Do not emit an error about different entity kinds for the same symbol, if error entit...
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "lang_features.h"
38 #include "walk_statements.h"
39 #include "warning.h"
40 #include "adt/bitfiddle.h"
41 #include "adt/error.h"
42 #include "adt/array.h"
43
44 //#define PRINT_TOKENS
45 #define MAX_LOOKAHEAD 1
46
47 typedef struct {
48         entity_t           *old_entity;
49         symbol_t           *symbol;
50         entity_namespace_t  namespc;
51 } stack_entry_t;
52
53 typedef struct argument_list_t argument_list_t;
54 struct argument_list_t {
55         long              argument;
56         argument_list_t  *next;
57 };
58
59 typedef struct gnu_attribute_t gnu_attribute_t;
60 struct gnu_attribute_t {
61         gnu_attribute_kind_t kind;          /**< The kind of the GNU attribute. */
62         gnu_attribute_t     *next;
63         bool                 invalid;       /**< Set if this attribute had argument errors, */
64         bool                 has_arguments; /**< True, if this attribute has arguments. */
65         union {
66                 size_t              value;
67                 string_t            string;
68                 symbol_t           *symbol;
69                 long                argument;  /**< Single argument. */
70                 argument_list_t    *arguments; /**< List of argument expressions. */
71         } u;
72 };
73
74 typedef struct declaration_specifiers_t  declaration_specifiers_t;
75 struct declaration_specifiers_t {
76         source_position_t  source_position;
77         storage_class_t    storage_class;
78         unsigned char      alignment;         /**< Alignment, 0 if not set. */
79         bool               is_inline    : 1;
80         bool               thread_local : 1;  /**< GCC __thread */
81         bool               deprecated   : 1;
82         decl_modifiers_t   modifiers;         /**< declaration modifiers */
83         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
84         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
85         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
86         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
87         type_t            *type;
88 };
89
90 /**
91  * An environment for parsing initializers (and compound literals).
92  */
93 typedef struct parse_initializer_env_t {
94         type_t     *type;   /**< the type of the initializer. In case of an
95                                  array type with unspecified size this gets
96                                  adjusted to the actual size. */
97         entity_t   *entity; /**< the variable that is initialized if any */
98         bool        must_be_constant;
99 } parse_initializer_env_t;
100
101 /**
102  * Capture a MS __base extension.
103  */
104 typedef struct based_spec_t {
105         source_position_t  source_position;
106         variable_t        *base_variable;
107 } based_spec_t;
108
109 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
110
111 /** The current token. */
112 static token_t              token;
113 /** The lookahead ring-buffer. */
114 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
115 /** Position of the next token in the lookahead buffer. */
116 static size_t               lookahead_bufpos;
117 static stack_entry_t       *environment_stack = NULL;
118 static stack_entry_t       *label_stack       = NULL;
119 static scope_t             *file_scope        = NULL;
120 static scope_t             *current_scope     = NULL;
121 /** Point to the current function declaration if inside a function. */
122 static function_t          *current_function  = NULL;
123 static entity_t            *current_init_decl = NULL;
124 static switch_statement_t  *current_switch    = NULL;
125 static statement_t         *current_loop      = NULL;
126 static statement_t         *current_parent    = NULL;
127 static ms_try_statement_t  *current_try       = NULL;
128 static linkage_kind_t       current_linkage   = LINKAGE_INVALID;
129 static goto_statement_t    *goto_first        = NULL;
130 static goto_statement_t   **goto_anchor       = NULL;
131 static label_statement_t   *label_first       = NULL;
132 static label_statement_t  **label_anchor      = NULL;
133 /** current translation unit. */
134 static translation_unit_t  *unit              = NULL;
135 /** true if we are in a type property context (evaluation only for type. */
136 static bool                 in_type_prop      = false;
137 /** true in we are in a __extension__ context. */
138 static bool                 in_gcc_extension  = false;
139 static struct obstack       temp_obst;
140 static entity_t            *anonymous_entity;
141 static declaration_t      **incomplete_arrays;
142
143
144 #define PUSH_PARENT(stmt)                          \
145         statement_t *const prev_parent = current_parent; \
146         ((void)(current_parent = (stmt)))
147 #define POP_PARENT ((void)(current_parent = prev_parent))
148
149 /** special symbol used for anonymous entities. */
150 static const symbol_t *sym_anonymous = NULL;
151
152 /* symbols for Microsoft extended-decl-modifier */
153 static const symbol_t *sym_align         = NULL;
154 static const symbol_t *sym_allocate      = NULL;
155 static const symbol_t *sym_dllimport     = NULL;
156 static const symbol_t *sym_dllexport     = NULL;
157 static const symbol_t *sym_naked         = NULL;
158 static const symbol_t *sym_noinline      = NULL;
159 static const symbol_t *sym_returns_twice = NULL;
160 static const symbol_t *sym_noreturn      = NULL;
161 static const symbol_t *sym_nothrow       = NULL;
162 static const symbol_t *sym_novtable      = NULL;
163 static const symbol_t *sym_property      = NULL;
164 static const symbol_t *sym_get           = NULL;
165 static const symbol_t *sym_put           = NULL;
166 static const symbol_t *sym_selectany     = NULL;
167 static const symbol_t *sym_thread        = NULL;
168 static const symbol_t *sym_uuid          = NULL;
169 static const symbol_t *sym_deprecated    = NULL;
170 static const symbol_t *sym_restrict      = NULL;
171 static const symbol_t *sym_noalias       = NULL;
172
173 /** The token anchor set */
174 static unsigned char token_anchor_set[T_LAST_TOKEN];
175
176 /** The current source position. */
177 #define HERE (&token.source_position)
178
179 /** true if we are in GCC mode. */
180 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
181
182 static type_t *type_valist;
183
184 static statement_t *parse_compound_statement(bool inside_expression_statement);
185 static statement_t *parse_statement(void);
186
187 static expression_t *parse_sub_expression(precedence_t);
188 static expression_t *parse_expression(void);
189 static type_t       *parse_typename(void);
190 static void          parse_externals(void);
191 static void          parse_external(void);
192
193 static void parse_compound_type_entries(compound_t *compound_declaration);
194
195 typedef enum declarator_flags_t {
196         DECL_FLAGS_NONE             = 0,
197         DECL_MAY_BE_ABSTRACT        = 1U << 0,
198         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
199         DECL_IS_PARAMETER           = 1U << 2
200 } declarator_flags_t;
201
202 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
203                                   declarator_flags_t flags);
204
205 static entity_t *record_entity(entity_t *entity, bool is_definition);
206
207 static void semantic_comparison(binary_expression_t *expression);
208
209 #define STORAGE_CLASSES       \
210         STORAGE_CLASSES_NO_EXTERN \
211         case T_extern:
212
213 #define STORAGE_CLASSES_NO_EXTERN \
214         case T_typedef:         \
215         case T_static:          \
216         case T_auto:            \
217         case T_register:        \
218         case T___thread:
219
220 #define TYPE_QUALIFIERS     \
221         case T_const:           \
222         case T_restrict:        \
223         case T_volatile:        \
224         case T_inline:          \
225         case T__forceinline:    \
226         case T___attribute__:
227
228 #define COMPLEX_SPECIFIERS  \
229         case T__Complex:
230 #define IMAGINARY_SPECIFIERS \
231         case T__Imaginary:
232
233 #define TYPE_SPECIFIERS       \
234         case T__Bool:             \
235         case T___builtin_va_list: \
236         case T___typeof__:        \
237         case T__declspec:         \
238         case T_bool:              \
239         case T_char:              \
240         case T_double:            \
241         case T_enum:              \
242         case T_float:             \
243         case T_int:               \
244         case T_long:              \
245         case T_short:             \
246         case T_signed:            \
247         case T_struct:            \
248         case T_union:             \
249         case T_unsigned:          \
250         case T_void:              \
251         case T_wchar_t:           \
252         COMPLEX_SPECIFIERS        \
253         IMAGINARY_SPECIFIERS
254
255 #define DECLARATION_START   \
256         STORAGE_CLASSES         \
257         TYPE_QUALIFIERS         \
258         TYPE_SPECIFIERS
259
260 #define DECLARATION_START_NO_EXTERN \
261         STORAGE_CLASSES_NO_EXTERN       \
262         TYPE_QUALIFIERS                 \
263         TYPE_SPECIFIERS
264
265 #define TYPENAME_START      \
266         TYPE_QUALIFIERS         \
267         TYPE_SPECIFIERS
268
269 #define EXPRESSION_START           \
270         case '!':                        \
271         case '&':                        \
272         case '(':                        \
273         case '*':                        \
274         case '+':                        \
275         case '-':                        \
276         case '~':                        \
277         case T_ANDAND:                   \
278         case T_CHARACTER_CONSTANT:       \
279         case T_FLOATINGPOINT:            \
280         case T_INTEGER:                  \
281         case T_MINUSMINUS:               \
282         case T_PLUSPLUS:                 \
283         case T_STRING_LITERAL:           \
284         case T_WIDE_CHARACTER_CONSTANT:  \
285         case T_WIDE_STRING_LITERAL:      \
286         case T___FUNCDNAME__:            \
287         case T___FUNCSIG__:              \
288         case T___FUNCTION__:             \
289         case T___PRETTY_FUNCTION__:      \
290         case T___alignof__:              \
291         case T___builtin_alloca:         \
292         case T___builtin_classify_type:  \
293         case T___builtin_constant_p:     \
294         case T___builtin_expect:         \
295         case T___builtin_huge_val:       \
296         case T___builtin_inf:            \
297         case T___builtin_inff:           \
298         case T___builtin_infl:           \
299         case T___builtin_isgreater:      \
300         case T___builtin_isgreaterequal: \
301         case T___builtin_isless:         \
302         case T___builtin_islessequal:    \
303         case T___builtin_islessgreater:  \
304         case T___builtin_isunordered:    \
305         case T___builtin_nan:            \
306         case T___builtin_nanf:           \
307         case T___builtin_nanl:           \
308         case T___builtin_offsetof:       \
309         case T___builtin_prefetch:       \
310         case T___builtin_va_arg:         \
311         case T___builtin_va_end:         \
312         case T___builtin_va_start:       \
313         case T___func__:                 \
314         case T___noop:                   \
315         case T__assume:                  \
316         case T_delete:                   \
317         case T_false:                    \
318         case T_sizeof:                   \
319         case T_throw:                    \
320         case T_true:
321
322 /**
323  * Allocate an AST node with given size and
324  * initialize all fields with zero.
325  */
326 static void *allocate_ast_zero(size_t size)
327 {
328         void *res = allocate_ast(size);
329         memset(res, 0, size);
330         return res;
331 }
332
333 /**
334  * Returns the size of an entity node.
335  *
336  * @param kind  the entity kind
337  */
338 static size_t get_entity_struct_size(entity_kind_t kind)
339 {
340         static const size_t sizes[] = {
341                 [ENTITY_VARIABLE]        = sizeof(variable_t),
342                 [ENTITY_PARAMETER]       = sizeof(parameter_t),
343                 [ENTITY_COMPOUND_MEMBER] = sizeof(compound_member_t),
344                 [ENTITY_FUNCTION]        = sizeof(function_t),
345                 [ENTITY_TYPEDEF]         = sizeof(typedef_t),
346                 [ENTITY_STRUCT]          = sizeof(compound_t),
347                 [ENTITY_UNION]           = sizeof(compound_t),
348                 [ENTITY_ENUM]            = sizeof(enum_t),
349                 [ENTITY_ENUM_VALUE]      = sizeof(enum_value_t),
350                 [ENTITY_LABEL]           = sizeof(label_t),
351                 [ENTITY_LOCAL_LABEL]     = sizeof(label_t),
352                 [ENTITY_NAMESPACE]       = sizeof(namespace_t)
353         };
354         assert(kind < lengthof(sizes));
355         assert(sizes[kind] != 0);
356         return sizes[kind];
357 }
358
359 /**
360  * Allocate an entity of given kind and initialize all
361  * fields with zero.
362  */
363 static entity_t *allocate_entity_zero(entity_kind_t kind)
364 {
365         size_t    size   = get_entity_struct_size(kind);
366         entity_t *entity = allocate_ast_zero(size);
367         entity->kind     = kind;
368         return entity;
369 }
370
371 /**
372  * Returns the size of a statement node.
373  *
374  * @param kind  the statement kind
375  */
376 static size_t get_statement_struct_size(statement_kind_t kind)
377 {
378         static const size_t sizes[] = {
379                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
380                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
381                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
382                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
383                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
384                 [STATEMENT_IF]          = sizeof(if_statement_t),
385                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
386                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
387                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
388                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
389                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
390                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
391                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
392                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
393                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
394                 [STATEMENT_FOR]         = sizeof(for_statement_t),
395                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
396                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
397                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
398         };
399         assert(kind < lengthof(sizes));
400         assert(sizes[kind] != 0);
401         return sizes[kind];
402 }
403
404 /**
405  * Returns the size of an expression node.
406  *
407  * @param kind  the expression kind
408  */
409 static size_t get_expression_struct_size(expression_kind_t kind)
410 {
411         static const size_t sizes[] = {
412                 [EXPR_INVALID]                 = sizeof(expression_base_t),
413                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
414                 [EXPR_REFERENCE_ENUM_VALUE]    = sizeof(reference_expression_t),
415                 [EXPR_CONST]                   = sizeof(const_expression_t),
416                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
417                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
418                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
419                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
420                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
421                 [EXPR_CALL]                    = sizeof(call_expression_t),
422                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
423                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
424                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
425                 [EXPR_SELECT]                  = sizeof(select_expression_t),
426                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
427                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
428                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
429                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
430                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
431                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
432                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
433                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
434                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
435                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
436                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
437                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
438                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
439         };
440         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
441                 return sizes[EXPR_UNARY_FIRST];
442         }
443         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
444                 return sizes[EXPR_BINARY_FIRST];
445         }
446         assert(kind < lengthof(sizes));
447         assert(sizes[kind] != 0);
448         return sizes[kind];
449 }
450
451 /**
452  * Allocate a statement node of given kind and initialize all
453  * fields with zero. Sets its source position to the position
454  * of the current token.
455  */
456 static statement_t *allocate_statement_zero(statement_kind_t kind)
457 {
458         size_t       size = get_statement_struct_size(kind);
459         statement_t *res  = allocate_ast_zero(size);
460
461         res->base.kind            = kind;
462         res->base.parent          = current_parent;
463         res->base.source_position = token.source_position;
464         return res;
465 }
466
467 /**
468  * Allocate an expression node of given kind and initialize all
469  * fields with zero.
470  */
471 static expression_t *allocate_expression_zero(expression_kind_t kind)
472 {
473         size_t        size = get_expression_struct_size(kind);
474         expression_t *res  = allocate_ast_zero(size);
475
476         res->base.kind            = kind;
477         res->base.type            = type_error_type;
478         res->base.source_position = token.source_position;
479         return res;
480 }
481
482 /**
483  * Creates a new invalid expression at the source position
484  * of the current token.
485  */
486 static expression_t *create_invalid_expression(void)
487 {
488         return allocate_expression_zero(EXPR_INVALID);
489 }
490
491 /**
492  * Creates a new invalid statement.
493  */
494 static statement_t *create_invalid_statement(void)
495 {
496         return allocate_statement_zero(STATEMENT_INVALID);
497 }
498
499 /**
500  * Allocate a new empty statement.
501  */
502 static statement_t *create_empty_statement(void)
503 {
504         return allocate_statement_zero(STATEMENT_EMPTY);
505 }
506
507 /**
508  * Returns the size of a type node.
509  *
510  * @param kind  the type kind
511  */
512 static size_t get_type_struct_size(type_kind_t kind)
513 {
514         static const size_t sizes[] = {
515                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
516                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
517                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
518                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
519                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
520                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
521                 [TYPE_ENUM]            = sizeof(enum_type_t),
522                 [TYPE_FUNCTION]        = sizeof(function_type_t),
523                 [TYPE_POINTER]         = sizeof(pointer_type_t),
524                 [TYPE_ARRAY]           = sizeof(array_type_t),
525                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
526                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
527                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
528         };
529         assert(lengthof(sizes) == (int)TYPE_TYPEOF + 1);
530         assert(kind <= TYPE_TYPEOF);
531         assert(sizes[kind] != 0);
532         return sizes[kind];
533 }
534
535 /**
536  * Allocate a type node of given kind and initialize all
537  * fields with zero.
538  *
539  * @param kind             type kind to allocate
540  */
541 static type_t *allocate_type_zero(type_kind_t kind)
542 {
543         size_t  size = get_type_struct_size(kind);
544         type_t *res  = obstack_alloc(type_obst, size);
545         memset(res, 0, size);
546         res->base.kind = kind;
547
548         return res;
549 }
550
551 /**
552  * Returns the size of an initializer node.
553  *
554  * @param kind  the initializer kind
555  */
556 static size_t get_initializer_size(initializer_kind_t kind)
557 {
558         static const size_t sizes[] = {
559                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
560                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
561                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
562                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
563                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
564         };
565         assert(kind < lengthof(sizes));
566         assert(sizes[kind] != 0);
567         return sizes[kind];
568 }
569
570 /**
571  * Allocate an initializer node of given kind and initialize all
572  * fields with zero.
573  */
574 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
575 {
576         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
577         result->kind          = kind;
578
579         return result;
580 }
581
582 /**
583  * Returns the index of the top element of the environment stack.
584  */
585 static size_t environment_top(void)
586 {
587         return ARR_LEN(environment_stack);
588 }
589
590 /**
591  * Returns the index of the top element of the global label stack.
592  */
593 static size_t label_top(void)
594 {
595         return ARR_LEN(label_stack);
596 }
597
598 /**
599  * Return the next token.
600  */
601 static inline void next_token(void)
602 {
603         token                              = lookahead_buffer[lookahead_bufpos];
604         lookahead_buffer[lookahead_bufpos] = lexer_token;
605         lexer_next_token();
606
607         lookahead_bufpos = (lookahead_bufpos + 1) % MAX_LOOKAHEAD;
608
609 #ifdef PRINT_TOKENS
610         print_token(stderr, &token);
611         fprintf(stderr, "\n");
612 #endif
613 }
614
615 /**
616  * Return the next token with a given lookahead.
617  */
618 static inline const token_t *look_ahead(size_t num)
619 {
620         assert(0 < num && num <= MAX_LOOKAHEAD);
621         size_t pos = (lookahead_bufpos + num - 1) % MAX_LOOKAHEAD;
622         return &lookahead_buffer[pos];
623 }
624
625 /**
626  * Adds a token type to the token type anchor set (a multi-set).
627  */
628 static void add_anchor_token(int token_type)
629 {
630         assert(0 <= token_type && token_type < T_LAST_TOKEN);
631         ++token_anchor_set[token_type];
632 }
633
634 /**
635  * Set the number of tokens types of the given type
636  * to zero and return the old count.
637  */
638 static int save_and_reset_anchor_state(int token_type)
639 {
640         assert(0 <= token_type && token_type < T_LAST_TOKEN);
641         int count = token_anchor_set[token_type];
642         token_anchor_set[token_type] = 0;
643         return count;
644 }
645
646 /**
647  * Restore the number of token types to the given count.
648  */
649 static void restore_anchor_state(int token_type, int count)
650 {
651         assert(0 <= token_type && token_type < T_LAST_TOKEN);
652         token_anchor_set[token_type] = count;
653 }
654
655 /**
656  * Remove a token type from the token type anchor set (a multi-set).
657  */
658 static void rem_anchor_token(int token_type)
659 {
660         assert(0 <= token_type && token_type < T_LAST_TOKEN);
661         assert(token_anchor_set[token_type] != 0);
662         --token_anchor_set[token_type];
663 }
664
665 /**
666  * Return true if the token type of the current token is
667  * in the anchor set.
668  */
669 static bool at_anchor(void)
670 {
671         if (token.type < 0)
672                 return false;
673         return token_anchor_set[token.type];
674 }
675
676 /**
677  * Eat tokens until a matching token type is found.
678  */
679 static void eat_until_matching_token(int type)
680 {
681         int end_token;
682         switch (type) {
683                 case '(': end_token = ')';  break;
684                 case '{': end_token = '}';  break;
685                 case '[': end_token = ']';  break;
686                 default:  end_token = type; break;
687         }
688
689         unsigned parenthesis_count = 0;
690         unsigned brace_count       = 0;
691         unsigned bracket_count     = 0;
692         while (token.type        != end_token ||
693                parenthesis_count != 0         ||
694                brace_count       != 0         ||
695                bracket_count     != 0) {
696                 switch (token.type) {
697                 case T_EOF: return;
698                 case '(': ++parenthesis_count; break;
699                 case '{': ++brace_count;       break;
700                 case '[': ++bracket_count;     break;
701
702                 case ')':
703                         if (parenthesis_count > 0)
704                                 --parenthesis_count;
705                         goto check_stop;
706
707                 case '}':
708                         if (brace_count > 0)
709                                 --brace_count;
710                         goto check_stop;
711
712                 case ']':
713                         if (bracket_count > 0)
714                                 --bracket_count;
715 check_stop:
716                         if (token.type        == end_token &&
717                             parenthesis_count == 0         &&
718                             brace_count       == 0         &&
719                             bracket_count     == 0)
720                                 return;
721                         break;
722
723                 default:
724                         break;
725                 }
726                 next_token();
727         }
728 }
729
730 /**
731  * Eat input tokens until an anchor is found.
732  */
733 static void eat_until_anchor(void)
734 {
735         while (token_anchor_set[token.type] == 0) {
736                 if (token.type == '(' || token.type == '{' || token.type == '[')
737                         eat_until_matching_token(token.type);
738                 next_token();
739         }
740 }
741
742 /**
743  * Eat a whole block from input tokens.
744  */
745 static void eat_block(void)
746 {
747         eat_until_matching_token('{');
748         if (token.type == '}')
749                 next_token();
750 }
751
752 #define eat(token_type) (assert(token.type == (token_type)), next_token())
753
754 /**
755  * Report a parse error because an expected token was not found.
756  */
757 static
758 #if defined __GNUC__ && __GNUC__ >= 4
759 __attribute__((sentinel))
760 #endif
761 void parse_error_expected(const char *message, ...)
762 {
763         if (message != NULL) {
764                 errorf(HERE, "%s", message);
765         }
766         va_list ap;
767         va_start(ap, message);
768         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
769         va_end(ap);
770 }
771
772 /**
773  * Report an incompatible type.
774  */
775 static void type_error_incompatible(const char *msg,
776                 const source_position_t *source_position, type_t *type1, type_t *type2)
777 {
778         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
779                msg, type1, type2);
780 }
781
782 /**
783  * Expect the current token is the expected token.
784  * If not, generate an error, eat the current statement,
785  * and goto the end_error label.
786  */
787 #define expect(expected, error_label)                     \
788         do {                                                  \
789                 if (UNLIKELY(token.type != (expected))) {         \
790                         parse_error_expected(NULL, (expected), NULL); \
791                         add_anchor_token(expected);                   \
792                         eat_until_anchor();                           \
793                         if (token.type == expected)                   \
794                                 next_token();                             \
795                         rem_anchor_token(expected);                   \
796                         goto error_label;                             \
797                 }                                                 \
798                 next_token();                                     \
799         } while (0)
800
801 /**
802  * Push a given scope on the scope stack and make it the
803  * current scope
804  */
805 static scope_t *scope_push(scope_t *new_scope)
806 {
807         if (current_scope != NULL) {
808                 new_scope->depth = current_scope->depth + 1;
809         }
810
811         scope_t *old_scope = current_scope;
812         current_scope      = new_scope;
813         return old_scope;
814 }
815
816 /**
817  * Pop the current scope from the scope stack.
818  */
819 static void scope_pop(scope_t *old_scope)
820 {
821         current_scope = old_scope;
822 }
823
824 /**
825  * Search an entity by its symbol in a given namespace.
826  */
827 static entity_t *get_entity(const symbol_t *const symbol,
828                             namespace_tag_t namespc)
829 {
830         entity_t *entity = symbol->entity;
831         for (; entity != NULL; entity = entity->base.symbol_next) {
832                 if (entity->base.namespc == namespc)
833                         return entity;
834         }
835
836         return NULL;
837 }
838
839 /**
840  * pushs an entity on the environment stack and links the corresponding symbol
841  * it.
842  */
843 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
844 {
845         symbol_t           *symbol  = entity->base.symbol;
846         entity_namespace_t  namespc = entity->base.namespc;
847         assert(namespc != NAMESPACE_INVALID);
848
849         /* replace/add entity into entity list of the symbol */
850         entity_t **anchor;
851         entity_t  *iter;
852         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
853                 iter = *anchor;
854                 if (iter == NULL)
855                         break;
856
857                 /* replace an entry? */
858                 if (iter->base.namespc == namespc) {
859                         entity->base.symbol_next = iter->base.symbol_next;
860                         break;
861                 }
862         }
863         *anchor = entity;
864
865         /* remember old declaration */
866         stack_entry_t entry;
867         entry.symbol     = symbol;
868         entry.old_entity = iter;
869         entry.namespc    = namespc;
870         ARR_APP1(stack_entry_t, *stack_ptr, entry);
871 }
872
873 /**
874  * Push an entity on the environment stack.
875  */
876 static void environment_push(entity_t *entity)
877 {
878         assert(entity->base.source_position.input_name != NULL);
879         assert(entity->base.parent_scope != NULL);
880         stack_push(&environment_stack, entity);
881 }
882
883 /**
884  * Push a declaration on the global label stack.
885  *
886  * @param declaration  the declaration
887  */
888 static void label_push(entity_t *label)
889 {
890         /* we abuse the parameters scope as parent for the labels */
891         label->base.parent_scope = &current_function->parameters;
892         stack_push(&label_stack, label);
893 }
894
895 /**
896  * pops symbols from the environment stack until @p new_top is the top element
897  */
898 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
899 {
900         stack_entry_t *stack = *stack_ptr;
901         size_t         top   = ARR_LEN(stack);
902         size_t         i;
903
904         assert(new_top <= top);
905         if (new_top == top)
906                 return;
907
908         for (i = top; i > new_top; --i) {
909                 stack_entry_t *entry = &stack[i - 1];
910
911                 entity_t           *old_entity = entry->old_entity;
912                 symbol_t           *symbol     = entry->symbol;
913                 entity_namespace_t  namespc    = entry->namespc;
914
915                 /* replace with old_entity/remove */
916                 entity_t **anchor;
917                 entity_t  *iter;
918                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
919                         iter = *anchor;
920                         assert(iter != NULL);
921                         /* replace an entry? */
922                         if (iter->base.namespc == namespc)
923                                 break;
924                 }
925
926                 /* restore definition from outer scopes (if there was one) */
927                 if (old_entity != NULL) {
928                         old_entity->base.symbol_next = iter->base.symbol_next;
929                         *anchor                      = old_entity;
930                 } else {
931                         /* remove entry from list */
932                         *anchor = iter->base.symbol_next;
933                 }
934         }
935
936         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
937 }
938
939 /**
940  * Pop all entries from the environment stack until the new_top
941  * is reached.
942  *
943  * @param new_top  the new stack top
944  */
945 static void environment_pop_to(size_t new_top)
946 {
947         stack_pop_to(&environment_stack, new_top);
948 }
949
950 /**
951  * Pop all entries from the global label stack until the new_top
952  * is reached.
953  *
954  * @param new_top  the new stack top
955  */
956 static void label_pop_to(size_t new_top)
957 {
958         stack_pop_to(&label_stack, new_top);
959 }
960
961 static int get_akind_rank(atomic_type_kind_t akind)
962 {
963         return (int) akind;
964 }
965
966 /**
967  * Return the type rank for an atomic type.
968  */
969 static int get_rank(const type_t *type)
970 {
971         assert(!is_typeref(type));
972         if (type->kind == TYPE_ENUM)
973                 return get_akind_rank(type->enumt.akind);
974
975         assert(type->kind == TYPE_ATOMIC);
976         return get_akind_rank(type->atomic.akind);
977 }
978
979 /**
980  * Do integer promotion for a given type.
981  *
982  * @param type  the type to promote
983  * @return the promoted type
984  */
985 static type_t *promote_integer(type_t *type)
986 {
987         if (type->kind == TYPE_BITFIELD)
988                 type = type->bitfield.base_type;
989
990         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
991                 type = type_int;
992
993         return type;
994 }
995
996 /**
997  * Create a cast expression.
998  *
999  * @param expression  the expression to cast
1000  * @param dest_type   the destination type
1001  */
1002 static expression_t *create_cast_expression(expression_t *expression,
1003                                             type_t *dest_type)
1004 {
1005         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
1006
1007         cast->unary.value = expression;
1008         cast->base.type   = dest_type;
1009
1010         return cast;
1011 }
1012
1013 /**
1014  * Check if a given expression represents a null pointer constant.
1015  *
1016  * @param expression  the expression to check
1017  */
1018 static bool is_null_pointer_constant(const expression_t *expression)
1019 {
1020         /* skip void* cast */
1021         if (expression->kind == EXPR_UNARY_CAST ||
1022                         expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
1023                 type_t *const type = skip_typeref(expression->base.type);
1024                 if (types_compatible(type, type_void_ptr))
1025                         expression = expression->unary.value;
1026         }
1027
1028         type_t *const type = skip_typeref(expression->base.type);
1029         return
1030                 is_type_integer(type)              &&
1031                 is_constant_expression(expression) &&
1032                 fold_constant(expression) == 0;
1033 }
1034
1035 /**
1036  * Create an implicit cast expression.
1037  *
1038  * @param expression  the expression to cast
1039  * @param dest_type   the destination type
1040  */
1041 static expression_t *create_implicit_cast(expression_t *expression,
1042                                           type_t *dest_type)
1043 {
1044         type_t *const source_type = expression->base.type;
1045
1046         if (source_type == dest_type)
1047                 return expression;
1048
1049         return create_cast_expression(expression, dest_type);
1050 }
1051
1052 typedef enum assign_error_t {
1053         ASSIGN_SUCCESS,
1054         ASSIGN_ERROR_INCOMPATIBLE,
1055         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
1056         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
1057         ASSIGN_WARNING_POINTER_FROM_INT,
1058         ASSIGN_WARNING_INT_FROM_POINTER
1059 } assign_error_t;
1060
1061 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
1062                                 const expression_t *const right,
1063                                 const char *context,
1064                                 const source_position_t *source_position)
1065 {
1066         type_t *const orig_type_right = right->base.type;
1067         type_t *const type_left       = skip_typeref(orig_type_left);
1068         type_t *const type_right      = skip_typeref(orig_type_right);
1069
1070         switch (error) {
1071         case ASSIGN_SUCCESS:
1072                 return;
1073         case ASSIGN_ERROR_INCOMPATIBLE:
1074                 errorf(source_position,
1075                        "destination type '%T' in %s is incompatible with type '%T'",
1076                        orig_type_left, context, orig_type_right);
1077                 return;
1078
1079         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1080                 if (warning.other) {
1081                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
1082                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
1083
1084                         /* the left type has all qualifiers from the right type */
1085                         unsigned missing_qualifiers
1086                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1087                         warningf(source_position,
1088                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1089                                         orig_type_left, context, orig_type_right, missing_qualifiers);
1090                 }
1091                 return;
1092         }
1093
1094         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1095                 if (warning.other) {
1096                         warningf(source_position,
1097                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1098                                         orig_type_left, context, right, orig_type_right);
1099                 }
1100                 return;
1101
1102         case ASSIGN_WARNING_POINTER_FROM_INT:
1103                 if (warning.other) {
1104                         warningf(source_position,
1105                                         "%s makes pointer '%T' from integer '%T' without a cast",
1106                                         context, orig_type_left, orig_type_right);
1107                 }
1108                 return;
1109
1110         case ASSIGN_WARNING_INT_FROM_POINTER:
1111                 if (warning.other) {
1112                         warningf(source_position,
1113                                         "%s makes integer '%T' from pointer '%T' without a cast",
1114                                         context, orig_type_left, orig_type_right);
1115                 }
1116                 return;
1117
1118         default:
1119                 panic("invalid error value");
1120         }
1121 }
1122
1123 /** Implements the rules from § 6.5.16.1 */
1124 static assign_error_t semantic_assign(type_t *orig_type_left,
1125                                       const expression_t *const right)
1126 {
1127         type_t *const orig_type_right = right->base.type;
1128         type_t *const type_left       = skip_typeref(orig_type_left);
1129         type_t *const type_right      = skip_typeref(orig_type_right);
1130
1131         if (is_type_pointer(type_left)) {
1132                 if (is_null_pointer_constant(right)) {
1133                         return ASSIGN_SUCCESS;
1134                 } else if (is_type_pointer(type_right)) {
1135                         type_t *points_to_left
1136                                 = skip_typeref(type_left->pointer.points_to);
1137                         type_t *points_to_right
1138                                 = skip_typeref(type_right->pointer.points_to);
1139                         assign_error_t res = ASSIGN_SUCCESS;
1140
1141                         /* the left type has all qualifiers from the right type */
1142                         unsigned missing_qualifiers
1143                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1144                         if (missing_qualifiers != 0) {
1145                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1146                         }
1147
1148                         points_to_left  = get_unqualified_type(points_to_left);
1149                         points_to_right = get_unqualified_type(points_to_right);
1150
1151                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1152                                 return res;
1153
1154                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1155                                 /* ISO/IEC 14882:1998(E) §C.1.2:6 */
1156                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1157                         }
1158
1159                         if (!types_compatible(points_to_left, points_to_right)) {
1160                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1161                         }
1162
1163                         return res;
1164                 } else if (is_type_integer(type_right)) {
1165                         return ASSIGN_WARNING_POINTER_FROM_INT;
1166                 }
1167         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1168             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1169                 && is_type_pointer(type_right))) {
1170                 return ASSIGN_SUCCESS;
1171         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1172                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1173                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1174                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1175                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1176                         return ASSIGN_SUCCESS;
1177                 }
1178         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1179                 return ASSIGN_WARNING_INT_FROM_POINTER;
1180         }
1181
1182         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1183                 return ASSIGN_SUCCESS;
1184
1185         return ASSIGN_ERROR_INCOMPATIBLE;
1186 }
1187
1188 static expression_t *parse_constant_expression(void)
1189 {
1190         expression_t *result = parse_sub_expression(PREC_CONDITIONAL);
1191
1192         if (!is_constant_expression(result)) {
1193                 errorf(&result->base.source_position,
1194                        "expression '%E' is not constant", result);
1195         }
1196
1197         return result;
1198 }
1199
1200 static expression_t *parse_assignment_expression(void)
1201 {
1202         return parse_sub_expression(PREC_ASSIGNMENT);
1203 }
1204
1205 static string_t parse_string_literals(void)
1206 {
1207         assert(token.type == T_STRING_LITERAL);
1208         string_t result = token.v.string;
1209
1210         next_token();
1211
1212         while (token.type == T_STRING_LITERAL) {
1213                 result = concat_strings(&result, &token.v.string);
1214                 next_token();
1215         }
1216
1217         return result;
1218 }
1219
1220 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1221         [GNU_AK_CONST]                  = "const",
1222         [GNU_AK_VOLATILE]               = "volatile",
1223         [GNU_AK_CDECL]                  = "cdecl",
1224         [GNU_AK_STDCALL]                = "stdcall",
1225         [GNU_AK_FASTCALL]               = "fastcall",
1226         [GNU_AK_DEPRECATED]             = "deprecated",
1227         [GNU_AK_NOINLINE]               = "noinline",
1228         [GNU_AK_RETURNS_TWICE]          = "returns_twice",
1229         [GNU_AK_NORETURN]               = "noreturn",
1230         [GNU_AK_NAKED]                  = "naked",
1231         [GNU_AK_PURE]                   = "pure",
1232         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1233         [GNU_AK_MALLOC]                 = "malloc",
1234         [GNU_AK_WEAK]                   = "weak",
1235         [GNU_AK_CONSTRUCTOR]            = "constructor",
1236         [GNU_AK_DESTRUCTOR]             = "destructor",
1237         [GNU_AK_NOTHROW]                = "nothrow",
1238         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1239         [GNU_AK_COMMON]                 = "common",
1240         [GNU_AK_NOCOMMON]               = "nocommon",
1241         [GNU_AK_PACKED]                 = "packed",
1242         [GNU_AK_SHARED]                 = "shared",
1243         [GNU_AK_NOTSHARED]              = "notshared",
1244         [GNU_AK_USED]                   = "used",
1245         [GNU_AK_UNUSED]                 = "unused",
1246         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1247         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1248         [GNU_AK_LONGCALL]               = "longcall",
1249         [GNU_AK_SHORTCALL]              = "shortcall",
1250         [GNU_AK_LONG_CALL]              = "long_call",
1251         [GNU_AK_SHORT_CALL]             = "short_call",
1252         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1253         [GNU_AK_INTERRUPT]              = "interrupt",
1254         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1255         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1256         [GNU_AK_NESTING]                = "nesting",
1257         [GNU_AK_NEAR]                   = "near",
1258         [GNU_AK_FAR]                    = "far",
1259         [GNU_AK_SIGNAL]                 = "signal",
1260         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1261         [GNU_AK_TINY_DATA]              = "tiny_data",
1262         [GNU_AK_SAVEALL]                = "saveall",
1263         [GNU_AK_FLATTEN]                = "flatten",
1264         [GNU_AK_SSEREGPARM]             = "sseregparm",
1265         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1266         [GNU_AK_RETURN_TWICE]           = "return_twice",
1267         [GNU_AK_MAY_ALIAS]              = "may_alias",
1268         [GNU_AK_MS_STRUCT]              = "ms_struct",
1269         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1270         [GNU_AK_DLLIMPORT]              = "dllimport",
1271         [GNU_AK_DLLEXPORT]              = "dllexport",
1272         [GNU_AK_ALIGNED]                = "aligned",
1273         [GNU_AK_ALIAS]                  = "alias",
1274         [GNU_AK_SECTION]                = "section",
1275         [GNU_AK_FORMAT]                 = "format",
1276         [GNU_AK_FORMAT_ARG]             = "format_arg",
1277         [GNU_AK_WEAKREF]                = "weakref",
1278         [GNU_AK_NONNULL]                = "nonnull",
1279         [GNU_AK_TLS_MODEL]              = "tls_model",
1280         [GNU_AK_VISIBILITY]             = "visibility",
1281         [GNU_AK_REGPARM]                = "regparm",
1282         [GNU_AK_MODE]                   = "mode",
1283         [GNU_AK_MODEL]                  = "model",
1284         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1285         [GNU_AK_SP_SWITCH]              = "sp_switch",
1286         [GNU_AK_SENTINEL]               = "sentinel"
1287 };
1288
1289 /**
1290  * compare two string, ignoring double underscores on the second.
1291  */
1292 static int strcmp_underscore(const char *s1, const char *s2)
1293 {
1294         if (s2[0] == '_' && s2[1] == '_') {
1295                 size_t len2 = strlen(s2);
1296                 size_t len1 = strlen(s1);
1297                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1298                         return strncmp(s1, s2+2, len2-4);
1299                 }
1300         }
1301
1302         return strcmp(s1, s2);
1303 }
1304
1305 /**
1306  * Allocate a new gnu temporal attribute of given kind.
1307  */
1308 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1309 {
1310         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1311         attribute->kind            = kind;
1312         attribute->next            = NULL;
1313         attribute->invalid         = false;
1314         attribute->has_arguments   = false;
1315
1316         return attribute;
1317 }
1318
1319 /**
1320  * Parse one constant expression argument of the given attribute.
1321  */
1322 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1323 {
1324         expression_t *expression;
1325         add_anchor_token(')');
1326         expression = parse_constant_expression();
1327         rem_anchor_token(')');
1328         expect(')', end_error);
1329         attribute->u.argument = fold_constant(expression);
1330         return;
1331 end_error:
1332         attribute->invalid = true;
1333 }
1334
1335 /**
1336  * Parse a list of constant expressions arguments of the given attribute.
1337  */
1338 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1339 {
1340         argument_list_t **list = &attribute->u.arguments;
1341         argument_list_t  *entry;
1342         expression_t     *expression;
1343         add_anchor_token(')');
1344         add_anchor_token(',');
1345         while (true) {
1346                 expression = parse_constant_expression();
1347                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1348                 entry->argument = fold_constant(expression);
1349                 entry->next     = NULL;
1350                 *list = entry;
1351                 list = &entry->next;
1352                 if (token.type != ',')
1353                         break;
1354                 next_token();
1355         }
1356         rem_anchor_token(',');
1357         rem_anchor_token(')');
1358         expect(')', end_error);
1359         return;
1360 end_error:
1361         attribute->invalid = true;
1362 }
1363
1364 /**
1365  * Parse one string literal argument of the given attribute.
1366  */
1367 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1368                                            string_t *string)
1369 {
1370         add_anchor_token('(');
1371         if (token.type != T_STRING_LITERAL) {
1372                 parse_error_expected("while parsing attribute directive",
1373                                      T_STRING_LITERAL, NULL);
1374                 goto end_error;
1375         }
1376         *string = parse_string_literals();
1377         rem_anchor_token('(');
1378         expect(')', end_error);
1379         return;
1380 end_error:
1381         attribute->invalid = true;
1382 }
1383
1384 /**
1385  * Parse one tls model of the given attribute.
1386  */
1387 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1388 {
1389         static const char *const tls_models[] = {
1390                 "global-dynamic",
1391                 "local-dynamic",
1392                 "initial-exec",
1393                 "local-exec"
1394         };
1395         string_t string = { NULL, 0 };
1396         parse_gnu_attribute_string_arg(attribute, &string);
1397         if (string.begin != NULL) {
1398                 for (size_t i = 0; i < 4; ++i) {
1399                         if (strcmp(tls_models[i], string.begin) == 0) {
1400                                 attribute->u.value = i;
1401                                 return;
1402                         }
1403                 }
1404                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1405         }
1406         attribute->invalid = true;
1407 }
1408
1409 /**
1410  * Parse one tls model of the given attribute.
1411  */
1412 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1413 {
1414         static const char *const visibilities[] = {
1415                 "default",
1416                 "protected",
1417                 "hidden",
1418                 "internal"
1419         };
1420         string_t string = { NULL, 0 };
1421         parse_gnu_attribute_string_arg(attribute, &string);
1422         if (string.begin != NULL) {
1423                 for (size_t i = 0; i < 4; ++i) {
1424                         if (strcmp(visibilities[i], string.begin) == 0) {
1425                                 attribute->u.value = i;
1426                                 return;
1427                         }
1428                 }
1429                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1430         }
1431         attribute->invalid = true;
1432 }
1433
1434 /**
1435  * Parse one (code) model of the given attribute.
1436  */
1437 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1438 {
1439         static const char *const visibilities[] = {
1440                 "small",
1441                 "medium",
1442                 "large"
1443         };
1444         string_t string = { NULL, 0 };
1445         parse_gnu_attribute_string_arg(attribute, &string);
1446         if (string.begin != NULL) {
1447                 for (int i = 0; i < 3; ++i) {
1448                         if (strcmp(visibilities[i], string.begin) == 0) {
1449                                 attribute->u.value = i;
1450                                 return;
1451                         }
1452                 }
1453                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1454         }
1455         attribute->invalid = true;
1456 }
1457
1458 /**
1459  * Parse one mode of the given attribute.
1460  */
1461 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1462 {
1463         add_anchor_token(')');
1464
1465         if (token.type != T_IDENTIFIER) {
1466                 expect(T_IDENTIFIER, end_error);
1467         }
1468
1469         attribute->u.symbol = token.v.symbol;
1470         next_token();
1471
1472         rem_anchor_token(')');
1473         expect(')', end_error);
1474         return;
1475 end_error:
1476         attribute->invalid = true;
1477 }
1478
1479 /**
1480  * Parse one interrupt argument of the given attribute.
1481  */
1482 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1483 {
1484         static const char *const interrupts[] = {
1485                 "IRQ",
1486                 "FIQ",
1487                 "SWI",
1488                 "ABORT",
1489                 "UNDEF"
1490         };
1491         string_t string = { NULL, 0 };
1492         parse_gnu_attribute_string_arg(attribute, &string);
1493         if (string.begin != NULL) {
1494                 for (size_t i = 0; i < 5; ++i) {
1495                         if (strcmp(interrupts[i], string.begin) == 0) {
1496                                 attribute->u.value = i;
1497                                 return;
1498                         }
1499                 }
1500                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1501         }
1502         attribute->invalid = true;
1503 }
1504
1505 /**
1506  * Parse ( identifier, const expression, const expression )
1507  */
1508 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1509 {
1510         static const char *const format_names[] = {
1511                 "printf",
1512                 "scanf",
1513                 "strftime",
1514                 "strfmon"
1515         };
1516         int i;
1517
1518         if (token.type != T_IDENTIFIER) {
1519                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1520                 goto end_error;
1521         }
1522         const char *name = token.v.symbol->string;
1523         for (i = 0; i < 4; ++i) {
1524                 if (strcmp_underscore(format_names[i], name) == 0)
1525                         break;
1526         }
1527         if (i >= 4) {
1528                 if (warning.attribute)
1529                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1530         }
1531         next_token();
1532
1533         expect(',', end_error);
1534         add_anchor_token(')');
1535         add_anchor_token(',');
1536         parse_constant_expression();
1537         rem_anchor_token(',');
1538         rem_anchor_token(')');
1539
1540         expect(',', end_error);
1541         add_anchor_token(')');
1542         parse_constant_expression();
1543         rem_anchor_token(')');
1544         expect(')', end_error);
1545         return;
1546 end_error:
1547         attribute->u.value = true;
1548 }
1549
1550 /**
1551  * Check that a given GNU attribute has no arguments.
1552  */
1553 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1554 {
1555         if (!attribute->has_arguments)
1556                 return;
1557
1558         /* should have no arguments */
1559         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1560         eat_until_matching_token('(');
1561         /* we have already consumed '(', so we stop before ')', eat it */
1562         eat(')');
1563         attribute->invalid = true;
1564 }
1565
1566 /**
1567  * Parse one GNU attribute.
1568  *
1569  * Note that attribute names can be specified WITH or WITHOUT
1570  * double underscores, ie const or __const__.
1571  *
1572  * The following attributes are parsed without arguments
1573  *  const
1574  *  volatile
1575  *  cdecl
1576  *  stdcall
1577  *  fastcall
1578  *  deprecated
1579  *  noinline
1580  *  noreturn
1581  *  naked
1582  *  pure
1583  *  always_inline
1584  *  malloc
1585  *  weak
1586  *  constructor
1587  *  destructor
1588  *  nothrow
1589  *  transparent_union
1590  *  common
1591  *  nocommon
1592  *  packed
1593  *  shared
1594  *  notshared
1595  *  used
1596  *  unused
1597  *  no_instrument_function
1598  *  warn_unused_result
1599  *  longcall
1600  *  shortcall
1601  *  long_call
1602  *  short_call
1603  *  function_vector
1604  *  interrupt_handler
1605  *  nmi_handler
1606  *  nesting
1607  *  near
1608  *  far
1609  *  signal
1610  *  eightbit_data
1611  *  tiny_data
1612  *  saveall
1613  *  flatten
1614  *  sseregparm
1615  *  externally_visible
1616  *  return_twice
1617  *  may_alias
1618  *  ms_struct
1619  *  gcc_struct
1620  *  dllimport
1621  *  dllexport
1622  *
1623  * The following attributes are parsed with arguments
1624  *  aligned( const expression )
1625  *  alias( string literal )
1626  *  section( string literal )
1627  *  format( identifier, const expression, const expression )
1628  *  format_arg( const expression )
1629  *  tls_model( string literal )
1630  *  visibility( string literal )
1631  *  regparm( const expression )
1632  *  model( string leteral )
1633  *  trap_exit( const expression )
1634  *  sp_switch( string literal )
1635  *
1636  * The following attributes might have arguments
1637  *  weak_ref( string literal )
1638  *  non_null( const expression // ',' )
1639  *  interrupt( string literal )
1640  *  sentinel( constant expression )
1641  */
1642 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1643 {
1644         gnu_attribute_t *head      = *attributes;
1645         gnu_attribute_t *last      = *attributes;
1646         decl_modifiers_t modifiers = 0;
1647         gnu_attribute_t *attribute;
1648
1649         eat(T___attribute__);
1650         expect('(', end_error);
1651         expect('(', end_error);
1652
1653         if (token.type != ')') {
1654                 /* find the end of the list */
1655                 if (last != NULL) {
1656                         while (last->next != NULL)
1657                                 last = last->next;
1658                 }
1659
1660                 /* non-empty attribute list */
1661                 while (true) {
1662                         const char *name;
1663                         if (token.type == T_const) {
1664                                 name = "const";
1665                         } else if (token.type == T_volatile) {
1666                                 name = "volatile";
1667                         } else if (token.type == T_cdecl) {
1668                                 /* __attribute__((cdecl)), WITH ms mode */
1669                                 name = "cdecl";
1670                         } else if (token.type == T_IDENTIFIER) {
1671                                 const symbol_t *sym = token.v.symbol;
1672                                 name = sym->string;
1673                         } else {
1674                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1675                                 break;
1676                         }
1677
1678                         next_token();
1679
1680                         int i;
1681                         for (i = 0; i < GNU_AK_LAST; ++i) {
1682                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1683                                         break;
1684                         }
1685                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1686
1687                         attribute = NULL;
1688                         if (kind == GNU_AK_LAST) {
1689                                 if (warning.attribute)
1690                                         warningf(HERE, "'%s' attribute directive ignored", name);
1691
1692                                 /* skip possible arguments */
1693                                 if (token.type == '(') {
1694                                         eat_until_matching_token(')');
1695                                 }
1696                         } else {
1697                                 /* check for arguments */
1698                                 attribute = allocate_gnu_attribute(kind);
1699                                 if (token.type == '(') {
1700                                         next_token();
1701                                         if (token.type == ')') {
1702                                                 /* empty args are allowed */
1703                                                 next_token();
1704                                         } else
1705                                                 attribute->has_arguments = true;
1706                                 }
1707
1708                                 switch (kind) {
1709                                 case GNU_AK_VOLATILE:
1710                                 case GNU_AK_NAKED:
1711                                 case GNU_AK_MALLOC:
1712                                 case GNU_AK_WEAK:
1713                                 case GNU_AK_COMMON:
1714                                 case GNU_AK_NOCOMMON:
1715                                 case GNU_AK_SHARED:
1716                                 case GNU_AK_NOTSHARED:
1717                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1718                                 case GNU_AK_WARN_UNUSED_RESULT:
1719                                 case GNU_AK_LONGCALL:
1720                                 case GNU_AK_SHORTCALL:
1721                                 case GNU_AK_LONG_CALL:
1722                                 case GNU_AK_SHORT_CALL:
1723                                 case GNU_AK_FUNCTION_VECTOR:
1724                                 case GNU_AK_INTERRUPT_HANDLER:
1725                                 case GNU_AK_NMI_HANDLER:
1726                                 case GNU_AK_NESTING:
1727                                 case GNU_AK_NEAR:
1728                                 case GNU_AK_FAR:
1729                                 case GNU_AK_SIGNAL:
1730                                 case GNU_AK_EIGTHBIT_DATA:
1731                                 case GNU_AK_TINY_DATA:
1732                                 case GNU_AK_SAVEALL:
1733                                 case GNU_AK_FLATTEN:
1734                                 case GNU_AK_SSEREGPARM:
1735                                 case GNU_AK_EXTERNALLY_VISIBLE:
1736                                 case GNU_AK_RETURN_TWICE:
1737                                 case GNU_AK_MAY_ALIAS:
1738                                 case GNU_AK_MS_STRUCT:
1739                                 case GNU_AK_GCC_STRUCT:
1740                                         goto no_arg;
1741
1742                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1743                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1744                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1745                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1746                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1747                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1748                                 case GNU_AK_CONST:             modifiers |= DM_CONST;             goto no_arg;
1749                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1750                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1751                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1752                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1753                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1754                                 case GNU_AK_RETURNS_TWICE:     modifiers |= DM_RETURNS_TWICE;     goto no_arg;
1755                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1756                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1757                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1758                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1759                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1760                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1761
1762                                 case GNU_AK_ALIGNED:
1763                                         /* __align__ may be used without an argument */
1764                                         if (attribute->has_arguments) {
1765                                                 parse_gnu_attribute_const_arg(attribute);
1766                                         }
1767                                         break;
1768
1769                                 case GNU_AK_FORMAT_ARG:
1770                                 case GNU_AK_REGPARM:
1771                                 case GNU_AK_TRAP_EXIT:
1772                                         if (!attribute->has_arguments) {
1773                                                 /* should have arguments */
1774                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1775                                                 attribute->invalid = true;
1776                                         } else
1777                                                 parse_gnu_attribute_const_arg(attribute);
1778                                         break;
1779                                 case GNU_AK_ALIAS:
1780                                 case GNU_AK_SECTION:
1781                                 case GNU_AK_SP_SWITCH:
1782                                         if (!attribute->has_arguments) {
1783                                                 /* should have arguments */
1784                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1785                                                 attribute->invalid = true;
1786                                         } else
1787                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1788                                         break;
1789                                 case GNU_AK_FORMAT:
1790                                         if (!attribute->has_arguments) {
1791                                                 /* should have arguments */
1792                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1793                                                 attribute->invalid = true;
1794                                         } else
1795                                                 parse_gnu_attribute_format_args(attribute);
1796                                         break;
1797                                 case GNU_AK_WEAKREF:
1798                                         /* may have one string argument */
1799                                         if (attribute->has_arguments)
1800                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1801                                         break;
1802                                 case GNU_AK_NONNULL:
1803                                         if (attribute->has_arguments)
1804                                                 parse_gnu_attribute_const_arg_list(attribute);
1805                                         break;
1806                                 case GNU_AK_TLS_MODEL:
1807                                         if (!attribute->has_arguments) {
1808                                                 /* should have arguments */
1809                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1810                                         } else
1811                                                 parse_gnu_attribute_tls_model_arg(attribute);
1812                                         break;
1813                                 case GNU_AK_VISIBILITY:
1814                                         if (!attribute->has_arguments) {
1815                                                 /* should have arguments */
1816                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1817                                         } else
1818                                                 parse_gnu_attribute_visibility_arg(attribute);
1819                                         break;
1820                                 case GNU_AK_MODEL:
1821                                         if (!attribute->has_arguments) {
1822                                                 /* should have arguments */
1823                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1824                                         } else {
1825                                                 parse_gnu_attribute_model_arg(attribute);
1826                                         }
1827                                         break;
1828                                 case GNU_AK_MODE:
1829                                         if (!attribute->has_arguments) {
1830                                                 /* should have arguments */
1831                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1832                                         } else {
1833                                                 parse_gnu_attribute_mode_arg(attribute);
1834                                         }
1835                                         break;
1836                                 case GNU_AK_INTERRUPT:
1837                                         /* may have one string argument */
1838                                         if (attribute->has_arguments)
1839                                                 parse_gnu_attribute_interrupt_arg(attribute);
1840                                         break;
1841                                 case GNU_AK_SENTINEL:
1842                                         /* may have one string argument */
1843                                         if (attribute->has_arguments)
1844                                                 parse_gnu_attribute_const_arg(attribute);
1845                                         break;
1846                                 case GNU_AK_LAST:
1847                                         /* already handled */
1848                                         break;
1849
1850 no_arg:
1851                                         check_no_argument(attribute, name);
1852                                 }
1853                         }
1854                         if (attribute != NULL) {
1855                                 if (last != NULL) {
1856                                         last->next = attribute;
1857                                         last       = attribute;
1858                                 } else {
1859                                         head = last = attribute;
1860                                 }
1861                         }
1862
1863                         if (token.type != ',')
1864                                 break;
1865                         next_token();
1866                 }
1867         }
1868         expect(')', end_error);
1869         expect(')', end_error);
1870 end_error:
1871         *attributes = head;
1872
1873         return modifiers;
1874 }
1875
1876 /**
1877  * Parse GNU attributes.
1878  */
1879 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1880 {
1881         decl_modifiers_t modifiers = 0;
1882
1883         while (true) {
1884                 switch (token.type) {
1885                 case T___attribute__:
1886                         modifiers |= parse_gnu_attribute(attributes);
1887                         continue;
1888
1889                 case T_asm:
1890                         next_token();
1891                         expect('(', end_error);
1892                         if (token.type != T_STRING_LITERAL) {
1893                                 parse_error_expected("while parsing assembler attribute",
1894                                                      T_STRING_LITERAL, NULL);
1895                                 eat_until_matching_token('(');
1896                                 break;
1897                         } else {
1898                                 parse_string_literals();
1899                         }
1900                         expect(')', end_error);
1901                         continue;
1902
1903                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1904                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1905                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1906
1907                 case T___thiscall:
1908                         /* TODO record modifier */
1909                         if (warning.other)
1910                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1911                         break;
1912
1913 end_error:
1914                 default: return modifiers;
1915                 }
1916
1917                 next_token();
1918         }
1919 }
1920
1921 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1922
1923 static entity_t *determine_lhs_ent(expression_t *const expr,
1924                                    entity_t *lhs_ent)
1925 {
1926         switch (expr->kind) {
1927                 case EXPR_REFERENCE: {
1928                         entity_t *const entity = expr->reference.entity;
1929                         /* we should only find variables as lvalues... */
1930                         if (entity->base.kind != ENTITY_VARIABLE
1931                                         && entity->base.kind != ENTITY_PARAMETER)
1932                                 return NULL;
1933
1934                         return entity;
1935                 }
1936
1937                 case EXPR_ARRAY_ACCESS: {
1938                         expression_t *const ref = expr->array_access.array_ref;
1939                         entity_t     *      ent = NULL;
1940                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1941                                 ent     = determine_lhs_ent(ref, lhs_ent);
1942                                 lhs_ent = ent;
1943                         } else {
1944                                 mark_vars_read(expr->select.compound, lhs_ent);
1945                         }
1946                         mark_vars_read(expr->array_access.index, lhs_ent);
1947                         return ent;
1948                 }
1949
1950                 case EXPR_SELECT: {
1951                         if (is_type_compound(skip_typeref(expr->base.type))) {
1952                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1953                         } else {
1954                                 mark_vars_read(expr->select.compound, lhs_ent);
1955                                 return NULL;
1956                         }
1957                 }
1958
1959                 case EXPR_UNARY_DEREFERENCE: {
1960                         expression_t *const val = expr->unary.value;
1961                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1962                                 /* *&x is a NOP */
1963                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1964                         } else {
1965                                 mark_vars_read(val, NULL);
1966                                 return NULL;
1967                         }
1968                 }
1969
1970                 default:
1971                         mark_vars_read(expr, NULL);
1972                         return NULL;
1973         }
1974 }
1975
1976 #define ENT_ANY ((entity_t*)-1)
1977
1978 /**
1979  * Mark declarations, which are read.  This is used to detect variables, which
1980  * are never read.
1981  * Example:
1982  * x = x + 1;
1983  *   x is not marked as "read", because it is only read to calculate its own new
1984  *   value.
1985  *
1986  * x += y; y += x;
1987  *   x and y are not detected as "not read", because multiple variables are
1988  *   involved.
1989  */
1990 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
1991 {
1992         switch (expr->kind) {
1993                 case EXPR_REFERENCE: {
1994                         entity_t *const entity = expr->reference.entity;
1995                         if (entity->kind != ENTITY_VARIABLE
1996                                         && entity->kind != ENTITY_PARAMETER)
1997                                 return;
1998
1999                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
2000                                 if (entity->kind == ENTITY_VARIABLE) {
2001                                         entity->variable.read = true;
2002                                 } else {
2003                                         entity->parameter.read = true;
2004                                 }
2005                         }
2006                         return;
2007                 }
2008
2009                 case EXPR_CALL:
2010                         // TODO respect pure/const
2011                         mark_vars_read(expr->call.function, NULL);
2012                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
2013                                 mark_vars_read(arg->expression, NULL);
2014                         }
2015                         return;
2016
2017                 case EXPR_CONDITIONAL:
2018                         // TODO lhs_decl should depend on whether true/false have an effect
2019                         mark_vars_read(expr->conditional.condition, NULL);
2020                         if (expr->conditional.true_expression != NULL)
2021                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
2022                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
2023                         return;
2024
2025                 case EXPR_SELECT:
2026                         if (lhs_ent == ENT_ANY
2027                                         && !is_type_compound(skip_typeref(expr->base.type)))
2028                                 lhs_ent = NULL;
2029                         mark_vars_read(expr->select.compound, lhs_ent);
2030                         return;
2031
2032                 case EXPR_ARRAY_ACCESS: {
2033                         expression_t *const ref = expr->array_access.array_ref;
2034                         mark_vars_read(ref, lhs_ent);
2035                         lhs_ent = determine_lhs_ent(ref, lhs_ent);
2036                         mark_vars_read(expr->array_access.index, lhs_ent);
2037                         return;
2038                 }
2039
2040                 case EXPR_VA_ARG:
2041                         mark_vars_read(expr->va_arge.ap, lhs_ent);
2042                         return;
2043
2044                 case EXPR_UNARY_CAST:
2045                         /* Special case: Use void cast to mark a variable as "read" */
2046                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
2047                                 lhs_ent = NULL;
2048                         goto unary;
2049
2050
2051                 case EXPR_UNARY_THROW:
2052                         if (expr->unary.value == NULL)
2053                                 return;
2054                         /* FALLTHROUGH */
2055                 case EXPR_UNARY_DEREFERENCE:
2056                 case EXPR_UNARY_DELETE:
2057                 case EXPR_UNARY_DELETE_ARRAY:
2058                         if (lhs_ent == ENT_ANY)
2059                                 lhs_ent = NULL;
2060                         goto unary;
2061
2062                 case EXPR_UNARY_NEGATE:
2063                 case EXPR_UNARY_PLUS:
2064                 case EXPR_UNARY_BITWISE_NEGATE:
2065                 case EXPR_UNARY_NOT:
2066                 case EXPR_UNARY_TAKE_ADDRESS:
2067                 case EXPR_UNARY_POSTFIX_INCREMENT:
2068                 case EXPR_UNARY_POSTFIX_DECREMENT:
2069                 case EXPR_UNARY_PREFIX_INCREMENT:
2070                 case EXPR_UNARY_PREFIX_DECREMENT:
2071                 case EXPR_UNARY_CAST_IMPLICIT:
2072                 case EXPR_UNARY_ASSUME:
2073 unary:
2074                         mark_vars_read(expr->unary.value, lhs_ent);
2075                         return;
2076
2077                 case EXPR_BINARY_ADD:
2078                 case EXPR_BINARY_SUB:
2079                 case EXPR_BINARY_MUL:
2080                 case EXPR_BINARY_DIV:
2081                 case EXPR_BINARY_MOD:
2082                 case EXPR_BINARY_EQUAL:
2083                 case EXPR_BINARY_NOTEQUAL:
2084                 case EXPR_BINARY_LESS:
2085                 case EXPR_BINARY_LESSEQUAL:
2086                 case EXPR_BINARY_GREATER:
2087                 case EXPR_BINARY_GREATEREQUAL:
2088                 case EXPR_BINARY_BITWISE_AND:
2089                 case EXPR_BINARY_BITWISE_OR:
2090                 case EXPR_BINARY_BITWISE_XOR:
2091                 case EXPR_BINARY_LOGICAL_AND:
2092                 case EXPR_BINARY_LOGICAL_OR:
2093                 case EXPR_BINARY_SHIFTLEFT:
2094                 case EXPR_BINARY_SHIFTRIGHT:
2095                 case EXPR_BINARY_COMMA:
2096                 case EXPR_BINARY_ISGREATER:
2097                 case EXPR_BINARY_ISGREATEREQUAL:
2098                 case EXPR_BINARY_ISLESS:
2099                 case EXPR_BINARY_ISLESSEQUAL:
2100                 case EXPR_BINARY_ISLESSGREATER:
2101                 case EXPR_BINARY_ISUNORDERED:
2102                         mark_vars_read(expr->binary.left,  lhs_ent);
2103                         mark_vars_read(expr->binary.right, lhs_ent);
2104                         return;
2105
2106                 case EXPR_BINARY_ASSIGN:
2107                 case EXPR_BINARY_MUL_ASSIGN:
2108                 case EXPR_BINARY_DIV_ASSIGN:
2109                 case EXPR_BINARY_MOD_ASSIGN:
2110                 case EXPR_BINARY_ADD_ASSIGN:
2111                 case EXPR_BINARY_SUB_ASSIGN:
2112                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2113                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2114                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
2115                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2116                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
2117                         if (lhs_ent == ENT_ANY)
2118                                 lhs_ent = NULL;
2119                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
2120                         mark_vars_read(expr->binary.right, lhs_ent);
2121                         return;
2122                 }
2123
2124                 case EXPR_VA_START:
2125                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
2126                         return;
2127
2128                 case EXPR_UNKNOWN:
2129                 case EXPR_INVALID:
2130                 case EXPR_CONST:
2131                 case EXPR_CHARACTER_CONSTANT:
2132                 case EXPR_WIDE_CHARACTER_CONSTANT:
2133                 case EXPR_STRING_LITERAL:
2134                 case EXPR_WIDE_STRING_LITERAL:
2135                 case EXPR_COMPOUND_LITERAL: // TODO init?
2136                 case EXPR_SIZEOF:
2137                 case EXPR_CLASSIFY_TYPE:
2138                 case EXPR_ALIGNOF:
2139                 case EXPR_FUNCNAME:
2140                 case EXPR_BUILTIN_SYMBOL:
2141                 case EXPR_BUILTIN_CONSTANT_P:
2142                 case EXPR_BUILTIN_PREFETCH:
2143                 case EXPR_OFFSETOF:
2144                 case EXPR_STATEMENT: // TODO
2145                 case EXPR_LABEL_ADDRESS:
2146                 case EXPR_REFERENCE_ENUM_VALUE:
2147                         return;
2148         }
2149
2150         panic("unhandled expression");
2151 }
2152
2153 static designator_t *parse_designation(void)
2154 {
2155         designator_t *result = NULL;
2156         designator_t *last   = NULL;
2157
2158         while (true) {
2159                 designator_t *designator;
2160                 switch (token.type) {
2161                 case '[':
2162                         designator = allocate_ast_zero(sizeof(designator[0]));
2163                         designator->source_position = token.source_position;
2164                         next_token();
2165                         add_anchor_token(']');
2166                         designator->array_index = parse_constant_expression();
2167                         rem_anchor_token(']');
2168                         expect(']', end_error);
2169                         break;
2170                 case '.':
2171                         designator = allocate_ast_zero(sizeof(designator[0]));
2172                         designator->source_position = token.source_position;
2173                         next_token();
2174                         if (token.type != T_IDENTIFIER) {
2175                                 parse_error_expected("while parsing designator",
2176                                                      T_IDENTIFIER, NULL);
2177                                 return NULL;
2178                         }
2179                         designator->symbol = token.v.symbol;
2180                         next_token();
2181                         break;
2182                 default:
2183                         expect('=', end_error);
2184                         return result;
2185                 }
2186
2187                 assert(designator != NULL);
2188                 if (last != NULL) {
2189                         last->next = designator;
2190                 } else {
2191                         result = designator;
2192                 }
2193                 last = designator;
2194         }
2195 end_error:
2196         return NULL;
2197 }
2198
2199 static initializer_t *initializer_from_string(array_type_t *type,
2200                                               const string_t *const string)
2201 {
2202         /* TODO: check len vs. size of array type */
2203         (void) type;
2204
2205         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
2206         initializer->string.string = *string;
2207
2208         return initializer;
2209 }
2210
2211 static initializer_t *initializer_from_wide_string(array_type_t *const type,
2212                                                    wide_string_t *const string)
2213 {
2214         /* TODO: check len vs. size of array type */
2215         (void) type;
2216
2217         initializer_t *const initializer =
2218                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
2219         initializer->wide_string.string = *string;
2220
2221         return initializer;
2222 }
2223
2224 /**
2225  * Build an initializer from a given expression.
2226  */
2227 static initializer_t *initializer_from_expression(type_t *orig_type,
2228                                                   expression_t *expression)
2229 {
2230         /* TODO check that expression is a constant expression */
2231
2232         /* § 6.7.8.14/15 char array may be initialized by string literals */
2233         type_t *type           = skip_typeref(orig_type);
2234         type_t *expr_type_orig = expression->base.type;
2235         type_t *expr_type      = skip_typeref(expr_type_orig);
2236         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
2237                 array_type_t *const array_type   = &type->array;
2238                 type_t       *const element_type = skip_typeref(array_type->element_type);
2239
2240                 if (element_type->kind == TYPE_ATOMIC) {
2241                         atomic_type_kind_t akind = element_type->atomic.akind;
2242                         switch (expression->kind) {
2243                                 case EXPR_STRING_LITERAL:
2244                                         if (akind == ATOMIC_TYPE_CHAR
2245                                                         || akind == ATOMIC_TYPE_SCHAR
2246                                                         || akind == ATOMIC_TYPE_UCHAR) {
2247                                                 return initializer_from_string(array_type,
2248                                                         &expression->string.value);
2249                                         }
2250                                         break;
2251
2252                                 case EXPR_WIDE_STRING_LITERAL: {
2253                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
2254                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
2255                                                 return initializer_from_wide_string(array_type,
2256                                                         &expression->wide_string.value);
2257                                         }
2258                                         break;
2259                                 }
2260
2261                                 default:
2262                                         break;
2263                         }
2264                 }
2265         }
2266
2267         assign_error_t error = semantic_assign(type, expression);
2268         if (error == ASSIGN_ERROR_INCOMPATIBLE)
2269                 return NULL;
2270         report_assign_error(error, type, expression, "initializer",
2271                             &expression->base.source_position);
2272
2273         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2274 #if 0
2275         if (type->kind == TYPE_BITFIELD) {
2276                 type = type->bitfield.base_type;
2277         }
2278 #endif
2279         result->value.value = create_implicit_cast(expression, type);
2280
2281         return result;
2282 }
2283
2284 /**
2285  * Checks if a given expression can be used as an constant initializer.
2286  */
2287 static bool is_initializer_constant(const expression_t *expression)
2288 {
2289         return is_constant_expression(expression)
2290                 || is_address_constant(expression);
2291 }
2292
2293 /**
2294  * Parses an scalar initializer.
2295  *
2296  * § 6.7.8.11; eat {} without warning
2297  */
2298 static initializer_t *parse_scalar_initializer(type_t *type,
2299                                                bool must_be_constant)
2300 {
2301         /* there might be extra {} hierarchies */
2302         int braces = 0;
2303         if (token.type == '{') {
2304                 if (warning.other)
2305                         warningf(HERE, "extra curly braces around scalar initializer");
2306                 do {
2307                         ++braces;
2308                         next_token();
2309                 } while (token.type == '{');
2310         }
2311
2312         expression_t *expression = parse_assignment_expression();
2313         mark_vars_read(expression, NULL);
2314         if (must_be_constant && !is_initializer_constant(expression)) {
2315                 errorf(&expression->base.source_position,
2316                        "Initialisation expression '%E' is not constant",
2317                        expression);
2318         }
2319
2320         initializer_t *initializer = initializer_from_expression(type, expression);
2321
2322         if (initializer == NULL) {
2323                 errorf(&expression->base.source_position,
2324                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2325                        expression, expression->base.type, type);
2326                 /* TODO */
2327                 return NULL;
2328         }
2329
2330         bool additional_warning_displayed = false;
2331         while (braces > 0) {
2332                 if (token.type == ',') {
2333                         next_token();
2334                 }
2335                 if (token.type != '}') {
2336                         if (!additional_warning_displayed && warning.other) {
2337                                 warningf(HERE, "additional elements in scalar initializer");
2338                                 additional_warning_displayed = true;
2339                         }
2340                 }
2341                 eat_block();
2342                 braces--;
2343         }
2344
2345         return initializer;
2346 }
2347
2348 /**
2349  * An entry in the type path.
2350  */
2351 typedef struct type_path_entry_t type_path_entry_t;
2352 struct type_path_entry_t {
2353         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2354         union {
2355                 size_t         index;          /**< For array types: the current index. */
2356                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2357         } v;
2358 };
2359
2360 /**
2361  * A type path expression a position inside compound or array types.
2362  */
2363 typedef struct type_path_t type_path_t;
2364 struct type_path_t {
2365         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2366         type_t            *top_type;     /**< type of the element the path points */
2367         size_t             max_index;    /**< largest index in outermost array */
2368 };
2369
2370 /**
2371  * Prints a type path for debugging.
2372  */
2373 static __attribute__((unused)) void debug_print_type_path(
2374                 const type_path_t *path)
2375 {
2376         size_t len = ARR_LEN(path->path);
2377
2378         for (size_t i = 0; i < len; ++i) {
2379                 const type_path_entry_t *entry = & path->path[i];
2380
2381                 type_t *type = skip_typeref(entry->type);
2382                 if (is_type_compound(type)) {
2383                         /* in gcc mode structs can have no members */
2384                         if (entry->v.compound_entry == NULL) {
2385                                 assert(i == len-1);
2386                                 continue;
2387                         }
2388                         fprintf(stderr, ".%s",
2389                                 entry->v.compound_entry->base.symbol->string);
2390                 } else if (is_type_array(type)) {
2391                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
2392                 } else {
2393                         fprintf(stderr, "-INVALID-");
2394                 }
2395         }
2396         if (path->top_type != NULL) {
2397                 fprintf(stderr, "  (");
2398                 print_type(path->top_type);
2399                 fprintf(stderr, ")");
2400         }
2401 }
2402
2403 /**
2404  * Return the top type path entry, ie. in a path
2405  * (type).a.b returns the b.
2406  */
2407 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2408 {
2409         size_t len = ARR_LEN(path->path);
2410         assert(len > 0);
2411         return &path->path[len-1];
2412 }
2413
2414 /**
2415  * Enlarge the type path by an (empty) element.
2416  */
2417 static type_path_entry_t *append_to_type_path(type_path_t *path)
2418 {
2419         size_t len = ARR_LEN(path->path);
2420         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2421
2422         type_path_entry_t *result = & path->path[len];
2423         memset(result, 0, sizeof(result[0]));
2424         return result;
2425 }
2426
2427 /**
2428  * Descending into a sub-type. Enter the scope of the current top_type.
2429  */
2430 static void descend_into_subtype(type_path_t *path)
2431 {
2432         type_t *orig_top_type = path->top_type;
2433         type_t *top_type      = skip_typeref(orig_top_type);
2434
2435         type_path_entry_t *top = append_to_type_path(path);
2436         top->type              = top_type;
2437
2438         if (is_type_compound(top_type)) {
2439                 compound_t *compound  = top_type->compound.compound;
2440                 entity_t   *entry     = compound->members.entities;
2441
2442                 if (entry != NULL) {
2443                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2444                         top->v.compound_entry = &entry->declaration;
2445                         path->top_type = entry->declaration.type;
2446                 } else {
2447                         path->top_type = NULL;
2448                 }
2449         } else if (is_type_array(top_type)) {
2450                 top->v.index   = 0;
2451                 path->top_type = top_type->array.element_type;
2452         } else {
2453                 assert(!is_type_valid(top_type));
2454         }
2455 }
2456
2457 /**
2458  * Pop an entry from the given type path, ie. returning from
2459  * (type).a.b to (type).a
2460  */
2461 static void ascend_from_subtype(type_path_t *path)
2462 {
2463         type_path_entry_t *top = get_type_path_top(path);
2464
2465         path->top_type = top->type;
2466
2467         size_t len = ARR_LEN(path->path);
2468         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2469 }
2470
2471 /**
2472  * Pop entries from the given type path until the given
2473  * path level is reached.
2474  */
2475 static void ascend_to(type_path_t *path, size_t top_path_level)
2476 {
2477         size_t len = ARR_LEN(path->path);
2478
2479         while (len > top_path_level) {
2480                 ascend_from_subtype(path);
2481                 len = ARR_LEN(path->path);
2482         }
2483 }
2484
2485 static bool walk_designator(type_path_t *path, const designator_t *designator,
2486                             bool used_in_offsetof)
2487 {
2488         for (; designator != NULL; designator = designator->next) {
2489                 type_path_entry_t *top       = get_type_path_top(path);
2490                 type_t            *orig_type = top->type;
2491
2492                 type_t *type = skip_typeref(orig_type);
2493
2494                 if (designator->symbol != NULL) {
2495                         symbol_t *symbol = designator->symbol;
2496                         if (!is_type_compound(type)) {
2497                                 if (is_type_valid(type)) {
2498                                         errorf(&designator->source_position,
2499                                                "'.%Y' designator used for non-compound type '%T'",
2500                                                symbol, orig_type);
2501                                 }
2502
2503                                 top->type             = type_error_type;
2504                                 top->v.compound_entry = NULL;
2505                                 orig_type             = type_error_type;
2506                         } else {
2507                                 compound_t *compound = type->compound.compound;
2508                                 entity_t   *iter     = compound->members.entities;
2509                                 for (; iter != NULL; iter = iter->base.next) {
2510                                         if (iter->base.symbol == symbol) {
2511                                                 break;
2512                                         }
2513                                 }
2514                                 if (iter == NULL) {
2515                                         errorf(&designator->source_position,
2516                                                "'%T' has no member named '%Y'", orig_type, symbol);
2517                                         goto failed;
2518                                 }
2519                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2520                                 if (used_in_offsetof) {
2521                                         type_t *real_type = skip_typeref(iter->declaration.type);
2522                                         if (real_type->kind == TYPE_BITFIELD) {
2523                                                 errorf(&designator->source_position,
2524                                                        "offsetof designator '%Y' may not specify bitfield",
2525                                                        symbol);
2526                                                 goto failed;
2527                                         }
2528                                 }
2529
2530                                 top->type             = orig_type;
2531                                 top->v.compound_entry = &iter->declaration;
2532                                 orig_type             = iter->declaration.type;
2533                         }
2534                 } else {
2535                         expression_t *array_index = designator->array_index;
2536                         assert(designator->array_index != NULL);
2537
2538                         if (!is_type_array(type)) {
2539                                 if (is_type_valid(type)) {
2540                                         errorf(&designator->source_position,
2541                                                "[%E] designator used for non-array type '%T'",
2542                                                array_index, orig_type);
2543                                 }
2544                                 goto failed;
2545                         }
2546
2547                         long index = fold_constant(array_index);
2548                         if (!used_in_offsetof) {
2549                                 if (index < 0) {
2550                                         errorf(&designator->source_position,
2551                                                "array index [%E] must be positive", array_index);
2552                                 } else if (type->array.size_constant) {
2553                                         long array_size = type->array.size;
2554                                         if (index >= array_size) {
2555                                                 errorf(&designator->source_position,
2556                                                        "designator [%E] (%d) exceeds array size %d",
2557                                                        array_index, index, array_size);
2558                                         }
2559                                 }
2560                         }
2561
2562                         top->type    = orig_type;
2563                         top->v.index = (size_t) index;
2564                         orig_type    = type->array.element_type;
2565                 }
2566                 path->top_type = orig_type;
2567
2568                 if (designator->next != NULL) {
2569                         descend_into_subtype(path);
2570                 }
2571         }
2572         return true;
2573
2574 failed:
2575         return false;
2576 }
2577
2578 static void advance_current_object(type_path_t *path, size_t top_path_level)
2579 {
2580         type_path_entry_t *top = get_type_path_top(path);
2581
2582         type_t *type = skip_typeref(top->type);
2583         if (is_type_union(type)) {
2584                 /* in unions only the first element is initialized */
2585                 top->v.compound_entry = NULL;
2586         } else if (is_type_struct(type)) {
2587                 declaration_t *entry = top->v.compound_entry;
2588
2589                 entity_t *next_entity = entry->base.next;
2590                 if (next_entity != NULL) {
2591                         assert(is_declaration(next_entity));
2592                         entry = &next_entity->declaration;
2593                 } else {
2594                         entry = NULL;
2595                 }
2596
2597                 top->v.compound_entry = entry;
2598                 if (entry != NULL) {
2599                         path->top_type = entry->type;
2600                         return;
2601                 }
2602         } else if (is_type_array(type)) {
2603                 assert(is_type_array(type));
2604
2605                 top->v.index++;
2606
2607                 if (!type->array.size_constant || top->v.index < type->array.size) {
2608                         return;
2609                 }
2610         } else {
2611                 assert(!is_type_valid(type));
2612                 return;
2613         }
2614
2615         /* we're past the last member of the current sub-aggregate, try if we
2616          * can ascend in the type hierarchy and continue with another subobject */
2617         size_t len = ARR_LEN(path->path);
2618
2619         if (len > top_path_level) {
2620                 ascend_from_subtype(path);
2621                 advance_current_object(path, top_path_level);
2622         } else {
2623                 path->top_type = NULL;
2624         }
2625 }
2626
2627 /**
2628  * skip until token is found.
2629  */
2630 static void skip_until(int type)
2631 {
2632         while (token.type != type) {
2633                 if (token.type == T_EOF)
2634                         return;
2635                 next_token();
2636         }
2637 }
2638
2639 /**
2640  * skip any {...} blocks until a closing bracket is reached.
2641  */
2642 static void skip_initializers(void)
2643 {
2644         if (token.type == '{')
2645                 next_token();
2646
2647         while (token.type != '}') {
2648                 if (token.type == T_EOF)
2649                         return;
2650                 if (token.type == '{') {
2651                         eat_block();
2652                         continue;
2653                 }
2654                 next_token();
2655         }
2656 }
2657
2658 static initializer_t *create_empty_initializer(void)
2659 {
2660         static initializer_t empty_initializer
2661                 = { .list = { { INITIALIZER_LIST }, 0 } };
2662         return &empty_initializer;
2663 }
2664
2665 /**
2666  * Parse a part of an initialiser for a struct or union,
2667  */
2668 static initializer_t *parse_sub_initializer(type_path_t *path,
2669                 type_t *outer_type, size_t top_path_level,
2670                 parse_initializer_env_t *env)
2671 {
2672         if (token.type == '}') {
2673                 /* empty initializer */
2674                 return create_empty_initializer();
2675         }
2676
2677         type_t *orig_type = path->top_type;
2678         type_t *type      = NULL;
2679
2680         if (orig_type == NULL) {
2681                 /* We are initializing an empty compound. */
2682         } else {
2683                 type = skip_typeref(orig_type);
2684         }
2685
2686         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2687
2688         while (true) {
2689                 designator_t *designator = NULL;
2690                 if (token.type == '.' || token.type == '[') {
2691                         designator = parse_designation();
2692                         goto finish_designator;
2693                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2694                         /* GNU-style designator ("identifier: value") */
2695                         designator = allocate_ast_zero(sizeof(designator[0]));
2696                         designator->source_position = token.source_position;
2697                         designator->symbol          = token.v.symbol;
2698                         eat(T_IDENTIFIER);
2699                         eat(':');
2700
2701 finish_designator:
2702                         /* reset path to toplevel, evaluate designator from there */
2703                         ascend_to(path, top_path_level);
2704                         if (!walk_designator(path, designator, false)) {
2705                                 /* can't continue after designation error */
2706                                 goto end_error;
2707                         }
2708
2709                         initializer_t *designator_initializer
2710                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2711                         designator_initializer->designator.designator = designator;
2712                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2713
2714                         orig_type = path->top_type;
2715                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2716                 }
2717
2718                 initializer_t *sub;
2719
2720                 if (token.type == '{') {
2721                         if (type != NULL && is_type_scalar(type)) {
2722                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2723                         } else {
2724                                 eat('{');
2725                                 if (type == NULL) {
2726                                         if (env->entity != NULL) {
2727                                                 errorf(HERE,
2728                                                      "extra brace group at end of initializer for '%Y'",
2729                                                      env->entity->base.symbol);
2730                                         } else {
2731                                                 errorf(HERE, "extra brace group at end of initializer");
2732                                         }
2733                                 } else
2734                                         descend_into_subtype(path);
2735
2736                                 add_anchor_token('}');
2737                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2738                                                             env);
2739                                 rem_anchor_token('}');
2740
2741                                 if (type != NULL) {
2742                                         ascend_from_subtype(path);
2743                                         expect('}', end_error);
2744                                 } else {
2745                                         expect('}', end_error);
2746                                         goto error_parse_next;
2747                                 }
2748                         }
2749                 } else {
2750                         /* must be an expression */
2751                         expression_t *expression = parse_assignment_expression();
2752                         mark_vars_read(expression, NULL);
2753
2754                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2755                                 errorf(&expression->base.source_position,
2756                                        "Initialisation expression '%E' is not constant",
2757                                        expression);
2758                         }
2759
2760                         if (type == NULL) {
2761                                 /* we are already outside, ... */
2762                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2763                                 if (is_type_compound(outer_type_skip) &&
2764                                     !outer_type_skip->compound.compound->complete) {
2765                                         goto error_parse_next;
2766                                 }
2767                                 goto error_excess;
2768                         }
2769
2770                         /* handle { "string" } special case */
2771                         if ((expression->kind == EXPR_STRING_LITERAL
2772                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2773                                         && outer_type != NULL) {
2774                                 sub = initializer_from_expression(outer_type, expression);
2775                                 if (sub != NULL) {
2776                                         if (token.type == ',') {
2777                                                 next_token();
2778                                         }
2779                                         if (token.type != '}' && warning.other) {
2780                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2781                                                                  orig_type);
2782                                         }
2783                                         /* TODO: eat , ... */
2784                                         return sub;
2785                                 }
2786                         }
2787
2788                         /* descend into subtypes until expression matches type */
2789                         while (true) {
2790                                 orig_type = path->top_type;
2791                                 type      = skip_typeref(orig_type);
2792
2793                                 sub = initializer_from_expression(orig_type, expression);
2794                                 if (sub != NULL) {
2795                                         break;
2796                                 }
2797                                 if (!is_type_valid(type)) {
2798                                         goto end_error;
2799                                 }
2800                                 if (is_type_scalar(type)) {
2801                                         errorf(&expression->base.source_position,
2802                                                         "expression '%E' doesn't match expected type '%T'",
2803                                                         expression, orig_type);
2804                                         goto end_error;
2805                                 }
2806
2807                                 descend_into_subtype(path);
2808                         }
2809                 }
2810
2811                 /* update largest index of top array */
2812                 const type_path_entry_t *first      = &path->path[0];
2813                 type_t                  *first_type = first->type;
2814                 first_type                          = skip_typeref(first_type);
2815                 if (is_type_array(first_type)) {
2816                         size_t index = first->v.index;
2817                         if (index > path->max_index)
2818                                 path->max_index = index;
2819                 }
2820
2821                 if (type != NULL) {
2822                         /* append to initializers list */
2823                         ARR_APP1(initializer_t*, initializers, sub);
2824                 } else {
2825 error_excess:
2826                         if (warning.other) {
2827                                 if (env->entity != NULL) {
2828                                         warningf(HERE, "excess elements in struct initializer for '%Y'",
2829                                            env->entity->base.symbol);
2830                                 } else {
2831                                         warningf(HERE, "excess elements in struct initializer");
2832                                 }
2833                         }
2834                 }
2835
2836 error_parse_next:
2837                 if (token.type == '}') {
2838                         break;
2839                 }
2840                 expect(',', end_error);
2841                 if (token.type == '}') {
2842                         break;
2843                 }
2844
2845                 if (type != NULL) {
2846                         /* advance to the next declaration if we are not at the end */
2847                         advance_current_object(path, top_path_level);
2848                         orig_type = path->top_type;
2849                         if (orig_type != NULL)
2850                                 type = skip_typeref(orig_type);
2851                         else
2852                                 type = NULL;
2853                 }
2854         }
2855
2856         size_t len  = ARR_LEN(initializers);
2857         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2858         initializer_t *result = allocate_ast_zero(size);
2859         result->kind          = INITIALIZER_LIST;
2860         result->list.len      = len;
2861         memcpy(&result->list.initializers, initializers,
2862                len * sizeof(initializers[0]));
2863
2864         DEL_ARR_F(initializers);
2865         ascend_to(path, top_path_level+1);
2866
2867         return result;
2868
2869 end_error:
2870         skip_initializers();
2871         DEL_ARR_F(initializers);
2872         ascend_to(path, top_path_level+1);
2873         return NULL;
2874 }
2875
2876 /**
2877  * Parses an initializer. Parsers either a compound literal
2878  * (env->declaration == NULL) or an initializer of a declaration.
2879  */
2880 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2881 {
2882         type_t        *type      = skip_typeref(env->type);
2883         size_t         max_index = 0xdeadbeaf;   // TODO: Resolve this uninitialized variable problem
2884         initializer_t *result;
2885
2886         if (is_type_scalar(type)) {
2887                 result = parse_scalar_initializer(type, env->must_be_constant);
2888         } else if (token.type == '{') {
2889                 eat('{');
2890
2891                 type_path_t path;
2892                 memset(&path, 0, sizeof(path));
2893                 path.top_type = env->type;
2894                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2895
2896                 descend_into_subtype(&path);
2897
2898                 add_anchor_token('}');
2899                 result = parse_sub_initializer(&path, env->type, 1, env);
2900                 rem_anchor_token('}');
2901
2902                 max_index = path.max_index;
2903                 DEL_ARR_F(path.path);
2904
2905                 expect('}', end_error);
2906         } else {
2907                 /* parse_scalar_initializer() also works in this case: we simply
2908                  * have an expression without {} around it */
2909                 result = parse_scalar_initializer(type, env->must_be_constant);
2910         }
2911
2912         /* § 6.7.8:22 array initializers for arrays with unknown size determine
2913          * the array type size */
2914         if (is_type_array(type) && type->array.size_expression == NULL
2915                         && result != NULL) {
2916                 size_t size;
2917                 switch (result->kind) {
2918                 case INITIALIZER_LIST:
2919                         assert(max_index != 0xdeadbeaf);
2920                         size = max_index + 1;
2921                         break;
2922
2923                 case INITIALIZER_STRING:
2924                         size = result->string.string.size;
2925                         break;
2926
2927                 case INITIALIZER_WIDE_STRING:
2928                         size = result->wide_string.string.size;
2929                         break;
2930
2931                 case INITIALIZER_DESIGNATOR:
2932                 case INITIALIZER_VALUE:
2933                         /* can happen for parse errors */
2934                         size = 0;
2935                         break;
2936
2937                 default:
2938                         internal_errorf(HERE, "invalid initializer type");
2939                 }
2940
2941                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2942                 cnst->base.type          = type_size_t;
2943                 cnst->conste.v.int_value = size;
2944
2945                 type_t *new_type = duplicate_type(type);
2946
2947                 new_type->array.size_expression   = cnst;
2948                 new_type->array.size_constant     = true;
2949                 new_type->array.has_implicit_size = true;
2950                 new_type->array.size              = size;
2951                 env->type = new_type;
2952         }
2953
2954         return result;
2955 end_error:
2956         return NULL;
2957 }
2958
2959 static void append_entity(scope_t *scope, entity_t *entity)
2960 {
2961         if (scope->last_entity != NULL) {
2962                 scope->last_entity->base.next = entity;
2963         } else {
2964                 scope->entities = entity;
2965         }
2966         scope->last_entity = entity;
2967 }
2968
2969
2970 static compound_t *parse_compound_type_specifier(bool is_struct)
2971 {
2972         gnu_attribute_t  *attributes = NULL;
2973         decl_modifiers_t  modifiers  = 0;
2974         if (is_struct) {
2975                 eat(T_struct);
2976         } else {
2977                 eat(T_union);
2978         }
2979
2980         symbol_t   *symbol   = NULL;
2981         compound_t *compound = NULL;
2982
2983         if (token.type == T___attribute__) {
2984                 modifiers |= parse_attributes(&attributes);
2985         }
2986
2987         if (token.type == T_IDENTIFIER) {
2988                 symbol = token.v.symbol;
2989                 next_token();
2990
2991                 namespace_tag_t const namespc =
2992                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2993                 entity_t *entity = get_entity(symbol, namespc);
2994                 if (entity != NULL) {
2995                         assert(entity->kind == (is_struct ? ENTITY_STRUCT : ENTITY_UNION));
2996                         compound = &entity->compound;
2997                         if (compound->base.parent_scope != current_scope &&
2998                             (token.type == '{' || token.type == ';')) {
2999                                 /* we're in an inner scope and have a definition. Shadow
3000                                  * existing definition in outer scope */
3001                                 compound = NULL;
3002                         } else if (compound->complete && token.type == '{') {
3003                                 assert(symbol != NULL);
3004                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
3005                                        is_struct ? "struct" : "union", symbol,
3006                                        &compound->base.source_position);
3007                                 /* clear members in the hope to avoid further errors */
3008                                 compound->members.entities = NULL;
3009                         }
3010                 }
3011         } else if (token.type != '{') {
3012                 if (is_struct) {
3013                         parse_error_expected("while parsing struct type specifier",
3014                                              T_IDENTIFIER, '{', NULL);
3015                 } else {
3016                         parse_error_expected("while parsing union type specifier",
3017                                              T_IDENTIFIER, '{', NULL);
3018                 }
3019
3020                 return NULL;
3021         }
3022
3023         if (compound == NULL) {
3024                 entity_kind_t  kind   = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
3025                 entity_t      *entity = allocate_entity_zero(kind);
3026                 compound              = &entity->compound;
3027
3028                 compound->base.namespc =
3029                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
3030                 compound->base.source_position = token.source_position;
3031                 compound->base.symbol          = symbol;
3032                 compound->base.parent_scope    = current_scope;
3033                 if (symbol != NULL) {
3034                         environment_push(entity);
3035                 }
3036                 append_entity(current_scope, entity);
3037         }
3038
3039         if (token.type == '{') {
3040                 parse_compound_type_entries(compound);
3041                 modifiers |= parse_attributes(&attributes);
3042
3043                 if (symbol == NULL) {
3044                         assert(anonymous_entity == NULL);
3045                         anonymous_entity = (entity_t*)compound;
3046                 }
3047         }
3048
3049         compound->modifiers |= modifiers;
3050         return compound;
3051 }
3052
3053 static void parse_enum_entries(type_t *const enum_type)
3054 {
3055         eat('{');
3056
3057         if (token.type == '}') {
3058                 errorf(HERE, "empty enum not allowed");
3059                 next_token();
3060                 return;
3061         }
3062
3063         add_anchor_token('}');
3064         do {
3065                 if (token.type != T_IDENTIFIER) {
3066                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
3067                         eat_block();
3068                         rem_anchor_token('}');
3069                         return;
3070                 }
3071
3072                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
3073                 entity->enum_value.enum_type = enum_type;
3074                 entity->base.symbol          = token.v.symbol;
3075                 entity->base.source_position = token.source_position;
3076                 next_token();
3077
3078                 if (token.type == '=') {
3079                         next_token();
3080                         expression_t *value = parse_constant_expression();
3081
3082                         value = create_implicit_cast(value, enum_type);
3083                         entity->enum_value.value = value;
3084
3085                         /* TODO semantic */
3086                 }
3087
3088                 record_entity(entity, false);
3089
3090                 if (token.type != ',')
3091                         break;
3092                 next_token();
3093         } while (token.type != '}');
3094         rem_anchor_token('}');
3095
3096         expect('}', end_error);
3097
3098 end_error:
3099         ;
3100 }
3101
3102 static type_t *parse_enum_specifier(void)
3103 {
3104         gnu_attribute_t *attributes = NULL;
3105         entity_t        *entity;
3106         symbol_t        *symbol;
3107
3108         eat(T_enum);
3109         if (token.type == T_IDENTIFIER) {
3110                 symbol = token.v.symbol;
3111                 next_token();
3112
3113                 entity = get_entity(symbol, NAMESPACE_ENUM);
3114                 if (entity != NULL) {
3115                         assert(entity->kind == ENTITY_ENUM);
3116                         if (entity->base.parent_scope != current_scope &&
3117                                         (token.type == '{' || token.type == ';')) {
3118                                 /* we're in an inner scope and have a definition. Shadow
3119                                  * existing definition in outer scope */
3120                                 entity = NULL;
3121                         } else if (entity->enume.complete && token.type == '{') {
3122                                 errorf(HERE, "multiple definitions of 'enum %Y' (previous definition %P)",
3123                                                 symbol, &entity->base.source_position);
3124                         }
3125                 }
3126         } else if (token.type != '{') {
3127                 parse_error_expected("while parsing enum type specifier",
3128                                      T_IDENTIFIER, '{', NULL);
3129                 return NULL;
3130         } else {
3131                 entity  = NULL;
3132                 symbol  = NULL;
3133         }
3134
3135         if (entity == NULL) {
3136                 entity                       = allocate_entity_zero(ENTITY_ENUM);
3137                 entity->base.namespc         = NAMESPACE_ENUM;
3138                 entity->base.source_position = token.source_position;
3139                 entity->base.symbol          = symbol;
3140                 entity->base.parent_scope    = current_scope;
3141         }
3142
3143         type_t *const type = allocate_type_zero(TYPE_ENUM);
3144         type->enumt.enume  = &entity->enume;
3145         type->enumt.akind  = ATOMIC_TYPE_INT;
3146
3147         if (token.type == '{') {
3148                 if (symbol != NULL) {
3149                         environment_push(entity);
3150                 }
3151                 append_entity(current_scope, entity);
3152                 entity->enume.complete = true;
3153
3154                 parse_enum_entries(type);
3155                 parse_attributes(&attributes);
3156
3157                 if (symbol == NULL) {
3158                         assert(anonymous_entity == NULL);
3159                         anonymous_entity = entity;
3160                 }
3161         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
3162                 errorf(HERE, "'enum %Y' used before definition (incomplete enums are a GNU extension)",
3163                        symbol);
3164         }
3165
3166         return type;
3167 }
3168
3169 /**
3170  * if a symbol is a typedef to another type, return true
3171  */
3172 static bool is_typedef_symbol(symbol_t *symbol)
3173 {
3174         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
3175         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
3176 }
3177
3178 static type_t *parse_typeof(void)
3179 {
3180         eat(T___typeof__);
3181
3182         type_t *type;
3183
3184         expect('(', end_error);
3185         add_anchor_token(')');
3186
3187         expression_t *expression  = NULL;
3188
3189         bool old_type_prop     = in_type_prop;
3190         bool old_gcc_extension = in_gcc_extension;
3191         in_type_prop           = true;
3192
3193         while (token.type == T___extension__) {
3194                 /* This can be a prefix to a typename or an expression. */
3195                 next_token();
3196                 in_gcc_extension = true;
3197         }
3198         switch (token.type) {
3199         case T_IDENTIFIER:
3200                 if (is_typedef_symbol(token.v.symbol)) {
3201                         type = parse_typename();
3202                 } else {
3203                         expression = parse_expression();
3204                         type       = expression->base.type;
3205                 }
3206                 break;
3207
3208         TYPENAME_START
3209                 type = parse_typename();
3210                 break;
3211
3212         default:
3213                 expression = parse_expression();
3214                 type       = expression->base.type;
3215                 break;
3216         }
3217         in_type_prop     = old_type_prop;
3218         in_gcc_extension = old_gcc_extension;
3219
3220         rem_anchor_token(')');
3221         expect(')', end_error);
3222
3223         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
3224         typeof_type->typeoft.expression  = expression;
3225         typeof_type->typeoft.typeof_type = type;
3226
3227         return typeof_type;
3228 end_error:
3229         return NULL;
3230 }
3231
3232 typedef enum specifiers_t {
3233         SPECIFIER_SIGNED    = 1 << 0,
3234         SPECIFIER_UNSIGNED  = 1 << 1,
3235         SPECIFIER_LONG      = 1 << 2,
3236         SPECIFIER_INT       = 1 << 3,
3237         SPECIFIER_DOUBLE    = 1 << 4,
3238         SPECIFIER_CHAR      = 1 << 5,
3239         SPECIFIER_WCHAR_T   = 1 << 6,
3240         SPECIFIER_SHORT     = 1 << 7,
3241         SPECIFIER_LONG_LONG = 1 << 8,
3242         SPECIFIER_FLOAT     = 1 << 9,
3243         SPECIFIER_BOOL      = 1 << 10,
3244         SPECIFIER_VOID      = 1 << 11,
3245         SPECIFIER_INT8      = 1 << 12,
3246         SPECIFIER_INT16     = 1 << 13,
3247         SPECIFIER_INT32     = 1 << 14,
3248         SPECIFIER_INT64     = 1 << 15,
3249         SPECIFIER_INT128    = 1 << 16,
3250         SPECIFIER_COMPLEX   = 1 << 17,
3251         SPECIFIER_IMAGINARY = 1 << 18,
3252 } specifiers_t;
3253
3254 static type_t *create_builtin_type(symbol_t *const symbol,
3255                                    type_t *const real_type)
3256 {
3257         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
3258         type->builtin.symbol    = symbol;
3259         type->builtin.real_type = real_type;
3260         return identify_new_type(type);
3261 }
3262
3263 static type_t *get_typedef_type(symbol_t *symbol)
3264 {
3265         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3266         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
3267                 return NULL;
3268
3269         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
3270         type->typedeft.typedefe = &entity->typedefe;
3271
3272         return type;
3273 }
3274
3275 /**
3276  * check for the allowed MS alignment values.
3277  */
3278 static bool check_alignment_value(long long intvalue)
3279 {
3280         if (intvalue < 1 || intvalue > 8192) {
3281                 errorf(HERE, "illegal alignment value");
3282                 return false;
3283         }
3284         unsigned v = (unsigned)intvalue;
3285         for (unsigned i = 1; i <= 8192; i += i) {
3286                 if (i == v)
3287                         return true;
3288         }
3289         errorf(HERE, "alignment must be power of two");
3290         return false;
3291 }
3292
3293 #define DET_MOD(name, tag) do { \
3294         if (*modifiers & tag && warning.other) warningf(HERE, #name " used more than once"); \
3295         *modifiers |= tag; \
3296 } while (0)
3297
3298 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
3299 {
3300         decl_modifiers_t *modifiers = &specifiers->modifiers;
3301
3302         while (true) {
3303                 if (token.type == T_restrict) {
3304                         next_token();
3305                         DET_MOD(restrict, DM_RESTRICT);
3306                         goto end_loop;
3307                 } else if (token.type != T_IDENTIFIER)
3308                         break;
3309                 symbol_t *symbol = token.v.symbol;
3310                 if (symbol == sym_align) {
3311                         next_token();
3312                         expect('(', end_error);
3313                         if (token.type != T_INTEGER)
3314                                 goto end_error;
3315                         if (check_alignment_value(token.v.intvalue)) {
3316                                 if (specifiers->alignment != 0 && warning.other)
3317                                         warningf(HERE, "align used more than once");
3318                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3319                         }
3320                         next_token();
3321                         expect(')', end_error);
3322                 } else if (symbol == sym_allocate) {
3323                         next_token();
3324                         expect('(', end_error);
3325                         if (token.type != T_IDENTIFIER)
3326                                 goto end_error;
3327                         (void)token.v.symbol;
3328                         expect(')', end_error);
3329                 } else if (symbol == sym_dllimport) {
3330                         next_token();
3331                         DET_MOD(dllimport, DM_DLLIMPORT);
3332                 } else if (symbol == sym_dllexport) {
3333                         next_token();
3334                         DET_MOD(dllexport, DM_DLLEXPORT);
3335                 } else if (symbol == sym_thread) {
3336                         next_token();
3337                         DET_MOD(thread, DM_THREAD);
3338                 } else if (symbol == sym_naked) {
3339                         next_token();
3340                         DET_MOD(naked, DM_NAKED);
3341                 } else if (symbol == sym_noinline) {
3342                         next_token();
3343                         DET_MOD(noinline, DM_NOINLINE);
3344                 } else if (symbol == sym_returns_twice) {
3345                         next_token();
3346                         DET_MOD(returns_twice, DM_RETURNS_TWICE);
3347                 } else if (symbol == sym_noreturn) {
3348                         next_token();
3349                         DET_MOD(noreturn, DM_NORETURN);
3350                 } else if (symbol == sym_nothrow) {
3351                         next_token();
3352                         DET_MOD(nothrow, DM_NOTHROW);
3353                 } else if (symbol == sym_novtable) {
3354                         next_token();
3355                         DET_MOD(novtable, DM_NOVTABLE);
3356                 } else if (symbol == sym_property) {
3357                         next_token();
3358                         expect('(', end_error);
3359                         for (;;) {
3360                                 bool is_get = false;
3361                                 if (token.type != T_IDENTIFIER)
3362                                         goto end_error;
3363                                 if (token.v.symbol == sym_get) {
3364                                         is_get = true;
3365                                 } else if (token.v.symbol == sym_put) {
3366                                 } else {
3367                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3368                                         goto end_error;
3369                                 }
3370                                 next_token();
3371                                 expect('=', end_error);
3372                                 if (token.type != T_IDENTIFIER)
3373                                         goto end_error;
3374                                 if (is_get) {
3375                                         if (specifiers->get_property_sym != NULL) {
3376                                                 errorf(HERE, "get property name already specified");
3377                                         } else {
3378                                                 specifiers->get_property_sym = token.v.symbol;
3379                                         }
3380                                 } else {
3381                                         if (specifiers->put_property_sym != NULL) {
3382                                                 errorf(HERE, "put property name already specified");
3383                                         } else {
3384                                                 specifiers->put_property_sym = token.v.symbol;
3385                                         }
3386                                 }
3387                                 next_token();
3388                                 if (token.type == ',') {
3389                                         next_token();
3390                                         continue;
3391                                 }
3392                                 break;
3393                         }
3394                         expect(')', end_error);
3395                 } else if (symbol == sym_selectany) {
3396                         next_token();
3397                         DET_MOD(selectany, DM_SELECTANY);
3398                 } else if (symbol == sym_uuid) {
3399                         next_token();
3400                         expect('(', end_error);
3401                         if (token.type != T_STRING_LITERAL)
3402                                 goto end_error;
3403                         next_token();
3404                         expect(')', end_error);
3405                 } else if (symbol == sym_deprecated) {
3406                         next_token();
3407                         if (specifiers->deprecated != 0 && warning.other)
3408                                 warningf(HERE, "deprecated used more than once");
3409                         specifiers->deprecated = true;
3410                         if (token.type == '(') {
3411                                 next_token();
3412                                 if (token.type == T_STRING_LITERAL) {
3413                                         specifiers->deprecated_string = token.v.string.begin;
3414                                         next_token();
3415                                 } else {
3416                                         errorf(HERE, "string literal expected");
3417                                 }
3418                                 expect(')', end_error);
3419                         }
3420                 } else if (symbol == sym_noalias) {
3421                         next_token();
3422                         DET_MOD(noalias, DM_NOALIAS);
3423                 } else {
3424                         if (warning.other)
3425                                 warningf(HERE, "Unknown modifier '%Y' ignored", token.v.symbol);
3426                         next_token();
3427                         if (token.type == '(')
3428                                 skip_until(')');
3429                 }
3430 end_loop:
3431                 if (token.type == ',')
3432                         next_token();
3433         }
3434 end_error:
3435         return;
3436 }
3437
3438 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
3439 {
3440         entity_t *entity             = allocate_entity_zero(kind);
3441         entity->base.source_position = *HERE;
3442         entity->base.symbol          = symbol;
3443         if (is_declaration(entity)) {
3444                 entity->declaration.type     = type_error_type;
3445                 entity->declaration.implicit = true;
3446         } else if (kind == ENTITY_TYPEDEF) {
3447                 entity->typedefe.type    = type_error_type;
3448                 entity->typedefe.builtin = true;
3449         }
3450         if (kind != ENTITY_COMPOUND_MEMBER)
3451                 record_entity(entity, false);
3452         return entity;
3453 }
3454
3455 static void parse_microsoft_based(based_spec_t *based_spec)
3456 {
3457         if (token.type != T_IDENTIFIER) {
3458                 parse_error_expected("while parsing __based", T_IDENTIFIER, NULL);
3459                 return;
3460         }
3461         symbol_t *symbol = token.v.symbol;
3462         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3463
3464         if (entity == NULL || entity->base.kind != ENTITY_VARIABLE) {
3465                 errorf(HERE, "'%Y' is not a variable name.", symbol);
3466                 entity = create_error_entity(symbol, ENTITY_VARIABLE);
3467         } else {
3468                 variable_t *variable = &entity->variable;
3469
3470                 if (based_spec->base_variable != NULL) {
3471                         errorf(HERE, "__based type qualifier specified more than once");
3472                 }
3473                 based_spec->source_position = token.source_position;
3474                 based_spec->base_variable   = variable;
3475
3476                 type_t *const type = variable->base.type;
3477
3478                 if (is_type_valid(type)) {
3479                         if (! is_type_pointer(skip_typeref(type))) {
3480                                 errorf(HERE, "variable in __based modifier must have pointer type instead of '%T'", type);
3481                         }
3482                         if (variable->base.base.parent_scope != file_scope) {
3483                                 errorf(HERE, "a nonstatic local variable may not be used in a __based specification");
3484                         }
3485                 }
3486         }
3487         next_token();
3488 }
3489
3490 /**
3491  * Finish the construction of a struct type by calculating
3492  * its size, offsets, alignment.
3493  */
3494 static void finish_struct_type(compound_type_t *type)
3495 {
3496         assert(type->compound != NULL);
3497
3498         compound_t *compound = type->compound;
3499         if (!compound->complete)
3500                 return;
3501
3502         il_size_t      size           = 0;
3503         il_size_t      offset;
3504         il_alignment_t alignment      = 1;
3505         bool           need_pad       = false;
3506
3507         entity_t *entry = compound->members.entities;
3508         for (; entry != NULL; entry = entry->base.next) {
3509                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3510                         continue;
3511
3512                 type_t *m_type = skip_typeref(entry->declaration.type);
3513                 if (! is_type_valid(m_type)) {
3514                         /* simply ignore errors here */
3515                         continue;
3516                 }
3517                 il_alignment_t m_alignment = m_type->base.alignment;
3518                 if (m_alignment > alignment)
3519                         alignment = m_alignment;
3520
3521                 offset = (size + m_alignment - 1) & -m_alignment;
3522
3523                 if (offset > size)
3524                         need_pad = true;
3525                 entry->compound_member.offset = offset;
3526                 size = offset + m_type->base.size;
3527         }
3528         if (type->base.alignment != 0) {
3529                 alignment = type->base.alignment;
3530         }
3531
3532         offset = (size + alignment - 1) & -alignment;
3533         if (offset > size)
3534                 need_pad = true;
3535
3536         if (need_pad) {
3537                 if (warning.padded) {
3538                         warningf(&compound->base.source_position, "'%T' needs padding", type);
3539                 }
3540         } else {
3541                 if (compound->modifiers & DM_PACKED && warning.packed) {
3542                         warningf(&compound->base.source_position,
3543                                         "superfluous packed attribute on '%T'", type);
3544                 }
3545         }
3546
3547         type->base.size      = offset;
3548         type->base.alignment = alignment;
3549 }
3550
3551 /**
3552  * Finish the construction of an union type by calculating
3553  * its size and alignment.
3554  */
3555 static void finish_union_type(compound_type_t *type)
3556 {
3557         assert(type->compound != NULL);
3558
3559         compound_t *compound = type->compound;
3560         if (! compound->complete)
3561                 return;
3562
3563         il_size_t      size      = 0;
3564         il_alignment_t alignment = 1;
3565
3566         entity_t *entry = compound->members.entities;
3567         for (; entry != NULL; entry = entry->base.next) {
3568                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3569                         continue;
3570
3571                 type_t *m_type = skip_typeref(entry->declaration.type);
3572                 if (! is_type_valid(m_type))
3573                         continue;
3574
3575                 entry->compound_member.offset = 0;
3576                 if (m_type->base.size > size)
3577                         size = m_type->base.size;
3578                 if (m_type->base.alignment > alignment)
3579                         alignment = m_type->base.alignment;
3580         }
3581         if (type->base.alignment != 0) {
3582                 alignment = type->base.alignment;
3583         }
3584         size = (size + alignment - 1) & -alignment;
3585         type->base.size      = size;
3586         type->base.alignment = alignment;
3587 }
3588
3589 static type_t *handle_attribute_mode(const gnu_attribute_t *attribute,
3590                                      type_t *orig_type)
3591 {
3592         type_t *type = skip_typeref(orig_type);
3593
3594         /* at least: byte, word, pointer, list of machine modes
3595          * __XXX___ is interpreted as XXX */
3596
3597         /* This isn't really correct, the backend should provide a list of machine
3598          * specific modes (according to gcc philosophy that is...) */
3599         const char         *symbol_str = attribute->u.symbol->string;
3600         bool                sign       = is_type_signed(type);
3601         atomic_type_kind_t  akind;
3602         if (strcmp_underscore("QI",   symbol_str) == 0 ||
3603             strcmp_underscore("byte", symbol_str) == 0) {
3604                 akind = sign ? ATOMIC_TYPE_CHAR : ATOMIC_TYPE_UCHAR;
3605         } else if (strcmp_underscore("HI", symbol_str) == 0) {
3606                 akind = sign ? ATOMIC_TYPE_SHORT : ATOMIC_TYPE_USHORT;
3607         } else if (strcmp_underscore("SI",      symbol_str) == 0
3608                 || strcmp_underscore("word",    symbol_str) == 0
3609                 || strcmp_underscore("pointer", symbol_str) == 0) {
3610                 akind = sign ? ATOMIC_TYPE_INT : ATOMIC_TYPE_UINT;
3611         } else if (strcmp_underscore("DI", symbol_str) == 0) {
3612                 akind = sign ? ATOMIC_TYPE_LONGLONG : ATOMIC_TYPE_ULONGLONG;
3613         } else {
3614                 if (warning.other)
3615                         warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
3616                 return orig_type;
3617         }
3618
3619         if (type->kind == TYPE_ATOMIC) {
3620                 type_t *copy       = duplicate_type(type);
3621                 copy->atomic.akind = akind;
3622                 return identify_new_type(copy);
3623         } else if (type->kind == TYPE_ENUM) {
3624                 type_t *copy      = duplicate_type(type);
3625                 copy->enumt.akind = akind;
3626                 return identify_new_type(copy);
3627         } else if (is_type_pointer(type)) {
3628                 warningf(HERE, "__attribute__((mode)) on pointers not implemented yet (ignored)");
3629                 return type;
3630         }
3631
3632         errorf(HERE, "__attribute__((mode)) only allowed on integer, enum or pointer type");
3633         return orig_type;
3634 }
3635
3636 static type_t *handle_type_attributes(const gnu_attribute_t *attributes,
3637                                       type_t *type)
3638 {
3639         const gnu_attribute_t *attribute = attributes;
3640         for ( ; attribute != NULL; attribute = attribute->next) {
3641                 if (attribute->invalid)
3642                         continue;
3643
3644                 if (attribute->kind == GNU_AK_MODE) {
3645                         type = handle_attribute_mode(attribute, type);
3646                 } else if (attribute->kind == GNU_AK_ALIGNED) {
3647                         int alignment = 32; /* TODO: fill in maximum useful alignment for
3648                                                target machine */
3649                         if (attribute->has_arguments)
3650                                 alignment = attribute->u.argument;
3651
3652                         type_t *copy         = duplicate_type(type);
3653                         copy->base.alignment = attribute->u.argument;
3654                         type                 = identify_new_type(copy);
3655                 }
3656         }
3657
3658         return type;
3659 }
3660
3661 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3662 {
3663         type_t            *type              = NULL;
3664         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3665         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3666         unsigned           type_specifiers   = 0;
3667         bool               newtype           = false;
3668         bool               saw_error         = false;
3669         bool               old_gcc_extension = in_gcc_extension;
3670
3671         specifiers->source_position = token.source_position;
3672
3673         while (true) {
3674                 specifiers->modifiers
3675                         |= parse_attributes(&specifiers->gnu_attributes);
3676
3677                 switch (token.type) {
3678                 /* storage class */
3679 #define MATCH_STORAGE_CLASS(token, class)                                  \
3680                 case token:                                                        \
3681                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
3682                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3683                         }                                                              \
3684                         specifiers->storage_class = class;                             \
3685                         if (specifiers->thread_local)                                  \
3686                                 goto check_thread_storage_class;                           \
3687                         next_token();                                                  \
3688                         break;
3689
3690                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3691                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3692                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3693                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3694                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3695
3696                 case T__declspec:
3697                         next_token();
3698                         expect('(', end_error);
3699                         add_anchor_token(')');
3700                         parse_microsoft_extended_decl_modifier(specifiers);
3701                         rem_anchor_token(')');
3702                         expect(')', end_error);
3703                         break;
3704
3705                 case T___thread:
3706                         if (specifiers->thread_local) {
3707                                 errorf(HERE, "duplicate '__thread'");
3708                         } else {
3709                                 specifiers->thread_local = true;
3710 check_thread_storage_class:
3711                                 switch (specifiers->storage_class) {
3712                                         case STORAGE_CLASS_EXTERN:
3713                                         case STORAGE_CLASS_NONE:
3714                                         case STORAGE_CLASS_STATIC:
3715                                                 break;
3716
3717                                                 char const* wrong;
3718                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_stoarge_class;
3719                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_stoarge_class;
3720                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_stoarge_class;
3721 wrong_thread_stoarge_class:
3722                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
3723                                                 break;
3724                                 }
3725                         }
3726                         next_token();
3727                         break;
3728
3729                 /* type qualifiers */
3730 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3731                 case token:                                                     \
3732                         qualifiers |= qualifier;                                    \
3733                         next_token();                                               \
3734                         break
3735
3736                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3737                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3738                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3739                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3740                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3741                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3742                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3743                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3744
3745                 case T___extension__:
3746                         next_token();
3747                         in_gcc_extension = true;
3748                         break;
3749
3750                 /* type specifiers */
3751 #define MATCH_SPECIFIER(token, specifier, name)                         \
3752                 case token:                                                     \
3753                         if (type_specifiers & specifier) {                           \
3754                                 errorf(HERE, "multiple " name " type specifiers given"); \
3755                         } else {                                                    \
3756                                 type_specifiers |= specifier;                           \
3757                         }                                                           \
3758                         next_token();                                               \
3759                         break
3760
3761                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3762                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3763                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3764                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3765                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3766                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3767                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3768                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3769                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
3770                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3771                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3772                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3773                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3774                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3775                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3776                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3777                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3778                 MATCH_SPECIFIER(T_wchar_t,    SPECIFIER_WCHAR_T,   "wchar_t");
3779
3780                 case T__forceinline:
3781                         /* only in microsoft mode */
3782                         specifiers->modifiers |= DM_FORCEINLINE;
3783                         /* FALLTHROUGH */
3784
3785                 case T_inline:
3786                         next_token();
3787                         specifiers->is_inline = true;
3788                         break;
3789
3790                 case T_long:
3791                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3792                                 errorf(HERE, "multiple type specifiers given");
3793                         } else if (type_specifiers & SPECIFIER_LONG) {
3794                                 type_specifiers |= SPECIFIER_LONG_LONG;
3795                         } else {
3796                                 type_specifiers |= SPECIFIER_LONG;
3797                         }
3798                         next_token();
3799                         break;
3800
3801                 case T_struct: {
3802                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
3803
3804                         type->compound.compound = parse_compound_type_specifier(true);
3805                         finish_struct_type(&type->compound);
3806                         break;
3807                 }
3808                 case T_union: {
3809                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
3810                         type->compound.compound = parse_compound_type_specifier(false);
3811                         if (type->compound.compound->modifiers & DM_TRANSPARENT_UNION)
3812                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3813                         finish_union_type(&type->compound);
3814                         break;
3815                 }
3816                 case T_enum:
3817                         type = parse_enum_specifier();
3818                         break;
3819                 case T___typeof__:
3820                         type = parse_typeof();
3821                         break;
3822                 case T___builtin_va_list:
3823                         type = duplicate_type(type_valist);
3824                         next_token();
3825                         break;
3826
3827                 case T_IDENTIFIER: {
3828                         /* only parse identifier if we haven't found a type yet */
3829                         if (type != NULL || type_specifiers != 0) {
3830                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3831                                  * declaration, so it doesn't generate errors about expecting '(' or
3832                                  * '{' later on. */
3833                                 switch (look_ahead(1)->type) {
3834                                         STORAGE_CLASSES
3835                                         TYPE_SPECIFIERS
3836                                         case T_const:
3837                                         case T_restrict:
3838                                         case T_volatile:
3839                                         case T_inline:
3840                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3841                                         case T_IDENTIFIER:
3842                                         case '&':
3843                                         case '*':
3844                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3845                                                 next_token();
3846                                                 continue;
3847
3848                                         default:
3849                                                 goto finish_specifiers;
3850                                 }
3851                         }
3852
3853                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3854                         if (typedef_type == NULL) {
3855                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3856                                  * declaration, so it doesn't generate 'implicit int' followed by more
3857                                  * errors later on. */
3858                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3859                                 switch (la1_type) {
3860                                         DECLARATION_START
3861                                         case T_IDENTIFIER:
3862                                         case '&':
3863                                         case '*': {
3864                                                 errorf(HERE, "%K does not name a type", &token);
3865
3866                                                 entity_t *entity =
3867                                                         create_error_entity(token.v.symbol, ENTITY_TYPEDEF);
3868
3869                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3870                                                 type->typedeft.typedefe = &entity->typedefe;
3871
3872                                                 next_token();
3873                                                 saw_error = true;
3874                                                 if (la1_type == '&' || la1_type == '*')
3875                                                         goto finish_specifiers;
3876                                                 continue;
3877                                         }
3878
3879                                         default:
3880                                                 goto finish_specifiers;
3881                                 }
3882                         }
3883
3884                         next_token();
3885                         type = typedef_type;
3886                         break;
3887                 }
3888
3889                 /* function specifier */
3890                 default:
3891                         goto finish_specifiers;
3892                 }
3893         }
3894
3895 finish_specifiers:
3896         specifiers->modifiers
3897                 |= parse_attributes(&specifiers->gnu_attributes);
3898
3899         in_gcc_extension = old_gcc_extension;
3900
3901         if (type == NULL || (saw_error && type_specifiers != 0)) {
3902                 atomic_type_kind_t atomic_type;
3903
3904                 /* match valid basic types */
3905                 switch (type_specifiers) {
3906                 case SPECIFIER_VOID:
3907                         atomic_type = ATOMIC_TYPE_VOID;
3908                         break;
3909                 case SPECIFIER_WCHAR_T:
3910                         atomic_type = ATOMIC_TYPE_WCHAR_T;
3911                         break;
3912                 case SPECIFIER_CHAR:
3913                         atomic_type = ATOMIC_TYPE_CHAR;
3914                         break;
3915                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3916                         atomic_type = ATOMIC_TYPE_SCHAR;
3917                         break;
3918                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3919                         atomic_type = ATOMIC_TYPE_UCHAR;
3920                         break;
3921                 case SPECIFIER_SHORT:
3922                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3923                 case SPECIFIER_SHORT | SPECIFIER_INT:
3924                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3925                         atomic_type = ATOMIC_TYPE_SHORT;
3926                         break;
3927                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3928                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3929                         atomic_type = ATOMIC_TYPE_USHORT;
3930                         break;
3931                 case SPECIFIER_INT:
3932                 case SPECIFIER_SIGNED:
3933                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3934                         atomic_type = ATOMIC_TYPE_INT;
3935                         break;
3936                 case SPECIFIER_UNSIGNED:
3937                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3938                         atomic_type = ATOMIC_TYPE_UINT;
3939                         break;
3940                 case SPECIFIER_LONG:
3941                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3942                 case SPECIFIER_LONG | SPECIFIER_INT:
3943                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3944                         atomic_type = ATOMIC_TYPE_LONG;
3945                         break;
3946                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3947                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3948                         atomic_type = ATOMIC_TYPE_ULONG;
3949                         break;
3950
3951                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3952                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3953                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3954                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3955                         | SPECIFIER_INT:
3956                         atomic_type = ATOMIC_TYPE_LONGLONG;
3957                         goto warn_about_long_long;
3958
3959                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3960                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3961                         | SPECIFIER_INT:
3962                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3963 warn_about_long_long:
3964                         if (warning.long_long) {
3965                                 warningf(&specifiers->source_position,
3966                                          "ISO C90 does not support 'long long'");
3967                         }
3968                         break;
3969
3970                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3971                         atomic_type = unsigned_int8_type_kind;
3972                         break;
3973
3974                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3975                         atomic_type = unsigned_int16_type_kind;
3976                         break;
3977
3978                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3979                         atomic_type = unsigned_int32_type_kind;
3980                         break;
3981
3982                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3983                         atomic_type = unsigned_int64_type_kind;
3984                         break;
3985
3986                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3987                         atomic_type = unsigned_int128_type_kind;
3988                         break;
3989
3990                 case SPECIFIER_INT8:
3991                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3992                         atomic_type = int8_type_kind;
3993                         break;
3994
3995                 case SPECIFIER_INT16:
3996                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3997                         atomic_type = int16_type_kind;
3998                         break;
3999
4000                 case SPECIFIER_INT32:
4001                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
4002                         atomic_type = int32_type_kind;
4003                         break;
4004
4005                 case SPECIFIER_INT64:
4006                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
4007                         atomic_type = int64_type_kind;
4008                         break;
4009
4010                 case SPECIFIER_INT128:
4011                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
4012                         atomic_type = int128_type_kind;
4013                         break;
4014
4015                 case SPECIFIER_FLOAT:
4016                         atomic_type = ATOMIC_TYPE_FLOAT;
4017                         break;
4018                 case SPECIFIER_DOUBLE:
4019                         atomic_type = ATOMIC_TYPE_DOUBLE;
4020                         break;
4021                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
4022                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
4023                         break;
4024                 case SPECIFIER_BOOL:
4025                         atomic_type = ATOMIC_TYPE_BOOL;
4026                         break;
4027                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
4028                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
4029                         atomic_type = ATOMIC_TYPE_FLOAT;
4030                         break;
4031                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
4032                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
4033                         atomic_type = ATOMIC_TYPE_DOUBLE;
4034                         break;
4035                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
4036                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
4037                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
4038                         break;
4039                 default:
4040                         /* invalid specifier combination, give an error message */
4041                         if (type_specifiers == 0) {
4042                                 if (saw_error)
4043                                         goto end_error;
4044
4045                                 /* ISO/IEC 14882:1998(E) §C.1.5:4 */
4046                                 if (!(c_mode & _CXX) && !strict_mode) {
4047                                         if (warning.implicit_int) {
4048                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
4049                                         }
4050                                         atomic_type = ATOMIC_TYPE_INT;
4051                                         break;
4052                                 } else {
4053                                         errorf(HERE, "no type specifiers given in declaration");
4054                                 }
4055                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
4056                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
4057                                 errorf(HERE, "signed and unsigned specifiers given");
4058                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
4059                                 errorf(HERE, "only integer types can be signed or unsigned");
4060                         } else {
4061                                 errorf(HERE, "multiple datatypes in declaration");
4062                         }
4063                         goto end_error;
4064                 }
4065
4066                 if (type_specifiers & SPECIFIER_COMPLEX) {
4067                         type                = allocate_type_zero(TYPE_COMPLEX);
4068                         type->complex.akind = atomic_type;
4069                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
4070                         type                  = allocate_type_zero(TYPE_IMAGINARY);
4071                         type->imaginary.akind = atomic_type;
4072                 } else {
4073                         type                 = allocate_type_zero(TYPE_ATOMIC);
4074                         type->atomic.akind   = atomic_type;
4075                 }
4076                 type->base.alignment = get_atomic_type_alignment(atomic_type);
4077                 unsigned const size  = get_atomic_type_size(atomic_type);
4078                 type->base.size      =
4079                         type_specifiers & SPECIFIER_COMPLEX ? size * 2 : size;
4080                 newtype = true;
4081         } else if (type_specifiers != 0) {
4082                 errorf(HERE, "multiple datatypes in declaration");
4083         }
4084
4085         /* FIXME: check type qualifiers here */
4086
4087         if (specifiers->modifiers & DM_TRANSPARENT_UNION)
4088                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4089         type->base.qualifiers = qualifiers;
4090         type->base.modifiers  = modifiers;
4091
4092         if (newtype) {
4093                 type = identify_new_type(type);
4094         } else {
4095                 type = typehash_insert(type);
4096         }
4097
4098         type = handle_type_attributes(specifiers->gnu_attributes, type);
4099         specifiers->type = type;
4100         return;
4101
4102 end_error:
4103         specifiers->type = type_error_type;
4104         return;
4105 }
4106
4107 static type_qualifiers_t parse_type_qualifiers(void)
4108 {
4109         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
4110
4111         while (true) {
4112                 switch (token.type) {
4113                 /* type qualifiers */
4114                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
4115                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
4116                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
4117                 /* microsoft extended type modifiers */
4118                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
4119                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
4120                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
4121                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
4122                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
4123
4124                 default:
4125                         return qualifiers;
4126                 }
4127         }
4128 }
4129
4130 /**
4131  * Parses an K&R identifier list
4132  */
4133 static void parse_identifier_list(scope_t *scope)
4134 {
4135         do {
4136                 entity_t *entity = allocate_entity_zero(ENTITY_PARAMETER);
4137                 entity->base.source_position = token.source_position;
4138                 entity->base.namespc         = NAMESPACE_NORMAL;
4139                 entity->base.symbol          = token.v.symbol;
4140                 /* a K&R parameter has no type, yet */
4141                 next_token();
4142
4143                 if (scope != NULL)
4144                         append_entity(scope, entity);
4145
4146                 if (token.type != ',') {
4147                         break;
4148                 }
4149                 next_token();
4150         } while (token.type == T_IDENTIFIER);
4151 }
4152
4153 static entity_t *parse_parameter(void)
4154 {
4155         declaration_specifiers_t specifiers;
4156         memset(&specifiers, 0, sizeof(specifiers));
4157
4158         parse_declaration_specifiers(&specifiers);
4159
4160         entity_t *entity = parse_declarator(&specifiers,
4161                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
4162         anonymous_entity = NULL;
4163         return entity;
4164 }
4165
4166 static void semantic_parameter_incomplete(const entity_t *entity)
4167 {
4168         assert(entity->kind == ENTITY_PARAMETER);
4169
4170         /* §6.7.5.3:4  After adjustment, the parameters in a parameter type
4171          *             list in a function declarator that is part of a
4172          *             definition of that function shall not have
4173          *             incomplete type. */
4174         type_t *type = skip_typeref(entity->declaration.type);
4175         if (is_type_incomplete(type)) {
4176                 errorf(&entity->base.source_position,
4177                        "parameter '%Y' has incomplete type '%T'", entity->base.symbol,
4178                        entity->declaration.type);
4179         }
4180 }
4181
4182 /**
4183  * Parses function type parameters (and optionally creates variable_t entities
4184  * for them in a scope)
4185  */
4186 static void parse_parameters(function_type_t *type, scope_t *scope)
4187 {
4188         eat('(');
4189         add_anchor_token(')');
4190         int saved_comma_state = save_and_reset_anchor_state(',');
4191
4192         if (token.type == T_IDENTIFIER &&
4193             !is_typedef_symbol(token.v.symbol)) {
4194                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
4195                 if (la1_type == ',' || la1_type == ')') {
4196                         type->kr_style_parameters    = true;
4197                         type->unspecified_parameters = true;
4198                         parse_identifier_list(scope);
4199                         goto parameters_finished;
4200                 }
4201         }
4202
4203         if (token.type == ')') {
4204                 /* ISO/IEC 14882:1998(E) §C.1.6:1 */
4205                 if (!(c_mode & _CXX))
4206                         type->unspecified_parameters = true;
4207                 goto parameters_finished;
4208         }
4209
4210         function_parameter_t *parameter;
4211         function_parameter_t *last_parameter = NULL;
4212
4213         while (true) {
4214                 switch (token.type) {
4215                 case T_DOTDOTDOT:
4216                         next_token();
4217                         type->variadic = true;
4218                         goto parameters_finished;
4219
4220                 case T_IDENTIFIER:
4221                 case T___extension__:
4222                 DECLARATION_START
4223                 {
4224                         entity_t *entity = parse_parameter();
4225                         if (entity->kind == ENTITY_TYPEDEF) {
4226                                 errorf(&entity->base.source_position,
4227                                        "typedef not allowed as function parameter");
4228                                 break;
4229                         }
4230                         assert(is_declaration(entity));
4231
4232                         /* func(void) is not a parameter */
4233                         if (last_parameter == NULL
4234                                         && token.type == ')'
4235                                         && entity->base.symbol == NULL
4236                                         && skip_typeref(entity->declaration.type) == type_void) {
4237                                 goto parameters_finished;
4238                         }
4239                         semantic_parameter_incomplete(entity);
4240
4241                         parameter = obstack_alloc(type_obst, sizeof(parameter[0]));
4242                         memset(parameter, 0, sizeof(parameter[0]));
4243                         parameter->type = entity->declaration.type;
4244
4245                         if (scope != NULL) {
4246                                 append_entity(scope, entity);
4247                         }
4248
4249                         if (last_parameter != NULL) {
4250                                 last_parameter->next = parameter;
4251                         } else {
4252                                 type->parameters = parameter;
4253                         }
4254                         last_parameter   = parameter;
4255                         break;
4256                 }
4257
4258                 default:
4259                         goto parameters_finished;
4260                 }
4261                 if (token.type != ',') {
4262                         goto parameters_finished;
4263                 }
4264                 next_token();
4265         }
4266
4267
4268 parameters_finished:
4269         rem_anchor_token(')');
4270         expect(')', end_error);
4271
4272 end_error:
4273         restore_anchor_state(',', saved_comma_state);
4274 }
4275
4276 typedef enum construct_type_kind_t {
4277         CONSTRUCT_INVALID,
4278         CONSTRUCT_POINTER,
4279         CONSTRUCT_REFERENCE,
4280         CONSTRUCT_FUNCTION,
4281         CONSTRUCT_ARRAY
4282 } construct_type_kind_t;
4283
4284 typedef struct construct_type_t construct_type_t;
4285 struct construct_type_t {
4286         construct_type_kind_t  kind;
4287         construct_type_t      *next;
4288 };
4289
4290 typedef struct parsed_pointer_t parsed_pointer_t;
4291 struct parsed_pointer_t {
4292         construct_type_t  construct_type;
4293         type_qualifiers_t type_qualifiers;
4294         variable_t        *base_variable;  /**< MS __based extension. */
4295 };
4296
4297 typedef struct parsed_reference_t parsed_reference_t;
4298 struct parsed_reference_t {
4299         construct_type_t construct_type;
4300 };
4301
4302 typedef struct construct_function_type_t construct_function_type_t;
4303 struct construct_function_type_t {
4304         construct_type_t  construct_type;
4305         type_t           *function_type;
4306 };
4307
4308 typedef struct parsed_array_t parsed_array_t;
4309 struct parsed_array_t {
4310         construct_type_t  construct_type;
4311         type_qualifiers_t type_qualifiers;
4312         bool              is_static;
4313         bool              is_variable;
4314         expression_t     *size;
4315 };
4316
4317 typedef struct construct_base_type_t construct_base_type_t;
4318 struct construct_base_type_t {
4319         construct_type_t  construct_type;
4320         type_t           *type;
4321 };
4322
4323 static construct_type_t *parse_pointer_declarator(variable_t *base_variable)
4324 {
4325         eat('*');
4326
4327         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
4328         memset(pointer, 0, sizeof(pointer[0]));
4329         pointer->construct_type.kind = CONSTRUCT_POINTER;
4330         pointer->type_qualifiers     = parse_type_qualifiers();
4331         pointer->base_variable       = base_variable;
4332
4333         return &pointer->construct_type;
4334 }
4335
4336 static construct_type_t *parse_reference_declarator(void)
4337 {
4338         eat('&');
4339
4340         parsed_reference_t *reference = obstack_alloc(&temp_obst, sizeof(reference[0]));
4341         memset(reference, 0, sizeof(reference[0]));
4342         reference->construct_type.kind = CONSTRUCT_REFERENCE;
4343
4344         return (construct_type_t*)reference;
4345 }
4346
4347 static construct_type_t *parse_array_declarator(void)
4348 {
4349         eat('[');
4350         add_anchor_token(']');
4351
4352         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
4353         memset(array, 0, sizeof(array[0]));
4354         array->construct_type.kind = CONSTRUCT_ARRAY;
4355
4356         if (token.type == T_static) {
4357                 array->is_static = true;
4358                 next_token();
4359         }
4360
4361         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
4362         if (type_qualifiers != 0) {
4363                 if (token.type == T_static) {
4364                         array->is_static = true;
4365                         next_token();
4366                 }
4367         }
4368         array->type_qualifiers = type_qualifiers;
4369
4370         if (token.type == '*' && look_ahead(1)->type == ']') {
4371                 array->is_variable = true;
4372                 next_token();
4373         } else if (token.type != ']') {
4374                 expression_t *const size = parse_assignment_expression();
4375                 array->size = size;
4376                 mark_vars_read(size, NULL);
4377         }
4378
4379         rem_anchor_token(']');
4380         expect(']', end_error);
4381
4382 end_error:
4383         return &array->construct_type;
4384 }
4385
4386 static construct_type_t *parse_function_declarator(scope_t *scope,
4387                                                    decl_modifiers_t modifiers)
4388 {
4389         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
4390         function_type_t *ftype = &type->function;
4391
4392         ftype->linkage = current_linkage;
4393
4394         switch (modifiers & (DM_CDECL | DM_STDCALL | DM_FASTCALL | DM_THISCALL)) {
4395                 case DM_NONE:     break;
4396                 case DM_CDECL:    ftype->calling_convention = CC_CDECL;    break;
4397                 case DM_STDCALL:  ftype->calling_convention = CC_STDCALL;  break;
4398                 case DM_FASTCALL: ftype->calling_convention = CC_FASTCALL; break;
4399                 case DM_THISCALL: ftype->calling_convention = CC_THISCALL; break;
4400
4401                 default:
4402                         errorf(HERE, "multiple calling conventions in declaration");
4403                         break;
4404         }
4405
4406         parse_parameters(ftype, scope);
4407
4408         construct_function_type_t *construct_function_type =
4409                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
4410         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
4411         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
4412         construct_function_type->function_type       = type;
4413
4414         return &construct_function_type->construct_type;
4415 }
4416
4417 typedef struct parse_declarator_env_t {
4418         decl_modifiers_t   modifiers;
4419         symbol_t          *symbol;
4420         source_position_t  source_position;
4421         scope_t            parameters;
4422 } parse_declarator_env_t;
4423
4424 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env,
4425                 bool may_be_abstract)
4426 {
4427         /* construct a single linked list of construct_type_t's which describe
4428          * how to construct the final declarator type */
4429         construct_type_t *first      = NULL;
4430         construct_type_t *last       = NULL;
4431         gnu_attribute_t  *attributes = NULL;
4432
4433         decl_modifiers_t modifiers = parse_attributes(&attributes);
4434
4435         /* MS __based extension */
4436         based_spec_t base_spec;
4437         base_spec.base_variable = NULL;
4438
4439         for (;;) {
4440                 construct_type_t *type;
4441                 switch (token.type) {
4442                         case '&':
4443                                 if (!(c_mode & _CXX))
4444                                         errorf(HERE, "references are only available for C++");
4445                                 if (base_spec.base_variable != NULL && warning.other) {
4446                                         warningf(&base_spec.source_position,
4447                                                  "__based does not precede a pointer operator, ignored");
4448                                 }
4449                                 type = parse_reference_declarator();
4450                                 /* consumed */
4451                                 base_spec.base_variable = NULL;
4452                                 break;
4453
4454                         case '*':
4455                                 type = parse_pointer_declarator(base_spec.base_variable);
4456                                 /* consumed */
4457                                 base_spec.base_variable = NULL;
4458                                 break;
4459
4460                         case T__based:
4461                                 next_token();
4462                                 expect('(', end_error);
4463                                 add_anchor_token(')');
4464                                 parse_microsoft_based(&base_spec);
4465                                 rem_anchor_token(')');
4466                                 expect(')', end_error);
4467                                 continue;
4468
4469                         default:
4470                                 goto ptr_operator_end;
4471                 }
4472
4473                 if (last == NULL) {
4474                         first = type;
4475                         last  = type;
4476                 } else {
4477                         last->next = type;
4478                         last       = type;
4479                 }
4480
4481                 /* TODO: find out if this is correct */
4482                 modifiers |= parse_attributes(&attributes);
4483         }
4484 ptr_operator_end:
4485         if (base_spec.base_variable != NULL && warning.other) {
4486                 warningf(&base_spec.source_position,
4487                          "__based does not precede a pointer operator, ignored");
4488         }
4489
4490         if (env != NULL) {
4491                 modifiers      |= env->modifiers;
4492                 env->modifiers  = modifiers;
4493         }
4494
4495         construct_type_t *inner_types = NULL;
4496
4497         switch (token.type) {
4498         case T_IDENTIFIER:
4499                 if (env == NULL) {
4500                         errorf(HERE, "no identifier expected in typename");
4501                 } else {
4502                         env->symbol          = token.v.symbol;
4503                         env->source_position = token.source_position;
4504                 }
4505                 next_token();
4506                 break;
4507         case '(':
4508                 /* §6.7.6:2 footnote 126:  Empty parentheses in a type name are
4509                  * interpreted as ``function with no parameter specification'', rather
4510                  * than redundant parentheses around the omitted identifier. */
4511                 if (look_ahead(1)->type != ')') {
4512                         next_token();
4513                         add_anchor_token(')');
4514                         inner_types = parse_inner_declarator(env, may_be_abstract);
4515                         if (inner_types != NULL) {
4516                                 /* All later declarators only modify the return type */
4517                                 env = NULL;
4518                         }
4519                         rem_anchor_token(')');
4520                         expect(')', end_error);
4521                 }
4522                 break;
4523         default:
4524                 if (may_be_abstract)
4525                         break;
4526                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4527                 eat_until_anchor();
4528                 return NULL;
4529         }
4530
4531         construct_type_t *p = last;
4532
4533         while (true) {
4534                 construct_type_t *type;
4535                 switch (token.type) {
4536                 case '(': {
4537                         scope_t *scope = NULL;
4538                         if (env != NULL)
4539                                 scope = &env->parameters;
4540
4541                         type = parse_function_declarator(scope, modifiers);
4542                         break;
4543                 }
4544                 case '[':
4545                         type = parse_array_declarator();
4546                         break;
4547                 default:
4548                         goto declarator_finished;
4549                 }
4550
4551                 /* insert in the middle of the list (behind p) */
4552                 if (p != NULL) {
4553                         type->next = p->next;
4554                         p->next    = type;
4555                 } else {
4556                         type->next = first;
4557                         first      = type;
4558                 }
4559                 if (last == p) {
4560                         last = type;
4561                 }
4562         }
4563
4564 declarator_finished:
4565         /* append inner_types at the end of the list, we don't to set last anymore
4566          * as it's not needed anymore */
4567         if (last == NULL) {
4568                 assert(first == NULL);
4569                 first = inner_types;
4570         } else {
4571                 last->next = inner_types;
4572         }
4573
4574         return first;
4575 end_error:
4576         return NULL;
4577 }
4578
4579 static void parse_declaration_attributes(entity_t *entity)
4580 {
4581         gnu_attribute_t  *attributes = NULL;
4582         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4583
4584         if (entity == NULL)
4585                 return;
4586
4587         type_t *type;
4588         if (entity->kind == ENTITY_TYPEDEF) {
4589                 modifiers |= entity->typedefe.modifiers;
4590                 type       = entity->typedefe.type;
4591         } else {
4592                 assert(is_declaration(entity));
4593                 modifiers |= entity->declaration.modifiers;
4594                 type       = entity->declaration.type;
4595         }
4596         if (type == NULL)
4597                 return;
4598
4599         gnu_attribute_t *attribute = attributes;
4600         for ( ; attribute != NULL; attribute = attribute->next) {
4601                 if (attribute->invalid)
4602                         continue;
4603
4604                 if (attribute->kind == GNU_AK_MODE) {
4605                         type = handle_attribute_mode(attribute, type);
4606                 } else if (attribute->kind == GNU_AK_ALIGNED) {
4607                         int alignment = 32; /* TODO: fill in maximum usefull alignment for target machine */
4608                         if (attribute->has_arguments)
4609                                 alignment = attribute->u.argument;
4610
4611                         if (entity->kind == ENTITY_TYPEDEF) {
4612                                 type_t *copy         = duplicate_type(type);
4613                                 copy->base.alignment = attribute->u.argument;
4614                                 type                 = identify_new_type(copy);
4615                         } else if(entity->kind == ENTITY_VARIABLE) {
4616                                 entity->variable.alignment = alignment;
4617                         } else if(entity->kind == ENTITY_COMPOUND_MEMBER) {
4618                                 entity->compound_member.alignment = alignment;
4619                         }
4620                 }
4621         }
4622
4623         type_modifiers_t type_modifiers = type->base.modifiers;
4624         if (modifiers & DM_TRANSPARENT_UNION)
4625                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4626
4627         if (type->base.modifiers != type_modifiers) {
4628                 type_t *copy         = duplicate_type(type);
4629                 copy->base.modifiers = type_modifiers;
4630                 type                 = identify_new_type(copy);
4631         }
4632
4633         if (entity->kind == ENTITY_TYPEDEF) {
4634                 entity->typedefe.type      = type;
4635                 entity->typedefe.modifiers = modifiers;
4636         } else {
4637                 entity->declaration.type      = type;
4638                 entity->declaration.modifiers = modifiers;
4639         }
4640 }
4641
4642 static type_t *construct_declarator_type(construct_type_t *construct_list, type_t *type)
4643 {
4644         construct_type_t *iter = construct_list;
4645         for (; iter != NULL; iter = iter->next) {
4646                 switch (iter->kind) {
4647                 case CONSTRUCT_INVALID:
4648                         internal_errorf(HERE, "invalid type construction found");
4649                 case CONSTRUCT_FUNCTION: {
4650                         construct_function_type_t *construct_function_type
4651                                 = (construct_function_type_t*) iter;
4652
4653                         type_t *function_type = construct_function_type->function_type;
4654
4655                         function_type->function.return_type = type;
4656
4657                         type_t *skipped_return_type = skip_typeref(type);
4658                         /* §6.7.5.3:1 */
4659                         if (is_type_function(skipped_return_type)) {
4660                                 errorf(HERE, "function returning function is not allowed");
4661                         } else if (is_type_array(skipped_return_type)) {
4662                                 errorf(HERE, "function returning array is not allowed");
4663                         } else {
4664                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
4665                                         warningf(HERE,
4666                                                 "type qualifiers in return type of function type are meaningless");
4667                                 }
4668                         }
4669
4670                         type = function_type;
4671                         break;
4672                 }
4673
4674                 case CONSTRUCT_POINTER: {
4675                         if (is_type_reference(skip_typeref(type)))
4676                                 errorf(HERE, "cannot declare a pointer to reference");
4677
4678                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4679                         type = make_based_pointer_type(type, parsed_pointer->type_qualifiers, parsed_pointer->base_variable);
4680                         continue;
4681                 }
4682
4683                 case CONSTRUCT_REFERENCE:
4684                         if (is_type_reference(skip_typeref(type)))
4685                                 errorf(HERE, "cannot declare a reference to reference");
4686
4687                         type = make_reference_type(type);
4688                         continue;
4689
4690                 case CONSTRUCT_ARRAY: {
4691                         if (is_type_reference(skip_typeref(type)))
4692                                 errorf(HERE, "cannot declare an array of references");
4693
4694                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4695                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY);
4696
4697                         expression_t *size_expression = parsed_array->size;
4698                         if (size_expression != NULL) {
4699                                 size_expression
4700                                         = create_implicit_cast(size_expression, type_size_t);
4701                         }
4702
4703                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4704                         array_type->array.element_type    = type;
4705                         array_type->array.is_static       = parsed_array->is_static;
4706                         array_type->array.is_variable     = parsed_array->is_variable;
4707                         array_type->array.size_expression = size_expression;
4708
4709                         if (size_expression != NULL) {
4710                                 if (is_constant_expression(size_expression)) {
4711                                         array_type->array.size_constant = true;
4712                                         array_type->array.size
4713                                                 = fold_constant(size_expression);
4714                                 } else {
4715                                         array_type->array.is_vla = true;
4716                                 }
4717                         }
4718
4719                         type_t *skipped_type = skip_typeref(type);
4720                         /* §6.7.5.2:1 */
4721                         if (is_type_incomplete(skipped_type)) {
4722                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4723                         } else if (is_type_function(skipped_type)) {
4724                                 errorf(HERE, "array of functions is not allowed");
4725                         }
4726                         type = array_type;
4727                         break;
4728                 }
4729                 }
4730
4731                 /* The function type was constructed earlier.  Freeing it here will
4732                  * destroy other types. */
4733                 if (iter->kind == CONSTRUCT_FUNCTION) {
4734                         type = typehash_insert(type);
4735                 } else {
4736                         type = identify_new_type(type);
4737                 }
4738         }
4739
4740         return type;
4741 }
4742
4743 static type_t *automatic_type_conversion(type_t *orig_type);
4744
4745 static type_t *semantic_parameter(const source_position_t *pos,
4746                                   type_t *type,
4747                                   const declaration_specifiers_t *specifiers,
4748                                   symbol_t *symbol)
4749 {
4750         /* §6.7.5.3:7  A declaration of a parameter as ``array of type''
4751          *             shall be adjusted to ``qualified pointer to type'',
4752          *             [...]
4753          * §6.7.5.3:8  A declaration of a parameter as ``function returning
4754          *             type'' shall be adjusted to ``pointer to function
4755          *             returning type'', as in 6.3.2.1. */
4756         type = automatic_type_conversion(type);
4757
4758         if (specifiers->is_inline && is_type_valid(type)) {
4759                 errorf(pos, "parameter '%Y' declared 'inline'", symbol);
4760         }
4761
4762         /* §6.9.1:6  The declarations in the declaration list shall contain
4763          *           no storage-class specifier other than register and no
4764          *           initializations. */
4765         if (specifiers->thread_local || (
4766                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4767                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
4768            ) {
4769                 errorf(pos, "invalid storage class for parameter '%Y'", symbol);
4770         }
4771
4772         /* delay test for incomplete type, because we might have (void)
4773          * which is legal but incomplete... */
4774
4775         return type;
4776 }
4777
4778 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
4779                                   declarator_flags_t flags)
4780 {
4781         parse_declarator_env_t env;
4782         memset(&env, 0, sizeof(env));
4783         env.modifiers = specifiers->modifiers;
4784
4785         construct_type_t *construct_type =
4786                 parse_inner_declarator(&env, (flags & DECL_MAY_BE_ABSTRACT) != 0);
4787         type_t           *orig_type      =
4788                 construct_declarator_type(construct_type, specifiers->type);
4789         type_t           *type           = skip_typeref(orig_type);
4790
4791         if (construct_type != NULL) {
4792                 obstack_free(&temp_obst, construct_type);
4793         }
4794
4795         entity_t *entity;
4796         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
4797                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
4798                 entity->base.symbol          = env.symbol;
4799                 entity->base.source_position = env.source_position;
4800                 entity->typedefe.type        = orig_type;
4801
4802                 if (anonymous_entity != NULL) {
4803                         if (is_type_compound(type)) {
4804                                 assert(anonymous_entity->compound.alias == NULL);
4805                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
4806                                        anonymous_entity->kind == ENTITY_UNION);
4807                                 anonymous_entity->compound.alias = entity;
4808                                 anonymous_entity = NULL;
4809                         } else if (is_type_enum(type)) {
4810                                 assert(anonymous_entity->enume.alias == NULL);
4811                                 assert(anonymous_entity->kind == ENTITY_ENUM);
4812                                 anonymous_entity->enume.alias = entity;
4813                                 anonymous_entity = NULL;
4814                         }
4815                 }
4816         } else {
4817                 /* create a declaration type entity */
4818                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
4819                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
4820
4821                         if (env.symbol != NULL) {
4822                                 if (specifiers->is_inline && is_type_valid(type)) {
4823                                         errorf(&env.source_position,
4824                                                         "compound member '%Y' declared 'inline'", env.symbol);
4825                                 }
4826
4827                                 if (specifiers->thread_local ||
4828                                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
4829                                         errorf(&env.source_position,
4830                                                         "compound member '%Y' must have no storage class",
4831                                                         env.symbol);
4832                                 }
4833                         }
4834                 } else if (flags & DECL_IS_PARAMETER) {
4835                         orig_type = semantic_parameter(&env.source_position, orig_type,
4836                                                        specifiers, env.symbol);
4837
4838                         entity = allocate_entity_zero(ENTITY_PARAMETER);
4839                 } else if (is_type_function(type)) {
4840                         entity = allocate_entity_zero(ENTITY_FUNCTION);
4841
4842                         entity->function.is_inline  = specifiers->is_inline;
4843                         entity->function.parameters = env.parameters;
4844
4845                         if (env.symbol != NULL) {
4846                                 if (specifiers->thread_local || (
4847                                                         specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4848                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4849                                                         specifiers->storage_class != STORAGE_CLASS_STATIC
4850                                                 )) {
4851                                         errorf(&env.source_position,
4852                                                         "invalid storage class for function '%Y'", env.symbol);
4853                                 }
4854                         }
4855                 } else {
4856                         entity = allocate_entity_zero(ENTITY_VARIABLE);
4857
4858                         entity->variable.get_property_sym = specifiers->get_property_sym;
4859                         entity->variable.put_property_sym = specifiers->put_property_sym;
4860
4861                         entity->variable.thread_local = specifiers->thread_local;
4862
4863                         if (env.symbol != NULL) {
4864                                 if (specifiers->is_inline && is_type_valid(type)) {
4865                                         errorf(&env.source_position,
4866                                                         "variable '%Y' declared 'inline'", env.symbol);
4867                                 }
4868
4869                                 bool invalid_storage_class = false;
4870                                 if (current_scope == file_scope) {
4871                                         if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4872                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4873                                                         specifiers->storage_class != STORAGE_CLASS_STATIC) {
4874                                                 invalid_storage_class = true;
4875                                         }
4876                                 } else {
4877                                         if (specifiers->thread_local &&
4878                                                         specifiers->storage_class == STORAGE_CLASS_NONE) {
4879                                                 invalid_storage_class = true;
4880                                         }
4881                                 }
4882                                 if (invalid_storage_class) {
4883                                         errorf(&env.source_position,
4884                                                         "invalid storage class for variable '%Y'", env.symbol);
4885                                 }
4886                         }
4887                 }
4888
4889                 if (env.symbol != NULL) {
4890                         entity->base.symbol          = env.symbol;
4891                         entity->base.source_position = env.source_position;
4892                 } else {
4893                         entity->base.source_position = specifiers->source_position;
4894                 }
4895                 entity->base.namespc                  = NAMESPACE_NORMAL;
4896                 entity->declaration.type              = orig_type;
4897                 entity->declaration.modifiers         = env.modifiers;
4898                 entity->declaration.deprecated_string = specifiers->deprecated_string;
4899
4900                 storage_class_t storage_class = specifiers->storage_class;
4901                 entity->declaration.declared_storage_class = storage_class;
4902
4903                 if (storage_class == STORAGE_CLASS_NONE && current_scope != file_scope)
4904                         storage_class = STORAGE_CLASS_AUTO;
4905                 entity->declaration.storage_class = storage_class;
4906         }
4907
4908         parse_declaration_attributes(entity);
4909
4910         return entity;
4911 }
4912
4913 static type_t *parse_abstract_declarator(type_t *base_type)
4914 {
4915         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4916
4917         type_t *result = construct_declarator_type(construct_type, base_type);
4918         if (construct_type != NULL) {
4919                 obstack_free(&temp_obst, construct_type);
4920         }
4921
4922         return result;
4923 }
4924
4925 /**
4926  * Check if the declaration of main is suspicious.  main should be a
4927  * function with external linkage, returning int, taking either zero
4928  * arguments, two, or three arguments of appropriate types, ie.
4929  *
4930  * int main([ int argc, char **argv [, char **env ] ]).
4931  *
4932  * @param decl    the declaration to check
4933  * @param type    the function type of the declaration
4934  */
4935 static void check_type_of_main(const entity_t *entity)
4936 {
4937         const source_position_t *pos = &entity->base.source_position;
4938         if (entity->kind != ENTITY_FUNCTION) {
4939                 warningf(pos, "'main' is not a function");
4940                 return;
4941         }
4942
4943         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4944                 warningf(pos, "'main' is normally a non-static function");
4945         }
4946
4947         type_t *type = skip_typeref(entity->declaration.type);
4948         assert(is_type_function(type));
4949
4950         function_type_t *func_type = &type->function;
4951         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4952                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4953                          func_type->return_type);
4954         }
4955         const function_parameter_t *parm = func_type->parameters;
4956         if (parm != NULL) {
4957                 type_t *const first_type = parm->type;
4958                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4959                         warningf(pos,
4960                                  "first argument of 'main' should be 'int', but is '%T'",
4961                                  first_type);
4962                 }
4963                 parm = parm->next;
4964                 if (parm != NULL) {
4965                         type_t *const second_type = parm->type;
4966                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4967                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4968                         }
4969                         parm = parm->next;
4970                         if (parm != NULL) {
4971                                 type_t *const third_type = parm->type;
4972                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4973                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4974                                 }
4975                                 parm = parm->next;
4976                                 if (parm != NULL)
4977                                         goto warn_arg_count;
4978                         }
4979                 } else {
4980 warn_arg_count:
4981                         warningf(pos, "'main' takes only zero, two or three arguments");
4982                 }
4983         }
4984 }
4985
4986 /**
4987  * Check if a symbol is the equal to "main".
4988  */
4989 static bool is_sym_main(const symbol_t *const sym)
4990 {
4991         return strcmp(sym->string, "main") == 0;
4992 }
4993
4994 static void error_redefined_as_different_kind(const source_position_t *pos,
4995                 const entity_t *old, entity_kind_t new_kind)
4996 {
4997         errorf(pos, "redeclaration of %s '%Y' as %s (declared %P)",
4998                get_entity_kind_name(old->kind), old->base.symbol,
4999                get_entity_kind_name(new_kind), &old->base.source_position);
5000 }
5001
5002 static bool is_error_entity(entity_t *const ent)
5003 {
5004         if (is_declaration(ent)) {
5005                 return is_type_valid(skip_typeref(ent->declaration.type));
5006         } else if (ent->kind == ENTITY_TYPEDEF) {
5007                 return is_type_valid(skip_typeref(ent->typedefe.type));
5008         }
5009         return false;
5010 }
5011
5012 /**
5013  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
5014  * for various problems that occur for multiple definitions
5015  */
5016 static entity_t *record_entity(entity_t *entity, const bool is_definition)
5017 {
5018         const symbol_t *const    symbol  = entity->base.symbol;
5019         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
5020         const source_position_t *pos     = &entity->base.source_position;
5021
5022         /* can happen in error cases */
5023         if (symbol == NULL)
5024                 return entity;
5025
5026         entity_t *previous_entity = get_entity(symbol, namespc);
5027         /* pushing the same entity twice will break the stack structure */
5028         assert(previous_entity != entity);
5029
5030         if (entity->kind == ENTITY_FUNCTION) {
5031                 type_t *const orig_type = entity->declaration.type;
5032                 type_t *const type      = skip_typeref(orig_type);
5033
5034                 assert(is_type_function(type));
5035                 if (type->function.unspecified_parameters &&
5036                                 warning.strict_prototypes &&
5037                                 previous_entity == NULL) {
5038                         warningf(pos, "function declaration '%#T' is not a prototype",
5039                                          orig_type, symbol);
5040                 }
5041
5042                 if (warning.main && current_scope == file_scope
5043                                 && is_sym_main(symbol)) {
5044                         check_type_of_main(entity);
5045                 }
5046         }
5047
5048         if (is_declaration(entity) &&
5049                         warning.nested_externs &&
5050                         entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
5051                         current_scope != file_scope) {
5052                 warningf(pos, "nested extern declaration of '%#T'",
5053                          entity->declaration.type, symbol);
5054         }
5055
5056         if (previous_entity != NULL &&
5057                         previous_entity->base.parent_scope == &current_function->parameters &&
5058                         previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
5059                 assert(previous_entity->kind == ENTITY_PARAMETER);
5060                 errorf(pos,
5061                        "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
5062                                          entity->declaration.type, symbol,
5063                                          previous_entity->declaration.type, symbol,
5064                                          &previous_entity->base.source_position);
5065                 goto finish;
5066         }
5067
5068         if (previous_entity != NULL &&
5069                         previous_entity->base.parent_scope == current_scope) {
5070                 if (previous_entity->kind != entity->kind) {
5071                         if (!is_error_entity(previous_entity) && !is_error_entity(entity)) {
5072                                 error_redefined_as_different_kind(pos, previous_entity,
5073                                                 entity->kind);
5074                         }
5075                         goto finish;
5076                 }
5077                 if (previous_entity->kind == ENTITY_ENUM_VALUE) {
5078                         errorf(pos, "redeclaration of enum entry '%Y' (declared %P)",
5079                                    symbol, &previous_entity->base.source_position);
5080                         goto finish;
5081                 }
5082                 if (previous_entity->kind == ENTITY_TYPEDEF) {
5083                         /* TODO: C++ allows this for exactly the same type */
5084                         errorf(pos, "redefinition of typedef '%Y' (declared %P)",
5085                                symbol, &previous_entity->base.source_position);
5086                         goto finish;
5087                 }
5088
5089                 /* at this point we should have only VARIABLES or FUNCTIONS */
5090                 assert(is_declaration(previous_entity) && is_declaration(entity));
5091
5092                 declaration_t *const prev_decl = &previous_entity->declaration;
5093                 declaration_t *const decl      = &entity->declaration;
5094
5095                 /* can happen for K&R style declarations */
5096                 if (prev_decl->type       == NULL             &&
5097                                 previous_entity->kind == ENTITY_PARAMETER &&
5098                                 entity->kind          == ENTITY_PARAMETER) {
5099                         prev_decl->type                   = decl->type;
5100                         prev_decl->storage_class          = decl->storage_class;
5101                         prev_decl->declared_storage_class = decl->declared_storage_class;
5102                         prev_decl->modifiers              = decl->modifiers;
5103                         prev_decl->deprecated_string      = decl->deprecated_string;
5104                         return previous_entity;
5105                 }
5106
5107                 type_t *const orig_type = decl->type;
5108                 assert(orig_type != NULL);
5109                 type_t *const type      = skip_typeref(orig_type);
5110                 type_t *const prev_type = skip_typeref(prev_decl->type);
5111
5112                 if (!types_compatible(type, prev_type)) {
5113                         errorf(pos,
5114                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
5115                                    orig_type, symbol, prev_decl->type, symbol,
5116                                    &previous_entity->base.source_position);
5117                 } else {
5118                         unsigned old_storage_class = prev_decl->storage_class;
5119                         if (warning.redundant_decls               &&
5120                                         is_definition                     &&
5121                                         !prev_decl->used                  &&
5122                                         !(prev_decl->modifiers & DM_USED) &&
5123                                         prev_decl->storage_class == STORAGE_CLASS_STATIC) {
5124                                 warningf(&previous_entity->base.source_position,
5125                                          "unnecessary static forward declaration for '%#T'",
5126                                          prev_decl->type, symbol);
5127                         }
5128
5129                         storage_class_tag_t new_storage_class = decl->storage_class;
5130
5131                         /* pretend no storage class means extern for function
5132                          * declarations (except if the previous declaration is neither
5133                          * none nor extern) */
5134                         if (entity->kind == ENTITY_FUNCTION) {
5135                                 if (prev_type->function.unspecified_parameters)
5136                                         prev_decl->type = type;
5137
5138                                 switch (old_storage_class) {
5139                                 case STORAGE_CLASS_NONE:
5140                                         old_storage_class = STORAGE_CLASS_EXTERN;
5141                                         /* FALLTHROUGH */
5142
5143                                 case STORAGE_CLASS_EXTERN:
5144                                         if (is_definition) {
5145                                                 if (warning.missing_prototypes &&
5146                                                     prev_type->function.unspecified_parameters &&
5147                                                     !is_sym_main(symbol)) {
5148                                                         warningf(pos, "no previous prototype for '%#T'",
5149                                                                          orig_type, symbol);
5150                                                 }
5151                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
5152                                                 new_storage_class = STORAGE_CLASS_EXTERN;
5153                                         }
5154                                         break;
5155
5156                                 default:
5157                                         break;
5158                                 }
5159                         } else if (is_type_incomplete(prev_type)) {
5160                                 prev_decl->type = type;
5161                         }
5162
5163                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
5164                                         new_storage_class == STORAGE_CLASS_EXTERN) {
5165 warn_redundant_declaration:
5166                                 if (!is_definition           &&
5167                                     warning.redundant_decls  &&
5168                                     is_type_valid(prev_type) &&
5169                                     strcmp(previous_entity->base.source_position.input_name,
5170                                            "<builtin>") != 0) {
5171                                         warningf(pos,
5172                                                  "redundant declaration for '%Y' (declared %P)",
5173                                                  symbol, &previous_entity->base.source_position);
5174                                 }
5175                         } else if (current_function == NULL) {
5176                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
5177                                     new_storage_class == STORAGE_CLASS_STATIC) {
5178                                         errorf(pos,
5179                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
5180                                                symbol, &previous_entity->base.source_position);
5181                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
5182                                         prev_decl->storage_class          = STORAGE_CLASS_NONE;
5183                                         prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
5184                                 } else {
5185                                         /* ISO/IEC 14882:1998(E) §C.1.2:1 */
5186                                         if (c_mode & _CXX)
5187                                                 goto error_redeclaration;
5188                                         goto warn_redundant_declaration;
5189                                 }
5190                         } else if (is_type_valid(prev_type)) {
5191                                 if (old_storage_class == new_storage_class) {
5192 error_redeclaration:
5193                                         errorf(pos, "redeclaration of '%Y' (declared %P)",
5194                                                symbol, &previous_entity->base.source_position);
5195                                 } else {
5196                                         errorf(pos,
5197                                                "redeclaration of '%Y' with different linkage (declared %P)",
5198                                                symbol, &previous_entity->base.source_position);
5199                                 }
5200                         }
5201                 }
5202
5203                 prev_decl->modifiers |= decl->modifiers;
5204                 if (entity->kind == ENTITY_FUNCTION) {
5205                         previous_entity->function.is_inline |= entity->function.is_inline;
5206                 }
5207                 return previous_entity;
5208         }
5209
5210         if (entity->kind == ENTITY_FUNCTION) {
5211                 if (is_definition &&
5212                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
5213                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
5214                                 warningf(pos, "no previous prototype for '%#T'",
5215                                          entity->declaration.type, symbol);
5216                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
5217                                 warningf(pos, "no previous declaration for '%#T'",
5218                                          entity->declaration.type, symbol);
5219                         }
5220                 }
5221         } else if (warning.missing_declarations &&
5222                         entity->kind == ENTITY_VARIABLE &&
5223                         current_scope == file_scope) {
5224                 declaration_t *declaration = &entity->declaration;
5225                 if (declaration->storage_class == STORAGE_CLASS_NONE) {
5226                         warningf(pos, "no previous declaration for '%#T'",
5227                                  declaration->type, symbol);
5228                 }
5229         }
5230
5231 finish:
5232         assert(entity->base.parent_scope == NULL);
5233         assert(current_scope != NULL);
5234
5235         entity->base.parent_scope = current_scope;
5236         entity->base.namespc      = NAMESPACE_NORMAL;
5237         environment_push(entity);
5238         append_entity(current_scope, entity);
5239
5240         return entity;
5241 }
5242
5243 static void parser_error_multiple_definition(entity_t *entity,
5244                 const source_position_t *source_position)
5245 {
5246         errorf(source_position, "multiple definition of '%Y' (declared %P)",
5247                entity->base.symbol, &entity->base.source_position);
5248 }
5249
5250 static bool is_declaration_specifier(const token_t *token,
5251                                      bool only_specifiers_qualifiers)
5252 {
5253         switch (token->type) {
5254                 TYPE_SPECIFIERS
5255                 TYPE_QUALIFIERS
5256                         return true;
5257                 case T_IDENTIFIER:
5258                         return is_typedef_symbol(token->v.symbol);
5259
5260                 case T___extension__:
5261                 STORAGE_CLASSES
5262                         return !only_specifiers_qualifiers;
5263
5264                 default:
5265                         return false;
5266         }
5267 }
5268
5269 static void parse_init_declarator_rest(entity_t *entity)
5270 {
5271         assert(is_declaration(entity));
5272         declaration_t *const declaration = &entity->declaration;
5273
5274         eat('=');
5275
5276         type_t *orig_type = declaration->type;
5277         type_t *type      = skip_typeref(orig_type);
5278
5279         if (entity->kind == ENTITY_VARIABLE
5280                         && entity->variable.initializer != NULL) {
5281                 parser_error_multiple_definition(entity, HERE);
5282         }
5283
5284         bool must_be_constant = false;
5285         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
5286             entity->base.parent_scope  == file_scope) {
5287                 must_be_constant = true;
5288         }
5289
5290         if (is_type_function(type)) {
5291                 errorf(&entity->base.source_position,
5292                        "function '%#T' is initialized like a variable",
5293                        orig_type, entity->base.symbol);
5294                 orig_type = type_error_type;
5295         }
5296
5297         parse_initializer_env_t env;
5298         env.type             = orig_type;
5299         env.must_be_constant = must_be_constant;
5300         env.entity           = entity;
5301         current_init_decl    = entity;
5302
5303         initializer_t *initializer = parse_initializer(&env);
5304         current_init_decl = NULL;
5305
5306         if (entity->kind == ENTITY_VARIABLE) {
5307                 /* § 6.7.5:22  array initializers for arrays with unknown size
5308                  * determine the array type size */
5309                 declaration->type            = env.type;
5310                 entity->variable.initializer = initializer;
5311         }
5312 }
5313
5314 /* parse rest of a declaration without any declarator */
5315 static void parse_anonymous_declaration_rest(
5316                 const declaration_specifiers_t *specifiers)
5317 {
5318         eat(';');
5319         anonymous_entity = NULL;
5320
5321         if (warning.other) {
5322                 if (specifiers->storage_class != STORAGE_CLASS_NONE ||
5323                                 specifiers->thread_local) {
5324                         warningf(&specifiers->source_position,
5325                                  "useless storage class in empty declaration");
5326                 }
5327
5328                 type_t *type = specifiers->type;
5329                 switch (type->kind) {
5330                         case TYPE_COMPOUND_STRUCT:
5331                         case TYPE_COMPOUND_UNION: {
5332                                 if (type->compound.compound->base.symbol == NULL) {
5333                                         warningf(&specifiers->source_position,
5334                                                  "unnamed struct/union that defines no instances");
5335                                 }
5336                                 break;
5337                         }
5338
5339                         case TYPE_ENUM:
5340                                 break;
5341
5342                         default:
5343                                 warningf(&specifiers->source_position, "empty declaration");
5344                                 break;
5345                 }
5346         }
5347 }
5348
5349 static void check_variable_type_complete(entity_t *ent)
5350 {
5351         if (ent->kind != ENTITY_VARIABLE)
5352                 return;
5353
5354         /* §6.7:7  If an identifier for an object is declared with no linkage, the
5355          *         type for the object shall be complete [...] */
5356         declaration_t *decl = &ent->declaration;
5357         if (decl->storage_class != STORAGE_CLASS_NONE)
5358                 return;
5359
5360         type_t *const orig_type = decl->type;
5361         type_t *const type      = skip_typeref(orig_type);
5362         if (!is_type_incomplete(type))
5363                 return;
5364
5365         /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
5366          * are given length one. */
5367         if (is_type_array(type) && ent->base.parent_scope == file_scope) {
5368                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
5369                 return;
5370         }
5371
5372         errorf(&ent->base.source_position, "variable '%#T' has incomplete type",
5373                         orig_type, ent->base.symbol);
5374 }
5375
5376
5377 static void parse_declaration_rest(entity_t *ndeclaration,
5378                 const declaration_specifiers_t *specifiers,
5379                 parsed_declaration_func         finished_declaration,
5380                 declarator_flags_t              flags)
5381 {
5382         add_anchor_token(';');
5383         add_anchor_token(',');
5384         while (true) {
5385                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
5386
5387                 if (token.type == '=') {
5388                         parse_init_declarator_rest(entity);
5389                 } else if (entity->kind == ENTITY_VARIABLE) {
5390                         /* ISO/IEC 14882:1998(E) §8.5.3:3  The initializer can be omitted
5391                          * [...] where the extern specifier is explicitly used. */
5392                         declaration_t *decl = &entity->declaration;
5393                         if (decl->storage_class != STORAGE_CLASS_EXTERN) {
5394                                 type_t *type = decl->type;
5395                                 if (is_type_reference(skip_typeref(type))) {
5396                                         errorf(&entity->base.source_position,
5397                                                         "reference '%#T' must be initialized",
5398                                                         type, entity->base.symbol);
5399                                 }
5400                         }
5401                 }
5402
5403                 check_variable_type_complete(entity);
5404
5405                 if (token.type != ',')
5406                         break;
5407                 eat(',');
5408
5409                 add_anchor_token('=');
5410                 ndeclaration = parse_declarator(specifiers, flags);
5411                 rem_anchor_token('=');
5412         }
5413         expect(';', end_error);
5414
5415 end_error:
5416         anonymous_entity = NULL;
5417         rem_anchor_token(';');
5418         rem_anchor_token(',');
5419 }
5420
5421 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
5422 {
5423         symbol_t *symbol = entity->base.symbol;
5424         if (symbol == NULL) {
5425                 errorf(HERE, "anonymous declaration not valid as function parameter");
5426                 return entity;
5427         }
5428
5429         assert(entity->base.namespc == NAMESPACE_NORMAL);
5430         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
5431         if (previous_entity == NULL
5432                         || previous_entity->base.parent_scope != current_scope) {
5433                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
5434                        symbol);
5435                 return entity;
5436         }
5437
5438         if (is_definition) {
5439                 errorf(HERE, "parameter '%Y' is initialised", entity->base.symbol);
5440         }
5441
5442         return record_entity(entity, false);
5443 }
5444
5445 static void parse_declaration(parsed_declaration_func finished_declaration,
5446                               declarator_flags_t      flags)
5447 {
5448         declaration_specifiers_t specifiers;
5449         memset(&specifiers, 0, sizeof(specifiers));
5450
5451         add_anchor_token(';');
5452         parse_declaration_specifiers(&specifiers);
5453         rem_anchor_token(';');
5454
5455         if (token.type == ';') {
5456                 parse_anonymous_declaration_rest(&specifiers);
5457         } else {
5458                 entity_t *entity = parse_declarator(&specifiers, flags);
5459                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
5460         }
5461 }
5462
5463 static type_t *get_default_promoted_type(type_t *orig_type)
5464 {
5465         type_t *result = orig_type;
5466
5467         type_t *type = skip_typeref(orig_type);
5468         if (is_type_integer(type)) {
5469                 result = promote_integer(type);
5470         } else if (type == type_float) {
5471                 result = type_double;
5472         }
5473
5474         return result;
5475 }
5476
5477 static void parse_kr_declaration_list(entity_t *entity)
5478 {
5479         if (entity->kind != ENTITY_FUNCTION)
5480                 return;
5481
5482         type_t *type = skip_typeref(entity->declaration.type);
5483         assert(is_type_function(type));
5484         if (!type->function.kr_style_parameters)
5485                 return;
5486
5487
5488         add_anchor_token('{');
5489
5490         /* push function parameters */
5491         size_t const  top       = environment_top();
5492         scope_t      *old_scope = scope_push(&entity->function.parameters);
5493
5494         entity_t *parameter = entity->function.parameters.entities;
5495         for ( ; parameter != NULL; parameter = parameter->base.next) {
5496                 assert(parameter->base.parent_scope == NULL);
5497                 parameter->base.parent_scope = current_scope;
5498                 environment_push(parameter);
5499         }
5500
5501         /* parse declaration list */
5502         for (;;) {
5503                 switch (token.type) {
5504                         DECLARATION_START
5505                         case T___extension__:
5506                         /* This covers symbols, which are no type, too, and results in
5507                          * better error messages.  The typical cases are misspelled type
5508                          * names and missing includes. */
5509                         case T_IDENTIFIER:
5510                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
5511                                 break;
5512                         default:
5513                                 goto decl_list_end;
5514                 }
5515         }
5516 decl_list_end:
5517
5518         /* pop function parameters */
5519         assert(current_scope == &entity->function.parameters);
5520         scope_pop(old_scope);
5521         environment_pop_to(top);
5522
5523         /* update function type */
5524         type_t *new_type = duplicate_type(type);
5525
5526         function_parameter_t *parameters     = NULL;
5527         function_parameter_t *last_parameter = NULL;
5528
5529         parameter = entity->function.parameters.entities;
5530         for (; parameter != NULL; parameter = parameter->base.next) {
5531                 type_t *parameter_type = parameter->declaration.type;
5532                 if (parameter_type == NULL) {
5533                         if (strict_mode) {
5534                                 errorf(HERE, "no type specified for function parameter '%Y'",
5535                                        parameter->base.symbol);
5536                         } else {
5537                                 if (warning.implicit_int) {
5538                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
5539                                                  parameter->base.symbol);
5540                                 }
5541                                 parameter_type              = type_int;
5542                                 parameter->declaration.type = parameter_type;
5543                         }
5544                 }
5545
5546                 semantic_parameter_incomplete(parameter);
5547                 parameter_type = parameter->declaration.type;
5548
5549                 /*
5550                  * we need the default promoted types for the function type
5551                  */
5552                 parameter_type = get_default_promoted_type(parameter_type);
5553
5554                 function_parameter_t *function_parameter
5555                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
5556                 memset(function_parameter, 0, sizeof(function_parameter[0]));
5557
5558                 function_parameter->type = parameter_type;
5559                 if (last_parameter != NULL) {
5560                         last_parameter->next = function_parameter;
5561                 } else {
5562                         parameters = function_parameter;
5563                 }
5564                 last_parameter = function_parameter;
5565         }
5566
5567         /* § 6.9.1.7: A K&R style parameter list does NOT act as a function
5568          * prototype */
5569         new_type->function.parameters             = parameters;
5570         new_type->function.unspecified_parameters = true;
5571
5572         new_type = identify_new_type(new_type);
5573
5574         entity->declaration.type = new_type;
5575
5576         rem_anchor_token('{');
5577 }
5578
5579 static bool first_err = true;
5580
5581 /**
5582  * When called with first_err set, prints the name of the current function,
5583  * else does noting.
5584  */
5585 static void print_in_function(void)
5586 {
5587         if (first_err) {
5588                 first_err = false;
5589                 diagnosticf("%s: In function '%Y':\n",
5590                             current_function->base.base.source_position.input_name,
5591                             current_function->base.base.symbol);
5592         }
5593 }
5594
5595 /**
5596  * Check if all labels are defined in the current function.
5597  * Check if all labels are used in the current function.
5598  */
5599 static void check_labels(void)
5600 {
5601         for (const goto_statement_t *goto_statement = goto_first;
5602             goto_statement != NULL;
5603             goto_statement = goto_statement->next) {
5604                 /* skip computed gotos */
5605                 if (goto_statement->expression != NULL)
5606                         continue;
5607
5608                 label_t *label = goto_statement->label;
5609
5610                 label->used = true;
5611                 if (label->base.source_position.input_name == NULL) {
5612                         print_in_function();
5613                         errorf(&goto_statement->base.source_position,
5614                                "label '%Y' used but not defined", label->base.symbol);
5615                  }
5616         }
5617
5618         if (warning.unused_label) {
5619                 for (const label_statement_t *label_statement = label_first;
5620                          label_statement != NULL;
5621                          label_statement = label_statement->next) {
5622                         label_t *label = label_statement->label;
5623
5624                         if (! label->used) {
5625                                 print_in_function();
5626                                 warningf(&label_statement->base.source_position,
5627                                          "label '%Y' defined but not used", label->base.symbol);
5628                         }
5629                 }
5630         }
5631 }
5632
5633 static void warn_unused_entity(entity_t *entity, entity_t *last)
5634 {
5635         entity_t const *const end = last != NULL ? last->base.next : NULL;
5636         for (; entity != end; entity = entity->base.next) {
5637                 if (!is_declaration(entity))
5638                         continue;
5639
5640                 declaration_t *declaration = &entity->declaration;
5641                 if (declaration->implicit)
5642                         continue;
5643
5644                 if (!declaration->used) {
5645                         print_in_function();
5646                         const char *what = get_entity_kind_name(entity->kind);
5647                         warningf(&entity->base.source_position, "%s '%Y' is unused",
5648                                  what, entity->base.symbol);
5649                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
5650                         print_in_function();
5651                         const char *what = get_entity_kind_name(entity->kind);
5652                         warningf(&entity->base.source_position, "%s '%Y' is never read",
5653                                  what, entity->base.symbol);
5654                 }
5655         }
5656 }
5657
5658 static void check_unused_variables(statement_t *const stmt, void *const env)
5659 {
5660         (void)env;
5661
5662         switch (stmt->kind) {
5663                 case STATEMENT_DECLARATION: {
5664                         declaration_statement_t const *const decls = &stmt->declaration;
5665                         warn_unused_entity(decls->declarations_begin,
5666                                            decls->declarations_end);
5667                         return;
5668                 }
5669
5670                 case STATEMENT_FOR:
5671                         warn_unused_entity(stmt->fors.scope.entities, NULL);
5672                         return;
5673
5674                 default:
5675                         return;
5676         }
5677 }
5678
5679 /**
5680  * Check declarations of current_function for unused entities.
5681  */
5682 static void check_declarations(void)
5683 {
5684         if (warning.unused_parameter) {
5685                 const scope_t *scope = &current_function->parameters;
5686
5687                 /* do not issue unused warnings for main */
5688                 if (!is_sym_main(current_function->base.base.symbol)) {
5689                         warn_unused_entity(scope->entities, NULL);
5690                 }
5691         }
5692         if (warning.unused_variable) {
5693                 walk_statements(current_function->statement, check_unused_variables,
5694                                 NULL);
5695         }
5696 }
5697
5698 static int determine_truth(expression_t const* const cond)
5699 {
5700         return
5701                 !is_constant_expression(cond) ? 0 :
5702                 fold_constant(cond) != 0      ? 1 :
5703                 -1;
5704 }
5705
5706 static void check_reachable(statement_t *);
5707 static bool reaches_end;
5708
5709 static bool expression_returns(expression_t const *const expr)
5710 {
5711         switch (expr->kind) {
5712                 case EXPR_CALL: {
5713                         expression_t const *const func = expr->call.function;
5714                         if (func->kind == EXPR_REFERENCE) {
5715                                 entity_t *entity = func->reference.entity;
5716                                 if (entity->kind == ENTITY_FUNCTION
5717                                                 && entity->declaration.modifiers & DM_NORETURN)
5718                                         return false;
5719                         }
5720
5721                         if (!expression_returns(func))
5722                                 return false;
5723
5724                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
5725                                 if (!expression_returns(arg->expression))
5726                                         return false;
5727                         }
5728
5729                         return true;
5730                 }
5731
5732                 case EXPR_REFERENCE:
5733                 case EXPR_REFERENCE_ENUM_VALUE:
5734                 case EXPR_CONST:
5735                 case EXPR_CHARACTER_CONSTANT:
5736                 case EXPR_WIDE_CHARACTER_CONSTANT:
5737                 case EXPR_STRING_LITERAL:
5738                 case EXPR_WIDE_STRING_LITERAL:
5739                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
5740                 case EXPR_LABEL_ADDRESS:
5741                 case EXPR_CLASSIFY_TYPE:
5742                 case EXPR_SIZEOF: // TODO handle obscure VLA case
5743                 case EXPR_ALIGNOF:
5744                 case EXPR_FUNCNAME:
5745                 case EXPR_BUILTIN_SYMBOL:
5746                 case EXPR_BUILTIN_CONSTANT_P:
5747                 case EXPR_BUILTIN_PREFETCH:
5748                 case EXPR_OFFSETOF:
5749                 case EXPR_INVALID:
5750                         return true;
5751
5752                 case EXPR_STATEMENT: {
5753                         bool old_reaches_end = reaches_end;
5754                         reaches_end = false;
5755                         check_reachable(expr->statement.statement);
5756                         bool returns = reaches_end;
5757                         reaches_end = old_reaches_end;
5758                         return returns;
5759                 }
5760
5761                 case EXPR_CONDITIONAL:
5762                         // TODO handle constant expression
5763
5764                         if (!expression_returns(expr->conditional.condition))
5765                                 return false;
5766
5767                         if (expr->conditional.true_expression != NULL
5768                                         && expression_returns(expr->conditional.true_expression))
5769                                 return true;
5770
5771                         return expression_returns(expr->conditional.false_expression);
5772
5773                 case EXPR_SELECT:
5774                         return expression_returns(expr->select.compound);
5775
5776                 case EXPR_ARRAY_ACCESS:
5777                         return
5778                                 expression_returns(expr->array_access.array_ref) &&
5779                                 expression_returns(expr->array_access.index);
5780
5781                 case EXPR_VA_START:
5782                         return expression_returns(expr->va_starte.ap);
5783
5784                 case EXPR_VA_ARG:
5785                         return expression_returns(expr->va_arge.ap);
5786
5787                 EXPR_UNARY_CASES_MANDATORY
5788                         return expression_returns(expr->unary.value);
5789
5790                 case EXPR_UNARY_THROW:
5791                         return false;
5792
5793                 EXPR_BINARY_CASES
5794                         // TODO handle constant lhs of && and ||
5795                         return
5796                                 expression_returns(expr->binary.left) &&
5797                                 expression_returns(expr->binary.right);
5798
5799                 case EXPR_UNKNOWN:
5800                         break;
5801         }
5802
5803         panic("unhandled expression");
5804 }
5805
5806 static bool initializer_returns(initializer_t const *const init)
5807 {
5808         switch (init->kind) {
5809                 case INITIALIZER_VALUE:
5810                         return expression_returns(init->value.value);
5811
5812                 case INITIALIZER_LIST: {
5813                         initializer_t * const*       i       = init->list.initializers;
5814                         initializer_t * const* const end     = i + init->list.len;
5815                         bool                         returns = true;
5816                         for (; i != end; ++i) {
5817                                 if (!initializer_returns(*i))
5818                                         returns = false;
5819                         }
5820                         return returns;
5821                 }
5822
5823                 case INITIALIZER_STRING:
5824                 case INITIALIZER_WIDE_STRING:
5825                 case INITIALIZER_DESIGNATOR: // designators have no payload
5826                         return true;
5827         }
5828         panic("unhandled initializer");
5829 }
5830
5831 static bool noreturn_candidate;
5832
5833 static void check_reachable(statement_t *const stmt)
5834 {
5835         if (stmt->base.reachable)
5836                 return;
5837         if (stmt->kind != STATEMENT_DO_WHILE)
5838                 stmt->base.reachable = true;
5839
5840         statement_t *last = stmt;
5841         statement_t *next;
5842         switch (stmt->kind) {
5843                 case STATEMENT_INVALID:
5844                 case STATEMENT_EMPTY:
5845                 case STATEMENT_ASM:
5846                         next = stmt->base.next;
5847                         break;
5848
5849                 case STATEMENT_DECLARATION: {
5850                         declaration_statement_t const *const decl = &stmt->declaration;
5851                         entity_t                const *      ent  = decl->declarations_begin;
5852                         entity_t                const *const last = decl->declarations_end;
5853                         if (ent != NULL) {
5854                                 for (;; ent = ent->base.next) {
5855                                         if (ent->kind                 == ENTITY_VARIABLE &&
5856                                                         ent->variable.initializer != NULL            &&
5857                                                         !initializer_returns(ent->variable.initializer)) {
5858                                                 return;
5859                                         }
5860                                         if (ent == last)
5861                                                 break;
5862                                 }
5863                         }
5864                         next = stmt->base.next;
5865                         break;
5866                 }
5867
5868                 case STATEMENT_COMPOUND:
5869                         next = stmt->compound.statements;
5870                         if (next == NULL)
5871                                 next = stmt->base.next;
5872                         break;
5873
5874                 case STATEMENT_RETURN: {
5875                         expression_t const *const val = stmt->returns.value;
5876                         if (val == NULL || expression_returns(val))
5877                                 noreturn_candidate = false;
5878                         return;
5879                 }
5880
5881                 case STATEMENT_IF: {
5882                         if_statement_t const *const ifs  = &stmt->ifs;
5883                         expression_t   const *const cond = ifs->condition;
5884
5885                         if (!expression_returns(cond))
5886                                 return;
5887
5888                         int const val = determine_truth(cond);
5889
5890                         if (val >= 0)
5891                                 check_reachable(ifs->true_statement);
5892
5893                         if (val > 0)
5894                                 return;
5895
5896                         if (ifs->false_statement != NULL) {
5897                                 check_reachable(ifs->false_statement);
5898                                 return;
5899                         }
5900
5901                         next = stmt->base.next;
5902                         break;
5903                 }
5904
5905                 case STATEMENT_SWITCH: {
5906                         switch_statement_t const *const switchs = &stmt->switchs;
5907                         expression_t       const *const expr    = switchs->expression;
5908
5909                         if (!expression_returns(expr))
5910                                 return;
5911
5912                         if (is_constant_expression(expr)) {
5913                                 long                    const val      = fold_constant(expr);
5914                                 case_label_statement_t *      defaults = NULL;
5915                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5916                                         if (i->expression == NULL) {
5917                                                 defaults = i;
5918                                                 continue;
5919                                         }
5920
5921                                         if (i->first_case <= val && val <= i->last_case) {
5922                                                 check_reachable((statement_t*)i);
5923                                                 return;
5924                                         }
5925                                 }
5926
5927                                 if (defaults != NULL) {
5928                                         check_reachable((statement_t*)defaults);
5929                                         return;
5930                                 }
5931                         } else {
5932                                 bool has_default = false;
5933                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5934                                         if (i->expression == NULL)
5935                                                 has_default = true;
5936
5937                                         check_reachable((statement_t*)i);
5938                                 }
5939
5940                                 if (has_default)
5941                                         return;
5942                         }
5943
5944                         next = stmt->base.next;
5945                         break;
5946                 }
5947
5948                 case STATEMENT_EXPRESSION: {
5949                         /* Check for noreturn function call */
5950                         expression_t const *const expr = stmt->expression.expression;
5951                         if (!expression_returns(expr))
5952                                 return;
5953
5954                         next = stmt->base.next;
5955                         break;
5956                 }
5957
5958                 case STATEMENT_CONTINUE: {
5959                         statement_t *parent = stmt;
5960                         for (;;) {
5961                                 parent = parent->base.parent;
5962                                 if (parent == NULL) /* continue not within loop */
5963                                         return;
5964
5965                                 next = parent;
5966                                 switch (parent->kind) {
5967                                         case STATEMENT_WHILE:    goto continue_while;
5968                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5969                                         case STATEMENT_FOR:      goto continue_for;
5970
5971                                         default: break;
5972                                 }
5973                         }
5974                 }
5975
5976                 case STATEMENT_BREAK: {
5977                         statement_t *parent = stmt;
5978                         for (;;) {
5979                                 parent = parent->base.parent;
5980                                 if (parent == NULL) /* break not within loop/switch */
5981                                         return;
5982
5983                                 switch (parent->kind) {
5984                                         case STATEMENT_SWITCH:
5985                                         case STATEMENT_WHILE:
5986                                         case STATEMENT_DO_WHILE:
5987                                         case STATEMENT_FOR:
5988                                                 last = parent;
5989                                                 next = parent->base.next;
5990                                                 goto found_break_parent;
5991
5992                                         default: break;
5993                                 }
5994                         }
5995 found_break_parent:
5996                         break;
5997                 }
5998
5999                 case STATEMENT_GOTO:
6000                         if (stmt->gotos.expression) {
6001                                 if (!expression_returns(stmt->gotos.expression))
6002                                         return;
6003
6004                                 statement_t *parent = stmt->base.parent;
6005                                 if (parent == NULL) /* top level goto */
6006                                         return;
6007                                 next = parent;
6008                         } else {
6009                                 next = stmt->gotos.label->statement;
6010                                 if (next == NULL) /* missing label */
6011                                         return;
6012                         }
6013                         break;
6014
6015                 case STATEMENT_LABEL:
6016                         next = stmt->label.statement;
6017                         break;
6018
6019                 case STATEMENT_CASE_LABEL:
6020                         next = stmt->case_label.statement;
6021                         break;
6022
6023                 case STATEMENT_WHILE: {
6024                         while_statement_t const *const whiles = &stmt->whiles;
6025                         expression_t      const *const cond   = whiles->condition;
6026
6027                         if (!expression_returns(cond))
6028                                 return;
6029
6030                         int const val = determine_truth(cond);
6031
6032                         if (val >= 0)
6033                                 check_reachable(whiles->body);
6034
6035                         if (val > 0)
6036                                 return;
6037
6038                         next = stmt->base.next;
6039                         break;
6040                 }
6041
6042                 case STATEMENT_DO_WHILE:
6043                         next = stmt->do_while.body;
6044                         break;
6045
6046                 case STATEMENT_FOR: {
6047                         for_statement_t *const fors = &stmt->fors;
6048
6049                         if (fors->condition_reachable)
6050                                 return;
6051                         fors->condition_reachable = true;
6052
6053                         expression_t const *const cond = fors->condition;
6054
6055                         int val;
6056                         if (cond == NULL) {
6057                                 val = 1;
6058                         } else if (expression_returns(cond)) {
6059                                 val = determine_truth(cond);
6060                         } else {
6061                                 return;
6062                         }
6063
6064                         if (val >= 0)
6065                                 check_reachable(fors->body);
6066
6067                         if (val > 0)
6068                                 return;
6069
6070                         next = stmt->base.next;
6071                         break;
6072                 }
6073
6074                 case STATEMENT_MS_TRY: {
6075                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
6076                         check_reachable(ms_try->try_statement);
6077                         next = ms_try->final_statement;
6078                         break;
6079                 }
6080
6081                 case STATEMENT_LEAVE: {
6082                         statement_t *parent = stmt;
6083                         for (;;) {
6084                                 parent = parent->base.parent;
6085                                 if (parent == NULL) /* __leave not within __try */
6086                                         return;
6087
6088                                 if (parent->kind == STATEMENT_MS_TRY) {
6089                                         last = parent;
6090                                         next = parent->ms_try.final_statement;
6091                                         break;
6092                                 }
6093                         }
6094                         break;
6095                 }
6096
6097                 default:
6098                         panic("invalid statement kind");
6099         }
6100
6101         while (next == NULL) {
6102                 next = last->base.parent;
6103                 if (next == NULL) {
6104                         noreturn_candidate = false;
6105
6106                         type_t *const type = skip_typeref(current_function->base.type);
6107                         assert(is_type_function(type));
6108                         type_t *const ret  = skip_typeref(type->function.return_type);
6109                         if (warning.return_type                    &&
6110                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
6111                             is_type_valid(ret)                     &&
6112                             !is_sym_main(current_function->base.base.symbol)) {
6113                                 warningf(&stmt->base.source_position,
6114                                          "control reaches end of non-void function");
6115                         }
6116                         return;
6117                 }
6118
6119                 switch (next->kind) {
6120                         case STATEMENT_INVALID:
6121                         case STATEMENT_EMPTY:
6122                         case STATEMENT_DECLARATION:
6123                         case STATEMENT_EXPRESSION:
6124                         case STATEMENT_ASM:
6125                         case STATEMENT_RETURN:
6126                         case STATEMENT_CONTINUE:
6127                         case STATEMENT_BREAK:
6128                         case STATEMENT_GOTO:
6129                         case STATEMENT_LEAVE:
6130                                 panic("invalid control flow in function");
6131
6132                         case STATEMENT_COMPOUND:
6133                                 if (next->compound.stmt_expr) {
6134                                         reaches_end = true;
6135                                         return;
6136                                 }
6137                                 /* FALLTHROUGH */
6138                         case STATEMENT_IF:
6139                         case STATEMENT_SWITCH:
6140                         case STATEMENT_LABEL:
6141                         case STATEMENT_CASE_LABEL:
6142                                 last = next;
6143                                 next = next->base.next;
6144                                 break;
6145
6146                         case STATEMENT_WHILE: {
6147 continue_while:
6148                                 if (next->base.reachable)
6149                                         return;
6150                                 next->base.reachable = true;
6151
6152                                 while_statement_t const *const whiles = &next->whiles;
6153                                 expression_t      const *const cond   = whiles->condition;
6154
6155                                 if (!expression_returns(cond))
6156                                         return;
6157
6158                                 int const val = determine_truth(cond);
6159
6160                                 if (val >= 0)
6161                                         check_reachable(whiles->body);
6162
6163                                 if (val > 0)
6164                                         return;
6165
6166                                 last = next;
6167                                 next = next->base.next;
6168                                 break;
6169                         }
6170
6171                         case STATEMENT_DO_WHILE: {
6172 continue_do_while:
6173                                 if (next->base.reachable)
6174                                         return;
6175                                 next->base.reachable = true;
6176
6177                                 do_while_statement_t const *const dw   = &next->do_while;
6178                                 expression_t         const *const cond = dw->condition;
6179
6180                                 if (!expression_returns(cond))
6181                                         return;
6182
6183                                 int const val = determine_truth(cond);
6184
6185                                 if (val >= 0)
6186                                         check_reachable(dw->body);
6187
6188                                 if (val > 0)
6189                                         return;
6190
6191                                 last = next;
6192                                 next = next->base.next;
6193                                 break;
6194                         }
6195
6196                         case STATEMENT_FOR: {
6197 continue_for:;
6198                                 for_statement_t *const fors = &next->fors;
6199
6200                                 fors->step_reachable = true;
6201
6202                                 if (fors->condition_reachable)
6203                                         return;
6204                                 fors->condition_reachable = true;
6205
6206                                 expression_t const *const cond = fors->condition;
6207
6208                                 int val;
6209                                 if (cond == NULL) {
6210                                         val = 1;
6211                                 } else if (expression_returns(cond)) {
6212                                         val = determine_truth(cond);
6213                                 } else {
6214                                         return;
6215                                 }
6216
6217                                 if (val >= 0)
6218                                         check_reachable(fors->body);
6219
6220                                 if (val > 0)
6221                                         return;
6222
6223                                 last = next;
6224                                 next = next->base.next;
6225                                 break;
6226                         }
6227
6228                         case STATEMENT_MS_TRY:
6229                                 last = next;
6230                                 next = next->ms_try.final_statement;
6231                                 break;
6232                 }
6233         }
6234
6235         check_reachable(next);
6236 }
6237
6238 static void check_unreachable(statement_t* const stmt, void *const env)
6239 {
6240         (void)env;
6241
6242         switch (stmt->kind) {
6243                 case STATEMENT_DO_WHILE:
6244                         if (!stmt->base.reachable) {
6245                                 expression_t const *const cond = stmt->do_while.condition;
6246                                 if (determine_truth(cond) >= 0) {
6247                                         warningf(&cond->base.source_position,
6248                                                  "condition of do-while-loop is unreachable");
6249                                 }
6250                         }
6251                         return;
6252
6253                 case STATEMENT_FOR: {
6254                         for_statement_t const* const fors = &stmt->fors;
6255
6256                         // if init and step are unreachable, cond is unreachable, too
6257                         if (!stmt->base.reachable && !fors->step_reachable) {
6258                                 warningf(&stmt->base.source_position, "statement is unreachable");
6259                         } else {
6260                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
6261                                         warningf(&fors->initialisation->base.source_position,
6262                                                  "initialisation of for-statement is unreachable");
6263                                 }
6264
6265                                 if (!fors->condition_reachable && fors->condition != NULL) {
6266                                         warningf(&fors->condition->base.source_position,
6267                                                  "condition of for-statement is unreachable");
6268                                 }
6269
6270                                 if (!fors->step_reachable && fors->step != NULL) {
6271                                         warningf(&fors->step->base.source_position,
6272                                                  "step of for-statement is unreachable");
6273                                 }
6274                         }
6275                         return;
6276                 }
6277
6278                 case STATEMENT_COMPOUND:
6279                         if (stmt->compound.statements != NULL)
6280                                 return;
6281                         goto warn_unreachable;
6282
6283                 case STATEMENT_DECLARATION: {
6284                         /* Only warn if there is at least one declarator with an initializer.
6285                          * This typically occurs in switch statements. */
6286                         declaration_statement_t const *const decl = &stmt->declaration;
6287                         entity_t                const *      ent  = decl->declarations_begin;
6288                         entity_t                const *const last = decl->declarations_end;
6289                         if (ent != NULL) {
6290                                 for (;; ent = ent->base.next) {
6291                                         if (ent->kind                 == ENTITY_VARIABLE &&
6292                                                         ent->variable.initializer != NULL) {
6293                                                 goto warn_unreachable;
6294                                         }
6295                                         if (ent == last)
6296                                                 return;
6297                                 }
6298                         }
6299                 }
6300
6301                 default:
6302 warn_unreachable:
6303                         if (!stmt->base.reachable)
6304                                 warningf(&stmt->base.source_position, "statement is unreachable");
6305                         return;
6306         }
6307 }
6308
6309 static void parse_external_declaration(void)
6310 {
6311         /* function-definitions and declarations both start with declaration
6312          * specifiers */
6313         declaration_specifiers_t specifiers;
6314         memset(&specifiers, 0, sizeof(specifiers));
6315
6316         add_anchor_token(';');
6317         parse_declaration_specifiers(&specifiers);
6318         rem_anchor_token(';');
6319
6320         /* must be a declaration */
6321         if (token.type == ';') {
6322                 parse_anonymous_declaration_rest(&specifiers);
6323                 return;
6324         }
6325
6326         add_anchor_token(',');
6327         add_anchor_token('=');
6328         add_anchor_token(';');
6329         add_anchor_token('{');
6330
6331         /* declarator is common to both function-definitions and declarations */
6332         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
6333
6334         rem_anchor_token('{');
6335         rem_anchor_token(';');
6336         rem_anchor_token('=');
6337         rem_anchor_token(',');
6338
6339         /* must be a declaration */
6340         switch (token.type) {
6341                 case ',':
6342                 case ';':
6343                 case '=':
6344                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
6345                                         DECL_FLAGS_NONE);
6346                         return;
6347         }
6348
6349         /* must be a function definition */
6350         parse_kr_declaration_list(ndeclaration);
6351
6352         if (token.type != '{') {
6353                 parse_error_expected("while parsing function definition", '{', NULL);
6354                 eat_until_matching_token(';');
6355                 return;
6356         }
6357
6358         assert(is_declaration(ndeclaration));
6359         type_t *const orig_type = ndeclaration->declaration.type;
6360         type_t *      type      = skip_typeref(orig_type);
6361
6362         if (!is_type_function(type)) {
6363                 if (is_type_valid(type)) {
6364                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
6365                                type, ndeclaration->base.symbol);
6366                 }
6367                 eat_block();
6368                 return;
6369         } else if (is_typeref(orig_type)) {
6370                 /* §6.9.1:2 */
6371                 errorf(&ndeclaration->base.source_position,
6372                                 "type of function definition '%#T' is a typedef",
6373                                 orig_type, ndeclaration->base.symbol);
6374         }
6375
6376         if (warning.aggregate_return &&
6377             is_type_compound(skip_typeref(type->function.return_type))) {
6378                 warningf(HERE, "function '%Y' returns an aggregate",
6379                          ndeclaration->base.symbol);
6380         }
6381         if (warning.traditional && !type->function.unspecified_parameters) {
6382                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
6383                         ndeclaration->base.symbol);
6384         }
6385         if (warning.old_style_definition && type->function.unspecified_parameters) {
6386                 warningf(HERE, "old-style function definition '%Y'",
6387                         ndeclaration->base.symbol);
6388         }
6389
6390         /* § 6.7.5.3:14 a function definition with () means no
6391          * parameters (and not unspecified parameters) */
6392         if (type->function.unspecified_parameters &&
6393                         type->function.parameters == NULL     &&
6394                         !type->function.kr_style_parameters) {
6395                 type_t *copy                          = duplicate_type(type);
6396                 copy->function.unspecified_parameters = false;
6397                 type                                  = identify_new_type(copy);
6398
6399                 ndeclaration->declaration.type = type;
6400         }
6401
6402         entity_t *const entity = record_entity(ndeclaration, true);
6403         assert(entity->kind == ENTITY_FUNCTION);
6404         assert(ndeclaration->kind == ENTITY_FUNCTION);
6405
6406         function_t *function = &entity->function;
6407         if (ndeclaration != entity) {
6408                 function->parameters = ndeclaration->function.parameters;
6409         }
6410         assert(is_declaration(entity));
6411         type = skip_typeref(entity->declaration.type);
6412
6413         /* push function parameters and switch scope */
6414         size_t const  top       = environment_top();
6415         scope_t      *old_scope = scope_push(&function->parameters);
6416
6417         entity_t *parameter = function->parameters.entities;
6418         for (; parameter != NULL; parameter = parameter->base.next) {
6419                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
6420                         parameter->base.parent_scope = current_scope;
6421                 }
6422                 assert(parameter->base.parent_scope == NULL
6423                                 || parameter->base.parent_scope == current_scope);
6424                 parameter->base.parent_scope = current_scope;
6425                 if (parameter->base.symbol == NULL) {
6426                         errorf(&parameter->base.source_position, "parameter name omitted");
6427                         continue;
6428                 }
6429                 environment_push(parameter);
6430         }
6431
6432         if (function->statement != NULL) {
6433                 parser_error_multiple_definition(entity, HERE);
6434                 eat_block();
6435         } else {
6436                 /* parse function body */
6437                 int         label_stack_top      = label_top();
6438                 function_t *old_current_function = current_function;
6439                 current_function                 = function;
6440                 current_parent                   = NULL;
6441
6442                 goto_first   = NULL;
6443                 goto_anchor  = &goto_first;
6444                 label_first  = NULL;
6445                 label_anchor = &label_first;
6446
6447                 statement_t *const body = parse_compound_statement(false);
6448                 function->statement = body;
6449                 first_err = true;
6450                 check_labels();
6451                 check_declarations();
6452                 if (warning.return_type      ||
6453                     warning.unreachable_code ||
6454                     (warning.missing_noreturn
6455                      && !(function->base.modifiers & DM_NORETURN))) {
6456                         noreturn_candidate = true;
6457                         check_reachable(body);
6458                         if (warning.unreachable_code)
6459                                 walk_statements(body, check_unreachable, NULL);
6460                         if (warning.missing_noreturn &&
6461                             noreturn_candidate       &&
6462                             !(function->base.modifiers & DM_NORETURN)) {
6463                                 warningf(&body->base.source_position,
6464                                          "function '%#T' is candidate for attribute 'noreturn'",
6465                                          type, entity->base.symbol);
6466                         }
6467                 }
6468
6469                 assert(current_parent   == NULL);
6470                 assert(current_function == function);
6471                 current_function = old_current_function;
6472                 label_pop_to(label_stack_top);
6473         }
6474
6475         assert(current_scope == &function->parameters);
6476         scope_pop(old_scope);
6477         environment_pop_to(top);
6478 }
6479
6480 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
6481                                   source_position_t *source_position,
6482                                   const symbol_t *symbol)
6483 {
6484         type_t *type = allocate_type_zero(TYPE_BITFIELD);
6485
6486         type->bitfield.base_type       = base_type;
6487         type->bitfield.size_expression = size;
6488
6489         il_size_t bit_size;
6490         type_t *skipped_type = skip_typeref(base_type);
6491         if (!is_type_integer(skipped_type)) {
6492                 errorf(HERE, "bitfield base type '%T' is not an integer type",
6493                         base_type);
6494                 bit_size = 0;
6495         } else {
6496                 bit_size = skipped_type->base.size * 8;
6497         }
6498
6499         if (is_constant_expression(size)) {
6500                 long v = fold_constant(size);
6501
6502                 if (v < 0) {
6503                         errorf(source_position, "negative width in bit-field '%Y'", symbol);
6504                 } else if (v == 0) {
6505                         errorf(source_position, "zero width for bit-field '%Y'", symbol);
6506                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
6507                         errorf(source_position, "width of '%Y' exceeds its type", symbol);
6508                 } else {
6509                         type->bitfield.bit_size = v;
6510                 }
6511         }
6512
6513         return type;
6514 }
6515
6516 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
6517 {
6518         entity_t *iter = compound->members.entities;
6519         for (; iter != NULL; iter = iter->base.next) {
6520                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
6521                         continue;
6522
6523                 if (iter->base.symbol == symbol) {
6524                         return iter;
6525                 } else if (iter->base.symbol == NULL) {
6526                         type_t *type = skip_typeref(iter->declaration.type);
6527                         if (is_type_compound(type)) {
6528                                 entity_t *result
6529                                         = find_compound_entry(type->compound.compound, symbol);
6530                                 if (result != NULL)
6531                                         return result;
6532                         }
6533                         continue;
6534                 }
6535         }
6536
6537         return NULL;
6538 }
6539
6540 static void parse_compound_declarators(compound_t *compound,
6541                 const declaration_specifiers_t *specifiers)
6542 {
6543         while (true) {
6544                 entity_t *entity;
6545
6546                 if (token.type == ':') {
6547                         source_position_t source_position = *HERE;
6548                         next_token();
6549
6550                         type_t *base_type = specifiers->type;
6551                         expression_t *size = parse_constant_expression();
6552
6553                         type_t *type = make_bitfield_type(base_type, size,
6554                                         &source_position, sym_anonymous);
6555
6556                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
6557                         entity->base.namespc                       = NAMESPACE_NORMAL;
6558                         entity->base.source_position               = source_position;
6559                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
6560                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
6561                         entity->declaration.modifiers              = specifiers->modifiers;
6562                         entity->declaration.type                   = type;
6563                         append_entity(&compound->members, entity);
6564                 } else {
6565                         entity = parse_declarator(specifiers,
6566                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
6567                         if (entity->kind == ENTITY_TYPEDEF) {
6568                                 errorf(&entity->base.source_position,
6569                                                 "typedef not allowed as compound member");
6570                         } else {
6571                                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
6572
6573                                 /* make sure we don't define a symbol multiple times */
6574                                 symbol_t *symbol = entity->base.symbol;
6575                                 if (symbol != NULL) {
6576                                         entity_t *prev = find_compound_entry(compound, symbol);
6577                                         if (prev != NULL) {
6578                                                 errorf(&entity->base.source_position,
6579                                                                 "multiple declarations of symbol '%Y' (declared %P)",
6580                                                                 symbol, &prev->base.source_position);
6581                                         }
6582                                 }
6583
6584                                 if (token.type == ':') {
6585                                         source_position_t source_position = *HERE;
6586                                         next_token();
6587                                         expression_t *size = parse_constant_expression();
6588
6589                                         type_t *type          = entity->declaration.type;
6590                                         type_t *bitfield_type = make_bitfield_type(type, size,
6591                                                         &source_position, entity->base.symbol);
6592                                         entity->declaration.type = bitfield_type;
6593                                 } else {
6594                                         type_t *orig_type = entity->declaration.type;
6595                                         type_t *type      = skip_typeref(orig_type);
6596                                         if (is_type_function(type)) {
6597                                                 errorf(&entity->base.source_position,
6598                                                                 "compound member '%Y' must not have function type '%T'",
6599                                                                 entity->base.symbol, orig_type);
6600                                         } else if (is_type_incomplete(type)) {
6601                                                 /* §6.7.2.1:16 flexible array member */
6602                                                 if (is_type_array(type) &&
6603                                                                 token.type == ';'   &&
6604                                                                 look_ahead(1)->type == '}') {
6605                                                         compound->has_flexible_member = true;
6606                                                 } else {
6607                                                         errorf(&entity->base.source_position,
6608                                                                         "compound member '%Y' has incomplete type '%T'",
6609                                                                         entity->base.symbol, orig_type);
6610                                                 }
6611                                         }
6612                                 }
6613
6614                                 append_entity(&compound->members, entity);
6615                         }
6616                 }
6617
6618                 if (token.type != ',')
6619                         break;
6620                 next_token();
6621         }
6622         expect(';', end_error);
6623
6624 end_error:
6625         anonymous_entity = NULL;
6626 }
6627
6628 static void parse_compound_type_entries(compound_t *compound)
6629 {
6630         eat('{');
6631         add_anchor_token('}');
6632
6633         while (token.type != '}') {
6634                 if (token.type == T_EOF) {
6635                         errorf(HERE, "EOF while parsing struct");
6636                         break;
6637                 }
6638                 declaration_specifiers_t specifiers;
6639                 memset(&specifiers, 0, sizeof(specifiers));
6640                 parse_declaration_specifiers(&specifiers);
6641
6642                 parse_compound_declarators(compound, &specifiers);
6643         }
6644         rem_anchor_token('}');
6645         next_token();
6646
6647         /* §6.7.2.1:7 */
6648         compound->complete = true;
6649 }
6650
6651 static type_t *parse_typename(void)
6652 {
6653         declaration_specifiers_t specifiers;
6654         memset(&specifiers, 0, sizeof(specifiers));
6655         parse_declaration_specifiers(&specifiers);
6656         if (specifiers.storage_class != STORAGE_CLASS_NONE ||
6657                         specifiers.thread_local) {
6658                 /* TODO: improve error message, user does probably not know what a
6659                  * storage class is...
6660                  */
6661                 errorf(HERE, "typename may not have a storage class");
6662         }
6663
6664         type_t *result = parse_abstract_declarator(specifiers.type);
6665
6666         return result;
6667 }
6668
6669
6670
6671
6672 typedef expression_t* (*parse_expression_function)(void);
6673 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
6674
6675 typedef struct expression_parser_function_t expression_parser_function_t;
6676 struct expression_parser_function_t {
6677         parse_expression_function        parser;
6678         precedence_t                     infix_precedence;
6679         parse_expression_infix_function  infix_parser;
6680 };
6681
6682 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
6683
6684 /**
6685  * Prints an error message if an expression was expected but not read
6686  */
6687 static expression_t *expected_expression_error(void)
6688 {
6689         /* skip the error message if the error token was read */
6690         if (token.type != T_ERROR) {
6691                 errorf(HERE, "expected expression, got token %K", &token);
6692         }
6693         next_token();
6694
6695         return create_invalid_expression();
6696 }
6697
6698 /**
6699  * Parse a string constant.
6700  */
6701 static expression_t *parse_string_const(void)
6702 {
6703         wide_string_t wres;
6704         if (token.type == T_STRING_LITERAL) {
6705                 string_t res = token.v.string;
6706                 next_token();
6707                 while (token.type == T_STRING_LITERAL) {
6708                         res = concat_strings(&res, &token.v.string);
6709                         next_token();
6710                 }
6711                 if (token.type != T_WIDE_STRING_LITERAL) {
6712                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
6713                         /* note: that we use type_char_ptr here, which is already the
6714                          * automatic converted type. revert_automatic_type_conversion
6715                          * will construct the array type */
6716                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
6717                         cnst->string.value = res;
6718                         return cnst;
6719                 }
6720
6721                 wres = concat_string_wide_string(&res, &token.v.wide_string);
6722         } else {
6723                 wres = token.v.wide_string;
6724         }
6725         next_token();
6726
6727         for (;;) {
6728                 switch (token.type) {
6729                         case T_WIDE_STRING_LITERAL:
6730                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
6731                                 break;
6732
6733                         case T_STRING_LITERAL:
6734                                 wres = concat_wide_string_string(&wres, &token.v.string);
6735                                 break;
6736
6737                         default: {
6738                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6739                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
6740                                 cnst->wide_string.value = wres;
6741                                 return cnst;
6742                         }
6743                 }
6744                 next_token();
6745         }
6746 }
6747
6748 /**
6749  * Parse a boolean constant.
6750  */
6751 static expression_t *parse_bool_const(bool value)
6752 {
6753         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6754         cnst->base.type          = type_bool;
6755         cnst->conste.v.int_value = value;
6756
6757         next_token();
6758
6759         return cnst;
6760 }
6761
6762 /**
6763  * Parse an integer constant.
6764  */
6765 static expression_t *parse_int_const(void)
6766 {
6767         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6768         cnst->base.type          = token.datatype;
6769         cnst->conste.v.int_value = token.v.intvalue;
6770
6771         next_token();
6772
6773         return cnst;
6774 }
6775
6776 /**
6777  * Parse a character constant.
6778  */
6779 static expression_t *parse_character_constant(void)
6780 {
6781         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
6782         cnst->base.type          = token.datatype;
6783         cnst->conste.v.character = token.v.string;
6784
6785         if (cnst->conste.v.character.size != 1) {
6786                 if (!GNU_MODE) {
6787                         errorf(HERE, "more than 1 character in character constant");
6788                 } else if (warning.multichar) {
6789                         warningf(HERE, "multi-character character constant");
6790                 }
6791         }
6792         next_token();
6793
6794         return cnst;
6795 }
6796
6797 /**
6798  * Parse a wide character constant.
6799  */
6800 static expression_t *parse_wide_character_constant(void)
6801 {
6802         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
6803         cnst->base.type               = token.datatype;
6804         cnst->conste.v.wide_character = token.v.wide_string;
6805
6806         if (cnst->conste.v.wide_character.size != 1) {
6807                 if (!GNU_MODE) {
6808                         errorf(HERE, "more than 1 character in character constant");
6809                 } else if (warning.multichar) {
6810                         warningf(HERE, "multi-character character constant");
6811                 }
6812         }
6813         next_token();
6814
6815         return cnst;
6816 }
6817
6818 /**
6819  * Parse a float constant.
6820  */
6821 static expression_t *parse_float_const(void)
6822 {
6823         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6824         cnst->base.type            = token.datatype;
6825         cnst->conste.v.float_value = token.v.floatvalue;
6826
6827         next_token();
6828
6829         return cnst;
6830 }
6831
6832 static entity_t *create_implicit_function(symbol_t *symbol,
6833                 const source_position_t *source_position)
6834 {
6835         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6836         ntype->function.return_type            = type_int;
6837         ntype->function.unspecified_parameters = true;
6838         ntype->function.linkage                = LINKAGE_C;
6839         type_t *type                           = identify_new_type(ntype);
6840
6841         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6842         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6843         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6844         entity->declaration.type                   = type;
6845         entity->declaration.implicit               = true;
6846         entity->base.symbol                        = symbol;
6847         entity->base.source_position               = *source_position;
6848
6849         bool strict_prototypes_old = warning.strict_prototypes;
6850         warning.strict_prototypes  = false;
6851         record_entity(entity, false);
6852         warning.strict_prototypes = strict_prototypes_old;
6853
6854         return entity;
6855 }
6856
6857 /**
6858  * Creates a return_type (func)(argument_type) function type if not
6859  * already exists.
6860  */
6861 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
6862                                     type_t *argument_type2)
6863 {
6864         function_parameter_t *parameter2
6865                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
6866         memset(parameter2, 0, sizeof(parameter2[0]));
6867         parameter2->type = argument_type2;
6868
6869         function_parameter_t *parameter1
6870                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
6871         memset(parameter1, 0, sizeof(parameter1[0]));
6872         parameter1->type = argument_type1;
6873         parameter1->next = parameter2;
6874
6875         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6876         type->function.return_type = return_type;
6877         type->function.parameters  = parameter1;
6878
6879         return identify_new_type(type);
6880 }
6881
6882 /**
6883  * Creates a return_type (func)(argument_type) function type if not
6884  * already exists.
6885  *
6886  * @param return_type    the return type
6887  * @param argument_type  the argument type
6888  */
6889 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
6890 {
6891         function_parameter_t *parameter
6892                 = obstack_alloc(type_obst, sizeof(parameter[0]));
6893         memset(parameter, 0, sizeof(parameter[0]));
6894         parameter->type = argument_type;
6895
6896         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6897         type->function.return_type = return_type;
6898         type->function.parameters  = parameter;
6899
6900         return identify_new_type(type);
6901 }
6902
6903 static type_t *make_function_0_type(type_t *return_type)
6904 {
6905         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6906         type->function.return_type = return_type;
6907         type->function.parameters  = NULL;
6908
6909         return identify_new_type(type);
6910 }
6911
6912 /**
6913  * Creates a function type for some function like builtins.
6914  *
6915  * @param symbol   the symbol describing the builtin
6916  */
6917 static type_t *get_builtin_symbol_type(symbol_t *symbol)
6918 {
6919         switch (symbol->ID) {
6920         case T___builtin_alloca:
6921                 return make_function_1_type(type_void_ptr, type_size_t);
6922         case T___builtin_huge_val:
6923                 return make_function_0_type(type_double);
6924         case T___builtin_inf:
6925                 return make_function_0_type(type_double);
6926         case T___builtin_inff:
6927                 return make_function_0_type(type_float);
6928         case T___builtin_infl:
6929                 return make_function_0_type(type_long_double);
6930         case T___builtin_nan:
6931                 return make_function_1_type(type_double, type_char_ptr);
6932         case T___builtin_nanf:
6933                 return make_function_1_type(type_float, type_char_ptr);
6934         case T___builtin_nanl:
6935                 return make_function_1_type(type_long_double, type_char_ptr);
6936         case T___builtin_va_end:
6937                 return make_function_1_type(type_void, type_valist);
6938         case T___builtin_expect:
6939                 return make_function_2_type(type_long, type_long, type_long);
6940         default:
6941                 internal_errorf(HERE, "not implemented builtin identifier found");
6942         }
6943 }
6944
6945 /**
6946  * Performs automatic type cast as described in § 6.3.2.1.
6947  *
6948  * @param orig_type  the original type
6949  */
6950 static type_t *automatic_type_conversion(type_t *orig_type)
6951 {
6952         type_t *type = skip_typeref(orig_type);
6953         if (is_type_array(type)) {
6954                 array_type_t *array_type   = &type->array;
6955                 type_t       *element_type = array_type->element_type;
6956                 unsigned      qualifiers   = array_type->base.qualifiers;
6957
6958                 return make_pointer_type(element_type, qualifiers);
6959         }
6960
6961         if (is_type_function(type)) {
6962                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6963         }
6964
6965         return orig_type;
6966 }
6967
6968 /**
6969  * reverts the automatic casts of array to pointer types and function
6970  * to function-pointer types as defined § 6.3.2.1
6971  */
6972 type_t *revert_automatic_type_conversion(const expression_t *expression)
6973 {
6974         switch (expression->kind) {
6975                 case EXPR_REFERENCE: {
6976                         entity_t *entity = expression->reference.entity;
6977                         if (is_declaration(entity)) {
6978                                 return entity->declaration.type;
6979                         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6980                                 return entity->enum_value.enum_type;
6981                         } else {
6982                                 panic("no declaration or enum in reference");
6983                         }
6984                 }
6985
6986                 case EXPR_SELECT: {
6987                         entity_t *entity = expression->select.compound_entry;
6988                         assert(is_declaration(entity));
6989                         type_t   *type   = entity->declaration.type;
6990                         return get_qualified_type(type,
6991                                         expression->base.type->base.qualifiers);
6992                 }
6993
6994                 case EXPR_UNARY_DEREFERENCE: {
6995                         const expression_t *const value = expression->unary.value;
6996                         type_t             *const type  = skip_typeref(value->base.type);
6997                         if (!is_type_pointer(type))
6998                                 return type_error_type;
6999                         return type->pointer.points_to;
7000                 }
7001
7002                 case EXPR_BUILTIN_SYMBOL:
7003                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
7004
7005                 case EXPR_ARRAY_ACCESS: {
7006                         const expression_t *array_ref = expression->array_access.array_ref;
7007                         type_t             *type_left = skip_typeref(array_ref->base.type);
7008                         if (!is_type_pointer(type_left))
7009                                 return type_error_type;
7010                         return type_left->pointer.points_to;
7011                 }
7012
7013                 case EXPR_STRING_LITERAL: {
7014                         size_t size = expression->string.value.size;
7015                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
7016                 }
7017
7018                 case EXPR_WIDE_STRING_LITERAL: {
7019                         size_t size = expression->wide_string.value.size;
7020                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
7021                 }
7022
7023                 case EXPR_COMPOUND_LITERAL:
7024                         return expression->compound_literal.type;
7025
7026                 default:
7027                         return expression->base.type;
7028         }
7029 }
7030
7031 static expression_t *parse_reference(void)
7032 {
7033         symbol_t *const symbol = token.v.symbol;
7034
7035         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
7036
7037         if (entity == NULL) {
7038                 if (!strict_mode && look_ahead(1)->type == '(') {
7039                         /* an implicitly declared function */
7040                         if (warning.error_implicit_function_declaration) {
7041                                 errorf(HERE, "implicit declaration of function '%Y'", symbol);
7042                         } else if (warning.implicit_function_declaration) {
7043                                 warningf(HERE, "implicit declaration of function '%Y'", symbol);
7044                         }
7045
7046                         entity = create_implicit_function(symbol, HERE);
7047                 } else {
7048                         errorf(HERE, "unknown identifier '%Y' found.", symbol);
7049                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
7050                 }
7051         }
7052
7053         type_t *orig_type;
7054
7055         if (is_declaration(entity)) {
7056                 orig_type = entity->declaration.type;
7057         } else if (entity->kind == ENTITY_ENUM_VALUE) {
7058                 orig_type = entity->enum_value.enum_type;
7059         } else if (entity->kind == ENTITY_TYPEDEF) {
7060                 errorf(HERE, "encountered typedef name '%Y' while parsing expression",
7061                         symbol);
7062                 next_token();
7063                 return create_invalid_expression();
7064         } else {
7065                 panic("expected declaration or enum value in reference");
7066         }
7067
7068         /* we always do the auto-type conversions; the & and sizeof parser contains
7069          * code to revert this! */
7070         type_t *type = automatic_type_conversion(orig_type);
7071
7072         expression_kind_t kind = EXPR_REFERENCE;
7073         if (entity->kind == ENTITY_ENUM_VALUE)
7074                 kind = EXPR_REFERENCE_ENUM_VALUE;
7075
7076         expression_t *expression     = allocate_expression_zero(kind);
7077         expression->reference.entity = entity;
7078         expression->base.type        = type;
7079
7080         /* this declaration is used */
7081         if (is_declaration(entity)) {
7082                 entity->declaration.used = true;
7083         }
7084
7085         if (entity->base.parent_scope != file_scope
7086                 && entity->base.parent_scope->depth < current_function->parameters.depth
7087                 && is_type_valid(orig_type) && !is_type_function(orig_type)) {
7088                 if (entity->kind == ENTITY_VARIABLE) {
7089                         /* access of a variable from an outer function */
7090                         entity->variable.address_taken = true;
7091                 } else if (entity->kind == ENTITY_PARAMETER) {
7092                         entity->parameter.address_taken = true;
7093                 }
7094                 current_function->need_closure = true;
7095         }
7096
7097         /* check for deprecated functions */
7098         if (warning.deprecated_declarations
7099                 && is_declaration(entity)
7100                 && entity->declaration.modifiers & DM_DEPRECATED) {
7101                 declaration_t *declaration = &entity->declaration;
7102
7103                 char const *const prefix = entity->kind == ENTITY_FUNCTION ?
7104                         "function" : "variable";
7105
7106                 if (declaration->deprecated_string != NULL) {
7107                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
7108                                  prefix, entity->base.symbol, &entity->base.source_position,
7109                                  declaration->deprecated_string);
7110                 } else {
7111                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
7112                                  entity->base.symbol, &entity->base.source_position);
7113                 }
7114         }
7115
7116         if (warning.init_self && entity == current_init_decl && !in_type_prop
7117             && entity->kind == ENTITY_VARIABLE) {
7118                 current_init_decl = NULL;
7119                 warningf(HERE, "variable '%#T' is initialized by itself",
7120                          entity->declaration.type, entity->base.symbol);
7121         }
7122
7123         next_token();
7124         return expression;
7125 }
7126
7127 static bool semantic_cast(expression_t *cast)
7128 {
7129         expression_t            *expression      = cast->unary.value;
7130         type_t                  *orig_dest_type  = cast->base.type;
7131         type_t                  *orig_type_right = expression->base.type;
7132         type_t            const *dst_type        = skip_typeref(orig_dest_type);
7133         type_t            const *src_type        = skip_typeref(orig_type_right);
7134         source_position_t const *pos             = &cast->base.source_position;
7135
7136         /* §6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
7137         if (dst_type == type_void)
7138                 return true;
7139
7140         /* only integer and pointer can be casted to pointer */
7141         if (is_type_pointer(dst_type)  &&
7142             !is_type_pointer(src_type) &&
7143             !is_type_integer(src_type) &&
7144             is_type_valid(src_type)) {
7145                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
7146                 return false;
7147         }
7148
7149         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
7150                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
7151                 return false;
7152         }
7153
7154         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
7155                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
7156                 return false;
7157         }
7158
7159         if (warning.cast_qual &&
7160             is_type_pointer(src_type) &&
7161             is_type_pointer(dst_type)) {
7162                 type_t *src = skip_typeref(src_type->pointer.points_to);
7163                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
7164                 unsigned missing_qualifiers =
7165                         src->base.qualifiers & ~dst->base.qualifiers;
7166                 if (missing_qualifiers != 0) {
7167                         warningf(pos,
7168                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
7169                                  missing_qualifiers, orig_type_right);
7170                 }
7171         }
7172         return true;
7173 }
7174
7175 static expression_t *parse_compound_literal(type_t *type)
7176 {
7177         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
7178
7179         parse_initializer_env_t env;
7180         env.type             = type;
7181         env.entity           = NULL;
7182         env.must_be_constant = false;
7183         initializer_t *initializer = parse_initializer(&env);
7184         type = env.type;
7185
7186         expression->compound_literal.initializer = initializer;
7187         expression->compound_literal.type        = type;
7188         expression->base.type                    = automatic_type_conversion(type);
7189
7190         return expression;
7191 }
7192
7193 /**
7194  * Parse a cast expression.
7195  */
7196 static expression_t *parse_cast(void)
7197 {
7198         add_anchor_token(')');
7199
7200         source_position_t source_position = token.source_position;
7201
7202         type_t *type = parse_typename();
7203
7204         rem_anchor_token(')');
7205         expect(')', end_error);
7206
7207         if (token.type == '{') {
7208                 return parse_compound_literal(type);
7209         }
7210
7211         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
7212         cast->base.source_position = source_position;
7213
7214         expression_t *value = parse_sub_expression(PREC_CAST);
7215         cast->base.type   = type;
7216         cast->unary.value = value;
7217
7218         if (! semantic_cast(cast)) {
7219                 /* TODO: record the error in the AST. else it is impossible to detect it */
7220         }
7221
7222         return cast;
7223 end_error:
7224         return create_invalid_expression();
7225 }
7226
7227 /**
7228  * Parse a statement expression.
7229  */
7230 static expression_t *parse_statement_expression(void)
7231 {
7232         add_anchor_token(')');
7233
7234         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
7235
7236         statement_t *statement          = parse_compound_statement(true);
7237         statement->compound.stmt_expr   = true;
7238         expression->statement.statement = statement;
7239
7240         /* find last statement and use its type */
7241         type_t *type = type_void;
7242         const statement_t *stmt = statement->compound.statements;
7243         if (stmt != NULL) {
7244                 while (stmt->base.next != NULL)
7245                         stmt = stmt->base.next;
7246
7247                 if (stmt->kind == STATEMENT_EXPRESSION) {
7248                         type = stmt->expression.expression->base.type;
7249                 }
7250         } else if (warning.other) {
7251                 warningf(&expression->base.source_position, "empty statement expression ({})");
7252         }
7253         expression->base.type = type;
7254
7255         rem_anchor_token(')');
7256         expect(')', end_error);
7257
7258 end_error:
7259         return expression;
7260 }
7261
7262 /**
7263  * Parse a parenthesized expression.
7264  */
7265 static expression_t *parse_parenthesized_expression(void)
7266 {
7267         eat('(');
7268
7269         switch (token.type) {
7270         case '{':
7271                 /* gcc extension: a statement expression */
7272                 return parse_statement_expression();
7273
7274         TYPE_QUALIFIERS
7275         TYPE_SPECIFIERS
7276                 return parse_cast();
7277         case T_IDENTIFIER:
7278                 if (is_typedef_symbol(token.v.symbol)) {
7279                         return parse_cast();
7280                 }
7281         }
7282
7283         add_anchor_token(')');
7284         expression_t *result = parse_expression();
7285         result->base.parenthesized = true;
7286         rem_anchor_token(')');
7287         expect(')', end_error);
7288
7289 end_error:
7290         return result;
7291 }
7292
7293 static expression_t *parse_function_keyword(void)
7294 {
7295         /* TODO */
7296
7297         if (current_function == NULL) {
7298                 errorf(HERE, "'__func__' used outside of a function");
7299         }
7300
7301         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7302         expression->base.type     = type_char_ptr;
7303         expression->funcname.kind = FUNCNAME_FUNCTION;
7304
7305         next_token();
7306
7307         return expression;
7308 }
7309
7310 static expression_t *parse_pretty_function_keyword(void)
7311 {
7312         if (current_function == NULL) {
7313                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
7314         }
7315
7316         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7317         expression->base.type     = type_char_ptr;
7318         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
7319
7320         eat(T___PRETTY_FUNCTION__);
7321
7322         return expression;
7323 }
7324
7325 static expression_t *parse_funcsig_keyword(void)
7326 {
7327         if (current_function == NULL) {
7328                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
7329         }
7330
7331         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7332         expression->base.type     = type_char_ptr;
7333         expression->funcname.kind = FUNCNAME_FUNCSIG;
7334
7335         eat(T___FUNCSIG__);
7336
7337         return expression;
7338 }
7339
7340 static expression_t *parse_funcdname_keyword(void)
7341 {
7342         if (current_function == NULL) {
7343                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
7344         }
7345
7346         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7347         expression->base.type     = type_char_ptr;
7348         expression->funcname.kind = FUNCNAME_FUNCDNAME;
7349
7350         eat(T___FUNCDNAME__);
7351
7352         return expression;
7353 }
7354
7355 static designator_t *parse_designator(void)
7356 {
7357         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
7358         result->source_position = *HERE;
7359
7360         if (token.type != T_IDENTIFIER) {
7361                 parse_error_expected("while parsing member designator",
7362                                      T_IDENTIFIER, NULL);
7363                 return NULL;
7364         }
7365         result->symbol = token.v.symbol;
7366         next_token();
7367
7368         designator_t *last_designator = result;
7369         while (true) {
7370                 if (token.type == '.') {
7371                         next_token();
7372                         if (token.type != T_IDENTIFIER) {
7373                                 parse_error_expected("while parsing member designator",
7374                                                      T_IDENTIFIER, NULL);
7375                                 return NULL;
7376                         }
7377                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
7378                         designator->source_position = *HERE;
7379                         designator->symbol          = token.v.symbol;
7380                         next_token();
7381
7382                         last_designator->next = designator;
7383                         last_designator       = designator;
7384                         continue;
7385                 }
7386                 if (token.type == '[') {
7387                         next_token();
7388                         add_anchor_token(']');
7389                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
7390                         designator->source_position = *HERE;
7391                         designator->array_index     = parse_expression();
7392                         rem_anchor_token(']');
7393                         expect(']', end_error);
7394                         if (designator->array_index == NULL) {
7395                                 return NULL;
7396                         }
7397
7398                         last_designator->next = designator;
7399                         last_designator       = designator;
7400                         continue;
7401                 }
7402                 break;
7403         }
7404
7405         return result;
7406 end_error:
7407         return NULL;
7408 }
7409
7410 /**
7411  * Parse the __builtin_offsetof() expression.
7412  */
7413 static expression_t *parse_offsetof(void)
7414 {
7415         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
7416         expression->base.type    = type_size_t;
7417
7418         eat(T___builtin_offsetof);
7419
7420         expect('(', end_error);
7421         add_anchor_token(',');
7422         type_t *type = parse_typename();
7423         rem_anchor_token(',');
7424         expect(',', end_error);
7425         add_anchor_token(')');
7426         designator_t *designator = parse_designator();
7427         rem_anchor_token(')');
7428         expect(')', end_error);
7429
7430         expression->offsetofe.type       = type;
7431         expression->offsetofe.designator = designator;
7432
7433         type_path_t path;
7434         memset(&path, 0, sizeof(path));
7435         path.top_type = type;
7436         path.path     = NEW_ARR_F(type_path_entry_t, 0);
7437
7438         descend_into_subtype(&path);
7439
7440         if (!walk_designator(&path, designator, true)) {
7441                 return create_invalid_expression();
7442         }
7443
7444         DEL_ARR_F(path.path);
7445
7446         return expression;
7447 end_error:
7448         return create_invalid_expression();
7449 }
7450
7451 /**
7452  * Parses a _builtin_va_start() expression.
7453  */
7454 static expression_t *parse_va_start(void)
7455 {
7456         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
7457
7458         eat(T___builtin_va_start);
7459
7460         expect('(', end_error);
7461         add_anchor_token(',');
7462         expression->va_starte.ap = parse_assignment_expression();
7463         rem_anchor_token(',');
7464         expect(',', end_error);
7465         expression_t *const expr = parse_assignment_expression();
7466         if (expr->kind == EXPR_REFERENCE) {
7467                 entity_t *const entity = expr->reference.entity;
7468                 if (entity->base.parent_scope != &current_function->parameters
7469                                 || entity->base.next != NULL
7470                                 || entity->kind != ENTITY_PARAMETER) {
7471                         errorf(&expr->base.source_position,
7472                                "second argument of 'va_start' must be last parameter of the current function");
7473                 } else {
7474                         expression->va_starte.parameter = &entity->variable;
7475                 }
7476                 expect(')', end_error);
7477                 return expression;
7478         }
7479         expect(')', end_error);
7480 end_error:
7481         return create_invalid_expression();
7482 }
7483
7484 /**
7485  * Parses a _builtin_va_arg() expression.
7486  */
7487 static expression_t *parse_va_arg(void)
7488 {
7489         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
7490
7491         eat(T___builtin_va_arg);
7492
7493         expect('(', end_error);
7494         expression->va_arge.ap = parse_assignment_expression();
7495         expect(',', end_error);
7496         expression->base.type = parse_typename();
7497         expect(')', end_error);
7498
7499         return expression;
7500 end_error:
7501         return create_invalid_expression();
7502 }
7503
7504 static expression_t *parse_builtin_symbol(void)
7505 {
7506         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
7507
7508         symbol_t *symbol = token.v.symbol;
7509
7510         expression->builtin_symbol.symbol = symbol;
7511         next_token();
7512
7513         type_t *type = get_builtin_symbol_type(symbol);
7514         type = automatic_type_conversion(type);
7515
7516         expression->base.type = type;
7517         return expression;
7518 }
7519
7520 /**
7521  * Parses a __builtin_constant() expression.
7522  */
7523 static expression_t *parse_builtin_constant(void)
7524 {
7525         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
7526
7527         eat(T___builtin_constant_p);
7528
7529         expect('(', end_error);
7530         add_anchor_token(')');
7531         expression->builtin_constant.value = parse_assignment_expression();
7532         rem_anchor_token(')');
7533         expect(')', end_error);
7534         expression->base.type = type_int;
7535
7536         return expression;
7537 end_error:
7538         return create_invalid_expression();
7539 }
7540
7541 /**
7542  * Parses a __builtin_prefetch() expression.
7543  */
7544 static expression_t *parse_builtin_prefetch(void)
7545 {
7546         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
7547
7548         eat(T___builtin_prefetch);
7549
7550         expect('(', end_error);
7551         add_anchor_token(')');
7552         expression->builtin_prefetch.adr = parse_assignment_expression();
7553         if (token.type == ',') {
7554                 next_token();
7555                 expression->builtin_prefetch.rw = parse_assignment_expression();
7556         }
7557         if (token.type == ',') {
7558                 next_token();
7559                 expression->builtin_prefetch.locality = parse_assignment_expression();
7560         }
7561         rem_anchor_token(')');
7562         expect(')', end_error);
7563         expression->base.type = type_void;
7564
7565         return expression;
7566 end_error:
7567         return create_invalid_expression();
7568 }
7569
7570 /**
7571  * Parses a __builtin_is_*() compare expression.
7572  */
7573 static expression_t *parse_compare_builtin(void)
7574 {
7575         expression_t *expression;
7576
7577         switch (token.type) {
7578         case T___builtin_isgreater:
7579                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
7580                 break;
7581         case T___builtin_isgreaterequal:
7582                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
7583                 break;
7584         case T___builtin_isless:
7585                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
7586                 break;
7587         case T___builtin_islessequal:
7588                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
7589                 break;
7590         case T___builtin_islessgreater:
7591                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
7592                 break;
7593         case T___builtin_isunordered:
7594                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
7595                 break;
7596         default:
7597                 internal_errorf(HERE, "invalid compare builtin found");
7598         }
7599         expression->base.source_position = *HERE;
7600         next_token();
7601
7602         expect('(', end_error);
7603         expression->binary.left = parse_assignment_expression();
7604         expect(',', end_error);
7605         expression->binary.right = parse_assignment_expression();
7606         expect(')', end_error);
7607
7608         type_t *const orig_type_left  = expression->binary.left->base.type;
7609         type_t *const orig_type_right = expression->binary.right->base.type;
7610
7611         type_t *const type_left  = skip_typeref(orig_type_left);
7612         type_t *const type_right = skip_typeref(orig_type_right);
7613         if (!is_type_float(type_left) && !is_type_float(type_right)) {
7614                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7615                         type_error_incompatible("invalid operands in comparison",
7616                                 &expression->base.source_position, orig_type_left, orig_type_right);
7617                 }
7618         } else {
7619                 semantic_comparison(&expression->binary);
7620         }
7621
7622         return expression;
7623 end_error:
7624         return create_invalid_expression();
7625 }
7626
7627 #if 0
7628 /**
7629  * Parses a __builtin_expect(, end_error) expression.
7630  */
7631 static expression_t *parse_builtin_expect(void, end_error)
7632 {
7633         expression_t *expression
7634                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
7635
7636         eat(T___builtin_expect);
7637
7638         expect('(', end_error);
7639         expression->binary.left = parse_assignment_expression();
7640         expect(',', end_error);
7641         expression->binary.right = parse_constant_expression();
7642         expect(')', end_error);
7643
7644         expression->base.type = expression->binary.left->base.type;
7645
7646         return expression;
7647 end_error:
7648         return create_invalid_expression();
7649 }
7650 #endif
7651
7652 /**
7653  * Parses a MS assume() expression.
7654  */
7655 static expression_t *parse_assume(void)
7656 {
7657         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
7658
7659         eat(T__assume);
7660
7661         expect('(', end_error);
7662         add_anchor_token(')');
7663         expression->unary.value = parse_assignment_expression();
7664         rem_anchor_token(')');
7665         expect(')', end_error);
7666
7667         expression->base.type = type_void;
7668         return expression;
7669 end_error:
7670         return create_invalid_expression();
7671 }
7672
7673 /**
7674  * Return the declaration for a given label symbol or create a new one.
7675  *
7676  * @param symbol  the symbol of the label
7677  */
7678 static label_t *get_label(symbol_t *symbol)
7679 {
7680         entity_t *label;
7681         assert(current_function != NULL);
7682
7683         label = get_entity(symbol, NAMESPACE_LABEL);
7684         /* if we found a local label, we already created the declaration */
7685         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7686                 if (label->base.parent_scope != current_scope) {
7687                         assert(label->base.parent_scope->depth < current_scope->depth);
7688                         current_function->goto_to_outer = true;
7689                 }
7690                 return &label->label;
7691         }
7692
7693         label = get_entity(symbol, NAMESPACE_LABEL);
7694         /* if we found a label in the same function, then we already created the
7695          * declaration */
7696         if (label != NULL
7697                         && label->base.parent_scope == &current_function->parameters) {
7698                 return &label->label;
7699         }
7700
7701         /* otherwise we need to create a new one */
7702         label               = allocate_entity_zero(ENTITY_LABEL);
7703         label->base.namespc = NAMESPACE_LABEL;
7704         label->base.symbol  = symbol;
7705
7706         label_push(label);
7707
7708         return &label->label;
7709 }
7710
7711 /**
7712  * Parses a GNU && label address expression.
7713  */
7714 static expression_t *parse_label_address(void)
7715 {
7716         source_position_t source_position = token.source_position;
7717         eat(T_ANDAND);
7718         if (token.type != T_IDENTIFIER) {
7719                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7720                 goto end_error;
7721         }
7722         symbol_t *symbol = token.v.symbol;
7723         next_token();
7724
7725         label_t *label       = get_label(symbol);
7726         label->used          = true;
7727         label->address_taken = true;
7728
7729         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7730         expression->base.source_position = source_position;
7731
7732         /* label address is threaten as a void pointer */
7733         expression->base.type           = type_void_ptr;
7734         expression->label_address.label = label;
7735         return expression;
7736 end_error:
7737         return create_invalid_expression();
7738 }
7739
7740 /**
7741  * Parse a microsoft __noop expression.
7742  */
7743 static expression_t *parse_noop_expression(void)
7744 {
7745         /* the result is a (int)0 */
7746         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
7747         cnst->base.type            = type_int;
7748         cnst->conste.v.int_value   = 0;
7749         cnst->conste.is_ms_noop    = true;
7750
7751         eat(T___noop);
7752
7753         if (token.type == '(') {
7754                 /* parse arguments */
7755                 eat('(');
7756                 add_anchor_token(')');
7757                 add_anchor_token(',');
7758
7759                 if (token.type != ')') {
7760                         while (true) {
7761                                 (void)parse_assignment_expression();
7762                                 if (token.type != ',')
7763                                         break;
7764                                 next_token();
7765                         }
7766                 }
7767         }
7768         rem_anchor_token(',');
7769         rem_anchor_token(')');
7770         expect(')', end_error);
7771
7772 end_error:
7773         return cnst;
7774 }
7775
7776 /**
7777  * Parses a primary expression.
7778  */
7779 static expression_t *parse_primary_expression(void)
7780 {
7781         switch (token.type) {
7782                 case T_false:                    return parse_bool_const(false);
7783                 case T_true:                     return parse_bool_const(true);
7784                 case T_INTEGER:                  return parse_int_const();
7785                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
7786                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
7787                 case T_FLOATINGPOINT:            return parse_float_const();
7788                 case T_STRING_LITERAL:
7789                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
7790                 case T_IDENTIFIER:               return parse_reference();
7791                 case T___FUNCTION__:
7792                 case T___func__:                 return parse_function_keyword();
7793                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
7794                 case T___FUNCSIG__:              return parse_funcsig_keyword();
7795                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
7796                 case T___builtin_offsetof:       return parse_offsetof();
7797                 case T___builtin_va_start:       return parse_va_start();
7798                 case T___builtin_va_arg:         return parse_va_arg();
7799                 case T___builtin_expect:
7800                 case T___builtin_alloca:
7801                 case T___builtin_inf:
7802                 case T___builtin_inff:
7803                 case T___builtin_infl:
7804                 case T___builtin_nan:
7805                 case T___builtin_nanf:
7806                 case T___builtin_nanl:
7807                 case T___builtin_huge_val:
7808                 case T___builtin_va_end:         return parse_builtin_symbol();
7809                 case T___builtin_isgreater:
7810                 case T___builtin_isgreaterequal:
7811                 case T___builtin_isless:
7812                 case T___builtin_islessequal:
7813                 case T___builtin_islessgreater:
7814                 case T___builtin_isunordered:    return parse_compare_builtin();
7815                 case T___builtin_constant_p:     return parse_builtin_constant();
7816                 case T___builtin_prefetch:       return parse_builtin_prefetch();
7817                 case T__assume:                  return parse_assume();
7818                 case T_ANDAND:
7819                         if (GNU_MODE)
7820                                 return parse_label_address();
7821                         break;
7822
7823                 case '(':                        return parse_parenthesized_expression();
7824                 case T___noop:                   return parse_noop_expression();
7825         }
7826
7827         errorf(HERE, "unexpected token %K, expected an expression", &token);
7828         return create_invalid_expression();
7829 }
7830
7831 /**
7832  * Check if the expression has the character type and issue a warning then.
7833  */
7834 static void check_for_char_index_type(const expression_t *expression)
7835 {
7836         type_t       *const type      = expression->base.type;
7837         const type_t *const base_type = skip_typeref(type);
7838
7839         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7840                         warning.char_subscripts) {
7841                 warningf(&expression->base.source_position,
7842                          "array subscript has type '%T'", type);
7843         }
7844 }
7845
7846 static expression_t *parse_array_expression(expression_t *left)
7847 {
7848         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7849
7850         eat('[');
7851         add_anchor_token(']');
7852
7853         expression_t *inside = parse_expression();
7854
7855         type_t *const orig_type_left   = left->base.type;
7856         type_t *const orig_type_inside = inside->base.type;
7857
7858         type_t *const type_left   = skip_typeref(orig_type_left);
7859         type_t *const type_inside = skip_typeref(orig_type_inside);
7860
7861         type_t                    *return_type;
7862         array_access_expression_t *array_access = &expression->array_access;
7863         if (is_type_pointer(type_left)) {
7864                 return_type             = type_left->pointer.points_to;
7865                 array_access->array_ref = left;
7866                 array_access->index     = inside;
7867                 check_for_char_index_type(inside);
7868         } else if (is_type_pointer(type_inside)) {
7869                 return_type             = type_inside->pointer.points_to;
7870                 array_access->array_ref = inside;
7871                 array_access->index     = left;
7872                 array_access->flipped   = true;
7873                 check_for_char_index_type(left);
7874         } else {
7875                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7876                         errorf(HERE,
7877                                 "array access on object with non-pointer types '%T', '%T'",
7878                                 orig_type_left, orig_type_inside);
7879                 }
7880                 return_type             = type_error_type;
7881                 array_access->array_ref = left;
7882                 array_access->index     = inside;
7883         }
7884
7885         expression->base.type = automatic_type_conversion(return_type);
7886
7887         rem_anchor_token(']');
7888         expect(']', end_error);
7889 end_error:
7890         return expression;
7891 }
7892
7893 static expression_t *parse_typeprop(expression_kind_t const kind)
7894 {
7895         expression_t  *tp_expression = allocate_expression_zero(kind);
7896         tp_expression->base.type     = type_size_t;
7897
7898         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7899
7900         /* we only refer to a type property, mark this case */
7901         bool old     = in_type_prop;
7902         in_type_prop = true;
7903
7904         type_t       *orig_type;
7905         expression_t *expression;
7906         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7907                 next_token();
7908                 add_anchor_token(')');
7909                 orig_type = parse_typename();
7910                 rem_anchor_token(')');
7911                 expect(')', end_error);
7912
7913                 if (token.type == '{') {
7914                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7915                          * starting with a compound literal */
7916                         expression = parse_compound_literal(orig_type);
7917                         goto typeprop_expression;
7918                 }
7919         } else {
7920                 expression = parse_sub_expression(PREC_UNARY);
7921
7922 typeprop_expression:
7923                 tp_expression->typeprop.tp_expression = expression;
7924
7925                 orig_type = revert_automatic_type_conversion(expression);
7926                 expression->base.type = orig_type;
7927         }
7928
7929         tp_expression->typeprop.type   = orig_type;
7930         type_t const* const type       = skip_typeref(orig_type);
7931         char   const* const wrong_type =
7932                 GNU_MODE && is_type_atomic(type, ATOMIC_TYPE_VOID) ? NULL                  :
7933                 is_type_incomplete(type)                           ? "incomplete"          :
7934                 type->kind == TYPE_FUNCTION                        ? "function designator" :
7935                 type->kind == TYPE_BITFIELD                        ? "bitfield"            :
7936                 NULL;
7937         if (wrong_type != NULL) {
7938                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7939                 errorf(&tp_expression->base.source_position,
7940                                 "operand of %s expression must not be of %s type '%T'",
7941                                 what, wrong_type, orig_type);
7942         }
7943
7944 end_error:
7945         in_type_prop = old;
7946         return tp_expression;
7947 }
7948
7949 static expression_t *parse_sizeof(void)
7950 {
7951         return parse_typeprop(EXPR_SIZEOF);
7952 }
7953
7954 static expression_t *parse_alignof(void)
7955 {
7956         return parse_typeprop(EXPR_ALIGNOF);
7957 }
7958
7959 static expression_t *parse_select_expression(expression_t *compound)
7960 {
7961         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
7962         select->select.compound = compound;
7963
7964         assert(token.type == '.' || token.type == T_MINUSGREATER);
7965         bool is_pointer = (token.type == T_MINUSGREATER);
7966         next_token();
7967
7968         if (token.type != T_IDENTIFIER) {
7969                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7970                 return select;
7971         }
7972         symbol_t *symbol = token.v.symbol;
7973         next_token();
7974
7975         type_t *const orig_type = compound->base.type;
7976         type_t *const type      = skip_typeref(orig_type);
7977
7978         type_t *type_left;
7979         bool    saw_error = false;
7980         if (is_type_pointer(type)) {
7981                 if (!is_pointer) {
7982                         errorf(HERE,
7983                                "request for member '%Y' in something not a struct or union, but '%T'",
7984                                symbol, orig_type);
7985                         saw_error = true;
7986                 }
7987                 type_left = skip_typeref(type->pointer.points_to);
7988         } else {
7989                 if (is_pointer && is_type_valid(type)) {
7990                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7991                         saw_error = true;
7992                 }
7993                 type_left = type;
7994         }
7995
7996         entity_t *entry;
7997         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7998             type_left->kind == TYPE_COMPOUND_UNION) {
7999                 compound_t *compound = type_left->compound.compound;
8000
8001                 if (!compound->complete) {
8002                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
8003                                symbol, type_left);
8004                         goto create_error_entry;
8005                 }
8006
8007                 entry = find_compound_entry(compound, symbol);
8008                 if (entry == NULL) {
8009                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
8010                         goto create_error_entry;
8011                 }
8012         } else {
8013                 if (is_type_valid(type_left) && !saw_error) {
8014                         errorf(HERE,
8015                                "request for member '%Y' in something not a struct or union, but '%T'",
8016                                symbol, type_left);
8017                 }
8018 create_error_entry:
8019                 entry = create_error_entity(symbol, ENTITY_COMPOUND_MEMBER);
8020         }
8021
8022         assert(is_declaration(entry));
8023         select->select.compound_entry = entry;
8024
8025         type_t *entry_type = entry->declaration.type;
8026         type_t *res_type
8027                 = get_qualified_type(entry_type, type_left->base.qualifiers);
8028
8029         /* we always do the auto-type conversions; the & and sizeof parser contains
8030          * code to revert this! */
8031         select->base.type = automatic_type_conversion(res_type);
8032
8033         type_t *skipped = skip_typeref(res_type);
8034         if (skipped->kind == TYPE_BITFIELD) {
8035                 select->base.type = skipped->bitfield.base_type;
8036         }
8037
8038         return select;
8039 }
8040
8041 static void check_call_argument(const function_parameter_t *parameter,
8042                                 call_argument_t *argument, unsigned pos)
8043 {
8044         type_t         *expected_type      = parameter->type;
8045         type_t         *expected_type_skip = skip_typeref(expected_type);
8046         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
8047         expression_t   *arg_expr           = argument->expression;
8048         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
8049
8050         /* handle transparent union gnu extension */
8051         if (is_type_union(expected_type_skip)
8052                         && (expected_type_skip->base.modifiers
8053                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
8054                 compound_t *union_decl  = expected_type_skip->compound.compound;
8055                 type_t     *best_type   = NULL;
8056                 entity_t   *entry       = union_decl->members.entities;
8057                 for ( ; entry != NULL; entry = entry->base.next) {
8058                         assert(is_declaration(entry));
8059                         type_t *decl_type = entry->declaration.type;
8060                         error = semantic_assign(decl_type, arg_expr);
8061                         if (error == ASSIGN_ERROR_INCOMPATIBLE
8062                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
8063                                 continue;
8064
8065                         if (error == ASSIGN_SUCCESS) {
8066                                 best_type = decl_type;
8067                         } else if (best_type == NULL) {
8068                                 best_type = decl_type;
8069                         }
8070                 }
8071
8072                 if (best_type != NULL) {
8073                         expected_type = best_type;
8074                 }
8075         }
8076
8077         error                = semantic_assign(expected_type, arg_expr);
8078         argument->expression = create_implicit_cast(argument->expression,
8079                                                     expected_type);
8080
8081         if (error != ASSIGN_SUCCESS) {
8082                 /* report exact scope in error messages (like "in argument 3") */
8083                 char buf[64];
8084                 snprintf(buf, sizeof(buf), "call argument %u", pos);
8085                 report_assign_error(error, expected_type, arg_expr,     buf,
8086                                                         &arg_expr->base.source_position);
8087         } else if (warning.traditional || warning.conversion) {
8088                 type_t *const promoted_type = get_default_promoted_type(arg_type);
8089                 if (!types_compatible(expected_type_skip, promoted_type) &&
8090                     !types_compatible(expected_type_skip, type_void_ptr) &&
8091                     !types_compatible(type_void_ptr,      promoted_type)) {
8092                         /* Deliberately show the skipped types in this warning */
8093                         warningf(&arg_expr->base.source_position,
8094                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
8095                                 pos, expected_type_skip, promoted_type);
8096                 }
8097         }
8098 }
8099
8100 /**
8101  * Parse a call expression, ie. expression '( ... )'.
8102  *
8103  * @param expression  the function address
8104  */
8105 static expression_t *parse_call_expression(expression_t *expression)
8106 {
8107         expression_t      *result = allocate_expression_zero(EXPR_CALL);
8108         call_expression_t *call   = &result->call;
8109         call->function            = expression;
8110
8111         type_t *const orig_type = expression->base.type;
8112         type_t *const type      = skip_typeref(orig_type);
8113
8114         function_type_t *function_type = NULL;
8115         if (is_type_pointer(type)) {
8116                 type_t *const to_type = skip_typeref(type->pointer.points_to);
8117
8118                 if (is_type_function(to_type)) {
8119                         function_type   = &to_type->function;
8120                         call->base.type = function_type->return_type;
8121                 }
8122         }
8123
8124         if (function_type == NULL && is_type_valid(type)) {
8125                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
8126         }
8127
8128         /* parse arguments */
8129         eat('(');
8130         add_anchor_token(')');
8131         add_anchor_token(',');
8132
8133         if (token.type != ')') {
8134                 call_argument_t *last_argument = NULL;
8135
8136                 while (true) {
8137                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8138
8139                         argument->expression = parse_assignment_expression();
8140                         if (last_argument == NULL) {
8141                                 call->arguments = argument;
8142                         } else {
8143                                 last_argument->next = argument;
8144                         }
8145                         last_argument = argument;
8146
8147                         if (token.type != ',')
8148                                 break;
8149                         next_token();
8150                 }
8151         }
8152         rem_anchor_token(',');
8153         rem_anchor_token(')');
8154         expect(')', end_error);
8155
8156         if (function_type == NULL)
8157                 return result;
8158
8159         function_parameter_t *parameter = function_type->parameters;
8160         call_argument_t      *argument  = call->arguments;
8161         if (!function_type->unspecified_parameters) {
8162                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
8163                                 parameter = parameter->next, argument = argument->next) {
8164                         check_call_argument(parameter, argument, ++pos);
8165                 }
8166
8167                 if (parameter != NULL) {
8168                         errorf(HERE, "too few arguments to function '%E'", expression);
8169                 } else if (argument != NULL && !function_type->variadic) {
8170                         errorf(HERE, "too many arguments to function '%E'", expression);
8171                 }
8172         }
8173
8174         /* do default promotion */
8175         for (; argument != NULL; argument = argument->next) {
8176                 type_t *type = argument->expression->base.type;
8177
8178                 type = get_default_promoted_type(type);
8179
8180                 argument->expression
8181                         = create_implicit_cast(argument->expression, type);
8182         }
8183
8184         check_format(&result->call);
8185
8186         if (warning.aggregate_return &&
8187             is_type_compound(skip_typeref(function_type->return_type))) {
8188                 warningf(&result->base.source_position,
8189                          "function call has aggregate value");
8190         }
8191
8192 end_error:
8193         return result;
8194 }
8195
8196 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
8197
8198 static bool same_compound_type(const type_t *type1, const type_t *type2)
8199 {
8200         return
8201                 is_type_compound(type1) &&
8202                 type1->kind == type2->kind &&
8203                 type1->compound.compound == type2->compound.compound;
8204 }
8205
8206 static expression_t const *get_reference_address(expression_t const *expr)
8207 {
8208         bool regular_take_address = true;
8209         for (;;) {
8210                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8211                         expr = expr->unary.value;
8212                 } else {
8213                         regular_take_address = false;
8214                 }
8215
8216                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8217                         break;
8218
8219                 expr = expr->unary.value;
8220         }
8221
8222         if (expr->kind != EXPR_REFERENCE)
8223                 return NULL;
8224
8225         /* special case for functions which are automatically converted to a
8226          * pointer to function without an extra TAKE_ADDRESS operation */
8227         if (!regular_take_address &&
8228                         expr->reference.entity->kind != ENTITY_FUNCTION) {
8229                 return NULL;
8230         }
8231
8232         return expr;
8233 }
8234
8235 static void warn_reference_address_as_bool(expression_t const* expr)
8236 {
8237         if (!warning.address)
8238                 return;
8239
8240         expr = get_reference_address(expr);
8241         if (expr != NULL) {
8242                 warningf(&expr->base.source_position,
8243                          "the address of '%Y' will always evaluate as 'true'",
8244                          expr->reference.entity->base.symbol);
8245         }
8246 }
8247
8248 static void warn_assignment_in_condition(const expression_t *const expr)
8249 {
8250         if (!warning.parentheses)
8251                 return;
8252         if (expr->base.kind != EXPR_BINARY_ASSIGN)
8253                 return;
8254         if (expr->base.parenthesized)
8255                 return;
8256         warningf(&expr->base.source_position,
8257                         "suggest parentheses around assignment used as truth value");
8258 }
8259
8260 static void semantic_condition(expression_t const *const expr,
8261                                char const *const context)
8262 {
8263         type_t *const type = skip_typeref(expr->base.type);
8264         if (is_type_scalar(type)) {
8265                 warn_reference_address_as_bool(expr);
8266                 warn_assignment_in_condition(expr);
8267         } else if (is_type_valid(type)) {
8268                 errorf(&expr->base.source_position,
8269                                 "%s must have scalar type", context);
8270         }
8271 }
8272
8273 /**
8274  * Parse a conditional expression, ie. 'expression ? ... : ...'.
8275  *
8276  * @param expression  the conditional expression
8277  */
8278 static expression_t *parse_conditional_expression(expression_t *expression)
8279 {
8280         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
8281
8282         conditional_expression_t *conditional = &result->conditional;
8283         conditional->condition                = expression;
8284
8285         eat('?');
8286         add_anchor_token(':');
8287
8288         /* §6.5.15:2  The first operand shall have scalar type. */
8289         semantic_condition(expression, "condition of conditional operator");
8290
8291         expression_t *true_expression = expression;
8292         bool          gnu_cond = false;
8293         if (GNU_MODE && token.type == ':') {
8294                 gnu_cond = true;
8295         } else {
8296                 true_expression = parse_expression();
8297         }
8298         rem_anchor_token(':');
8299         expect(':', end_error);
8300 end_error:;
8301         expression_t *false_expression =
8302                 parse_sub_expression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
8303
8304         type_t *const orig_true_type  = true_expression->base.type;
8305         type_t *const orig_false_type = false_expression->base.type;
8306         type_t *const true_type       = skip_typeref(orig_true_type);
8307         type_t *const false_type      = skip_typeref(orig_false_type);
8308
8309         /* 6.5.15.3 */
8310         type_t *result_type;
8311         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
8312                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
8313                 /* ISO/IEC 14882:1998(E) §5.16:2 */
8314                 if (true_expression->kind == EXPR_UNARY_THROW) {
8315                         result_type = false_type;
8316                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
8317                         result_type = true_type;
8318                 } else {
8319                         if (warning.other && (
8320                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
8321                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
8322                                         )) {
8323                                 warningf(&conditional->base.source_position,
8324                                                 "ISO C forbids conditional expression with only one void side");
8325                         }
8326                         result_type = type_void;
8327                 }
8328         } else if (is_type_arithmetic(true_type)
8329                    && is_type_arithmetic(false_type)) {
8330                 result_type = semantic_arithmetic(true_type, false_type);
8331
8332                 true_expression  = create_implicit_cast(true_expression, result_type);
8333                 false_expression = create_implicit_cast(false_expression, result_type);
8334
8335                 conditional->true_expression  = true_expression;
8336                 conditional->false_expression = false_expression;
8337                 conditional->base.type        = result_type;
8338         } else if (same_compound_type(true_type, false_type)) {
8339                 /* just take 1 of the 2 types */
8340                 result_type = true_type;
8341         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
8342                 type_t *pointer_type;
8343                 type_t *other_type;
8344                 expression_t *other_expression;
8345                 if (is_type_pointer(true_type) &&
8346                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
8347                         pointer_type     = true_type;
8348                         other_type       = false_type;
8349                         other_expression = false_expression;
8350                 } else {
8351                         pointer_type     = false_type;
8352                         other_type       = true_type;
8353                         other_expression = true_expression;
8354                 }
8355
8356                 if (is_null_pointer_constant(other_expression)) {
8357                         result_type = pointer_type;
8358                 } else if (is_type_pointer(other_type)) {
8359                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
8360                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
8361
8362                         type_t *to;
8363                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
8364                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
8365                                 to = type_void;
8366                         } else if (types_compatible(get_unqualified_type(to1),
8367                                                     get_unqualified_type(to2))) {
8368                                 to = to1;
8369                         } else {
8370                                 if (warning.other) {
8371                                         warningf(&conditional->base.source_position,
8372                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
8373                                                         true_type, false_type);
8374                                 }
8375                                 to = type_void;
8376                         }
8377
8378                         type_t *const type =
8379                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
8380                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
8381                 } else if (is_type_integer(other_type)) {
8382                         if (warning.other) {
8383                                 warningf(&conditional->base.source_position,
8384                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
8385                         }
8386                         result_type = pointer_type;
8387                 } else {
8388                         if (is_type_valid(other_type)) {
8389                                 type_error_incompatible("while parsing conditional",
8390                                                 &expression->base.source_position, true_type, false_type);
8391                         }
8392                         result_type = type_error_type;
8393                 }
8394         } else {
8395                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
8396                         type_error_incompatible("while parsing conditional",
8397                                                 &conditional->base.source_position, true_type,
8398                                                 false_type);
8399                 }
8400                 result_type = type_error_type;
8401         }
8402
8403         conditional->true_expression
8404                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
8405         conditional->false_expression
8406                 = create_implicit_cast(false_expression, result_type);
8407         conditional->base.type = result_type;
8408         return result;
8409 }
8410
8411 /**
8412  * Parse an extension expression.
8413  */
8414 static expression_t *parse_extension(void)
8415 {
8416         eat(T___extension__);
8417
8418         bool old_gcc_extension   = in_gcc_extension;
8419         in_gcc_extension         = true;
8420         expression_t *expression = parse_sub_expression(PREC_UNARY);
8421         in_gcc_extension         = old_gcc_extension;
8422         return expression;
8423 }
8424
8425 /**
8426  * Parse a __builtin_classify_type() expression.
8427  */
8428 static expression_t *parse_builtin_classify_type(void)
8429 {
8430         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
8431         result->base.type    = type_int;
8432
8433         eat(T___builtin_classify_type);
8434
8435         expect('(', end_error);
8436         add_anchor_token(')');
8437         expression_t *expression = parse_expression();
8438         rem_anchor_token(')');
8439         expect(')', end_error);
8440         result->classify_type.type_expression = expression;
8441
8442         return result;
8443 end_error:
8444         return create_invalid_expression();
8445 }
8446
8447 /**
8448  * Parse a delete expression
8449  * ISO/IEC 14882:1998(E) §5.3.5
8450  */
8451 static expression_t *parse_delete(void)
8452 {
8453         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
8454         result->base.type          = type_void;
8455
8456         eat(T_delete);
8457
8458         if (token.type == '[') {
8459                 next_token();
8460                 result->kind = EXPR_UNARY_DELETE_ARRAY;
8461                 expect(']', end_error);
8462 end_error:;
8463         }
8464
8465         expression_t *const value = parse_sub_expression(PREC_CAST);
8466         result->unary.value = value;
8467
8468         type_t *const type = skip_typeref(value->base.type);
8469         if (!is_type_pointer(type)) {
8470                 if (is_type_valid(type)) {
8471                         errorf(&value->base.source_position,
8472                                         "operand of delete must have pointer type");
8473                 }
8474         } else if (warning.other &&
8475                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
8476                 warningf(&value->base.source_position,
8477                                 "deleting 'void*' is undefined");
8478         }
8479
8480         return result;
8481 }
8482
8483 /**
8484  * Parse a throw expression
8485  * ISO/IEC 14882:1998(E) §15:1
8486  */
8487 static expression_t *parse_throw(void)
8488 {
8489         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
8490         result->base.type          = type_void;
8491
8492         eat(T_throw);
8493
8494         expression_t *value = NULL;
8495         switch (token.type) {
8496                 EXPRESSION_START {
8497                         value = parse_assignment_expression();
8498                         /* ISO/IEC 14882:1998(E) §15.1:3 */
8499                         type_t *const orig_type = value->base.type;
8500                         type_t *const type      = skip_typeref(orig_type);
8501                         if (is_type_incomplete(type)) {
8502                                 errorf(&value->base.source_position,
8503                                                 "cannot throw object of incomplete type '%T'", orig_type);
8504                         } else if (is_type_pointer(type)) {
8505                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
8506                                 if (is_type_incomplete(points_to) &&
8507                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8508                                         errorf(&value->base.source_position,
8509                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
8510                                 }
8511                         }
8512                 }
8513
8514                 default:
8515                         break;
8516         }
8517         result->unary.value = value;
8518
8519         return result;
8520 }
8521
8522 static bool check_pointer_arithmetic(const source_position_t *source_position,
8523                                      type_t *pointer_type,
8524                                      type_t *orig_pointer_type)
8525 {
8526         type_t *points_to = pointer_type->pointer.points_to;
8527         points_to = skip_typeref(points_to);
8528
8529         if (is_type_incomplete(points_to)) {
8530                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8531                         errorf(source_position,
8532                                "arithmetic with pointer to incomplete type '%T' not allowed",
8533                                orig_pointer_type);
8534                         return false;
8535                 } else if (warning.pointer_arith) {
8536                         warningf(source_position,
8537                                  "pointer of type '%T' used in arithmetic",
8538                                  orig_pointer_type);
8539                 }
8540         } else if (is_type_function(points_to)) {
8541                 if (!GNU_MODE) {
8542                         errorf(source_position,
8543                                "arithmetic with pointer to function type '%T' not allowed",
8544                                orig_pointer_type);
8545                         return false;
8546                 } else if (warning.pointer_arith) {
8547                         warningf(source_position,
8548                                  "pointer to a function '%T' used in arithmetic",
8549                                  orig_pointer_type);
8550                 }
8551         }
8552         return true;
8553 }
8554
8555 static bool is_lvalue(const expression_t *expression)
8556 {
8557         /* TODO: doesn't seem to be consistent with §6.3.2.1:1 */
8558         switch (expression->kind) {
8559         case EXPR_ARRAY_ACCESS:
8560         case EXPR_COMPOUND_LITERAL:
8561         case EXPR_REFERENCE:
8562         case EXPR_SELECT:
8563         case EXPR_UNARY_DEREFERENCE:
8564                 return true;
8565
8566         default: {
8567           type_t *type = skip_typeref(expression->base.type);
8568           return
8569                 /* ISO/IEC 14882:1998(E) §3.10:3 */
8570                 is_type_reference(type) ||
8571                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
8572                  * error before, which maybe prevented properly recognizing it as
8573                  * lvalue. */
8574                 !is_type_valid(type);
8575         }
8576         }
8577 }
8578
8579 static void semantic_incdec(unary_expression_t *expression)
8580 {
8581         type_t *const orig_type = expression->value->base.type;
8582         type_t *const type      = skip_typeref(orig_type);
8583         if (is_type_pointer(type)) {
8584                 if (!check_pointer_arithmetic(&expression->base.source_position,
8585                                               type, orig_type)) {
8586                         return;
8587                 }
8588         } else if (!is_type_real(type) && is_type_valid(type)) {
8589                 /* TODO: improve error message */
8590                 errorf(&expression->base.source_position,
8591                        "operation needs an arithmetic or pointer type");
8592                 return;
8593         }
8594         if (!is_lvalue(expression->value)) {
8595                 /* TODO: improve error message */
8596                 errorf(&expression->base.source_position, "lvalue required as operand");
8597         }
8598         expression->base.type = orig_type;
8599 }
8600
8601 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
8602 {
8603         type_t *const orig_type = expression->value->base.type;
8604         type_t *const type      = skip_typeref(orig_type);
8605         if (!is_type_arithmetic(type)) {
8606                 if (is_type_valid(type)) {
8607                         /* TODO: improve error message */
8608                         errorf(&expression->base.source_position,
8609                                 "operation needs an arithmetic type");
8610                 }
8611                 return;
8612         }
8613
8614         expression->base.type = orig_type;
8615 }
8616
8617 static void semantic_unexpr_plus(unary_expression_t *expression)
8618 {
8619         semantic_unexpr_arithmetic(expression);
8620         if (warning.traditional)
8621                 warningf(&expression->base.source_position,
8622                         "traditional C rejects the unary plus operator");
8623 }
8624
8625 static void semantic_not(unary_expression_t *expression)
8626 {
8627         /* §6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
8628         semantic_condition(expression->value, "operand of !");
8629         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8630 }
8631
8632 static void semantic_unexpr_integer(unary_expression_t *expression)
8633 {
8634         type_t *const orig_type = expression->value->base.type;
8635         type_t *const type      = skip_typeref(orig_type);
8636         if (!is_type_integer(type)) {
8637                 if (is_type_valid(type)) {
8638                         errorf(&expression->base.source_position,
8639                                "operand of ~ must be of integer type");
8640                 }
8641                 return;
8642         }
8643
8644         expression->base.type = orig_type;
8645 }
8646
8647 static void semantic_dereference(unary_expression_t *expression)
8648 {
8649         type_t *const orig_type = expression->value->base.type;
8650         type_t *const type      = skip_typeref(orig_type);
8651         if (!is_type_pointer(type)) {
8652                 if (is_type_valid(type)) {
8653                         errorf(&expression->base.source_position,
8654                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8655                 }
8656                 return;
8657         }
8658
8659         type_t *result_type   = type->pointer.points_to;
8660         result_type           = automatic_type_conversion(result_type);
8661         expression->base.type = result_type;
8662 }
8663
8664 /**
8665  * Record that an address is taken (expression represents an lvalue).
8666  *
8667  * @param expression       the expression
8668  * @param may_be_register  if true, the expression might be an register
8669  */
8670 static void set_address_taken(expression_t *expression, bool may_be_register)
8671 {
8672         if (expression->kind != EXPR_REFERENCE)
8673                 return;
8674
8675         entity_t *const entity = expression->reference.entity;
8676
8677         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
8678                 return;
8679
8680         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8681                         && !may_be_register) {
8682                 errorf(&expression->base.source_position,
8683                                 "address of register %s '%Y' requested",
8684                                 get_entity_kind_name(entity->kind),     entity->base.symbol);
8685         }
8686
8687         if (entity->kind == ENTITY_VARIABLE) {
8688                 entity->variable.address_taken = true;
8689         } else {
8690                 assert(entity->kind == ENTITY_PARAMETER);
8691                 entity->parameter.address_taken = true;
8692         }
8693 }
8694
8695 /**
8696  * Check the semantic of the address taken expression.
8697  */
8698 static void semantic_take_addr(unary_expression_t *expression)
8699 {
8700         expression_t *value = expression->value;
8701         value->base.type    = revert_automatic_type_conversion(value);
8702
8703         type_t *orig_type = value->base.type;
8704         type_t *type      = skip_typeref(orig_type);
8705         if (!is_type_valid(type))
8706                 return;
8707
8708         /* §6.5.3.2 */
8709         if (!is_lvalue(value)) {
8710                 errorf(&expression->base.source_position, "'&' requires an lvalue");
8711         }
8712         if (type->kind == TYPE_BITFIELD) {
8713                 errorf(&expression->base.source_position,
8714                        "'&' not allowed on object with bitfield type '%T'",
8715                        type);
8716         }
8717
8718         set_address_taken(value, false);
8719
8720         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8721 }
8722
8723 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8724 static expression_t *parse_##unexpression_type(void)                         \
8725 {                                                                            \
8726         expression_t *unary_expression                                           \
8727                 = allocate_expression_zero(unexpression_type);                       \
8728         eat(token_type);                                                         \
8729         unary_expression->unary.value = parse_sub_expression(PREC_UNARY);        \
8730                                                                                  \
8731         sfunc(&unary_expression->unary);                                         \
8732                                                                                  \
8733         return unary_expression;                                                 \
8734 }
8735
8736 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8737                                semantic_unexpr_arithmetic)
8738 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8739                                semantic_unexpr_plus)
8740 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8741                                semantic_not)
8742 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8743                                semantic_dereference)
8744 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8745                                semantic_take_addr)
8746 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8747                                semantic_unexpr_integer)
8748 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8749                                semantic_incdec)
8750 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8751                                semantic_incdec)
8752
8753 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8754                                                sfunc)                         \
8755 static expression_t *parse_##unexpression_type(expression_t *left)            \
8756 {                                                                             \
8757         expression_t *unary_expression                                            \
8758                 = allocate_expression_zero(unexpression_type);                        \
8759         eat(token_type);                                                          \
8760         unary_expression->unary.value = left;                                     \
8761                                                                                   \
8762         sfunc(&unary_expression->unary);                                          \
8763                                                                               \
8764         return unary_expression;                                                  \
8765 }
8766
8767 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8768                                        EXPR_UNARY_POSTFIX_INCREMENT,
8769                                        semantic_incdec)
8770 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8771                                        EXPR_UNARY_POSTFIX_DECREMENT,
8772                                        semantic_incdec)
8773
8774 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8775 {
8776         /* TODO: handle complex + imaginary types */
8777
8778         type_left  = get_unqualified_type(type_left);
8779         type_right = get_unqualified_type(type_right);
8780
8781         /* § 6.3.1.8 Usual arithmetic conversions */
8782         if (type_left == type_long_double || type_right == type_long_double) {
8783                 return type_long_double;
8784         } else if (type_left == type_double || type_right == type_double) {
8785                 return type_double;
8786         } else if (type_left == type_float || type_right == type_float) {
8787                 return type_float;
8788         }
8789
8790         type_left  = promote_integer(type_left);
8791         type_right = promote_integer(type_right);
8792
8793         if (type_left == type_right)
8794                 return type_left;
8795
8796         bool const signed_left  = is_type_signed(type_left);
8797         bool const signed_right = is_type_signed(type_right);
8798         int const  rank_left    = get_rank(type_left);
8799         int const  rank_right   = get_rank(type_right);
8800
8801         if (signed_left == signed_right)
8802                 return rank_left >= rank_right ? type_left : type_right;
8803
8804         int     s_rank;
8805         int     u_rank;
8806         type_t *s_type;
8807         type_t *u_type;
8808         if (signed_left) {
8809                 s_rank = rank_left;
8810                 s_type = type_left;
8811                 u_rank = rank_right;
8812                 u_type = type_right;
8813         } else {
8814                 s_rank = rank_right;
8815                 s_type = type_right;
8816                 u_rank = rank_left;
8817                 u_type = type_left;
8818         }
8819
8820         if (u_rank >= s_rank)
8821                 return u_type;
8822
8823         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8824          * easier here... */
8825         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8826                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8827                 return s_type;
8828
8829         switch (s_rank) {
8830                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8831                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8832                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8833
8834                 default: panic("invalid atomic type");
8835         }
8836 }
8837
8838 /**
8839  * Check the semantic restrictions for a binary expression.
8840  */
8841 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8842 {
8843         expression_t *const left            = expression->left;
8844         expression_t *const right           = expression->right;
8845         type_t       *const orig_type_left  = left->base.type;
8846         type_t       *const orig_type_right = right->base.type;
8847         type_t       *const type_left       = skip_typeref(orig_type_left);
8848         type_t       *const type_right      = skip_typeref(orig_type_right);
8849
8850         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8851                 /* TODO: improve error message */
8852                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8853                         errorf(&expression->base.source_position,
8854                                "operation needs arithmetic types");
8855                 }
8856                 return;
8857         }
8858
8859         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8860         expression->left      = create_implicit_cast(left, arithmetic_type);
8861         expression->right     = create_implicit_cast(right, arithmetic_type);
8862         expression->base.type = arithmetic_type;
8863 }
8864
8865 static void warn_div_by_zero(binary_expression_t const *const expression)
8866 {
8867         if (!warning.div_by_zero ||
8868             !is_type_integer(expression->base.type))
8869                 return;
8870
8871         expression_t const *const right = expression->right;
8872         /* The type of the right operand can be different for /= */
8873         if (is_type_integer(right->base.type) &&
8874             is_constant_expression(right)     &&
8875             fold_constant(right) == 0) {
8876                 warningf(&expression->base.source_position, "division by zero");
8877         }
8878 }
8879
8880 /**
8881  * Check the semantic restrictions for a div/mod expression.
8882  */
8883 static void semantic_divmod_arithmetic(binary_expression_t *expression)
8884 {
8885         semantic_binexpr_arithmetic(expression);
8886         warn_div_by_zero(expression);
8887 }
8888
8889 static void warn_addsub_in_shift(const expression_t *const expr)
8890 {
8891         if (expr->base.parenthesized)
8892                 return;
8893
8894         char op;
8895         switch (expr->kind) {
8896                 case EXPR_BINARY_ADD: op = '+'; break;
8897                 case EXPR_BINARY_SUB: op = '-'; break;
8898                 default:              return;
8899         }
8900
8901         warningf(&expr->base.source_position,
8902                         "suggest parentheses around '%c' inside shift", op);
8903 }
8904
8905 static void semantic_shift_op(binary_expression_t *expression)
8906 {
8907         expression_t *const left            = expression->left;
8908         expression_t *const right           = expression->right;
8909         type_t       *const orig_type_left  = left->base.type;
8910         type_t       *const orig_type_right = right->base.type;
8911         type_t       *      type_left       = skip_typeref(orig_type_left);
8912         type_t       *      type_right      = skip_typeref(orig_type_right);
8913
8914         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8915                 /* TODO: improve error message */
8916                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8917                         errorf(&expression->base.source_position,
8918                                "operands of shift operation must have integer types");
8919                 }
8920                 return;
8921         }
8922
8923         if (warning.parentheses) {
8924                 warn_addsub_in_shift(left);
8925                 warn_addsub_in_shift(right);
8926         }
8927
8928         type_left  = promote_integer(type_left);
8929         type_right = promote_integer(type_right);
8930
8931         expression->left      = create_implicit_cast(left, type_left);
8932         expression->right     = create_implicit_cast(right, type_right);
8933         expression->base.type = type_left;
8934 }
8935
8936 static void semantic_add(binary_expression_t *expression)
8937 {
8938         expression_t *const left            = expression->left;
8939         expression_t *const right           = expression->right;
8940         type_t       *const orig_type_left  = left->base.type;
8941         type_t       *const orig_type_right = right->base.type;
8942         type_t       *const type_left       = skip_typeref(orig_type_left);
8943         type_t       *const type_right      = skip_typeref(orig_type_right);
8944
8945         /* § 6.5.6 */
8946         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8947                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8948                 expression->left  = create_implicit_cast(left, arithmetic_type);
8949                 expression->right = create_implicit_cast(right, arithmetic_type);
8950                 expression->base.type = arithmetic_type;
8951         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8952                 check_pointer_arithmetic(&expression->base.source_position,
8953                                          type_left, orig_type_left);
8954                 expression->base.type = type_left;
8955         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8956                 check_pointer_arithmetic(&expression->base.source_position,
8957                                          type_right, orig_type_right);
8958                 expression->base.type = type_right;
8959         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8960                 errorf(&expression->base.source_position,
8961                        "invalid operands to binary + ('%T', '%T')",
8962                        orig_type_left, orig_type_right);
8963         }
8964 }
8965
8966 static void semantic_sub(binary_expression_t *expression)
8967 {
8968         expression_t            *const left            = expression->left;
8969         expression_t            *const right           = expression->right;
8970         type_t                  *const orig_type_left  = left->base.type;
8971         type_t                  *const orig_type_right = right->base.type;
8972         type_t                  *const type_left       = skip_typeref(orig_type_left);
8973         type_t                  *const type_right      = skip_typeref(orig_type_right);
8974         source_position_t const *const pos             = &expression->base.source_position;
8975
8976         /* § 5.6.5 */
8977         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8978                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8979                 expression->left        = create_implicit_cast(left, arithmetic_type);
8980                 expression->right       = create_implicit_cast(right, arithmetic_type);
8981                 expression->base.type =  arithmetic_type;
8982         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8983                 check_pointer_arithmetic(&expression->base.source_position,
8984                                          type_left, orig_type_left);
8985                 expression->base.type = type_left;
8986         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8987                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8988                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8989                 if (!types_compatible(unqual_left, unqual_right)) {
8990                         errorf(pos,
8991                                "subtracting pointers to incompatible types '%T' and '%T'",
8992                                orig_type_left, orig_type_right);
8993                 } else if (!is_type_object(unqual_left)) {
8994                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8995                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8996                                        orig_type_left);
8997                         } else if (warning.other) {
8998                                 warningf(pos, "subtracting pointers to void");
8999                         }
9000                 }
9001                 expression->base.type = type_ptrdiff_t;
9002         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9003                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
9004                        orig_type_left, orig_type_right);
9005         }
9006 }
9007
9008 static void warn_string_literal_address(expression_t const* expr)
9009 {
9010         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
9011                 expr = expr->unary.value;
9012                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
9013                         return;
9014                 expr = expr->unary.value;
9015         }
9016
9017         if (expr->kind == EXPR_STRING_LITERAL ||
9018             expr->kind == EXPR_WIDE_STRING_LITERAL) {
9019                 warningf(&expr->base.source_position,
9020                         "comparison with string literal results in unspecified behaviour");
9021         }
9022 }
9023
9024 static void warn_comparison_in_comparison(const expression_t *const expr)
9025 {
9026         if (expr->base.parenthesized)
9027                 return;
9028         switch (expr->base.kind) {
9029                 case EXPR_BINARY_LESS:
9030                 case EXPR_BINARY_GREATER:
9031                 case EXPR_BINARY_LESSEQUAL:
9032                 case EXPR_BINARY_GREATEREQUAL:
9033                 case EXPR_BINARY_NOTEQUAL:
9034                 case EXPR_BINARY_EQUAL:
9035                         warningf(&expr->base.source_position,
9036                                         "comparisons like 'x <= y < z' do not have their mathematical meaning");
9037                         break;
9038                 default:
9039                         break;
9040         }
9041 }
9042
9043 static bool maybe_negative(expression_t const *const expr)
9044 {
9045         return
9046                 !is_constant_expression(expr) ||
9047                 fold_constant(expr) < 0;
9048 }
9049
9050 /**
9051  * Check the semantics of comparison expressions.
9052  *
9053  * @param expression   The expression to check.
9054  */
9055 static void semantic_comparison(binary_expression_t *expression)
9056 {
9057         expression_t *left  = expression->left;
9058         expression_t *right = expression->right;
9059
9060         if (warning.address) {
9061                 warn_string_literal_address(left);
9062                 warn_string_literal_address(right);
9063
9064                 expression_t const* const func_left = get_reference_address(left);
9065                 if (func_left != NULL && is_null_pointer_constant(right)) {
9066                         warningf(&expression->base.source_position,
9067                                  "the address of '%Y' will never be NULL",
9068                                  func_left->reference.entity->base.symbol);
9069                 }
9070
9071                 expression_t const* const func_right = get_reference_address(right);
9072                 if (func_right != NULL && is_null_pointer_constant(right)) {
9073                         warningf(&expression->base.source_position,
9074                                  "the address of '%Y' will never be NULL",
9075                                  func_right->reference.entity->base.symbol);
9076                 }
9077         }
9078
9079         if (warning.parentheses) {
9080                 warn_comparison_in_comparison(left);
9081                 warn_comparison_in_comparison(right);
9082         }
9083
9084         type_t *orig_type_left  = left->base.type;
9085         type_t *orig_type_right = right->base.type;
9086         type_t *type_left       = skip_typeref(orig_type_left);
9087         type_t *type_right      = skip_typeref(orig_type_right);
9088
9089         /* TODO non-arithmetic types */
9090         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
9091                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
9092
9093                 /* test for signed vs unsigned compares */
9094                 if (warning.sign_compare && is_type_integer(arithmetic_type)) {
9095                         bool const signed_left  = is_type_signed(type_left);
9096                         bool const signed_right = is_type_signed(type_right);
9097                         if (signed_left != signed_right) {
9098                                 /* FIXME long long needs better const folding magic */
9099                                 /* TODO check whether constant value can be represented by other type */
9100                                 if ((signed_left  && maybe_negative(left)) ||
9101                                                 (signed_right && maybe_negative(right))) {
9102                                         warningf(&expression->base.source_position,
9103                                                         "comparison between signed and unsigned");
9104                                 }
9105                         }
9106                 }
9107
9108                 expression->left        = create_implicit_cast(left, arithmetic_type);
9109                 expression->right       = create_implicit_cast(right, arithmetic_type);
9110                 expression->base.type   = arithmetic_type;
9111                 if (warning.float_equal &&
9112                     (expression->base.kind == EXPR_BINARY_EQUAL ||
9113                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
9114                     is_type_float(arithmetic_type)) {
9115                         warningf(&expression->base.source_position,
9116                                  "comparing floating point with == or != is unsafe");
9117                 }
9118         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
9119                 /* TODO check compatibility */
9120         } else if (is_type_pointer(type_left)) {
9121                 expression->right = create_implicit_cast(right, type_left);
9122         } else if (is_type_pointer(type_right)) {
9123                 expression->left = create_implicit_cast(left, type_right);
9124         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9125                 type_error_incompatible("invalid operands in comparison",
9126                                         &expression->base.source_position,
9127                                         type_left, type_right);
9128         }
9129         expression->base.type = c_mode & _CXX ? type_bool : type_int;
9130 }
9131
9132 /**
9133  * Checks if a compound type has constant fields.
9134  */
9135 static bool has_const_fields(const compound_type_t *type)
9136 {
9137         compound_t *compound = type->compound;
9138         entity_t   *entry    = compound->members.entities;
9139
9140         for (; entry != NULL; entry = entry->base.next) {
9141                 if (!is_declaration(entry))
9142                         continue;
9143
9144                 const type_t *decl_type = skip_typeref(entry->declaration.type);
9145                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
9146                         return true;
9147         }
9148
9149         return false;
9150 }
9151
9152 static bool is_valid_assignment_lhs(expression_t const* const left)
9153 {
9154         type_t *const orig_type_left = revert_automatic_type_conversion(left);
9155         type_t *const type_left      = skip_typeref(orig_type_left);
9156
9157         if (!is_lvalue(left)) {
9158                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
9159                        left);
9160                 return false;
9161         }
9162
9163         if (left->kind == EXPR_REFERENCE
9164                         && left->reference.entity->kind == ENTITY_FUNCTION) {
9165                 errorf(HERE, "cannot assign to function '%E'", left);
9166                 return false;
9167         }
9168
9169         if (is_type_array(type_left)) {
9170                 errorf(HERE, "cannot assign to array '%E'", left);
9171                 return false;
9172         }
9173         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
9174                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
9175                        orig_type_left);
9176                 return false;
9177         }
9178         if (is_type_incomplete(type_left)) {
9179                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
9180                        left, orig_type_left);
9181                 return false;
9182         }
9183         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
9184                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
9185                        left, orig_type_left);
9186                 return false;
9187         }
9188
9189         return true;
9190 }
9191
9192 static void semantic_arithmetic_assign(binary_expression_t *expression)
9193 {
9194         expression_t *left            = expression->left;
9195         expression_t *right           = expression->right;
9196         type_t       *orig_type_left  = left->base.type;
9197         type_t       *orig_type_right = right->base.type;
9198
9199         if (!is_valid_assignment_lhs(left))
9200                 return;
9201
9202         type_t *type_left  = skip_typeref(orig_type_left);
9203         type_t *type_right = skip_typeref(orig_type_right);
9204
9205         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
9206                 /* TODO: improve error message */
9207                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
9208                         errorf(&expression->base.source_position,
9209                                "operation needs arithmetic types");
9210                 }
9211                 return;
9212         }
9213
9214         /* combined instructions are tricky. We can't create an implicit cast on
9215          * the left side, because we need the uncasted form for the store.
9216          * The ast2firm pass has to know that left_type must be right_type
9217          * for the arithmetic operation and create a cast by itself */
9218         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
9219         expression->right       = create_implicit_cast(right, arithmetic_type);
9220         expression->base.type   = type_left;
9221 }
9222
9223 static void semantic_divmod_assign(binary_expression_t *expression)
9224 {
9225         semantic_arithmetic_assign(expression);
9226         warn_div_by_zero(expression);
9227 }
9228
9229 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
9230 {
9231         expression_t *const left            = expression->left;
9232         expression_t *const right           = expression->right;
9233         type_t       *const orig_type_left  = left->base.type;
9234         type_t       *const orig_type_right = right->base.type;
9235         type_t       *const type_left       = skip_typeref(orig_type_left);
9236         type_t       *const type_right      = skip_typeref(orig_type_right);
9237
9238         if (!is_valid_assignment_lhs(left))
9239                 return;
9240
9241         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
9242                 /* combined instructions are tricky. We can't create an implicit cast on
9243                  * the left side, because we need the uncasted form for the store.
9244                  * The ast2firm pass has to know that left_type must be right_type
9245                  * for the arithmetic operation and create a cast by itself */
9246                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
9247                 expression->right     = create_implicit_cast(right, arithmetic_type);
9248                 expression->base.type = type_left;
9249         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
9250                 check_pointer_arithmetic(&expression->base.source_position,
9251                                          type_left, orig_type_left);
9252                 expression->base.type = type_left;
9253         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9254                 errorf(&expression->base.source_position,
9255                        "incompatible types '%T' and '%T' in assignment",
9256                        orig_type_left, orig_type_right);
9257         }
9258 }
9259
9260 static void warn_logical_and_within_or(const expression_t *const expr)
9261 {
9262         if (expr->base.kind != EXPR_BINARY_LOGICAL_AND)
9263                 return;
9264         if (expr->base.parenthesized)
9265                 return;
9266         warningf(&expr->base.source_position,
9267                         "suggest parentheses around && within ||");
9268 }
9269
9270 /**
9271  * Check the semantic restrictions of a logical expression.
9272  */
9273 static void semantic_logical_op(binary_expression_t *expression)
9274 {
9275         /* §6.5.13:2  Each of the operands shall have scalar type.
9276          * §6.5.14:2  Each of the operands shall have scalar type. */
9277         semantic_condition(expression->left,   "left operand of logical operator");
9278         semantic_condition(expression->right, "right operand of logical operator");
9279         if (expression->base.kind == EXPR_BINARY_LOGICAL_OR &&
9280                         warning.parentheses) {
9281                 warn_logical_and_within_or(expression->left);
9282                 warn_logical_and_within_or(expression->right);
9283         }
9284         expression->base.type = c_mode & _CXX ? type_bool : type_int;
9285 }
9286
9287 /**
9288  * Check the semantic restrictions of a binary assign expression.
9289  */
9290 static void semantic_binexpr_assign(binary_expression_t *expression)
9291 {
9292         expression_t *left           = expression->left;
9293         type_t       *orig_type_left = left->base.type;
9294
9295         if (!is_valid_assignment_lhs(left))
9296                 return;
9297
9298         assign_error_t error = semantic_assign(orig_type_left, expression->right);
9299         report_assign_error(error, orig_type_left, expression->right,
9300                         "assignment", &left->base.source_position);
9301         expression->right = create_implicit_cast(expression->right, orig_type_left);
9302         expression->base.type = orig_type_left;
9303 }
9304
9305 /**
9306  * Determine if the outermost operation (or parts thereof) of the given
9307  * expression has no effect in order to generate a warning about this fact.
9308  * Therefore in some cases this only examines some of the operands of the
9309  * expression (see comments in the function and examples below).
9310  * Examples:
9311  *   f() + 23;    // warning, because + has no effect
9312  *   x || f();    // no warning, because x controls execution of f()
9313  *   x ? y : f(); // warning, because y has no effect
9314  *   (void)x;     // no warning to be able to suppress the warning
9315  * This function can NOT be used for an "expression has definitely no effect"-
9316  * analysis. */
9317 static bool expression_has_effect(const expression_t *const expr)
9318 {
9319         switch (expr->kind) {
9320                 case EXPR_UNKNOWN:                   break;
9321                 case EXPR_INVALID:                   return true; /* do NOT warn */
9322                 case EXPR_REFERENCE:                 return false;
9323                 case EXPR_REFERENCE_ENUM_VALUE:      return false;
9324                 /* suppress the warning for microsoft __noop operations */
9325                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
9326                 case EXPR_CHARACTER_CONSTANT:        return false;
9327                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
9328                 case EXPR_STRING_LITERAL:            return false;
9329                 case EXPR_WIDE_STRING_LITERAL:       return false;
9330                 case EXPR_LABEL_ADDRESS:             return false;
9331
9332                 case EXPR_CALL: {
9333                         const call_expression_t *const call = &expr->call;
9334                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
9335                                 return true;
9336
9337                         switch (call->function->builtin_symbol.symbol->ID) {
9338                                 case T___builtin_va_end: return true;
9339                                 default:                 return false;
9340                         }
9341                 }
9342
9343                 /* Generate the warning if either the left or right hand side of a
9344                  * conditional expression has no effect */
9345                 case EXPR_CONDITIONAL: {
9346                         const conditional_expression_t *const cond = &expr->conditional;
9347                         return
9348                                 expression_has_effect(cond->true_expression) &&
9349                                 expression_has_effect(cond->false_expression);
9350                 }
9351
9352                 case EXPR_SELECT:                    return false;
9353                 case EXPR_ARRAY_ACCESS:              return false;
9354                 case EXPR_SIZEOF:                    return false;
9355                 case EXPR_CLASSIFY_TYPE:             return false;
9356                 case EXPR_ALIGNOF:                   return false;
9357
9358                 case EXPR_FUNCNAME:                  return false;
9359                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
9360                 case EXPR_BUILTIN_CONSTANT_P:        return false;
9361                 case EXPR_BUILTIN_PREFETCH:          return true;
9362                 case EXPR_OFFSETOF:                  return false;
9363                 case EXPR_VA_START:                  return true;
9364                 case EXPR_VA_ARG:                    return true;
9365                 case EXPR_STATEMENT:                 return true; // TODO
9366                 case EXPR_COMPOUND_LITERAL:          return false;
9367
9368                 case EXPR_UNARY_NEGATE:              return false;
9369                 case EXPR_UNARY_PLUS:                return false;
9370                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
9371                 case EXPR_UNARY_NOT:                 return false;
9372                 case EXPR_UNARY_DEREFERENCE:         return false;
9373                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
9374                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
9375                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
9376                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
9377                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
9378
9379                 /* Treat void casts as if they have an effect in order to being able to
9380                  * suppress the warning */
9381                 case EXPR_UNARY_CAST: {
9382                         type_t *const type = skip_typeref(expr->base.type);
9383                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
9384                 }
9385
9386                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
9387                 case EXPR_UNARY_ASSUME:              return true;
9388                 case EXPR_UNARY_DELETE:              return true;
9389                 case EXPR_UNARY_DELETE_ARRAY:        return true;
9390                 case EXPR_UNARY_THROW:               return true;
9391
9392                 case EXPR_BINARY_ADD:                return false;
9393                 case EXPR_BINARY_SUB:                return false;
9394                 case EXPR_BINARY_MUL:                return false;
9395                 case EXPR_BINARY_DIV:                return false;
9396                 case EXPR_BINARY_MOD:                return false;
9397                 case EXPR_BINARY_EQUAL:              return false;
9398                 case EXPR_BINARY_NOTEQUAL:           return false;
9399                 case EXPR_BINARY_LESS:               return false;
9400                 case EXPR_BINARY_LESSEQUAL:          return false;
9401                 case EXPR_BINARY_GREATER:            return false;
9402                 case EXPR_BINARY_GREATEREQUAL:       return false;
9403                 case EXPR_BINARY_BITWISE_AND:        return false;
9404                 case EXPR_BINARY_BITWISE_OR:         return false;
9405                 case EXPR_BINARY_BITWISE_XOR:        return false;
9406                 case EXPR_BINARY_SHIFTLEFT:          return false;
9407                 case EXPR_BINARY_SHIFTRIGHT:         return false;
9408                 case EXPR_BINARY_ASSIGN:             return true;
9409                 case EXPR_BINARY_MUL_ASSIGN:         return true;
9410                 case EXPR_BINARY_DIV_ASSIGN:         return true;
9411                 case EXPR_BINARY_MOD_ASSIGN:         return true;
9412                 case EXPR_BINARY_ADD_ASSIGN:         return true;
9413                 case EXPR_BINARY_SUB_ASSIGN:         return true;
9414                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
9415                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
9416                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
9417                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
9418                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
9419
9420                 /* Only examine the right hand side of && and ||, because the left hand
9421                  * side already has the effect of controlling the execution of the right
9422                  * hand side */
9423                 case EXPR_BINARY_LOGICAL_AND:
9424                 case EXPR_BINARY_LOGICAL_OR:
9425                 /* Only examine the right hand side of a comma expression, because the left
9426                  * hand side has a separate warning */
9427                 case EXPR_BINARY_COMMA:
9428                         return expression_has_effect(expr->binary.right);
9429
9430                 case EXPR_BINARY_ISGREATER:          return false;
9431                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
9432                 case EXPR_BINARY_ISLESS:             return false;
9433                 case EXPR_BINARY_ISLESSEQUAL:        return false;
9434                 case EXPR_BINARY_ISLESSGREATER:      return false;
9435                 case EXPR_BINARY_ISUNORDERED:        return false;
9436         }
9437
9438         internal_errorf(HERE, "unexpected expression");
9439 }
9440
9441 static void semantic_comma(binary_expression_t *expression)
9442 {
9443         if (warning.unused_value) {
9444                 const expression_t *const left = expression->left;
9445                 if (!expression_has_effect(left)) {
9446                         warningf(&left->base.source_position,
9447                                  "left-hand operand of comma expression has no effect");
9448                 }
9449         }
9450         expression->base.type = expression->right->base.type;
9451 }
9452
9453 /**
9454  * @param prec_r precedence of the right operand
9455  */
9456 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
9457 static expression_t *parse_##binexpression_type(expression_t *left)          \
9458 {                                                                            \
9459         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
9460         binexpr->binary.left  = left;                                            \
9461         eat(token_type);                                                         \
9462                                                                              \
9463         expression_t *right = parse_sub_expression(prec_r);                      \
9464                                                                              \
9465         binexpr->binary.right = right;                                           \
9466         sfunc(&binexpr->binary);                                                 \
9467                                                                              \
9468         return binexpr;                                                          \
9469 }
9470
9471 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
9472 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
9473 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
9474 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
9475 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
9476 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
9477 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
9478 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
9479 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
9480 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
9481 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
9482 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
9483 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
9484 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
9485 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
9486 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
9487 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
9488 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
9489 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
9490 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
9491 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
9492 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9493 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
9494 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
9495 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9496 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9497 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9498 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9499 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9500 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
9501
9502
9503 static expression_t *parse_sub_expression(precedence_t precedence)
9504 {
9505         if (token.type < 0) {
9506                 return expected_expression_error();
9507         }
9508
9509         expression_parser_function_t *parser
9510                 = &expression_parsers[token.type];
9511         source_position_t             source_position = token.source_position;
9512         expression_t                 *left;
9513
9514         if (parser->parser != NULL) {
9515                 left = parser->parser();
9516         } else {
9517                 left = parse_primary_expression();
9518         }
9519         assert(left != NULL);
9520         left->base.source_position = source_position;
9521
9522         while (true) {
9523                 if (token.type < 0) {
9524                         return expected_expression_error();
9525                 }
9526
9527                 parser = &expression_parsers[token.type];
9528                 if (parser->infix_parser == NULL)
9529                         break;
9530                 if (parser->infix_precedence < precedence)
9531                         break;
9532
9533                 left = parser->infix_parser(left);
9534
9535                 assert(left != NULL);
9536                 assert(left->kind != EXPR_UNKNOWN);
9537                 left->base.source_position = source_position;
9538         }
9539
9540         return left;
9541 }
9542
9543 /**
9544  * Parse an expression.
9545  */
9546 static expression_t *parse_expression(void)
9547 {
9548         return parse_sub_expression(PREC_EXPRESSION);
9549 }
9550
9551 /**
9552  * Register a parser for a prefix-like operator.
9553  *
9554  * @param parser      the parser function
9555  * @param token_type  the token type of the prefix token
9556  */
9557 static void register_expression_parser(parse_expression_function parser,
9558                                        int token_type)
9559 {
9560         expression_parser_function_t *entry = &expression_parsers[token_type];
9561
9562         if (entry->parser != NULL) {
9563                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9564                 panic("trying to register multiple expression parsers for a token");
9565         }
9566         entry->parser = parser;
9567 }
9568
9569 /**
9570  * Register a parser for an infix operator with given precedence.
9571  *
9572  * @param parser      the parser function
9573  * @param token_type  the token type of the infix operator
9574  * @param precedence  the precedence of the operator
9575  */
9576 static void register_infix_parser(parse_expression_infix_function parser,
9577                 int token_type, precedence_t precedence)
9578 {
9579         expression_parser_function_t *entry = &expression_parsers[token_type];
9580
9581         if (entry->infix_parser != NULL) {
9582                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9583                 panic("trying to register multiple infix expression parsers for a "
9584                       "token");
9585         }
9586         entry->infix_parser     = parser;
9587         entry->infix_precedence = precedence;
9588 }
9589
9590 /**
9591  * Initialize the expression parsers.
9592  */
9593 static void init_expression_parsers(void)
9594 {
9595         memset(&expression_parsers, 0, sizeof(expression_parsers));
9596
9597         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9598         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9599         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9600         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9601         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9602         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9603         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9604         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9605         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9606         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9607         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9608         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9609         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9610         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9611         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9612         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9613         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9614         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9615         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9616         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9617         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9618         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9619         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9620         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9621         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9622         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9623         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9624         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9625         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9626         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9627         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9628         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9629         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9630         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9631         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9632         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9633         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9634
9635         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9636         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9637         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9638         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9639         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9640         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9641         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9642         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9643         register_expression_parser(parse_sizeof,                      T_sizeof);
9644         register_expression_parser(parse_alignof,                     T___alignof__);
9645         register_expression_parser(parse_extension,                   T___extension__);
9646         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9647         register_expression_parser(parse_delete,                      T_delete);
9648         register_expression_parser(parse_throw,                       T_throw);
9649 }
9650
9651 /**
9652  * Parse a asm statement arguments specification.
9653  */
9654 static asm_argument_t *parse_asm_arguments(bool is_out)
9655 {
9656         asm_argument_t  *result = NULL;
9657         asm_argument_t **anchor = &result;
9658
9659         while (token.type == T_STRING_LITERAL || token.type == '[') {
9660                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9661                 memset(argument, 0, sizeof(argument[0]));
9662
9663                 if (token.type == '[') {
9664                         eat('[');
9665                         if (token.type != T_IDENTIFIER) {
9666                                 parse_error_expected("while parsing asm argument",
9667                                                      T_IDENTIFIER, NULL);
9668                                 return NULL;
9669                         }
9670                         argument->symbol = token.v.symbol;
9671
9672                         expect(']', end_error);
9673                 }
9674
9675                 argument->constraints = parse_string_literals();
9676                 expect('(', end_error);
9677                 add_anchor_token(')');
9678                 expression_t *expression = parse_expression();
9679                 rem_anchor_token(')');
9680                 if (is_out) {
9681                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9682                          * change size or type representation (e.g. int -> long is ok, but
9683                          * int -> float is not) */
9684                         if (expression->kind == EXPR_UNARY_CAST) {
9685                                 type_t      *const type = expression->base.type;
9686                                 type_kind_t  const kind = type->kind;
9687                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9688                                         unsigned flags;
9689                                         unsigned size;
9690                                         if (kind == TYPE_ATOMIC) {
9691                                                 atomic_type_kind_t const akind = type->atomic.akind;
9692                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9693                                                 size  = get_atomic_type_size(akind);
9694                                         } else {
9695                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9696                                                 size  = get_atomic_type_size(get_intptr_kind());
9697                                         }
9698
9699                                         do {
9700                                                 expression_t *const value      = expression->unary.value;
9701                                                 type_t       *const value_type = value->base.type;
9702                                                 type_kind_t   const value_kind = value_type->kind;
9703
9704                                                 unsigned value_flags;
9705                                                 unsigned value_size;
9706                                                 if (value_kind == TYPE_ATOMIC) {
9707                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9708                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9709                                                         value_size  = get_atomic_type_size(value_akind);
9710                                                 } else if (value_kind == TYPE_POINTER) {
9711                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9712                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9713                                                 } else {
9714                                                         break;
9715                                                 }
9716
9717                                                 if (value_flags != flags || value_size != size)
9718                                                         break;
9719
9720                                                 expression = value;
9721                                         } while (expression->kind == EXPR_UNARY_CAST);
9722                                 }
9723                         }
9724
9725                         if (!is_lvalue(expression)) {
9726                                 errorf(&expression->base.source_position,
9727                                        "asm output argument is not an lvalue");
9728                         }
9729
9730                         if (argument->constraints.begin[0] == '+')
9731                                 mark_vars_read(expression, NULL);
9732                 } else {
9733                         mark_vars_read(expression, NULL);
9734                 }
9735                 argument->expression = expression;
9736                 expect(')', end_error);
9737
9738                 set_address_taken(expression, true);
9739
9740                 *anchor = argument;
9741                 anchor  = &argument->next;
9742
9743                 if (token.type != ',')
9744                         break;
9745                 eat(',');
9746         }
9747
9748         return result;
9749 end_error:
9750         return NULL;
9751 }
9752
9753 /**
9754  * Parse a asm statement clobber specification.
9755  */
9756 static asm_clobber_t *parse_asm_clobbers(void)
9757 {
9758         asm_clobber_t *result = NULL;
9759         asm_clobber_t *last   = NULL;
9760
9761         while (token.type == T_STRING_LITERAL) {
9762                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9763                 clobber->clobber       = parse_string_literals();
9764
9765                 if (last != NULL) {
9766                         last->next = clobber;
9767                 } else {
9768                         result = clobber;
9769                 }
9770                 last = clobber;
9771
9772                 if (token.type != ',')
9773                         break;
9774                 eat(',');
9775         }
9776
9777         return result;
9778 }
9779
9780 /**
9781  * Parse an asm statement.
9782  */
9783 static statement_t *parse_asm_statement(void)
9784 {
9785         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9786         asm_statement_t *asm_statement = &statement->asms;
9787
9788         eat(T_asm);
9789
9790         if (token.type == T_volatile) {
9791                 next_token();
9792                 asm_statement->is_volatile = true;
9793         }
9794
9795         expect('(', end_error);
9796         add_anchor_token(')');
9797         add_anchor_token(':');
9798         asm_statement->asm_text = parse_string_literals();
9799
9800         if (token.type != ':') {
9801                 rem_anchor_token(':');
9802                 goto end_of_asm;
9803         }
9804         eat(':');
9805
9806         asm_statement->outputs = parse_asm_arguments(true);
9807         if (token.type != ':') {
9808                 rem_anchor_token(':');
9809                 goto end_of_asm;
9810         }
9811         eat(':');
9812
9813         asm_statement->inputs = parse_asm_arguments(false);
9814         if (token.type != ':') {
9815                 rem_anchor_token(':');
9816                 goto end_of_asm;
9817         }
9818         rem_anchor_token(':');
9819         eat(':');
9820
9821         asm_statement->clobbers = parse_asm_clobbers();
9822
9823 end_of_asm:
9824         rem_anchor_token(')');
9825         expect(')', end_error);
9826         expect(';', end_error);
9827
9828         if (asm_statement->outputs == NULL) {
9829                 /* GCC: An 'asm' instruction without any output operands will be treated
9830                  * identically to a volatile 'asm' instruction. */
9831                 asm_statement->is_volatile = true;
9832         }
9833
9834         return statement;
9835 end_error:
9836         return create_invalid_statement();
9837 }
9838
9839 /**
9840  * Parse a case statement.
9841  */
9842 static statement_t *parse_case_statement(void)
9843 {
9844         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9845         source_position_t *const pos       = &statement->base.source_position;
9846
9847         eat(T_case);
9848
9849         expression_t *const expression   = parse_expression();
9850         statement->case_label.expression = expression;
9851         if (!is_constant_expression(expression)) {
9852                 /* This check does not prevent the error message in all cases of an
9853                  * prior error while parsing the expression.  At least it catches the
9854                  * common case of a mistyped enum entry. */
9855                 if (is_type_valid(skip_typeref(expression->base.type))) {
9856                         errorf(pos, "case label does not reduce to an integer constant");
9857                 }
9858                 statement->case_label.is_bad = true;
9859         } else {
9860                 long const val = fold_constant(expression);
9861                 statement->case_label.first_case = val;
9862                 statement->case_label.last_case  = val;
9863         }
9864
9865         if (GNU_MODE) {
9866                 if (token.type == T_DOTDOTDOT) {
9867                         next_token();
9868                         expression_t *const end_range   = parse_expression();
9869                         statement->case_label.end_range = end_range;
9870                         if (!is_constant_expression(end_range)) {
9871                                 /* This check does not prevent the error message in all cases of an
9872                                  * prior error while parsing the expression.  At least it catches the
9873                                  * common case of a mistyped enum entry. */
9874                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9875                                         errorf(pos, "case range does not reduce to an integer constant");
9876                                 }
9877                                 statement->case_label.is_bad = true;
9878                         } else {
9879                                 long const val = fold_constant(end_range);
9880                                 statement->case_label.last_case = val;
9881
9882                                 if (warning.other && val < statement->case_label.first_case) {
9883                                         statement->case_label.is_empty_range = true;
9884                                         warningf(pos, "empty range specified");
9885                                 }
9886                         }
9887                 }
9888         }
9889
9890         PUSH_PARENT(statement);
9891
9892         expect(':', end_error);
9893 end_error:
9894
9895         if (current_switch != NULL) {
9896                 if (! statement->case_label.is_bad) {
9897                         /* Check for duplicate case values */
9898                         case_label_statement_t *c = &statement->case_label;
9899                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9900                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9901                                         continue;
9902
9903                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9904                                         continue;
9905
9906                                 errorf(pos, "duplicate case value (previously used %P)",
9907                                        &l->base.source_position);
9908                                 break;
9909                         }
9910                 }
9911                 /* link all cases into the switch statement */
9912                 if (current_switch->last_case == NULL) {
9913                         current_switch->first_case      = &statement->case_label;
9914                 } else {
9915                         current_switch->last_case->next = &statement->case_label;
9916                 }
9917                 current_switch->last_case = &statement->case_label;
9918         } else {
9919                 errorf(pos, "case label not within a switch statement");
9920         }
9921
9922         statement_t *const inner_stmt = parse_statement();
9923         statement->case_label.statement = inner_stmt;
9924         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9925                 errorf(&inner_stmt->base.source_position, "declaration after case label");
9926         }
9927
9928         POP_PARENT;
9929         return statement;
9930 }
9931
9932 /**
9933  * Parse a default statement.
9934  */
9935 static statement_t *parse_default_statement(void)
9936 {
9937         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9938
9939         eat(T_default);
9940
9941         PUSH_PARENT(statement);
9942
9943         expect(':', end_error);
9944         if (current_switch != NULL) {
9945                 const case_label_statement_t *def_label = current_switch->default_label;
9946                 if (def_label != NULL) {
9947                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9948                                &def_label->base.source_position);
9949                 } else {
9950                         current_switch->default_label = &statement->case_label;
9951
9952                         /* link all cases into the switch statement */
9953                         if (current_switch->last_case == NULL) {
9954                                 current_switch->first_case      = &statement->case_label;
9955                         } else {
9956                                 current_switch->last_case->next = &statement->case_label;
9957                         }
9958                         current_switch->last_case = &statement->case_label;
9959                 }
9960         } else {
9961                 errorf(&statement->base.source_position,
9962                         "'default' label not within a switch statement");
9963         }
9964
9965         statement_t *const inner_stmt = parse_statement();
9966         statement->case_label.statement = inner_stmt;
9967         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9968                 errorf(&inner_stmt->base.source_position, "declaration after default label");
9969         }
9970
9971         POP_PARENT;
9972         return statement;
9973 end_error:
9974         POP_PARENT;
9975         return create_invalid_statement();
9976 }
9977
9978 /**
9979  * Parse a label statement.
9980  */
9981 static statement_t *parse_label_statement(void)
9982 {
9983         assert(token.type == T_IDENTIFIER);
9984         symbol_t *symbol = token.v.symbol;
9985         label_t  *label  = get_label(symbol);
9986
9987         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9988         statement->label.label       = label;
9989
9990         next_token();
9991
9992         PUSH_PARENT(statement);
9993
9994         /* if statement is already set then the label is defined twice,
9995          * otherwise it was just mentioned in a goto/local label declaration so far
9996          */
9997         if (label->statement != NULL) {
9998                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9999                        symbol, &label->base.source_position);
10000         } else {
10001                 label->base.source_position = token.source_position;
10002                 label->statement            = statement;
10003         }
10004
10005         eat(':');
10006
10007         if (token.type == '}') {
10008                 /* TODO only warn? */
10009                 if (warning.other && false) {
10010                         warningf(HERE, "label at end of compound statement");
10011                         statement->label.statement = create_empty_statement();
10012                 } else {
10013                         errorf(HERE, "label at end of compound statement");
10014                         statement->label.statement = create_invalid_statement();
10015                 }
10016         } else if (token.type == ';') {
10017                 /* Eat an empty statement here, to avoid the warning about an empty
10018                  * statement after a label.  label:; is commonly used to have a label
10019                  * before a closing brace. */
10020                 statement->label.statement = create_empty_statement();
10021                 next_token();
10022         } else {
10023                 statement_t *const inner_stmt = parse_statement();
10024                 statement->label.statement = inner_stmt;
10025                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
10026                         errorf(&inner_stmt->base.source_position, "declaration after label");
10027                 }
10028         }
10029
10030         /* remember the labels in a list for later checking */
10031         *label_anchor = &statement->label;
10032         label_anchor  = &statement->label.next;
10033
10034         POP_PARENT;
10035         return statement;
10036 }
10037
10038 /**
10039  * Parse an if statement.
10040  */
10041 static statement_t *parse_if(void)
10042 {
10043         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
10044
10045         eat(T_if);
10046
10047         PUSH_PARENT(statement);
10048
10049         add_anchor_token('{');
10050
10051         expect('(', end_error);
10052         add_anchor_token(')');
10053         expression_t *const expr = parse_expression();
10054         statement->ifs.condition = expr;
10055         /* §6.8.4.1:1  The controlling expression of an if statement shall have
10056          *             scalar type. */
10057         semantic_condition(expr, "condition of 'if'-statment");
10058         mark_vars_read(expr, NULL);
10059         rem_anchor_token(')');
10060         expect(')', end_error);
10061
10062 end_error:
10063         rem_anchor_token('{');
10064
10065         add_anchor_token(T_else);
10066         statement_t *const true_stmt = parse_statement();
10067         statement->ifs.true_statement = true_stmt;
10068         rem_anchor_token(T_else);
10069
10070         if (token.type == T_else) {
10071                 next_token();
10072                 statement->ifs.false_statement = parse_statement();
10073         } else if (warning.parentheses &&
10074                         true_stmt->kind == STATEMENT_IF &&
10075                         true_stmt->ifs.false_statement != NULL) {
10076                 warningf(&true_stmt->base.source_position,
10077                                 "suggest explicit braces to avoid ambiguous 'else'");
10078         }
10079
10080         POP_PARENT;
10081         return statement;
10082 }
10083
10084 /**
10085  * Check that all enums are handled in a switch.
10086  *
10087  * @param statement  the switch statement to check
10088  */
10089 static void check_enum_cases(const switch_statement_t *statement)
10090 {
10091         const type_t *type = skip_typeref(statement->expression->base.type);
10092         if (! is_type_enum(type))
10093                 return;
10094         const enum_type_t *enumt = &type->enumt;
10095
10096         /* if we have a default, no warnings */
10097         if (statement->default_label != NULL)
10098                 return;
10099
10100         /* FIXME: calculation of value should be done while parsing */
10101         /* TODO: quadratic algorithm here. Change to an n log n one */
10102         long            last_value = -1;
10103         const entity_t *entry      = enumt->enume->base.next;
10104         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
10105              entry = entry->base.next) {
10106                 const expression_t *expression = entry->enum_value.value;
10107                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
10108                 bool                found      = false;
10109                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
10110                         if (l->expression == NULL)
10111                                 continue;
10112                         if (l->first_case <= value && value <= l->last_case) {
10113                                 found = true;
10114                                 break;
10115                         }
10116                 }
10117                 if (! found) {
10118                         warningf(&statement->base.source_position,
10119                                  "enumeration value '%Y' not handled in switch",
10120                                  entry->base.symbol);
10121                 }
10122                 last_value = value;
10123         }
10124 }
10125
10126 /**
10127  * Parse a switch statement.
10128  */
10129 static statement_t *parse_switch(void)
10130 {
10131         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
10132
10133         eat(T_switch);
10134
10135         PUSH_PARENT(statement);
10136
10137         expect('(', end_error);
10138         add_anchor_token(')');
10139         expression_t *const expr = parse_expression();
10140         mark_vars_read(expr, NULL);
10141         type_t       *      type = skip_typeref(expr->base.type);
10142         if (is_type_integer(type)) {
10143                 type = promote_integer(type);
10144                 if (warning.traditional) {
10145                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
10146                                 warningf(&expr->base.source_position,
10147                                         "'%T' switch expression not converted to '%T' in ISO C",
10148                                         type, type_int);
10149                         }
10150                 }
10151         } else if (is_type_valid(type)) {
10152                 errorf(&expr->base.source_position,
10153                        "switch quantity is not an integer, but '%T'", type);
10154                 type = type_error_type;
10155         }
10156         statement->switchs.expression = create_implicit_cast(expr, type);
10157         expect(')', end_error);
10158         rem_anchor_token(')');
10159
10160         switch_statement_t *rem = current_switch;
10161         current_switch          = &statement->switchs;
10162         statement->switchs.body = parse_statement();
10163         current_switch          = rem;
10164
10165         if (warning.switch_default &&
10166             statement->switchs.default_label == NULL) {
10167                 warningf(&statement->base.source_position, "switch has no default case");
10168         }
10169         if (warning.switch_enum)
10170                 check_enum_cases(&statement->switchs);
10171
10172         POP_PARENT;
10173         return statement;
10174 end_error:
10175         POP_PARENT;
10176         return create_invalid_statement();
10177 }
10178
10179 static statement_t *parse_loop_body(statement_t *const loop)
10180 {
10181         statement_t *const rem = current_loop;
10182         current_loop = loop;
10183
10184         statement_t *const body = parse_statement();
10185
10186         current_loop = rem;
10187         return body;
10188 }
10189
10190 /**
10191  * Parse a while statement.
10192  */
10193 static statement_t *parse_while(void)
10194 {
10195         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
10196
10197         eat(T_while);
10198
10199         PUSH_PARENT(statement);
10200
10201         expect('(', end_error);
10202         add_anchor_token(')');
10203         expression_t *const cond = parse_expression();
10204         statement->whiles.condition = cond;
10205         /* §6.8.5:2    The controlling expression of an iteration statement shall
10206          *             have scalar type. */
10207         semantic_condition(cond, "condition of 'while'-statement");
10208         mark_vars_read(cond, NULL);
10209         rem_anchor_token(')');
10210         expect(')', end_error);
10211
10212         statement->whiles.body = parse_loop_body(statement);
10213
10214         POP_PARENT;
10215         return statement;
10216 end_error:
10217         POP_PARENT;
10218         return create_invalid_statement();
10219 }
10220
10221 /**
10222  * Parse a do statement.
10223  */
10224 static statement_t *parse_do(void)
10225 {
10226         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
10227
10228         eat(T_do);
10229
10230         PUSH_PARENT(statement);
10231
10232         add_anchor_token(T_while);
10233         statement->do_while.body = parse_loop_body(statement);
10234         rem_anchor_token(T_while);
10235
10236         expect(T_while, end_error);
10237         expect('(', end_error);
10238         add_anchor_token(')');
10239         expression_t *const cond = parse_expression();
10240         statement->do_while.condition = cond;
10241         /* §6.8.5:2    The controlling expression of an iteration statement shall
10242          *             have scalar type. */
10243         semantic_condition(cond, "condition of 'do-while'-statement");
10244         mark_vars_read(cond, NULL);
10245         rem_anchor_token(')');
10246         expect(')', end_error);
10247         expect(';', end_error);
10248
10249         POP_PARENT;
10250         return statement;
10251 end_error:
10252         POP_PARENT;
10253         return create_invalid_statement();
10254 }
10255
10256 /**
10257  * Parse a for statement.
10258  */
10259 static statement_t *parse_for(void)
10260 {
10261         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
10262
10263         eat(T_for);
10264
10265         expect('(', end_error1);
10266         add_anchor_token(')');
10267
10268         PUSH_PARENT(statement);
10269
10270         size_t const  top       = environment_top();
10271         scope_t      *old_scope = scope_push(&statement->fors.scope);
10272
10273         if (token.type == ';') {
10274                 next_token();
10275         } else if (is_declaration_specifier(&token, false)) {
10276                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10277         } else {
10278                 add_anchor_token(';');
10279                 expression_t *const init = parse_expression();
10280                 statement->fors.initialisation = init;
10281                 mark_vars_read(init, ENT_ANY);
10282                 if (warning.unused_value && !expression_has_effect(init)) {
10283                         warningf(&init->base.source_position,
10284                                         "initialisation of 'for'-statement has no effect");
10285                 }
10286                 rem_anchor_token(';');
10287                 expect(';', end_error2);
10288         }
10289
10290         if (token.type != ';') {
10291                 add_anchor_token(';');
10292                 expression_t *const cond = parse_expression();
10293                 statement->fors.condition = cond;
10294                 /* §6.8.5:2    The controlling expression of an iteration statement
10295                  *             shall have scalar type. */
10296                 semantic_condition(cond, "condition of 'for'-statement");
10297                 mark_vars_read(cond, NULL);
10298                 rem_anchor_token(';');
10299         }
10300         expect(';', end_error2);
10301         if (token.type != ')') {
10302                 expression_t *const step = parse_expression();
10303                 statement->fors.step = step;
10304                 mark_vars_read(step, ENT_ANY);
10305                 if (warning.unused_value && !expression_has_effect(step)) {
10306                         warningf(&step->base.source_position,
10307                                  "step of 'for'-statement has no effect");
10308                 }
10309         }
10310         expect(')', end_error2);
10311         rem_anchor_token(')');
10312         statement->fors.body = parse_loop_body(statement);
10313
10314         assert(current_scope == &statement->fors.scope);
10315         scope_pop(old_scope);
10316         environment_pop_to(top);
10317
10318         POP_PARENT;
10319         return statement;
10320
10321 end_error2:
10322         POP_PARENT;
10323         rem_anchor_token(')');
10324         assert(current_scope == &statement->fors.scope);
10325         scope_pop(old_scope);
10326         environment_pop_to(top);
10327         /* fallthrough */
10328
10329 end_error1:
10330         return create_invalid_statement();
10331 }
10332
10333 /**
10334  * Parse a goto statement.
10335  */
10336 static statement_t *parse_goto(void)
10337 {
10338         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
10339         eat(T_goto);
10340
10341         if (GNU_MODE && token.type == '*') {
10342                 next_token();
10343                 expression_t *expression = parse_expression();
10344                 mark_vars_read(expression, NULL);
10345
10346                 /* Argh: although documentation says the expression must be of type void*,
10347                  * gcc accepts anything that can be casted into void* without error */
10348                 type_t *type = expression->base.type;
10349
10350                 if (type != type_error_type) {
10351                         if (!is_type_pointer(type) && !is_type_integer(type)) {
10352                                 errorf(&expression->base.source_position,
10353                                         "cannot convert to a pointer type");
10354                         } else if (warning.other && type != type_void_ptr) {
10355                                 warningf(&expression->base.source_position,
10356                                         "type of computed goto expression should be 'void*' not '%T'", type);
10357                         }
10358                         expression = create_implicit_cast(expression, type_void_ptr);
10359                 }
10360
10361                 statement->gotos.expression = expression;
10362         } else {
10363                 if (token.type != T_IDENTIFIER) {
10364                         if (GNU_MODE)
10365                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
10366                         else
10367                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
10368                         eat_until_anchor();
10369                         goto end_error;
10370                 }
10371                 symbol_t *symbol = token.v.symbol;
10372                 next_token();
10373
10374                 statement->gotos.label = get_label(symbol);
10375         }
10376
10377         /* remember the goto's in a list for later checking */
10378         *goto_anchor = &statement->gotos;
10379         goto_anchor  = &statement->gotos.next;
10380
10381         expect(';', end_error);
10382
10383         return statement;
10384 end_error:
10385         return create_invalid_statement();
10386 }
10387
10388 /**
10389  * Parse a continue statement.
10390  */
10391 static statement_t *parse_continue(void)
10392 {
10393         if (current_loop == NULL) {
10394                 errorf(HERE, "continue statement not within loop");
10395         }
10396
10397         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
10398
10399         eat(T_continue);
10400         expect(';', end_error);
10401
10402 end_error:
10403         return statement;
10404 }
10405
10406 /**
10407  * Parse a break statement.
10408  */
10409 static statement_t *parse_break(void)
10410 {
10411         if (current_switch == NULL && current_loop == NULL) {
10412                 errorf(HERE, "break statement not within loop or switch");
10413         }
10414
10415         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
10416
10417         eat(T_break);
10418         expect(';', end_error);
10419
10420 end_error:
10421         return statement;
10422 }
10423
10424 /**
10425  * Parse a __leave statement.
10426  */
10427 static statement_t *parse_leave_statement(void)
10428 {
10429         if (current_try == NULL) {
10430                 errorf(HERE, "__leave statement not within __try");
10431         }
10432
10433         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
10434
10435         eat(T___leave);
10436         expect(';', end_error);
10437
10438 end_error:
10439         return statement;
10440 }
10441
10442 /**
10443  * Check if a given entity represents a local variable.
10444  */
10445 static bool is_local_variable(const entity_t *entity)
10446 {
10447         if (entity->kind != ENTITY_VARIABLE)
10448                 return false;
10449
10450         switch ((storage_class_tag_t) entity->declaration.storage_class) {
10451         case STORAGE_CLASS_AUTO:
10452         case STORAGE_CLASS_REGISTER: {
10453                 const type_t *type = skip_typeref(entity->declaration.type);
10454                 if (is_type_function(type)) {
10455                         return false;
10456                 } else {
10457                         return true;
10458                 }
10459         }
10460         default:
10461                 return false;
10462         }
10463 }
10464
10465 /**
10466  * Check if a given expression represents a local variable.
10467  */
10468 static bool expression_is_local_variable(const expression_t *expression)
10469 {
10470         if (expression->base.kind != EXPR_REFERENCE) {
10471                 return false;
10472         }
10473         const entity_t *entity = expression->reference.entity;
10474         return is_local_variable(entity);
10475 }
10476
10477 /**
10478  * Check if a given expression represents a local variable and
10479  * return its declaration then, else return NULL.
10480  */
10481 entity_t *expression_is_variable(const expression_t *expression)
10482 {
10483         if (expression->base.kind != EXPR_REFERENCE) {
10484                 return NULL;
10485         }
10486         entity_t *entity = expression->reference.entity;
10487         if (entity->kind != ENTITY_VARIABLE)
10488                 return NULL;
10489
10490         return entity;
10491 }
10492
10493 /**
10494  * Parse a return statement.
10495  */
10496 static statement_t *parse_return(void)
10497 {
10498         eat(T_return);
10499
10500         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
10501
10502         expression_t *return_value = NULL;
10503         if (token.type != ';') {
10504                 return_value = parse_expression();
10505                 mark_vars_read(return_value, NULL);
10506         }
10507
10508         const type_t *const func_type = skip_typeref(current_function->base.type);
10509         assert(is_type_function(func_type));
10510         type_t *const return_type = skip_typeref(func_type->function.return_type);
10511
10512         source_position_t const *const pos = &statement->base.source_position;
10513         if (return_value != NULL) {
10514                 type_t *return_value_type = skip_typeref(return_value->base.type);
10515
10516                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10517                         if (is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
10518                                 /* ISO/IEC 14882:1998(E) §6.6.3:2 */
10519                                 /* Only warn in C mode, because GCC does the same */
10520                                 if (c_mode & _CXX || strict_mode) {
10521                                         errorf(pos,
10522                                                         "'return' with a value, in function returning 'void'");
10523                                 } else if (warning.other) {
10524                                         warningf(pos,
10525                                                         "'return' with a value, in function returning 'void'");
10526                                 }
10527                         } else if (!(c_mode & _CXX)) { /* ISO/IEC 14882:1998(E) §6.6.3:3 */
10528                                 /* Only warn in C mode, because GCC does the same */
10529                                 if (strict_mode) {
10530                                         errorf(pos,
10531                                                         "'return' with expression in function return 'void'");
10532                                 } else if (warning.other) {
10533                                         warningf(pos,
10534                                                         "'return' with expression in function return 'void'");
10535                                 }
10536                         }
10537                 } else {
10538                         assign_error_t error = semantic_assign(return_type, return_value);
10539                         report_assign_error(error, return_type, return_value, "'return'",
10540                                         pos);
10541                 }
10542                 return_value = create_implicit_cast(return_value, return_type);
10543                 /* check for returning address of a local var */
10544                 if (warning.other && return_value != NULL
10545                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
10546                         const expression_t *expression = return_value->unary.value;
10547                         if (expression_is_local_variable(expression)) {
10548                                 warningf(pos, "function returns address of local variable");
10549                         }
10550                 }
10551         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10552                 /* ISO/IEC 14882:1998(E) §6.6.3:3 */
10553                 if (c_mode & _CXX || strict_mode) {
10554                         errorf(pos,
10555                                         "'return' without value, in function returning non-void");
10556                 } else {
10557                         warningf(pos,
10558                                         "'return' without value, in function returning non-void");
10559                 }
10560         }
10561         statement->returns.value = return_value;
10562
10563         expect(';', end_error);
10564
10565 end_error:
10566         return statement;
10567 }
10568
10569 /**
10570  * Parse a declaration statement.
10571  */
10572 static statement_t *parse_declaration_statement(void)
10573 {
10574         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10575
10576         entity_t *before = current_scope->last_entity;
10577         if (GNU_MODE) {
10578                 parse_external_declaration();
10579         } else {
10580                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10581         }
10582
10583         if (before == NULL) {
10584                 statement->declaration.declarations_begin = current_scope->entities;
10585         } else {
10586                 statement->declaration.declarations_begin = before->base.next;
10587         }
10588         statement->declaration.declarations_end = current_scope->last_entity;
10589
10590         return statement;
10591 }
10592
10593 /**
10594  * Parse an expression statement, ie. expr ';'.
10595  */
10596 static statement_t *parse_expression_statement(void)
10597 {
10598         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10599
10600         expression_t *const expr         = parse_expression();
10601         statement->expression.expression = expr;
10602         mark_vars_read(expr, ENT_ANY);
10603
10604         expect(';', end_error);
10605
10606 end_error:
10607         return statement;
10608 }
10609
10610 /**
10611  * Parse a microsoft __try { } __finally { } or
10612  * __try{ } __except() { }
10613  */
10614 static statement_t *parse_ms_try_statment(void)
10615 {
10616         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10617         eat(T___try);
10618
10619         PUSH_PARENT(statement);
10620
10621         ms_try_statement_t *rem = current_try;
10622         current_try = &statement->ms_try;
10623         statement->ms_try.try_statement = parse_compound_statement(false);
10624         current_try = rem;
10625
10626         POP_PARENT;
10627
10628         if (token.type == T___except) {
10629                 eat(T___except);
10630                 expect('(', end_error);
10631                 add_anchor_token(')');
10632                 expression_t *const expr = parse_expression();
10633                 mark_vars_read(expr, NULL);
10634                 type_t       *      type = skip_typeref(expr->base.type);
10635                 if (is_type_integer(type)) {
10636                         type = promote_integer(type);
10637                 } else if (is_type_valid(type)) {
10638                         errorf(&expr->base.source_position,
10639                                "__expect expression is not an integer, but '%T'", type);
10640                         type = type_error_type;
10641                 }
10642                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10643                 rem_anchor_token(')');
10644                 expect(')', end_error);
10645                 statement->ms_try.final_statement = parse_compound_statement(false);
10646         } else if (token.type == T__finally) {
10647                 eat(T___finally);
10648                 statement->ms_try.final_statement = parse_compound_statement(false);
10649         } else {
10650                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10651                 return create_invalid_statement();
10652         }
10653         return statement;
10654 end_error:
10655         return create_invalid_statement();
10656 }
10657
10658 static statement_t *parse_empty_statement(void)
10659 {
10660         if (warning.empty_statement) {
10661                 warningf(HERE, "statement is empty");
10662         }
10663         statement_t *const statement = create_empty_statement();
10664         eat(';');
10665         return statement;
10666 }
10667
10668 static statement_t *parse_local_label_declaration(void)
10669 {
10670         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10671
10672         eat(T___label__);
10673
10674         entity_t *begin = NULL, *end = NULL;
10675
10676         while (true) {
10677                 if (token.type != T_IDENTIFIER) {
10678                         parse_error_expected("while parsing local label declaration",
10679                                 T_IDENTIFIER, NULL);
10680                         goto end_error;
10681                 }
10682                 symbol_t *symbol = token.v.symbol;
10683                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
10684                 if (entity != NULL && entity->base.parent_scope == current_scope) {
10685                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10686                                symbol, &entity->base.source_position);
10687                 } else {
10688                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10689
10690                         entity->base.parent_scope    = current_scope;
10691                         entity->base.namespc         = NAMESPACE_LABEL;
10692                         entity->base.source_position = token.source_position;
10693                         entity->base.symbol          = symbol;
10694
10695                         if (end != NULL)
10696                                 end->base.next = entity;
10697                         end = entity;
10698                         if (begin == NULL)
10699                                 begin = entity;
10700
10701                         environment_push(entity);
10702                 }
10703                 next_token();
10704
10705                 if (token.type != ',')
10706                         break;
10707                 next_token();
10708         }
10709         eat(';');
10710 end_error:
10711         statement->declaration.declarations_begin = begin;
10712         statement->declaration.declarations_end   = end;
10713         return statement;
10714 }
10715
10716 static void parse_namespace_definition(void)
10717 {
10718         eat(T_namespace);
10719
10720         entity_t *entity = NULL;
10721         symbol_t *symbol = NULL;
10722
10723         if (token.type == T_IDENTIFIER) {
10724                 symbol = token.v.symbol;
10725                 next_token();
10726
10727                 entity = get_entity(symbol, NAMESPACE_NORMAL);
10728                 if (entity       != NULL             &&
10729                                 entity->kind != ENTITY_NAMESPACE &&
10730                                 entity->base.parent_scope == current_scope) {
10731                         if (!is_error_entity(entity)) {
10732                                 error_redefined_as_different_kind(&token.source_position,
10733                                                 entity, ENTITY_NAMESPACE);
10734                         }
10735                         entity = NULL;
10736                 }
10737         }
10738
10739         if (entity == NULL) {
10740                 entity                       = allocate_entity_zero(ENTITY_NAMESPACE);
10741                 entity->base.symbol          = symbol;
10742                 entity->base.source_position = token.source_position;
10743                 entity->base.namespc         = NAMESPACE_NORMAL;
10744                 entity->base.parent_scope    = current_scope;
10745         }
10746
10747         if (token.type == '=') {
10748                 /* TODO: parse namespace alias */
10749                 panic("namespace alias definition not supported yet");
10750         }
10751
10752         environment_push(entity);
10753         append_entity(current_scope, entity);
10754
10755         size_t const  top       = environment_top();
10756         scope_t      *old_scope = scope_push(&entity->namespacee.members);
10757
10758         expect('{', end_error);
10759         parse_externals();
10760         expect('}', end_error);
10761
10762 end_error:
10763         assert(current_scope == &entity->namespacee.members);
10764         scope_pop(old_scope);
10765         environment_pop_to(top);
10766 }
10767
10768 /**
10769  * Parse a statement.
10770  * There's also parse_statement() which additionally checks for
10771  * "statement has no effect" warnings
10772  */
10773 static statement_t *intern_parse_statement(void)
10774 {
10775         statement_t *statement = NULL;
10776
10777         /* declaration or statement */
10778         add_anchor_token(';');
10779         switch (token.type) {
10780         case T_IDENTIFIER: {
10781                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10782                 if (la1_type == ':') {
10783                         statement = parse_label_statement();
10784                 } else if (is_typedef_symbol(token.v.symbol)) {
10785                         statement = parse_declaration_statement();
10786                 } else {
10787                         /* it's an identifier, the grammar says this must be an
10788                          * expression statement. However it is common that users mistype
10789                          * declaration types, so we guess a bit here to improve robustness
10790                          * for incorrect programs */
10791                         switch (la1_type) {
10792                         case '&':
10793                         case '*':
10794                                 if (get_entity(token.v.symbol, NAMESPACE_NORMAL) != NULL)
10795                                         goto expression_statment;
10796                                 /* FALLTHROUGH */
10797
10798                         DECLARATION_START
10799                         case T_IDENTIFIER:
10800                                 statement = parse_declaration_statement();
10801                                 break;
10802
10803                         default:
10804 expression_statment:
10805                                 statement = parse_expression_statement();
10806                                 break;
10807                         }
10808                 }
10809                 break;
10810         }
10811
10812         case T___extension__:
10813                 /* This can be a prefix to a declaration or an expression statement.
10814                  * We simply eat it now and parse the rest with tail recursion. */
10815                 do {
10816                         next_token();
10817                 } while (token.type == T___extension__);
10818                 bool old_gcc_extension = in_gcc_extension;
10819                 in_gcc_extension       = true;
10820                 statement = intern_parse_statement();
10821                 in_gcc_extension = old_gcc_extension;
10822                 break;
10823
10824         DECLARATION_START
10825                 statement = parse_declaration_statement();
10826                 break;
10827
10828         case T___label__:
10829                 statement = parse_local_label_declaration();
10830                 break;
10831
10832         case ';':         statement = parse_empty_statement();         break;
10833         case '{':         statement = parse_compound_statement(false); break;
10834         case T___leave:   statement = parse_leave_statement();         break;
10835         case T___try:     statement = parse_ms_try_statment();         break;
10836         case T_asm:       statement = parse_asm_statement();           break;
10837         case T_break:     statement = parse_break();                   break;
10838         case T_case:      statement = parse_case_statement();          break;
10839         case T_continue:  statement = parse_continue();                break;
10840         case T_default:   statement = parse_default_statement();       break;
10841         case T_do:        statement = parse_do();                      break;
10842         case T_for:       statement = parse_for();                     break;
10843         case T_goto:      statement = parse_goto();                    break;
10844         case T_if:        statement = parse_if();                      break;
10845         case T_return:    statement = parse_return();                  break;
10846         case T_switch:    statement = parse_switch();                  break;
10847         case T_while:     statement = parse_while();                   break;
10848
10849         EXPRESSION_START
10850                 statement = parse_expression_statement();
10851                 break;
10852
10853         default:
10854                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10855                 statement = create_invalid_statement();
10856                 if (!at_anchor())
10857                         next_token();
10858                 break;
10859         }
10860         rem_anchor_token(';');
10861
10862         assert(statement != NULL
10863                         && statement->base.source_position.input_name != NULL);
10864
10865         return statement;
10866 }
10867
10868 /**
10869  * parse a statement and emits "statement has no effect" warning if needed
10870  * (This is really a wrapper around intern_parse_statement with check for 1
10871  *  single warning. It is needed, because for statement expressions we have
10872  *  to avoid the warning on the last statement)
10873  */
10874 static statement_t *parse_statement(void)
10875 {
10876         statement_t *statement = intern_parse_statement();
10877
10878         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10879                 expression_t *expression = statement->expression.expression;
10880                 if (!expression_has_effect(expression)) {
10881                         warningf(&expression->base.source_position,
10882                                         "statement has no effect");
10883                 }
10884         }
10885
10886         return statement;
10887 }
10888
10889 /**
10890  * Parse a compound statement.
10891  */
10892 static statement_t *parse_compound_statement(bool inside_expression_statement)
10893 {
10894         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10895
10896         PUSH_PARENT(statement);
10897
10898         eat('{');
10899         add_anchor_token('}');
10900         /* tokens, which can start a statement */
10901         /* TODO MS, __builtin_FOO */
10902         add_anchor_token('!');
10903         add_anchor_token('&');
10904         add_anchor_token('(');
10905         add_anchor_token('*');
10906         add_anchor_token('+');
10907         add_anchor_token('-');
10908         add_anchor_token('{');
10909         add_anchor_token('~');
10910         add_anchor_token(T_CHARACTER_CONSTANT);
10911         add_anchor_token(T_COLONCOLON);
10912         add_anchor_token(T_FLOATINGPOINT);
10913         add_anchor_token(T_IDENTIFIER);
10914         add_anchor_token(T_INTEGER);
10915         add_anchor_token(T_MINUSMINUS);
10916         add_anchor_token(T_PLUSPLUS);
10917         add_anchor_token(T_STRING_LITERAL);
10918         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10919         add_anchor_token(T_WIDE_STRING_LITERAL);
10920         add_anchor_token(T__Bool);
10921         add_anchor_token(T__Complex);
10922         add_anchor_token(T__Imaginary);
10923         add_anchor_token(T___FUNCTION__);
10924         add_anchor_token(T___PRETTY_FUNCTION__);
10925         add_anchor_token(T___alignof__);
10926         add_anchor_token(T___attribute__);
10927         add_anchor_token(T___builtin_va_start);
10928         add_anchor_token(T___extension__);
10929         add_anchor_token(T___func__);
10930         add_anchor_token(T___imag__);
10931         add_anchor_token(T___label__);
10932         add_anchor_token(T___real__);
10933         add_anchor_token(T___thread);
10934         add_anchor_token(T_asm);
10935         add_anchor_token(T_auto);
10936         add_anchor_token(T_bool);
10937         add_anchor_token(T_break);
10938         add_anchor_token(T_case);
10939         add_anchor_token(T_char);
10940         add_anchor_token(T_class);
10941         add_anchor_token(T_const);
10942         add_anchor_token(T_const_cast);
10943         add_anchor_token(T_continue);
10944         add_anchor_token(T_default);
10945         add_anchor_token(T_delete);
10946         add_anchor_token(T_double);
10947         add_anchor_token(T_do);
10948         add_anchor_token(T_dynamic_cast);
10949         add_anchor_token(T_enum);
10950         add_anchor_token(T_extern);
10951         add_anchor_token(T_false);
10952         add_anchor_token(T_float);
10953         add_anchor_token(T_for);
10954         add_anchor_token(T_goto);
10955         add_anchor_token(T_if);
10956         add_anchor_token(T_inline);
10957         add_anchor_token(T_int);
10958         add_anchor_token(T_long);
10959         add_anchor_token(T_new);
10960         add_anchor_token(T_operator);
10961         add_anchor_token(T_register);
10962         add_anchor_token(T_reinterpret_cast);
10963         add_anchor_token(T_restrict);
10964         add_anchor_token(T_return);
10965         add_anchor_token(T_short);
10966         add_anchor_token(T_signed);
10967         add_anchor_token(T_sizeof);
10968         add_anchor_token(T_static);
10969         add_anchor_token(T_static_cast);
10970         add_anchor_token(T_struct);
10971         add_anchor_token(T_switch);
10972         add_anchor_token(T_template);
10973         add_anchor_token(T_this);
10974         add_anchor_token(T_throw);
10975         add_anchor_token(T_true);
10976         add_anchor_token(T_try);
10977         add_anchor_token(T_typedef);
10978         add_anchor_token(T_typeid);
10979         add_anchor_token(T_typename);
10980         add_anchor_token(T_typeof);
10981         add_anchor_token(T_union);
10982         add_anchor_token(T_unsigned);
10983         add_anchor_token(T_using);
10984         add_anchor_token(T_void);
10985         add_anchor_token(T_volatile);
10986         add_anchor_token(T_wchar_t);
10987         add_anchor_token(T_while);
10988
10989         size_t const  top       = environment_top();
10990         scope_t      *old_scope = scope_push(&statement->compound.scope);
10991
10992         statement_t **anchor            = &statement->compound.statements;
10993         bool          only_decls_so_far = true;
10994         while (token.type != '}') {
10995                 if (token.type == T_EOF) {
10996                         errorf(&statement->base.source_position,
10997                                "EOF while parsing compound statement");
10998                         break;
10999                 }
11000                 statement_t *sub_statement = intern_parse_statement();
11001                 if (is_invalid_statement(sub_statement)) {
11002                         /* an error occurred. if we are at an anchor, return */
11003                         if (at_anchor())
11004                                 goto end_error;
11005                         continue;
11006                 }
11007
11008                 if (warning.declaration_after_statement) {
11009                         if (sub_statement->kind != STATEMENT_DECLARATION) {
11010                                 only_decls_so_far = false;
11011                         } else if (!only_decls_so_far) {
11012                                 warningf(&sub_statement->base.source_position,
11013                                          "ISO C90 forbids mixed declarations and code");
11014                         }
11015                 }
11016
11017                 *anchor = sub_statement;
11018
11019                 while (sub_statement->base.next != NULL)
11020                         sub_statement = sub_statement->base.next;
11021
11022                 anchor = &sub_statement->base.next;
11023         }
11024         next_token();
11025
11026         /* look over all statements again to produce no effect warnings */
11027         if (warning.unused_value) {
11028                 statement_t *sub_statement = statement->compound.statements;
11029                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
11030                         if (sub_statement->kind != STATEMENT_EXPRESSION)
11031                                 continue;
11032                         /* don't emit a warning for the last expression in an expression
11033                          * statement as it has always an effect */
11034                         if (inside_expression_statement && sub_statement->base.next == NULL)
11035                                 continue;
11036
11037                         expression_t *expression = sub_statement->expression.expression;
11038                         if (!expression_has_effect(expression)) {
11039                                 warningf(&expression->base.source_position,
11040                                          "statement has no effect");
11041                         }
11042                 }
11043         }
11044
11045 end_error:
11046         rem_anchor_token(T_while);
11047         rem_anchor_token(T_wchar_t);
11048         rem_anchor_token(T_volatile);
11049         rem_anchor_token(T_void);
11050         rem_anchor_token(T_using);
11051         rem_anchor_token(T_unsigned);
11052         rem_anchor_token(T_union);
11053         rem_anchor_token(T_typeof);
11054         rem_anchor_token(T_typename);
11055         rem_anchor_token(T_typeid);
11056         rem_anchor_token(T_typedef);
11057         rem_anchor_token(T_try);
11058         rem_anchor_token(T_true);
11059         rem_anchor_token(T_throw);
11060         rem_anchor_token(T_this);
11061         rem_anchor_token(T_template);
11062         rem_anchor_token(T_switch);
11063         rem_anchor_token(T_struct);
11064         rem_anchor_token(T_static_cast);
11065         rem_anchor_token(T_static);
11066         rem_anchor_token(T_sizeof);
11067         rem_anchor_token(T_signed);
11068         rem_anchor_token(T_short);
11069         rem_anchor_token(T_return);
11070         rem_anchor_token(T_restrict);
11071         rem_anchor_token(T_reinterpret_cast);
11072         rem_anchor_token(T_register);
11073         rem_anchor_token(T_operator);
11074         rem_anchor_token(T_new);
11075         rem_anchor_token(T_long);
11076         rem_anchor_token(T_int);
11077         rem_anchor_token(T_inline);
11078         rem_anchor_token(T_if);
11079         rem_anchor_token(T_goto);
11080         rem_anchor_token(T_for);
11081         rem_anchor_token(T_float);
11082         rem_anchor_token(T_false);
11083         rem_anchor_token(T_extern);
11084         rem_anchor_token(T_enum);
11085         rem_anchor_token(T_dynamic_cast);
11086         rem_anchor_token(T_do);
11087         rem_anchor_token(T_double);
11088         rem_anchor_token(T_delete);
11089         rem_anchor_token(T_default);
11090         rem_anchor_token(T_continue);
11091         rem_anchor_token(T_const_cast);
11092         rem_anchor_token(T_const);
11093         rem_anchor_token(T_class);
11094         rem_anchor_token(T_char);
11095         rem_anchor_token(T_case);
11096         rem_anchor_token(T_break);
11097         rem_anchor_token(T_bool);
11098         rem_anchor_token(T_auto);
11099         rem_anchor_token(T_asm);
11100         rem_anchor_token(T___thread);
11101         rem_anchor_token(T___real__);
11102         rem_anchor_token(T___label__);
11103         rem_anchor_token(T___imag__);
11104         rem_anchor_token(T___func__);
11105         rem_anchor_token(T___extension__);
11106         rem_anchor_token(T___builtin_va_start);
11107         rem_anchor_token(T___attribute__);
11108         rem_anchor_token(T___alignof__);
11109         rem_anchor_token(T___PRETTY_FUNCTION__);
11110         rem_anchor_token(T___FUNCTION__);
11111         rem_anchor_token(T__Imaginary);
11112         rem_anchor_token(T__Complex);
11113         rem_anchor_token(T__Bool);
11114         rem_anchor_token(T_WIDE_STRING_LITERAL);
11115         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
11116         rem_anchor_token(T_STRING_LITERAL);
11117         rem_anchor_token(T_PLUSPLUS);
11118         rem_anchor_token(T_MINUSMINUS);
11119         rem_anchor_token(T_INTEGER);
11120         rem_anchor_token(T_IDENTIFIER);
11121         rem_anchor_token(T_FLOATINGPOINT);
11122         rem_anchor_token(T_COLONCOLON);
11123         rem_anchor_token(T_CHARACTER_CONSTANT);
11124         rem_anchor_token('~');
11125         rem_anchor_token('{');
11126         rem_anchor_token('-');
11127         rem_anchor_token('+');
11128         rem_anchor_token('*');
11129         rem_anchor_token('(');
11130         rem_anchor_token('&');
11131         rem_anchor_token('!');
11132         rem_anchor_token('}');
11133         assert(current_scope == &statement->compound.scope);
11134         scope_pop(old_scope);
11135         environment_pop_to(top);
11136
11137         POP_PARENT;
11138         return statement;
11139 }
11140
11141 /**
11142  * Check for unused global static functions and variables
11143  */
11144 static void check_unused_globals(void)
11145 {
11146         if (!warning.unused_function && !warning.unused_variable)
11147                 return;
11148
11149         for (const entity_t *entity = file_scope->entities; entity != NULL;
11150              entity = entity->base.next) {
11151                 if (!is_declaration(entity))
11152                         continue;
11153
11154                 const declaration_t *declaration = &entity->declaration;
11155                 if (declaration->used                  ||
11156                     declaration->modifiers & DM_UNUSED ||
11157                     declaration->modifiers & DM_USED   ||
11158                     declaration->storage_class != STORAGE_CLASS_STATIC)
11159                         continue;
11160
11161                 type_t *const type = declaration->type;
11162                 const char *s;
11163                 if (entity->kind == ENTITY_FUNCTION) {
11164                         /* inhibit warning for static inline functions */
11165                         if (entity->function.is_inline)
11166                                 continue;
11167
11168                         s = entity->function.statement != NULL ? "defined" : "declared";
11169                 } else {
11170                         s = "defined";
11171                 }
11172
11173                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
11174                         type, declaration->base.symbol, s);
11175         }
11176 }
11177
11178 static void parse_global_asm(void)
11179 {
11180         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
11181
11182         eat(T_asm);
11183         expect('(', end_error);
11184
11185         statement->asms.asm_text = parse_string_literals();
11186         statement->base.next     = unit->global_asm;
11187         unit->global_asm         = statement;
11188
11189         expect(')', end_error);
11190         expect(';', end_error);
11191
11192 end_error:;
11193 }
11194
11195 static void parse_linkage_specification(void)
11196 {
11197         eat(T_extern);
11198         assert(token.type == T_STRING_LITERAL);
11199
11200         const char *linkage = parse_string_literals().begin;
11201
11202         linkage_kind_t old_linkage = current_linkage;
11203         linkage_kind_t new_linkage;
11204         if (strcmp(linkage, "C") == 0) {
11205                 new_linkage = LINKAGE_C;
11206         } else if (strcmp(linkage, "C++") == 0) {
11207                 new_linkage = LINKAGE_CXX;
11208         } else {
11209                 errorf(HERE, "linkage string \"%s\" not recognized", linkage);
11210                 new_linkage = LINKAGE_INVALID;
11211         }
11212         current_linkage = new_linkage;
11213
11214         if (token.type == '{') {
11215                 next_token();
11216                 parse_externals();
11217                 expect('}', end_error);
11218         } else {
11219                 parse_external();
11220         }
11221
11222 end_error:
11223         assert(current_linkage == new_linkage);
11224         current_linkage = old_linkage;
11225 }
11226
11227 static void parse_external(void)
11228 {
11229         switch (token.type) {
11230                 DECLARATION_START_NO_EXTERN
11231                 case T_IDENTIFIER:
11232                 case T___extension__:
11233                 /* tokens below are for implicit int */
11234                 case '&': /* & x; -> int& x; (and error later, because C++ has no
11235                              implicit int) */
11236                 case '*': /* * x; -> int* x; */
11237                 case '(': /* (x); -> int (x); */
11238                         parse_external_declaration();
11239                         return;
11240
11241                 case T_extern:
11242                         if (look_ahead(1)->type == T_STRING_LITERAL) {
11243                                 parse_linkage_specification();
11244                         } else {
11245                                 parse_external_declaration();
11246                         }
11247                         return;
11248
11249                 case T_asm:
11250                         parse_global_asm();
11251                         return;
11252
11253                 case T_namespace:
11254                         parse_namespace_definition();
11255                         return;
11256
11257                 case ';':
11258                         if (!strict_mode) {
11259                                 if (warning.other)
11260                                         warningf(HERE, "stray ';' outside of function");
11261                                 next_token();
11262                                 return;
11263                         }
11264                         /* FALLTHROUGH */
11265
11266                 default:
11267                         errorf(HERE, "stray %K outside of function", &token);
11268                         if (token.type == '(' || token.type == '{' || token.type == '[')
11269                                 eat_until_matching_token(token.type);
11270                         next_token();
11271                         return;
11272         }
11273 }
11274
11275 static void parse_externals(void)
11276 {
11277         add_anchor_token('}');
11278         add_anchor_token(T_EOF);
11279
11280 #ifndef NDEBUG
11281         unsigned char token_anchor_copy[T_LAST_TOKEN];
11282         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
11283 #endif
11284
11285         while (token.type != T_EOF && token.type != '}') {
11286 #ifndef NDEBUG
11287                 bool anchor_leak = false;
11288                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
11289                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
11290                         if (count != 0) {
11291                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
11292                                 anchor_leak = true;
11293                         }
11294                 }
11295                 if (in_gcc_extension) {
11296                         errorf(HERE, "Leaked __extension__");
11297                         anchor_leak = true;
11298                 }
11299
11300                 if (anchor_leak)
11301                         abort();
11302 #endif
11303
11304                 parse_external();
11305         }
11306
11307         rem_anchor_token(T_EOF);
11308         rem_anchor_token('}');
11309 }
11310
11311 /**
11312  * Parse a translation unit.
11313  */
11314 static void parse_translation_unit(void)
11315 {
11316         add_anchor_token(T_EOF);
11317
11318         while (true) {
11319                 parse_externals();
11320
11321                 if (token.type == T_EOF)
11322                         break;
11323
11324                 errorf(HERE, "stray %K outside of function", &token);
11325                 if (token.type == '(' || token.type == '{' || token.type == '[')
11326                         eat_until_matching_token(token.type);
11327                 next_token();
11328         }
11329 }
11330
11331 /**
11332  * Parse the input.
11333  *
11334  * @return  the translation unit or NULL if errors occurred.
11335  */
11336 void start_parsing(void)
11337 {
11338         environment_stack = NEW_ARR_F(stack_entry_t, 0);
11339         label_stack       = NEW_ARR_F(stack_entry_t, 0);
11340         diagnostic_count  = 0;
11341         error_count       = 0;
11342         warning_count     = 0;
11343
11344         type_set_output(stderr);
11345         ast_set_output(stderr);
11346
11347         assert(unit == NULL);
11348         unit = allocate_ast_zero(sizeof(unit[0]));
11349
11350         assert(file_scope == NULL);
11351         file_scope = &unit->scope;
11352
11353         assert(current_scope == NULL);
11354         scope_push(&unit->scope);
11355 }
11356
11357 translation_unit_t *finish_parsing(void)
11358 {
11359         assert(current_scope == &unit->scope);
11360         scope_pop(NULL);
11361
11362         assert(file_scope == &unit->scope);
11363         check_unused_globals();
11364         file_scope = NULL;
11365
11366         DEL_ARR_F(environment_stack);
11367         DEL_ARR_F(label_stack);
11368
11369         translation_unit_t *result = unit;
11370         unit = NULL;
11371         return result;
11372 }
11373
11374 /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
11375  * are given length one. */
11376 static void complete_incomplete_arrays(void)
11377 {
11378         size_t n = ARR_LEN(incomplete_arrays);
11379         for (size_t i = 0; i != n; ++i) {
11380                 declaration_t *const decl      = incomplete_arrays[i];
11381                 type_t        *const orig_type = decl->type;
11382                 type_t        *const type      = skip_typeref(orig_type);
11383
11384                 if (!is_type_incomplete(type))
11385                         continue;
11386
11387                 if (warning.other) {
11388                         warningf(&decl->base.source_position,
11389                                         "array '%#T' assumed to have one element",
11390                                         orig_type, decl->base.symbol);
11391                 }
11392
11393                 type_t *const new_type = duplicate_type(type);
11394                 new_type->array.size_constant     = true;
11395                 new_type->array.has_implicit_size = true;
11396                 new_type->array.size              = 1;
11397
11398                 type_t *const result = identify_new_type(new_type);
11399
11400                 decl->type = result;
11401         }
11402 }
11403
11404 void parse(void)
11405 {
11406         lookahead_bufpos = 0;
11407         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
11408                 next_token();
11409         }
11410         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
11411         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
11412         parse_translation_unit();
11413         complete_incomplete_arrays();
11414         DEL_ARR_F(incomplete_arrays);
11415         incomplete_arrays = NULL;
11416 }
11417
11418 /**
11419  * Initialize the parser.
11420  */
11421 void init_parser(void)
11422 {
11423         sym_anonymous = symbol_table_insert("<anonymous>");
11424
11425         if (c_mode & _MS) {
11426                 /* add predefined symbols for extended-decl-modifier */
11427                 sym_align         = symbol_table_insert("align");
11428                 sym_allocate      = symbol_table_insert("allocate");
11429                 sym_dllimport     = symbol_table_insert("dllimport");
11430                 sym_dllexport     = symbol_table_insert("dllexport");
11431                 sym_naked         = symbol_table_insert("naked");
11432                 sym_noinline      = symbol_table_insert("noinline");
11433                 sym_returns_twice = symbol_table_insert("returns_twice");
11434                 sym_noreturn      = symbol_table_insert("noreturn");
11435                 sym_nothrow       = symbol_table_insert("nothrow");
11436                 sym_novtable      = symbol_table_insert("novtable");
11437                 sym_property      = symbol_table_insert("property");
11438                 sym_get           = symbol_table_insert("get");
11439                 sym_put           = symbol_table_insert("put");
11440                 sym_selectany     = symbol_table_insert("selectany");
11441                 sym_thread        = symbol_table_insert("thread");
11442                 sym_uuid          = symbol_table_insert("uuid");
11443                 sym_deprecated    = symbol_table_insert("deprecated");
11444                 sym_restrict      = symbol_table_insert("restrict");
11445                 sym_noalias       = symbol_table_insert("noalias");
11446         }
11447         memset(token_anchor_set, 0, sizeof(token_anchor_set));
11448
11449         init_expression_parsers();
11450         obstack_init(&temp_obst);
11451
11452         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
11453         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
11454 }
11455
11456 /**
11457  * Terminate the parser.
11458  */
11459 void exit_parser(void)
11460 {
11461         obstack_free(&temp_obst, NULL);
11462 }