         default:
4871                 internal_errorf(HERE, "not implemented builtin symbol found");
4872         }
4873 }
4874
4875 /**
4876  * Performs automatic type cast as described in Â§ 6.3.2.1.
4877  *
4878  * @param orig_type  the original type
4879  */
4880 static type_t *automatic_type_conversion(type_t *orig_type)
4881 {
4882         type_t *type = skip_typeref(orig_type);
4883         if(is_type_array(type)) {
4884                 array_type_t *array_type   = &type->array;
4885                 type_t       *element_type = array_type->element_type;
4886                 unsigned      qualifiers   = array_type->base.qualifiers;
4887
4888                 return make_pointer_type(element_type, qualifiers);
4889         }
4890
4891         if(is_type_function(type)) {
4892                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
4893         }
4894
4895         return orig_type;
4896 }
4897
4898 /**
4899  * reverts the automatic casts of array to pointer types and function
4900  * to function-pointer types as defined Â§ 6.3.2.1
4901  */
4902 type_t *revert_automatic_type_conversion(const expression_t *expression)
4903 {
4904         switch (expression->kind) {
4905                 case EXPR_REFERENCE: return expression->reference.declaration->type;
4906                 case EXPR_SELECT:    return expression->select.compound_entry->type;
4907
4908                 case EXPR_UNARY_DEREFERENCE: {
4909                         const expression_t *const value = expression->unary.value;
4910                         type_t             *const type  = skip_typeref(value->base.type);
4911                         assert(is_type_pointer(type));
4912                         return type->pointer.points_to;
4913                 }
4914
4915                 case EXPR_BUILTIN_SYMBOL:
4916                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
4917
4918                 case EXPR_ARRAY_ACCESS: {
4919                         const expression_t *array_ref = expression->array_access.array_ref;
4920                         type_t             *type_left = skip_typeref(array_ref->base.type);
4921                         if (!is_type_valid(type_left))
4922                                 return type_left;
4923                         assert(is_type_pointer(type_left));
4924                         return type_left->pointer.points_to;
4925                 }
4926
4927                 case EXPR_STRING_LITERAL: {
4928                         size_t size = expression->string.value.size;
4929                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
4930                 }
4931
4932                 case EXPR_WIDE_STRING_LITERAL: {
4933                         size_t size = expression->wide_string.value.size;
4934                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
4935                 }
4936
4937                 case EXPR_COMPOUND_LITERAL:
4938                         return expression->compound_literal.type;
4939
4940                 default: break;
4941         }
4942
4943         return expression->base.type;
4944 }
4945
4946 static expression_t *parse_reference(void)
4947 {
4948         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
4949
4950         reference_expression_t *ref = &expression->reference;
4951         symbol_t *const symbol = token.v.symbol;
4952
4953         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
4954
4955         source_position_t source_position = token.source_position;
4956         next_token();
4957
4958         if(declaration == NULL) {
4959                 if (! strict_mode && token.type == '(') {
4960                         /* an implicitly defined function */
4961                         if (warning.implicit_function_declaration) {
4962                                 warningf(HERE, "implicit declaration of function '%Y'",
4963                                         symbol);
4964                         }
4965
4966                         declaration = create_implicit_function(symbol,
4967                                                                &source_position);
4968                 } else {
4969                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
4970                         return create_invalid_expression();
4971                 }
4972         }
4973
4974         type_t *type         = declaration->type;
4975
4976         /* we always do the auto-type conversions; the & and sizeof parser contains
4977          * code to revert this! */
4978         type = automatic_type_conversion(type);
4979
4980         ref->declaration = declaration;
4981         ref->base.type   = type;
4982
4983         /* this declaration is used */
4984         declaration->used = true;
4985
4986         /* check for deprecated functions */
4987         if(declaration->deprecated != 0) {
4988                 const char *prefix = "";
4989                 if (is_type_function(declaration->type))
4990                         prefix = "function ";
4991
4992                 if (declaration->deprecated_string != NULL) {
4993                         warningf(&source_position,
4994                                 "%s'%Y' was declared 'deprecated(\"%s\")'", prefix, declaration->symbol,
4995                                 declaration->deprecated_string);
4996                 } else {
4997                         warningf(&source_position,
4998                                 "%s'%Y' was declared 'deprecated'", prefix, declaration->symbol);
4999                 }
5000         }
5001
5002         return expression;
5003 }
5004
5005 static void check_cast_allowed(expression_t *expression, type_t *dest_type)
5006 {
5007         (void) expression;
5008         (void) dest_type;
5009         /* TODO check if explicit cast is allowed and issue warnings/errors */
5010 }
5011
5012 static expression_t *parse_compound_literal(type_t *type)
5013 {
5014         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
5015
5016         parse_initializer_env_t env;
5017         env.type             = type;
5018         env.declaration      = NULL;
5019         env.must_be_constant = false;
5020         initializer_t *initializer = parse_initializer(&env);
5021         type = env.type;
5022
5023         expression->compound_literal.initializer = initializer;
5024         expression->compound_literal.type        = type;
5025         expression->base.type                    = automatic_type_conversion(type);
5026
5027         return expression;
5028 }
5029
5030 /**
5031  * Parse a cast expression.
5032  */
5033 static expression_t *parse_cast(void)
5034 {
5035         source_position_t source_position = token.source_position;
5036
5037         type_t *type  = parse_typename();
5038
5039         /* matching add_anchor_token() is at call site */
5040         rem_anchor_token(')');
5041         expect(')');
5042
5043         if(token.type == '{') {
5044                 return parse_compound_literal(type);
5045         }
5046
5047         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
5048         cast->base.source_position = source_position;
5049
5050         expression_t *value = parse_sub_expression(20);
5051
5052         check_cast_allowed(value, type);
5053
5054         cast->base.type   = type;
5055         cast->unary.value = value;
5056
5057         return cast;
5058 end_error:
5059         return create_invalid_expression();
5060 }
5061
5062 /**
5063  * Parse a statement expression.
5064  */
5065 static expression_t *parse_statement_expression(void)
5066 {
5067         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
5068
5069         statement_t *statement           = parse_compound_statement(true);
5070         expression->statement.statement  = statement;
5071         expression->base.source_position = statement->base.source_position;
5072
5073         /* find last statement and use its type */
5074         type_t *type = type_void;
5075         const statement_t *stmt = statement->compound.statements;
5076         if (stmt != NULL) {
5077                 while (stmt->base.next != NULL)
5078                         stmt = stmt->base.next;
5079
5080                 if (stmt->kind == STATEMENT_EXPRESSION) {
5081                         type = stmt->expression.expression->base.type;
5082                 }
5083         } else {
5084                 warningf(&expression->base.source_position, "empty statement expression ({})");
5085         }
5086         expression->base.type = type;
5087
5088         expect(')');
5089
5090         return expression;
5091 end_error:
5092         return create_invalid_expression();
5093 }
5094
5095 /**
5096  * Parse a braced expression.
5097  */
5098 static expression_t *parse_brace_expression(void)
5099 {
5100         eat('(');
5101         add_anchor_token(')');
5102
5103         switch(token.type) {
5104         case '{':
5105                 /* gcc extension: a statement expression */
5106                 return parse_statement_expression();
5107
5108         TYPE_QUALIFIERS
5109         TYPE_SPECIFIERS
5110                 return parse_cast();
5111         case T_IDENTIFIER:
5112                 if(is_typedef_symbol(token.v.symbol)) {
5113                         return parse_cast();
5114                 }
5115         }
5116
5117         expression_t *result = parse_expression();
5118         rem_anchor_token(')');
5119         expect(')');
5120
5121         return result;
5122 end_error:
5123         return create_invalid_expression();
5124 }
5125
5126 static expression_t *parse_function_keyword(void)
5127 {
5128         next_token();
5129         /* TODO */
5130
5131         if (current_function == NULL) {
5132                 errorf(HERE, "'__func__' used outside of a function");
5133         }
5134
5135         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5136         expression->base.type     = type_char_ptr;
5137         expression->funcname.kind = FUNCNAME_FUNCTION;
5138
5139         return expression;
5140 }
5141
5142 static expression_t *parse_pretty_function_keyword(void)
5143 {
5144         eat(T___PRETTY_FUNCTION__);
5145
5146         if (current_function == NULL) {
5147                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
5148         }
5149
5150         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5151         expression->base.type     = type_char_ptr;
5152         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
5153
5154         return expression;
5155 }
5156
5157 static expression_t *parse_funcsig_keyword(void)
5158 {
5159         eat(T___FUNCSIG__);
5160
5161         if (current_function == NULL) {
5162                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
5163         }
5164
5165         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5166         expression->base.type     = type_char_ptr;
5167         expression->funcname.kind = FUNCNAME_FUNCSIG;
5168
5169         return expression;
5170 }
5171
5172 static expression_t *parse_funcdname_keyword(void)
5173 {
5174         eat(T___FUNCDNAME__);
5175
5176         if (current_function == NULL) {
5177                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
5178         }
5179
5180         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5181         expression->base.type     = type_char_ptr;
5182         expression->funcname.kind = FUNCNAME_FUNCDNAME;
5183
5184         return expression;
5185 }
5186
5187 static designator_t *parse_designator(void)
5188 {
5189         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
5190         result->source_position = *HERE;
5191
5192         if(token.type != T_IDENTIFIER) {
5193                 parse_error_expected("while parsing member designator",
5194                                      T_IDENTIFIER, NULL);
5195                 return NULL;
5196         }
5197         result->symbol = token.v.symbol;
5198         next_token();
5199
5200         designator_t *last_designator = result;
5201         while(true) {
5202                 if(token.type == '.') {
5203                         next_token();
5204                         if(token.type != T_IDENTIFIER) {
5205                                 parse_error_expected("while parsing member designator",
5206                                                      T_IDENTIFIER, NULL);
5207                                 return NULL;
5208                         }
5209                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
5210                         designator->source_position = *HERE;
5211                         designator->symbol          = token.v.symbol;
5212                         next_token();
5213
5214                         last_designator->next = designator;
5215                         last_designator       = designator;
5216                         continue;
5217                 }
5218                 if(token.type == '[') {
5219                         next_token();
5220                         add_anchor_token(']');
5221                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
5222                         designator->source_position = *HERE;
5223                         designator->array_index     = parse_expression();
5224                         rem_anchor_token(']');
5225                         expect(']');
5226                         if(designator->array_index == NULL) {
5227                                 return NULL;
5228                         }
5229
5230                         last_designator->next = designator;
5231                         last_designator       = designator;
5232                         continue;
5233                 }
5234                 break;
5235         }
5236
5237         return result;
5238 end_error:
5239         return NULL;
5240 }
5241
5242 /**
5243  * Parse the __builtin_offsetof() expression.
5244  */
5245 static expression_t *parse_offsetof(void)
5246 {
5247         eat(T___builtin_offsetof);
5248
5249         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
5250         expression->base.type    = type_size_t;
5251
5252         expect('(');
5253         add_anchor_token(',');
5254         type_t *type = parse_typename();
5255         rem_anchor_token(',');
5256         expect(',');
5257         add_anchor_token(')');
5258         designator_t *designator = parse_designator();
5259         rem_anchor_token(')');
5260         expect(')');
5261
5262         expression->offsetofe.type       = type;
5263         expression->offsetofe.designator = designator;
5264
5265         type_path_t path;
5266         memset(&path, 0, sizeof(path));
5267         path.top_type = type;
5268         path.path     = NEW_ARR_F(type_path_entry_t, 0);
5269
5270         descend_into_subtype(&path);
5271
5272         if(!walk_designator(&path, designator, true)) {
5273                 return create_invalid_expression();
5274         }
5275
5276         DEL_ARR_F(path.path);
5277
5278         return expression;
5279 end_error:
5280         return create_invalid_expression();
5281 }
5282
5283 /**
5284  * Parses a _builtin_va_start() expression.
5285  */
5286 static expression_t *parse_va_start(void)
5287 {
5288         eat(T___builtin_va_start);
5289
5290         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
5291
5292         expect('(');
5293         add_anchor_token(',');
5294         expression->va_starte.ap = parse_assignment_expression();
5295         rem_anchor_token(',');
5296         expect(',');
5297         expression_t *const expr = parse_assignment_expression();
5298         if (expr->kind == EXPR_REFERENCE) {
5299                 declaration_t *const decl = expr->reference.declaration;
5300                 if (decl == NULL)
5301                         return create_invalid_expression();
5302                 if (decl->parent_scope == &current_function->scope &&
5303                     decl->next == NULL) {
5304                         expression->va_starte.parameter = decl;
5305                         expect(')');
5306                         return expression;
5307                 }
5308         }
5309         errorf(&expr->base.source_position,
5310                "second argument of 'va_start' must be last parameter of the current function");
5311 end_error:
5312         return create_invalid_expression();
5313 }
5314
5315 /**
5316  * Parses a _builtin_va_arg() expression.
5317  */
5318 static expression_t *parse_va_arg(void)
5319 {
5320         eat(T___builtin_va_arg);
5321
5322         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
5323
5324         expect('(');
5325         expression->va_arge.ap = parse_assignment_expression();
5326         expect(',');
5327         expression->base.type = parse_typename();
5328         expect(')');
5329
5330         return expression;
5331 end_error:
5332         return create_invalid_expression();
5333 }
5334
5335 static expression_t *parse_builtin_symbol(void)
5336 {
5337         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
5338
5339         symbol_t *symbol = token.v.symbol;
5340
5341         expression->builtin_symbol.symbol = symbol;
5342         next_token();
5343
5344         type_t *type = get_builtin_symbol_type(symbol);
5345         type = automatic_type_conversion(type);
5346
5347         expression->base.type = type;
5348         return expression;
5349 }
5350
5351 /**
5352  * Parses a __builtin_constant() expression.
5353  */
5354 static expression_t *parse_builtin_constant(void)
5355 {
5356         eat(T___builtin_constant_p);
5357
5358         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
5359
5360         expect('(');
5361         add_anchor_token(')');
5362         expression->builtin_constant.value = parse_assignment_expression();
5363         rem_anchor_token(')');
5364         expect(')');
5365         expression->base.type = type_int;
5366
5367         return expression;
5368 end_error:
5369         return create_invalid_expression();
5370 }
5371
5372 /**
5373  * Parses a __builtin_prefetch() expression.
5374  */
5375 static expression_t *parse_builtin_prefetch(void)
5376 {
5377         eat(T___builtin_prefetch);
5378
5379         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
5380
5381         expect('(');
5382         add_anchor_token(')');
5383         expression->builtin_prefetch.adr = parse_assignment_expression();
5384         if (token.type == ',') {
5385                 next_token();
5386                 expression->builtin_prefetch.rw = parse_assignment_expression();
5387         }
5388         if (token.type == ',') {
5389                 next_token();
5390                 expression->builtin_prefetch.locality = parse_assignment_expression();
5391         }
5392         rem_anchor_token(')');
5393         expect(')');
5394         expression->base.type = type_void;
5395
5396         return expression;
5397 end_error:
5398         return create_invalid_expression();
5399 }
5400
5401 /**
5402  * Parses a __builtin_is_*() compare expression.
5403  */
5404 static expression_t *parse_compare_builtin(void)
5405 {
5406         expression_t *expression;
5407
5408         switch(token.type) {
5409         case T___builtin_isgreater:
5410                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
5411                 break;
5412         case T___builtin_isgreaterequal:
5413                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
5414                 break;
5415         case T___builtin_isless:
5416                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
5417                 break;
5418         case T___builtin_islessequal:
5419                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
5420                 break;
5421         case T___builtin_islessgreater:
5422                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
5423                 break;
5424         case T___builtin_isunordered:
5425                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
5426                 break;
5427         default:
5428                 internal_errorf(HERE, "invalid compare builtin found");
5429                 break;
5430         }
5431         expression->base.source_position = *HERE;
5432         next_token();
5433
5434         expect('(');
5435         expression->binary.left = parse_assignment_expression();
5436         expect(',');
5437         expression->binary.right = parse_assignment_expression();
5438         expect(')');
5439
5440         type_t *const orig_type_left  = expression->binary.left->base.type;
5441         type_t *const orig_type_right = expression->binary.right->base.type;
5442
5443         type_t *const type_left  = skip_typeref(orig_type_left);
5444         type_t *const type_right = skip_typeref(orig_type_right);
5445         if(!is_type_float(type_left) && !is_type_float(type_right)) {
5446                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
5447                         type_error_incompatible("invalid operands in comparison",
5448                                 &expression->base.source_position, orig_type_left, orig_type_right);
5449                 }
5450         } else {
5451                 semantic_comparison(&expression->binary);
5452         }
5453
5454         return expression;
5455 end_error:
5456         return create_invalid_expression();
5457 }
5458
5459 /**
5460  * Parses a __builtin_expect() expression.
5461  */
5462 static expression_t *parse_builtin_expect(void)
5463 {
5464         eat(T___builtin_expect);
5465
5466         expression_t *expression
5467                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
5468
5469         expect('(');
5470         expression->binary.left = parse_assignment_expression();
5471         expect(',');
5472         expression->binary.right = parse_constant_expression();
5473         expect(')');
5474
5475         expression->base.type = expression->binary.left->base.type;
5476
5477         return expression;
5478 end_error:
5479         return create_invalid_expression();
5480 }
5481
5482 /**
5483  * Parses a MS assume() expression.
5484  */
5485 static expression_t *parse_assume(void) {
5486         eat(T__assume);
5487
5488         expression_t *expression
5489                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
5490
5491         expect('(');
5492         add_anchor_token(')');
5493         expression->unary.value = parse_assignment_expression();
5494         rem_anchor_token(')');
5495         expect(')');
5496
5497         expression->base.type = type_void;
5498         return expression;
5499 end_error:
5500         return create_invalid_expression();
5501 }
5502
5503 /**
5504  * Parse a microsoft __noop expression.
5505  */
5506 static expression_t *parse_noop_expression(void) {
5507         source_position_t source_position = *HERE;
5508         eat(T___noop);
5509
5510         if (token.type == '(') {
5511                 /* parse arguments */
5512                 eat('(');
5513                 add_anchor_token(')');
5514                 add_anchor_token(',');
5515
5516                 if(token.type != ')') {
5517                         while(true) {
5518                                 (void)parse_assignment_expression();
5519                                 if(token.type != ',')
5520                                         break;
5521                                 next_token();
5522                         }
5523                 }
5524         }
5525         rem_anchor_token(',');
5526         rem_anchor_token(')');
5527         expect(')');
5528
5529         /* the result is a (int)0 */
5530         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5531         cnst->base.source_position = source_position;
5532         cnst->base.type            = type_int;
5533         cnst->conste.v.int_value   = 0;
5534         cnst->conste.is_ms_noop    = true;
5535
5536         return cnst;
5537
5538 end_error:
5539         return create_invalid_expression();
5540 }
5541
5542 /**
5543  * Parses a primary expression.
5544  */
5545 static expression_t *parse_primary_expression(void)
5546 {
5547         switch (token.type) {
5548                 case T_INTEGER:                  return parse_int_const();
5549                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
5550                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
5551                 case T_FLOATINGPOINT:            return parse_float_const();
5552                 case T_STRING_LITERAL:
5553                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
5554                 case T_IDENTIFIER:               return parse_reference();
5555                 case T___FUNCTION__:
5556                 case T___func__:                 return parse_function_keyword();
5557                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
5558                 case T___FUNCSIG__:              return parse_funcsig_keyword();
5559                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
5560                 case T___builtin_offsetof:       return parse_offsetof();
5561                 case T___builtin_va_start:       return parse_va_start();
5562                 case T___builtin_va_arg:         return parse_va_arg();
5563                 case T___builtin_expect:         return parse_builtin_expect();
5564                 case T___builtin_alloca:
5565                 case T___builtin_nan:
5566                 case T___builtin_nand:
5567                 case T___builtin_nanf:
5568                 case T___builtin_huge_val:
5569                 case T___builtin_va_end:         return parse_builtin_symbol();
5570                 case T___builtin_isgreater:
5571                 case T___builtin_isgreaterequal:
5572                 case T___builtin_isless:
5573                 case T___builtin_islessequal:
5574                 case T___builtin_islessgreater:
5575                 case T___builtin_isunordered:    return parse_compare_builtin();
5576                 case T___builtin_constant_p:     return parse_builtin_constant();
5577                 case T___builtin_prefetch:       return parse_builtin_prefetch();
5578                 case T__assume:                  return parse_assume();
5579
5580                 case '(':                        return parse_brace_expression();
5581                 case T___noop:                   return parse_noop_expression();
5582         }
5583
5584         errorf(HERE, "unexpected token %K, expected an expression", &token);
5585         return create_invalid_expression();
5586 }
5587
5588 /**
5589  * Check if the expression has the character type and issue a warning then.
5590  */
5591 static void check_for_char_index_type(const expression_t *expression) {
5592         type_t       *const type      = expression->base.type;
5593         const type_t *const base_type = skip_typeref(type);
5594
5595         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
5596                         warning.char_subscripts) {
5597                 warningf(&expression->base.source_position,
5598                          "array subscript has type '%T'", type);
5599         }
5600 }
5601
5602 static expression_t *parse_array_expression(unsigned precedence,
5603                                             expression_t *left)
5604 {
5605         (void) precedence;
5606
5607         eat('[');
5608         add_anchor_token(']');
5609
5610         expression_t *inside = parse_expression();
5611
5612         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
5613
5614         array_access_expression_t *array_access = &expression->array_access;
5615
5616         type_t *const orig_type_left   = left->base.type;
5617         type_t *const orig_type_inside = inside->base.type;
5618
5619         type_t *const type_left   = skip_typeref(orig_type_left);
5620         type_t *const type_inside = skip_typeref(orig_type_inside);
5621
5622         type_t *return_type;
5623         if (is_type_pointer(type_left)) {
5624                 return_type             = type_left->pointer.points_to;
5625                 array_access->array_ref = left;
5626                 array_access->index     = inside;
5627                 check_for_char_index_type(inside);
5628         } else if (is_type_pointer(type_inside)) {
5629                 return_type             = type_inside->pointer.points_to;
5630                 array_access->array_ref = inside;
5631                 array_access->index     = left;
5632                 array_access->flipped   = true;
5633                 check_for_char_index_type(left);
5634         } else {
5635                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
5636                         errorf(HERE,
5637                                 "array access on object with non-pointer types '%T', '%T'",
5638                                 orig_type_left, orig_type_inside);
5639                 }
5640                 return_type             = type_error_type;
5641                 array_access->array_ref = create_invalid_expression();
5642         }
5643
5644         rem_anchor_token(']');
5645         if(token.type != ']') {
5646                 parse_error_expected("Problem while parsing array access", ']', NULL);
5647                 return expression;
5648         }
5649         next_token();
5650
5651         return_type           = automatic_type_conversion(return_type);
5652         expression->base.type = return_type;
5653
5654         return expression;
5655 }
5656
5657 static expression_t *parse_typeprop(expression_kind_t const kind,
5658                                     source_position_t const pos,
5659                                     unsigned const precedence)
5660 {
5661         expression_t *tp_expression = allocate_expression_zero(kind);
5662         tp_expression->base.type            = type_size_t;
5663         tp_expression->base.source_position = pos;
5664
5665         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
5666
5667         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
5668                 next_token();
5669                 add_anchor_token(')');
5670                 type_t* const orig_type = parse_typename();
5671                 tp_expression->typeprop.type = orig_type;
5672
5673                 type_t const* const type = skip_typeref(orig_type);
5674                 char const* const wrong_type =
5675                         is_type_incomplete(type)    ? "incomplete"          :
5676                         type->kind == TYPE_FUNCTION ? "function designator" :
5677                         type->kind == TYPE_BITFIELD ? "bitfield"            :
5678                         NULL;
5679                 if (wrong_type != NULL) {
5680                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
5681                                what, wrong_type, type);
5682                 }
5683
5684                 rem_anchor_token(')');
5685                 expect(')');
5686         } else {
5687                 expression_t *expression = parse_sub_expression(precedence);
5688
5689                 type_t* const orig_type = revert_automatic_type_conversion(expression);
5690                 expression->base.type = orig_type;
5691
5692                 type_t const* const type = skip_typeref(orig_type);
5693                 char const* const wrong_type =
5694                         is_type_incomplete(type)    ? "incomplete"          :
5695                         type->kind == TYPE_FUNCTION ? "function designator" :
5696                         type->kind == TYPE_BITFIELD ? "bitfield"            :
5697                         NULL;
5698                 if (wrong_type != NULL) {
5699                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
5700                 }
5701
5702                 tp_expression->typeprop.type          = expression->base.type;
5703                 tp_expression->typeprop.tp_expression = expression;
5704         }
5705
5706         return tp_expression;
5707 end_error:
5708         return create_invalid_expression();
5709 }
5710
5711 static expression_t *parse_sizeof(unsigned precedence)
5712 {
5713         source_position_t pos = *HERE;
5714         eat(T_sizeof);
5715         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
5716 }
5717
5718 static expression_t *parse_alignof(unsigned precedence)
5719 {
5720         source_position_t pos = *HERE;
5721         eat(T___alignof__);
5722         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
5723 }
5724
5725 static expression_t *parse_select_expression(unsigned precedence,
5726                                              expression_t *compound)
5727 {
5728         (void) precedence;
5729         assert(token.type == '.' || token.type == T_MINUSGREATER);
5730
5731         bool is_pointer = (token.type == T_MINUSGREATER);
5732         next_token();
5733
5734         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
5735         select->select.compound = compound;
5736
5737         if (token.type != T_IDENTIFIER) {
5738                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
5739                 return select;
5740         }
5741         symbol_t *symbol      = token.v.symbol;
5742         select->select.symbol = symbol;
5743         next_token();
5744
5745         type_t *const orig_type = compound->base.type;
5746         type_t *const type      = skip_typeref(orig_type);
5747
5748         type_t *type_left = type;
5749         if (is_pointer) {
5750                 if (!is_type_pointer(type)) {
5751                         if (is_type_valid(type)) {
5752                                 errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
5753                         }
5754                         return create_invalid_expression();
5755                 }
5756                 type_left = type->pointer.points_to;
5757         }
5758         type_left = skip_typeref(type_left);
5759
5760         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
5761             type_left->kind != TYPE_COMPOUND_UNION) {
5762                 if (is_type_valid(type_left)) {
5763                         errorf(HERE, "request for member '%Y' in something not a struct or "
5764                                "union, but '%T'", symbol, type_left);
5765                 }
5766                 return create_invalid_expression();
5767         }
5768
5769         declaration_t *const declaration = type_left->compound.declaration;
5770
5771         if (!declaration->init.complete) {
5772                 errorf(HERE, "request for member '%Y' of incomplete type '%T'",
5773                        symbol, type_left);
5774                 return create_invalid_expression();
5775         }
5776
5777         declaration_t *iter = find_compound_entry(declaration, symbol);
5778         if (iter == NULL) {
5779                 errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
5780                 return create_invalid_expression();
5781         }
5782
5783         /* we always do the auto-type conversions; the & and sizeof parser contains
5784          * code to revert this! */
5785         type_t *expression_type = automatic_type_conversion(iter->type);
5786
5787         select->select.compound_entry = iter;
5788         select->base.type             = expression_type;
5789
5790         type_t *skipped = skip_typeref(iter->type);
5791         if (skipped->kind == TYPE_BITFIELD) {
5792                 select->base.type = skipped->bitfield.base_type;
5793         }
5794
5795         return select;
5796 }
5797
5798 /**
5799  * Parse a call expression, ie. expression '( ... )'.
5800  *
5801  * @param expression  the function address
5802  */
5803 static expression_t *parse_call_expression(unsigned precedence,
5804                                            expression_t *expression)
5805 {
5806         (void) precedence;
5807         expression_t *result = allocate_expression_zero(EXPR_CALL);
5808         result->base.source_position = expression->base.source_position;
5809
5810         call_expression_t *call = &result->call;
5811         call->function          = expression;
5812
5813         type_t *const orig_type = expression->base.type;
5814         type_t *const type      = skip_typeref(orig_type);
5815
5816         function_type_t *function_type = NULL;
5817         if (is_type_pointer(type)) {
5818                 type_t *const to_type = skip_typeref(type->pointer.points_to);
5819
5820                 if (is_type_function(to_type)) {
5821                         function_type   = &to_type->function;
5822                         call->base.type = function_type->return_type;
5823                 }
5824         }
5825
5826         if (function_type == NULL && is_type_valid(type)) {
5827                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
5828         }
5829
5830         /* parse arguments */
5831         eat('(');
5832         add_anchor_token(')');
5833         add_anchor_token(',');
5834
5835         if(token.type != ')') {
5836                 call_argument_t *last_argument = NULL;
5837
5838                 while(true) {
5839                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
5840
5841                         argument->expression = parse_assignment_expression();
5842                         if(last_argument == NULL) {
5843                                 call->arguments = argument;
5844                         } else {
5845                                 last_argument->next = argument;
5846                         }
5847                         last_argument = argument;
5848
5849                         if(token.type != ',')
5850                                 break;
5851                         next_token();
5852                 }
5853         }
5854         rem_anchor_token(',');
5855         rem_anchor_token(')');
5856         expect(')');
5857
5858         if(function_type == NULL)
5859                 return result;
5860
5861         function_parameter_t *parameter = function_type->parameters;
5862         call_argument_t      *argument  = call->arguments;
5863         if (!function_type->unspecified_parameters) {
5864                 for( ; parameter != NULL && argument != NULL;
5865                                 parameter = parameter->next, argument = argument->next) {
5866                         type_t *expected_type = parameter->type;
5867                         /* TODO report scope in error messages */
5868                         expression_t *const arg_expr = argument->expression;
5869                         type_t       *const res_type = semantic_assign(expected_type, arg_expr,
5870                                                                                                                    "function call",
5871                                                                                                                    &arg_expr->base.source_position);
5872                         if (res_type == NULL) {
5873                                 /* TODO improve error message */
5874                                 errorf(&arg_expr->base.source_position,
5875                                         "Cannot call function with argument '%E' of type '%T' where type '%T' is expected",
5876                                         arg_expr, arg_expr->base.type, expected_type);
5877                         } else {
5878                                 argument->expression = create_implicit_cast(argument->expression, expected_type);
5879                         }
5880                 }
5881
5882                 if (parameter != NULL) {
5883                         errorf(HERE, "too few arguments to function '%E'", expression);
5884                 } else if (argument != NULL && !function_type->variadic) {
5885                         errorf(HERE, "too many arguments to function '%E'", expression);
5886                 }
5887         }
5888
5889         /* do default promotion */
5890         for( ; argument != NULL; argument = argument->next) {
5891                 type_t *type = argument->expression->base.type;
5892
5893                 type = get_default_promoted_type(type);
5894
5895                 argument->expression
5896                         = create_implicit_cast(argument->expression, type);
5897         }
5898
5899         check_format(&result->call);
5900
5901         return result;
5902 end_error:
5903         return create_invalid_expression();
5904 }
5905
5906 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
5907
5908 static bool same_compound_type(const type_t *type1, const type_t *type2)
5909 {
5910         return
5911                 is_type_compound(type1) &&
5912                 type1->kind == type2->kind &&
5913                 type1->compound.declaration == type2->compound.declaration;
5914 }
5915
5916 /**
5917  * Parse a conditional expression, ie. 'expression ? ... : ...'.
5918  *
5919  * @param expression  the conditional expression
5920  */
5921 static expression_t *parse_conditional_expression(unsigned precedence,
5922                                                   expression_t *expression)
5923 {
5924         eat('?');
5925         add_anchor_token(':');
5926
5927         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
5928
5929         conditional_expression_t *conditional = &result->conditional;
5930         conditional->condition = expression;
5931
5932         /* 6.5.15.2 */
5933         type_t *const condition_type_orig = expression->base.type;
5934         type_t *const condition_type      = skip_typeref(condition_type_orig);
5935         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
5936                 type_error("expected a scalar type in conditional condition",
5937                            &expression->base.source_position, condition_type_orig);
5938         }
5939
5940         expression_t *true_expression = parse_expression();
5941         rem_anchor_token(':');
5942         expect(':');
5943         expression_t *false_expression = parse_sub_expression(precedence);
5944
5945         type_t *const orig_true_type  = true_expression->base.type;
5946         type_t *const orig_false_type = false_expression->base.type;
5947         type_t *const true_type       = skip_typeref(orig_true_type);
5948         type_t *const false_type      = skip_typeref(orig_false_type);
5949
5950         /* 6.5.15.3 */
5951         type_t *result_type;
5952         if(is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
5953                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
5954                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
5955                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
5956                         warningf(&expression->base.source_position,
5957                                         "ISO C forbids conditional expression with only one void side");
5958                 }
5959                 result_type = type_void;
5960         } else if (is_type_arithmetic(true_type)
5961                    && is_type_arithmetic(false_type)) {
5962                 result_type = semantic_arithmetic(true_type, false_type);
5963
5964                 true_expression  = create_implicit_cast(true_expression, result_type);
5965                 false_expression = create_implicit_cast(false_expression, result_type);
5966
5967                 conditional->true_expression  = true_expression;
5968                 conditional->false_expression = false_expression;
5969                 conditional->base.type        = result_type;
5970         } else if (same_compound_type(true_type, false_type)) {
5971                 /* just take 1 of the 2 types */
5972                 result_type = true_type;
5973         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
5974                 type_t *pointer_type;
5975                 type_t *other_type;
5976                 expression_t *other_expression;
5977                 if (is_type_pointer(true_type)) {
5978                         pointer_type     = true_type;
5979                         other_type       = false_type;
5980                         other_expression = false_expression;
5981                 } else {
5982                         pointer_type     = false_type;
5983                         other_type       = true_type;
5984                         other_expression = true_expression;
5985                 }
5986
5987                 if(is_type_pointer(other_type)) {
5988                         if(!pointers_compatible(true_type, false_type)) {
5989                                 warningf(&expression->base.source_position,
5990                                                 "pointer types '%T' and '%T' in conditional expression are incompatible", true_type, false_type);
5991                         }
5992                         result_type = true_type;
5993                 } else if(is_null_pointer_constant(other_expression)) {
5994                         result_type = pointer_type;
5995                 } else if(is_type_integer(other_type)) {
5996                         warningf(&expression->base.source_position,
5997                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
5998                         result_type = pointer_type;
5999                 } else {
6000                         type_error_incompatible("while parsing conditional",
6001                                         &expression->base.source_position, true_type, false_type);
6002                         result_type = type_error_type;
6003                 }
6004         } else {
6005                 /* TODO: one pointer to void*, other some pointer */
6006
6007                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
6008                         type_error_incompatible("while parsing conditional",
6009                                                 &expression->base.source_position, true_type,
6010                                                 false_type);
6011                 }
6012                 result_type = type_error_type;
6013         }
6014
6015         conditional->true_expression
6016                 = create_implicit_cast(true_expression, result_type);
6017         conditional->false_expression
6018                 = create_implicit_cast(false_expression, result_type);
6019         conditional->base.type = result_type;
6020         return result;
6021 end_error:
6022         return create_invalid_expression();
6023 }
6024
6025 /**
6026  * Parse an extension expression.
6027  */
6028 static expression_t *parse_extension(unsigned precedence)
6029 {
6030         eat(T___extension__);
6031
6032         /* TODO enable extensions */
6033         expression_t *expression = parse_sub_expression(precedence);
6034         /* TODO disable extensions */
6035         return expression;
6036 }
6037
6038 /**
6039  * Parse a __builtin_classify_type() expression.
6040  */
6041 static expression_t *parse_builtin_classify_type(const unsigned precedence)
6042 {
6043         eat(T___builtin_classify_type);
6044
6045         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
6046         result->base.type    = type_int;
6047
6048         expect('(');
6049         add_anchor_token(')');
6050         expression_t *expression = parse_sub_expression(precedence);
6051         rem_anchor_token(')');
6052         expect(')');
6053         result->classify_type.type_expression = expression;
6054
6055         return result;
6056 end_error:
6057         return create_invalid_expression();
6058 }
6059
6060 static void semantic_incdec(unary_expression_t *expression)
6061 {
6062         type_t *const orig_type = expression->value->base.type;
6063         type_t *const type      = skip_typeref(orig_type);
6064         /* TODO !is_type_real && !is_type_pointer */
6065         if(!is_type_arithmetic(type) && type->kind != TYPE_POINTER) {
6066                 if (is_type_valid(type)) {
6067                         /* TODO: improve error message */
6068                         errorf(HERE, "operation needs an arithmetic or pointer type");
6069                 }
6070                 return;
6071         }
6072
6073         expression->base.type = orig_type;
6074 }
6075
6076 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
6077 {
6078         type_t *const orig_type = expression->value->base.type;
6079         type_t *const type      = skip_typeref(orig_type);
6080         if(!is_type_arithmetic(type)) {
6081                 if (is_type_valid(type)) {
6082                         /* TODO: improve error message */
6083                         errorf(HERE, "operation needs an arithmetic type");
6084                 }
6085                 return;
6086         }
6087
6088         expression->base.type = orig_type;
6089 }
6090
6091 static void semantic_unexpr_scalar(unary_expression_t *expression)
6092 {
6093         type_t *const orig_type = expression->value->base.type;
6094         type_t *const type      = skip_typeref(orig_type);
6095         if (!is_type_scalar(type)) {
6096                 if (is_type_valid(type)) {
6097                         errorf(HERE, "operand of ! must be of scalar type");
6098                 }
6099                 return;
6100         }
6101
6102         expression->base.type = orig_type;
6103 }
6104
6105 static void semantic_unexpr_integer(unary_expression_t *expression)
6106 {
6107         type_t *const orig_type = expression->value->base.type;
6108         type_t *const type      = skip_typeref(orig_type);
6109         if (!is_type_integer(type)) {
6110                 if (is_type_valid(type)) {
6111                         errorf(HERE, "operand of ~ must be of integer type");
6112                 }
6113                 return;
6114         }
6115
6116         expression->base.type = orig_type;
6117 }
6118
6119 static void semantic_dereference(unary_expression_t *expression)
6120 {
6121         type_t *const orig_type = expression->value->base.type;
6122         type_t *const type      = skip_typeref(orig_type);
6123         if(!is_type_pointer(type)) {
6124                 if (is_type_valid(type)) {
6125                         errorf(HERE, "Unary '*' needs pointer or arrray type, but type '%T' given", orig_type);
6126                 }
6127                 return;
6128         }
6129
6130         type_t *result_type   = type->pointer.points_to;
6131         result_type           = automatic_type_conversion(result_type);
6132         expression->base.type = result_type;
6133 }
6134
6135 /**
6136  * Check the semantic of the address taken expression.
6137  */
6138 static void semantic_take_addr(unary_expression_t *expression)
6139 {
6140         expression_t *value = expression->value;
6141         value->base.type    = revert_automatic_type_conversion(value);
6142
6143         type_t *orig_type = value->base.type;
6144         if(!is_type_valid(orig_type))
6145                 return;
6146
6147         if(value->kind == EXPR_REFERENCE) {
6148                 declaration_t *const declaration = value->reference.declaration;
6149                 if(declaration != NULL) {
6150                         if (declaration->storage_class == STORAGE_CLASS_REGISTER) {
6151                                 errorf(&expression->base.source_position,
6152                                        "address of register variable '%Y' requested",
6153                                        declaration->symbol);
6154                         }
6155                         declaration->address_taken = 1;
6156                 }
6157         }
6158
6159         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6160 }
6161
6162 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
6163 static expression_t *parse_##unexpression_type(unsigned precedence)            \
6164 {                                                                              \
6165         eat(token_type);                                                           \
6166                                                                                    \
6167         expression_t *unary_expression                                             \
6168                 = allocate_expression_zero(unexpression_type);                         \
6169         unary_expression->base.source_position = *HERE;                            \
6170         unary_expression->unary.value = parse_sub_expression(precedence);          \
6171                                                                                    \
6172         sfunc(&unary_expression->unary);                                           \
6173                                                                                    \
6174         return unary_expression;                                                   \
6175 }
6176
6177 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
6178                                semantic_unexpr_arithmetic)
6179 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
6180                                semantic_unexpr_arithmetic)
6181 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
6182                                semantic_unexpr_scalar)
6183 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
6184                                semantic_dereference)
6185 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
6186                                semantic_take_addr)
6187 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
6188                                semantic_unexpr_integer)
6189 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
6190                                semantic_incdec)
6191 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
6192                                semantic_incdec)
6193
6194 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
6195                                                sfunc)                         \
6196 static expression_t *parse_##unexpression_type(unsigned precedence,           \
6197                                                expression_t *left)            \
6198 {                                                                             \
6199         (void) precedence;                                                        \
6200         eat(token_type);                                                          \
6201                                                                               \
6202         expression_t *unary_expression                                            \
6203                 = allocate_expression_zero(unexpression_type);                        \
6204         unary_expression->unary.value = left;                                     \
6205                                                                                   \
6206         sfunc(&unary_expression->unary);                                          \
6207                                                                               \
6208         return unary_expression;                                                  \
6209 }
6210
6211 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
6212                                        EXPR_UNARY_POSTFIX_INCREMENT,
6213                                        semantic_incdec)
6214 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
6215                                        EXPR_UNARY_POSTFIX_DECREMENT,
6216                                        semantic_incdec)
6217
6218 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
6219 {
6220         /* TODO: handle complex + imaginary types */
6221
6222         /* Â§ 6.3.1.8 Usual arithmetic conversions */
6223         if(type_left == type_long_double || type_right == type_long_double) {
6224                 return type_long_double;
6225         } else if(type_left == type_double || type_right == type_double) {
6226                 return type_double;
6227         } else if(type_left == type_float || type_right == type_float) {
6228                 return type_float;
6229         }
6230
6231         type_right = promote_integer(type_right);
6232         type_left  = promote_integer(type_left);
6233
6234         if(type_left == type_right)
6235                 return type_left;
6236
6237         bool signed_left  = is_type_signed(type_left);
6238         bool signed_right = is_type_signed(type_right);
6239         int  rank_left    = get_rank(type_left);
6240         int  rank_right   = get_rank(type_right);
6241         if(rank_left < rank_right) {
6242                 if(signed_left == signed_right || !signed_right) {
6243                         return type_right;
6244                 } else {
6245                         return type_left;
6246                 }
6247         } else {
6248                 if(signed_left == signed_right || !signed_left) {
6249                         return type_left;
6250                 } else {
6251                         return type_right;
6252                 }
6253         }
6254 }
6255
6256 /**
6257  * Check the semantic restrictions for a binary expression.
6258  */
6259 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
6260 {
6261         expression_t *const left            = expression->left;
6262         expression_t *const right           = expression->right;
6263         type_t       *const orig_type_left  = left->base.type;
6264         type_t       *const orig_type_right = right->base.type;
6265         type_t       *const type_left       = skip_typeref(orig_type_left);
6266         type_t       *const type_right      = skip_typeref(orig_type_right);
6267
6268         if(!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
6269                 /* TODO: improve error message */
6270                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6271                         errorf(HERE, "operation needs arithmetic types");
6272                 }
6273                 return;
6274         }
6275
6276         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6277         expression->left      = create_implicit_cast(left, arithmetic_type);
6278         expression->right     = create_implicit_cast(right, arithmetic_type);
6279         expression->base.type = arithmetic_type;
6280 }
6281
6282 static void semantic_shift_op(binary_expression_t *expression)
6283 {
6284         expression_t *const left            = expression->left;
6285         expression_t *const right           = expression->right;
6286         type_t       *const orig_type_left  = left->base.type;
6287         type_t       *const orig_type_right = right->base.type;
6288         type_t       *      type_left       = skip_typeref(orig_type_left);
6289         type_t       *      type_right      = skip_typeref(orig_type_right);
6290
6291         if(!is_type_integer(type_left) || !is_type_integer(type_right)) {
6292                 /* TODO: improve error message */
6293                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6294                         errorf(HERE, "operation needs integer types");
6295                 }
6296                 return;
6297         }
6298
6299         type_left  = promote_integer(type_left);
6300         type_right = promote_integer(type_right);
6301
6302         expression->left      = create_implicit_cast(left, type_left);
6303         expression->right     = create_implicit_cast(right, type_right);
6304         expression->base.type = type_left;
6305 }
6306
6307 static void semantic_add(binary_expression_t *expression)
6308 {
6309         expression_t *const left            = expression->left;
6310         expression_t *const right           = expression->right;
6311         type_t       *const orig_type_left  = left->base.type;
6312         type_t       *const orig_type_right = right->base.type;
6313         type_t       *const type_left       = skip_typeref(orig_type_left);
6314         type_t       *const type_right      = skip_typeref(orig_type_right);
6315
6316         /* Â§ 5.6.5 */
6317         if(is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6318                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6319                 expression->left  = create_implicit_cast(left, arithmetic_type);
6320                 expression->right = create_implicit_cast(right, arithmetic_type);
6321                 expression->base.type = arithmetic_type;
6322                 return;
6323         } else if(is_type_pointer(type_left) && is_type_integer(type_right)) {
6324                 expression->base.type = type_left;
6325         } else if(is_type_pointer(type_right) && is_type_integer(type_left)) {
6326                 expression->base.type = type_right;
6327         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6328                 errorf(HERE, "invalid operands to binary + ('%T', '%T')", orig_type_left, orig_type_right);
6329         }
6330 }
6331
6332 static void semantic_sub(binary_expression_t *expression)
6333 {
6334         expression_t *const left            = expression->left;
6335         expression_t *const right           = expression->right;
6336         type_t       *const orig_type_left  = left->base.type;
6337         type_t       *const orig_type_right = right->base.type;
6338         type_t       *const type_left       = skip_typeref(orig_type_left);
6339         type_t       *const type_right      = skip_typeref(orig_type_right);
6340
6341         /* Â§ 5.6.5 */
6342         if(is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6343                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6344                 expression->left        = create_implicit_cast(left, arithmetic_type);
6345                 expression->right       = create_implicit_cast(right, arithmetic_type);
6346                 expression->base.type =  arithmetic_type;
6347                 return;
6348         } else if(is_type_pointer(type_left) && is_type_integer(type_right)) {
6349                 expression->base.type = type_left;
6350         } else if(is_type_pointer(type_left) && is_type_pointer(type_right)) {
6351                 if(!pointers_compatible(type_left, type_right)) {
6352                         errorf(HERE,
6353                                "pointers to incompatible objects to binary '-' ('%T', '%T')",
6354                                orig_type_left, orig_type_right);
6355                 } else {
6356                         expression->base.type = type_ptrdiff_t;
6357                 }
6358         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6359                 errorf(HERE, "invalid operands to binary '-' ('%T', '%T')",
6360                        orig_type_left, orig_type_right);
6361         }
6362 }
6363
6364 /**
6365  * Check the semantics of comparison expressions.
6366  *
6367  * @param expression   The expression to check.
6368  */
6369 static void semantic_comparison(binary_expression_t *expression)
6370 {
6371         expression_t *left            = expression->left;
6372         expression_t *right           = expression->right;
6373         type_t       *orig_type_left  = left->base.type;
6374         type_t       *orig_type_right = right->base.type;
6375
6376         type_t *type_left  = skip_typeref(orig_type_left);
6377         type_t *type_right = skip_typeref(orig_type_right);
6378
6379         /* TODO non-arithmetic types */
6380         if(is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6381                 /* test for signed vs unsigned compares */
6382                 if (warning.sign_compare &&
6383                     (expression->base.kind != EXPR_BINARY_EQUAL &&
6384                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
6385                     (is_type_signed(type_left) != is_type_signed(type_right))) {
6386
6387                         /* check if 1 of the operands is a constant, in this case we just
6388                          * check wether we can safely represent the resulting constant in
6389                          * the type of the other operand. */
6390                         expression_t *const_expr = NULL;
6391                         expression_t *other_expr = NULL;
6392
6393                         if(is_constant_expression(left)) {
6394                                 const_expr = left;
6395                                 other_expr = right;
6396                         } else if(is_constant_expression(right)) {
6397                                 const_expr = right;
6398                                 other_expr = left;
6399                         }
6400
6401                         if(const_expr != NULL) {
6402                                 type_t *other_type = skip_typeref(other_expr->base.type);
6403                                 long    val        = fold_constant(const_expr);
6404                                 /* TODO: check if val can be represented by other_type */
6405                                 (void) other_type;
6406                                 (void) val;
6407                         }
6408                         warningf(&expression->base.source_position,
6409                                  "comparison between signed and unsigned");
6410                 }
6411                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6412                 expression->left        = create_implicit_cast(left, arithmetic_type);
6413                 expression->right       = create_implicit_cast(right, arithmetic_type);
6414                 expression->base.type   = arithmetic_type;
6415                 if (warning.float_equal &&
6416                     (expression->base.kind == EXPR_BINARY_EQUAL ||
6417                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
6418                     is_type_float(arithmetic_type)) {
6419                         warningf(&expression->base.source_position,
6420                                  "comparing floating point with == or != is unsafe");
6421                 }
6422         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
6423                 /* TODO check compatibility */
6424         } else if (is_type_pointer(type_left)) {
6425                 expression->right = create_implicit_cast(right, type_left);
6426         } else if (is_type_pointer(type_right)) {
6427                 expression->left = create_implicit_cast(left, type_right);
6428         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6429                 type_error_incompatible("invalid operands in comparison",
6430                                         &expression->base.source_position,
6431                                         type_left, type_right);
6432         }
6433         expression->base.type = type_int;
6434 }
6435
6436 /**
6437  * Checks if a compound type has constant fields.
6438  */
6439 static bool has_const_fields(const compound_type_t *type)
6440 {
6441         const scope_t       *scope       = &type->declaration->scope;
6442         const declaration_t *declaration = scope->declarations;
6443
6444         for (; declaration != NULL; declaration = declaration->next) {
6445                 if (declaration->namespc != NAMESPACE_NORMAL)
6446                         continue;
6447
6448                 const type_t *decl_type = skip_typeref(declaration->type);
6449                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
6450                         return true;
6451         }
6452         /* TODO */
6453         return false;
6454 }
6455
6456 static bool is_valid_assignment_lhs(expression_t const* const left)
6457 {
6458         type_t *const orig_type_left = revert_automatic_type_conversion(left);
6459         type_t *const type_left      = skip_typeref(orig_type_left);
6460
6461         switch (left->kind)  {
6462                 case EXPR_REFERENCE:
6463                 case EXPR_ARRAY_ACCESS:
6464                 case EXPR_SELECT:
6465                 case EXPR_UNARY_DEREFERENCE:
6466                         break;
6467
6468                 default:
6469                         errorf(HERE, "left hand side '%E' of assignment is not an lvalue", left);
6470                         return false;
6471         }
6472
6473         if (is_type_array(type_left)) {
6474                 errorf(HERE, "cannot assign to arrays ('%E')", left);
6475                 return false;
6476         }
6477         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
6478                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
6479                        orig_type_left);
6480                 return false;
6481         }
6482         if (is_type_incomplete(type_left)) {
6483                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
6484                        left, orig_type_left);
6485                 return false;
6486         }
6487         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
6488                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
6489                        left, orig_type_left);
6490                 return false;
6491         }
6492
6493         return true;
6494 }
6495
6496 static void semantic_arithmetic_assign(binary_expression_t *expression)
6497 {
6498         expression_t *left            = expression->left;
6499         expression_t *right           = expression->right;
6500         type_t       *orig_type_left  = left->base.type;
6501         type_t       *orig_type_right = right->base.type;
6502
6503         if (!is_valid_assignment_lhs(left))
6504                 return;
6505
6506         type_t *type_left  = skip_typeref(orig_type_left);
6507         type_t *type_right = skip_typeref(orig_type_right);
6508
6509         if(!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
6510                 /* TODO: improve error message */
6511                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6512                         errorf(HERE, "operation needs arithmetic types");
6513                 }
6514                 return;
6515         }
6516
6517         /* combined instructions are tricky. We can't create an implicit cast on
6518          * the left side, because we need the uncasted form for the store.
6519          * The ast2firm pass has to know that left_type must be right_type
6520          * for the arithmetic operation and create a cast by itself */
6521         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
6522         expression->right       = create_implicit_cast(right, arithmetic_type);
6523         expression->base.type   = type_left;
6524 }
6525
6526 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
6527 {
6528         expression_t *const left            = expression->left;
6529         expression_t *const right           = expression->right;
6530         type_t       *const orig_type_left  = left->base.type;
6531         type_t       *const orig_type_right = right->base.type;
6532         type_t       *const type_left       = skip_typeref(orig_type_left);
6533         type_t       *const type_right      = skip_typeref(orig_type_right);
6534
6535         if (!is_valid_assignment_lhs(left))
6536                 return;
6537
6538         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
6539                 /* combined instructions are tricky. We can't create an implicit cast on
6540                  * the left side, because we need the uncasted form for the store.
6541                  * The ast2firm pass has to know that left_type must be right_type
6542                  * for the arithmetic operation and create a cast by itself */
6543                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
6544                 expression->right     = create_implicit_cast(right, arithmetic_type);
6545                 expression->base.type = type_left;
6546         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
6547                 expression->base.type = type_left;
6548         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
6549                 errorf(HERE, "incompatible types '%T' and '%T' in assignment", orig_type_left, orig_type_right);
6550         }
6551 }
6552
6553 /**
6554  * Check the semantic restrictions of a logical expression.
6555  */
6556 static void semantic_logical_op(binary_expression_t *expression)
6557 {
6558         expression_t *const left            = expression->left;
6559         expression_t *const right           = expression->right;
6560         type_t       *const orig_type_left  = left->base.type;
6561         type_t       *const orig_type_right = right->base.type;
6562         type_t       *const type_left       = skip_typeref(orig_type_left);
6563         type_t       *const type_right      = skip_typeref(orig_type_right);
6564
6565         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
6566                 /* TODO: improve error message */
6567                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6568                         errorf(HERE, "operation needs scalar types");
6569                 }
6570                 return;
6571         }
6572
6573         expression->base.type = type_int;
6574 }
6575
6576 /**
6577  * Check the semantic restrictions of a binary assign expression.
6578  */
6579 static void semantic_binexpr_assign(binary_expression_t *expression)
6580 {
6581         expression_t *left           = expression->left;
6582         type_t       *orig_type_left = left->base.type;
6583
6584         type_t *type_left = revert_automatic_type_conversion(left);
6585         type_left         = skip_typeref(orig_type_left);
6586
6587         if (!is_valid_assignment_lhs(left))
6588                 return;
6589
6590         type_t *const res_type = semantic_assign(orig_type_left, expression->right,
6591                         "assignment", &left->base.source_position);
6592         if (res_type == NULL) {
6593                 errorf(&expression->base.source_position,
6594                         "cannot assign to '%T' from '%T'",
6595                         orig_type_left, expression->right->base.type);
6596         } else {
6597                 expression->right = create_implicit_cast(expression->right, res_type);
6598         }
6599
6600         expression->base.type = orig_type_left;
6601 }
6602
6603 /**
6604  * Determine if the outermost operation (or parts thereof) of the given
6605  * expression has no effect in order to generate a warning about this fact.
6606  * Therefore in some cases this only examines some of the operands of the
6607  * expression (see comments in the function and examples below).
6608  * Examples:
6609  *   f() + 23;    // warning, because + has no effect
6610  *   x || f();    // no warning, because x controls execution of f()
6611  *   x ? y : f(); // warning, because y has no effect
6612  *   (void)x;     // no warning to be able to suppress the warning
6613  * This function can NOT be used for an "expression has definitely no effect"-
6614  * analysis. */
6615 static bool expression_has_effect(const expression_t *const expr)
6616 {
6617         switch (expr->kind) {
6618                 case EXPR_UNKNOWN:                   break;
6619                 case EXPR_INVALID:                   return true; /* do NOT warn */
6620                 case EXPR_REFERENCE:                 return false;
6621                 /* suppress the warning for microsoft __noop operations */
6622                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
6623                 case EXPR_CHARACTER_CONSTANT:        return false;
6624                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
6625                 case EXPR_STRING_LITERAL:            return false;
6626                 case EXPR_WIDE_STRING_LITERAL:       return false;
6627
6628                 case EXPR_CALL: {
6629                         const call_expression_t *const call = &expr->call;
6630                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
6631                                 return true;
6632
6633                         switch (call->function->builtin_symbol.symbol->ID) {
6634                                 case T___builtin_va_end: return true;
6635                                 default:                 return false;
6636                         }
6637                 }
6638
6639                 /* Generate the warning if either the left or right hand side of a
6640                  * conditional expression has no effect */
6641                 case EXPR_CONDITIONAL: {
6642                         const conditional_expression_t *const cond = &expr->conditional;
6643                         return
6644                                 expression_has_effect(cond->true_expression) &&
6645                                 expression_has_effect(cond->false_expression);
6646                 }
6647
6648                 case EXPR_SELECT:                    return false;
6649                 case EXPR_ARRAY_ACCESS:              return false;
6650                 case EXPR_SIZEOF:                    return false;
6651                 case EXPR_CLASSIFY_TYPE:             return false;
6652                 case EXPR_ALIGNOF:                   return false;
6653
6654                 case EXPR_FUNCNAME:                  return false;
6655                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
6656                 case EXPR_BUILTIN_CONSTANT_P:        return false;
6657                 case EXPR_BUILTIN_PREFETCH:          return true;
6658                 case EXPR_OFFSETOF:                  return false;
6659                 case EXPR_VA_START:                  return true;
6660                 case EXPR_VA_ARG:                    return true;
6661                 case EXPR_STATEMENT:                 return true; // TODO
6662                 case EXPR_COMPOUND_LITERAL:          return false;
6663
6664                 case EXPR_UNARY_NEGATE:              return false;
6665                 case EXPR_UNARY_PLUS:                return false;
6666                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
6667                 case EXPR_UNARY_NOT:                 return false;
6668                 case EXPR_UNARY_DEREFERENCE:         return false;
6669                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
6670                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
6671                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
6672                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
6673                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
6674
6675                 /* Treat void casts as if they have an effect in order to being able to
6676                  * suppress the warning */
6677                 case EXPR_UNARY_CAST: {
6678                         type_t *const type = skip_typeref(expr->base.type);
6679                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
6680                 }
6681
6682                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
6683                 case EXPR_UNARY_ASSUME:              return true;
6684
6685                 case EXPR_BINARY_ADD:                return false;
6686                 case EXPR_BINARY_SUB:                return false;
6687                 case EXPR_BINARY_MUL:                return false;
6688                 case EXPR_BINARY_DIV:                return false;
6689                 case EXPR_BINARY_MOD:                return false;
6690                 case EXPR_BINARY_EQUAL:              return false;
6691                 case EXPR_BINARY_NOTEQUAL:           return false;
6692                 case EXPR_BINARY_LESS:               return false;
6693                 case EXPR_BINARY_LESSEQUAL:          return false;
6694                 case EXPR_BINARY_GREATER:            return false;
6695                 case EXPR_BINARY_GREATEREQUAL:       return false;
6696                 case EXPR_BINARY_BITWISE_AND:        return false;
6697                 case EXPR_BINARY_BITWISE_OR:         return false;
6698                 case EXPR_BINARY_BITWISE_XOR:        return false;
6699                 case EXPR_BINARY_SHIFTLEFT:          return false;
6700                 case EXPR_BINARY_SHIFTRIGHT:         return false;
6701                 case EXPR_BINARY_ASSIGN:             return true;
6702                 case EXPR_BINARY_MUL_ASSIGN:         return true;
6703                 case EXPR_BINARY_DIV_ASSIGN:         return true;
6704                 case EXPR_BINARY_MOD_ASSIGN:         return true;
6705                 case EXPR_BINARY_ADD_ASSIGN:         return true;
6706                 case EXPR_BINARY_SUB_ASSIGN:         return true;
6707                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
6708                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
6709                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
6710                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
6711                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
6712
6713                 /* Only examine the right hand side of && and ||, because the left hand
6714                  * side already has the effect of controlling the execution of the right
6715                  * hand side */
6716                 case EXPR_BINARY_LOGICAL_AND:
6717                 case EXPR_BINARY_LOGICAL_OR:
6718                 /* Only examine the right hand side of a comma expression, because the left
6719                  * hand side has a separate warning */
6720                 case EXPR_BINARY_COMMA:
6721                         return expression_has_effect(expr->binary.right);
6722
6723                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
6724                 case EXPR_BINARY_ISGREATER:          return false;
6725                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
6726                 case EXPR_BINARY_ISLESS:             return false;
6727                 case EXPR_BINARY_ISLESSEQUAL:        return false;
6728                 case EXPR_BINARY_ISLESSGREATER:      return false;
6729                 case EXPR_BINARY_ISUNORDERED:        return false;
6730         }
6731
6732         internal_errorf(HERE, "unexpected expression");
6733 }
6734
6735 static void semantic_comma(binary_expression_t *expression)
6736 {
6737         if (warning.unused_value) {
6738                 const expression_t *const left = expression->left;
6739                 if (!expression_has_effect(left)) {
6740                         warningf(&left->base.source_position,
6741                                  "left-hand operand of comma expression has no effect");
6742                 }
6743         }
6744         expression->base.type = expression->right->base.type;
6745 }
6746
6747 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
6748 static expression_t *parse_##binexpression_type(unsigned precedence,      \
6749                                                 expression_t *left)       \
6750 {                                                                         \
6751         eat(token_type);                                                      \
6752         source_position_t pos = *HERE;                                        \
6753                                                                           \
6754         expression_t *right = parse_sub_expression(precedence + lr);          \
6755                                                                           \
6756         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
6757         binexpr->base.source_position = pos;                                  \
6758         binexpr->binary.left  = left;                                         \
6759         binexpr->binary.right = right;                                        \
6760         sfunc(&binexpr->binary);                                              \
6761                                                                           \
6762         return binexpr;                                                       \
6763 }
6764
6765 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
6766 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
6767 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_binexpr_arithmetic, 1)
6768 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_binexpr_arithmetic, 1)
6769 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
6770 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
6771 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
6772 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
6773 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
6774
6775 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
6776                       semantic_comparison, 1)
6777 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
6778                       semantic_comparison, 1)
6779 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
6780                       semantic_comparison, 1)
6781 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
6782                       semantic_comparison, 1)
6783
6784 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
6785                       semantic_binexpr_arithmetic, 1)
6786 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
6787                       semantic_binexpr_arithmetic, 1)
6788 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
6789                       semantic_binexpr_arithmetic, 1)
6790 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
6791                       semantic_logical_op, 1)
6792 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
6793                       semantic_logical_op, 1)
6794 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
6795                       semantic_shift_op, 1)
6796 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
6797                       semantic_shift_op, 1)
6798 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
6799                       semantic_arithmetic_addsubb_assign, 0)
6800 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
6801                       semantic_arithmetic_addsubb_assign, 0)
6802 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
6803                       semantic_arithmetic_assign, 0)
6804 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
6805                       semantic_arithmetic_assign, 0)
6806 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
6807                       semantic_arithmetic_assign, 0)
6808 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
6809                       semantic_arithmetic_assign, 0)
6810 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
6811                       semantic_arithmetic_assign, 0)
6812 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
6813                       semantic_arithmetic_assign, 0)
6814 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
6815                       semantic_arithmetic_assign, 0)
6816 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
6817                       semantic_arithmetic_assign, 0)
6818
6819 static expression_t *parse_sub_expression(unsigned precedence)
6820 {
6821         if(token.type < 0) {
6822                 return expected_expression_error();
6823         }
6824
6825         expression_parser_function_t *parser
6826                 = &expression_parsers[token.type];
6827         source_position_t             source_position = token.source_position;
6828         expression_t                 *left;
6829
6830         if(parser->parser != NULL) {
6831                 left = parser->parser(parser->precedence);
6832         } else {
6833                 left = parse_primary_expression();
6834         }
6835         assert(left != NULL);
6836         left->base.source_position = source_position;
6837
6838         while(true) {
6839                 if(token.type < 0) {
6840                         return expected_expression_error();
6841                 }
6842
6843                 parser = &expression_parsers[token.type];
6844                 if(parser->infix_parser == NULL)
6845                         break;
6846                 if(parser->infix_precedence < precedence)
6847                         break;
6848
6849                 left = parser->infix_parser(parser->infix_precedence, left);
6850
6851                 assert(left != NULL);
6852                 assert(left->kind != EXPR_UNKNOWN);
6853                 left->base.source_position = source_position;
6854         }
6855
6856         return left;
6857 }
6858
6859 /**
6860  * Parse an expression.
6861  */
6862 static expression_t *parse_expression(void)
6863 {
6864         return parse_sub_expression(1);
6865 }
6866
6867 /**
6868  * Register a parser for a prefix-like operator with given precedence.
6869  *
6870  * @param parser      the parser function
6871  * @param token_type  the token type of the prefix token
6872  * @param precedence  the precedence of the operator
6873  */
6874 static void register_expression_parser(parse_expression_function parser,
6875                                        int token_type, unsigned precedence)
6876 {
6877         expression_parser_function_t *entry = &expression_parsers[token_type];
6878
6879         if(entry->parser != NULL) {
6880                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
6881                 panic("trying to register multiple expression parsers for a token");
6882         }
6883         entry->parser     = parser;
6884         entry->precedence = precedence;
6885 }
6886
6887 /**
6888  * Register a parser for an infix operator with given precedence.
6889  *
6890  * @param parser      the parser function
6891  * @param token_type  the token type of the infix operator
6892  * @param precedence  the precedence of the operator
6893  */
6894 static void register_infix_parser(parse_expression_infix_function parser,
6895                 int token_type, unsigned precedence)
6896 {
6897         expression_parser_function_t *entry = &expression_parsers[token_type];
6898
6899         if(entry->infix_parser != NULL) {
6900                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
6901                 panic("trying to register multiple infix expression parsers for a "
6902                       "token");
6903         }
6904         entry->infix_parser     = parser;
6905         entry->infix_precedence = precedence;
6906 }
6907
6908 /**
6909  * Initialize the expression parsers.
6910  */
6911 static void init_expression_parsers(void)
6912 {
6913         memset(&expression_parsers, 0, sizeof(expression_parsers));
6914
6915         register_infix_parser(parse_array_expression,         '[',              30);
6916         register_infix_parser(parse_call_expression,          '(',              30);
6917         register_infix_parser(parse_select_expression,        '.',              30);
6918         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
6919         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
6920                                                               T_PLUSPLUS,       30);
6921         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
6922                                                               T_MINUSMINUS,     30);
6923
6924         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
6925         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
6926         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
6927         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
6928         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
6929         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
6930         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
6931         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
6932         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
6933         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
6934         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
6935         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
6936         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
6937                                                     T_EXCLAMATIONMARKEQUAL, 13);
6938         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
6939         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
6940         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
6941         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
6942         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
6943         register_infix_parser(parse_conditional_expression,   '?',               7);
6944         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
6945         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
6946         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
6947         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
6948         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
6949         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
6950         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
6951                                                                 T_LESSLESSEQUAL, 2);
6952         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
6953                                                           T_GREATERGREATEREQUAL, 2);
6954         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
6955                                                                      T_ANDEQUAL, 2);
6956         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
6957                                                                     T_PIPEEQUAL, 2);
6958         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
6959                                                                    T_CARETEQUAL, 2);
6960
6961         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
6962
6963         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
6964         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
6965         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
6966         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
6967         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
6968         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
6969         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
6970                                                                   T_PLUSPLUS,   25);
6971         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
6972                                                                   T_MINUSMINUS, 25);
6973         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
6974         register_expression_parser(parse_alignof,                T___alignof__, 25);
6975         register_expression_parser(parse_extension,            T___extension__, 25);
6976         register_expression_parser(parse_builtin_classify_type,
6977                                                      T___builtin_classify_type, 25);
6978 }
6979
6980 /**
6981  * Parse a asm statement constraints specification.
6982  */
6983 static asm_constraint_t *parse_asm_constraints(void)
6984 {
6985         asm_constraint_t *result = NULL;
6986         asm_constraint_t *last   = NULL;
6987
6988         while(token.type == T_STRING_LITERAL || token.type == '[') {
6989                 asm_constraint_t *constraint = allocate_ast_zero(sizeof(constraint[0]));
6990                 memset(constraint, 0, sizeof(constraint[0]));
6991
6992                 if(token.type == '[') {
6993                         eat('[');
6994                         if(token.type != T_IDENTIFIER) {
6995                                 parse_error_expected("while parsing asm constraint",
6996                                                      T_IDENTIFIER, NULL);
6997                                 return NULL;
6998                         }
6999                         constraint->symbol = token.v.symbol;
7000
7001                         expect(']');
7002                 }
7003
7004                 constraint->constraints = parse_string_literals();
7005                 expect('(');
7006                 constraint->expression = parse_expression();
7007                 expect(')');
7008
7009                 if(last != NULL) {
7010                         last->next = constraint;
7011                 } else {
7012                         result = constraint;
7013                 }
7014                 last = constraint;
7015
7016                 if(token.type != ',')
7017                         break;
7018                 eat(',');
7019         }
7020
7021         return result;
7022 end_error:
7023         return NULL;
7024 }
7025
7026 /**
7027  * Parse a asm statement clobber specification.
7028  */
7029 static asm_clobber_t *parse_asm_clobbers(void)
7030 {
7031         asm_clobber_t *result = NULL;
7032         asm_clobber_t *last   = NULL;
7033
7034         while(token.type == T_STRING_LITERAL) {
7035                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
7036                 clobber->clobber       = parse_string_literals();
7037
7038                 if(last != NULL) {
7039                         last->next = clobber;
7040                 } else {
7041                         result = clobber;
7042                 }
7043                 last = clobber;
7044
7045                 if(token.type != ',')
7046                         break;
7047                 eat(',');
7048         }
7049
7050         return result;
7051 }
7052
7053 /**
7054  * Parse an asm statement.
7055  */
7056 static statement_t *parse_asm_statement(void)
7057 {
7058         eat(T_asm);
7059
7060         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
7061         statement->base.source_position = token.source_position;
7062
7063         asm_statement_t *asm_statement = &statement->asms;
7064
7065         if(token.type == T_volatile) {
7066                 next_token();
7067                 asm_statement->is_volatile = true;
7068         }
7069
7070         expect('(');
7071         add_anchor_token(')');
7072         add_anchor_token(':');
7073         asm_statement->asm_text = parse_string_literals();
7074
7075         if(token.type != ':') {
7076                 rem_anchor_token(':');
7077                 goto end_of_asm;
7078         }
7079         eat(':');
7080
7081         asm_statement->inputs = parse_asm_constraints();
7082         if(token.type != ':') {
7083                 rem_anchor_token(':');
7084                 goto end_of_asm;
7085         }
7086         eat(':');
7087
7088         asm_statement->outputs = parse_asm_constraints();
7089         if(token.type != ':') {
7090                 rem_anchor_token(':');
7091                 goto end_of_asm;
7092         }
7093         rem_anchor_token(':');
7094         eat(':');
7095
7096         asm_statement->clobbers = parse_asm_clobbers();
7097
7098 end_of_asm:
7099         rem_anchor_token(')');
7100         expect(')');
7101         expect(';');
7102         return statement;
7103 end_error:
7104         return create_invalid_statement();
7105 }
7106
7107 /**
7108  * Parse a case statement.
7109  */
7110 static statement_t *parse_case_statement(void)
7111 {
7112         eat(T_case);
7113
7114         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
7115
7116         statement->base.source_position  = token.source_position;
7117         statement->case_label.expression = parse_expression();
7118
7119         if (c_mode & _GNUC) {
7120                 if (token.type == T_DOTDOTDOT) {
7121                         next_token();
7122                         statement->case_label.end_range = parse_expression();
7123                 }
7124         }
7125
7126         expect(':');
7127
7128         if (! is_constant_expression(statement->case_label.expression)) {
7129                 errorf(&statement->base.source_position,
7130                        "case label does not reduce to an integer constant");
7131         } else {
7132                 /* TODO: check if the case label is already known */
7133                 if (current_switch != NULL) {
7134                         /* link all cases into the switch statement */
7135                         if (current_switch->last_case == NULL) {
7136                                 current_switch->first_case =
7137                                 current_switch->last_case  = &statement->case_label;
7138                         } else {
7139                                 current_switch->last_case->next = &statement->case_label;
7140                         }
7141                 } else {
7142                         errorf(&statement->base.source_position,
7143                                "case label not within a switch statement");
7144                 }
7145         }
7146         statement->case_label.statement = parse_statement();
7147
7148         return statement;
7149 end_error:
7150         return create_invalid_statement();
7151 }
7152
7153 /**
7154  * Finds an existing default label of a switch statement.
7155  */
7156 static case_label_statement_t *
7157 find_default_label(const switch_statement_t *statement)
7158 {
7159         case_label_statement_t *label = statement->first_case;
7160         for ( ; label != NULL; label = label->next) {
7161                 if (label->expression == NULL)
7162                         return label;
7163         }
7164         return NULL;
7165 }
7166
7167 /**
7168  * Parse a default statement.
7169  */
7170 static statement_t *parse_default_statement(void)
7171 {
7172         eat(T_default);
7173
7174         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
7175
7176         statement->base.source_position = token.source_position;
7177
7178         expect(':');
7179         if (current_switch != NULL) {
7180                 const case_label_statement_t *def_label = find_default_label(current_switch);
7181                 if (def_label != NULL) {
7182                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
7183                                &def_label->base.source_position);
7184                 } else {
7185                         /* link all cases into the switch statement */
7186                         if (current_switch->last_case == NULL) {
7187                                 current_switch->first_case =
7188                                         current_switch->last_case  = &statement->case_label;
7189                         } else {
7190                                 current_switch->last_case->next = &statement->case_label;
7191                         }
7192                 }
7193         } else {
7194                 errorf(&statement->base.source_position,
7195                         "'default' label not within a switch statement");
7196         }
7197         statement->case_label.statement = parse_statement();
7198
7199         return statement;
7200 end_error:
7201         return create_invalid_statement();
7202 }
7203
7204 /**
7205  * Return the declaration for a given label symbol or create a new one.
7206  */
7207 static declaration_t *get_label(symbol_t *symbol)
7208 {
7209         declaration_t *candidate = get_declaration(symbol, NAMESPACE_LABEL);
7210         assert(current_function != NULL);
7211         /* if we found a label in the same function, then we already created the
7212          * declaration */
7213         if(candidate != NULL
7214                         && candidate->parent_scope == &current_function->scope) {
7215                 return candidate;
7216         }
7217
7218         /* otherwise we need to create a new one */
7219         declaration_t *const declaration = allocate_declaration_zero();
7220         declaration->namespc       = NAMESPACE_LABEL;
7221         declaration->symbol        = symbol;
7222
7223         label_push(declaration);
7224
7225         return declaration;
7226 }
7227
7228 /**
7229  * Parse a label statement.
7230  */
7231 static statement_t *parse_label_statement(void)
7232 {
7233         assert(token.type == T_IDENTIFIER);
7234         symbol_t *symbol = token.v.symbol;
7235         next_token();
7236
7237         declaration_t *label = get_label(symbol);
7238
7239         /* if source position is already set then the label is defined twice,
7240          * otherwise it was just mentioned in a goto so far */
7241         if(label->source_position.input_name != NULL) {
7242                 errorf(HERE, "duplicate label '%Y' (declared %P)",
7243                        symbol, &label->source_position);
7244         } else {
7245                 label->source_position = token.source_position;
7246         }
7247
7248         statement_t *statement = allocate_statement_zero(STATEMENT_LABEL);
7249
7250         statement->base.source_position = token.source_position;
7251         statement->label.label          = label;
7252
7253         eat(':');
7254
7255         if(token.type == '}') {
7256                 /* TODO only warn? */
7257                 if(false) {
7258                         warningf(HERE, "label at end of compound statement");
7259                         statement->label.statement = create_empty_statement();
7260                 } else {
7261                         errorf(HERE, "label at end of compound statement");
7262                         statement->label.statement = create_invalid_statement();
7263                 }
7264                 return statement;
7265         } else {
7266                 if (token.type == ';') {
7267                         /* eat an empty statement here, to avoid the warning about an empty
7268                          * after a label.  label:; is commonly used to have a label before
7269                          * a }. */
7270                         statement->label.statement = create_empty_statement();
7271                         next_token();
7272                 } else {
7273                         statement->label.statement = parse_statement();
7274                 }
7275         }
7276
7277         /* remember the labels's in a list for later checking */
7278         if (label_last == NULL) {
7279                 label_first = &statement->label;
7280         } else {
7281                 label_last->next = &statement->label;
7282         }
7283         label_last = &statement->label;
7284
7285         return statement;
7286 }
7287
7288 /**
7289  * Parse an if statement.
7290  */
7291 static statement_t *parse_if(void)
7292 {
7293         eat(T_if);
7294
7295         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
7296         statement->base.source_position = token.source_position;
7297
7298         expect('(');
7299         add_anchor_token(')');
7300         statement->ifs.condition = parse_expression();
7301         rem_anchor_token(')');
7302         expect(')');
7303
7304         add_anchor_token(T_else);
7305         statement->ifs.true_statement = parse_statement();
7306         rem_anchor_token(T_else);
7307
7308         if(token.type == T_else) {
7309                 next_token();
7310                 statement->ifs.false_statement = parse_statement();
7311         }
7312
7313         return statement;
7314 end_error:
7315         return create_invalid_statement();
7316 }
7317
7318 /**
7319  * Parse a switch statement.
7320  */
7321 static statement_t *parse_switch(void)
7322 {
7323         eat(T_switch);
7324
7325         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
7326         statement->base.source_position = token.source_position;
7327
7328         expect('(');
7329         expression_t *const expr = parse_expression();
7330         type_t       *      type = skip_typeref(expr->base.type);
7331         if (is_type_integer(type)) {
7332                 type = promote_integer(type);
7333         } else if (is_type_valid(type)) {
7334                 errorf(&expr->base.source_position,
7335                        "switch quantity is not an integer, but '%T'", type);
7336                 type = type_error_type;
7337         }
7338         statement->switchs.expression = create_implicit_cast(expr, type);
7339         expect(')');
7340
7341         switch_statement_t *rem = current_switch;
7342         current_switch          = &statement->switchs;
7343         statement->switchs.body = parse_statement();
7344         current_switch          = rem;
7345
7346         if(warning.switch_default &&
7347            find_default_label(&statement->switchs) == NULL) {
7348                 warningf(&statement->base.source_position, "switch has no default case");
7349         }
7350
7351         return statement;
7352 end_error:
7353         return create_invalid_statement();
7354 }
7355
7356 static statement_t *parse_loop_body(statement_t *const loop)
7357 {
7358         statement_t *const rem = current_loop;
7359         current_loop = loop;
7360
7361         statement_t *const body = parse_statement();
7362
7363         current_loop = rem;
7364         return body;
7365 }
7366
7367 /**
7368  * Parse a while statement.
7369  */
7370 static statement_t *parse_while(void)
7371 {
7372         eat(T_while);
7373
7374         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
7375         statement->base.source_position = token.source_position;
7376
7377         expect('(');
7378         add_anchor_token(')');
7379         statement->whiles.condition = parse_expression();
7380         rem_anchor_token(')');
7381         expect(')');
7382
7383         statement->whiles.body = parse_loop_body(statement);
7384
7385         return statement;
7386 end_error:
7387         return create_invalid_statement();
7388 }
7389
7390 /**
7391  * Parse a do statement.
7392  */
7393 static statement_t *parse_do(void)
7394 {
7395         eat(T_do);
7396
7397         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
7398
7399         statement->base.source_position = token.source_position;
7400
7401         add_anchor_token(T_while);
7402         statement->do_while.body = parse_loop_body(statement);
7403         rem_anchor_token(T_while);
7404
7405         expect(T_while);
7406         expect('(');
7407         add_anchor_token(')');
7408         statement->do_while.condition = parse_expression();
7409         rem_anchor_token(')');
7410         expect(')');
7411         expect(';');
7412
7413         return statement;
7414 end_error:
7415         return create_invalid_statement();
7416 }
7417
7418 /**
7419  * Parse a for statement.
7420  */
7421 static statement_t *parse_for(void)
7422 {
7423         eat(T_for);
7424
7425         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
7426         statement->base.source_position = token.source_position;
7427
7428         int      top        = environment_top();
7429         scope_t *last_scope = scope;
7430         set_scope(&statement->fors.scope);
7431
7432         expect('(');
7433         add_anchor_token(')');
7434
7435         if(token.type != ';') {
7436                 if(is_declaration_specifier(&token, false)) {
7437                         parse_declaration(record_declaration);
7438                 } else {
7439                         add_anchor_token(';');
7440                         expression_t *const init = parse_expression();
7441                         statement->fors.initialisation = init;
7442                         if (warning.unused_value && !expression_has_effect(init)) {
7443                                 warningf(&init->base.source_position,
7444                                          "initialisation of 'for'-statement has no effect");
7445                         }
7446                         rem_anchor_token(';');
7447                         expect(';');
7448                 }
7449         } else {
7450                 expect(';');
7451         }
7452
7453         if(token.type != ';') {
7454                 add_anchor_token(';');
7455                 statement->fors.condition = parse_expression();
7456                 rem_anchor_token(';');
7457         }
7458         expect(';');
7459         if(token.type != ')') {
7460                 expression_t *const step = parse_expression();
7461                 statement->fors.step = step;
7462                 if (warning.unused_value && !expression_has_effect(step)) {
7463                         warningf(&step->base.source_position,
7464                                  "step of 'for'-statement has no effect");
7465                 }
7466         }
7467         rem_anchor_token(')');
7468         expect(')');
7469         statement->fors.body = parse_loop_body(statement);
7470
7471         assert(scope == &statement->fors.scope);
7472         set_scope(last_scope);
7473         environment_pop_to(top);
7474
7475         return statement;
7476
7477 end_error:
7478         rem_anchor_token(')');
7479         assert(scope == &statement->fors.scope);
7480         set_scope(last_scope);
7481         environment_pop_to(top);
7482
7483         return create_invalid_statement();
7484 }
7485
7486 /**
7487  * Parse a goto statement.
7488  */
7489 static statement_t *parse_goto(void)
7490 {
7491         eat(T_goto);
7492
7493         if(token.type != T_IDENTIFIER) {
7494                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
7495                 eat_statement();
7496                 return NULL;
7497         }
7498         symbol_t *symbol = token.v.symbol;
7499         next_token();
7500
7501         declaration_t *label = get_label(symbol);
7502
7503         statement_t *statement          = allocate_statement_zero(STATEMENT_GOTO);
7504         statement->base.source_position = token.source_position;
7505
7506         statement->gotos.label = label;
7507
7508         /* remember the goto's in a list for later checking */
7509         if (goto_last == NULL) {
7510                 goto_first = &statement->gotos;
7511         } else {
7512                 goto_last->next = &statement->gotos;
7513         }
7514         goto_last = &statement->gotos;
7515
7516         expect(';');
7517
7518         return statement;
7519 end_error:
7520         return create_invalid_statement();
7521 }
7522
7523 /**
7524  * Parse a continue statement.
7525  */
7526 static statement_t *parse_continue(void)
7527 {
7528         statement_t *statement;
7529         if (current_loop == NULL) {
7530                 errorf(HERE, "continue statement not within loop");
7531                 statement = create_invalid_statement();
7532         } else {
7533                 statement = allocate_statement_zero(STATEMENT_CONTINUE);
7534
7535                 statement->base.source_position = token.source_position;
7536         }
7537
7538         eat(T_continue);
7539         expect(';');
7540
7541         return statement;
7542 end_error:
7543         return create_invalid_statement();
7544 }
7545
7546 /**
7547  * Parse a break statement.
7548  */
7549 static statement_t *parse_break(void)
7550 {
7551         statement_t *statement;
7552         if (current_switch == NULL && current_loop == NULL) {
7553                 errorf(HERE, "break statement not within loop or switch");
7554                 statement = create_invalid_statement();
7555         } else {
7556                 statement = allocate_statement_zero(STATEMENT_BREAK);
7557
7558                 statement->base.source_position = token.source_position;
7559         }
7560
7561         eat(T_break);
7562         expect(';');
7563
7564         return statement;
7565 end_error:
7566         return create_invalid_statement();
7567 }
7568
7569 /**
7570  * Parse a __leave statement.
7571  */
7572 static statement_t *parse_leave(void)
7573 {
7574         statement_t *statement;
7575         if (current_try == NULL) {
7576                 errorf(HERE, "__leave statement not within __try");
7577                 statement = create_invalid_statement();
7578         } else {
7579                 statement = allocate_statement_zero(STATEMENT_LEAVE);
7580
7581                 statement->base.source_position = token.source_position;
7582         }
7583
7584         eat(T___leave);
7585         expect(';');
7586
7587         return statement;
7588 end_error:
7589         return create_invalid_statement();
7590 }
7591
7592 /**
7593  * Check if a given declaration represents a local variable.
7594  */
7595 static bool is_local_var_declaration(const declaration_t *declaration) {
7596         switch ((storage_class_tag_t) declaration->storage_class) {
7597         case STORAGE_CLASS_AUTO:
7598         case STORAGE_CLASS_REGISTER: {
7599                 const type_t *type = skip_typeref(declaration->type);
7600                 if(is_type_function(type)) {
7601                         return false;
7602                 } else {
7603                         return true;
7604                 }
7605         }
7606         default:
7607                 return false;
7608         }
7609 }
7610
7611 /**
7612  * Check if a given declaration represents a variable.
7613  */
7614 static bool is_var_declaration(const declaration_t *declaration) {
7615         if(declaration->storage_class == STORAGE_CLASS_TYPEDEF)
7616                 return false;
7617
7618         const type_t *type = skip_typeref(declaration->type);
7619         return !is_type_function(type);
7620 }
7621
7622 /**
7623  * Check if a given expression represents a local variable.
7624  */
7625 static bool is_local_variable(const expression_t *expression)
7626 {
7627         if (expression->base.kind != EXPR_REFERENCE) {
7628                 return false;
7629         }
7630         const declaration_t *declaration = expression->reference.declaration;
7631         return is_local_var_declaration(declaration);
7632 }
7633
7634 /**
7635  * Check if a given expression represents a local variable and
7636  * return its declaration then, else return NULL.
7637  */
7638 declaration_t *expr_is_variable(const expression_t *expression)
7639 {
7640         if (expression->base.kind != EXPR_REFERENCE) {
7641                 return NULL;
7642         }
7643         declaration_t *declaration = expression->reference.declaration;
7644         if (is_var_declaration(declaration))
7645                 return declaration;
7646         return NULL;
7647 }
7648
7649 /**
7650  * Parse a return statement.
7651  */
7652 static statement_t *parse_return(void)
7653 {
7654         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
7655         statement->base.source_position = token.source_position;
7656
7657         eat(T_return);
7658
7659         expression_t *return_value = NULL;
7660         if(token.type != ';') {
7661                 return_value = parse_expression();
7662         }
7663         expect(';');
7664
7665         const type_t *const func_type = current_function->type;
7666         assert(is_type_function(func_type));
7667         type_t *const return_type = skip_typeref(func_type->function.return_type);
7668
7669         if(return_value != NULL) {
7670                 type_t *return_value_type = skip_typeref(return_value->base.type);
7671
7672                 if(is_type_atomic(return_type, ATOMIC_TYPE_VOID)
7673                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
7674                         warningf(&statement->base.source_position,
7675                                  "'return' with a value, in function returning void");
7676                         return_value = NULL;
7677                 } else {
7678                         type_t *const res_type = semantic_assign(return_type,
7679                                 return_value, "'return'", &statement->base.source_position);
7680                         if (res_type == NULL) {
7681                                 errorf(&statement->base.source_position,
7682                                        "cannot return something of type '%T' in function returning '%T'",
7683                                        return_value->base.type, return_type);
7684                         } else {
7685                                 return_value = create_implicit_cast(return_value, res_type);
7686                         }
7687                 }
7688                 /* check for returning address of a local var */
7689                 if (return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
7690                         const expression_t *expression = return_value->unary.value;
7691                         if (is_local_variable(expression)) {
7692                                 warningf(&statement->base.source_position,
7693                                          "function returns address of local variable");
7694                         }
7695                 }
7696         } else {
7697                 if(!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
7698                         warningf(&statement->base.source_position,
7699                                  "'return' without value, in function returning non-void");
7700                 }
7701         }
7702         statement->returns.value = return_value;
7703
7704         return statement;
7705 end_error:
7706         return create_invalid_statement();
7707 }
7708
7709 /**
7710  * Parse a declaration statement.
7711  */
7712 static statement_t *parse_declaration_statement(void)
7713 {
7714         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
7715
7716         statement->base.source_position = token.source_position;
7717
7718         declaration_t *before = last_declaration;
7719         parse_declaration(record_declaration);
7720
7721         if(before == NULL) {
7722                 statement->declaration.declarations_begin = scope->declarations;
7723         } else {
7724                 statement->declaration.declarations_begin = before->next;
7725         }
7726         statement->declaration.declarations_end = last_declaration;
7727
7728         return statement;
7729 }
7730
7731 /**
7732  * Parse an expression statement, ie. expr ';'.
7733  */
7734 static statement_t *parse_expression_statement(void)
7735 {
7736         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
7737
7738         statement->base.source_position  = token.source_position;
7739         expression_t *const expr         = parse_expression();
7740         statement->expression.expression = expr;
7741
7742         expect(';');
7743
7744         return statement;
7745 end_error:
7746         return create_invalid_statement();
7747 }
7748
7749 /**
7750  * Parse a microsoft __try { } __finally { } or
7751  * __try{ } __except() { }
7752  */
7753 static statement_t *parse_ms_try_statment(void) {
7754         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
7755
7756         statement->base.source_position  = token.source_position;
7757         eat(T___try);
7758
7759         ms_try_statement_t *rem = current_try;
7760         current_try = &statement->ms_try;
7761         statement->ms_try.try_statement = parse_compound_statement(false);
7762         current_try = rem;
7763
7764         if(token.type == T___except) {
7765                 eat(T___except);
7766                 expect('(');
7767                 add_anchor_token(')');
7768                 expression_t *const expr = parse_expression();
7769                 type_t       *      type = skip_typeref(expr->base.type);
7770                 if (is_type_integer(type)) {
7771                         type = promote_integer(type);
7772                 } else if (is_type_valid(type)) {
7773                         errorf(&expr->base.source_position,
7774                                "__expect expression is not an integer, but '%T'", type);
7775                         type = type_error_type;
7776                 }
7777                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
7778                 rem_anchor_token(')');
7779                 expect(')');
7780                 statement->ms_try.final_statement = parse_compound_statement(false);
7781         } else if(token.type == T__finally) {
7782                 eat(T___finally);
7783                 statement->ms_try.final_statement = parse_compound_statement(false);
7784         } else {
7785                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
7786                 return create_invalid_statement();
7787         }
7788         return statement;
7789 end_error:
7790         return create_invalid_statement();
7791 }
7792
7793 /**
7794  * Parse a statement.
7795  * There's also parse_statement() which additionally checks for
7796  * "statement has no effect" warnings
7797  */
7798 static statement_t *intern_parse_statement(void)
7799 {
7800         statement_t *statement = NULL;
7801
7802         /* declaration or statement */
7803         add_anchor_token(';');
7804         switch(token.type) {
7805         case T_asm:
7806                 statement = parse_asm_statement();
7807                 break;
7808
7809         case T_case:
7810                 statement = parse_case_statement();
7811                 break;
7812
7813         case T_default:
7814                 statement = parse_default_statement();
7815                 break;
7816
7817         case '{':
7818                 statement = parse_compound_statement(false);
7819                 break;
7820
7821         case T_if:
7822                 statement = parse_if();
7823                 break;
7824
7825         case T_switch:
7826                 statement = parse_switch();
7827                 break;
7828
7829         case T_while:
7830                 statement = parse_while();
7831                 break;
7832
7833         case T_do:
7834                 statement = parse_do();
7835                 break;
7836
7837         case T_for:
7838                 statement = parse_for();
7839                 break;
7840
7841         case T_goto:
7842                 statement = parse_goto();
7843                 break;
7844
7845         case T_continue:
7846                 statement = parse_continue();
7847                 break;
7848
7849         case T_break:
7850                 statement = parse_break();
7851                 break;
7852
7853         case T___leave:
7854                 statement = parse_leave();
7855                 break;
7856
7857         case T_return:
7858                 statement = parse_return();
7859                 break;
7860
7861         case ';':
7862                 if(warning.empty_statement) {
7863                         warningf(HERE, "statement is empty");
7864                 }
7865                 statement = create_empty_statement();
7866                 next_token();
7867                 break;
7868
7869         case T_IDENTIFIER:
7870                 if(look_ahead(1)->type == ':') {
7871                         statement = parse_label_statement();
7872                         break;
7873                 }
7874
7875                 if(is_typedef_symbol(token.v.symbol)) {
7876                         statement = parse_declaration_statement();
7877                         break;
7878                 }
7879
7880                 statement = parse_expression_statement();
7881                 break;
7882
7883         case T___extension__:
7884                 /* this can be a prefix to a declaration or an expression statement */
7885                 /* we simply eat it now and parse the rest with tail recursion */
7886                 do {
7887                         next_token();
7888                 } while(token.type == T___extension__);
7889                 statement = parse_statement();
7890                 break;
7891
7892         DECLARATION_START
7893                 statement = parse_declaration_statement();
7894                 break;
7895
7896         case T___try:
7897                 statement = parse_ms_try_statment();
7898                 break;
7899
7900         default:
7901                 statement = parse_expression_statement();
7902                 break;
7903         }
7904         rem_anchor_token(';');
7905
7906         assert(statement != NULL
7907                         && statement->base.source_position.input_name != NULL);
7908
7909         return statement;
7910 }
7911
7912 /**
7913  * parse a statement and emits "statement has no effect" warning if needed
7914  * (This is really a wrapper around intern_parse_statement with check for 1
7915  *  single warning. It is needed, because for statement expressions we have
7916  *  to avoid the warning on the last statement)
7917  */
7918 static statement_t *parse_statement(void)
7919 {
7920         statement_t *statement = intern_parse_statement();
7921
7922         if(statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
7923                 expression_t *expression = statement->expression.expression;
7924                 if(!expression_has_effect(expression)) {
7925                         warningf(&expression->base.source_position,
7926                                         "statement has no effect");
7927                 }
7928         }
7929
7930         return statement;
7931 }
7932
7933 /**
7934  * Parse a compound statement.
7935  */
7936 static statement_t *parse_compound_statement(bool inside_expression_statement)
7937 {
7938         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
7939
7940         statement->base.source_position = token.source_position;
7941
7942         eat('{');
7943         add_anchor_token('}');
7944
7945         int      top        = environment_top();
7946         scope_t *last_scope = scope;
7947         set_scope(&statement->compound.scope);
7948
7949         statement_t *last_statement = NULL;
7950
7951         while(token.type != '}' && token.type != T_EOF) {
7952                 statement_t *sub_statement = intern_parse_statement();
7953                 if(is_invalid_statement(sub_statement)) {
7954                         /* an error occurred. if we are at an anchor, return */
7955                         if(at_anchor())
7956                                 goto end_error;
7957                         continue;
7958                 }
7959
7960                 if(last_statement != NULL) {
7961                         last_statement->base.next = sub_statement;
7962                 } else {
7963                         statement->compound.statements = sub_statement;
7964                 }
7965
7966                 while(sub_statement->base.next != NULL)
7967                         sub_statement = sub_statement->base.next;
7968
7969                 last_statement = sub_statement;
7970         }
7971
7972         if(token.type == '}') {
7973                 next_token();
7974         } else {
7975                 errorf(&statement->base.source_position,
7976                        "end of file while looking for closing '}'");
7977         }
7978
7979         /* look over all statements again to produce no effect warnings */
7980         if(warning.unused_value) {
7981                 statement_t *sub_statement = statement->compound.statements;
7982                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
7983                         if(sub_statement->kind != STATEMENT_EXPRESSION)
7984                                 continue;
7985                         /* don't emit a warning for the last expression in an expression
7986                          * statement as it has always an effect */
7987                         if(inside_expression_statement && sub_statement->base.next == NULL)
7988                                 continue;
7989
7990                         expression_t *expression = sub_statement->expression.expression;
7991                         if(!expression_has_effect(expression)) {
7992                                 warningf(&expression->base.source_position,
7993                                          "statement has no effect");
7994                         }
7995                 }
7996         }
7997
7998 end_error:
7999         rem_anchor_token('}');
8000         assert(scope == &statement->compound.scope);
8001         set_scope(last_scope);
8002         environment_pop_to(top);
8003
8004         return statement;
8005 }
8006
8007 /**
8008  * Initialize builtin types.
8009  */
8010 static void initialize_builtin_types(void)
8011 {
8012         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
8013         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
8014         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
8015         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
8016         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
8017         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
8018         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    type_int);
8019         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
8020
8021         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
8022         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
8023         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
8024         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
8025 }
8026
8027 /**
8028  * Check for unused global static functions and variables
8029  */
8030 static void check_unused_globals(void)
8031 {
8032         if (!warning.unused_function && !warning.unused_variable)
8033                 return;
8034
8035         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
8036                 if (decl->used || decl->storage_class != STORAGE_CLASS_STATIC)
8037                         continue;
8038
8039                 type_t *const type = decl->type;
8040                 const char *s;
8041                 if (is_type_function(skip_typeref(type))) {
8042                         if (!warning.unused_function || decl->is_inline)
8043                                 continue;
8044
8045                         s = (decl->init.statement != NULL ? "defined" : "declared");
8046                 } else {
8047                         if (!warning.unused_variable)
8048                                 continue;
8049
8050                         s = "defined";
8051                 }
8052
8053                 warningf(&decl->source_position, "'%#T' %s but not used",
8054                         type, decl->symbol, s);
8055         }
8056 }
8057
8058 /**
8059  * Parse a translation unit.
8060  */
8061 static translation_unit_t *parse_translation_unit(void)
8062 {
8063         translation_unit_t *unit = allocate_ast_zero(sizeof(unit[0]));
8064
8065         assert(global_scope == NULL);
8066         global_scope = &unit->scope;
8067
8068         assert(scope == NULL);
8069         set_scope(&unit->scope);
8070
8071         initialize_builtin_types();
8072
8073         while(token.type != T_EOF) {
8074                 if (token.type == ';') {
8075                         /* TODO error in strict mode */
8076                         warningf(HERE, "stray ';' outside of function");
8077                         next_token();
8078                 } else {
8079                         parse_external_declaration();
8080                 }
8081         }
8082
8083         assert(scope == &unit->scope);
8084         scope          = NULL;
8085         last_declaration = NULL;
8086
8087         assert(global_scope == &unit->scope);
8088         check_unused_globals();
8089         global_scope = NULL;
8090
8091         return unit;
8092 }
8093
8094 /**
8095  * Parse the input.
8096  *
8097  * @return  the translation unit or NULL if errors occurred.
8098  */
8099 translation_unit_t *parse(void)
8100 {
8101         environment_stack = NEW_ARR_F(stack_entry_t, 0);
8102         label_stack       = NEW_ARR_F(stack_entry_t, 0);
8103         diagnostic_count  = 0;
8104         error_count       = 0;
8105         warning_count     = 0;
8106
8107         type_set_output(stderr);
8108         ast_set_output(stderr);
8109
8110         lookahead_bufpos = 0;
8111         for(int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
8112                 next_token();
8113         }
8114         translation_unit_t *unit = parse_translation_unit();
8115
8116         DEL_ARR_F(environment_stack);
8117         DEL_ARR_F(label_stack);
8118
8119         return unit;
8120 }
8121
8122 /**
8123  * Initialize the parser.
8124  */
8125 void init_parser(void)
8126 {
8127         if(c_mode & _MS) {
8128                 /* add predefined symbols for extended-decl-modifier */
8129                 sym_align      = symbol_table_insert("align");
8130                 sym_allocate   = symbol_table_insert("allocate");
8131                 sym_dllimport  = symbol_table_insert("dllimport");
8132                 sym_dllexport  = symbol_table_insert("dllexport");
8133                 sym_naked      = symbol_table_insert("naked");
8134                 sym_noinline   = symbol_table_insert("noinline");
8135                 sym_noreturn   = symbol_table_insert("noreturn");
8136                 sym_nothrow    = symbol_table_insert("nothrow");
8137                 sym_novtable   = symbol_table_insert("novtable");
8138                 sym_property   = symbol_table_insert("property");
8139                 sym_get        = symbol_table_insert("get");
8140                 sym_put        = symbol_table_insert("put");
8141                 sym_selectany  = symbol_table_insert("selectany");
8142                 sym_thread     = symbol_table_insert("thread");
8143                 sym_uuid       = symbol_table_insert("uuid");
8144                 sym_deprecated = symbol_table_insert("deprecated");
8145                 sym_restrict   = symbol_table_insert("restrict");
8146                 sym_noalias    = symbol_table_insert("noalias");
8147         }
8148         memset(token_anchor_set, 0, sizeof(token_anchor_set));
8149
8150         init_expression_parsers();
8151         obstack_init(&temp_obst);
8152
8153         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
8154         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
8155 }
8156
8157 /**
8158  * Terminate the parser.
8159  */
8160 void exit_parser(void)
8161 {
8162         obstack_free(&temp_obst, NULL);
8163 }