d403755f6889e7a211b621b9cf208a3b6d6ba654
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 //#define PRINT_TOKENS
43 #define MAX_LOOKAHEAD 2
44
45 typedef struct {
46         declaration_t *old_declaration;
47         symbol_t      *symbol;
48         unsigned short namespc;
49 } stack_entry_t;
50
51 typedef struct argument_list_t argument_list_t;
52 struct argument_list_t {
53         long              argument;
54         argument_list_t  *next;
55 };
56
57 typedef struct gnu_attribute_t gnu_attribute_t;
58 struct gnu_attribute_t {
59         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
60         gnu_attribute_t     *next;
61         bool                 invalid;        /**< Set if this attribute had argument errors, */
62         bool                 have_arguments; /**< True, if this attribute has arguments. */
63         union {
64                 size_t              value;
65                 string_t            string;
66                 atomic_type_kind_t  akind;
67                 long                argument;  /**< Single argument. */
68                 argument_list_t    *arguments; /**< List of argument expressions. */
69         } u;
70 };
71
72 typedef struct declaration_specifiers_t  declaration_specifiers_t;
73 struct declaration_specifiers_t {
74         source_position_t  source_position;
75         unsigned char      declared_storage_class;
76         unsigned char      alignment;         /**< Alignment, 0 if not set. */
77         unsigned int       is_inline : 1;
78         unsigned int       deprecated : 1;
79         decl_modifiers_t   modifiers;         /**< declaration modifiers */
80         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
81         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
82         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
83         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
84         type_t            *type;
85 };
86
87 /**
88  * An environment for parsing initializers (and compound literals).
89  */
90 typedef struct parse_initializer_env_t {
91         type_t        *type;        /**< the type of the initializer. In case of an
92                                          array type with unspecified size this gets
93                                          adjusted to the actual size. */
94         declaration_t *declaration; /**< the declaration that is initialized if any */
95         bool           must_be_constant;
96 } parse_initializer_env_t;
97
98 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration);
99
100 static token_t             token;
101 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
102 static int                 lookahead_bufpos;
103 static stack_entry_t      *environment_stack = NULL;
104 static stack_entry_t      *label_stack       = NULL;
105 static scope_t            *global_scope      = NULL;
106 static scope_t            *scope             = NULL;
107 static declaration_t      *last_declaration  = NULL;
108 static declaration_t      *current_function  = NULL;
109 static switch_statement_t *current_switch    = NULL;
110 static statement_t        *current_loop      = NULL;
111 static statement_t        *current_parent    = NULL;
112 static ms_try_statement_t *current_try       = NULL;
113 static goto_statement_t   *goto_first        = NULL;
114 static goto_statement_t   *goto_last         = NULL;
115 static label_statement_t  *label_first       = NULL;
116 static label_statement_t  *label_last        = NULL;
117 static translation_unit_t *unit              = NULL;
118 static struct obstack      temp_obst;
119
120 #define PUSH_PARENT(stmt)                          \
121         statement_t *const prev_parent = current_parent; \
122         current_parent = (stmt);
123 #define POP_PARENT ((void)(current_parent = prev_parent))
124
125 static source_position_t null_position = { NULL, 0 };
126
127 /* symbols for Microsoft extended-decl-modifier */
128 static const symbol_t *sym_align      = NULL;
129 static const symbol_t *sym_allocate   = NULL;
130 static const symbol_t *sym_dllimport  = NULL;
131 static const symbol_t *sym_dllexport  = NULL;
132 static const symbol_t *sym_naked      = NULL;
133 static const symbol_t *sym_noinline   = NULL;
134 static const symbol_t *sym_noreturn   = NULL;
135 static const symbol_t *sym_nothrow    = NULL;
136 static const symbol_t *sym_novtable   = NULL;
137 static const symbol_t *sym_property   = NULL;
138 static const symbol_t *sym_get        = NULL;
139 static const symbol_t *sym_put        = NULL;
140 static const symbol_t *sym_selectany  = NULL;
141 static const symbol_t *sym_thread     = NULL;
142 static const symbol_t *sym_uuid       = NULL;
143 static const symbol_t *sym_deprecated = NULL;
144 static const symbol_t *sym_restrict   = NULL;
145 static const symbol_t *sym_noalias    = NULL;
146
147 /** The token anchor set */
148 static unsigned char token_anchor_set[T_LAST_TOKEN];
149
150 /** The current source position. */
151 #define HERE (&token.source_position)
152
153 static type_t *type_valist;
154
155 static statement_t *parse_compound_statement(bool inside_expression_statement);
156 static statement_t *parse_statement(void);
157
158 static expression_t *parse_sub_expression(unsigned precedence);
159 static expression_t *parse_expression(void);
160 static type_t       *parse_typename(void);
161
162 static void parse_compound_type_entries(declaration_t *compound_declaration);
163 static declaration_t *parse_declarator(
164                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
165 static declaration_t *record_declaration(declaration_t *declaration);
166
167 static void semantic_comparison(binary_expression_t *expression);
168
169 #define STORAGE_CLASSES     \
170         case T_typedef:         \
171         case T_extern:          \
172         case T_static:          \
173         case T_auto:            \
174         case T_register:        \
175         case T___thread:
176
177 #define TYPE_QUALIFIERS     \
178         case T_const:           \
179         case T_restrict:        \
180         case T_volatile:        \
181         case T_inline:          \
182         case T__forceinline:    \
183         case T___attribute__:
184
185 #ifdef PROVIDE_COMPLEX
186 #define COMPLEX_SPECIFIERS  \
187         case T__Complex:
188 #define IMAGINARY_SPECIFIERS \
189         case T__Imaginary:
190 #else
191 #define COMPLEX_SPECIFIERS
192 #define IMAGINARY_SPECIFIERS
193 #endif
194
195 #define TYPE_SPECIFIERS       \
196         case T_void:              \
197         case T_char:              \
198         case T_short:             \
199         case T_int:               \
200         case T_long:              \
201         case T_float:             \
202         case T_double:            \
203         case T_signed:            \
204         case T_unsigned:          \
205         case T__Bool:             \
206         case T_struct:            \
207         case T_union:             \
208         case T_enum:              \
209         case T___typeof__:        \
210         case T___builtin_va_list: \
211         case T__declspec:         \
212         COMPLEX_SPECIFIERS        \
213         IMAGINARY_SPECIFIERS
214
215 #define DECLARATION_START   \
216         STORAGE_CLASSES         \
217         TYPE_QUALIFIERS         \
218         TYPE_SPECIFIERS
219
220 #define TYPENAME_START      \
221         TYPE_QUALIFIERS         \
222         TYPE_SPECIFIERS
223
224 /**
225  * Allocate an AST node with given size and
226  * initialize all fields with zero.
227  */
228 static void *allocate_ast_zero(size_t size)
229 {
230         void *res = allocate_ast(size);
231         memset(res, 0, size);
232         return res;
233 }
234
235 static declaration_t *allocate_declaration_zero(void)
236 {
237         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
238         declaration->type      = type_error_type;
239         declaration->alignment = 0;
240         return declaration;
241 }
242
243 /**
244  * Returns the size of a statement node.
245  *
246  * @param kind  the statement kind
247  */
248 static size_t get_statement_struct_size(statement_kind_t kind)
249 {
250         static const size_t sizes[] = {
251                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
252                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
253                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
254                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
255                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
256                 [STATEMENT_IF]          = sizeof(if_statement_t),
257                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
258                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
259                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
260                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
261                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
262                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
263                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
264                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
265                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
266                 [STATEMENT_FOR]         = sizeof(for_statement_t),
267                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
268                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
269                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
270         };
271         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
272         assert(sizes[kind] != 0);
273         return sizes[kind];
274 }
275
276 /**
277  * Returns the size of an expression node.
278  *
279  * @param kind  the expression kind
280  */
281 static size_t get_expression_struct_size(expression_kind_t kind)
282 {
283         static const size_t sizes[] = {
284                 [EXPR_INVALID]                 = sizeof(expression_base_t),
285                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
286                 [EXPR_CONST]                   = sizeof(const_expression_t),
287                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
288                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
289                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
290                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
291                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
292                 [EXPR_CALL]                    = sizeof(call_expression_t),
293                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
294                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
295                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
296                 [EXPR_SELECT]                  = sizeof(select_expression_t),
297                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
298                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
299                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
300                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
301                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
302                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
303                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
304                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
305                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
306                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
307                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
308                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
309         };
310         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
311                 return sizes[EXPR_UNARY_FIRST];
312         }
313         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
314                 return sizes[EXPR_BINARY_FIRST];
315         }
316         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
317         assert(sizes[kind] != 0);
318         return sizes[kind];
319 }
320
321 /**
322  * Allocate a statement node of given kind and initialize all
323  * fields with zero.
324  */
325 static statement_t *allocate_statement_zero(statement_kind_t kind)
326 {
327         size_t       size = get_statement_struct_size(kind);
328         statement_t *res  = allocate_ast_zero(size);
329
330         res->base.kind   = kind;
331         res->base.parent = current_parent;
332         return res;
333 }
334
335 /**
336  * Allocate an expression node of given kind and initialize all
337  * fields with zero.
338  */
339 static expression_t *allocate_expression_zero(expression_kind_t kind)
340 {
341         size_t        size = get_expression_struct_size(kind);
342         expression_t *res  = allocate_ast_zero(size);
343
344         res->base.kind = kind;
345         res->base.type = type_error_type;
346         return res;
347 }
348
349 /**
350  * Creates a new invalid expression.
351  */
352 static expression_t *create_invalid_expression(void)
353 {
354         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
355         expression->base.source_position = token.source_position;
356         return expression;
357 }
358
359 /**
360  * Creates a new invalid statement.
361  */
362 static statement_t *create_invalid_statement(void)
363 {
364         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
365         statement->base.source_position = token.source_position;
366         return statement;
367 }
368
369 /**
370  * Allocate a new empty statement.
371  */
372 static statement_t *create_empty_statement(void)
373 {
374         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
375         statement->base.source_position = token.source_position;
376         return statement;
377 }
378
379 /**
380  * Returns the size of a type node.
381  *
382  * @param kind  the type kind
383  */
384 static size_t get_type_struct_size(type_kind_t kind)
385 {
386         static const size_t sizes[] = {
387                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
388                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
389                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
390                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
391                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
392                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
393                 [TYPE_ENUM]            = sizeof(enum_type_t),
394                 [TYPE_FUNCTION]        = sizeof(function_type_t),
395                 [TYPE_POINTER]         = sizeof(pointer_type_t),
396                 [TYPE_ARRAY]           = sizeof(array_type_t),
397                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
398                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
399                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
400         };
401         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
402         assert(kind <= TYPE_TYPEOF);
403         assert(sizes[kind] != 0);
404         return sizes[kind];
405 }
406
407 /**
408  * Allocate a type node of given kind and initialize all
409  * fields with zero.
410  *
411  * @param kind             type kind to allocate
412  * @param source_position  the source position of the type definition
413  */
414 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
415 {
416         size_t  size = get_type_struct_size(kind);
417         type_t *res  = obstack_alloc(type_obst, size);
418         memset(res, 0, size);
419
420         res->base.kind            = kind;
421         res->base.source_position = *source_position;
422         return res;
423 }
424
425 /**
426  * Returns the size of an initializer node.
427  *
428  * @param kind  the initializer kind
429  */
430 static size_t get_initializer_size(initializer_kind_t kind)
431 {
432         static const size_t sizes[] = {
433                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
434                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
435                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
436                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
437                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
438         };
439         assert(kind < sizeof(sizes) / sizeof(*sizes));
440         assert(sizes[kind] != 0);
441         return sizes[kind];
442 }
443
444 /**
445  * Allocate an initializer node of given kind and initialize all
446  * fields with zero.
447  */
448 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
449 {
450         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
451         result->kind          = kind;
452
453         return result;
454 }
455
456 /**
457  * Free a type from the type obstack.
458  */
459 static void free_type(void *type)
460 {
461         obstack_free(type_obst, type);
462 }
463
464 /**
465  * Returns the index of the top element of the environment stack.
466  */
467 static size_t environment_top(void)
468 {
469         return ARR_LEN(environment_stack);
470 }
471
472 /**
473  * Returns the index of the top element of the label stack.
474  */
475 static size_t label_top(void)
476 {
477         return ARR_LEN(label_stack);
478 }
479
480 /**
481  * Return the next token.
482  */
483 static inline void next_token(void)
484 {
485         token                              = lookahead_buffer[lookahead_bufpos];
486         lookahead_buffer[lookahead_bufpos] = lexer_token;
487         lexer_next_token();
488
489         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
490
491 #ifdef PRINT_TOKENS
492         print_token(stderr, &token);
493         fprintf(stderr, "\n");
494 #endif
495 }
496
497 /**
498  * Return the next token with a given lookahead.
499  */
500 static inline const token_t *look_ahead(int num)
501 {
502         assert(num > 0 && num <= MAX_LOOKAHEAD);
503         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
504         return &lookahead_buffer[pos];
505 }
506
507 /**
508  * Adds a token to the token anchor set (a multi-set).
509  */
510 static void add_anchor_token(int token_type)
511 {
512         assert(0 <= token_type && token_type < T_LAST_TOKEN);
513         ++token_anchor_set[token_type];
514 }
515
516 static int save_and_reset_anchor_state(int token_type)
517 {
518         assert(0 <= token_type && token_type < T_LAST_TOKEN);
519         int count = token_anchor_set[token_type];
520         token_anchor_set[token_type] = 0;
521         return count;
522 }
523
524 static void restore_anchor_state(int token_type, int count)
525 {
526         assert(0 <= token_type && token_type < T_LAST_TOKEN);
527         token_anchor_set[token_type] = count;
528 }
529
530 /**
531  * Remove a token from the token anchor set (a multi-set).
532  */
533 static void rem_anchor_token(int token_type)
534 {
535         assert(0 <= token_type && token_type < T_LAST_TOKEN);
536         --token_anchor_set[token_type];
537 }
538
539 static bool at_anchor(void)
540 {
541         if (token.type < 0)
542                 return false;
543         return token_anchor_set[token.type];
544 }
545
546 /**
547  * Eat tokens until a matching token is found.
548  */
549 static void eat_until_matching_token(int type)
550 {
551         int end_token;
552         switch (type) {
553                 case '(': end_token = ')';  break;
554                 case '{': end_token = '}';  break;
555                 case '[': end_token = ']';  break;
556                 default:  end_token = type; break;
557         }
558
559         unsigned parenthesis_count = 0;
560         unsigned brace_count       = 0;
561         unsigned bracket_count     = 0;
562         while (token.type        != end_token ||
563                parenthesis_count != 0         ||
564                brace_count       != 0         ||
565                bracket_count     != 0) {
566                 switch (token.type) {
567                 case T_EOF: return;
568                 case '(': ++parenthesis_count; break;
569                 case '{': ++brace_count;       break;
570                 case '[': ++bracket_count;     break;
571
572                 case ')':
573                         if (parenthesis_count > 0)
574                                 --parenthesis_count;
575                         goto check_stop;
576
577                 case '}':
578                         if (brace_count > 0)
579                                 --brace_count;
580                         goto check_stop;
581
582                 case ']':
583                         if (bracket_count > 0)
584                                 --bracket_count;
585 check_stop:
586                         if (token.type        == end_token &&
587                             parenthesis_count == 0         &&
588                             brace_count       == 0         &&
589                             bracket_count     == 0)
590                                 return;
591                         break;
592
593                 default:
594                         break;
595                 }
596                 next_token();
597         }
598 }
599
600 /**
601  * Eat input tokens until an anchor is found.
602  */
603 static void eat_until_anchor(void)
604 {
605         if (token.type == T_EOF)
606                 return;
607         while (token_anchor_set[token.type] == 0) {
608                 if (token.type == '(' || token.type == '{' || token.type == '[')
609                         eat_until_matching_token(token.type);
610                 if (token.type == T_EOF)
611                         break;
612                 next_token();
613         }
614 }
615
616 static void eat_block(void)
617 {
618         eat_until_matching_token('{');
619         if (token.type == '}')
620                 next_token();
621 }
622
623 /**
624  * eat all token until a ';' is reached or a stop token is found.
625  */
626 static void eat_statement(void)
627 {
628         eat_until_matching_token(';');
629         if (token.type == ';')
630                 next_token();
631 }
632
633 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
634
635 /**
636  * Report a parse error because an expected token was not found.
637  */
638 static
639 #if defined __GNUC__ && __GNUC__ >= 4
640 __attribute__((sentinel))
641 #endif
642 void parse_error_expected(const char *message, ...)
643 {
644         if (message != NULL) {
645                 errorf(HERE, "%s", message);
646         }
647         va_list ap;
648         va_start(ap, message);
649         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
650         va_end(ap);
651 }
652
653 /**
654  * Report a type error.
655  */
656 static void type_error(const char *msg, const source_position_t *source_position,
657                        type_t *type)
658 {
659         errorf(source_position, "%s, but found type '%T'", msg, type);
660 }
661
662 /**
663  * Report an incompatible type.
664  */
665 static void type_error_incompatible(const char *msg,
666                 const source_position_t *source_position, type_t *type1, type_t *type2)
667 {
668         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
669                msg, type1, type2);
670 }
671
672 /**
673  * Expect the the current token is the expected token.
674  * If not, generate an error, eat the current statement,
675  * and goto the end_error label.
676  */
677 #define expect(expected)                              \
678         do {                                              \
679     if (UNLIKELY(token.type != (expected))) {          \
680         parse_error_expected(NULL, (expected), NULL); \
681                 add_anchor_token(expected);                   \
682         eat_until_anchor();                           \
683         if (token.type == expected)                   \
684                 next_token();                             \
685                 rem_anchor_token(expected);                   \
686         goto end_error;                               \
687     }                                                 \
688     next_token();                                     \
689         } while (0)
690
691 static void set_scope(scope_t *new_scope)
692 {
693         if (scope != NULL) {
694                 scope->last_declaration = last_declaration;
695         }
696         scope = new_scope;
697
698         last_declaration = new_scope->last_declaration;
699 }
700
701 /**
702  * Search a symbol in a given namespace and returns its declaration or
703  * NULL if this symbol was not found.
704  */
705 static declaration_t *get_declaration(const symbol_t *const symbol,
706                                       const namespace_t namespc)
707 {
708         declaration_t *declaration = symbol->declaration;
709         for( ; declaration != NULL; declaration = declaration->symbol_next) {
710                 if (declaration->namespc == namespc)
711                         return declaration;
712         }
713
714         return NULL;
715 }
716
717 /**
718  * pushs an environment_entry on the environment stack and links the
719  * corresponding symbol to the new entry
720  */
721 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
722 {
723         symbol_t    *symbol  = declaration->symbol;
724         namespace_t  namespc = (namespace_t) declaration->namespc;
725
726         /* replace/add declaration into declaration list of the symbol */
727         declaration_t *iter = symbol->declaration;
728         if (iter == NULL) {
729                 symbol->declaration = declaration;
730         } else {
731                 declaration_t *iter_last = NULL;
732                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
733                         /* replace an entry? */
734                         if (iter->namespc == namespc) {
735                                 if (iter_last == NULL) {
736                                         symbol->declaration = declaration;
737                                 } else {
738                                         iter_last->symbol_next = declaration;
739                                 }
740                                 declaration->symbol_next = iter->symbol_next;
741                                 break;
742                         }
743                 }
744                 if (iter == NULL) {
745                         assert(iter_last->symbol_next == NULL);
746                         iter_last->symbol_next = declaration;
747                 }
748         }
749
750         /* remember old declaration */
751         stack_entry_t entry;
752         entry.symbol          = symbol;
753         entry.old_declaration = iter;
754         entry.namespc         = (unsigned short) namespc;
755         ARR_APP1(stack_entry_t, *stack_ptr, entry);
756 }
757
758 static void environment_push(declaration_t *declaration)
759 {
760         assert(declaration->source_position.input_name != NULL);
761         assert(declaration->parent_scope != NULL);
762         stack_push(&environment_stack, declaration);
763 }
764
765 /**
766  * Push a declaration of the label stack.
767  *
768  * @param declaration  the declaration
769  */
770 static void label_push(declaration_t *declaration)
771 {
772         declaration->parent_scope = &current_function->scope;
773         stack_push(&label_stack, declaration);
774 }
775
776 /**
777  * pops symbols from the environment stack until @p new_top is the top element
778  */
779 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
780 {
781         stack_entry_t *stack = *stack_ptr;
782         size_t         top   = ARR_LEN(stack);
783         size_t         i;
784
785         assert(new_top <= top);
786         if (new_top == top)
787                 return;
788
789         for(i = top; i > new_top; --i) {
790                 stack_entry_t *entry = &stack[i - 1];
791
792                 declaration_t *old_declaration = entry->old_declaration;
793                 symbol_t      *symbol          = entry->symbol;
794                 namespace_t    namespc         = (namespace_t)entry->namespc;
795
796                 /* replace/remove declaration */
797                 declaration_t *declaration = symbol->declaration;
798                 assert(declaration != NULL);
799                 if (declaration->namespc == namespc) {
800                         if (old_declaration == NULL) {
801                                 symbol->declaration = declaration->symbol_next;
802                         } else {
803                                 symbol->declaration = old_declaration;
804                         }
805                 } else {
806                         declaration_t *iter_last = declaration;
807                         declaration_t *iter      = declaration->symbol_next;
808                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
809                                 /* replace an entry? */
810                                 if (iter->namespc == namespc) {
811                                         assert(iter_last != NULL);
812                                         iter_last->symbol_next = old_declaration;
813                                         if (old_declaration != NULL) {
814                                                 old_declaration->symbol_next = iter->symbol_next;
815                                         }
816                                         break;
817                                 }
818                         }
819                         assert(iter != NULL);
820                 }
821         }
822
823         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
824 }
825
826 static void environment_pop_to(size_t new_top)
827 {
828         stack_pop_to(&environment_stack, new_top);
829 }
830
831 /**
832  * Pop all entries on the label stack until the new_top
833  * is reached.
834  *
835  * @param new_top  the new stack top
836  */
837 static void label_pop_to(size_t new_top)
838 {
839         stack_pop_to(&label_stack, new_top);
840 }
841
842
843 static int get_rank(const type_t *type)
844 {
845         assert(!is_typeref(type));
846         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
847          * and esp. footnote 108). However we can't fold constants (yet), so we
848          * can't decide whether unsigned int is possible, while int always works.
849          * (unsigned int would be preferable when possible... for stuff like
850          *  struct { enum { ... } bla : 4; } ) */
851         if (type->kind == TYPE_ENUM)
852                 return ATOMIC_TYPE_INT;
853
854         assert(type->kind == TYPE_ATOMIC);
855         return type->atomic.akind;
856 }
857
858 static type_t *promote_integer(type_t *type)
859 {
860         if (type->kind == TYPE_BITFIELD)
861                 type = type->bitfield.base_type;
862
863         if (get_rank(type) < ATOMIC_TYPE_INT)
864                 type = type_int;
865
866         return type;
867 }
868
869 /**
870  * Create a cast expression.
871  *
872  * @param expression  the expression to cast
873  * @param dest_type   the destination type
874  */
875 static expression_t *create_cast_expression(expression_t *expression,
876                                             type_t *dest_type)
877 {
878         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
879
880         cast->unary.value = expression;
881         cast->base.type   = dest_type;
882
883         return cast;
884 }
885
886 /**
887  * Check if a given expression represents the 0 pointer constant.
888  */
889 static bool is_null_pointer_constant(const expression_t *expression)
890 {
891         /* skip void* cast */
892         if (expression->kind == EXPR_UNARY_CAST
893                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
894                 expression = expression->unary.value;
895         }
896
897         /* TODO: not correct yet, should be any constant integer expression
898          * which evaluates to 0 */
899         if (expression->kind != EXPR_CONST)
900                 return false;
901
902         type_t *const type = skip_typeref(expression->base.type);
903         if (!is_type_integer(type))
904                 return false;
905
906         return expression->conste.v.int_value == 0;
907 }
908
909 /**
910  * Create an implicit cast expression.
911  *
912  * @param expression  the expression to cast
913  * @param dest_type   the destination type
914  */
915 static expression_t *create_implicit_cast(expression_t *expression,
916                                           type_t *dest_type)
917 {
918         type_t *const source_type = expression->base.type;
919
920         if (source_type == dest_type)
921                 return expression;
922
923         return create_cast_expression(expression, dest_type);
924 }
925
926 typedef enum assign_error_t {
927         ASSIGN_SUCCESS,
928         ASSIGN_ERROR_INCOMPATIBLE,
929         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
930         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
931         ASSIGN_WARNING_POINTER_FROM_INT,
932         ASSIGN_WARNING_INT_FROM_POINTER
933 } assign_error_t;
934
935 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
936                                 const expression_t *const right,
937                                 const char *context,
938                                 const source_position_t *source_position)
939 {
940         type_t *const orig_type_right = right->base.type;
941         type_t *const type_left       = skip_typeref(orig_type_left);
942         type_t *const type_right      = skip_typeref(orig_type_right);
943
944         switch (error) {
945         case ASSIGN_SUCCESS:
946                 return;
947         case ASSIGN_ERROR_INCOMPATIBLE:
948                 errorf(source_position,
949                        "destination type '%T' in %s is incompatible with type '%T'",
950                        orig_type_left, context, orig_type_right);
951                 return;
952
953         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
954                 type_t *points_to_left
955                         = skip_typeref(type_left->pointer.points_to);
956                 type_t *points_to_right
957                         = skip_typeref(type_right->pointer.points_to);
958
959                 /* the left type has all qualifiers from the right type */
960                 unsigned missing_qualifiers
961                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
962                 errorf(source_position,
963                        "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointed-to type",
964                        orig_type_left, context, orig_type_right, missing_qualifiers);
965                 return;
966         }
967
968         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
969                 warningf(source_position,
970                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
971                                  orig_type_left, context, right, orig_type_right);
972                 return;
973
974         case ASSIGN_WARNING_POINTER_FROM_INT:
975                 warningf(source_position,
976                          "%s makes integer '%T' from pointer '%T' without a cast",
977                                  context, orig_type_left, orig_type_right);
978                 return;
979
980         case ASSIGN_WARNING_INT_FROM_POINTER:
981                 warningf(source_position,
982                                 "%s makes integer '%T' from pointer '%T' without a cast",
983                                 context, orig_type_left, orig_type_right);
984                 return;
985
986         default:
987                 panic("invalid error value");
988         }
989 }
990
991 /** Implements the rules from Â§ 6.5.16.1 */
992 static assign_error_t semantic_assign(type_t *orig_type_left,
993                                       const expression_t *const right)
994 {
995         type_t *const orig_type_right = right->base.type;
996         type_t *const type_left       = skip_typeref(orig_type_left);
997         type_t *const type_right      = skip_typeref(orig_type_right);
998
999         if (is_type_pointer(type_left)) {
1000                 if (is_null_pointer_constant(right)) {
1001                         return ASSIGN_SUCCESS;
1002                 } else if (is_type_pointer(type_right)) {
1003                         type_t *points_to_left
1004                                 = skip_typeref(type_left->pointer.points_to);
1005                         type_t *points_to_right
1006                                 = skip_typeref(type_right->pointer.points_to);
1007
1008                         /* the left type has all qualifiers from the right type */
1009                         unsigned missing_qualifiers
1010                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1011                         if (missing_qualifiers != 0) {
1012                                 return ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1013                         }
1014
1015                         points_to_left  = get_unqualified_type(points_to_left);
1016                         points_to_right = get_unqualified_type(points_to_right);
1017
1018                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1019                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1020                                 return ASSIGN_SUCCESS;
1021                         }
1022
1023                         if (!types_compatible(points_to_left, points_to_right)) {
1024                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1025                         }
1026
1027                         return ASSIGN_SUCCESS;
1028                 } else if (is_type_integer(type_right)) {
1029                         return ASSIGN_WARNING_POINTER_FROM_INT;
1030                 }
1031         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1032             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1033                 && is_type_pointer(type_right))) {
1034                 return ASSIGN_SUCCESS;
1035         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1036                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1037                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1038                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1039                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1040                         return ASSIGN_SUCCESS;
1041                 }
1042         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1043                 return ASSIGN_WARNING_INT_FROM_POINTER;
1044         }
1045
1046         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1047                 return ASSIGN_SUCCESS;
1048
1049         return ASSIGN_ERROR_INCOMPATIBLE;
1050 }
1051
1052 static expression_t *parse_constant_expression(void)
1053 {
1054         /* start parsing at precedence 7 (conditional expression) */
1055         expression_t *result = parse_sub_expression(7);
1056
1057         if (!is_constant_expression(result)) {
1058                 errorf(&result->base.source_position,
1059                        "expression '%E' is not constant\n", result);
1060         }
1061
1062         return result;
1063 }
1064
1065 static expression_t *parse_assignment_expression(void)
1066 {
1067         /* start parsing at precedence 2 (assignment expression) */
1068         return parse_sub_expression(2);
1069 }
1070
1071 static type_t *make_global_typedef(const char *name, type_t *type)
1072 {
1073         symbol_t *const symbol       = symbol_table_insert(name);
1074
1075         declaration_t *const declaration = allocate_declaration_zero();
1076         declaration->namespc                = NAMESPACE_NORMAL;
1077         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1078         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1079         declaration->type                   = type;
1080         declaration->symbol                 = symbol;
1081         declaration->source_position        = builtin_source_position;
1082
1083         record_declaration(declaration);
1084
1085         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1086         typedef_type->typedeft.declaration = declaration;
1087
1088         return typedef_type;
1089 }
1090
1091 static string_t parse_string_literals(void)
1092 {
1093         assert(token.type == T_STRING_LITERAL);
1094         string_t result = token.v.string;
1095
1096         next_token();
1097
1098         while (token.type == T_STRING_LITERAL) {
1099                 result = concat_strings(&result, &token.v.string);
1100                 next_token();
1101         }
1102
1103         return result;
1104 }
1105
1106 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1107         [GNU_AK_CONST]                  = "const",
1108         [GNU_AK_VOLATILE]               = "volatile",
1109         [GNU_AK_CDECL]                  = "cdecl",
1110         [GNU_AK_STDCALL]                = "stdcall",
1111         [GNU_AK_FASTCALL]               = "fastcall",
1112         [GNU_AK_DEPRECATED]             = "deprecated",
1113         [GNU_AK_NOINLINE]               = "noinline",
1114         [GNU_AK_NORETURN]               = "noreturn",
1115         [GNU_AK_NAKED]                  = "naked",
1116         [GNU_AK_PURE]                   = "pure",
1117         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1118         [GNU_AK_MALLOC]                 = "malloc",
1119         [GNU_AK_WEAK]                   = "weak",
1120         [GNU_AK_CONSTRUCTOR]            = "constructor",
1121         [GNU_AK_DESTRUCTOR]             = "destructor",
1122         [GNU_AK_NOTHROW]                = "nothrow",
1123         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1124         [GNU_AK_COMMON]                 = "common",
1125         [GNU_AK_NOCOMMON]               = "nocommon",
1126         [GNU_AK_PACKED]                 = "packed",
1127         [GNU_AK_SHARED]                 = "shared",
1128         [GNU_AK_NOTSHARED]              = "notshared",
1129         [GNU_AK_USED]                   = "used",
1130         [GNU_AK_UNUSED]                 = "unused",
1131         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1132         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1133         [GNU_AK_LONGCALL]               = "longcall",
1134         [GNU_AK_SHORTCALL]              = "shortcall",
1135         [GNU_AK_LONG_CALL]              = "long_call",
1136         [GNU_AK_SHORT_CALL]             = "short_call",
1137         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1138         [GNU_AK_INTERRUPT]              = "interrupt",
1139         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1140         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1141         [GNU_AK_NESTING]                = "nesting",
1142         [GNU_AK_NEAR]                   = "near",
1143         [GNU_AK_FAR]                    = "far",
1144         [GNU_AK_SIGNAL]                 = "signal",
1145         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1146         [GNU_AK_TINY_DATA]              = "tiny_data",
1147         [GNU_AK_SAVEALL]                = "saveall",
1148         [GNU_AK_FLATTEN]                = "flatten",
1149         [GNU_AK_SSEREGPARM]             = "sseregparm",
1150         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1151         [GNU_AK_RETURN_TWICE]           = "return_twice",
1152         [GNU_AK_MAY_ALIAS]              = "may_alias",
1153         [GNU_AK_MS_STRUCT]              = "ms_struct",
1154         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1155         [GNU_AK_DLLIMPORT]              = "dllimport",
1156         [GNU_AK_DLLEXPORT]              = "dllexport",
1157         [GNU_AK_ALIGNED]                = "aligned",
1158         [GNU_AK_ALIAS]                  = "alias",
1159         [GNU_AK_SECTION]                = "section",
1160         [GNU_AK_FORMAT]                 = "format",
1161         [GNU_AK_FORMAT_ARG]             = "format_arg",
1162         [GNU_AK_WEAKREF]                = "weakref",
1163         [GNU_AK_NONNULL]                = "nonnull",
1164         [GNU_AK_TLS_MODEL]              = "tls_model",
1165         [GNU_AK_VISIBILITY]             = "visibility",
1166         [GNU_AK_REGPARM]                = "regparm",
1167         [GNU_AK_MODE]                   = "mode",
1168         [GNU_AK_MODEL]                  = "model",
1169         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1170         [GNU_AK_SP_SWITCH]              = "sp_switch",
1171         [GNU_AK_SENTINEL]               = "sentinel"
1172 };
1173
1174 /**
1175  * compare two string, ignoring double underscores on the second.
1176  */
1177 static int strcmp_underscore(const char *s1, const char *s2)
1178 {
1179         if (s2[0] == '_' && s2[1] == '_') {
1180                 size_t len2 = strlen(s2);
1181                 size_t len1 = strlen(s1);
1182                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1183                         return strncmp(s1, s2+2, len2-4);
1184                 }
1185         }
1186
1187         return strcmp(s1, s2);
1188 }
1189
1190 /**
1191  * Allocate a new gnu temporal attribute.
1192  */
1193 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1194 {
1195         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1196         attribute->kind            = kind;
1197         attribute->next            = NULL;
1198         attribute->invalid         = false;
1199         attribute->have_arguments  = false;
1200
1201         return attribute;
1202 }
1203
1204 /**
1205  * parse one constant expression argument.
1206  */
1207 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1208 {
1209         expression_t *expression;
1210         add_anchor_token(')');
1211         expression = parse_constant_expression();
1212         rem_anchor_token(')');
1213         expect(')');
1214         attribute->u.argument = fold_constant(expression);
1215         return;
1216 end_error:
1217         attribute->invalid = true;
1218 }
1219
1220 /**
1221  * parse a list of constant expressions arguments.
1222  */
1223 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1224 {
1225         argument_list_t **list = &attribute->u.arguments;
1226         argument_list_t  *entry;
1227         expression_t     *expression;
1228         add_anchor_token(')');
1229         add_anchor_token(',');
1230         while (true) {
1231                 expression = parse_constant_expression();
1232                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1233                 entry->argument = fold_constant(expression);
1234                 entry->next     = NULL;
1235                 *list = entry;
1236                 list = &entry->next;
1237                 if (token.type != ',')
1238                         break;
1239                 next_token();
1240         }
1241         rem_anchor_token(',');
1242         rem_anchor_token(')');
1243         expect(')');
1244         return;
1245 end_error:
1246         attribute->invalid = true;
1247 }
1248
1249 /**
1250  * parse one string literal argument.
1251  */
1252 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1253                                            string_t *string)
1254 {
1255         add_anchor_token('(');
1256         if (token.type != T_STRING_LITERAL) {
1257                 parse_error_expected("while parsing attribute directive",
1258                                      T_STRING_LITERAL, NULL);
1259                 goto end_error;
1260         }
1261         *string = parse_string_literals();
1262         rem_anchor_token('(');
1263         expect(')');
1264         return;
1265 end_error:
1266         attribute->invalid = true;
1267 }
1268
1269 /**
1270  * parse one tls model.
1271  */
1272 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1273 {
1274         static const char *const tls_models[] = {
1275                 "global-dynamic",
1276                 "local-dynamic",
1277                 "initial-exec",
1278                 "local-exec"
1279         };
1280         string_t string = { NULL, 0 };
1281         parse_gnu_attribute_string_arg(attribute, &string);
1282         if (string.begin != NULL) {
1283                 for(size_t i = 0; i < 4; ++i) {
1284                         if (strcmp(tls_models[i], string.begin) == 0) {
1285                                 attribute->u.value = i;
1286                                 return;
1287                         }
1288                 }
1289                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1290         }
1291         attribute->invalid = true;
1292 }
1293
1294 /**
1295  * parse one tls model.
1296  */
1297 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1298 {
1299         static const char *const visibilities[] = {
1300                 "default",
1301                 "protected",
1302                 "hidden",
1303                 "internal"
1304         };
1305         string_t string = { NULL, 0 };
1306         parse_gnu_attribute_string_arg(attribute, &string);
1307         if (string.begin != NULL) {
1308                 for(size_t i = 0; i < 4; ++i) {
1309                         if (strcmp(visibilities[i], string.begin) == 0) {
1310                                 attribute->u.value = i;
1311                                 return;
1312                         }
1313                 }
1314                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1315         }
1316         attribute->invalid = true;
1317 }
1318
1319 /**
1320  * parse one (code) model.
1321  */
1322 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1323 {
1324         static const char *const visibilities[] = {
1325                 "small",
1326                 "medium",
1327                 "large"
1328         };
1329         string_t string = { NULL, 0 };
1330         parse_gnu_attribute_string_arg(attribute, &string);
1331         if (string.begin != NULL) {
1332                 for(int i = 0; i < 3; ++i) {
1333                         if (strcmp(visibilities[i], string.begin) == 0) {
1334                                 attribute->u.value = i;
1335                                 return;
1336                         }
1337                 }
1338                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1339         }
1340         attribute->invalid = true;
1341 }
1342
1343 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1344 {
1345         /* TODO: find out what is allowed here... */
1346
1347         /* at least: byte, word, pointer, list of machine modes
1348          * __XXX___ is interpreted as XXX */
1349         add_anchor_token(')');
1350
1351         if (token.type != T_IDENTIFIER) {
1352                 expect(T_IDENTIFIER);
1353         }
1354
1355         /* This isn't really correct, the backend should provide a list of machine
1356          * specific modes (according to gcc philosophy that is...) */
1357         const char *symbol_str = token.v.symbol->string;
1358         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1359             strcmp_underscore("byte", symbol_str) == 0) {
1360                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1361         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1362                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1363         } else if (strcmp_underscore("SI",      symbol_str) == 0
1364                 || strcmp_underscore("word",    symbol_str) == 0
1365                 || strcmp_underscore("pointer", symbol_str) == 0) {
1366                 attribute->u.akind = ATOMIC_TYPE_INT;
1367         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1368                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1369         } else {
1370                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1371                 attribute->invalid = true;
1372         }
1373         next_token();
1374
1375         rem_anchor_token(')');
1376         expect(')');
1377         return;
1378 end_error:
1379         attribute->invalid = true;
1380 }
1381
1382 /**
1383  * parse one interrupt argument.
1384  */
1385 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1386 {
1387         static const char *const interrupts[] = {
1388                 "IRQ",
1389                 "FIQ",
1390                 "SWI",
1391                 "ABORT",
1392                 "UNDEF"
1393         };
1394         string_t string = { NULL, 0 };
1395         parse_gnu_attribute_string_arg(attribute, &string);
1396         if (string.begin != NULL) {
1397                 for(size_t i = 0; i < 5; ++i) {
1398                         if (strcmp(interrupts[i], string.begin) == 0) {
1399                                 attribute->u.value = i;
1400                                 return;
1401                         }
1402                 }
1403                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1404         }
1405         attribute->invalid = true;
1406 }
1407
1408 /**
1409  * parse ( identifier, const expression, const expression )
1410  */
1411 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1412 {
1413         static const char *const format_names[] = {
1414                 "printf",
1415                 "scanf",
1416                 "strftime",
1417                 "strfmon"
1418         };
1419         int i;
1420
1421         if (token.type != T_IDENTIFIER) {
1422                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1423                 goto end_error;
1424         }
1425         const char *name = token.v.symbol->string;
1426         for(i = 0; i < 4; ++i) {
1427                 if (strcmp_underscore(format_names[i], name) == 0)
1428                         break;
1429         }
1430         if (i >= 4) {
1431                 if (warning.attribute)
1432                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1433         }
1434         next_token();
1435
1436         expect(',');
1437         add_anchor_token(')');
1438         add_anchor_token(',');
1439         parse_constant_expression();
1440         rem_anchor_token(',');
1441         rem_anchor_token('(');
1442
1443         expect(',');
1444         add_anchor_token(')');
1445         parse_constant_expression();
1446         rem_anchor_token('(');
1447         expect(')');
1448         return;
1449 end_error:
1450         attribute->u.value = true;
1451 }
1452
1453 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1454 {
1455         if (!attribute->have_arguments)
1456                 return;
1457
1458         /* should have no arguments */
1459         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1460         eat_until_matching_token('(');
1461         /* we have already consumed '(', so we stop before ')', eat it */
1462         eat(')');
1463         attribute->invalid = true;
1464 }
1465
1466 /**
1467  * Parse one GNU attribute.
1468  *
1469  * Note that attribute names can be specified WITH or WITHOUT
1470  * double underscores, ie const or __const__.
1471  *
1472  * The following attributes are parsed without arguments
1473  *  const
1474  *  volatile
1475  *  cdecl
1476  *  stdcall
1477  *  fastcall
1478  *  deprecated
1479  *  noinline
1480  *  noreturn
1481  *  naked
1482  *  pure
1483  *  always_inline
1484  *  malloc
1485  *  weak
1486  *  constructor
1487  *  destructor
1488  *  nothrow
1489  *  transparent_union
1490  *  common
1491  *  nocommon
1492  *  packed
1493  *  shared
1494  *  notshared
1495  *  used
1496  *  unused
1497  *  no_instrument_function
1498  *  warn_unused_result
1499  *  longcall
1500  *  shortcall
1501  *  long_call
1502  *  short_call
1503  *  function_vector
1504  *  interrupt_handler
1505  *  nmi_handler
1506  *  nesting
1507  *  near
1508  *  far
1509  *  signal
1510  *  eightbit_data
1511  *  tiny_data
1512  *  saveall
1513  *  flatten
1514  *  sseregparm
1515  *  externally_visible
1516  *  return_twice
1517  *  may_alias
1518  *  ms_struct
1519  *  gcc_struct
1520  *  dllimport
1521  *  dllexport
1522  *
1523  * The following attributes are parsed with arguments
1524  *  aligned( const expression )
1525  *  alias( string literal )
1526  *  section( string literal )
1527  *  format( identifier, const expression, const expression )
1528  *  format_arg( const expression )
1529  *  tls_model( string literal )
1530  *  visibility( string literal )
1531  *  regparm( const expression )
1532  *  model( string leteral )
1533  *  trap_exit( const expression )
1534  *  sp_switch( string literal )
1535  *
1536  * The following attributes might have arguments
1537  *  weak_ref( string literal )
1538  *  non_null( const expression // ',' )
1539  *  interrupt( string literal )
1540  *  sentinel( constant expression )
1541  */
1542 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1543 {
1544         gnu_attribute_t *head      = *attributes;
1545         gnu_attribute_t *last      = *attributes;
1546         decl_modifiers_t modifiers = 0;
1547         gnu_attribute_t *attribute;
1548
1549         eat(T___attribute__);
1550         expect('(');
1551         expect('(');
1552
1553         if (token.type != ')') {
1554                 /* find the end of the list */
1555                 if (last != NULL) {
1556                         while (last->next != NULL)
1557                                 last = last->next;
1558                 }
1559
1560                 /* non-empty attribute list */
1561                 while (true) {
1562                         const char *name;
1563                         if (token.type == T_const) {
1564                                 name = "const";
1565                         } else if (token.type == T_volatile) {
1566                                 name = "volatile";
1567                         } else if (token.type == T_cdecl) {
1568                                 /* __attribute__((cdecl)), WITH ms mode */
1569                                 name = "cdecl";
1570                         } else if (token.type == T_IDENTIFIER) {
1571                                 const symbol_t *sym = token.v.symbol;
1572                                 name = sym->string;
1573                         } else {
1574                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1575                                 break;
1576                         }
1577
1578                         next_token();
1579
1580                         int i;
1581                         for(i = 0; i < GNU_AK_LAST; ++i) {
1582                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1583                                         break;
1584                         }
1585                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1586
1587                         attribute = NULL;
1588                         if (kind == GNU_AK_LAST) {
1589                                 if (warning.attribute)
1590                                         warningf(HERE, "'%s' attribute directive ignored", name);
1591
1592                                 /* skip possible arguments */
1593                                 if (token.type == '(') {
1594                                         eat_until_matching_token(')');
1595                                 }
1596                         } else {
1597                                 /* check for arguments */
1598                                 attribute = allocate_gnu_attribute(kind);
1599                                 if (token.type == '(') {
1600                                         next_token();
1601                                         if (token.type == ')') {
1602                                                 /* empty args are allowed */
1603                                                 next_token();
1604                                         } else
1605                                                 attribute->have_arguments = true;
1606                                 }
1607
1608                                 switch(kind) {
1609                                 case GNU_AK_CONST:
1610                                 case GNU_AK_VOLATILE:
1611                                 case GNU_AK_NAKED:
1612                                 case GNU_AK_MALLOC:
1613                                 case GNU_AK_WEAK:
1614                                 case GNU_AK_COMMON:
1615                                 case GNU_AK_NOCOMMON:
1616                                 case GNU_AK_SHARED:
1617                                 case GNU_AK_NOTSHARED:
1618                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1619                                 case GNU_AK_WARN_UNUSED_RESULT:
1620                                 case GNU_AK_LONGCALL:
1621                                 case GNU_AK_SHORTCALL:
1622                                 case GNU_AK_LONG_CALL:
1623                                 case GNU_AK_SHORT_CALL:
1624                                 case GNU_AK_FUNCTION_VECTOR:
1625                                 case GNU_AK_INTERRUPT_HANDLER:
1626                                 case GNU_AK_NMI_HANDLER:
1627                                 case GNU_AK_NESTING:
1628                                 case GNU_AK_NEAR:
1629                                 case GNU_AK_FAR:
1630                                 case GNU_AK_SIGNAL:
1631                                 case GNU_AK_EIGTHBIT_DATA:
1632                                 case GNU_AK_TINY_DATA:
1633                                 case GNU_AK_SAVEALL:
1634                                 case GNU_AK_FLATTEN:
1635                                 case GNU_AK_SSEREGPARM:
1636                                 case GNU_AK_EXTERNALLY_VISIBLE:
1637                                 case GNU_AK_RETURN_TWICE:
1638                                 case GNU_AK_MAY_ALIAS:
1639                                 case GNU_AK_MS_STRUCT:
1640                                 case GNU_AK_GCC_STRUCT:
1641                                         goto no_arg;
1642
1643                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1644                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1645                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1646                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1647                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1648                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1649                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1650                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1651                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1652                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1653                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1654                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1655                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1656                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1657                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1658                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1659                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1660
1661                                 case GNU_AK_ALIGNED:
1662                                         /* __align__ may be used without an argument */
1663                                         if (attribute->have_arguments) {
1664                                                 parse_gnu_attribute_const_arg(attribute);
1665                                         }
1666                                         break;
1667
1668                                 case GNU_AK_FORMAT_ARG:
1669                                 case GNU_AK_REGPARM:
1670                                 case GNU_AK_TRAP_EXIT:
1671                                         if (!attribute->have_arguments) {
1672                                                 /* should have arguments */
1673                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1674                                                 attribute->invalid = true;
1675                                         } else
1676                                                 parse_gnu_attribute_const_arg(attribute);
1677                                         break;
1678                                 case GNU_AK_ALIAS:
1679                                 case GNU_AK_SECTION:
1680                                 case GNU_AK_SP_SWITCH:
1681                                         if (!attribute->have_arguments) {
1682                                                 /* should have arguments */
1683                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1684                                                 attribute->invalid = true;
1685                                         } else
1686                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1687                                         break;
1688                                 case GNU_AK_FORMAT:
1689                                         if (!attribute->have_arguments) {
1690                                                 /* should have arguments */
1691                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1692                                                 attribute->invalid = true;
1693                                         } else
1694                                                 parse_gnu_attribute_format_args(attribute);
1695                                         break;
1696                                 case GNU_AK_WEAKREF:
1697                                         /* may have one string argument */
1698                                         if (attribute->have_arguments)
1699                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1700                                         break;
1701                                 case GNU_AK_NONNULL:
1702                                         if (attribute->have_arguments)
1703                                                 parse_gnu_attribute_const_arg_list(attribute);
1704                                         break;
1705                                 case GNU_AK_TLS_MODEL:
1706                                         if (!attribute->have_arguments) {
1707                                                 /* should have arguments */
1708                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1709                                         } else
1710                                                 parse_gnu_attribute_tls_model_arg(attribute);
1711                                         break;
1712                                 case GNU_AK_VISIBILITY:
1713                                         if (!attribute->have_arguments) {
1714                                                 /* should have arguments */
1715                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1716                                         } else
1717                                                 parse_gnu_attribute_visibility_arg(attribute);
1718                                         break;
1719                                 case GNU_AK_MODEL:
1720                                         if (!attribute->have_arguments) {
1721                                                 /* should have arguments */
1722                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1723                                         } else {
1724                                                 parse_gnu_attribute_model_arg(attribute);
1725                                         }
1726                                         break;
1727                                 case GNU_AK_MODE:
1728                                         if (!attribute->have_arguments) {
1729                                                 /* should have arguments */
1730                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1731                                         } else {
1732                                                 parse_gnu_attribute_mode_arg(attribute);
1733                                         }
1734                                         break;
1735                                 case GNU_AK_INTERRUPT:
1736                                         /* may have one string argument */
1737                                         if (attribute->have_arguments)
1738                                                 parse_gnu_attribute_interrupt_arg(attribute);
1739                                         break;
1740                                 case GNU_AK_SENTINEL:
1741                                         /* may have one string argument */
1742                                         if (attribute->have_arguments)
1743                                                 parse_gnu_attribute_const_arg(attribute);
1744                                         break;
1745                                 case GNU_AK_LAST:
1746                                         /* already handled */
1747                                         break;
1748
1749 no_arg:
1750                                         check_no_argument(attribute, name);
1751                                 }
1752                         }
1753                         if (attribute != NULL) {
1754                                 if (last != NULL) {
1755                                         last->next = attribute;
1756                                         last       = attribute;
1757                                 } else {
1758                                         head = last = attribute;
1759                                 }
1760                         }
1761
1762                         if (token.type != ',')
1763                                 break;
1764                         next_token();
1765                 }
1766         }
1767         expect(')');
1768         expect(')');
1769 end_error:
1770         *attributes = head;
1771
1772         return modifiers;
1773 }
1774
1775 /**
1776  * Parse GNU attributes.
1777  */
1778 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1779 {
1780         decl_modifiers_t modifiers = 0;
1781
1782         while (true) {
1783                 switch(token.type) {
1784                 case T___attribute__:
1785                         modifiers |= parse_gnu_attribute(attributes);
1786                         continue;
1787
1788                 case T_asm:
1789                         next_token();
1790                         expect('(');
1791                         if (token.type != T_STRING_LITERAL) {
1792                                 parse_error_expected("while parsing assembler attribute",
1793                                                      T_STRING_LITERAL, NULL);
1794                                 eat_until_matching_token('(');
1795                                 break;
1796                         } else {
1797                                 parse_string_literals();
1798                         }
1799                         expect(')');
1800                         continue;
1801
1802                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1803                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1804                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1805
1806                 case T___thiscall:
1807                         /* TODO record modifier */
1808                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1809                         break;
1810
1811 end_error:
1812                 default: return modifiers;
1813                 }
1814
1815                 next_token();
1816         }
1817 }
1818
1819 static designator_t *parse_designation(void)
1820 {
1821         designator_t *result = NULL;
1822         designator_t *last   = NULL;
1823
1824         while (true) {
1825                 designator_t *designator;
1826                 switch(token.type) {
1827                 case '[':
1828                         designator = allocate_ast_zero(sizeof(designator[0]));
1829                         designator->source_position = token.source_position;
1830                         next_token();
1831                         add_anchor_token(']');
1832                         designator->array_index = parse_constant_expression();
1833                         rem_anchor_token(']');
1834                         expect(']');
1835                         break;
1836                 case '.':
1837                         designator = allocate_ast_zero(sizeof(designator[0]));
1838                         designator->source_position = token.source_position;
1839                         next_token();
1840                         if (token.type != T_IDENTIFIER) {
1841                                 parse_error_expected("while parsing designator",
1842                                                      T_IDENTIFIER, NULL);
1843                                 return NULL;
1844                         }
1845                         designator->symbol = token.v.symbol;
1846                         next_token();
1847                         break;
1848                 default:
1849                         expect('=');
1850                         return result;
1851                 }
1852
1853                 assert(designator != NULL);
1854                 if (last != NULL) {
1855                         last->next = designator;
1856                 } else {
1857                         result = designator;
1858                 }
1859                 last = designator;
1860         }
1861 end_error:
1862         return NULL;
1863 }
1864
1865 static initializer_t *initializer_from_string(array_type_t *type,
1866                                               const string_t *const string)
1867 {
1868         /* TODO: check len vs. size of array type */
1869         (void) type;
1870
1871         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1872         initializer->string.string = *string;
1873
1874         return initializer;
1875 }
1876
1877 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1878                                                    wide_string_t *const string)
1879 {
1880         /* TODO: check len vs. size of array type */
1881         (void) type;
1882
1883         initializer_t *const initializer =
1884                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1885         initializer->wide_string.string = *string;
1886
1887         return initializer;
1888 }
1889
1890 /**
1891  * Build an initializer from a given expression.
1892  */
1893 static initializer_t *initializer_from_expression(type_t *orig_type,
1894                                                   expression_t *expression)
1895 {
1896         /* TODO check that expression is a constant expression */
1897
1898         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1899         type_t *type           = skip_typeref(orig_type);
1900         type_t *expr_type_orig = expression->base.type;
1901         type_t *expr_type      = skip_typeref(expr_type_orig);
1902         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1903                 array_type_t *const array_type   = &type->array;
1904                 type_t       *const element_type = skip_typeref(array_type->element_type);
1905
1906                 if (element_type->kind == TYPE_ATOMIC) {
1907                         atomic_type_kind_t akind = element_type->atomic.akind;
1908                         switch (expression->kind) {
1909                                 case EXPR_STRING_LITERAL:
1910                                         if (akind == ATOMIC_TYPE_CHAR
1911                                                         || akind == ATOMIC_TYPE_SCHAR
1912                                                         || akind == ATOMIC_TYPE_UCHAR) {
1913                                                 return initializer_from_string(array_type,
1914                                                         &expression->string.value);
1915                                         }
1916
1917                                 case EXPR_WIDE_STRING_LITERAL: {
1918                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1919                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1920                                                 return initializer_from_wide_string(array_type,
1921                                                         &expression->wide_string.value);
1922                                         }
1923                                 }
1924
1925                                 default:
1926                                         break;
1927                         }
1928                 }
1929         }
1930
1931         assign_error_t error = semantic_assign(type, expression);
1932         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1933                 return NULL;
1934         report_assign_error(error, type, expression, "initializer",
1935                             &expression->base.source_position);
1936
1937         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1938         result->value.value = create_implicit_cast(expression, type);
1939
1940         return result;
1941 }
1942
1943 /**
1944  * Checks if a given expression can be used as an constant initializer.
1945  */
1946 static bool is_initializer_constant(const expression_t *expression)
1947 {
1948         return is_constant_expression(expression)
1949                 || is_address_constant(expression);
1950 }
1951
1952 /**
1953  * Parses an scalar initializer.
1954  *
1955  * Â§ 6.7.8.11; eat {} without warning
1956  */
1957 static initializer_t *parse_scalar_initializer(type_t *type,
1958                                                bool must_be_constant)
1959 {
1960         /* there might be extra {} hierarchies */
1961         int braces = 0;
1962         if (token.type == '{') {
1963                 warningf(HERE, "extra curly braces around scalar initializer");
1964                 do {
1965                         ++braces;
1966                         next_token();
1967                 } while (token.type == '{');
1968         }
1969
1970         expression_t *expression = parse_assignment_expression();
1971         if (must_be_constant && !is_initializer_constant(expression)) {
1972                 errorf(&expression->base.source_position,
1973                        "Initialisation expression '%E' is not constant\n",
1974                        expression);
1975         }
1976
1977         initializer_t *initializer = initializer_from_expression(type, expression);
1978
1979         if (initializer == NULL) {
1980                 errorf(&expression->base.source_position,
1981                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1982                        expression, expression->base.type, type);
1983                 /* TODO */
1984                 return NULL;
1985         }
1986
1987         bool additional_warning_displayed = false;
1988         while (braces > 0) {
1989                 if (token.type == ',') {
1990                         next_token();
1991                 }
1992                 if (token.type != '}') {
1993                         if (!additional_warning_displayed) {
1994                                 warningf(HERE, "additional elements in scalar initializer");
1995                                 additional_warning_displayed = true;
1996                         }
1997                 }
1998                 eat_block();
1999                 braces--;
2000         }
2001
2002         return initializer;
2003 }
2004
2005 /**
2006  * An entry in the type path.
2007  */
2008 typedef struct type_path_entry_t type_path_entry_t;
2009 struct type_path_entry_t {
2010         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2011         union {
2012                 size_t         index;          /**< For array types: the current index. */
2013                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2014         } v;
2015 };
2016
2017 /**
2018  * A type path expression a position inside compound or array types.
2019  */
2020 typedef struct type_path_t type_path_t;
2021 struct type_path_t {
2022         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2023         type_t            *top_type;     /**< type of the element the path points */
2024         size_t             max_index;    /**< largest index in outermost array */
2025 };
2026
2027 /**
2028  * Prints a type path for debugging.
2029  */
2030 static __attribute__((unused)) void debug_print_type_path(
2031                 const type_path_t *path)
2032 {
2033         size_t len = ARR_LEN(path->path);
2034
2035         for(size_t i = 0; i < len; ++i) {
2036                 const type_path_entry_t *entry = & path->path[i];
2037
2038                 type_t *type = skip_typeref(entry->type);
2039                 if (is_type_compound(type)) {
2040                         /* in gcc mode structs can have no members */
2041                         if (entry->v.compound_entry == NULL) {
2042                                 assert(i == len-1);
2043                                 continue;
2044                         }
2045                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2046                 } else if (is_type_array(type)) {
2047                         fprintf(stderr, "[%zu]", entry->v.index);
2048                 } else {
2049                         fprintf(stderr, "-INVALID-");
2050                 }
2051         }
2052         if (path->top_type != NULL) {
2053                 fprintf(stderr, "  (");
2054                 print_type(path->top_type);
2055                 fprintf(stderr, ")");
2056         }
2057 }
2058
2059 /**
2060  * Return the top type path entry, ie. in a path
2061  * (type).a.b returns the b.
2062  */
2063 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2064 {
2065         size_t len = ARR_LEN(path->path);
2066         assert(len > 0);
2067         return &path->path[len-1];
2068 }
2069
2070 /**
2071  * Enlarge the type path by an (empty) element.
2072  */
2073 static type_path_entry_t *append_to_type_path(type_path_t *path)
2074 {
2075         size_t len = ARR_LEN(path->path);
2076         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2077
2078         type_path_entry_t *result = & path->path[len];
2079         memset(result, 0, sizeof(result[0]));
2080         return result;
2081 }
2082
2083 /**
2084  * Descending into a sub-type. Enter the scope of the current
2085  * top_type.
2086  */
2087 static void descend_into_subtype(type_path_t *path)
2088 {
2089         type_t *orig_top_type = path->top_type;
2090         type_t *top_type      = skip_typeref(orig_top_type);
2091
2092         assert(is_type_compound(top_type) || is_type_array(top_type));
2093
2094         type_path_entry_t *top = append_to_type_path(path);
2095         top->type              = top_type;
2096
2097         if (is_type_compound(top_type)) {
2098                 declaration_t *declaration = top_type->compound.declaration;
2099                 declaration_t *entry       = declaration->scope.declarations;
2100                 top->v.compound_entry      = entry;
2101
2102                 if (entry != NULL) {
2103                         path->top_type         = entry->type;
2104                 } else {
2105                         path->top_type         = NULL;
2106                 }
2107         } else {
2108                 assert(is_type_array(top_type));
2109
2110                 top->v.index   = 0;
2111                 path->top_type = top_type->array.element_type;
2112         }
2113 }
2114
2115 /**
2116  * Pop an entry from the given type path, ie. returning from
2117  * (type).a.b to (type).a
2118  */
2119 static void ascend_from_subtype(type_path_t *path)
2120 {
2121         type_path_entry_t *top = get_type_path_top(path);
2122
2123         path->top_type = top->type;
2124
2125         size_t len = ARR_LEN(path->path);
2126         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2127 }
2128
2129 /**
2130  * Pop entries from the given type path until the given
2131  * path level is reached.
2132  */
2133 static void ascend_to(type_path_t *path, size_t top_path_level)
2134 {
2135         size_t len = ARR_LEN(path->path);
2136
2137         while (len > top_path_level) {
2138                 ascend_from_subtype(path);
2139                 len = ARR_LEN(path->path);
2140         }
2141 }
2142
2143 static bool walk_designator(type_path_t *path, const designator_t *designator,
2144                             bool used_in_offsetof)
2145 {
2146         for( ; designator != NULL; designator = designator->next) {
2147                 type_path_entry_t *top       = get_type_path_top(path);
2148                 type_t            *orig_type = top->type;
2149
2150                 type_t *type = skip_typeref(orig_type);
2151
2152                 if (designator->symbol != NULL) {
2153                         symbol_t *symbol = designator->symbol;
2154                         if (!is_type_compound(type)) {
2155                                 if (is_type_valid(type)) {
2156                                         errorf(&designator->source_position,
2157                                                "'.%Y' designator used for non-compound type '%T'",
2158                                                symbol, orig_type);
2159                                 }
2160                                 goto failed;
2161                         }
2162
2163                         declaration_t *declaration = type->compound.declaration;
2164                         declaration_t *iter        = declaration->scope.declarations;
2165                         for( ; iter != NULL; iter = iter->next) {
2166                                 if (iter->symbol == symbol) {
2167                                         break;
2168                                 }
2169                         }
2170                         if (iter == NULL) {
2171                                 errorf(&designator->source_position,
2172                                        "'%T' has no member named '%Y'", orig_type, symbol);
2173                                 goto failed;
2174                         }
2175                         if (used_in_offsetof) {
2176                                 type_t *real_type = skip_typeref(iter->type);
2177                                 if (real_type->kind == TYPE_BITFIELD) {
2178                                         errorf(&designator->source_position,
2179                                                "offsetof designator '%Y' may not specify bitfield",
2180                                                symbol);
2181                                         goto failed;
2182                                 }
2183                         }
2184
2185                         top->type             = orig_type;
2186                         top->v.compound_entry = iter;
2187                         orig_type             = iter->type;
2188                 } else {
2189                         expression_t *array_index = designator->array_index;
2190                         assert(designator->array_index != NULL);
2191
2192                         if (!is_type_array(type)) {
2193                                 if (is_type_valid(type)) {
2194                                         errorf(&designator->source_position,
2195                                                "[%E] designator used for non-array type '%T'",
2196                                                array_index, orig_type);
2197                                 }
2198                                 goto failed;
2199                         }
2200                         if (!is_type_valid(array_index->base.type)) {
2201                                 goto failed;
2202                         }
2203
2204                         long index = fold_constant(array_index);
2205                         if (!used_in_offsetof) {
2206                                 if (index < 0) {
2207                                         errorf(&designator->source_position,
2208                                                "array index [%E] must be positive", array_index);
2209                                         goto failed;
2210                                 }
2211                                 if (type->array.size_constant == true) {
2212                                         long array_size = type->array.size;
2213                                         if (index >= array_size) {
2214                                                 errorf(&designator->source_position,
2215                                                        "designator [%E] (%d) exceeds array size %d",
2216                                                        array_index, index, array_size);
2217                                                 goto failed;
2218                                         }
2219                                 }
2220                         }
2221
2222                         top->type    = orig_type;
2223                         top->v.index = (size_t) index;
2224                         orig_type    = type->array.element_type;
2225                 }
2226                 path->top_type = orig_type;
2227
2228                 if (designator->next != NULL) {
2229                         descend_into_subtype(path);
2230                 }
2231         }
2232         return true;
2233
2234 failed:
2235         return false;
2236 }
2237
2238 static void advance_current_object(type_path_t *path, size_t top_path_level)
2239 {
2240         type_path_entry_t *top = get_type_path_top(path);
2241
2242         type_t *type = skip_typeref(top->type);
2243         if (is_type_union(type)) {
2244                 /* in unions only the first element is initialized */
2245                 top->v.compound_entry = NULL;
2246         } else if (is_type_struct(type)) {
2247                 declaration_t *entry = top->v.compound_entry;
2248
2249                 entry                 = entry->next;
2250                 top->v.compound_entry = entry;
2251                 if (entry != NULL) {
2252                         path->top_type = entry->type;
2253                         return;
2254                 }
2255         } else {
2256                 assert(is_type_array(type));
2257
2258                 top->v.index++;
2259
2260                 if (!type->array.size_constant || top->v.index < type->array.size) {
2261                         return;
2262                 }
2263         }
2264
2265         /* we're past the last member of the current sub-aggregate, try if we
2266          * can ascend in the type hierarchy and continue with another subobject */
2267         size_t len = ARR_LEN(path->path);
2268
2269         if (len > top_path_level) {
2270                 ascend_from_subtype(path);
2271                 advance_current_object(path, top_path_level);
2272         } else {
2273                 path->top_type = NULL;
2274         }
2275 }
2276
2277 /**
2278  * skip until token is found.
2279  */
2280 static void skip_until(int type)
2281 {
2282         while (token.type != type) {
2283                 if (token.type == T_EOF)
2284                         return;
2285                 next_token();
2286         }
2287 }
2288
2289 /**
2290  * skip any {...} blocks until a closing bracket is reached.
2291  */
2292 static void skip_initializers(void)
2293 {
2294         if (token.type == '{')
2295                 next_token();
2296
2297         while (token.type != '}') {
2298                 if (token.type == T_EOF)
2299                         return;
2300                 if (token.type == '{') {
2301                         eat_block();
2302                         continue;
2303                 }
2304                 next_token();
2305         }
2306 }
2307
2308 static initializer_t *create_empty_initializer(void)
2309 {
2310         static initializer_t empty_initializer
2311                 = { .list = { { INITIALIZER_LIST }, 0 } };
2312         return &empty_initializer;
2313 }
2314
2315 /**
2316  * Parse a part of an initialiser for a struct or union,
2317  */
2318 static initializer_t *parse_sub_initializer(type_path_t *path,
2319                 type_t *outer_type, size_t top_path_level,
2320                 parse_initializer_env_t *env)
2321 {
2322         if (token.type == '}') {
2323                 /* empty initializer */
2324                 return create_empty_initializer();
2325         }
2326
2327         type_t *orig_type = path->top_type;
2328         type_t *type      = NULL;
2329
2330         if (orig_type == NULL) {
2331                 /* We are initializing an empty compound. */
2332         } else {
2333                 type = skip_typeref(orig_type);
2334
2335                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2336                  * initializers in this case. */
2337                 if (!is_type_valid(type)) {
2338                         skip_initializers();
2339                         return create_empty_initializer();
2340                 }
2341         }
2342
2343         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2344
2345         while (true) {
2346                 designator_t *designator = NULL;
2347                 if (token.type == '.' || token.type == '[') {
2348                         designator = parse_designation();
2349                         goto finish_designator;
2350                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2351                         /* GNU-style designator ("identifier: value") */
2352                         designator = allocate_ast_zero(sizeof(designator[0]));
2353                         designator->source_position = token.source_position;
2354                         designator->symbol          = token.v.symbol;
2355                         eat(T_IDENTIFIER);
2356                         eat(':');
2357
2358 finish_designator:
2359                         /* reset path to toplevel, evaluate designator from there */
2360                         ascend_to(path, top_path_level);
2361                         if (!walk_designator(path, designator, false)) {
2362                                 /* can't continue after designation error */
2363                                 goto end_error;
2364                         }
2365
2366                         initializer_t *designator_initializer
2367                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2368                         designator_initializer->designator.designator = designator;
2369                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2370
2371                         orig_type = path->top_type;
2372                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2373                 }
2374
2375                 initializer_t *sub;
2376
2377                 if (token.type == '{') {
2378                         if (type != NULL && is_type_scalar(type)) {
2379                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2380                         } else {
2381                                 eat('{');
2382                                 if (type == NULL) {
2383                                         if (env->declaration != NULL) {
2384                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2385                                                        env->declaration->symbol);
2386                                         } else {
2387                                                 errorf(HERE, "extra brace group at end of initializer");
2388                                         }
2389                                 } else
2390                                         descend_into_subtype(path);
2391
2392                                 add_anchor_token('}');
2393                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2394                                                             env);
2395                                 rem_anchor_token('}');
2396
2397                                 if (type != NULL) {
2398                                         ascend_from_subtype(path);
2399                                         expect('}');
2400                                 } else {
2401                                         expect('}');
2402                                         goto error_parse_next;
2403                                 }
2404                         }
2405                 } else {
2406                         /* must be an expression */
2407                         expression_t *expression = parse_assignment_expression();
2408
2409                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2410                                 errorf(&expression->base.source_position,
2411                                        "Initialisation expression '%E' is not constant\n",
2412                                        expression);
2413                         }
2414
2415                         if (type == NULL) {
2416                                 /* we are already outside, ... */
2417                                 goto error_excess;
2418                         }
2419
2420                         /* handle { "string" } special case */
2421                         if ((expression->kind == EXPR_STRING_LITERAL
2422                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2423                                         && outer_type != NULL) {
2424                                 sub = initializer_from_expression(outer_type, expression);
2425                                 if (sub != NULL) {
2426                                         if (token.type == ',') {
2427                                                 next_token();
2428                                         }
2429                                         if (token.type != '}') {
2430                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2431                                                                  orig_type);
2432                                         }
2433                                         /* TODO: eat , ... */
2434                                         return sub;
2435                                 }
2436                         }
2437
2438                         /* descend into subtypes until expression matches type */
2439                         while (true) {
2440                                 orig_type = path->top_type;
2441                                 type      = skip_typeref(orig_type);
2442
2443                                 sub = initializer_from_expression(orig_type, expression);
2444                                 if (sub != NULL) {
2445                                         break;
2446                                 }
2447                                 if (!is_type_valid(type)) {
2448                                         goto end_error;
2449                                 }
2450                                 if (is_type_scalar(type)) {
2451                                         errorf(&expression->base.source_position,
2452                                                         "expression '%E' doesn't match expected type '%T'",
2453                                                         expression, orig_type);
2454                                         goto end_error;
2455                                 }
2456
2457                                 descend_into_subtype(path);
2458                         }
2459                 }
2460
2461                 /* update largest index of top array */
2462                 const type_path_entry_t *first      = &path->path[0];
2463                 type_t                  *first_type = first->type;
2464                 first_type                          = skip_typeref(first_type);
2465                 if (is_type_array(first_type)) {
2466                         size_t index = first->v.index;
2467                         if (index > path->max_index)
2468                                 path->max_index = index;
2469                 }
2470
2471                 if (type != NULL) {
2472                         /* append to initializers list */
2473                         ARR_APP1(initializer_t*, initializers, sub);
2474                 } else {
2475 error_excess:
2476                         if (env->declaration != NULL)
2477                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2478                                  env->declaration->symbol);
2479                         else
2480                                 warningf(HERE, "excess elements in struct initializer");
2481                 }
2482
2483 error_parse_next:
2484                 if (token.type == '}') {
2485                         break;
2486                 }
2487                 expect(',');
2488                 if (token.type == '}') {
2489                         break;
2490                 }
2491
2492                 if (type != NULL) {
2493                         /* advance to the next declaration if we are not at the end */
2494                         advance_current_object(path, top_path_level);
2495                         orig_type = path->top_type;
2496                         if (orig_type != NULL)
2497                                 type = skip_typeref(orig_type);
2498                         else
2499                                 type = NULL;
2500                 }
2501         }
2502
2503         size_t len  = ARR_LEN(initializers);
2504         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2505         initializer_t *result = allocate_ast_zero(size);
2506         result->kind          = INITIALIZER_LIST;
2507         result->list.len      = len;
2508         memcpy(&result->list.initializers, initializers,
2509                len * sizeof(initializers[0]));
2510
2511         DEL_ARR_F(initializers);
2512         ascend_to(path, top_path_level+1);
2513
2514         return result;
2515
2516 end_error:
2517         skip_initializers();
2518         DEL_ARR_F(initializers);
2519         ascend_to(path, top_path_level+1);
2520         return NULL;
2521 }
2522
2523 /**
2524  * Parses an initializer. Parsers either a compound literal
2525  * (env->declaration == NULL) or an initializer of a declaration.
2526  */
2527 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2528 {
2529         type_t        *type   = skip_typeref(env->type);
2530         initializer_t *result = NULL;
2531         size_t         max_index;
2532
2533         if (is_type_scalar(type)) {
2534                 result = parse_scalar_initializer(type, env->must_be_constant);
2535         } else if (token.type == '{') {
2536                 eat('{');
2537
2538                 type_path_t path;
2539                 memset(&path, 0, sizeof(path));
2540                 path.top_type = env->type;
2541                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2542
2543                 descend_into_subtype(&path);
2544
2545                 add_anchor_token('}');
2546                 result = parse_sub_initializer(&path, env->type, 1, env);
2547                 rem_anchor_token('}');
2548
2549                 max_index = path.max_index;
2550                 DEL_ARR_F(path.path);
2551
2552                 expect('}');
2553         } else {
2554                 /* parse_scalar_initializer() also works in this case: we simply
2555                  * have an expression without {} around it */
2556                 result = parse_scalar_initializer(type, env->must_be_constant);
2557         }
2558
2559         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2560          * the array type size */
2561         if (is_type_array(type) && type->array.size_expression == NULL
2562                         && result != NULL) {
2563                 size_t size;
2564                 switch (result->kind) {
2565                 case INITIALIZER_LIST:
2566                         size = max_index + 1;
2567                         break;
2568
2569                 case INITIALIZER_STRING:
2570                         size = result->string.string.size;
2571                         break;
2572
2573                 case INITIALIZER_WIDE_STRING:
2574                         size = result->wide_string.string.size;
2575                         break;
2576
2577                 case INITIALIZER_DESIGNATOR:
2578                 case INITIALIZER_VALUE:
2579                         /* can happen for parse errors */
2580                         size = 0;
2581                         break;
2582
2583                 default:
2584                         internal_errorf(HERE, "invalid initializer type");
2585                 }
2586
2587                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2588                 cnst->base.type          = type_size_t;
2589                 cnst->conste.v.int_value = size;
2590
2591                 type_t *new_type = duplicate_type(type);
2592
2593                 new_type->array.size_expression = cnst;
2594                 new_type->array.size_constant   = true;
2595                 new_type->array.size            = size;
2596                 env->type = new_type;
2597         }
2598
2599         return result;
2600 end_error:
2601         return NULL;
2602 }
2603
2604 static declaration_t *append_declaration(declaration_t *declaration);
2605
2606 static declaration_t *parse_compound_type_specifier(bool is_struct)
2607 {
2608         gnu_attribute_t  *attributes = NULL;
2609         decl_modifiers_t  modifiers  = 0;
2610         if (is_struct) {
2611                 eat(T_struct);
2612         } else {
2613                 eat(T_union);
2614         }
2615
2616         symbol_t      *symbol      = NULL;
2617         declaration_t *declaration = NULL;
2618
2619         if (token.type == T___attribute__) {
2620                 modifiers |= parse_attributes(&attributes);
2621         }
2622
2623         if (token.type == T_IDENTIFIER) {
2624                 symbol = token.v.symbol;
2625                 next_token();
2626
2627                 namespace_t const namespc =
2628                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2629                 declaration = get_declaration(symbol, namespc);
2630                 if (declaration != NULL) {
2631                         if (declaration->parent_scope != scope &&
2632                             (token.type == '{' || token.type == ';')) {
2633                                 declaration = NULL;
2634                         } else if (declaration->init.complete &&
2635                                    token.type == '{') {
2636                                 assert(symbol != NULL);
2637                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2638                                        is_struct ? "struct" : "union", symbol,
2639                                        &declaration->source_position);
2640                                 declaration->scope.declarations = NULL;
2641                         }
2642                 }
2643         } else if (token.type != '{') {
2644                 if (is_struct) {
2645                         parse_error_expected("while parsing struct type specifier",
2646                                              T_IDENTIFIER, '{', NULL);
2647                 } else {
2648                         parse_error_expected("while parsing union type specifier",
2649                                              T_IDENTIFIER, '{', NULL);
2650                 }
2651
2652                 return NULL;
2653         }
2654
2655         if (declaration == NULL) {
2656                 declaration = allocate_declaration_zero();
2657                 declaration->namespc         =
2658                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2659                 declaration->source_position = token.source_position;
2660                 declaration->symbol          = symbol;
2661                 declaration->parent_scope    = scope;
2662                 if (symbol != NULL) {
2663                         environment_push(declaration);
2664                 }
2665                 append_declaration(declaration);
2666         }
2667
2668         if (token.type == '{') {
2669                 declaration->init.complete = true;
2670
2671                 parse_compound_type_entries(declaration);
2672                 modifiers |= parse_attributes(&attributes);
2673         }
2674
2675         declaration->modifiers |= modifiers;
2676         return declaration;
2677 }
2678
2679 static void parse_enum_entries(type_t *const enum_type)
2680 {
2681         eat('{');
2682
2683         if (token.type == '}') {
2684                 next_token();
2685                 errorf(HERE, "empty enum not allowed");
2686                 return;
2687         }
2688
2689         add_anchor_token('}');
2690         do {
2691                 if (token.type != T_IDENTIFIER) {
2692                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2693                         eat_block();
2694                         rem_anchor_token('}');
2695                         return;
2696                 }
2697
2698                 declaration_t *const entry = allocate_declaration_zero();
2699                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2700                 entry->type            = enum_type;
2701                 entry->symbol          = token.v.symbol;
2702                 entry->source_position = token.source_position;
2703                 next_token();
2704
2705                 if (token.type == '=') {
2706                         next_token();
2707                         expression_t *value = parse_constant_expression();
2708
2709                         value = create_implicit_cast(value, enum_type);
2710                         entry->init.enum_value = value;
2711
2712                         /* TODO semantic */
2713                 }
2714
2715                 record_declaration(entry);
2716
2717                 if (token.type != ',')
2718                         break;
2719                 next_token();
2720         } while (token.type != '}');
2721         rem_anchor_token('}');
2722
2723         expect('}');
2724
2725 end_error:
2726         ;
2727 }
2728
2729 static type_t *parse_enum_specifier(void)
2730 {
2731         gnu_attribute_t *attributes = NULL;
2732         declaration_t   *declaration;
2733         symbol_t        *symbol;
2734
2735         eat(T_enum);
2736         if (token.type == T_IDENTIFIER) {
2737                 symbol = token.v.symbol;
2738                 next_token();
2739
2740                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2741         } else if (token.type != '{') {
2742                 parse_error_expected("while parsing enum type specifier",
2743                                      T_IDENTIFIER, '{', NULL);
2744                 return NULL;
2745         } else {
2746                 declaration = NULL;
2747                 symbol      = NULL;
2748         }
2749
2750         if (declaration == NULL) {
2751                 declaration = allocate_declaration_zero();
2752                 declaration->namespc         = NAMESPACE_ENUM;
2753                 declaration->source_position = token.source_position;
2754                 declaration->symbol          = symbol;
2755                 declaration->parent_scope  = scope;
2756         }
2757
2758         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2759         type->enumt.declaration = declaration;
2760
2761         if (token.type == '{') {
2762                 if (declaration->init.complete) {
2763                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2764                 }
2765                 if (symbol != NULL) {
2766                         environment_push(declaration);
2767                 }
2768                 append_declaration(declaration);
2769                 declaration->init.complete = true;
2770
2771                 parse_enum_entries(type);
2772                 parse_attributes(&attributes);
2773         }
2774
2775         return type;
2776 }
2777
2778 /**
2779  * if a symbol is a typedef to another type, return true
2780  */
2781 static bool is_typedef_symbol(symbol_t *symbol)
2782 {
2783         const declaration_t *const declaration =
2784                 get_declaration(symbol, NAMESPACE_NORMAL);
2785         return
2786                 declaration != NULL &&
2787                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2788 }
2789
2790 static type_t *parse_typeof(void)
2791 {
2792         eat(T___typeof__);
2793
2794         type_t *type;
2795
2796         expect('(');
2797         add_anchor_token(')');
2798
2799         expression_t *expression  = NULL;
2800
2801 restart:
2802         switch(token.type) {
2803         case T___extension__:
2804                 /* This can be a prefix to a typename or an expression.  We simply eat
2805                  * it now. */
2806                 do {
2807                         next_token();
2808                 } while (token.type == T___extension__);
2809                 goto restart;
2810
2811         case T_IDENTIFIER:
2812                 if (is_typedef_symbol(token.v.symbol)) {
2813                         type = parse_typename();
2814                 } else {
2815                         expression = parse_expression();
2816                         type       = expression->base.type;
2817                 }
2818                 break;
2819
2820         TYPENAME_START
2821                 type = parse_typename();
2822                 break;
2823
2824         default:
2825                 expression = parse_expression();
2826                 type       = expression->base.type;
2827                 break;
2828         }
2829
2830         rem_anchor_token(')');
2831         expect(')');
2832
2833         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2834         typeof_type->typeoft.expression  = expression;
2835         typeof_type->typeoft.typeof_type = type;
2836
2837         return typeof_type;
2838 end_error:
2839         return NULL;
2840 }
2841
2842 typedef enum specifiers_t {
2843         SPECIFIER_SIGNED    = 1 << 0,
2844         SPECIFIER_UNSIGNED  = 1 << 1,
2845         SPECIFIER_LONG      = 1 << 2,
2846         SPECIFIER_INT       = 1 << 3,
2847         SPECIFIER_DOUBLE    = 1 << 4,
2848         SPECIFIER_CHAR      = 1 << 5,
2849         SPECIFIER_SHORT     = 1 << 6,
2850         SPECIFIER_LONG_LONG = 1 << 7,
2851         SPECIFIER_FLOAT     = 1 << 8,
2852         SPECIFIER_BOOL      = 1 << 9,
2853         SPECIFIER_VOID      = 1 << 10,
2854         SPECIFIER_INT8      = 1 << 11,
2855         SPECIFIER_INT16     = 1 << 12,
2856         SPECIFIER_INT32     = 1 << 13,
2857         SPECIFIER_INT64     = 1 << 14,
2858         SPECIFIER_INT128    = 1 << 15,
2859         SPECIFIER_COMPLEX   = 1 << 16,
2860         SPECIFIER_IMAGINARY = 1 << 17,
2861 } specifiers_t;
2862
2863 static type_t *create_builtin_type(symbol_t *const symbol,
2864                                    type_t *const real_type)
2865 {
2866         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2867         type->builtin.symbol    = symbol;
2868         type->builtin.real_type = real_type;
2869
2870         type_t *result = typehash_insert(type);
2871         if (type != result) {
2872                 free_type(type);
2873         }
2874
2875         return result;
2876 }
2877
2878 static type_t *get_typedef_type(symbol_t *symbol)
2879 {
2880         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2881         if (declaration == NULL ||
2882            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2883                 return NULL;
2884
2885         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2886         type->typedeft.declaration = declaration;
2887
2888         return type;
2889 }
2890
2891 /**
2892  * check for the allowed MS alignment values.
2893  */
2894 static bool check_alignment_value(long long intvalue)
2895 {
2896         if (intvalue < 1 || intvalue > 8192) {
2897                 errorf(HERE, "illegal alignment value");
2898                 return false;
2899         }
2900         unsigned v = (unsigned)intvalue;
2901         for(unsigned i = 1; i <= 8192; i += i) {
2902                 if (i == v)
2903                         return true;
2904         }
2905         errorf(HERE, "alignment must be power of two");
2906         return false;
2907 }
2908
2909 #define DET_MOD(name, tag) do { \
2910         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2911         *modifiers |= tag; \
2912 } while (0)
2913
2914 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2915 {
2916         decl_modifiers_t *modifiers = &specifiers->modifiers;
2917
2918         while (true) {
2919                 if (token.type == T_restrict) {
2920                         next_token();
2921                         DET_MOD(restrict, DM_RESTRICT);
2922                         goto end_loop;
2923                 } else if (token.type != T_IDENTIFIER)
2924                         break;
2925                 symbol_t *symbol = token.v.symbol;
2926                 if (symbol == sym_align) {
2927                         next_token();
2928                         expect('(');
2929                         if (token.type != T_INTEGER)
2930                                 goto end_error;
2931                         if (check_alignment_value(token.v.intvalue)) {
2932                                 if (specifiers->alignment != 0)
2933                                         warningf(HERE, "align used more than once");
2934                                 specifiers->alignment = (unsigned char)token.v.intvalue;
2935                         }
2936                         next_token();
2937                         expect(')');
2938                 } else if (symbol == sym_allocate) {
2939                         next_token();
2940                         expect('(');
2941                         if (token.type != T_IDENTIFIER)
2942                                 goto end_error;
2943                         (void)token.v.symbol;
2944                         expect(')');
2945                 } else if (symbol == sym_dllimport) {
2946                         next_token();
2947                         DET_MOD(dllimport, DM_DLLIMPORT);
2948                 } else if (symbol == sym_dllexport) {
2949                         next_token();
2950                         DET_MOD(dllexport, DM_DLLEXPORT);
2951                 } else if (symbol == sym_thread) {
2952                         next_token();
2953                         DET_MOD(thread, DM_THREAD);
2954                 } else if (symbol == sym_naked) {
2955                         next_token();
2956                         DET_MOD(naked, DM_NAKED);
2957                 } else if (symbol == sym_noinline) {
2958                         next_token();
2959                         DET_MOD(noinline, DM_NOINLINE);
2960                 } else if (symbol == sym_noreturn) {
2961                         next_token();
2962                         DET_MOD(noreturn, DM_NORETURN);
2963                 } else if (symbol == sym_nothrow) {
2964                         next_token();
2965                         DET_MOD(nothrow, DM_NOTHROW);
2966                 } else if (symbol == sym_novtable) {
2967                         next_token();
2968                         DET_MOD(novtable, DM_NOVTABLE);
2969                 } else if (symbol == sym_property) {
2970                         next_token();
2971                         expect('(');
2972                         for(;;) {
2973                                 bool is_get = false;
2974                                 if (token.type != T_IDENTIFIER)
2975                                         goto end_error;
2976                                 if (token.v.symbol == sym_get) {
2977                                         is_get = true;
2978                                 } else if (token.v.symbol == sym_put) {
2979                                 } else {
2980                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
2981                                         goto end_error;
2982                                 }
2983                                 next_token();
2984                                 expect('=');
2985                                 if (token.type != T_IDENTIFIER)
2986                                         goto end_error;
2987                                 if (is_get) {
2988                                         if (specifiers->get_property_sym != NULL) {
2989                                                 errorf(HERE, "get property name already specified");
2990                                         } else {
2991                                                 specifiers->get_property_sym = token.v.symbol;
2992                                         }
2993                                 } else {
2994                                         if (specifiers->put_property_sym != NULL) {
2995                                                 errorf(HERE, "put property name already specified");
2996                                         } else {
2997                                                 specifiers->put_property_sym = token.v.symbol;
2998                                         }
2999                                 }
3000                                 next_token();
3001                                 if (token.type == ',') {
3002                                         next_token();
3003                                         continue;
3004                                 }
3005                                 break;
3006                         }
3007                         expect(')');
3008                 } else if (symbol == sym_selectany) {
3009                         next_token();
3010                         DET_MOD(selectany, DM_SELECTANY);
3011                 } else if (symbol == sym_uuid) {
3012                         next_token();
3013                         expect('(');
3014                         if (token.type != T_STRING_LITERAL)
3015                                 goto end_error;
3016                         next_token();
3017                         expect(')');
3018                 } else if (symbol == sym_deprecated) {
3019                         next_token();
3020                         if (specifiers->deprecated != 0)
3021                                 warningf(HERE, "deprecated used more than once");
3022                         specifiers->deprecated = 1;
3023                         if (token.type == '(') {
3024                                 next_token();
3025                                 if (token.type == T_STRING_LITERAL) {
3026                                         specifiers->deprecated_string = token.v.string.begin;
3027                                         next_token();
3028                                 } else {
3029                                         errorf(HERE, "string literal expected");
3030                                 }
3031                                 expect(')');
3032                         }
3033                 } else if (symbol == sym_noalias) {
3034                         next_token();
3035                         DET_MOD(noalias, DM_NOALIAS);
3036                 } else {
3037                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3038                         next_token();
3039                         if (token.type == '(')
3040                                 skip_until(')');
3041                 }
3042 end_loop:
3043                 if (token.type == ',')
3044                         next_token();
3045         }
3046 end_error:
3047         return;
3048 }
3049
3050 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3051 {
3052         type_t            *type            = NULL;
3053         type_qualifiers_t  qualifiers      = TYPE_QUALIFIER_NONE;
3054         type_modifiers_t   modifiers       = TYPE_MODIFIER_NONE;
3055         unsigned           type_specifiers = 0;
3056         int                newtype         = 0;
3057
3058         specifiers->source_position = token.source_position;
3059
3060         while (true) {
3061                 specifiers->modifiers
3062                         |= parse_attributes(&specifiers->gnu_attributes);
3063                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3064                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3065
3066                 switch(token.type) {
3067
3068                 /* storage class */
3069 #define MATCH_STORAGE_CLASS(token, class)                                  \
3070                 case token:                                                        \
3071                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3072                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3073                         }                                                              \
3074                         specifiers->declared_storage_class = class;                    \
3075                         next_token();                                                  \
3076                         break;
3077
3078                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3079                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3080                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3081                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3082                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3083
3084                 case T__declspec:
3085                         next_token();
3086                         expect('(');
3087                         add_anchor_token(')');
3088                         parse_microsoft_extended_decl_modifier(specifiers);
3089                         rem_anchor_token(')');
3090                         expect(')');
3091                         break;
3092
3093                 case T___thread:
3094                         switch (specifiers->declared_storage_class) {
3095                         case STORAGE_CLASS_NONE:
3096                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3097                                 break;
3098
3099                         case STORAGE_CLASS_EXTERN:
3100                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3101                                 break;
3102
3103                         case STORAGE_CLASS_STATIC:
3104                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3105                                 break;
3106
3107                         default:
3108                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3109                                 break;
3110                         }
3111                         next_token();
3112                         break;
3113
3114                 /* type qualifiers */
3115 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3116                 case token:                                                     \
3117                         qualifiers |= qualifier;                                    \
3118                         next_token();                                               \
3119                         break
3120
3121                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3122                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3123                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3124                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3125                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3126                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3127                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3128                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3129
3130                 case T___extension__:
3131                         /* TODO */
3132                         next_token();
3133                         break;
3134
3135                 /* type specifiers */
3136 #define MATCH_SPECIFIER(token, specifier, name)                         \
3137                 case token:                                                     \
3138                         next_token();                                               \
3139                         if (type_specifiers & specifier) {                           \
3140                                 errorf(HERE, "multiple " name " type specifiers given"); \
3141                         } else {                                                    \
3142                                 type_specifiers |= specifier;                           \
3143                         }                                                           \
3144                         break
3145
3146                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3147                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3148                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3149                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3150                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3151                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3152                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3153                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3154                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3155                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3156                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3157                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3158                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3159                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3160                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3161                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3162
3163                 case T__forceinline:
3164                         /* only in microsoft mode */
3165                         specifiers->modifiers |= DM_FORCEINLINE;
3166                         /* FALLTHROUGH */
3167
3168                 case T_inline:
3169                         next_token();
3170                         specifiers->is_inline = true;
3171                         break;
3172
3173                 case T_long:
3174                         next_token();
3175                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3176                                 errorf(HERE, "multiple type specifiers given");
3177                         } else if (type_specifiers & SPECIFIER_LONG) {
3178                                 type_specifiers |= SPECIFIER_LONG_LONG;
3179                         } else {
3180                                 type_specifiers |= SPECIFIER_LONG;
3181                         }
3182                         break;
3183
3184                 case T_struct: {
3185                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3186
3187                         type->compound.declaration = parse_compound_type_specifier(true);
3188                         break;
3189                 }
3190                 case T_union: {
3191                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3192                         type->compound.declaration = parse_compound_type_specifier(false);
3193                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3194                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3195                         break;
3196                 }
3197                 case T_enum:
3198                         type = parse_enum_specifier();
3199                         break;
3200                 case T___typeof__:
3201                         type = parse_typeof();
3202                         break;
3203                 case T___builtin_va_list:
3204                         type = duplicate_type(type_valist);
3205                         next_token();
3206                         break;
3207
3208                 case T_IDENTIFIER: {
3209                         /* only parse identifier if we haven't found a type yet */
3210                         if (type != NULL || type_specifiers != 0)
3211                                 goto finish_specifiers;
3212
3213                         type_t *typedef_type = get_typedef_type(token.v.symbol);
3214
3215                         if (typedef_type == NULL)
3216                                 goto finish_specifiers;
3217
3218                         next_token();
3219                         type = typedef_type;
3220                         break;
3221                 }
3222
3223                 /* function specifier */
3224                 default:
3225                         goto finish_specifiers;
3226                 }
3227         }
3228
3229 finish_specifiers:
3230
3231         if (type == NULL) {
3232                 atomic_type_kind_t atomic_type;
3233
3234                 /* match valid basic types */
3235                 switch(type_specifiers) {
3236                 case SPECIFIER_VOID:
3237                         atomic_type = ATOMIC_TYPE_VOID;
3238                         break;
3239                 case SPECIFIER_CHAR:
3240                         atomic_type = ATOMIC_TYPE_CHAR;
3241                         break;
3242                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3243                         atomic_type = ATOMIC_TYPE_SCHAR;
3244                         break;
3245                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3246                         atomic_type = ATOMIC_TYPE_UCHAR;
3247                         break;
3248                 case SPECIFIER_SHORT:
3249                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3250                 case SPECIFIER_SHORT | SPECIFIER_INT:
3251                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3252                         atomic_type = ATOMIC_TYPE_SHORT;
3253                         break;
3254                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3255                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3256                         atomic_type = ATOMIC_TYPE_USHORT;
3257                         break;
3258                 case SPECIFIER_INT:
3259                 case SPECIFIER_SIGNED:
3260                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3261                         atomic_type = ATOMIC_TYPE_INT;
3262                         break;
3263                 case SPECIFIER_UNSIGNED:
3264                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3265                         atomic_type = ATOMIC_TYPE_UINT;
3266                         break;
3267                 case SPECIFIER_LONG:
3268                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3269                 case SPECIFIER_LONG | SPECIFIER_INT:
3270                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3271                         atomic_type = ATOMIC_TYPE_LONG;
3272                         break;
3273                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3274                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3275                         atomic_type = ATOMIC_TYPE_ULONG;
3276                         break;
3277
3278                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3279                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3280                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3281                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3282                         | SPECIFIER_INT:
3283                         atomic_type = ATOMIC_TYPE_LONGLONG;
3284                         goto warn_about_long_long;
3285
3286                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3287                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3288                         | SPECIFIER_INT:
3289                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3290 warn_about_long_long:
3291                         if (warning.long_long) {
3292                                 warningf(&specifiers->source_position,
3293                                          "ISO C90 does not support 'long long'");
3294                         }
3295                         break;
3296
3297                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3298                         atomic_type = unsigned_int8_type_kind;
3299                         break;
3300
3301                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3302                         atomic_type = unsigned_int16_type_kind;
3303                         break;
3304
3305                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3306                         atomic_type = unsigned_int32_type_kind;
3307                         break;
3308
3309                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3310                         atomic_type = unsigned_int64_type_kind;
3311                         break;
3312
3313                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3314                         atomic_type = unsigned_int128_type_kind;
3315                         break;
3316
3317                 case SPECIFIER_INT8:
3318                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3319                         atomic_type = int8_type_kind;
3320                         break;
3321
3322                 case SPECIFIER_INT16:
3323                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3324                         atomic_type = int16_type_kind;
3325                         break;
3326
3327                 case SPECIFIER_INT32:
3328                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3329                         atomic_type = int32_type_kind;
3330                         break;
3331
3332                 case SPECIFIER_INT64:
3333                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3334                         atomic_type = int64_type_kind;
3335                         break;
3336
3337                 case SPECIFIER_INT128:
3338                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3339                         atomic_type = int128_type_kind;
3340                         break;
3341
3342                 case SPECIFIER_FLOAT:
3343                         atomic_type = ATOMIC_TYPE_FLOAT;
3344                         break;
3345                 case SPECIFIER_DOUBLE:
3346                         atomic_type = ATOMIC_TYPE_DOUBLE;
3347                         break;
3348                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3349                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3350                         break;
3351                 case SPECIFIER_BOOL:
3352                         atomic_type = ATOMIC_TYPE_BOOL;
3353                         break;
3354                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3355                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3356                         atomic_type = ATOMIC_TYPE_FLOAT;
3357                         break;
3358                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3359                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3360                         atomic_type = ATOMIC_TYPE_DOUBLE;
3361                         break;
3362                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3363                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3364                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3365                         break;
3366                 default:
3367                         /* invalid specifier combination, give an error message */
3368                         if (type_specifiers == 0) {
3369                                 if (! strict_mode) {
3370                                         if (warning.implicit_int) {
3371                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3372                                         }
3373                                         atomic_type = ATOMIC_TYPE_INT;
3374                                         break;
3375                                 } else {
3376                                         errorf(HERE, "no type specifiers given in declaration");
3377                                 }
3378                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3379                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3380                                 errorf(HERE, "signed and unsigned specifiers gives");
3381                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3382                                 errorf(HERE, "only integer types can be signed or unsigned");
3383                         } else {
3384                                 errorf(HERE, "multiple datatypes in declaration");
3385                         }
3386                         atomic_type = ATOMIC_TYPE_INVALID;
3387                 }
3388
3389                 if (type_specifiers & SPECIFIER_COMPLEX &&
3390                    atomic_type != ATOMIC_TYPE_INVALID) {
3391                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3392                         type->complex.akind = atomic_type;
3393                 } else if (type_specifiers & SPECIFIER_IMAGINARY &&
3394                           atomic_type != ATOMIC_TYPE_INVALID) {
3395                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3396                         type->imaginary.akind = atomic_type;
3397                 } else {
3398                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3399                         type->atomic.akind = atomic_type;
3400                 }
3401                 newtype = 1;
3402         } else {
3403                 if (type_specifiers != 0) {
3404                         errorf(HERE, "multiple datatypes in declaration");
3405                 }
3406         }
3407
3408         /* FIXME: check type qualifiers here */
3409
3410         type->base.qualifiers = qualifiers;
3411         type->base.modifiers  = modifiers;
3412
3413         type_t *result = typehash_insert(type);
3414         if (newtype && result != type) {
3415                 free_type(type);
3416         }
3417
3418         specifiers->type = result;
3419 end_error:
3420         return;
3421 }
3422
3423 static type_qualifiers_t parse_type_qualifiers(void)
3424 {
3425         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3426
3427         while (true) {
3428                 switch(token.type) {
3429                 /* type qualifiers */
3430                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3431                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3432                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3433                 /* microsoft extended type modifiers */
3434                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3435                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3436                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3437                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3438                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3439
3440                 default:
3441                         return qualifiers;
3442                 }
3443         }
3444 }
3445
3446 static declaration_t *parse_identifier_list(void)
3447 {
3448         declaration_t *declarations     = NULL;
3449         declaration_t *last_declaration = NULL;
3450         do {
3451                 declaration_t *const declaration = allocate_declaration_zero();
3452                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3453                 declaration->source_position = token.source_position;
3454                 declaration->symbol          = token.v.symbol;
3455                 next_token();
3456
3457                 if (last_declaration != NULL) {
3458                         last_declaration->next = declaration;
3459                 } else {
3460                         declarations = declaration;
3461                 }
3462                 last_declaration = declaration;
3463
3464                 if (token.type != ',') {
3465                         break;
3466                 }
3467                 next_token();
3468         } while (token.type == T_IDENTIFIER);
3469
3470         return declarations;
3471 }
3472
3473 static type_t *automatic_type_conversion(type_t *orig_type);
3474
3475 static void semantic_parameter(declaration_t *declaration)
3476 {
3477         /* TODO: improve error messages */
3478
3479         if (declaration->declared_storage_class == STORAGE_CLASS_TYPEDEF) {
3480                 errorf(HERE, "typedef not allowed in parameter list");
3481         } else if (declaration->declared_storage_class != STORAGE_CLASS_NONE
3482                         && declaration->declared_storage_class != STORAGE_CLASS_REGISTER) {
3483                 errorf(HERE, "parameter may only have none or register storage class");
3484         }
3485
3486         type_t *const orig_type = declaration->type;
3487         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3488          * sugar.  Turn it into a pointer.
3489          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3490          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3491          */
3492         type_t *const type = automatic_type_conversion(orig_type);
3493         declaration->type = type;
3494
3495         if (is_type_incomplete(skip_typeref(type))) {
3496                 errorf(HERE, "incomplete type '%T' not allowed for parameter '%Y'",
3497                        orig_type, declaration->symbol);
3498         }
3499 }
3500
3501 static declaration_t *parse_parameter(void)
3502 {
3503         declaration_specifiers_t specifiers;
3504         memset(&specifiers, 0, sizeof(specifiers));
3505
3506         parse_declaration_specifiers(&specifiers);
3507
3508         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3509
3510         return declaration;
3511 }
3512
3513 static declaration_t *parse_parameters(function_type_t *type)
3514 {
3515         declaration_t *declarations = NULL;
3516
3517         eat('(');
3518         add_anchor_token(')');
3519         int saved_comma_state = save_and_reset_anchor_state(',');
3520
3521         if (token.type == T_IDENTIFIER) {
3522                 symbol_t *symbol = token.v.symbol;
3523                 if (!is_typedef_symbol(symbol)) {
3524                         type->kr_style_parameters = true;
3525                         declarations = parse_identifier_list();
3526                         goto parameters_finished;
3527                 }
3528         }
3529
3530         if (token.type == ')') {
3531                 type->unspecified_parameters = 1;
3532                 goto parameters_finished;
3533         }
3534
3535         declaration_t        *declaration;
3536         declaration_t        *last_declaration = NULL;
3537         function_parameter_t *parameter;
3538         function_parameter_t *last_parameter = NULL;
3539
3540         while (true) {
3541                 switch(token.type) {
3542                 case T_DOTDOTDOT:
3543                         next_token();
3544                         type->variadic = 1;
3545                         goto parameters_finished;
3546
3547                 case T_IDENTIFIER:
3548                 case T___extension__:
3549                 DECLARATION_START
3550                         declaration = parse_parameter();
3551
3552                         /* func(void) is not a parameter */
3553                         if (last_parameter == NULL
3554                                         && token.type == ')'
3555                                         && declaration->symbol == NULL
3556                                         && skip_typeref(declaration->type) == type_void) {
3557                                 goto parameters_finished;
3558                         }
3559                         semantic_parameter(declaration);
3560
3561                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3562                         memset(parameter, 0, sizeof(parameter[0]));
3563                         parameter->type = declaration->type;
3564
3565                         if (last_parameter != NULL) {
3566                                 last_declaration->next = declaration;
3567                                 last_parameter->next   = parameter;
3568                         } else {
3569                                 type->parameters = parameter;
3570                                 declarations     = declaration;
3571                         }
3572                         last_parameter   = parameter;
3573                         last_declaration = declaration;
3574                         break;
3575
3576                 default:
3577                         goto parameters_finished;
3578                 }
3579                 if (token.type != ',') {
3580                         goto parameters_finished;
3581                 }
3582                 next_token();
3583         }
3584
3585
3586 parameters_finished:
3587         rem_anchor_token(')');
3588         expect(')');
3589
3590         restore_anchor_state(',', saved_comma_state);
3591         return declarations;
3592
3593 end_error:
3594         restore_anchor_state(',', saved_comma_state);
3595         return NULL;
3596 }
3597
3598 typedef enum construct_type_kind_t {
3599         CONSTRUCT_INVALID,
3600         CONSTRUCT_POINTER,
3601         CONSTRUCT_FUNCTION,
3602         CONSTRUCT_ARRAY
3603 } construct_type_kind_t;
3604
3605 typedef struct construct_type_t construct_type_t;
3606 struct construct_type_t {
3607         construct_type_kind_t  kind;
3608         construct_type_t      *next;
3609 };
3610
3611 typedef struct parsed_pointer_t parsed_pointer_t;
3612 struct parsed_pointer_t {
3613         construct_type_t  construct_type;
3614         type_qualifiers_t type_qualifiers;
3615 };
3616
3617 typedef struct construct_function_type_t construct_function_type_t;
3618 struct construct_function_type_t {
3619         construct_type_t  construct_type;
3620         type_t           *function_type;
3621 };
3622
3623 typedef struct parsed_array_t parsed_array_t;
3624 struct parsed_array_t {
3625         construct_type_t  construct_type;
3626         type_qualifiers_t type_qualifiers;
3627         bool              is_static;
3628         bool              is_variable;
3629         expression_t     *size;
3630 };
3631
3632 typedef struct construct_base_type_t construct_base_type_t;
3633 struct construct_base_type_t {
3634         construct_type_t  construct_type;
3635         type_t           *type;
3636 };
3637
3638 static construct_type_t *parse_pointer_declarator(void)
3639 {
3640         eat('*');
3641
3642         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3643         memset(pointer, 0, sizeof(pointer[0]));
3644         pointer->construct_type.kind = CONSTRUCT_POINTER;
3645         pointer->type_qualifiers     = parse_type_qualifiers();
3646
3647         return (construct_type_t*) pointer;
3648 }
3649
3650 static construct_type_t *parse_array_declarator(void)
3651 {
3652         eat('[');
3653         add_anchor_token(']');
3654
3655         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3656         memset(array, 0, sizeof(array[0]));
3657         array->construct_type.kind = CONSTRUCT_ARRAY;
3658
3659         if (token.type == T_static) {
3660                 array->is_static = true;
3661                 next_token();
3662         }
3663
3664         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3665         if (type_qualifiers != 0) {
3666                 if (token.type == T_static) {
3667                         array->is_static = true;
3668                         next_token();
3669                 }
3670         }
3671         array->type_qualifiers = type_qualifiers;
3672
3673         if (token.type == '*' && look_ahead(1)->type == ']') {
3674                 array->is_variable = true;
3675                 next_token();
3676         } else if (token.type != ']') {
3677                 array->size = parse_assignment_expression();
3678         }
3679
3680         rem_anchor_token(']');
3681         expect(']');
3682
3683         return (construct_type_t*) array;
3684 end_error:
3685         return NULL;
3686 }
3687
3688 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3689 {
3690         type_t *type;
3691         if (declaration != NULL) {
3692                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3693
3694                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3695
3696                 if (mask & (mask-1)) {
3697                         const char *first = NULL, *second = NULL;
3698
3699                         /* more than one calling convention set */
3700                         if (declaration->modifiers & DM_CDECL) {
3701                                 if (first == NULL)       first = "cdecl";
3702                                 else if (second == NULL) second = "cdecl";
3703                         }
3704                         if (declaration->modifiers & DM_STDCALL) {
3705                                 if (first == NULL)       first = "stdcall";
3706                                 else if (second == NULL) second = "stdcall";
3707                         }
3708                         if (declaration->modifiers & DM_FASTCALL) {
3709                                 if (first == NULL)       first = "faslcall";
3710                                 else if (second == NULL) second = "fastcall";
3711                         }
3712                         if (declaration->modifiers & DM_THISCALL) {
3713                                 if (first == NULL)       first = "thiscall";
3714                                 else if (second == NULL) second = "thiscall";
3715                         }
3716                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3717                 }
3718
3719                 if (declaration->modifiers & DM_CDECL)
3720                         type->function.calling_convention = CC_CDECL;
3721                 else if (declaration->modifiers & DM_STDCALL)
3722                         type->function.calling_convention = CC_STDCALL;
3723                 else if (declaration->modifiers & DM_FASTCALL)
3724                         type->function.calling_convention = CC_FASTCALL;
3725                 else if (declaration->modifiers & DM_THISCALL)
3726                         type->function.calling_convention = CC_THISCALL;
3727         } else {
3728                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3729         }
3730
3731         declaration_t *parameters = parse_parameters(&type->function);
3732         if (declaration != NULL) {
3733                 declaration->scope.declarations = parameters;
3734         }
3735
3736         construct_function_type_t *construct_function_type =
3737                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3738         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3739         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3740         construct_function_type->function_type       = type;
3741
3742         return &construct_function_type->construct_type;
3743 }
3744
3745 static void fix_declaration_type(declaration_t *declaration)
3746 {
3747         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3748         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3749
3750         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3751                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3752
3753         if (declaration->type->base.modifiers == type_modifiers)
3754                 return;
3755
3756         type_t *copy = duplicate_type(declaration->type);
3757         copy->base.modifiers = type_modifiers;
3758
3759         type_t *result = typehash_insert(copy);
3760         if (result != copy) {
3761                 obstack_free(type_obst, copy);
3762         }
3763
3764         declaration->type = result;
3765 }
3766
3767 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
3768                 bool may_be_abstract)
3769 {
3770         /* construct a single linked list of construct_type_t's which describe
3771          * how to construct the final declarator type */
3772         construct_type_t *first = NULL;
3773         construct_type_t *last  = NULL;
3774         gnu_attribute_t  *attributes = NULL;
3775
3776         decl_modifiers_t modifiers = parse_attributes(&attributes);
3777
3778         /* pointers */
3779         while (token.type == '*') {
3780                 construct_type_t *type = parse_pointer_declarator();
3781
3782                 if (last == NULL) {
3783                         first = type;
3784                         last  = type;
3785                 } else {
3786                         last->next = type;
3787                         last       = type;
3788                 }
3789
3790                 /* TODO: find out if this is correct */
3791                 modifiers |= parse_attributes(&attributes);
3792         }
3793
3794         if (declaration != NULL)
3795                 declaration->modifiers |= modifiers;
3796
3797         construct_type_t *inner_types = NULL;
3798
3799         switch(token.type) {
3800         case T_IDENTIFIER:
3801                 if (declaration == NULL) {
3802                         errorf(HERE, "no identifier expected in typename");
3803                 } else {
3804                         declaration->symbol          = token.v.symbol;
3805                         declaration->source_position = token.source_position;
3806                 }
3807                 next_token();
3808                 break;
3809         case '(':
3810                 next_token();
3811                 add_anchor_token(')');
3812                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
3813                 rem_anchor_token(')');
3814                 expect(')');
3815                 break;
3816         default:
3817                 if (may_be_abstract)
3818                         break;
3819                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3820                 /* avoid a loop in the outermost scope, because eat_statement doesn't
3821                  * eat '}' */
3822                 if (token.type == '}' && current_function == NULL) {
3823                         next_token();
3824                 } else {
3825                         eat_statement();
3826                 }
3827                 return NULL;
3828         }
3829
3830         construct_type_t *p = last;
3831
3832         while(true) {
3833                 construct_type_t *type;
3834                 switch(token.type) {
3835                 case '(':
3836                         type = parse_function_declarator(declaration);
3837                         break;
3838                 case '[':
3839                         type = parse_array_declarator();
3840                         break;
3841                 default:
3842                         goto declarator_finished;
3843                 }
3844
3845                 /* insert in the middle of the list (behind p) */
3846                 if (p != NULL) {
3847                         type->next = p->next;
3848                         p->next    = type;
3849                 } else {
3850                         type->next = first;
3851                         first      = type;
3852                 }
3853                 if (last == p) {
3854                         last = type;
3855                 }
3856         }
3857
3858 declarator_finished:
3859         /* append inner_types at the end of the list, we don't to set last anymore
3860          * as it's not needed anymore */
3861         if (last == NULL) {
3862                 assert(first == NULL);
3863                 first = inner_types;
3864         } else {
3865                 last->next = inner_types;
3866         }
3867
3868         return first;
3869 end_error:
3870         return NULL;
3871 }
3872
3873 static void parse_declaration_attributes(declaration_t *declaration)
3874 {
3875         gnu_attribute_t  *attributes = NULL;
3876         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
3877
3878         if (declaration == NULL)
3879                 return;
3880
3881         declaration->modifiers |= modifiers;
3882         /* check if we have these stupid mode attributes... */
3883         type_t *old_type = declaration->type;
3884         if (old_type == NULL)
3885                 return;
3886
3887         gnu_attribute_t *attribute = attributes;
3888         for ( ; attribute != NULL; attribute = attribute->next) {
3889                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
3890                         continue;
3891
3892                 atomic_type_kind_t  akind = attribute->u.akind;
3893                 if (!is_type_signed(old_type)) {
3894                         switch(akind) {
3895                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
3896                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
3897                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
3898                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
3899                         default:
3900                                 panic("invalid akind in mode attribute");
3901                         }
3902                 }
3903                 declaration->type
3904                         = make_atomic_type(akind, old_type->base.qualifiers);
3905         }
3906 }
3907
3908 static type_t *construct_declarator_type(construct_type_t *construct_list,
3909                                          type_t *type)
3910 {
3911         construct_type_t *iter = construct_list;
3912         for( ; iter != NULL; iter = iter->next) {
3913                 switch(iter->kind) {
3914                 case CONSTRUCT_INVALID:
3915                         internal_errorf(HERE, "invalid type construction found");
3916                 case CONSTRUCT_FUNCTION: {
3917                         construct_function_type_t *construct_function_type
3918                                 = (construct_function_type_t*) iter;
3919
3920                         type_t *function_type = construct_function_type->function_type;
3921
3922                         function_type->function.return_type = type;
3923
3924                         type_t *skipped_return_type = skip_typeref(type);
3925                         if (is_type_function(skipped_return_type)) {
3926                                 errorf(HERE, "function returning function is not allowed");
3927                                 type = type_error_type;
3928                         } else if (is_type_array(skipped_return_type)) {
3929                                 errorf(HERE, "function returning array is not allowed");
3930                                 type = type_error_type;
3931                         } else {
3932                                 type = function_type;
3933                         }
3934                         break;
3935                 }
3936
3937                 case CONSTRUCT_POINTER: {
3938                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
3939                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
3940                         pointer_type->pointer.points_to  = type;
3941                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
3942
3943                         type = pointer_type;
3944                         break;
3945                 }
3946
3947                 case CONSTRUCT_ARRAY: {
3948                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
3949                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
3950
3951                         expression_t *size_expression = parsed_array->size;
3952                         if (size_expression != NULL) {
3953                                 size_expression
3954                                         = create_implicit_cast(size_expression, type_size_t);
3955                         }
3956
3957                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
3958                         array_type->array.element_type    = type;
3959                         array_type->array.is_static       = parsed_array->is_static;
3960                         array_type->array.is_variable     = parsed_array->is_variable;
3961                         array_type->array.size_expression = size_expression;
3962
3963                         if (size_expression != NULL) {
3964                                 if (is_constant_expression(size_expression)) {
3965                                         array_type->array.size_constant = true;
3966                                         array_type->array.size
3967                                                 = fold_constant(size_expression);
3968                                 } else {
3969                                         array_type->array.is_vla = true;
3970                                 }
3971                         }
3972
3973                         type_t *skipped_type = skip_typeref(type);
3974                         if (is_type_atomic(skipped_type, ATOMIC_TYPE_VOID)) {
3975                                 errorf(HERE, "array of void is not allowed");
3976                                 type = type_error_type;
3977                         } else {
3978                                 type = array_type;
3979                         }
3980                         break;
3981                 }
3982                 }
3983
3984                 type_t *hashed_type = typehash_insert(type);
3985                 if (hashed_type != type) {
3986                         /* the function type was constructed earlier freeing it here will
3987                          * destroy other types... */
3988                         if (iter->kind != CONSTRUCT_FUNCTION) {
3989                                 free_type(type);
3990                         }
3991                         type = hashed_type;
3992                 }
3993         }
3994
3995         return type;
3996 }
3997
3998 static declaration_t *parse_declarator(
3999                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
4000 {
4001         declaration_t *const declaration    = allocate_declaration_zero();
4002         declaration->declared_storage_class = specifiers->declared_storage_class;
4003         declaration->modifiers              = specifiers->modifiers;
4004         declaration->deprecated_string      = specifiers->deprecated_string;
4005         declaration->get_property_sym       = specifiers->get_property_sym;
4006         declaration->put_property_sym       = specifiers->put_property_sym;
4007         declaration->is_inline              = specifiers->is_inline;
4008
4009         declaration->storage_class          = specifiers->declared_storage_class;
4010         if (declaration->storage_class == STORAGE_CLASS_NONE
4011                         && scope != global_scope) {
4012                 declaration->storage_class = STORAGE_CLASS_AUTO;
4013         }
4014
4015         if (specifiers->alignment != 0) {
4016                 /* TODO: add checks here */
4017                 declaration->alignment = specifiers->alignment;
4018         }
4019
4020         construct_type_t *construct_type
4021                 = parse_inner_declarator(declaration, may_be_abstract);
4022         type_t *const type = specifiers->type;
4023         declaration->type = construct_declarator_type(construct_type, type);
4024
4025         parse_declaration_attributes(declaration);
4026
4027         fix_declaration_type(declaration);
4028
4029         if (construct_type != NULL) {
4030                 obstack_free(&temp_obst, construct_type);
4031         }
4032
4033         return declaration;
4034 }
4035
4036 static type_t *parse_abstract_declarator(type_t *base_type)
4037 {
4038         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4039
4040         type_t *result = construct_declarator_type(construct_type, base_type);
4041         if (construct_type != NULL) {
4042                 obstack_free(&temp_obst, construct_type);
4043         }
4044
4045         return result;
4046 }
4047
4048 static declaration_t *append_declaration(declaration_t* const declaration)
4049 {
4050         if (last_declaration != NULL) {
4051                 last_declaration->next = declaration;
4052         } else {
4053                 scope->declarations = declaration;
4054         }
4055         last_declaration = declaration;
4056         return declaration;
4057 }
4058
4059 /**
4060  * Check if the declaration of main is suspicious.  main should be a
4061  * function with external linkage, returning int, taking either zero
4062  * arguments, two, or three arguments of appropriate types, ie.
4063  *
4064  * int main([ int argc, char **argv [, char **env ] ]).
4065  *
4066  * @param decl    the declaration to check
4067  * @param type    the function type of the declaration
4068  */
4069 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4070 {
4071         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4072                 warningf(&decl->source_position,
4073                          "'main' is normally a non-static function");
4074         }
4075         if (skip_typeref(func_type->return_type) != type_int) {
4076                 warningf(&decl->source_position,
4077                          "return type of 'main' should be 'int', but is '%T'",
4078                          func_type->return_type);
4079         }
4080         const function_parameter_t *parm = func_type->parameters;
4081         if (parm != NULL) {
4082                 type_t *const first_type = parm->type;
4083                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4084                         warningf(&decl->source_position,
4085                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4086                 }
4087                 parm = parm->next;
4088                 if (parm != NULL) {
4089                         type_t *const second_type = parm->type;
4090                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4091                                 warningf(&decl->source_position,
4092                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4093                         }
4094                         parm = parm->next;
4095                         if (parm != NULL) {
4096                                 type_t *const third_type = parm->type;
4097                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4098                                         warningf(&decl->source_position,
4099                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4100                                 }
4101                                 parm = parm->next;
4102                                 if (parm != NULL)
4103                                         goto warn_arg_count;
4104                         }
4105                 } else {
4106 warn_arg_count:
4107                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4108                 }
4109         }
4110 }
4111
4112 /**
4113  * Check if a symbol is the equal to "main".
4114  */
4115 static bool is_sym_main(const symbol_t *const sym)
4116 {
4117         return strcmp(sym->string, "main") == 0;
4118 }
4119
4120 static declaration_t *internal_record_declaration(
4121         declaration_t *const declaration,
4122         const bool is_definition)
4123 {
4124         const symbol_t *const symbol  = declaration->symbol;
4125         const namespace_t     namespc = (namespace_t)declaration->namespc;
4126
4127         assert(symbol != NULL);
4128         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4129
4130         type_t *const orig_type = declaration->type;
4131         type_t *const type      = skip_typeref(orig_type);
4132         if (is_type_function(type) &&
4133                         type->function.unspecified_parameters &&
4134                         warning.strict_prototypes &&
4135                         previous_declaration == NULL) {
4136                 warningf(&declaration->source_position,
4137                          "function declaration '%#T' is not a prototype",
4138                          orig_type, declaration->symbol);
4139         }
4140
4141         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4142                 check_type_of_main(declaration, &type->function);
4143         }
4144
4145         if (warning.nested_externs                             &&
4146             declaration->storage_class == STORAGE_CLASS_EXTERN &&
4147             scope                      != global_scope) {
4148                 warningf(&declaration->source_position,
4149                          "nested extern declaration of '%#T'", declaration->type, symbol);
4150         }
4151
4152         assert(declaration != previous_declaration);
4153         if (previous_declaration != NULL
4154                         && previous_declaration->parent_scope == scope) {
4155                 /* can happen for K&R style declarations */
4156                 if (previous_declaration->type == NULL) {
4157                         previous_declaration->type = declaration->type;
4158                 }
4159
4160                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4161                 if (!types_compatible(type, prev_type)) {
4162                         errorf(&declaration->source_position,
4163                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4164                                    orig_type, symbol, previous_declaration->type, symbol,
4165                                    &previous_declaration->source_position);
4166                 } else {
4167                         unsigned old_storage_class = previous_declaration->storage_class;
4168                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4169                                 errorf(&declaration->source_position,
4170                                            "redeclaration of enum entry '%Y' (declared %P)",
4171                                            symbol, &previous_declaration->source_position);
4172                                 return previous_declaration;
4173                         }
4174
4175                         if (warning.redundant_decls                                     &&
4176                             is_definition                                               &&
4177                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4178                             !(previous_declaration->modifiers & DM_USED)                &&
4179                             !previous_declaration->used) {
4180                                 warningf(&previous_declaration->source_position,
4181                                          "unnecessary static forward declaration for '%#T'",
4182                                          previous_declaration->type, symbol);
4183                         }
4184
4185                         unsigned new_storage_class = declaration->storage_class;
4186
4187                         if (is_type_incomplete(prev_type)) {
4188                                 previous_declaration->type = type;
4189                                 prev_type                  = type;
4190                         }
4191
4192                         /* pretend no storage class means extern for function
4193                          * declarations (except if the previous declaration is neither
4194                          * none nor extern) */
4195                         if (is_type_function(type)) {
4196                                 if (prev_type->function.unspecified_parameters) {
4197                                         previous_declaration->type = type;
4198                                         prev_type                  = type;
4199                                 }
4200
4201                                 switch (old_storage_class) {
4202                                 case STORAGE_CLASS_NONE:
4203                                         old_storage_class = STORAGE_CLASS_EXTERN;
4204                                         /* FALLTHROUGH */
4205
4206                                 case STORAGE_CLASS_EXTERN:
4207                                         if (is_definition) {
4208                                                 if (warning.missing_prototypes &&
4209                                                     prev_type->function.unspecified_parameters &&
4210                                                     !is_sym_main(symbol)) {
4211                                                         warningf(&declaration->source_position,
4212                                                                          "no previous prototype for '%#T'",
4213                                                                          orig_type, symbol);
4214                                                 }
4215                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4216                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4217                                         }
4218                                         break;
4219
4220                                 default:
4221                                         break;
4222                                 }
4223                         }
4224
4225                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4226                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4227 warn_redundant_declaration:
4228                                 if (!is_definition          &&
4229                                     warning.redundant_decls &&
4230                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4231                                         warningf(&declaration->source_position,
4232                                                  "redundant declaration for '%Y' (declared %P)",
4233                                                  symbol, &previous_declaration->source_position);
4234                                 }
4235                         } else if (current_function == NULL) {
4236                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4237                                     new_storage_class == STORAGE_CLASS_STATIC) {
4238                                         errorf(&declaration->source_position,
4239                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4240                                                symbol, &previous_declaration->source_position);
4241                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4242                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4243                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4244                                 } else {
4245                                         goto warn_redundant_declaration;
4246                                 }
4247                         } else if (old_storage_class == new_storage_class) {
4248                                 errorf(&declaration->source_position,
4249                                        "redeclaration of '%Y' (declared %P)",
4250                                        symbol, &previous_declaration->source_position);
4251                         } else {
4252                                 errorf(&declaration->source_position,
4253                                        "redeclaration of '%Y' with different linkage (declared %P)",
4254                                        symbol, &previous_declaration->source_position);
4255                         }
4256                 }
4257
4258                 previous_declaration->modifiers |= declaration->modifiers;
4259                 previous_declaration->is_inline |= declaration->is_inline;
4260                 return previous_declaration;
4261         } else if (is_type_function(type)) {
4262                 if (is_definition &&
4263                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4264                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4265                                 warningf(&declaration->source_position,
4266                                          "no previous prototype for '%#T'", orig_type, symbol);
4267                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4268                                 warningf(&declaration->source_position,
4269                                          "no previous declaration for '%#T'", orig_type,
4270                                          symbol);
4271                         }
4272                 }
4273         } else {
4274                 if (warning.missing_declarations &&
4275                     scope == global_scope && (
4276                       declaration->storage_class == STORAGE_CLASS_NONE ||
4277                       declaration->storage_class == STORAGE_CLASS_THREAD
4278                     )) {
4279                         warningf(&declaration->source_position,
4280                                  "no previous declaration for '%#T'", orig_type, symbol);
4281                 }
4282         }
4283
4284         assert(declaration->parent_scope == NULL);
4285         assert(scope != NULL);
4286
4287         declaration->parent_scope = scope;
4288
4289         environment_push(declaration);
4290         return append_declaration(declaration);
4291 }
4292
4293 static declaration_t *record_declaration(declaration_t *declaration)
4294 {
4295         return internal_record_declaration(declaration, false);
4296 }
4297
4298 static declaration_t *record_definition(declaration_t *declaration)
4299 {
4300         return internal_record_declaration(declaration, true);
4301 }
4302
4303 static void parser_error_multiple_definition(declaration_t *declaration,
4304                 const source_position_t *source_position)
4305 {
4306         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4307                declaration->symbol, &declaration->source_position);
4308 }
4309
4310 static bool is_declaration_specifier(const token_t *token,
4311                                      bool only_specifiers_qualifiers)
4312 {
4313         switch(token->type) {
4314                 TYPE_SPECIFIERS
4315                 TYPE_QUALIFIERS
4316                         return true;
4317                 case T_IDENTIFIER:
4318                         return is_typedef_symbol(token->v.symbol);
4319
4320                 case T___extension__:
4321                 STORAGE_CLASSES
4322                         return !only_specifiers_qualifiers;
4323
4324                 default:
4325                         return false;
4326         }
4327 }
4328
4329 static void parse_init_declarator_rest(declaration_t *declaration)
4330 {
4331         eat('=');
4332
4333         type_t *orig_type = declaration->type;
4334         type_t *type      = skip_typeref(orig_type);
4335
4336         if (declaration->init.initializer != NULL) {
4337                 parser_error_multiple_definition(declaration, HERE);
4338         }
4339
4340         bool must_be_constant = false;
4341         if (declaration->storage_class == STORAGE_CLASS_STATIC
4342                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4343                         || declaration->parent_scope == global_scope) {
4344                 must_be_constant = true;
4345         }
4346
4347         parse_initializer_env_t env;
4348         env.type             = orig_type;
4349         env.must_be_constant = must_be_constant;
4350         env.declaration      = declaration;
4351
4352         initializer_t *initializer = parse_initializer(&env);
4353
4354         if (env.type != orig_type) {
4355                 orig_type         = env.type;
4356                 type              = skip_typeref(orig_type);
4357                 declaration->type = env.type;
4358         }
4359
4360         if (is_type_function(type)) {
4361                 errorf(&declaration->source_position,
4362                        "initializers not allowed for function types at declator '%Y' (type '%T')",
4363                        declaration->symbol, orig_type);
4364         } else {
4365                 declaration->init.initializer = initializer;
4366         }
4367 }
4368
4369 /* parse rest of a declaration without any declarator */
4370 static void parse_anonymous_declaration_rest(
4371                 const declaration_specifiers_t *specifiers,
4372                 parsed_declaration_func finished_declaration)
4373 {
4374         eat(';');
4375
4376         declaration_t *const declaration    = allocate_declaration_zero();
4377         declaration->type                   = specifiers->type;
4378         declaration->declared_storage_class = specifiers->declared_storage_class;
4379         declaration->source_position        = specifiers->source_position;
4380         declaration->modifiers              = specifiers->modifiers;
4381
4382         if (declaration->declared_storage_class != STORAGE_CLASS_NONE) {
4383                 warningf(&declaration->source_position,
4384                          "useless storage class in empty declaration");
4385         }
4386         declaration->storage_class = STORAGE_CLASS_NONE;
4387
4388         type_t *type = declaration->type;
4389         switch (type->kind) {
4390                 case TYPE_COMPOUND_STRUCT:
4391                 case TYPE_COMPOUND_UNION: {
4392                         if (type->compound.declaration->symbol == NULL) {
4393                                 warningf(&declaration->source_position,
4394                                          "unnamed struct/union that defines no instances");
4395                         }
4396                         break;
4397                 }
4398
4399                 case TYPE_ENUM:
4400                         break;
4401
4402                 default:
4403                         warningf(&declaration->source_position, "empty declaration");
4404                         break;
4405         }
4406
4407         finished_declaration(declaration);
4408 }
4409
4410 static void parse_declaration_rest(declaration_t *ndeclaration,
4411                 const declaration_specifiers_t *specifiers,
4412                 parsed_declaration_func finished_declaration)
4413 {
4414         add_anchor_token(';');
4415         add_anchor_token('=');
4416         add_anchor_token(',');
4417         while(true) {
4418                 declaration_t *declaration = finished_declaration(ndeclaration);
4419
4420                 type_t *orig_type = declaration->type;
4421                 type_t *type      = skip_typeref(orig_type);
4422
4423                 if (type->kind != TYPE_FUNCTION &&
4424                     declaration->is_inline &&
4425                     is_type_valid(type)) {
4426                         warningf(&declaration->source_position,
4427                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4428                 }
4429
4430                 if (token.type == '=') {
4431                         parse_init_declarator_rest(declaration);
4432                 }
4433
4434                 if (token.type != ',')
4435                         break;
4436                 eat(',');
4437
4438                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4439         }
4440         expect(';');
4441
4442 end_error:
4443         rem_anchor_token(';');
4444         rem_anchor_token('=');
4445         rem_anchor_token(',');
4446 }
4447
4448 static declaration_t *finished_kr_declaration(declaration_t *declaration)
4449 {
4450         symbol_t *symbol  = declaration->symbol;
4451         if (symbol == NULL) {
4452                 errorf(HERE, "anonymous declaration not valid as function parameter");
4453                 return declaration;
4454         }
4455         namespace_t namespc = (namespace_t) declaration->namespc;
4456         if (namespc != NAMESPACE_NORMAL) {
4457                 return record_declaration(declaration);
4458         }
4459
4460         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4461         if (previous_declaration == NULL ||
4462                         previous_declaration->parent_scope != scope) {
4463                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4464                        symbol);
4465                 return declaration;
4466         }
4467
4468         if (previous_declaration->type == NULL) {
4469                 previous_declaration->type          = declaration->type;
4470                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4471                 previous_declaration->storage_class = declaration->storage_class;
4472                 previous_declaration->parent_scope  = scope;
4473                 return previous_declaration;
4474         } else {
4475                 return record_declaration(declaration);
4476         }
4477 }
4478
4479 static void parse_declaration(parsed_declaration_func finished_declaration)
4480 {
4481         declaration_specifiers_t specifiers;
4482         memset(&specifiers, 0, sizeof(specifiers));
4483         parse_declaration_specifiers(&specifiers);
4484
4485         if (token.type == ';') {
4486                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
4487         } else {
4488                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4489                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4490         }
4491 }
4492
4493 static type_t *get_default_promoted_type(type_t *orig_type)
4494 {
4495         type_t *result = orig_type;
4496
4497         type_t *type = skip_typeref(orig_type);
4498         if (is_type_integer(type)) {
4499                 result = promote_integer(type);
4500         } else if (type == type_float) {
4501                 result = type_double;
4502         }
4503
4504         return result;
4505 }
4506
4507 static void parse_kr_declaration_list(declaration_t *declaration)
4508 {
4509         type_t *type = skip_typeref(declaration->type);
4510         if (!is_type_function(type))
4511                 return;
4512
4513         if (!type->function.kr_style_parameters)
4514                 return;
4515
4516         /* push function parameters */
4517         int       top        = environment_top();
4518         scope_t  *last_scope = scope;
4519         set_scope(&declaration->scope);
4520
4521         declaration_t *parameter = declaration->scope.declarations;
4522         for ( ; parameter != NULL; parameter = parameter->next) {
4523                 assert(parameter->parent_scope == NULL);
4524                 parameter->parent_scope = scope;
4525                 environment_push(parameter);
4526         }
4527
4528         /* parse declaration list */
4529         while (is_declaration_specifier(&token, false)) {
4530                 parse_declaration(finished_kr_declaration);
4531         }
4532
4533         /* pop function parameters */
4534         assert(scope == &declaration->scope);
4535         set_scope(last_scope);
4536         environment_pop_to(top);
4537
4538         /* update function type */
4539         type_t *new_type = duplicate_type(type);
4540
4541         function_parameter_t *parameters     = NULL;
4542         function_parameter_t *last_parameter = NULL;
4543
4544         declaration_t *parameter_declaration = declaration->scope.declarations;
4545         for( ; parameter_declaration != NULL;
4546                         parameter_declaration = parameter_declaration->next) {
4547                 type_t *parameter_type = parameter_declaration->type;
4548                 if (parameter_type == NULL) {
4549                         if (strict_mode) {
4550                                 errorf(HERE, "no type specified for function parameter '%Y'",
4551                                        parameter_declaration->symbol);
4552                         } else {
4553                                 if (warning.implicit_int) {
4554                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4555                                                 parameter_declaration->symbol);
4556                                 }
4557                                 parameter_type              = type_int;
4558                                 parameter_declaration->type = parameter_type;
4559                         }
4560                 }
4561
4562                 semantic_parameter(parameter_declaration);
4563                 parameter_type = parameter_declaration->type;
4564
4565                 /*
4566                  * we need the default promoted types for the function type
4567                  */
4568                 parameter_type = get_default_promoted_type(parameter_type);
4569
4570                 function_parameter_t *function_parameter
4571                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4572                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4573
4574                 function_parameter->type = parameter_type;
4575                 if (last_parameter != NULL) {
4576                         last_parameter->next = function_parameter;
4577                 } else {
4578                         parameters = function_parameter;
4579                 }
4580                 last_parameter = function_parameter;
4581         }
4582
4583         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4584          * prototype */
4585         new_type->function.parameters             = parameters;
4586         new_type->function.unspecified_parameters = true;
4587
4588         type = typehash_insert(new_type);
4589         if (type != new_type) {
4590                 obstack_free(type_obst, new_type);
4591         }
4592
4593         declaration->type = type;
4594 }
4595
4596 static bool first_err = true;
4597
4598 /**
4599  * When called with first_err set, prints the name of the current function,
4600  * else does noting.
4601  */
4602 static void print_in_function(void)
4603 {
4604         if (first_err) {
4605                 first_err = false;
4606                 diagnosticf("%s: In function '%Y':\n",
4607                         current_function->source_position.input_name,
4608                         current_function->symbol);
4609         }
4610 }
4611
4612 /**
4613  * Check if all labels are defined in the current function.
4614  * Check if all labels are used in the current function.
4615  */
4616 static void check_labels(void)
4617 {
4618         for (const goto_statement_t *goto_statement = goto_first;
4619             goto_statement != NULL;
4620             goto_statement = goto_statement->next) {
4621                 declaration_t *label = goto_statement->label;
4622
4623                 label->used = true;
4624                 if (label->source_position.input_name == NULL) {
4625                         print_in_function();
4626                         errorf(&goto_statement->base.source_position,
4627                                "label '%Y' used but not defined", label->symbol);
4628                  }
4629         }
4630         goto_first = goto_last = NULL;
4631
4632         if (warning.unused_label) {
4633                 for (const label_statement_t *label_statement = label_first;
4634                          label_statement != NULL;
4635                          label_statement = label_statement->next) {
4636                         const declaration_t *label = label_statement->label;
4637
4638                         if (! label->used) {
4639                                 print_in_function();
4640                                 warningf(&label_statement->base.source_position,
4641                                         "label '%Y' defined but not used", label->symbol);
4642                         }
4643                 }
4644         }
4645         label_first = label_last = NULL;
4646 }
4647
4648 /**
4649  * Check declarations of current_function for unused entities.
4650  */
4651 static void check_declarations(void)
4652 {
4653         if (warning.unused_parameter) {
4654                 const scope_t *scope = &current_function->scope;
4655
4656                 const declaration_t *parameter = scope->declarations;
4657                 for (; parameter != NULL; parameter = parameter->next) {
4658                         if (! parameter->used) {
4659                                 print_in_function();
4660                                 warningf(&parameter->source_position,
4661                                          "unused parameter '%Y'", parameter->symbol);
4662                         }
4663                 }
4664         }
4665         if (warning.unused_variable) {
4666         }
4667 }
4668
4669 static int determine_truth(expression_t const* const cond)
4670 {
4671         return
4672                 !is_constant_expression(cond) ? 0 :
4673                 fold_constant(cond) != 0      ? 1 :
4674                 -1;
4675 }
4676
4677 static bool noreturn_candidate;
4678
4679 static void check_reachable(statement_t *const stmt)
4680 {
4681         if (stmt->base.reachable)
4682                 return;
4683         if (stmt->kind != STATEMENT_DO_WHILE)
4684                 stmt->base.reachable = true;
4685
4686         statement_t *last = stmt;
4687         statement_t *next;
4688         switch (stmt->kind) {
4689                 case STATEMENT_INVALID:
4690                 case STATEMENT_EMPTY:
4691                 case STATEMENT_DECLARATION:
4692                 case STATEMENT_ASM:
4693                         next = stmt->base.next;
4694                         break;
4695
4696                 case STATEMENT_COMPOUND:
4697                         next = stmt->compound.statements;
4698                         break;
4699
4700                 case STATEMENT_RETURN:
4701                         noreturn_candidate = false;
4702                         return;
4703
4704                 case STATEMENT_IF: {
4705                         if_statement_t const* const ifs = &stmt->ifs;
4706                         int            const        val = determine_truth(ifs->condition);
4707
4708                         if (val >= 0)
4709                                 check_reachable(ifs->true_statement);
4710
4711                         if (val > 0)
4712                                 return;
4713
4714                         if (ifs->false_statement != NULL) {
4715                                 check_reachable(ifs->false_statement);
4716                                 return;
4717                         }
4718
4719                         next = stmt->base.next;
4720                         break;
4721                 }
4722
4723                 case STATEMENT_SWITCH: {
4724                         switch_statement_t const *const switchs = &stmt->switchs;
4725                         expression_t       const *const expr    = switchs->expression;
4726
4727                         if (is_constant_expression(expr)) {
4728                                 long                    const val      = fold_constant(expr);
4729                                 case_label_statement_t *      defaults = NULL;
4730                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4731                                         if (i->expression == NULL) {
4732                                                 defaults = i;
4733                                                 continue;
4734                                         }
4735
4736                                         expression_t *const case_expr = i->expression;
4737                                         if (is_constant_expression(case_expr) &&
4738                                             fold_constant(case_expr) == val) {
4739                                                 check_reachable((statement_t*)i);
4740                                                 return;
4741                                         }
4742                                 }
4743
4744                                 if (defaults != NULL) {
4745                                         check_reachable((statement_t*)defaults);
4746                                         return;
4747                                 }
4748                         } else {
4749                                 bool has_default = false;
4750                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4751                                         if (i->expression == NULL)
4752                                                 has_default = true;
4753
4754                                         check_reachable((statement_t*)i);
4755                                 }
4756
4757                                 if (has_default)
4758                                         return;
4759                         }
4760
4761                         next = stmt->base.next;
4762                         break;
4763                 }
4764
4765                 case STATEMENT_EXPRESSION: {
4766                         /* Check for noreturn function call */
4767                         expression_t const *const expr = stmt->expression.expression;
4768                         if (expr->kind == EXPR_CALL) {
4769                                 expression_t const *const func = expr->call.function;
4770                                 if (func->kind == EXPR_REFERENCE) {
4771                                         declaration_t const *const decl = func->reference.declaration;
4772                                         if (decl != NULL && decl->modifiers & DM_NORETURN) {
4773                                                 return;
4774                                         }
4775                                 }
4776                         }
4777
4778                         next = stmt->base.next;
4779                         break;
4780                 }
4781
4782                 case STATEMENT_CONTINUE: {
4783                         statement_t *parent = stmt;
4784                         for (;;) {
4785                                 parent = parent->base.parent;
4786                                 if (parent == NULL) /* continue not within loop */
4787                                         return;
4788
4789                                 next = parent;
4790                                 switch (parent->kind) {
4791                                         case STATEMENT_WHILE:    goto continue_while;
4792                                         case STATEMENT_DO_WHILE: goto continue_do_while;
4793                                         case STATEMENT_FOR:      goto continue_for;
4794
4795                                         default: break;
4796                                 }
4797                         }
4798                 }
4799
4800                 case STATEMENT_BREAK: {
4801                         statement_t *parent = stmt;
4802                         for (;;) {
4803                                 parent = parent->base.parent;
4804                                 if (parent == NULL) /* break not within loop/switch */
4805                                         return;
4806
4807                                 switch (parent->kind) {
4808                                         case STATEMENT_SWITCH:
4809                                         case STATEMENT_WHILE:
4810                                         case STATEMENT_DO_WHILE:
4811                                         case STATEMENT_FOR:
4812                                                 last = parent;
4813                                                 next = parent->base.next;
4814                                                 goto found_break_parent;
4815
4816                                         default: break;
4817                                 }
4818                         }
4819 found_break_parent:
4820                         break;
4821                 }
4822
4823                 case STATEMENT_GOTO:
4824                         next = stmt->gotos.label->init.statement;
4825                         if (next == NULL) /* missing label */
4826                                 return;
4827                         break;
4828
4829                 case STATEMENT_LABEL:
4830                         next = stmt->label.statement;
4831                         break;
4832
4833                 case STATEMENT_CASE_LABEL:
4834                         next = stmt->case_label.statement;
4835                         break;
4836
4837                 case STATEMENT_WHILE: {
4838                         while_statement_t const *const whiles = &stmt->whiles;
4839                         int                      const val    = determine_truth(whiles->condition);
4840
4841                         if (val >= 0)
4842                                 check_reachable(whiles->body);
4843
4844                         if (val > 0)
4845                                 return;
4846
4847                         next = stmt->base.next;
4848                         break;
4849                 }
4850
4851                 case STATEMENT_DO_WHILE:
4852                         next = stmt->do_while.body;
4853                         break;
4854
4855                 case STATEMENT_FOR: {
4856                         for_statement_t *const fors = &stmt->fors;
4857
4858                         if (fors->condition_reachable)
4859                                 return;
4860                         fors->condition_reachable = true;
4861
4862                         expression_t const *const cond = fors->condition;
4863                         int          const        val  =
4864                                 cond == NULL ? 1 : determine_truth(cond);
4865
4866                         if (val >= 0)
4867                                 check_reachable(fors->body);
4868
4869                         if (val > 0)
4870                                 return;
4871
4872                         next = stmt->base.next;
4873                         break;
4874                 }
4875
4876                 case STATEMENT_MS_TRY:
4877                 case STATEMENT_LEAVE:
4878                         panic("unimplemented");
4879         }
4880
4881         while (next == NULL) {
4882                 next = last->base.parent;
4883                 if (next == NULL) {
4884                         noreturn_candidate = false;
4885
4886                         type_t *const type = current_function->type;
4887                         assert(is_type_function(type));
4888                         type_t *const ret  = skip_typeref(type->function.return_type);
4889                         if (warning.return_type                    &&
4890                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
4891                             !is_sym_main(current_function->symbol)) {
4892                                 warningf(&stmt->base.source_position,
4893                                          "control reaches end of non-void function");
4894                         }
4895                         return;
4896                 }
4897
4898                 switch (next->kind) {
4899                         case STATEMENT_INVALID:
4900                         case STATEMENT_EMPTY:
4901                         case STATEMENT_DECLARATION:
4902                         case STATEMENT_EXPRESSION:
4903                         case STATEMENT_ASM:
4904                         case STATEMENT_RETURN:
4905                         case STATEMENT_CONTINUE:
4906                         case STATEMENT_BREAK:
4907                         case STATEMENT_GOTO:
4908                         case STATEMENT_LEAVE:
4909                                 panic("invalid control flow in function");
4910
4911                         case STATEMENT_COMPOUND:
4912                         case STATEMENT_IF:
4913                         case STATEMENT_SWITCH:
4914                         case STATEMENT_LABEL:
4915                         case STATEMENT_CASE_LABEL:
4916                                 last = next;
4917                                 next = next->base.next;
4918                                 break;
4919
4920                         case STATEMENT_WHILE: {
4921 continue_while:
4922                                 if (next->base.reachable)
4923                                         return;
4924                                 next->base.reachable = true;
4925
4926                                 while_statement_t const *const whiles = &next->whiles;
4927                                 int                      const val    = determine_truth(whiles->condition);
4928
4929                                 if (val >= 0)
4930                                         check_reachable(whiles->body);
4931
4932                                 if (val > 0)
4933                                         return;
4934
4935                                 last = next;
4936                                 next = next->base.next;
4937                                 break;
4938                         }
4939
4940                         case STATEMENT_DO_WHILE: {
4941 continue_do_while:
4942                                 if (next->base.reachable)
4943                                         return;
4944                                 next->base.reachable = true;
4945
4946                                 do_while_statement_t const *const dw  = &next->do_while;
4947                                 int                  const        val = determine_truth(dw->condition);
4948
4949                                 if (val >= 0)
4950                                         check_reachable(dw->body);
4951
4952                                 if (val > 0)
4953                                         return;
4954
4955                                 last = next;
4956                                 next = next->base.next;
4957                                 break;
4958                         }
4959
4960                         case STATEMENT_FOR: {
4961 continue_for:;
4962                                 for_statement_t *const fors = &next->fors;
4963
4964                                 fors->step_reachable = true;
4965
4966                                 if (fors->condition_reachable)
4967                                         return;
4968                                 fors->condition_reachable = true;
4969
4970                                 expression_t const *const cond = fors->condition;
4971                                 int          const        val  =
4972                                         cond == NULL ? 1 : determine_truth(cond);
4973
4974                                 if (val >= 0)
4975                                         check_reachable(fors->body);
4976
4977                                 if (val > 0)
4978                                         return;
4979
4980                                 last = next;
4981                                 next = next->base.next;
4982                                 break;
4983                         }
4984
4985                         case STATEMENT_MS_TRY:
4986                                 panic("unimplemented");
4987                 }
4988         }
4989
4990         if (next == NULL) {
4991                 next = stmt->base.parent;
4992                 if (next == NULL) {
4993                         warningf(&stmt->base.source_position,
4994                                  "control reaches end of non-void function");
4995                 }
4996         }
4997
4998         check_reachable(next);
4999 }
5000
5001 static void check_unreachable(statement_t const* const stmt)
5002 {
5003         if (!stmt->base.reachable            &&
5004             stmt->kind != STATEMENT_COMPOUND &&
5005             stmt->kind != STATEMENT_DO_WHILE &&
5006             stmt->kind != STATEMENT_FOR) {
5007                 warningf(&stmt->base.source_position,
5008                          "statement is unreachable");
5009         }
5010
5011         switch (stmt->kind) {
5012                 case STATEMENT_INVALID:
5013                 case STATEMENT_EMPTY:
5014                 case STATEMENT_RETURN:
5015                 case STATEMENT_DECLARATION:
5016                 case STATEMENT_EXPRESSION:
5017                 case STATEMENT_CONTINUE:
5018                 case STATEMENT_BREAK:
5019                 case STATEMENT_GOTO:
5020                 case STATEMENT_ASM:
5021                 case STATEMENT_LEAVE:
5022                         break;
5023
5024                 case STATEMENT_COMPOUND:
5025                         if (stmt->compound.statements)
5026                                 check_unreachable(stmt->compound.statements);
5027                         break;
5028
5029                 case STATEMENT_IF:
5030                         check_unreachable(stmt->ifs.true_statement);
5031                         if (stmt->ifs.false_statement != NULL)
5032                                 check_unreachable(stmt->ifs.false_statement);
5033                         break;
5034
5035                 case STATEMENT_SWITCH:
5036                         check_unreachable(stmt->switchs.body);
5037                         break;
5038
5039                 case STATEMENT_LABEL:
5040                         check_unreachable(stmt->label.statement);
5041                         break;
5042
5043                 case STATEMENT_CASE_LABEL:
5044                         check_unreachable(stmt->case_label.statement);
5045                         break;
5046
5047                 case STATEMENT_WHILE:
5048                         check_unreachable(stmt->whiles.body);
5049                         break;
5050
5051                 case STATEMENT_DO_WHILE:
5052                         check_unreachable(stmt->do_while.body);
5053                         if (!stmt->base.reachable) {
5054                                 expression_t const *const cond = stmt->do_while.condition;
5055                                 if (determine_truth(cond) >= 0) {
5056                                         warningf(&cond->base.source_position,
5057                                                  "condition of do-while-loop is unreachable");
5058                                 }
5059                         }
5060                         break;
5061
5062                 case STATEMENT_FOR: {
5063                         for_statement_t const* const fors = &stmt->fors;
5064
5065                         if (!stmt->base.reachable && fors->initialisation != NULL) {
5066                                 warningf(&fors->initialisation->base.source_position,
5067                                          "initialisation of for-statement is unreachable");
5068                         }
5069
5070                         if (!fors->condition_reachable && fors->condition != NULL) {
5071                                 warningf(&fors->condition->base.source_position,
5072                                          "condition of for-statement is unreachable");
5073                         }
5074
5075                         if (!fors->step_reachable && fors->step != NULL) {
5076                                 warningf(&fors->step->base.source_position,
5077                                          "step of for-statement is unreachable");
5078                         }
5079
5080                         check_unreachable(stmt->fors.body);
5081                         break;
5082                 }
5083
5084                 case STATEMENT_MS_TRY:
5085                         panic("unimplemented");
5086         }
5087
5088         if (stmt->base.next)
5089                 check_unreachable(stmt->base.next);
5090 }
5091
5092 static void parse_external_declaration(void)
5093 {
5094         /* function-definitions and declarations both start with declaration
5095          * specifiers */
5096         declaration_specifiers_t specifiers;
5097         memset(&specifiers, 0, sizeof(specifiers));
5098
5099         add_anchor_token(';');
5100         parse_declaration_specifiers(&specifiers);
5101         rem_anchor_token(';');
5102
5103         /* must be a declaration */
5104         if (token.type == ';') {
5105                 parse_anonymous_declaration_rest(&specifiers, append_declaration);
5106                 return;
5107         }
5108
5109         add_anchor_token(',');
5110         add_anchor_token('=');
5111         rem_anchor_token(';');
5112
5113         /* declarator is common to both function-definitions and declarations */
5114         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
5115
5116         rem_anchor_token(',');
5117         rem_anchor_token('=');
5118         rem_anchor_token(';');
5119
5120         /* must be a declaration */
5121         switch (token.type) {
5122                 case ',':
5123                 case ';':
5124                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
5125                         return;
5126
5127                 case '=':
5128                         parse_declaration_rest(ndeclaration, &specifiers, record_definition);
5129                         return;
5130         }
5131
5132         /* must be a function definition */
5133         parse_kr_declaration_list(ndeclaration);
5134
5135         if (token.type != '{') {
5136                 parse_error_expected("while parsing function definition", '{', NULL);
5137                 eat_until_matching_token(';');
5138                 return;
5139         }
5140
5141         type_t *type = ndeclaration->type;
5142
5143         /* note that we don't skip typerefs: the standard doesn't allow them here
5144          * (so we can't use is_type_function here) */
5145         if (type->kind != TYPE_FUNCTION) {
5146                 if (is_type_valid(type)) {
5147                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5148                                type, ndeclaration->symbol);
5149                 }
5150                 eat_block();
5151                 return;
5152         }
5153
5154         /* Â§ 6.7.5.3 (14) a function definition with () means no
5155          * parameters (and not unspecified parameters) */
5156         if (type->function.unspecified_parameters
5157                         && type->function.parameters == NULL
5158                         && !type->function.kr_style_parameters) {
5159                 type_t *duplicate = duplicate_type(type);
5160                 duplicate->function.unspecified_parameters = false;
5161
5162                 type = typehash_insert(duplicate);
5163                 if (type != duplicate) {
5164                         obstack_free(type_obst, duplicate);
5165                 }
5166                 ndeclaration->type = type;
5167         }
5168
5169         declaration_t *const declaration = record_definition(ndeclaration);
5170         if (ndeclaration != declaration) {
5171                 declaration->scope = ndeclaration->scope;
5172         }
5173         type = skip_typeref(declaration->type);
5174
5175         /* push function parameters and switch scope */
5176         int       top        = environment_top();
5177         scope_t  *last_scope = scope;
5178         set_scope(&declaration->scope);
5179
5180         declaration_t *parameter = declaration->scope.declarations;
5181         for( ; parameter != NULL; parameter = parameter->next) {
5182                 if (parameter->parent_scope == &ndeclaration->scope) {
5183                         parameter->parent_scope = scope;
5184                 }
5185                 assert(parameter->parent_scope == NULL
5186                                 || parameter->parent_scope == scope);
5187                 parameter->parent_scope = scope;
5188                 if (parameter->symbol == NULL) {
5189                         errorf(&ndeclaration->source_position, "parameter name omitted");
5190                         continue;
5191                 }
5192                 environment_push(parameter);
5193         }
5194
5195         if (declaration->init.statement != NULL) {
5196                 parser_error_multiple_definition(declaration, HERE);
5197                 eat_block();
5198         } else {
5199                 /* parse function body */
5200                 int            label_stack_top      = label_top();
5201                 declaration_t *old_current_function = current_function;
5202                 current_function                    = declaration;
5203                 current_parent                      = NULL;
5204
5205                 statement_t *const body = parse_compound_statement(false);
5206                 declaration->init.statement = body;
5207                 first_err = true;
5208                 check_labels();
5209                 check_declarations();
5210                 if (warning.return_type      ||
5211                     warning.unreachable_code ||
5212                     (warning.missing_noreturn && !(declaration->modifiers & DM_NORETURN))) {
5213                         noreturn_candidate = true;
5214                         check_reachable(body);
5215                         if (warning.unreachable_code)
5216                                 check_unreachable(body);
5217                         if (warning.missing_noreturn &&
5218                             noreturn_candidate       &&
5219                             !(declaration->modifiers & DM_NORETURN)) {
5220                                 warningf(&body->base.source_position,
5221                                          "function '%#T' is candidate for attribute 'noreturn'",
5222                                          type, declaration->symbol);
5223                         }
5224                 }
5225
5226                 assert(current_parent   == NULL);
5227                 assert(current_function == declaration);
5228                 current_function = old_current_function;
5229                 label_pop_to(label_stack_top);
5230         }
5231
5232         assert(scope == &declaration->scope);
5233         set_scope(last_scope);
5234         environment_pop_to(top);
5235 }
5236
5237 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5238                                   source_position_t *source_position)
5239 {
5240         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
5241
5242         type->bitfield.base_type = base_type;
5243         type->bitfield.size      = size;
5244
5245         return type;
5246 }
5247
5248 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
5249                                           symbol_t *symbol)
5250 {
5251         declaration_t *iter = compound_declaration->scope.declarations;
5252         for( ; iter != NULL; iter = iter->next) {
5253                 if (iter->namespc != NAMESPACE_NORMAL)
5254                         continue;
5255
5256                 if (iter->symbol == NULL) {
5257                         type_t *type = skip_typeref(iter->type);
5258                         if (is_type_compound(type)) {
5259                                 declaration_t *result
5260                                         = find_compound_entry(type->compound.declaration, symbol);
5261                                 if (result != NULL)
5262                                         return result;
5263                         }
5264                         continue;
5265                 }
5266
5267                 if (iter->symbol == symbol) {
5268                         return iter;
5269                 }
5270         }
5271
5272         return NULL;
5273 }
5274
5275 static void parse_compound_declarators(declaration_t *struct_declaration,
5276                 const declaration_specifiers_t *specifiers)
5277 {
5278         declaration_t *last_declaration = struct_declaration->scope.declarations;
5279         if (last_declaration != NULL) {
5280                 while(last_declaration->next != NULL) {
5281                         last_declaration = last_declaration->next;
5282                 }
5283         }
5284
5285         while(1) {
5286                 declaration_t *declaration;
5287
5288                 if (token.type == ':') {
5289                         source_position_t source_position = *HERE;
5290                         next_token();
5291
5292                         type_t *base_type = specifiers->type;
5293                         expression_t *size = parse_constant_expression();
5294
5295                         if (!is_type_integer(skip_typeref(base_type))) {
5296                                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5297                                        base_type);
5298                         }
5299
5300                         type_t *type = make_bitfield_type(base_type, size, &source_position);
5301
5302                         declaration                         = allocate_declaration_zero();
5303                         declaration->namespc                = NAMESPACE_NORMAL;
5304                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
5305                         declaration->storage_class          = STORAGE_CLASS_NONE;
5306                         declaration->source_position        = source_position;
5307                         declaration->modifiers              = specifiers->modifiers;
5308                         declaration->type                   = type;
5309                 } else {
5310                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
5311
5312                         type_t *orig_type = declaration->type;
5313                         type_t *type      = skip_typeref(orig_type);
5314
5315                         if (token.type == ':') {
5316                                 source_position_t source_position = *HERE;
5317                                 next_token();
5318                                 expression_t *size = parse_constant_expression();
5319
5320                                 if (!is_type_integer(type)) {
5321                                         errorf(HERE, "bitfield base type '%T' is not an "
5322                                                "integer type", orig_type);
5323                                 }
5324
5325                                 type_t *bitfield_type = make_bitfield_type(orig_type, size, &source_position);
5326                                 declaration->type = bitfield_type;
5327                         } else {
5328                                 /* TODO we ignore arrays for now... what is missing is a check
5329                                  * that they're at the end of the struct */
5330                                 if (is_type_incomplete(type) && !is_type_array(type)) {
5331                                         errorf(HERE,
5332                                                "compound member '%Y' has incomplete type '%T'",
5333                                                declaration->symbol, orig_type);
5334                                 } else if (is_type_function(type)) {
5335                                         errorf(HERE, "compound member '%Y' must not have function "
5336                                                "type '%T'", declaration->symbol, orig_type);
5337                                 }
5338                         }
5339                 }
5340
5341                 /* make sure we don't define a symbol multiple times */
5342                 symbol_t *symbol = declaration->symbol;
5343                 if (symbol != NULL) {
5344                         declaration_t *prev_decl
5345                                 = find_compound_entry(struct_declaration, symbol);
5346
5347                         if (prev_decl != NULL) {
5348                                 assert(prev_decl->symbol == symbol);
5349                                 errorf(&declaration->source_position,
5350                                        "multiple declarations of symbol '%Y' (declared %P)",
5351                                        symbol, &prev_decl->source_position);
5352                         }
5353                 }
5354
5355                 /* append declaration */
5356                 if (last_declaration != NULL) {
5357                         last_declaration->next = declaration;
5358                 } else {
5359                         struct_declaration->scope.declarations = declaration;
5360                 }
5361                 last_declaration = declaration;
5362
5363                 if (token.type != ',')
5364                         break;
5365                 next_token();
5366         }
5367         expect(';');
5368
5369 end_error:
5370         ;
5371 }
5372
5373 static void parse_compound_type_entries(declaration_t *compound_declaration)
5374 {
5375         eat('{');
5376         add_anchor_token('}');
5377
5378         while(token.type != '}' && token.type != T_EOF) {
5379                 declaration_specifiers_t specifiers;
5380                 memset(&specifiers, 0, sizeof(specifiers));
5381                 parse_declaration_specifiers(&specifiers);
5382
5383                 parse_compound_declarators(compound_declaration, &specifiers);
5384         }
5385         rem_anchor_token('}');
5386
5387         if (token.type == T_EOF) {
5388                 errorf(HERE, "EOF while parsing struct");
5389         }
5390         next_token();
5391 }
5392
5393 static type_t *parse_typename(void)
5394 {
5395         declaration_specifiers_t specifiers;
5396         memset(&specifiers, 0, sizeof(specifiers));
5397         parse_declaration_specifiers(&specifiers);
5398         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
5399                 /* TODO: improve error message, user does probably not know what a
5400                  * storage class is...
5401                  */
5402                 errorf(HERE, "typename may not have a storage class");
5403         }
5404
5405         type_t *result = parse_abstract_declarator(specifiers.type);
5406
5407         return result;
5408 }
5409
5410
5411
5412
5413 typedef expression_t* (*parse_expression_function) (unsigned precedence);
5414 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
5415                                                           expression_t *left);
5416
5417 typedef struct expression_parser_function_t expression_parser_function_t;
5418 struct expression_parser_function_t {
5419         unsigned                         precedence;
5420         parse_expression_function        parser;
5421         unsigned                         infix_precedence;
5422         parse_expression_infix_function  infix_parser;
5423 };
5424
5425 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5426
5427 /**
5428  * Prints an error message if an expression was expected but not read
5429  */
5430 static expression_t *expected_expression_error(void)
5431 {
5432         /* skip the error message if the error token was read */
5433         if (token.type != T_ERROR) {
5434                 errorf(HERE, "expected expression, got token '%K'", &token);
5435         }
5436         next_token();
5437
5438         return create_invalid_expression();
5439 }
5440
5441 /**
5442  * Parse a string constant.
5443  */
5444 static expression_t *parse_string_const(void)
5445 {
5446         wide_string_t wres;
5447         if (token.type == T_STRING_LITERAL) {
5448                 string_t res = token.v.string;
5449                 next_token();
5450                 while (token.type == T_STRING_LITERAL) {
5451                         res = concat_strings(&res, &token.v.string);
5452                         next_token();
5453                 }
5454                 if (token.type != T_WIDE_STRING_LITERAL) {
5455                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
5456                         /* note: that we use type_char_ptr here, which is already the
5457                          * automatic converted type. revert_automatic_type_conversion
5458                          * will construct the array type */
5459                         cnst->base.type    = type_char_ptr;
5460                         cnst->string.value = res;
5461                         return cnst;
5462                 }
5463
5464                 wres = concat_string_wide_string(&res, &token.v.wide_string);
5465         } else {
5466                 wres = token.v.wide_string;
5467         }
5468         next_token();
5469
5470         for (;;) {
5471                 switch (token.type) {
5472                         case T_WIDE_STRING_LITERAL:
5473                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5474                                 break;
5475
5476                         case T_STRING_LITERAL:
5477                                 wres = concat_wide_string_string(&wres, &token.v.string);
5478                                 break;
5479
5480                         default: {
5481                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5482                                 cnst->base.type         = type_wchar_t_ptr;
5483                                 cnst->wide_string.value = wres;
5484                                 return cnst;
5485                         }
5486                 }
5487                 next_token();
5488         }
5489 }
5490
5491 /**
5492  * Parse an integer constant.
5493  */
5494 static expression_t *parse_int_const(void)
5495 {
5496         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5497         cnst->base.source_position = *HERE;
5498         cnst->base.type            = token.datatype;
5499         cnst->conste.v.int_value   = token.v.intvalue;
5500
5501         next_token();
5502
5503         return cnst;
5504 }
5505
5506 /**
5507  * Parse a character constant.
5508  */
5509 static expression_t *parse_character_constant(void)
5510 {
5511         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5512
5513         cnst->base.source_position = *HERE;
5514         cnst->base.type            = token.datatype;
5515         cnst->conste.v.character   = token.v.string;
5516
5517         if (cnst->conste.v.character.size != 1) {
5518                 if (warning.multichar && (c_mode & _GNUC)) {
5519                         /* TODO */
5520                         warningf(HERE, "multi-character character constant");
5521                 } else {
5522                         errorf(HERE, "more than 1 characters in character constant");
5523                 }
5524         }
5525         next_token();
5526
5527         return cnst;
5528 }
5529
5530 /**
5531  * Parse a wide character constant.
5532  */
5533 static expression_t *parse_wide_character_constant(void)
5534 {
5535         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5536
5537         cnst->base.source_position    = *HERE;
5538         cnst->base.type               = token.datatype;
5539         cnst->conste.v.wide_character = token.v.wide_string;
5540
5541         if (cnst->conste.v.wide_character.size != 1) {
5542                 if (warning.multichar && (c_mode & _GNUC)) {
5543                         /* TODO */
5544                         warningf(HERE, "multi-character character constant");
5545                 } else {
5546                         errorf(HERE, "more than 1 characters in character constant");
5547                 }
5548         }
5549         next_token();
5550
5551         return cnst;
5552 }
5553
5554 /**
5555  * Parse a float constant.
5556  */
5557 static expression_t *parse_float_const(void)
5558 {
5559         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5560         cnst->base.type            = token.datatype;
5561         cnst->conste.v.float_value = token.v.floatvalue;
5562
5563         next_token();
5564
5565         return cnst;
5566 }
5567
5568 static declaration_t *create_implicit_function(symbol_t *symbol,
5569                 const source_position_t *source_position)
5570 {
5571         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5572         ntype->function.return_type            = type_int;
5573         ntype->function.unspecified_parameters = true;
5574
5575         type_t *type = typehash_insert(ntype);
5576         if (type != ntype) {
5577                 free_type(ntype);
5578         }
5579
5580         declaration_t *const declaration    = allocate_declaration_zero();
5581         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5582         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5583         declaration->type                   = type;
5584         declaration->symbol                 = symbol;
5585         declaration->source_position        = *source_position;
5586
5587         bool strict_prototypes_old = warning.strict_prototypes;
5588         warning.strict_prototypes  = false;
5589         record_declaration(declaration);
5590         warning.strict_prototypes = strict_prototypes_old;
5591
5592         return declaration;
5593 }
5594
5595 /**
5596  * Creates a return_type (func)(argument_type) function type if not
5597  * already exists.
5598  */
5599 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5600                                     type_t *argument_type2)
5601 {
5602         function_parameter_t *parameter2
5603                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5604         memset(parameter2, 0, sizeof(parameter2[0]));
5605         parameter2->type = argument_type2;
5606
5607         function_parameter_t *parameter1
5608                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5609         memset(parameter1, 0, sizeof(parameter1[0]));
5610         parameter1->type = argument_type1;
5611         parameter1->next = parameter2;
5612
5613         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5614         type->function.return_type = return_type;
5615         type->function.parameters  = parameter1;
5616
5617         type_t *result = typehash_insert(type);
5618         if (result != type) {
5619                 free_type(type);
5620         }
5621
5622         return result;
5623 }
5624
5625 /**
5626  * Creates a return_type (func)(argument_type) function type if not
5627  * already exists.
5628  *
5629  * @param return_type    the return type
5630  * @param argument_type  the argument type
5631  */
5632 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5633 {
5634         function_parameter_t *parameter
5635                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5636         memset(parameter, 0, sizeof(parameter[0]));
5637         parameter->type = argument_type;
5638
5639         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5640         type->function.return_type = return_type;
5641         type->function.parameters  = parameter;
5642
5643         type_t *result = typehash_insert(type);
5644         if (result != type) {
5645                 free_type(type);
5646         }
5647
5648         return result;
5649 }
5650
5651 static type_t *make_function_0_type(type_t *return_type)
5652 {
5653         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5654         type->function.return_type = return_type;
5655         type->function.parameters  = NULL;
5656
5657         type_t *result = typehash_insert(type);
5658         if (result != type) {
5659                 free_type(type);
5660         }
5661
5662         return result;
5663 }
5664
5665 /**
5666  * Creates a function type for some function like builtins.
5667  *
5668  * @param symbol   the symbol describing the builtin
5669  */
5670 static type_t *get_builtin_symbol_type(symbol_t *symbol)
5671 {
5672         switch(symbol->ID) {
5673         case T___builtin_alloca:
5674                 return make_function_1_type(type_void_ptr, type_size_t);
5675         case T___builtin_huge_val:
5676                 return make_function_0_type(type_double);
5677         case T___builtin_nan:
5678                 return make_function_1_type(type_double, type_char_ptr);
5679         case T___builtin_nanf:
5680                 return make_function_1_type(type_float, type_char_ptr);
5681         case T___builtin_nand:
5682                 return make_function_1_type(type_long_double, type_char_ptr);
5683         case T___builtin_va_end:
5684                 return make_function_1_type(type_void, type_valist);
5685         case T___builtin_expect:
5686                 return make_function_2_type(type_long, type_long, type_long);
5687         default:
5688                 internal_errorf(HERE, "not implemented builtin symbol found");
5689         }
5690 }
5691
5692 /**
5693  * Performs automatic type cast as described in Â§ 6.3.2.1.
5694  *
5695  * @param orig_type  the original type
5696  */
5697 static type_t *automatic_type_conversion(type_t *orig_type)
5698 {
5699         type_t *type = skip_typeref(orig_type);
5700         if (is_type_array(type)) {
5701                 array_type_t *array_type   = &type->array;
5702                 type_t       *element_type = array_type->element_type;
5703                 unsigned      qualifiers   = array_type->base.qualifiers;
5704
5705                 return make_pointer_type(element_type, qualifiers);
5706         }
5707
5708         if (is_type_function(type)) {
5709                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
5710         }
5711
5712         return orig_type;
5713 }
5714
5715 /**
5716  * reverts the automatic casts of array to pointer types and function
5717  * to function-pointer types as defined Â§ 6.3.2.1
5718  */
5719 type_t *revert_automatic_type_conversion(const expression_t *expression)
5720 {
5721         switch (expression->kind) {
5722                 case EXPR_REFERENCE: return expression->reference.declaration->type;
5723                 case EXPR_SELECT:    return expression->select.compound_entry->type;
5724
5725                 case EXPR_UNARY_DEREFERENCE: {
5726                         const expression_t *const value = expression->unary.value;
5727                         type_t             *const type  = skip_typeref(value->base.type);
5728                         assert(is_type_pointer(type));
5729                         return type->pointer.points_to;
5730                 }
5731
5732                 case EXPR_BUILTIN_SYMBOL:
5733                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
5734
5735                 case EXPR_ARRAY_ACCESS: {
5736                         const expression_t *array_ref = expression->array_access.array_ref;
5737                         type_t             *type_left = skip_typeref(array_ref->base.type);
5738                         if (!is_type_valid(type_left))
5739                                 return type_left;
5740                         assert(is_type_pointer(type_left));
5741                         return type_left->pointer.points_to;
5742                 }
5743
5744                 case EXPR_STRING_LITERAL: {
5745                         size_t size = expression->string.value.size;
5746                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
5747                 }
5748
5749                 case EXPR_WIDE_STRING_LITERAL: {
5750                         size_t size = expression->wide_string.value.size;
5751                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
5752                 }
5753
5754                 case EXPR_COMPOUND_LITERAL:
5755                         return expression->compound_literal.type;
5756
5757                 default: break;
5758         }
5759
5760         return expression->base.type;
5761 }
5762
5763 static expression_t *parse_reference(void)
5764 {
5765         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
5766
5767         reference_expression_t *ref = &expression->reference;
5768         symbol_t *const symbol = token.v.symbol;
5769
5770         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
5771
5772         source_position_t source_position = token.source_position;
5773         next_token();
5774
5775         if (declaration == NULL) {
5776                 if (! strict_mode && token.type == '(') {
5777                         /* an implicitly defined function */
5778                         if (warning.implicit_function_declaration) {
5779                                 warningf(HERE, "implicit declaration of function '%Y'",
5780                                         symbol);
5781                         }
5782
5783                         declaration = create_implicit_function(symbol,
5784                                                                &source_position);
5785                 } else {
5786                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
5787                         return create_invalid_expression();
5788                 }
5789         }
5790
5791         type_t *type         = declaration->type;
5792
5793         /* we always do the auto-type conversions; the & and sizeof parser contains
5794          * code to revert this! */
5795         type = automatic_type_conversion(type);
5796
5797         ref->declaration = declaration;
5798         ref->base.type   = type;
5799
5800         /* this declaration is used */
5801         declaration->used = true;
5802
5803         /* check for deprecated functions */
5804         if (warning.deprecated_declarations &&
5805             declaration->modifiers & DM_DEPRECATED) {
5806                 char const *const prefix = is_type_function(declaration->type) ?
5807                         "function" : "variable";
5808
5809                 if (declaration->deprecated_string != NULL) {
5810                         warningf(&source_position,
5811                                 "%s '%Y' is deprecated (declared %P): \"%s\"", prefix,
5812                                 declaration->symbol, &declaration->source_position,
5813                                 declaration->deprecated_string);
5814                 } else {
5815                         warningf(&source_position,
5816                                 "%s '%Y' is deprecated (declared %P)", prefix,
5817                                 declaration->symbol, &declaration->source_position);
5818                 }
5819         }
5820
5821         return expression;
5822 }
5823
5824 static void check_cast_allowed(expression_t *expression, type_t *dest_type)
5825 {
5826         (void) expression;
5827         (void) dest_type;
5828         /* TODO check if explicit cast is allowed and issue warnings/errors */
5829 }
5830
5831 static expression_t *parse_compound_literal(type_t *type)
5832 {
5833         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
5834
5835         parse_initializer_env_t env;
5836         env.type             = type;
5837         env.declaration      = NULL;
5838         env.must_be_constant = false;
5839         initializer_t *initializer = parse_initializer(&env);
5840         type = env.type;
5841
5842         expression->compound_literal.initializer = initializer;
5843         expression->compound_literal.type        = type;
5844         expression->base.type                    = automatic_type_conversion(type);
5845
5846         return expression;
5847 }
5848
5849 /**
5850  * Parse a cast expression.
5851  */
5852 static expression_t *parse_cast(void)
5853 {
5854         source_position_t source_position = token.source_position;
5855
5856         type_t *type  = parse_typename();
5857
5858         /* matching add_anchor_token() is at call site */
5859         rem_anchor_token(')');
5860         expect(')');
5861
5862         if (token.type == '{') {
5863                 return parse_compound_literal(type);
5864         }
5865
5866         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
5867         cast->base.source_position = source_position;
5868
5869         expression_t *value = parse_sub_expression(20);
5870
5871         check_cast_allowed(value, type);
5872
5873         cast->base.type   = type;
5874         cast->unary.value = value;
5875
5876         return cast;
5877 end_error:
5878         return create_invalid_expression();
5879 }
5880
5881 /**
5882  * Parse a statement expression.
5883  */
5884 static expression_t *parse_statement_expression(void)
5885 {
5886         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
5887
5888         statement_t *statement           = parse_compound_statement(true);
5889         expression->statement.statement  = statement;
5890         expression->base.source_position = statement->base.source_position;
5891
5892         /* find last statement and use its type */
5893         type_t *type = type_void;
5894         const statement_t *stmt = statement->compound.statements;
5895         if (stmt != NULL) {
5896                 while (stmt->base.next != NULL)
5897                         stmt = stmt->base.next;
5898
5899                 if (stmt->kind == STATEMENT_EXPRESSION) {
5900                         type = stmt->expression.expression->base.type;
5901                 }
5902         } else {
5903                 warningf(&expression->base.source_position, "empty statement expression ({})");
5904         }
5905         expression->base.type = type;
5906
5907         expect(')');
5908
5909         return expression;
5910 end_error:
5911         return create_invalid_expression();
5912 }
5913
5914 /**
5915  * Parse a braced expression.
5916  */
5917 static expression_t *parse_brace_expression(void)
5918 {
5919         eat('(');
5920         add_anchor_token(')');
5921
5922         switch(token.type) {
5923         case '{':
5924                 /* gcc extension: a statement expression */
5925                 return parse_statement_expression();
5926
5927         TYPE_QUALIFIERS
5928         TYPE_SPECIFIERS
5929                 return parse_cast();
5930         case T_IDENTIFIER:
5931                 if (is_typedef_symbol(token.v.symbol)) {
5932                         return parse_cast();
5933                 }
5934         }
5935
5936         expression_t *result = parse_expression();
5937         rem_anchor_token(')');
5938         expect(')');
5939
5940         return result;
5941 end_error:
5942         return create_invalid_expression();
5943 }
5944
5945 static expression_t *parse_function_keyword(void)
5946 {
5947         next_token();
5948         /* TODO */
5949
5950         if (current_function == NULL) {
5951                 errorf(HERE, "'__func__' used outside of a function");
5952         }
5953
5954         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5955         expression->base.type     = type_char_ptr;
5956         expression->funcname.kind = FUNCNAME_FUNCTION;
5957
5958         return expression;
5959 }
5960
5961 static expression_t *parse_pretty_function_keyword(void)
5962 {
5963         eat(T___PRETTY_FUNCTION__);
5964
5965         if (current_function == NULL) {
5966                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
5967         }
5968
5969         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5970         expression->base.type     = type_char_ptr;
5971         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
5972
5973         return expression;
5974 }
5975
5976 static expression_t *parse_funcsig_keyword(void)
5977 {
5978         eat(T___FUNCSIG__);
5979
5980         if (current_function == NULL) {
5981                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
5982         }
5983
5984         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
5985         expression->base.type     = type_char_ptr;
5986         expression->funcname.kind = FUNCNAME_FUNCSIG;
5987
5988         return expression;
5989 }
5990
5991 static expression_t *parse_funcdname_keyword(void)
5992 {
5993         eat(T___FUNCDNAME__);
5994
5995         if (current_function == NULL) {
5996                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
5997         }
5998
5999         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6000         expression->base.type     = type_char_ptr;
6001         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6002
6003         return expression;
6004 }
6005
6006 static designator_t *parse_designator(void)
6007 {
6008         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6009         result->source_position = *HERE;
6010
6011         if (token.type != T_IDENTIFIER) {
6012                 parse_error_expected("while parsing member designator",
6013                                      T_IDENTIFIER, NULL);
6014                 return NULL;
6015         }
6016         result->symbol = token.v.symbol;
6017         next_token();
6018
6019         designator_t *last_designator = result;
6020         while(true) {
6021                 if (token.type == '.') {
6022                         next_token();
6023                         if (token.type != T_IDENTIFIER) {
6024                                 parse_error_expected("while parsing member designator",
6025                                                      T_IDENTIFIER, NULL);
6026                                 return NULL;
6027                         }
6028                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6029                         designator->source_position = *HERE;
6030                         designator->symbol          = token.v.symbol;
6031                         next_token();
6032
6033                         last_designator->next = designator;
6034                         last_designator       = designator;
6035                         continue;
6036                 }
6037                 if (token.type == '[') {
6038                         next_token();
6039                         add_anchor_token(']');
6040                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6041                         designator->source_position = *HERE;
6042                         designator->array_index     = parse_expression();
6043                         rem_anchor_token(']');
6044                         expect(']');
6045                         if (designator->array_index == NULL) {
6046                                 return NULL;
6047                         }
6048
6049                         last_designator->next = designator;
6050                         last_designator       = designator;
6051                         continue;
6052                 }
6053                 break;
6054         }
6055
6056         return result;
6057 end_error:
6058         return NULL;
6059 }
6060
6061 /**
6062  * Parse the __builtin_offsetof() expression.
6063  */
6064 static expression_t *parse_offsetof(void)
6065 {
6066         eat(T___builtin_offsetof);
6067
6068         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6069         expression->base.type    = type_size_t;
6070
6071         expect('(');
6072         add_anchor_token(',');
6073         type_t *type = parse_typename();
6074         rem_anchor_token(',');
6075         expect(',');
6076         add_anchor_token(')');
6077         designator_t *designator = parse_designator();
6078         rem_anchor_token(')');
6079         expect(')');
6080
6081         expression->offsetofe.type       = type;
6082         expression->offsetofe.designator = designator;
6083
6084         type_path_t path;
6085         memset(&path, 0, sizeof(path));
6086         path.top_type = type;
6087         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6088
6089         descend_into_subtype(&path);
6090
6091         if (!walk_designator(&path, designator, true)) {
6092                 return create_invalid_expression();
6093         }
6094
6095         DEL_ARR_F(path.path);
6096
6097         return expression;
6098 end_error:
6099         return create_invalid_expression();
6100 }
6101
6102 /**
6103  * Parses a _builtin_va_start() expression.
6104  */
6105 static expression_t *parse_va_start(void)
6106 {
6107         eat(T___builtin_va_start);
6108
6109         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6110
6111         expect('(');
6112         add_anchor_token(',');
6113         expression->va_starte.ap = parse_assignment_expression();
6114         rem_anchor_token(',');
6115         expect(',');
6116         expression_t *const expr = parse_assignment_expression();
6117         if (expr->kind == EXPR_REFERENCE) {
6118                 declaration_t *const decl = expr->reference.declaration;
6119                 if (decl == NULL)
6120                         return create_invalid_expression();
6121                 if (decl->parent_scope == &current_function->scope &&
6122                     decl->next == NULL) {
6123                         expression->va_starte.parameter = decl;
6124                         expect(')');
6125                         return expression;
6126                 }
6127         }
6128         errorf(&expr->base.source_position,
6129                "second argument of 'va_start' must be last parameter of the current function");
6130 end_error:
6131         return create_invalid_expression();
6132 }
6133
6134 /**
6135  * Parses a _builtin_va_arg() expression.
6136  */
6137 static expression_t *parse_va_arg(void)
6138 {
6139         eat(T___builtin_va_arg);
6140
6141         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6142
6143         expect('(');
6144         expression->va_arge.ap = parse_assignment_expression();
6145         expect(',');
6146         expression->base.type = parse_typename();
6147         expect(')');
6148
6149         return expression;
6150 end_error:
6151         return create_invalid_expression();
6152 }
6153
6154 static expression_t *parse_builtin_symbol(void)
6155 {
6156         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
6157
6158         symbol_t *symbol = token.v.symbol;
6159
6160         expression->builtin_symbol.symbol = symbol;
6161         next_token();
6162
6163         type_t *type = get_builtin_symbol_type(symbol);
6164         type = automatic_type_conversion(type);
6165
6166         expression->base.type = type;
6167         return expression;
6168 }
6169
6170 /**
6171  * Parses a __builtin_constant() expression.
6172  */
6173 static expression_t *parse_builtin_constant(void)
6174 {
6175         eat(T___builtin_constant_p);
6176
6177         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6178
6179         expect('(');
6180         add_anchor_token(')');
6181         expression->builtin_constant.value = parse_assignment_expression();
6182         rem_anchor_token(')');
6183         expect(')');
6184         expression->base.type = type_int;
6185
6186         return expression;
6187 end_error:
6188         return create_invalid_expression();
6189 }
6190
6191 /**
6192  * Parses a __builtin_prefetch() expression.
6193  */
6194 static expression_t *parse_builtin_prefetch(void)
6195 {
6196         eat(T___builtin_prefetch);
6197
6198         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
6199
6200         expect('(');
6201         add_anchor_token(')');
6202         expression->builtin_prefetch.adr = parse_assignment_expression();
6203         if (token.type == ',') {
6204                 next_token();
6205                 expression->builtin_prefetch.rw = parse_assignment_expression();
6206         }
6207         if (token.type == ',') {
6208                 next_token();
6209                 expression->builtin_prefetch.locality = parse_assignment_expression();
6210         }
6211         rem_anchor_token(')');
6212         expect(')');
6213         expression->base.type = type_void;
6214
6215         return expression;
6216 end_error:
6217         return create_invalid_expression();
6218 }
6219
6220 /**
6221  * Parses a __builtin_is_*() compare expression.
6222  */
6223 static expression_t *parse_compare_builtin(void)
6224 {
6225         expression_t *expression;
6226
6227         switch(token.type) {
6228         case T___builtin_isgreater:
6229                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6230                 break;
6231         case T___builtin_isgreaterequal:
6232                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6233                 break;
6234         case T___builtin_isless:
6235                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6236                 break;
6237         case T___builtin_islessequal:
6238                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6239                 break;
6240         case T___builtin_islessgreater:
6241                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6242                 break;
6243         case T___builtin_isunordered:
6244                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6245                 break;
6246         default:
6247                 internal_errorf(HERE, "invalid compare builtin found");
6248                 break;
6249         }
6250         expression->base.source_position = *HERE;
6251         next_token();
6252
6253         expect('(');
6254         expression->binary.left = parse_assignment_expression();
6255         expect(',');
6256         expression->binary.right = parse_assignment_expression();
6257         expect(')');
6258
6259         type_t *const orig_type_left  = expression->binary.left->base.type;
6260         type_t *const orig_type_right = expression->binary.right->base.type;
6261
6262         type_t *const type_left  = skip_typeref(orig_type_left);
6263         type_t *const type_right = skip_typeref(orig_type_right);
6264         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6265                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6266                         type_error_incompatible("invalid operands in comparison",
6267                                 &expression->base.source_position, orig_type_left, orig_type_right);
6268                 }
6269         } else {
6270                 semantic_comparison(&expression->binary);
6271         }
6272
6273         return expression;
6274 end_error:
6275         return create_invalid_expression();
6276 }
6277
6278 #if 0
6279 /**
6280  * Parses a __builtin_expect() expression.
6281  */
6282 static expression_t *parse_builtin_expect(void)
6283 {
6284         eat(T___builtin_expect);
6285
6286         expression_t *expression
6287                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
6288
6289         expect('(');
6290         expression->binary.left = parse_assignment_expression();
6291         expect(',');
6292         expression->binary.right = parse_constant_expression();
6293         expect(')');
6294
6295         expression->base.type = expression->binary.left->base.type;
6296
6297         return expression;
6298 end_error:
6299         return create_invalid_expression();
6300 }
6301 #endif
6302
6303 /**
6304  * Parses a MS assume() expression.
6305  */
6306 static expression_t *parse_assume(void)
6307 {
6308         eat(T__assume);
6309
6310         expression_t *expression
6311                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
6312
6313         expect('(');
6314         add_anchor_token(')');
6315         expression->unary.value = parse_assignment_expression();
6316         rem_anchor_token(')');
6317         expect(')');
6318
6319         expression->base.type = type_void;
6320         return expression;
6321 end_error:
6322         return create_invalid_expression();
6323 }
6324
6325 /**
6326  * Parse a microsoft __noop expression.
6327  */
6328 static expression_t *parse_noop_expression(void)
6329 {
6330         source_position_t source_position = *HERE;
6331         eat(T___noop);
6332
6333         if (token.type == '(') {
6334                 /* parse arguments */
6335                 eat('(');
6336                 add_anchor_token(')');
6337                 add_anchor_token(',');
6338
6339                 if (token.type != ')') {
6340                         while(true) {
6341                                 (void)parse_assignment_expression();
6342                                 if (token.type != ',')
6343                                         break;
6344                                 next_token();
6345                         }
6346                 }
6347         }
6348         rem_anchor_token(',');
6349         rem_anchor_token(')');
6350         expect(')');
6351
6352         /* the result is a (int)0 */
6353         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6354         cnst->base.source_position = source_position;
6355         cnst->base.type            = type_int;
6356         cnst->conste.v.int_value   = 0;
6357         cnst->conste.is_ms_noop    = true;
6358
6359         return cnst;
6360
6361 end_error:
6362         return create_invalid_expression();
6363 }
6364
6365 /**
6366  * Parses a primary expression.
6367  */
6368 static expression_t *parse_primary_expression(void)
6369 {
6370         switch (token.type) {
6371                 case T_INTEGER:                  return parse_int_const();
6372                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
6373                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
6374                 case T_FLOATINGPOINT:            return parse_float_const();
6375                 case T_STRING_LITERAL:
6376                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
6377                 case T_IDENTIFIER:               return parse_reference();
6378                 case T___FUNCTION__:
6379                 case T___func__:                 return parse_function_keyword();
6380                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
6381                 case T___FUNCSIG__:              return parse_funcsig_keyword();
6382                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
6383                 case T___builtin_offsetof:       return parse_offsetof();
6384                 case T___builtin_va_start:       return parse_va_start();
6385                 case T___builtin_va_arg:         return parse_va_arg();
6386                 case T___builtin_expect:
6387                 case T___builtin_alloca:
6388                 case T___builtin_nan:
6389                 case T___builtin_nand:
6390                 case T___builtin_nanf:
6391                 case T___builtin_huge_val:
6392                 case T___builtin_va_end:         return parse_builtin_symbol();
6393                 case T___builtin_isgreater:
6394                 case T___builtin_isgreaterequal:
6395                 case T___builtin_isless:
6396                 case T___builtin_islessequal:
6397                 case T___builtin_islessgreater:
6398                 case T___builtin_isunordered:    return parse_compare_builtin();
6399                 case T___builtin_constant_p:     return parse_builtin_constant();
6400                 case T___builtin_prefetch:       return parse_builtin_prefetch();
6401                 case T__assume:                  return parse_assume();
6402
6403                 case '(':                        return parse_brace_expression();
6404                 case T___noop:                   return parse_noop_expression();
6405         }
6406
6407         errorf(HERE, "unexpected token %K, expected an expression", &token);
6408         return create_invalid_expression();
6409 }
6410
6411 /**
6412  * Check if the expression has the character type and issue a warning then.
6413  */
6414 static void check_for_char_index_type(const expression_t *expression)
6415 {
6416         type_t       *const type      = expression->base.type;
6417         const type_t *const base_type = skip_typeref(type);
6418
6419         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
6420                         warning.char_subscripts) {
6421                 warningf(&expression->base.source_position,
6422                          "array subscript has type '%T'", type);
6423         }
6424 }
6425
6426 static expression_t *parse_array_expression(unsigned precedence,
6427                                             expression_t *left)
6428 {
6429         (void) precedence;
6430
6431         eat('[');
6432         add_anchor_token(']');
6433
6434         expression_t *inside = parse_expression();
6435
6436         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6437
6438         array_access_expression_t *array_access = &expression->array_access;
6439
6440         type_t *const orig_type_left   = left->base.type;
6441         type_t *const orig_type_inside = inside->base.type;
6442
6443         type_t *const type_left   = skip_typeref(orig_type_left);
6444         type_t *const type_inside = skip_typeref(orig_type_inside);
6445
6446         type_t *return_type;
6447         if (is_type_pointer(type_left)) {
6448                 return_type             = type_left->pointer.points_to;
6449                 array_access->array_ref = left;
6450                 array_access->index     = inside;
6451                 check_for_char_index_type(inside);
6452         } else if (is_type_pointer(type_inside)) {
6453                 return_type             = type_inside->pointer.points_to;
6454                 array_access->array_ref = inside;
6455                 array_access->index     = left;
6456                 array_access->flipped   = true;
6457                 check_for_char_index_type(left);
6458         } else {
6459                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6460                         errorf(HERE,
6461                                 "array access on object with non-pointer types '%T', '%T'",
6462                                 orig_type_left, orig_type_inside);
6463                 }
6464                 return_type             = type_error_type;
6465                 array_access->array_ref = create_invalid_expression();
6466         }
6467
6468         rem_anchor_token(']');
6469         if (token.type != ']') {
6470                 parse_error_expected("Problem while parsing array access", ']', NULL);
6471                 return expression;
6472         }
6473         next_token();
6474
6475         return_type           = automatic_type_conversion(return_type);
6476         expression->base.type = return_type;
6477
6478         return expression;
6479 }
6480
6481 static expression_t *parse_typeprop(expression_kind_t const kind,
6482                                     source_position_t const pos,
6483                                     unsigned const precedence)
6484 {
6485         expression_t *tp_expression = allocate_expression_zero(kind);
6486         tp_expression->base.type            = type_size_t;
6487         tp_expression->base.source_position = pos;
6488
6489         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6490
6491         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6492                 next_token();
6493                 add_anchor_token(')');
6494                 type_t* const orig_type = parse_typename();
6495                 tp_expression->typeprop.type = orig_type;
6496
6497                 type_t const* const type = skip_typeref(orig_type);
6498                 char const* const wrong_type =
6499                         is_type_incomplete(type)    ? "incomplete"          :
6500                         type->kind == TYPE_FUNCTION ? "function designator" :
6501                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6502                         NULL;
6503                 if (wrong_type != NULL) {
6504                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6505                                what, wrong_type, type);
6506                 }
6507
6508                 rem_anchor_token(')');
6509                 expect(')');
6510         } else {
6511                 expression_t *expression = parse_sub_expression(precedence);
6512
6513                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6514                 expression->base.type = orig_type;
6515
6516                 type_t const* const type = skip_typeref(orig_type);
6517                 char const* const wrong_type =
6518                         is_type_incomplete(type)    ? "incomplete"          :
6519                         type->kind == TYPE_FUNCTION ? "function designator" :
6520                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6521                         NULL;
6522                 if (wrong_type != NULL) {
6523                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
6524                 }
6525
6526                 tp_expression->typeprop.type          = expression->base.type;
6527                 tp_expression->typeprop.tp_expression = expression;
6528         }
6529
6530         return tp_expression;
6531 end_error:
6532         return create_invalid_expression();
6533 }
6534
6535 static expression_t *parse_sizeof(unsigned precedence)
6536 {
6537         source_position_t pos = *HERE;
6538         eat(T_sizeof);
6539         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
6540 }
6541
6542 static expression_t *parse_alignof(unsigned precedence)
6543 {
6544         source_position_t pos = *HERE;
6545         eat(T___alignof__);
6546         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
6547 }
6548
6549 static expression_t *parse_select_expression(unsigned precedence,
6550                                              expression_t *compound)
6551 {
6552         (void) precedence;
6553         assert(token.type == '.' || token.type == T_MINUSGREATER);
6554
6555         bool is_pointer = (token.type == T_MINUSGREATER);
6556         next_token();
6557
6558         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
6559         select->select.compound = compound;
6560
6561         if (token.type != T_IDENTIFIER) {
6562                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
6563                 return select;
6564         }
6565         symbol_t *symbol      = token.v.symbol;
6566         select->select.symbol = symbol;
6567         next_token();
6568
6569         type_t *const orig_type = compound->base.type;
6570         type_t *const type      = skip_typeref(orig_type);
6571
6572         type_t *type_left = type;
6573         if (is_pointer) {
6574                 if (!is_type_pointer(type)) {
6575                         if (is_type_valid(type)) {
6576                                 errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
6577                         }
6578                         return create_invalid_expression();
6579                 }
6580                 type_left = type->pointer.points_to;
6581         }
6582         type_left = skip_typeref(type_left);
6583
6584         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
6585             type_left->kind != TYPE_COMPOUND_UNION) {
6586                 if (is_type_valid(type_left)) {
6587                         errorf(HERE, "request for member '%Y' in something not a struct or "
6588                                "union, but '%T'", symbol, type_left);
6589                 }
6590                 return create_invalid_expression();
6591         }
6592
6593         declaration_t *const declaration = type_left->compound.declaration;
6594
6595         if (!declaration->init.complete) {
6596                 errorf(HERE, "request for member '%Y' of incomplete type '%T'",
6597                        symbol, type_left);
6598                 return create_invalid_expression();
6599         }
6600
6601         declaration_t *iter = find_compound_entry(declaration, symbol);
6602         if (iter == NULL) {
6603                 errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
6604                 return create_invalid_expression();
6605         }
6606
6607         /* we always do the auto-type conversions; the & and sizeof parser contains
6608          * code to revert this! */
6609         type_t *expression_type = automatic_type_conversion(iter->type);
6610
6611         select->select.compound_entry = iter;
6612         select->base.type             = expression_type;
6613
6614         type_t *skipped = skip_typeref(iter->type);
6615         if (skipped->kind == TYPE_BITFIELD) {
6616                 select->base.type = skipped->bitfield.base_type;
6617         }
6618
6619         return select;
6620 }
6621
6622 static void check_call_argument(const function_parameter_t *parameter,
6623                                 call_argument_t *argument)
6624 {
6625         type_t         *expected_type      = parameter->type;
6626         type_t         *expected_type_skip = skip_typeref(expected_type);
6627         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
6628         expression_t   *arg_expr           = argument->expression;
6629
6630         /* handle transparent union gnu extension */
6631         if (is_type_union(expected_type_skip)
6632                         && (expected_type_skip->base.modifiers
6633                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
6634                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
6635
6636                 declaration_t *declaration = union_decl->scope.declarations;
6637                 type_t        *best_type   = NULL;
6638                 for ( ; declaration != NULL; declaration = declaration->next) {
6639                         type_t *decl_type = declaration->type;
6640                         error = semantic_assign(decl_type, arg_expr);
6641                         if (error == ASSIGN_ERROR_INCOMPATIBLE
6642                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
6643                                 continue;
6644
6645                         if (error == ASSIGN_SUCCESS) {
6646                                 best_type = decl_type;
6647                         } else if (best_type == NULL) {
6648                                 best_type = decl_type;
6649                         }
6650                 }
6651
6652                 if (best_type != NULL) {
6653                         expected_type = best_type;
6654                 }
6655         }
6656
6657         error                = semantic_assign(expected_type, arg_expr);
6658         argument->expression = create_implicit_cast(argument->expression,
6659                                                     expected_type);
6660
6661         /* TODO report exact scope in error messages (like "in 3rd parameter") */
6662         report_assign_error(error, expected_type, arg_expr,     "function call",
6663                             &arg_expr->base.source_position);
6664 }
6665
6666 /**
6667  * Parse a call expression, ie. expression '( ... )'.
6668  *
6669  * @param expression  the function address
6670  */
6671 static expression_t *parse_call_expression(unsigned precedence,
6672                                            expression_t *expression)
6673 {
6674         (void) precedence;
6675         expression_t *result = allocate_expression_zero(EXPR_CALL);
6676         result->base.source_position = expression->base.source_position;
6677
6678         call_expression_t *call = &result->call;
6679         call->function          = expression;
6680
6681         type_t *const orig_type = expression->base.type;
6682         type_t *const type      = skip_typeref(orig_type);
6683
6684         function_type_t *function_type = NULL;
6685         if (is_type_pointer(type)) {
6686                 type_t *const to_type = skip_typeref(type->pointer.points_to);
6687
6688                 if (is_type_function(to_type)) {
6689                         function_type   = &to_type->function;
6690                         call->base.type = function_type->return_type;
6691                 }
6692         }
6693
6694         if (function_type == NULL && is_type_valid(type)) {
6695                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
6696         }
6697
6698         /* parse arguments */
6699         eat('(');
6700         add_anchor_token(')');
6701         add_anchor_token(',');
6702
6703         if (token.type != ')') {
6704                 call_argument_t *last_argument = NULL;
6705
6706                 while(true) {
6707                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
6708
6709                         argument->expression = parse_assignment_expression();
6710                         if (last_argument == NULL) {
6711                                 call->arguments = argument;
6712                         } else {
6713                                 last_argument->next = argument;
6714                         }
6715                         last_argument = argument;
6716
6717                         if (token.type != ',')
6718                                 break;
6719                         next_token();
6720                 }
6721         }
6722         rem_anchor_token(',');
6723         rem_anchor_token(')');
6724         expect(')');
6725
6726         if (function_type == NULL)
6727                 return result;
6728
6729         function_parameter_t *parameter = function_type->parameters;
6730         call_argument_t      *argument  = call->arguments;
6731         if (!function_type->unspecified_parameters) {
6732                 for( ; parameter != NULL && argument != NULL;
6733                                 parameter = parameter->next, argument = argument->next) {
6734                         check_call_argument(parameter, argument);
6735                 }
6736
6737                 if (parameter != NULL) {
6738                         errorf(HERE, "too few arguments to function '%E'", expression);
6739                 } else if (argument != NULL && !function_type->variadic) {
6740                         errorf(HERE, "too many arguments to function '%E'", expression);
6741                 }
6742         }
6743
6744         /* do default promotion */
6745         for( ; argument != NULL; argument = argument->next) {
6746                 type_t *type = argument->expression->base.type;
6747
6748                 type = get_default_promoted_type(type);
6749
6750                 argument->expression
6751                         = create_implicit_cast(argument->expression, type);
6752         }
6753
6754         check_format(&result->call);
6755
6756         return result;
6757 end_error:
6758         return create_invalid_expression();
6759 }
6760
6761 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
6762
6763 static bool same_compound_type(const type_t *type1, const type_t *type2)
6764 {
6765         return
6766                 is_type_compound(type1) &&
6767                 type1->kind == type2->kind &&
6768                 type1->compound.declaration == type2->compound.declaration;
6769 }
6770
6771 /**
6772  * Parse a conditional expression, ie. 'expression ? ... : ...'.
6773  *
6774  * @param expression  the conditional expression
6775  */
6776 static expression_t *parse_conditional_expression(unsigned precedence,
6777                                                   expression_t *expression)
6778 {
6779         eat('?');
6780         add_anchor_token(':');
6781
6782         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
6783
6784         conditional_expression_t *conditional = &result->conditional;
6785         conditional->condition = expression;
6786
6787         /* 6.5.15.2 */
6788         type_t *const condition_type_orig = expression->base.type;
6789         type_t *const condition_type      = skip_typeref(condition_type_orig);
6790         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
6791                 type_error("expected a scalar type in conditional condition",
6792                            &expression->base.source_position, condition_type_orig);
6793         }
6794
6795         expression_t *true_expression = parse_expression();
6796         rem_anchor_token(':');
6797         expect(':');
6798         expression_t *false_expression = parse_sub_expression(precedence);
6799
6800         type_t *const orig_true_type  = true_expression->base.type;
6801         type_t *const orig_false_type = false_expression->base.type;
6802         type_t *const true_type       = skip_typeref(orig_true_type);
6803         type_t *const false_type      = skip_typeref(orig_false_type);
6804
6805         /* 6.5.15.3 */
6806         type_t *result_type;
6807         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
6808                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
6809                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
6810                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
6811                         warningf(&expression->base.source_position,
6812                                         "ISO C forbids conditional expression with only one void side");
6813                 }
6814                 result_type = type_void;
6815         } else if (is_type_arithmetic(true_type)
6816                    && is_type_arithmetic(false_type)) {
6817                 result_type = semantic_arithmetic(true_type, false_type);
6818
6819                 true_expression  = create_implicit_cast(true_expression, result_type);
6820                 false_expression = create_implicit_cast(false_expression, result_type);
6821
6822                 conditional->true_expression  = true_expression;
6823                 conditional->false_expression = false_expression;
6824                 conditional->base.type        = result_type;
6825         } else if (same_compound_type(true_type, false_type)) {
6826                 /* just take 1 of the 2 types */
6827                 result_type = true_type;
6828         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
6829                 type_t *pointer_type;
6830                 type_t *other_type;
6831                 expression_t *other_expression;
6832                 if (is_type_pointer(true_type) &&
6833                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
6834                         pointer_type     = true_type;
6835                         other_type       = false_type;
6836                         other_expression = false_expression;
6837                 } else {
6838                         pointer_type     = false_type;
6839                         other_type       = true_type;
6840                         other_expression = true_expression;
6841                 }
6842
6843                 if (is_null_pointer_constant(other_expression)) {
6844                         result_type = pointer_type;
6845                 } else if (is_type_pointer(other_type)) {
6846                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
6847                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
6848
6849                         type_t *to;
6850                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
6851                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
6852                                 to = type_void;
6853                         } else if (types_compatible(get_unqualified_type(to1),
6854                                                     get_unqualified_type(to2))) {
6855                                 to = to1;
6856                         } else {
6857                                 warningf(&expression->base.source_position,
6858                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
6859                                         true_type, false_type);
6860                                 to = type_void;
6861                         }
6862
6863                         type_t *const copy = duplicate_type(to);
6864                         copy->base.qualifiers = to1->base.qualifiers | to2->base.qualifiers;
6865
6866                         type_t *const type = typehash_insert(copy);
6867                         if (type != copy)
6868                                 free_type(copy);
6869
6870                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
6871                 } else if (is_type_integer(other_type)) {
6872                         warningf(&expression->base.source_position,
6873                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
6874                         result_type = pointer_type;
6875                 } else {
6876                         type_error_incompatible("while parsing conditional",
6877                                         &expression->base.source_position, true_type, false_type);
6878                         result_type = type_error_type;
6879                 }
6880         } else {
6881                 /* TODO: one pointer to void*, other some pointer */
6882
6883                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
6884                         type_error_incompatible("while parsing conditional",
6885                                                 &expression->base.source_position, true_type,
6886                                                 false_type);
6887                 }
6888                 result_type = type_error_type;
6889         }
6890
6891         conditional->true_expression
6892                 = create_implicit_cast(true_expression, result_type);
6893         conditional->false_expression
6894                 = create_implicit_cast(false_expression, result_type);
6895         conditional->base.type = result_type;
6896         return result;
6897 end_error:
6898         return create_invalid_expression();
6899 }
6900
6901 /**
6902  * Parse an extension expression.
6903  */
6904 static expression_t *parse_extension(unsigned precedence)
6905 {
6906         eat(T___extension__);
6907
6908         /* TODO enable extensions */
6909         expression_t *expression = parse_sub_expression(precedence);
6910         /* TODO disable extensions */
6911         return expression;
6912 }
6913
6914 /**
6915  * Parse a __builtin_classify_type() expression.
6916  */
6917 static expression_t *parse_builtin_classify_type(const unsigned precedence)
6918 {
6919         eat(T___builtin_classify_type);
6920
6921         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
6922         result->base.type    = type_int;
6923
6924         expect('(');
6925         add_anchor_token(')');
6926         expression_t *expression = parse_sub_expression(precedence);
6927         rem_anchor_token(')');
6928         expect(')');
6929         result->classify_type.type_expression = expression;
6930
6931         return result;
6932 end_error:
6933         return create_invalid_expression();
6934 }
6935
6936 static void check_pointer_arithmetic(const source_position_t *source_position,
6937                                      type_t *pointer_type,
6938                                      type_t *orig_pointer_type)
6939 {
6940         type_t *points_to = pointer_type->pointer.points_to;
6941         points_to = skip_typeref(points_to);
6942
6943         if (is_type_incomplete(points_to) &&
6944                         (! (c_mode & _GNUC)
6945                          || !is_type_atomic(points_to, ATOMIC_TYPE_VOID))) {
6946                 errorf(source_position,
6947                            "arithmetic with pointer to incomplete type '%T' not allowed",
6948                            orig_pointer_type);
6949         } else if (is_type_function(points_to)) {
6950                 errorf(source_position,
6951                            "arithmetic with pointer to function type '%T' not allowed",
6952                            orig_pointer_type);
6953         }
6954 }
6955
6956 static void semantic_incdec(unary_expression_t *expression)
6957 {
6958         type_t *const orig_type = expression->value->base.type;
6959         type_t *const type      = skip_typeref(orig_type);
6960         if (is_type_pointer(type)) {
6961                 check_pointer_arithmetic(&expression->base.source_position,
6962                                          type, orig_type);
6963         } else if (!is_type_real(type) && is_type_valid(type)) {
6964                 /* TODO: improve error message */
6965                 errorf(HERE, "operation needs an arithmetic or pointer type");
6966         }
6967         expression->base.type = orig_type;
6968 }
6969
6970 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
6971 {
6972         type_t *const orig_type = expression->value->base.type;
6973         type_t *const type      = skip_typeref(orig_type);
6974         if (!is_type_arithmetic(type)) {
6975                 if (is_type_valid(type)) {
6976                         /* TODO: improve error message */
6977                         errorf(HERE, "operation needs an arithmetic type");
6978                 }
6979                 return;
6980         }
6981
6982         expression->base.type = orig_type;
6983 }
6984
6985 static void semantic_unexpr_scalar(unary_expression_t *expression)
6986 {
6987         type_t *const orig_type = expression->value->base.type;
6988         type_t *const type      = skip_typeref(orig_type);
6989         if (!is_type_scalar(type)) {
6990                 if (is_type_valid(type)) {
6991                         errorf(HERE, "operand of ! must be of scalar type");
6992                 }
6993                 return;
6994         }
6995
6996         expression->base.type = orig_type;
6997 }
6998
6999 static void semantic_unexpr_integer(unary_expression_t *expression)
7000 {
7001         type_t *const orig_type = expression->value->base.type;
7002         type_t *const type      = skip_typeref(orig_type);
7003         if (!is_type_integer(type)) {
7004                 if (is_type_valid(type)) {
7005                         errorf(HERE, "operand of ~ must be of integer type");
7006                 }
7007                 return;
7008         }
7009
7010         expression->base.type = orig_type;
7011 }
7012
7013 static void semantic_dereference(unary_expression_t *expression)
7014 {
7015         type_t *const orig_type = expression->value->base.type;
7016         type_t *const type      = skip_typeref(orig_type);
7017         if (!is_type_pointer(type)) {
7018                 if (is_type_valid(type)) {
7019                         errorf(HERE, "Unary '*' needs pointer or arrray type, but type '%T' given", orig_type);
7020                 }
7021                 return;
7022         }
7023
7024         type_t *result_type   = type->pointer.points_to;
7025         result_type           = automatic_type_conversion(result_type);
7026         expression->base.type = result_type;
7027 }
7028
7029 static void set_address_taken(expression_t *expression, bool may_be_register)
7030 {
7031         if (expression->kind != EXPR_REFERENCE)
7032                 return;
7033
7034         declaration_t *const declaration = expression->reference.declaration;
7035         /* happens for parse errors */
7036         if (declaration == NULL)
7037                 return;
7038
7039         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
7040                 errorf(&expression->base.source_position,
7041                                 "address of register variable '%Y' requested",
7042                                 declaration->symbol);
7043         } else {
7044                 declaration->address_taken = 1;
7045         }
7046 }
7047
7048 /**
7049  * Check the semantic of the address taken expression.
7050  */
7051 static void semantic_take_addr(unary_expression_t *expression)
7052 {
7053         expression_t *value = expression->value;
7054         value->base.type    = revert_automatic_type_conversion(value);
7055
7056         type_t *orig_type = value->base.type;
7057         if (!is_type_valid(orig_type))
7058                 return;
7059
7060         set_address_taken(value, false);
7061
7062         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7063 }
7064
7065 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
7066 static expression_t *parse_##unexpression_type(unsigned precedence)            \
7067 {                                                                              \
7068         eat(token_type);                                                           \
7069                                                                                    \
7070         expression_t *unary_expression                                             \
7071                 = allocate_expression_zero(unexpression_type);                         \
7072         unary_expression->base.source_position = *HERE;                            \
7073         unary_expression->unary.value = parse_sub_expression(precedence);          \
7074                                                                                    \
7075         sfunc(&unary_expression->unary);                                           \
7076                                                                                    \
7077         return unary_expression;                                                   \
7078 }
7079
7080 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7081                                semantic_unexpr_arithmetic)
7082 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7083                                semantic_unexpr_arithmetic)
7084 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7085                                semantic_unexpr_scalar)
7086 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7087                                semantic_dereference)
7088 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7089                                semantic_take_addr)
7090 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7091                                semantic_unexpr_integer)
7092 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7093                                semantic_incdec)
7094 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7095                                semantic_incdec)
7096
7097 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
7098                                                sfunc)                         \
7099 static expression_t *parse_##unexpression_type(unsigned precedence,           \
7100                                                expression_t *left)            \
7101 {                                                                             \
7102         (void) precedence;                                                        \
7103         eat(token_type);                                                          \
7104                                                                               \
7105         expression_t *unary_expression                                            \
7106                 = allocate_expression_zero(unexpression_type);                        \
7107         unary_expression->unary.value = left;                                     \
7108                                                                                   \
7109         sfunc(&unary_expression->unary);                                          \
7110                                                                               \
7111         return unary_expression;                                                  \
7112 }
7113
7114 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7115                                        EXPR_UNARY_POSTFIX_INCREMENT,
7116                                        semantic_incdec)
7117 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7118                                        EXPR_UNARY_POSTFIX_DECREMENT,
7119                                        semantic_incdec)
7120
7121 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7122 {
7123         /* TODO: handle complex + imaginary types */
7124
7125         /* Â§ 6.3.1.8 Usual arithmetic conversions */
7126         if (type_left == type_long_double || type_right == type_long_double) {
7127                 return type_long_double;
7128         } else if (type_left == type_double || type_right == type_double) {
7129                 return type_double;
7130         } else if (type_left == type_float || type_right == type_float) {
7131                 return type_float;
7132         }
7133
7134         type_left  = promote_integer(type_left);
7135         type_right = promote_integer(type_right);
7136
7137         if (type_left == type_right)
7138                 return type_left;
7139
7140         bool const signed_left  = is_type_signed(type_left);
7141         bool const signed_right = is_type_signed(type_right);
7142         int  const rank_left    = get_rank(type_left);
7143         int  const rank_right   = get_rank(type_right);
7144
7145         if (signed_left == signed_right)
7146                 return rank_left >= rank_right ? type_left : type_right;
7147
7148         int     s_rank;
7149         int     u_rank;
7150         type_t *s_type;
7151         type_t *u_type;
7152         if (signed_left) {
7153                 s_rank = rank_left;
7154                 s_type = type_left;
7155                 u_rank = rank_right;
7156                 u_type = type_right;
7157         } else {
7158                 s_rank = rank_right;
7159                 s_type = type_right;
7160                 u_rank = rank_left;
7161                 u_type = type_left;
7162         }
7163
7164         if (u_rank >= s_rank)
7165                 return u_type;
7166
7167         if (get_atomic_type_size(s_rank) > get_atomic_type_size(u_rank))
7168                 return s_type;
7169
7170         /* FIXME ugly */
7171         type_t *const type = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
7172         switch (s_rank) {
7173                 case ATOMIC_TYPE_INT:      type->atomic.akind = ATOMIC_TYPE_UINT;      break;
7174                 case ATOMIC_TYPE_LONG:     type->atomic.akind = ATOMIC_TYPE_ULONG;     break;
7175                 case ATOMIC_TYPE_LONGLONG: type->atomic.akind = ATOMIC_TYPE_ULONGLONG; break;
7176
7177                 default: panic("invalid atomic type");
7178         }
7179
7180         type_t* const result = typehash_insert(type);
7181         if (result != type)
7182                 free_type(type);
7183
7184         return result;
7185 }
7186
7187 /**
7188  * Check the semantic restrictions for a binary expression.
7189  */
7190 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7191 {
7192         expression_t *const left            = expression->left;
7193         expression_t *const right           = expression->right;
7194         type_t       *const orig_type_left  = left->base.type;
7195         type_t       *const orig_type_right = right->base.type;
7196         type_t       *const type_left       = skip_typeref(orig_type_left);
7197         type_t       *const type_right      = skip_typeref(orig_type_right);
7198
7199         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7200                 /* TODO: improve error message */
7201                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7202                         errorf(HERE, "operation needs arithmetic types");
7203                 }
7204                 return;
7205         }
7206
7207         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7208         expression->left      = create_implicit_cast(left, arithmetic_type);
7209         expression->right     = create_implicit_cast(right, arithmetic_type);
7210         expression->base.type = arithmetic_type;
7211 }
7212
7213 static void semantic_shift_op(binary_expression_t *expression)
7214 {
7215         expression_t *const left            = expression->left;
7216         expression_t *const right           = expression->right;
7217         type_t       *const orig_type_left  = left->base.type;
7218         type_t       *const orig_type_right = right->base.type;
7219         type_t       *      type_left       = skip_typeref(orig_type_left);
7220         type_t       *      type_right      = skip_typeref(orig_type_right);
7221
7222         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7223                 /* TODO: improve error message */
7224                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7225                         errorf(HERE, "operation needs integer types");
7226                 }
7227                 return;
7228         }
7229
7230         type_left  = promote_integer(type_left);
7231         type_right = promote_integer(type_right);
7232
7233         expression->left      = create_implicit_cast(left, type_left);
7234         expression->right     = create_implicit_cast(right, type_right);
7235         expression->base.type = type_left;
7236 }
7237
7238 static void semantic_add(binary_expression_t *expression)
7239 {
7240         expression_t *const left            = expression->left;
7241         expression_t *const right           = expression->right;
7242         type_t       *const orig_type_left  = left->base.type;
7243         type_t       *const orig_type_right = right->base.type;
7244         type_t       *const type_left       = skip_typeref(orig_type_left);
7245         type_t       *const type_right      = skip_typeref(orig_type_right);
7246
7247         /* Â§ 6.5.6 */
7248         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7249                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7250                 expression->left  = create_implicit_cast(left, arithmetic_type);
7251                 expression->right = create_implicit_cast(right, arithmetic_type);
7252                 expression->base.type = arithmetic_type;
7253                 return;
7254         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7255                 check_pointer_arithmetic(&expression->base.source_position,
7256                                          type_left, orig_type_left);
7257                 expression->base.type = type_left;
7258         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
7259                 check_pointer_arithmetic(&expression->base.source_position,
7260                                          type_right, orig_type_right);
7261                 expression->base.type = type_right;
7262         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7263                 errorf(&expression->base.source_position,
7264                        "invalid operands to binary + ('%T', '%T')",
7265                        orig_type_left, orig_type_right);
7266         }
7267 }
7268
7269 static void semantic_sub(binary_expression_t *expression)
7270 {
7271         expression_t *const left            = expression->left;
7272         expression_t *const right           = expression->right;
7273         type_t       *const orig_type_left  = left->base.type;
7274         type_t       *const orig_type_right = right->base.type;
7275         type_t       *const type_left       = skip_typeref(orig_type_left);
7276         type_t       *const type_right      = skip_typeref(orig_type_right);
7277
7278         /* Â§ 5.6.5 */
7279         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7280                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7281                 expression->left        = create_implicit_cast(left, arithmetic_type);
7282                 expression->right       = create_implicit_cast(right, arithmetic_type);
7283                 expression->base.type =  arithmetic_type;
7284                 return;
7285         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7286                 check_pointer_arithmetic(&expression->base.source_position,
7287                                          type_left, orig_type_left);
7288                 expression->base.type = type_left;
7289         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7290                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
7291                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
7292                 if (!types_compatible(unqual_left, unqual_right)) {
7293                         errorf(&expression->base.source_position,
7294                                "subtracting pointers to incompatible types '%T' and '%T'",
7295                                orig_type_left, orig_type_right);
7296                 } else if (!is_type_object(unqual_left)) {
7297                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
7298                                 warningf(&expression->base.source_position,
7299                                          "subtracting pointers to void");
7300                         } else {
7301                                 errorf(&expression->base.source_position,
7302                                        "subtracting pointers to non-object types '%T'",
7303                                        orig_type_left);
7304                         }
7305                 }
7306                 expression->base.type = type_ptrdiff_t;
7307         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7308                 errorf(HERE, "invalid operands of types '%T' and '%T' to binary '-'",
7309                        orig_type_left, orig_type_right);
7310         }
7311 }
7312
7313 /**
7314  * Check the semantics of comparison expressions.
7315  *
7316  * @param expression   The expression to check.
7317  */
7318 static void semantic_comparison(binary_expression_t *expression)
7319 {
7320         expression_t *left            = expression->left;
7321         expression_t *right           = expression->right;
7322         type_t       *orig_type_left  = left->base.type;
7323         type_t       *orig_type_right = right->base.type;
7324
7325         type_t *type_left  = skip_typeref(orig_type_left);
7326         type_t *type_right = skip_typeref(orig_type_right);
7327
7328         /* TODO non-arithmetic types */
7329         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7330                 /* test for signed vs unsigned compares */
7331                 if (warning.sign_compare &&
7332                     (expression->base.kind != EXPR_BINARY_EQUAL &&
7333                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
7334                     (is_type_signed(type_left) != is_type_signed(type_right))) {
7335
7336                         /* check if 1 of the operands is a constant, in this case we just
7337                          * check wether we can safely represent the resulting constant in
7338                          * the type of the other operand. */
7339                         expression_t *const_expr = NULL;
7340                         expression_t *other_expr = NULL;
7341
7342                         if (is_constant_expression(left)) {
7343                                 const_expr = left;
7344                                 other_expr = right;
7345                         } else if (is_constant_expression(right)) {
7346                                 const_expr = right;
7347                                 other_expr = left;
7348                         }
7349
7350                         if (const_expr != NULL) {
7351                                 type_t *other_type = skip_typeref(other_expr->base.type);
7352                                 long    val        = fold_constant(const_expr);
7353                                 /* TODO: check if val can be represented by other_type */
7354                                 (void) other_type;
7355                                 (void) val;
7356                         }
7357                         warningf(&expression->base.source_position,
7358                                  "comparison between signed and unsigned");
7359                 }
7360                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7361                 expression->left        = create_implicit_cast(left, arithmetic_type);
7362                 expression->right       = create_implicit_cast(right, arithmetic_type);
7363                 expression->base.type   = arithmetic_type;
7364                 if (warning.float_equal &&
7365                     (expression->base.kind == EXPR_BINARY_EQUAL ||
7366                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
7367                     is_type_float(arithmetic_type)) {
7368                         warningf(&expression->base.source_position,
7369                                  "comparing floating point with == or != is unsafe");
7370                 }
7371         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7372                 /* TODO check compatibility */
7373         } else if (is_type_pointer(type_left)) {
7374                 expression->right = create_implicit_cast(right, type_left);
7375         } else if (is_type_pointer(type_right)) {
7376                 expression->left = create_implicit_cast(left, type_right);
7377         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7378                 type_error_incompatible("invalid operands in comparison",
7379                                         &expression->base.source_position,
7380                                         type_left, type_right);
7381         }
7382         expression->base.type = type_int;
7383 }
7384
7385 /**
7386  * Checks if a compound type has constant fields.
7387  */
7388 static bool has_const_fields(const compound_type_t *type)
7389 {
7390         const scope_t       *scope       = &type->declaration->scope;
7391         const declaration_t *declaration = scope->declarations;
7392
7393         for (; declaration != NULL; declaration = declaration->next) {
7394                 if (declaration->namespc != NAMESPACE_NORMAL)
7395                         continue;
7396
7397                 const type_t *decl_type = skip_typeref(declaration->type);
7398                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
7399                         return true;
7400         }
7401         /* TODO */
7402         return false;
7403 }
7404
7405 static bool is_lvalue(const expression_t *expression)
7406 {
7407         switch (expression->kind) {
7408         case EXPR_REFERENCE:
7409         case EXPR_ARRAY_ACCESS:
7410         case EXPR_SELECT:
7411         case EXPR_UNARY_DEREFERENCE:
7412                 return true;
7413
7414         default:
7415                 return false;
7416         }
7417 }
7418
7419 static bool is_valid_assignment_lhs(expression_t const* const left)
7420 {
7421         type_t *const orig_type_left = revert_automatic_type_conversion(left);
7422         type_t *const type_left      = skip_typeref(orig_type_left);
7423
7424         if (!is_lvalue(left)) {
7425                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
7426                        left);
7427                 return false;
7428         }
7429
7430         if (is_type_array(type_left)) {
7431                 errorf(HERE, "cannot assign to arrays ('%E')", left);
7432                 return false;
7433         }
7434         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
7435                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
7436                        orig_type_left);
7437                 return false;
7438         }
7439         if (is_type_incomplete(type_left)) {
7440                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
7441                        left, orig_type_left);
7442                 return false;
7443         }
7444         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
7445                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
7446                        left, orig_type_left);
7447                 return false;
7448         }
7449
7450         return true;
7451 }
7452
7453 static void semantic_arithmetic_assign(binary_expression_t *expression)
7454 {
7455         expression_t *left            = expression->left;
7456         expression_t *right           = expression->right;
7457         type_t       *orig_type_left  = left->base.type;
7458         type_t       *orig_type_right = right->base.type;
7459
7460         if (!is_valid_assignment_lhs(left))
7461                 return;
7462
7463         type_t *type_left  = skip_typeref(orig_type_left);
7464         type_t *type_right = skip_typeref(orig_type_right);
7465
7466         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7467                 /* TODO: improve error message */
7468                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7469                         errorf(HERE, "operation needs arithmetic types");
7470                 }
7471                 return;
7472         }
7473
7474         /* combined instructions are tricky. We can't create an implicit cast on
7475          * the left side, because we need the uncasted form for the store.
7476          * The ast2firm pass has to know that left_type must be right_type
7477          * for the arithmetic operation and create a cast by itself */
7478         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7479         expression->right       = create_implicit_cast(right, arithmetic_type);
7480         expression->base.type   = type_left;
7481 }
7482
7483 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
7484 {
7485         expression_t *const left            = expression->left;
7486         expression_t *const right           = expression->right;
7487         type_t       *const orig_type_left  = left->base.type;
7488         type_t       *const orig_type_right = right->base.type;
7489         type_t       *const type_left       = skip_typeref(orig_type_left);
7490         type_t       *const type_right      = skip_typeref(orig_type_right);
7491
7492         if (!is_valid_assignment_lhs(left))
7493                 return;
7494
7495         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7496                 /* combined instructions are tricky. We can't create an implicit cast on
7497                  * the left side, because we need the uncasted form for the store.
7498                  * The ast2firm pass has to know that left_type must be right_type
7499                  * for the arithmetic operation and create a cast by itself */
7500                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
7501                 expression->right     = create_implicit_cast(right, arithmetic_type);
7502                 expression->base.type = type_left;
7503         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7504                 check_pointer_arithmetic(&expression->base.source_position,
7505                                          type_left, orig_type_left);
7506                 expression->base.type = type_left;
7507         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7508                 errorf(HERE, "incompatible types '%T' and '%T' in assignment", orig_type_left, orig_type_right);
7509         }
7510 }
7511
7512 /**
7513  * Check the semantic restrictions of a logical expression.
7514  */
7515 static void semantic_logical_op(binary_expression_t *expression)
7516 {
7517         expression_t *const left            = expression->left;
7518         expression_t *const right           = expression->right;
7519         type_t       *const orig_type_left  = left->base.type;
7520         type_t       *const orig_type_right = right->base.type;
7521         type_t       *const type_left       = skip_typeref(orig_type_left);
7522         type_t       *const type_right      = skip_typeref(orig_type_right);
7523
7524         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
7525                 /* TODO: improve error message */
7526                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7527                         errorf(HERE, "operation needs scalar types");
7528                 }
7529                 return;
7530         }
7531
7532         expression->base.type = type_int;
7533 }
7534
7535 /**
7536  * Check the semantic restrictions of a binary assign expression.
7537  */
7538 static void semantic_binexpr_assign(binary_expression_t *expression)
7539 {
7540         expression_t *left           = expression->left;
7541         type_t       *orig_type_left = left->base.type;
7542
7543         type_t *type_left = revert_automatic_type_conversion(left);
7544         type_left         = skip_typeref(orig_type_left);
7545
7546         if (!is_valid_assignment_lhs(left))
7547                 return;
7548
7549         assign_error_t error = semantic_assign(orig_type_left, expression->right);
7550         report_assign_error(error, orig_type_left, expression->right,
7551                         "assignment", &left->base.source_position);
7552         expression->right = create_implicit_cast(expression->right, orig_type_left);
7553         expression->base.type = orig_type_left;
7554 }
7555
7556 /**
7557  * Determine if the outermost operation (or parts thereof) of the given
7558  * expression has no effect in order to generate a warning about this fact.
7559  * Therefore in some cases this only examines some of the operands of the
7560  * expression (see comments in the function and examples below).
7561  * Examples:
7562  *   f() + 23;    // warning, because + has no effect
7563  *   x || f();    // no warning, because x controls execution of f()
7564  *   x ? y : f(); // warning, because y has no effect
7565  *   (void)x;     // no warning to be able to suppress the warning
7566  * This function can NOT be used for an "expression has definitely no effect"-
7567  * analysis. */
7568 static bool expression_has_effect(const expression_t *const expr)
7569 {
7570         switch (expr->kind) {
7571                 case EXPR_UNKNOWN:                   break;
7572                 case EXPR_INVALID:                   return true; /* do NOT warn */
7573                 case EXPR_REFERENCE:                 return false;
7574                 /* suppress the warning for microsoft __noop operations */
7575                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
7576                 case EXPR_CHARACTER_CONSTANT:        return false;
7577                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
7578                 case EXPR_STRING_LITERAL:            return false;
7579                 case EXPR_WIDE_STRING_LITERAL:       return false;
7580
7581                 case EXPR_CALL: {
7582                         const call_expression_t *const call = &expr->call;
7583                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
7584                                 return true;
7585
7586                         switch (call->function->builtin_symbol.symbol->ID) {
7587                                 case T___builtin_va_end: return true;
7588                                 default:                 return false;
7589                         }
7590                 }
7591
7592                 /* Generate the warning if either the left or right hand side of a
7593                  * conditional expression has no effect */
7594                 case EXPR_CONDITIONAL: {
7595                         const conditional_expression_t *const cond = &expr->conditional;
7596                         return
7597                                 expression_has_effect(cond->true_expression) &&
7598                                 expression_has_effect(cond->false_expression);
7599                 }
7600
7601                 case EXPR_SELECT:                    return false;
7602                 case EXPR_ARRAY_ACCESS:              return false;
7603                 case EXPR_SIZEOF:                    return false;
7604                 case EXPR_CLASSIFY_TYPE:             return false;
7605                 case EXPR_ALIGNOF:                   return false;
7606
7607                 case EXPR_FUNCNAME:                  return false;
7608                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
7609                 case EXPR_BUILTIN_CONSTANT_P:        return false;
7610                 case EXPR_BUILTIN_PREFETCH:          return true;
7611                 case EXPR_OFFSETOF:                  return false;
7612                 case EXPR_VA_START:                  return true;
7613                 case EXPR_VA_ARG:                    return true;
7614                 case EXPR_STATEMENT:                 return true; // TODO
7615                 case EXPR_COMPOUND_LITERAL:          return false;
7616
7617                 case EXPR_UNARY_NEGATE:              return false;
7618                 case EXPR_UNARY_PLUS:                return false;
7619                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
7620                 case EXPR_UNARY_NOT:                 return false;
7621                 case EXPR_UNARY_DEREFERENCE:         return false;
7622                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
7623                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
7624                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
7625                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
7626                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
7627
7628                 /* Treat void casts as if they have an effect in order to being able to
7629                  * suppress the warning */
7630                 case EXPR_UNARY_CAST: {
7631                         type_t *const type = skip_typeref(expr->base.type);
7632                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
7633                 }
7634
7635                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
7636                 case EXPR_UNARY_ASSUME:              return true;
7637
7638                 case EXPR_BINARY_ADD:                return false;
7639                 case EXPR_BINARY_SUB:                return false;
7640                 case EXPR_BINARY_MUL:                return false;
7641                 case EXPR_BINARY_DIV:                return false;
7642                 case EXPR_BINARY_MOD:                return false;
7643                 case EXPR_BINARY_EQUAL:              return false;
7644                 case EXPR_BINARY_NOTEQUAL:           return false;
7645                 case EXPR_BINARY_LESS:               return false;
7646                 case EXPR_BINARY_LESSEQUAL:          return false;
7647                 case EXPR_BINARY_GREATER:            return false;
7648                 case EXPR_BINARY_GREATEREQUAL:       return false;
7649                 case EXPR_BINARY_BITWISE_AND:        return false;
7650                 case EXPR_BINARY_BITWISE_OR:         return false;
7651                 case EXPR_BINARY_BITWISE_XOR:        return false;
7652                 case EXPR_BINARY_SHIFTLEFT:          return false;
7653                 case EXPR_BINARY_SHIFTRIGHT:         return false;
7654                 case EXPR_BINARY_ASSIGN:             return true;
7655                 case EXPR_BINARY_MUL_ASSIGN:         return true;
7656                 case EXPR_BINARY_DIV_ASSIGN:         return true;
7657                 case EXPR_BINARY_MOD_ASSIGN:         return true;
7658                 case EXPR_BINARY_ADD_ASSIGN:         return true;
7659                 case EXPR_BINARY_SUB_ASSIGN:         return true;
7660                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
7661                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
7662                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
7663                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
7664                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
7665
7666                 /* Only examine the right hand side of && and ||, because the left hand
7667                  * side already has the effect of controlling the execution of the right
7668                  * hand side */
7669                 case EXPR_BINARY_LOGICAL_AND:
7670                 case EXPR_BINARY_LOGICAL_OR:
7671                 /* Only examine the right hand side of a comma expression, because the left
7672                  * hand side has a separate warning */
7673                 case EXPR_BINARY_COMMA:
7674                         return expression_has_effect(expr->binary.right);
7675
7676                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
7677                 case EXPR_BINARY_ISGREATER:          return false;
7678                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
7679                 case EXPR_BINARY_ISLESS:             return false;
7680                 case EXPR_BINARY_ISLESSEQUAL:        return false;
7681                 case EXPR_BINARY_ISLESSGREATER:      return false;
7682                 case EXPR_BINARY_ISUNORDERED:        return false;
7683         }
7684
7685         internal_errorf(HERE, "unexpected expression");
7686 }
7687
7688 static void semantic_comma(binary_expression_t *expression)
7689 {
7690         if (warning.unused_value) {
7691                 const expression_t *const left = expression->left;
7692                 if (!expression_has_effect(left)) {
7693                         warningf(&left->base.source_position,
7694                                  "left-hand operand of comma expression has no effect");
7695                 }
7696         }
7697         expression->base.type = expression->right->base.type;
7698 }
7699
7700 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
7701 static expression_t *parse_##binexpression_type(unsigned precedence,      \
7702                                                 expression_t *left)       \
7703 {                                                                         \
7704         eat(token_type);                                                      \
7705         source_position_t pos = *HERE;                                        \
7706                                                                           \
7707         expression_t *right = parse_sub_expression(precedence + lr);          \
7708                                                                           \
7709         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
7710         binexpr->base.source_position = pos;                                  \
7711         binexpr->binary.left  = left;                                         \
7712         binexpr->binary.right = right;                                        \
7713         sfunc(&binexpr->binary);                                              \
7714                                                                           \
7715         return binexpr;                                                       \
7716 }
7717
7718 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
7719 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
7720 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_binexpr_arithmetic, 1)
7721 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_binexpr_arithmetic, 1)
7722 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
7723 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
7724 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
7725 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
7726 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
7727
7728 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
7729                       semantic_comparison, 1)
7730 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
7731                       semantic_comparison, 1)
7732 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
7733                       semantic_comparison, 1)
7734 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
7735                       semantic_comparison, 1)
7736
7737 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
7738                       semantic_binexpr_arithmetic, 1)
7739 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
7740                       semantic_binexpr_arithmetic, 1)
7741 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
7742                       semantic_binexpr_arithmetic, 1)
7743 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
7744                       semantic_logical_op, 1)
7745 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
7746                       semantic_logical_op, 1)
7747 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
7748                       semantic_shift_op, 1)
7749 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
7750                       semantic_shift_op, 1)
7751 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
7752                       semantic_arithmetic_addsubb_assign, 0)
7753 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
7754                       semantic_arithmetic_addsubb_assign, 0)
7755 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
7756                       semantic_arithmetic_assign, 0)
7757 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
7758                       semantic_arithmetic_assign, 0)
7759 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
7760                       semantic_arithmetic_assign, 0)
7761 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
7762                       semantic_arithmetic_assign, 0)
7763 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
7764                       semantic_arithmetic_assign, 0)
7765 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
7766                       semantic_arithmetic_assign, 0)
7767 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
7768                       semantic_arithmetic_assign, 0)
7769 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
7770                       semantic_arithmetic_assign, 0)
7771
7772 static expression_t *parse_sub_expression(unsigned precedence)
7773 {
7774         if (token.type < 0) {
7775                 return expected_expression_error();
7776         }
7777
7778         expression_parser_function_t *parser
7779                 = &expression_parsers[token.type];
7780         source_position_t             source_position = token.source_position;
7781         expression_t                 *left;
7782
7783         if (parser->parser != NULL) {
7784                 left = parser->parser(parser->precedence);
7785         } else {
7786                 left = parse_primary_expression();
7787         }
7788         assert(left != NULL);
7789         left->base.source_position = source_position;
7790
7791         while(true) {
7792                 if (token.type < 0) {
7793                         return expected_expression_error();
7794                 }
7795
7796                 parser = &expression_parsers[token.type];
7797                 if (parser->infix_parser == NULL)
7798                         break;
7799                 if (parser->infix_precedence < precedence)
7800                         break;
7801
7802                 left = parser->infix_parser(parser->infix_precedence, left);
7803
7804                 assert(left != NULL);
7805                 assert(left->kind != EXPR_UNKNOWN);
7806                 left->base.source_position = source_position;
7807         }
7808
7809         return left;
7810 }
7811
7812 /**
7813  * Parse an expression.
7814  */
7815 static expression_t *parse_expression(void)
7816 {
7817         return parse_sub_expression(1);
7818 }
7819
7820 /**
7821  * Register a parser for a prefix-like operator with given precedence.
7822  *
7823  * @param parser      the parser function
7824  * @param token_type  the token type of the prefix token
7825  * @param precedence  the precedence of the operator
7826  */
7827 static void register_expression_parser(parse_expression_function parser,
7828                                        int token_type, unsigned precedence)
7829 {
7830         expression_parser_function_t *entry = &expression_parsers[token_type];
7831
7832         if (entry->parser != NULL) {
7833                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
7834                 panic("trying to register multiple expression parsers for a token");
7835         }
7836         entry->parser     = parser;
7837         entry->precedence = precedence;
7838 }
7839
7840 /**
7841  * Register a parser for an infix operator with given precedence.
7842  *
7843  * @param parser      the parser function
7844  * @param token_type  the token type of the infix operator
7845  * @param precedence  the precedence of the operator
7846  */
7847 static void register_infix_parser(parse_expression_infix_function parser,
7848                 int token_type, unsigned precedence)
7849 {
7850         expression_parser_function_t *entry = &expression_parsers[token_type];
7851
7852         if (entry->infix_parser != NULL) {
7853                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
7854                 panic("trying to register multiple infix expression parsers for a "
7855                       "token");
7856         }
7857         entry->infix_parser     = parser;
7858         entry->infix_precedence = precedence;
7859 }
7860
7861 /**
7862  * Initialize the expression parsers.
7863  */
7864 static void init_expression_parsers(void)
7865 {
7866         memset(&expression_parsers, 0, sizeof(expression_parsers));
7867
7868         register_infix_parser(parse_array_expression,         '[',              30);
7869         register_infix_parser(parse_call_expression,          '(',              30);
7870         register_infix_parser(parse_select_expression,        '.',              30);
7871         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
7872         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
7873                                                               T_PLUSPLUS,       30);
7874         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
7875                                                               T_MINUSMINUS,     30);
7876
7877         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
7878         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
7879         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
7880         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
7881         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
7882         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
7883         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
7884         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
7885         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
7886         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
7887         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
7888         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
7889         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
7890                                                     T_EXCLAMATIONMARKEQUAL, 13);
7891         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
7892         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
7893         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
7894         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
7895         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
7896         register_infix_parser(parse_conditional_expression,   '?',               7);
7897         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
7898         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
7899         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
7900         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
7901         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
7902         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
7903         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
7904                                                                 T_LESSLESSEQUAL, 2);
7905         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
7906                                                           T_GREATERGREATEREQUAL, 2);
7907         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
7908                                                                      T_ANDEQUAL, 2);
7909         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
7910                                                                     T_PIPEEQUAL, 2);
7911         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
7912                                                                    T_CARETEQUAL, 2);
7913
7914         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
7915
7916         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
7917         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
7918         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
7919         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
7920         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
7921         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
7922         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
7923                                                                   T_PLUSPLUS,   25);
7924         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
7925                                                                   T_MINUSMINUS, 25);
7926         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
7927         register_expression_parser(parse_alignof,                T___alignof__, 25);
7928         register_expression_parser(parse_extension,            T___extension__, 25);
7929         register_expression_parser(parse_builtin_classify_type,
7930                                                      T___builtin_classify_type, 25);
7931 }
7932
7933 /**
7934  * Parse a asm statement arguments specification.
7935  */
7936 static asm_argument_t *parse_asm_arguments(bool is_out)
7937 {
7938         asm_argument_t *result = NULL;
7939         asm_argument_t *last   = NULL;
7940
7941         while (token.type == T_STRING_LITERAL || token.type == '[') {
7942                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7943                 memset(argument, 0, sizeof(argument[0]));
7944
7945                 if (token.type == '[') {
7946                         eat('[');
7947                         if (token.type != T_IDENTIFIER) {
7948                                 parse_error_expected("while parsing asm argument",
7949                                                      T_IDENTIFIER, NULL);
7950                                 return NULL;
7951                         }
7952                         argument->symbol = token.v.symbol;
7953
7954                         expect(']');
7955                 }
7956
7957                 argument->constraints = parse_string_literals();
7958                 expect('(');
7959                 add_anchor_token(')');
7960                 expression_t *expression = parse_expression();
7961                 rem_anchor_token(')');
7962                 if (is_out) {
7963                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
7964                          * change size or type representation (e.g. int -> long is ok, but
7965                          * int -> float is not) */
7966                         if (expression->kind == EXPR_UNARY_CAST) {
7967                                 type_t      *const type = expression->base.type;
7968                                 type_kind_t  const kind = type->kind;
7969                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
7970                                         unsigned flags;
7971                                         unsigned size;
7972                                         if (kind == TYPE_ATOMIC) {
7973                                                 atomic_type_kind_t const akind = type->atomic.akind;
7974                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
7975                                                 size  = get_atomic_type_size(akind);
7976                                         } else {
7977                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
7978                                                 size  = get_atomic_type_size(get_intptr_kind());
7979                                         }
7980
7981                                         do {
7982                                                 expression_t *const value      = expression->unary.value;
7983                                                 type_t       *const value_type = value->base.type;
7984                                                 type_kind_t   const value_kind = value_type->kind;
7985
7986                                                 unsigned value_flags;
7987                                                 unsigned value_size;
7988                                                 if (value_kind == TYPE_ATOMIC) {
7989                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
7990                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
7991                                                         value_size  = get_atomic_type_size(value_akind);
7992                                                 } else if (value_kind == TYPE_POINTER) {
7993                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
7994                                                         value_size  = get_atomic_type_size(get_intptr_kind());
7995                                                 } else {
7996                                                         break;
7997                                                 }
7998
7999                                                 if (value_flags != flags || value_size != size)
8000                                                         break;
8001
8002                                                 expression = value;
8003                                         } while (expression->kind == EXPR_UNARY_CAST);
8004                                 }
8005                         }
8006
8007                         if (!is_lvalue(expression)) {
8008                                 errorf(&expression->base.source_position,
8009                                        "asm output argument is not an lvalue");
8010                         }
8011                 }
8012                 argument->expression = expression;
8013                 expect(')');
8014
8015                 set_address_taken(expression, true);
8016
8017                 if (last != NULL) {
8018                         last->next = argument;
8019                 } else {
8020                         result = argument;
8021                 }
8022                 last = argument;
8023
8024                 if (token.type != ',')
8025                         break;
8026                 eat(',');
8027         }
8028
8029         return result;
8030 end_error:
8031         return NULL;
8032 }
8033
8034 /**
8035  * Parse a asm statement clobber specification.
8036  */
8037 static asm_clobber_t *parse_asm_clobbers(void)
8038 {
8039         asm_clobber_t *result = NULL;
8040         asm_clobber_t *last   = NULL;
8041
8042         while(token.type == T_STRING_LITERAL) {
8043                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8044                 clobber->clobber       = parse_string_literals();
8045
8046                 if (last != NULL) {
8047                         last->next = clobber;
8048                 } else {
8049                         result = clobber;
8050                 }
8051                 last = clobber;
8052
8053                 if (token.type != ',')
8054                         break;
8055                 eat(',');
8056         }
8057
8058         return result;
8059 }
8060
8061 /**
8062  * Parse an asm statement.
8063  */
8064 static statement_t *parse_asm_statement(void)
8065 {
8066         eat(T_asm);
8067
8068         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
8069         statement->base.source_position = token.source_position;
8070
8071         asm_statement_t *asm_statement = &statement->asms;
8072
8073         if (token.type == T_volatile) {
8074                 next_token();
8075                 asm_statement->is_volatile = true;
8076         }
8077
8078         expect('(');
8079         add_anchor_token(')');
8080         add_anchor_token(':');
8081         asm_statement->asm_text = parse_string_literals();
8082
8083         if (token.type != ':') {
8084                 rem_anchor_token(':');
8085                 goto end_of_asm;
8086         }
8087         eat(':');
8088
8089         asm_statement->outputs = parse_asm_arguments(true);
8090         if (token.type != ':') {
8091                 rem_anchor_token(':');
8092                 goto end_of_asm;
8093         }
8094         eat(':');
8095
8096         asm_statement->inputs = parse_asm_arguments(false);
8097         if (token.type != ':') {
8098                 rem_anchor_token(':');
8099                 goto end_of_asm;
8100         }
8101         rem_anchor_token(':');
8102         eat(':');
8103
8104         asm_statement->clobbers = parse_asm_clobbers();
8105
8106 end_of_asm:
8107         rem_anchor_token(')');
8108         expect(')');
8109         expect(';');
8110
8111         if (asm_statement->outputs == NULL) {
8112                 /* GCC: An 'asm' instruction without any output operands will be treated
8113                  * identically to a volatile 'asm' instruction. */
8114                 asm_statement->is_volatile = true;
8115         }
8116
8117         return statement;
8118 end_error:
8119         return create_invalid_statement();
8120 }
8121
8122 /**
8123  * Parse a case statement.
8124  */
8125 static statement_t *parse_case_statement(void)
8126 {
8127         eat(T_case);
8128
8129         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8130         source_position_t *const pos       = &statement->base.source_position;
8131
8132         *pos                             = token.source_position;
8133         statement->case_label.expression = parse_expression();
8134
8135         PUSH_PARENT(statement);
8136
8137         if (c_mode & _GNUC) {
8138                 if (token.type == T_DOTDOTDOT) {
8139                         next_token();
8140                         statement->case_label.end_range = parse_expression();
8141                 }
8142         }
8143
8144         expect(':');
8145
8146         if (! is_constant_expression(statement->case_label.expression)) {
8147                 errorf(pos, "case label does not reduce to an integer constant");
8148         } else if (current_switch != NULL) {
8149                 /* Check for duplicate case values */
8150                 /* FIXME slow */
8151                 long const val = fold_constant(statement->case_label.expression);
8152                 for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
8153                         expression_t const* const e = l->expression;
8154                         if (e == NULL || !is_constant_expression(e) || fold_constant(e) != val)
8155                                 continue;
8156
8157                         errorf(pos, "duplicate case value");
8158                         errorf(&l->base.source_position, "previously used here");
8159                         break;
8160                 }
8161
8162                 /* link all cases into the switch statement */
8163                 if (current_switch->last_case == NULL) {
8164                         current_switch->first_case      = &statement->case_label;
8165                 } else {
8166                         current_switch->last_case->next = &statement->case_label;
8167                 }
8168                 current_switch->last_case = &statement->case_label;
8169         } else {
8170                 errorf(pos, "case label not within a switch statement");
8171         }
8172
8173         statement_t *const inner_stmt = parse_statement();
8174         statement->case_label.statement = inner_stmt;
8175         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8176                 errorf(&inner_stmt->base.source_position, "declaration after case label");
8177         }
8178
8179         POP_PARENT;
8180         return statement;
8181 end_error:
8182         POP_PARENT;
8183         return create_invalid_statement();
8184 }
8185
8186 /**
8187  * Finds an existing default label of a switch statement.
8188  */
8189 static case_label_statement_t *
8190 find_default_label(const switch_statement_t *statement)
8191 {
8192         case_label_statement_t *label = statement->first_case;
8193         for ( ; label != NULL; label = label->next) {
8194                 if (label->expression == NULL)
8195                         return label;
8196         }
8197         return NULL;
8198 }
8199
8200 /**
8201  * Parse a default statement.
8202  */
8203 static statement_t *parse_default_statement(void)
8204 {
8205         eat(T_default);
8206
8207         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8208         statement->base.source_position = token.source_position;
8209
8210         PUSH_PARENT(statement);
8211
8212         expect(':');
8213         if (current_switch != NULL) {
8214                 const case_label_statement_t *def_label = find_default_label(current_switch);
8215                 if (def_label != NULL) {
8216                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
8217                                &def_label->base.source_position);
8218                 } else {
8219                         /* link all cases into the switch statement */
8220                         if (current_switch->last_case == NULL) {
8221                                 current_switch->first_case      = &statement->case_label;
8222                         } else {
8223                                 current_switch->last_case->next = &statement->case_label;
8224                         }
8225                         current_switch->last_case = &statement->case_label;
8226                 }
8227         } else {
8228                 errorf(&statement->base.source_position,
8229                         "'default' label not within a switch statement");
8230         }
8231
8232         statement_t *const inner_stmt = parse_statement();
8233         statement->case_label.statement = inner_stmt;
8234         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8235                 errorf(&inner_stmt->base.source_position, "declaration after default label");
8236         }
8237
8238         POP_PARENT;
8239         return statement;
8240 end_error:
8241         POP_PARENT;
8242         return create_invalid_statement();
8243 }
8244
8245 /**
8246  * Return the declaration for a given label symbol or create a new one.
8247  *
8248  * @param symbol  the symbol of the label
8249  */
8250 static declaration_t *get_label(symbol_t *symbol)
8251 {
8252         declaration_t *candidate = get_declaration(symbol, NAMESPACE_LABEL);
8253         assert(current_function != NULL);
8254         /* if we found a label in the same function, then we already created the
8255          * declaration */
8256         if (candidate != NULL
8257                         && candidate->parent_scope == &current_function->scope) {
8258                 return candidate;
8259         }
8260
8261         /* otherwise we need to create a new one */
8262         declaration_t *const declaration = allocate_declaration_zero();
8263         declaration->namespc       = NAMESPACE_LABEL;
8264         declaration->symbol        = symbol;
8265
8266         label_push(declaration);
8267
8268         return declaration;
8269 }
8270
8271 /**
8272  * Parse a label statement.
8273  */
8274 static statement_t *parse_label_statement(void)
8275 {
8276         assert(token.type == T_IDENTIFIER);
8277         symbol_t *symbol = token.v.symbol;
8278         next_token();
8279
8280         declaration_t *label = get_label(symbol);
8281
8282         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
8283         statement->base.source_position = token.source_position;
8284         statement->label.label          = label;
8285
8286         PUSH_PARENT(statement);
8287
8288         /* if source position is already set then the label is defined twice,
8289          * otherwise it was just mentioned in a goto so far */
8290         if (label->source_position.input_name != NULL) {
8291                 errorf(HERE, "duplicate label '%Y' (declared %P)",
8292                        symbol, &label->source_position);
8293         } else {
8294                 label->source_position = token.source_position;
8295                 label->init.statement  = statement;
8296         }
8297
8298         eat(':');
8299
8300         if (token.type == '}') {
8301                 /* TODO only warn? */
8302                 if (false) {
8303                         warningf(HERE, "label at end of compound statement");
8304                         statement->label.statement = create_empty_statement();
8305                 } else {
8306                         errorf(HERE, "label at end of compound statement");
8307                         statement->label.statement = create_invalid_statement();
8308                 }
8309         } else if (token.type == ';') {
8310                 /* Eat an empty statement here, to avoid the warning about an empty
8311                  * statement after a label.  label:; is commonly used to have a label
8312                  * before a closing brace. */
8313                 statement->label.statement = create_empty_statement();
8314                 next_token();
8315         } else {
8316                 statement_t *const inner_stmt = parse_statement();
8317                 statement->label.statement = inner_stmt;
8318                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
8319                         errorf(&inner_stmt->base.source_position, "declaration after label");
8320                 }
8321         }
8322
8323         /* remember the labels in a list for later checking */
8324         if (label_last == NULL) {
8325                 label_first = &statement->label;
8326         } else {
8327                 label_last->next = &statement->label;
8328         }
8329         label_last = &statement->label;
8330
8331         POP_PARENT;
8332         return statement;
8333 }
8334
8335 /**
8336  * Parse an if statement.
8337  */
8338 static statement_t *parse_if(void)
8339 {
8340         eat(T_if);
8341
8342         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
8343         statement->base.source_position = token.source_position;
8344
8345         PUSH_PARENT(statement);
8346
8347         expect('(');
8348         add_anchor_token(')');
8349         statement->ifs.condition = parse_expression();
8350         rem_anchor_token(')');
8351         expect(')');
8352
8353         add_anchor_token(T_else);
8354         statement->ifs.true_statement = parse_statement();
8355         rem_anchor_token(T_else);
8356
8357         if (token.type == T_else) {
8358                 next_token();
8359                 statement->ifs.false_statement = parse_statement();
8360         }
8361
8362         POP_PARENT;
8363         return statement;
8364 end_error:
8365         POP_PARENT;
8366         return create_invalid_statement();
8367 }
8368
8369 /**
8370  * Parse a switch statement.
8371  */
8372 static statement_t *parse_switch(void)
8373 {
8374         eat(T_switch);
8375
8376         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
8377         statement->base.source_position = token.source_position;
8378
8379         PUSH_PARENT(statement);
8380
8381         expect('(');
8382         expression_t *const expr = parse_expression();
8383         type_t       *      type = skip_typeref(expr->base.type);
8384         if (is_type_integer(type)) {
8385                 type = promote_integer(type);
8386         } else if (is_type_valid(type)) {
8387                 errorf(&expr->base.source_position,
8388                        "switch quantity is not an integer, but '%T'", type);
8389                 type = type_error_type;
8390         }
8391         statement->switchs.expression = create_implicit_cast(expr, type);
8392         expect(')');
8393
8394         switch_statement_t *rem = current_switch;
8395         current_switch          = &statement->switchs;
8396         statement->switchs.body = parse_statement();
8397         current_switch          = rem;
8398
8399         if (warning.switch_default &&
8400            find_default_label(&statement->switchs) == NULL) {
8401                 warningf(&statement->base.source_position, "switch has no default case");
8402         }
8403
8404         POP_PARENT;
8405         return statement;
8406 end_error:
8407         POP_PARENT;
8408         return create_invalid_statement();
8409 }
8410
8411 static statement_t *parse_loop_body(statement_t *const loop)
8412 {
8413         statement_t *const rem = current_loop;
8414         current_loop = loop;
8415
8416         statement_t *const body = parse_statement();
8417
8418         current_loop = rem;
8419         return body;
8420 }
8421
8422 /**
8423  * Parse a while statement.
8424  */
8425 static statement_t *parse_while(void)
8426 {
8427         eat(T_while);
8428
8429         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
8430         statement->base.source_position = token.source_position;
8431
8432         PUSH_PARENT(statement);
8433
8434         expect('(');
8435         add_anchor_token(')');
8436         statement->whiles.condition = parse_expression();
8437         rem_anchor_token(')');
8438         expect(')');
8439
8440         statement->whiles.body = parse_loop_body(statement);
8441
8442         POP_PARENT;
8443         return statement;
8444 end_error:
8445         POP_PARENT;
8446         return create_invalid_statement();
8447 }
8448
8449 /**
8450  * Parse a do statement.
8451  */
8452 static statement_t *parse_do(void)
8453 {
8454         eat(T_do);
8455
8456         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
8457         statement->base.source_position = token.source_position;
8458
8459         PUSH_PARENT(statement)
8460
8461         add_anchor_token(T_while);
8462         statement->do_while.body = parse_loop_body(statement);
8463         rem_anchor_token(T_while);
8464
8465         expect(T_while);
8466         expect('(');
8467         add_anchor_token(')');
8468         statement->do_while.condition = parse_expression();
8469         rem_anchor_token(')');
8470         expect(')');
8471         expect(';');
8472
8473         POP_PARENT;
8474         return statement;
8475 end_error:
8476         POP_PARENT;
8477         return create_invalid_statement();
8478 }
8479
8480 /**
8481  * Parse a for statement.
8482  */
8483 static statement_t *parse_for(void)
8484 {
8485         eat(T_for);
8486
8487         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
8488         statement->base.source_position = token.source_position;
8489
8490         PUSH_PARENT(statement);
8491
8492         int      top        = environment_top();
8493         scope_t *last_scope = scope;
8494         set_scope(&statement->fors.scope);
8495
8496         expect('(');
8497         add_anchor_token(')');
8498
8499         if (token.type != ';') {
8500                 if (is_declaration_specifier(&token, false)) {
8501                         parse_declaration(record_declaration);
8502                 } else {
8503                         add_anchor_token(';');
8504                         expression_t *const init = parse_expression();
8505                         statement->fors.initialisation = init;
8506                         if (warning.unused_value && !expression_has_effect(init)) {
8507                                 warningf(&init->base.source_position,
8508                                          "initialisation of 'for'-statement has no effect");
8509                         }
8510                         rem_anchor_token(';');
8511                         expect(';');
8512                 }
8513         } else {
8514                 expect(';');
8515         }
8516
8517         if (token.type != ';') {
8518                 add_anchor_token(';');
8519                 statement->fors.condition = parse_expression();
8520                 rem_anchor_token(';');
8521         }
8522         expect(';');
8523         if (token.type != ')') {
8524                 expression_t *const step = parse_expression();
8525                 statement->fors.step = step;
8526                 if (warning.unused_value && !expression_has_effect(step)) {
8527                         warningf(&step->base.source_position,
8528                                  "step of 'for'-statement has no effect");
8529                 }
8530         }
8531         rem_anchor_token(')');
8532         expect(')');
8533         statement->fors.body = parse_loop_body(statement);
8534
8535         assert(scope == &statement->fors.scope);
8536         set_scope(last_scope);
8537         environment_pop_to(top);
8538
8539         POP_PARENT;
8540         return statement;
8541
8542 end_error:
8543         POP_PARENT;
8544         rem_anchor_token(')');
8545         assert(scope == &statement->fors.scope);
8546         set_scope(last_scope);
8547         environment_pop_to(top);
8548
8549         return create_invalid_statement();
8550 }
8551
8552 /**
8553  * Parse a goto statement.
8554  */
8555 static statement_t *parse_goto(void)
8556 {
8557         eat(T_goto);
8558
8559         if (token.type != T_IDENTIFIER) {
8560                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
8561                 eat_statement();
8562                 goto end_error;
8563         }
8564         symbol_t *symbol = token.v.symbol;
8565         next_token();
8566
8567         declaration_t *label = get_label(symbol);
8568
8569         statement_t *statement          = allocate_statement_zero(STATEMENT_GOTO);
8570         statement->base.source_position = token.source_position;
8571
8572         statement->gotos.label = label;
8573
8574         /* remember the goto's in a list for later checking */
8575         if (goto_last == NULL) {
8576                 goto_first = &statement->gotos;
8577         } else {
8578                 goto_last->next = &statement->gotos;
8579         }
8580         goto_last = &statement->gotos;
8581
8582         expect(';');
8583
8584         return statement;
8585 end_error:
8586         return create_invalid_statement();
8587 }
8588
8589 /**
8590  * Parse a continue statement.
8591  */
8592 static statement_t *parse_continue(void)
8593 {
8594         statement_t *statement;
8595         if (current_loop == NULL) {
8596                 errorf(HERE, "continue statement not within loop");
8597                 statement = create_invalid_statement();
8598         } else {
8599                 statement = allocate_statement_zero(STATEMENT_CONTINUE);
8600
8601                 statement->base.source_position = token.source_position;
8602         }
8603
8604         eat(T_continue);
8605         expect(';');
8606
8607         return statement;
8608 end_error:
8609         return create_invalid_statement();
8610 }
8611
8612 /**
8613  * Parse a break statement.
8614  */
8615 static statement_t *parse_break(void)
8616 {
8617         statement_t *statement;
8618         if (current_switch == NULL && current_loop == NULL) {
8619                 errorf(HERE, "break statement not within loop or switch");
8620                 statement = create_invalid_statement();
8621         } else {
8622                 statement = allocate_statement_zero(STATEMENT_BREAK);
8623
8624                 statement->base.source_position = token.source_position;
8625         }
8626
8627         eat(T_break);
8628         expect(';');
8629
8630         return statement;
8631 end_error:
8632         return create_invalid_statement();
8633 }
8634
8635 /**
8636  * Parse a __leave statement.
8637  */
8638 static statement_t *parse_leave(void)
8639 {
8640         statement_t *statement;
8641         if (current_try == NULL) {
8642                 errorf(HERE, "__leave statement not within __try");
8643                 statement = create_invalid_statement();
8644         } else {
8645                 statement = allocate_statement_zero(STATEMENT_LEAVE);
8646
8647                 statement->base.source_position = token.source_position;
8648         }
8649
8650         eat(T___leave);
8651         expect(';');
8652
8653         return statement;
8654 end_error:
8655         return create_invalid_statement();
8656 }
8657
8658 /**
8659  * Check if a given declaration represents a local variable.
8660  */
8661 static bool is_local_var_declaration(const declaration_t *declaration)
8662 {
8663         switch ((storage_class_tag_t) declaration->storage_class) {
8664         case STORAGE_CLASS_AUTO:
8665         case STORAGE_CLASS_REGISTER: {
8666                 const type_t *type = skip_typeref(declaration->type);
8667                 if (is_type_function(type)) {
8668                         return false;
8669                 } else {
8670                         return true;
8671                 }
8672         }
8673         default:
8674                 return false;
8675         }
8676 }
8677
8678 /**
8679  * Check if a given declaration represents a variable.
8680  */
8681 static bool is_var_declaration(const declaration_t *declaration)
8682 {
8683         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
8684                 return false;
8685
8686         const type_t *type = skip_typeref(declaration->type);
8687         return !is_type_function(type);
8688 }
8689
8690 /**
8691  * Check if a given expression represents a local variable.
8692  */
8693 static bool is_local_variable(const expression_t *expression)
8694 {
8695         if (expression->base.kind != EXPR_REFERENCE) {
8696                 return false;
8697         }
8698         const declaration_t *declaration = expression->reference.declaration;
8699         return is_local_var_declaration(declaration);
8700 }
8701
8702 /**
8703  * Check if a given expression represents a local variable and
8704  * return its declaration then, else return NULL.
8705  */
8706 declaration_t *expr_is_variable(const expression_t *expression)
8707 {
8708         if (expression->base.kind != EXPR_REFERENCE) {
8709                 return NULL;
8710         }
8711         declaration_t *declaration = expression->reference.declaration;
8712         if (is_var_declaration(declaration))
8713                 return declaration;
8714         return NULL;
8715 }
8716
8717 /**
8718  * Parse a return statement.
8719  */
8720 static statement_t *parse_return(void)
8721 {
8722         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
8723         statement->base.source_position = token.source_position;
8724
8725         eat(T_return);
8726
8727         expression_t *return_value = NULL;
8728         if (token.type != ';') {
8729                 return_value = parse_expression();
8730         }
8731         expect(';');
8732
8733         const type_t *const func_type = current_function->type;
8734         assert(is_type_function(func_type));
8735         type_t *const return_type = skip_typeref(func_type->function.return_type);
8736
8737         if (return_value != NULL) {
8738                 type_t *return_value_type = skip_typeref(return_value->base.type);
8739
8740                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
8741                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
8742                         warningf(&statement->base.source_position,
8743                                  "'return' with a value, in function returning void");
8744                         return_value = NULL;
8745                 } else {
8746                         assign_error_t error = semantic_assign(return_type, return_value);
8747                         report_assign_error(error, return_type, return_value, "'return'",
8748                                             &statement->base.source_position);
8749                         return_value = create_implicit_cast(return_value, return_type);
8750                 }
8751                 /* check for returning address of a local var */
8752                 if (return_value != NULL &&
8753                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
8754                         const expression_t *expression = return_value->unary.value;
8755                         if (is_local_variable(expression)) {
8756                                 warningf(&statement->base.source_position,
8757                                          "function returns address of local variable");
8758                         }
8759                 }
8760         } else {
8761                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
8762                         warningf(&statement->base.source_position,
8763                                  "'return' without value, in function returning non-void");
8764                 }
8765         }
8766         statement->returns.value = return_value;
8767
8768         return statement;
8769 end_error:
8770         return create_invalid_statement();
8771 }
8772
8773 /**
8774  * Parse a declaration statement.
8775  */
8776 static statement_t *parse_declaration_statement(void)
8777 {
8778         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
8779
8780         statement->base.source_position = token.source_position;
8781
8782         declaration_t *before = last_declaration;
8783         parse_declaration(record_declaration);
8784
8785         if (before == NULL) {
8786                 statement->declaration.declarations_begin = scope->declarations;
8787         } else {
8788                 statement->declaration.declarations_begin = before->next;
8789         }
8790         statement->declaration.declarations_end = last_declaration;
8791
8792         return statement;
8793 }
8794
8795 /**
8796  * Parse an expression statement, ie. expr ';'.
8797  */
8798 static statement_t *parse_expression_statement(void)
8799 {
8800         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
8801
8802         statement->base.source_position  = token.source_position;
8803         expression_t *const expr         = parse_expression();
8804         statement->expression.expression = expr;
8805
8806         expect(';');
8807
8808         return statement;
8809 end_error:
8810         return create_invalid_statement();
8811 }
8812
8813 /**
8814  * Parse a microsoft __try { } __finally { } or
8815  * __try{ } __except() { }
8816  */
8817 static statement_t *parse_ms_try_statment(void)
8818 {
8819         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
8820
8821         statement->base.source_position  = token.source_position;
8822         eat(T___try);
8823
8824         ms_try_statement_t *rem = current_try;
8825         current_try = &statement->ms_try;
8826         statement->ms_try.try_statement = parse_compound_statement(false);
8827         current_try = rem;
8828
8829         if (token.type == T___except) {
8830                 eat(T___except);
8831                 expect('(');
8832                 add_anchor_token(')');
8833                 expression_t *const expr = parse_expression();
8834                 type_t       *      type = skip_typeref(expr->base.type);
8835                 if (is_type_integer(type)) {
8836                         type = promote_integer(type);
8837                 } else if (is_type_valid(type)) {
8838                         errorf(&expr->base.source_position,
8839                                "__expect expression is not an integer, but '%T'", type);
8840                         type = type_error_type;
8841                 }
8842                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
8843                 rem_anchor_token(')');
8844                 expect(')');
8845                 statement->ms_try.final_statement = parse_compound_statement(false);
8846         } else if (token.type == T__finally) {
8847                 eat(T___finally);
8848                 statement->ms_try.final_statement = parse_compound_statement(false);
8849         } else {
8850                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
8851                 return create_invalid_statement();
8852         }
8853         return statement;
8854 end_error:
8855         return create_invalid_statement();
8856 }
8857
8858 static statement_t *parse_empty_statement(void)
8859 {
8860         if (warning.empty_statement) {
8861                 warningf(HERE, "statement is empty");
8862         }
8863         eat(';');
8864         return create_empty_statement();
8865 }
8866
8867 /**
8868  * Parse a statement.
8869  * There's also parse_statement() which additionally checks for
8870  * "statement has no effect" warnings
8871  */
8872 static statement_t *intern_parse_statement(void)
8873 {
8874         statement_t *statement = NULL;
8875
8876         /* declaration or statement */
8877         add_anchor_token(';');
8878         switch (token.type) {
8879         case T_IDENTIFIER:
8880                 if (look_ahead(1)->type == ':') {
8881                         statement = parse_label_statement();
8882                 } else if (is_typedef_symbol(token.v.symbol)) {
8883                         statement = parse_declaration_statement();
8884                 } else {
8885                         statement = parse_expression_statement();
8886                 }
8887                 break;
8888
8889         case T___extension__:
8890                 /* This can be a prefix to a declaration or an expression statement.
8891                  * We simply eat it now and parse the rest with tail recursion. */
8892                 do {
8893                         next_token();
8894                 } while (token.type == T___extension__);
8895                 statement = parse_statement();
8896                 break;
8897
8898         DECLARATION_START
8899                 statement = parse_declaration_statement();
8900                 break;
8901
8902         case ';':        statement = parse_empty_statement();         break;
8903         case '{':        statement = parse_compound_statement(false); break;
8904         case T___leave:  statement = parse_leave();                   break;
8905         case T___try:    statement = parse_ms_try_statment();         break;
8906         case T_asm:      statement = parse_asm_statement();           break;
8907         case T_break:    statement = parse_break();                   break;
8908         case T_case:     statement = parse_case_statement();          break;
8909         case T_continue: statement = parse_continue();                break;
8910         case T_default:  statement = parse_default_statement();       break;
8911         case T_do:       statement = parse_do();                      break;
8912         case T_for:      statement = parse_for();                     break;
8913         case T_goto:     statement = parse_goto();                    break;
8914         case T_if:       statement = parse_if ();                     break;
8915         case T_return:   statement = parse_return();                  break;
8916         case T_switch:   statement = parse_switch();                  break;
8917         case T_while:    statement = parse_while();                   break;
8918         default:         statement = parse_expression_statement();    break;
8919         }
8920         rem_anchor_token(';');
8921
8922         assert(statement != NULL
8923                         && statement->base.source_position.input_name != NULL);
8924
8925         return statement;
8926 }
8927
8928 /**
8929  * parse a statement and emits "statement has no effect" warning if needed
8930  * (This is really a wrapper around intern_parse_statement with check for 1
8931  *  single warning. It is needed, because for statement expressions we have
8932  *  to avoid the warning on the last statement)
8933  */
8934 static statement_t *parse_statement(void)
8935 {
8936         statement_t *statement = intern_parse_statement();
8937
8938         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
8939                 expression_t *expression = statement->expression.expression;
8940                 if (!expression_has_effect(expression)) {
8941                         warningf(&expression->base.source_position,
8942                                         "statement has no effect");
8943                 }
8944         }
8945
8946         return statement;
8947 }
8948
8949 /**
8950  * Parse a compound statement.
8951  */
8952 static statement_t *parse_compound_statement(bool inside_expression_statement)
8953 {
8954         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
8955         statement->base.source_position = token.source_position;
8956
8957         PUSH_PARENT(statement);
8958
8959         eat('{');
8960         add_anchor_token('}');
8961
8962         int      top        = environment_top();
8963         scope_t *last_scope = scope;
8964         set_scope(&statement->compound.scope);
8965
8966         statement_t *last_statement = NULL;
8967
8968         bool only_decls_so_far = true;
8969         while (token.type != '}' && token.type != T_EOF) {
8970                 statement_t *sub_statement = intern_parse_statement();
8971                 if (is_invalid_statement(sub_statement)) {
8972                         /* an error occurred. if we are at an anchor, return */
8973                         if (at_anchor())
8974                                 goto end_error;
8975                         continue;
8976                 }
8977
8978                 if (warning.declaration_after_statement) {
8979                         if (sub_statement->kind != STATEMENT_DECLARATION) {
8980                                 only_decls_so_far = false;
8981                         } else if (!only_decls_so_far) {
8982                                 warningf(&sub_statement->base.source_position,
8983                                          "ISO C90 forbids mixed declarations and code");
8984                         }
8985                 }
8986
8987                 if (last_statement != NULL) {
8988                         last_statement->base.next = sub_statement;
8989                 } else {
8990                         statement->compound.statements = sub_statement;
8991                 }
8992
8993                 while (sub_statement->base.next != NULL)
8994                         sub_statement = sub_statement->base.next;
8995
8996                 last_statement = sub_statement;
8997         }
8998
8999         if (token.type == '}') {
9000                 next_token();
9001         } else {
9002                 errorf(&statement->base.source_position,
9003                        "end of file while looking for closing '}'");
9004         }
9005
9006         /* look over all statements again to produce no effect warnings */
9007         if (warning.unused_value) {
9008                 statement_t *sub_statement = statement->compound.statements;
9009                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
9010                         if (sub_statement->kind != STATEMENT_EXPRESSION)
9011                                 continue;
9012                         /* don't emit a warning for the last expression in an expression
9013                          * statement as it has always an effect */
9014                         if (inside_expression_statement && sub_statement->base.next == NULL)
9015                                 continue;
9016
9017                         expression_t *expression = sub_statement->expression.expression;
9018                         if (!expression_has_effect(expression)) {
9019                                 warningf(&expression->base.source_position,
9020                                          "statement has no effect");
9021                         }
9022                 }
9023         }
9024
9025 end_error:
9026         rem_anchor_token('}');
9027         assert(scope == &statement->compound.scope);
9028         set_scope(last_scope);
9029         environment_pop_to(top);
9030
9031         POP_PARENT;
9032         return statement;
9033 }
9034
9035 /**
9036  * Initialize builtin types.
9037  */
9038 static void initialize_builtin_types(void)
9039 {
9040         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
9041         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
9042         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
9043         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
9044         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
9045         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
9046         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    type_int);
9047         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
9048
9049         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
9050         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
9051         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
9052         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
9053 }
9054
9055 /**
9056  * Check for unused global static functions and variables
9057  */
9058 static void check_unused_globals(void)
9059 {
9060         if (!warning.unused_function && !warning.unused_variable)
9061                 return;
9062
9063         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
9064                 if (decl->used                  ||
9065                     decl->modifiers & DM_UNUSED ||
9066                     decl->modifiers & DM_USED   ||
9067                     decl->storage_class != STORAGE_CLASS_STATIC)
9068                         continue;
9069
9070                 type_t *const type = decl->type;
9071                 const char *s;
9072                 if (is_type_function(skip_typeref(type))) {
9073                         if (!warning.unused_function || decl->is_inline)
9074                                 continue;
9075
9076                         s = (decl->init.statement != NULL ? "defined" : "declared");
9077                 } else {
9078                         if (!warning.unused_variable)
9079                                 continue;
9080
9081                         s = "defined";
9082                 }
9083
9084                 warningf(&decl->source_position, "'%#T' %s but not used",
9085                         type, decl->symbol, s);
9086         }
9087 }
9088
9089 static void parse_global_asm(void)
9090 {
9091         eat(T_asm);
9092         expect('(');
9093
9094         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
9095         statement->base.source_position = token.source_position;
9096         statement->asms.asm_text        = parse_string_literals();
9097         statement->base.next            = unit->global_asm;
9098         unit->global_asm                = statement;
9099
9100         expect(')');
9101         expect(';');
9102
9103 end_error:;
9104 }
9105
9106 /**
9107  * Parse a translation unit.
9108  */
9109 static void parse_translation_unit(void)
9110 {
9111         for (;;) switch (token.type) {
9112                 DECLARATION_START
9113                 case T_IDENTIFIER:
9114                 case T___extension__:
9115                         parse_external_declaration();
9116                         break;
9117
9118                 case T_asm:
9119                         parse_global_asm();
9120                         break;
9121
9122                 case T_EOF:
9123                         return;
9124
9125                 case ';':
9126                         /* TODO error in strict mode */
9127                         warningf(HERE, "stray ';' outside of function");
9128                         next_token();
9129                         break;
9130
9131                 default:
9132                         errorf(HERE, "stray %K outside of function", &token);
9133                         if (token.type == '(' || token.type == '{' || token.type == '[')
9134                                 eat_until_matching_token(token.type);
9135                         next_token();
9136                         break;
9137         }
9138 }
9139
9140 /**
9141  * Parse the input.
9142  *
9143  * @return  the translation unit or NULL if errors occurred.
9144  */
9145 void start_parsing(void)
9146 {
9147         environment_stack = NEW_ARR_F(stack_entry_t, 0);
9148         label_stack       = NEW_ARR_F(stack_entry_t, 0);
9149         diagnostic_count  = 0;
9150         error_count       = 0;
9151         warning_count     = 0;
9152
9153         type_set_output(stderr);
9154         ast_set_output(stderr);
9155
9156         assert(unit == NULL);
9157         unit = allocate_ast_zero(sizeof(unit[0]));
9158
9159         assert(global_scope == NULL);
9160         global_scope = &unit->scope;
9161
9162         assert(scope == NULL);
9163         set_scope(&unit->scope);
9164
9165         initialize_builtin_types();
9166 }
9167
9168 translation_unit_t *finish_parsing(void)
9169 {
9170         assert(scope == &unit->scope);
9171         scope          = NULL;
9172         last_declaration = NULL;
9173
9174         assert(global_scope == &unit->scope);
9175         check_unused_globals();
9176         global_scope = NULL;
9177
9178         DEL_ARR_F(environment_stack);
9179         DEL_ARR_F(label_stack);
9180
9181         translation_unit_t *result = unit;
9182         unit = NULL;
9183         return result;
9184 }
9185
9186 void parse(void)
9187 {
9188         lookahead_bufpos = 0;
9189         for(int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
9190                 next_token();
9191         }
9192         parse_translation_unit();
9193 }
9194
9195 /**
9196  * Initialize the parser.
9197  */
9198 void init_parser(void)
9199 {
9200         if (c_mode & _MS) {
9201                 /* add predefined symbols for extended-decl-modifier */
9202                 sym_align      = symbol_table_insert("align");
9203                 sym_allocate   = symbol_table_insert("allocate");
9204                 sym_dllimport  = symbol_table_insert("dllimport");
9205                 sym_dllexport  = symbol_table_insert("dllexport");
9206                 sym_naked      = symbol_table_insert("naked");
9207                 sym_noinline   = symbol_table_insert("noinline");
9208                 sym_noreturn   = symbol_table_insert("noreturn");
9209                 sym_nothrow    = symbol_table_insert("nothrow");
9210                 sym_novtable   = symbol_table_insert("novtable");
9211                 sym_property   = symbol_table_insert("property");
9212                 sym_get        = symbol_table_insert("get");
9213                 sym_put        = symbol_table_insert("put");
9214                 sym_selectany  = symbol_table_insert("selectany");
9215                 sym_thread     = symbol_table_insert("thread");
9216                 sym_uuid       = symbol_table_insert("uuid");
9217                 sym_deprecated = symbol_table_insert("deprecated");
9218                 sym_restrict   = symbol_table_insert("restrict");
9219                 sym_noalias    = symbol_table_insert("noalias");
9220         }
9221         memset(token_anchor_set, 0, sizeof(token_anchor_set));
9222
9223         init_expression_parsers();
9224         obstack_init(&temp_obst);
9225
9226         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
9227         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
9228 }
9229
9230 /**
9231  * Terminate the parser.
9232  */
9233 void exit_parser(void)
9234 {
9235         obstack_free(&temp_obst, NULL);
9236 }