Do not eat() the semicolon at the end of a local label declaration, but expect() it.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "attribute_t.h"
38 #include "lang_features.h"
39 #include "walk_statements.h"
40 #include "warning.h"
41 #include "printer.h"
42 #include "adt/bitfiddle.h"
43 #include "adt/error.h"
44 #include "adt/array.h"
45
46 //#define PRINT_TOKENS
47 #define MAX_LOOKAHEAD 1
48
49 typedef struct {
50         entity_t           *old_entity;
51         symbol_t           *symbol;
52         entity_namespace_t  namespc;
53 } stack_entry_t;
54
55 typedef struct declaration_specifiers_t  declaration_specifiers_t;
56 struct declaration_specifiers_t {
57         source_position_t  source_position;
58         storage_class_t    storage_class;
59         unsigned char      alignment;         /**< Alignment, 0 if not set. */
60         bool               is_inline    : 1;
61         bool               thread_local : 1;  /**< GCC __thread */
62         attribute_t       *attributes;        /**< list of attributes */
63         type_t            *type;
64 };
65
66 /**
67  * An environment for parsing initializers (and compound literals).
68  */
69 typedef struct parse_initializer_env_t {
70         type_t     *type;   /**< the type of the initializer. In case of an
71                                  array type with unspecified size this gets
72                                  adjusted to the actual size. */
73         entity_t   *entity; /**< the variable that is initialized if any */
74         bool        must_be_constant;
75 } parse_initializer_env_t;
76
77 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
78
79 /** The current token. */
80 static token_t              token;
81 /** The lookahead ring-buffer. */
82 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
83 /** Position of the next token in the lookahead buffer. */
84 static size_t               lookahead_bufpos;
85 static stack_entry_t       *environment_stack = NULL;
86 static stack_entry_t       *label_stack       = NULL;
87 static scope_t             *file_scope        = NULL;
88 static scope_t             *current_scope     = NULL;
89 /** Point to the current function declaration if inside a function. */
90 static function_t          *current_function  = NULL;
91 static entity_t            *current_entity    = NULL;
92 static entity_t            *current_init_decl = NULL;
93 static switch_statement_t  *current_switch    = NULL;
94 static statement_t         *current_loop      = NULL;
95 static statement_t         *current_parent    = NULL;
96 static ms_try_statement_t  *current_try       = NULL;
97 static linkage_kind_t       current_linkage   = LINKAGE_INVALID;
98 static goto_statement_t    *goto_first        = NULL;
99 static goto_statement_t   **goto_anchor       = NULL;
100 static label_statement_t   *label_first       = NULL;
101 static label_statement_t  **label_anchor      = NULL;
102 /** current translation unit. */
103 static translation_unit_t  *unit              = NULL;
104 /** true if we are in a type property context (evaluation only for type) */
105 static bool                 in_type_prop      = false;
106 /** true if we are in an __extension__ context. */
107 static bool                 in_gcc_extension  = false;
108 static struct obstack       temp_obst;
109 static entity_t            *anonymous_entity;
110 static declaration_t      **incomplete_arrays;
111
112
113 #define PUSH_PARENT(stmt)                          \
114         statement_t *const prev_parent = current_parent; \
115         ((void)(current_parent = (stmt)))
116 #define POP_PARENT ((void)(current_parent = prev_parent))
117
118 /** special symbol used for anonymous entities. */
119 static symbol_t *sym_anonymous = NULL;
120
121 /** The token anchor set */
122 static unsigned char token_anchor_set[T_LAST_TOKEN];
123
124 /** The current source position. */
125 #define HERE (&token.source_position)
126
127 /** true if we are in GCC mode. */
128 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
129
130 static statement_t *parse_compound_statement(bool inside_expression_statement);
131 static statement_t *parse_statement(void);
132
133 static expression_t *parse_subexpression(precedence_t);
134 static expression_t *parse_expression(void);
135 static type_t       *parse_typename(void);
136 static void          parse_externals(void);
137 static void          parse_external(void);
138
139 static void parse_compound_type_entries(compound_t *compound_declaration);
140
141 static void check_call_argument(type_t          *expected_type,
142                                                                 call_argument_t *argument, unsigned pos);
143
144 typedef enum declarator_flags_t {
145         DECL_FLAGS_NONE             = 0,
146         DECL_MAY_BE_ABSTRACT        = 1U << 0,
147         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
148         DECL_IS_PARAMETER           = 1U << 2
149 } declarator_flags_t;
150
151 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
152                                   declarator_flags_t flags);
153
154 static void semantic_comparison(binary_expression_t *expression);
155
156 #define STORAGE_CLASSES       \
157         STORAGE_CLASSES_NO_EXTERN \
158         case T_extern:
159
160 #define STORAGE_CLASSES_NO_EXTERN \
161         case T_typedef:         \
162         case T_static:          \
163         case T_auto:            \
164         case T_register:        \
165         case T___thread:
166
167 #define TYPE_QUALIFIERS     \
168         case T_const:           \
169         case T_restrict:        \
170         case T_volatile:        \
171         case T_inline:          \
172         case T__forceinline:    \
173         case T___attribute__:
174
175 #define COMPLEX_SPECIFIERS  \
176         case T__Complex:
177 #define IMAGINARY_SPECIFIERS \
178         case T__Imaginary:
179
180 #define TYPE_SPECIFIERS       \
181         case T__Bool:             \
182         case T___builtin_va_list: \
183         case T___typeof__:        \
184         case T__declspec:         \
185         case T_bool:              \
186         case T_char:              \
187         case T_double:            \
188         case T_enum:              \
189         case T_float:             \
190         case T_int:               \
191         case T_long:              \
192         case T_short:             \
193         case T_signed:            \
194         case T_struct:            \
195         case T_union:             \
196         case T_unsigned:          \
197         case T_void:              \
198         case T_wchar_t:           \
199         case T__int8:             \
200         case T__int16:            \
201         case T__int32:            \
202         case T__int64:            \
203         case T__int128:           \
204         COMPLEX_SPECIFIERS        \
205         IMAGINARY_SPECIFIERS
206
207 #define DECLARATION_START   \
208         STORAGE_CLASSES         \
209         TYPE_QUALIFIERS         \
210         TYPE_SPECIFIERS
211
212 #define DECLARATION_START_NO_EXTERN \
213         STORAGE_CLASSES_NO_EXTERN       \
214         TYPE_QUALIFIERS                 \
215         TYPE_SPECIFIERS
216
217 #define TYPENAME_START      \
218         TYPE_QUALIFIERS         \
219         TYPE_SPECIFIERS
220
221 #define EXPRESSION_START              \
222         case '!':                         \
223         case '&':                         \
224         case '(':                         \
225         case '*':                         \
226         case '+':                         \
227         case '-':                         \
228         case '~':                         \
229         case T_ANDAND:                    \
230         case T_CHARACTER_CONSTANT:        \
231         case T_FLOATINGPOINT:             \
232         case T_FLOATINGPOINT_HEXADECIMAL: \
233         case T_INTEGER:                   \
234         case T_INTEGER_HEXADECIMAL:       \
235         case T_INTEGER_OCTAL:             \
236         case T_MINUSMINUS:                \
237         case T_PLUSPLUS:                  \
238         case T_STRING_LITERAL:            \
239         case T_WIDE_CHARACTER_CONSTANT:   \
240         case T_WIDE_STRING_LITERAL:       \
241         case T___FUNCDNAME__:             \
242         case T___FUNCSIG__:               \
243         case T___FUNCTION__:              \
244         case T___PRETTY_FUNCTION__:       \
245         case T___alignof__:               \
246         case T___builtin_classify_type:   \
247         case T___builtin_constant_p:      \
248         case T___builtin_isgreater:       \
249         case T___builtin_isgreaterequal:  \
250         case T___builtin_isless:          \
251         case T___builtin_islessequal:     \
252         case T___builtin_islessgreater:   \
253         case T___builtin_isunordered:     \
254         case T___builtin_offsetof:        \
255         case T___builtin_va_arg:          \
256         case T___builtin_va_copy:         \
257         case T___builtin_va_start:        \
258         case T___func__:                  \
259         case T___noop:                    \
260         case T__assume:                   \
261         case T_delete:                    \
262         case T_false:                     \
263         case T_sizeof:                    \
264         case T_throw:                     \
265         case T_true:
266
267 /**
268  * Returns the size of a statement node.
269  *
270  * @param kind  the statement kind
271  */
272 static size_t get_statement_struct_size(statement_kind_t kind)
273 {
274         static const size_t sizes[] = {
275                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
276                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
277                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
278                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
279                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
280                 [STATEMENT_IF]          = sizeof(if_statement_t),
281                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
282                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
283                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
284                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
285                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
286                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
287                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
288                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
289                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
290                 [STATEMENT_FOR]         = sizeof(for_statement_t),
291                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
292                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
293                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
294         };
295         assert(kind < lengthof(sizes));
296         assert(sizes[kind] != 0);
297         return sizes[kind];
298 }
299
300 /**
301  * Returns the size of an expression node.
302  *
303  * @param kind  the expression kind
304  */
305 static size_t get_expression_struct_size(expression_kind_t kind)
306 {
307         static const size_t sizes[] = {
308                 [EXPR_INVALID]                    = sizeof(expression_base_t),
309                 [EXPR_REFERENCE]                  = sizeof(reference_expression_t),
310                 [EXPR_REFERENCE_ENUM_VALUE]       = sizeof(reference_expression_t),
311                 [EXPR_LITERAL_INTEGER]            = sizeof(literal_expression_t),
312                 [EXPR_LITERAL_INTEGER_OCTAL]      = sizeof(literal_expression_t),
313                 [EXPR_LITERAL_INTEGER_HEXADECIMAL]= sizeof(literal_expression_t),
314                 [EXPR_LITERAL_FLOATINGPOINT]      = sizeof(literal_expression_t),
315                 [EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL] = sizeof(literal_expression_t),
316                 [EXPR_LITERAL_CHARACTER]          = sizeof(literal_expression_t),
317                 [EXPR_LITERAL_WIDE_CHARACTER]     = sizeof(literal_expression_t),
318                 [EXPR_STRING_LITERAL]             = sizeof(string_literal_expression_t),
319                 [EXPR_WIDE_STRING_LITERAL]        = sizeof(string_literal_expression_t),
320                 [EXPR_COMPOUND_LITERAL]           = sizeof(compound_literal_expression_t),
321                 [EXPR_CALL]                       = sizeof(call_expression_t),
322                 [EXPR_UNARY_FIRST]                = sizeof(unary_expression_t),
323                 [EXPR_BINARY_FIRST]               = sizeof(binary_expression_t),
324                 [EXPR_CONDITIONAL]                = sizeof(conditional_expression_t),
325                 [EXPR_SELECT]                     = sizeof(select_expression_t),
326                 [EXPR_ARRAY_ACCESS]               = sizeof(array_access_expression_t),
327                 [EXPR_SIZEOF]                     = sizeof(typeprop_expression_t),
328                 [EXPR_ALIGNOF]                    = sizeof(typeprop_expression_t),
329                 [EXPR_CLASSIFY_TYPE]              = sizeof(classify_type_expression_t),
330                 [EXPR_FUNCNAME]                   = sizeof(funcname_expression_t),
331                 [EXPR_BUILTIN_CONSTANT_P]         = sizeof(builtin_constant_expression_t),
332                 [EXPR_BUILTIN_TYPES_COMPATIBLE_P] = sizeof(builtin_types_compatible_expression_t),
333                 [EXPR_OFFSETOF]                   = sizeof(offsetof_expression_t),
334                 [EXPR_VA_START]                   = sizeof(va_start_expression_t),
335                 [EXPR_VA_ARG]                     = sizeof(va_arg_expression_t),
336                 [EXPR_VA_COPY]                    = sizeof(va_copy_expression_t),
337                 [EXPR_STATEMENT]                  = sizeof(statement_expression_t),
338                 [EXPR_LABEL_ADDRESS]              = sizeof(label_address_expression_t),
339         };
340         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
341                 return sizes[EXPR_UNARY_FIRST];
342         }
343         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
344                 return sizes[EXPR_BINARY_FIRST];
345         }
346         assert(kind < lengthof(sizes));
347         assert(sizes[kind] != 0);
348         return sizes[kind];
349 }
350
351 /**
352  * Allocate a statement node of given kind and initialize all
353  * fields with zero. Sets its source position to the position
354  * of the current token.
355  */
356 static statement_t *allocate_statement_zero(statement_kind_t kind)
357 {
358         size_t       size = get_statement_struct_size(kind);
359         statement_t *res  = allocate_ast_zero(size);
360
361         res->base.kind            = kind;
362         res->base.parent          = current_parent;
363         res->base.source_position = token.source_position;
364         return res;
365 }
366
367 /**
368  * Allocate an expression node of given kind and initialize all
369  * fields with zero.
370  *
371  * @param kind  the kind of the expression to allocate
372  */
373 static expression_t *allocate_expression_zero(expression_kind_t kind)
374 {
375         size_t        size = get_expression_struct_size(kind);
376         expression_t *res  = allocate_ast_zero(size);
377
378         res->base.kind            = kind;
379         res->base.type            = type_error_type;
380         res->base.source_position = token.source_position;
381         return res;
382 }
383
384 /**
385  * Creates a new invalid expression at the source position
386  * of the current token.
387  */
388 static expression_t *create_invalid_expression(void)
389 {
390         return allocate_expression_zero(EXPR_INVALID);
391 }
392
393 /**
394  * Creates a new invalid statement.
395  */
396 static statement_t *create_invalid_statement(void)
397 {
398         return allocate_statement_zero(STATEMENT_INVALID);
399 }
400
401 /**
402  * Allocate a new empty statement.
403  */
404 static statement_t *create_empty_statement(void)
405 {
406         return allocate_statement_zero(STATEMENT_EMPTY);
407 }
408
409 static function_parameter_t *allocate_parameter(type_t *const type)
410 {
411         function_parameter_t *const param
412                 = obstack_alloc(type_obst, sizeof(*param));
413         memset(param, 0, sizeof(*param));
414         param->type = type;
415         return param;
416 }
417
418 /**
419  * Returns the size of an initializer node.
420  *
421  * @param kind  the initializer kind
422  */
423 static size_t get_initializer_size(initializer_kind_t kind)
424 {
425         static const size_t sizes[] = {
426                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
427                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
428                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
429                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
430                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
431         };
432         assert(kind < lengthof(sizes));
433         assert(sizes[kind] != 0);
434         return sizes[kind];
435 }
436
437 /**
438  * Allocate an initializer node of given kind and initialize all
439  * fields with zero.
440  */
441 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
442 {
443         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
444         result->kind          = kind;
445
446         return result;
447 }
448
449 /**
450  * Returns the index of the top element of the environment stack.
451  */
452 static size_t environment_top(void)
453 {
454         return ARR_LEN(environment_stack);
455 }
456
457 /**
458  * Returns the index of the top element of the global label stack.
459  */
460 static size_t label_top(void)
461 {
462         return ARR_LEN(label_stack);
463 }
464
465 /**
466  * Return the next token.
467  */
468 static inline void next_token(void)
469 {
470         token                              = lookahead_buffer[lookahead_bufpos];
471         lookahead_buffer[lookahead_bufpos] = lexer_token;
472         lexer_next_token();
473
474         lookahead_bufpos = (lookahead_bufpos + 1) % MAX_LOOKAHEAD;
475
476 #ifdef PRINT_TOKENS
477         print_token(stderr, &token);
478         fprintf(stderr, "\n");
479 #endif
480 }
481
482 static inline bool next_if(int const type)
483 {
484         if (token.type == type) {
485                 next_token();
486                 return true;
487         } else {
488                 return false;
489         }
490 }
491
492 /**
493  * Return the next token with a given lookahead.
494  */
495 static inline const token_t *look_ahead(size_t num)
496 {
497         assert(0 < num && num <= MAX_LOOKAHEAD);
498         size_t pos = (lookahead_bufpos + num - 1) % MAX_LOOKAHEAD;
499         return &lookahead_buffer[pos];
500 }
501
502 /**
503  * Adds a token type to the token type anchor set (a multi-set).
504  */
505 static void add_anchor_token(int token_type)
506 {
507         assert(0 <= token_type && token_type < T_LAST_TOKEN);
508         ++token_anchor_set[token_type];
509 }
510
511 /**
512  * Set the number of tokens types of the given type
513  * to zero and return the old count.
514  */
515 static int save_and_reset_anchor_state(int token_type)
516 {
517         assert(0 <= token_type && token_type < T_LAST_TOKEN);
518         int count = token_anchor_set[token_type];
519         token_anchor_set[token_type] = 0;
520         return count;
521 }
522
523 /**
524  * Restore the number of token types to the given count.
525  */
526 static void restore_anchor_state(int token_type, int count)
527 {
528         assert(0 <= token_type && token_type < T_LAST_TOKEN);
529         token_anchor_set[token_type] = count;
530 }
531
532 /**
533  * Remove a token type from the token type anchor set (a multi-set).
534  */
535 static void rem_anchor_token(int token_type)
536 {
537         assert(0 <= token_type && token_type < T_LAST_TOKEN);
538         assert(token_anchor_set[token_type] != 0);
539         --token_anchor_set[token_type];
540 }
541
542 /**
543  * Return true if the token type of the current token is
544  * in the anchor set.
545  */
546 static bool at_anchor(void)
547 {
548         if (token.type < 0)
549                 return false;
550         return token_anchor_set[token.type];
551 }
552
553 /**
554  * Eat tokens until a matching token type is found.
555  */
556 static void eat_until_matching_token(int type)
557 {
558         int end_token;
559         switch (type) {
560                 case '(': end_token = ')';  break;
561                 case '{': end_token = '}';  break;
562                 case '[': end_token = ']';  break;
563                 default:  end_token = type; break;
564         }
565
566         unsigned parenthesis_count = 0;
567         unsigned brace_count       = 0;
568         unsigned bracket_count     = 0;
569         while (token.type        != end_token ||
570                parenthesis_count != 0         ||
571                brace_count       != 0         ||
572                bracket_count     != 0) {
573                 switch (token.type) {
574                 case T_EOF: return;
575                 case '(': ++parenthesis_count; break;
576                 case '{': ++brace_count;       break;
577                 case '[': ++bracket_count;     break;
578
579                 case ')':
580                         if (parenthesis_count > 0)
581                                 --parenthesis_count;
582                         goto check_stop;
583
584                 case '}':
585                         if (brace_count > 0)
586                                 --brace_count;
587                         goto check_stop;
588
589                 case ']':
590                         if (bracket_count > 0)
591                                 --bracket_count;
592 check_stop:
593                         if (token.type        == end_token &&
594                             parenthesis_count == 0         &&
595                             brace_count       == 0         &&
596                             bracket_count     == 0)
597                                 return;
598                         break;
599
600                 default:
601                         break;
602                 }
603                 next_token();
604         }
605 }
606
607 /**
608  * Eat input tokens until an anchor is found.
609  */
610 static void eat_until_anchor(void)
611 {
612         while (token_anchor_set[token.type] == 0) {
613                 if (token.type == '(' || token.type == '{' || token.type == '[')
614                         eat_until_matching_token(token.type);
615                 next_token();
616         }
617 }
618
619 /**
620  * Eat a whole block from input tokens.
621  */
622 static void eat_block(void)
623 {
624         eat_until_matching_token('{');
625         next_if('}');
626 }
627
628 #define eat(token_type) (assert(token.type == (token_type)), next_token())
629
630 /**
631  * Report a parse error because an expected token was not found.
632  */
633 static
634 #if defined __GNUC__ && __GNUC__ >= 4
635 __attribute__((sentinel))
636 #endif
637 void parse_error_expected(const char *message, ...)
638 {
639         if (message != NULL) {
640                 errorf(HERE, "%s", message);
641         }
642         va_list ap;
643         va_start(ap, message);
644         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
645         va_end(ap);
646 }
647
648 /**
649  * Report an incompatible type.
650  */
651 static void type_error_incompatible(const char *msg,
652                 const source_position_t *source_position, type_t *type1, type_t *type2)
653 {
654         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
655                msg, type1, type2);
656 }
657
658 /**
659  * Expect the current token is the expected token.
660  * If not, generate an error, eat the current statement,
661  * and goto the error_label label.
662  */
663 #define expect(expected, error_label)                     \
664         do {                                                  \
665                 if (UNLIKELY(token.type != (expected))) {         \
666                         parse_error_expected(NULL, (expected), NULL); \
667                         add_anchor_token(expected);                   \
668                         eat_until_anchor();                           \
669                         next_if((expected));                          \
670                         rem_anchor_token(expected);                   \
671                         goto error_label;                             \
672                 }                                                 \
673                 next_token();                                     \
674         } while (0)
675
676 /**
677  * Push a given scope on the scope stack and make it the
678  * current scope
679  */
680 static scope_t *scope_push(scope_t *new_scope)
681 {
682         if (current_scope != NULL) {
683                 new_scope->depth = current_scope->depth + 1;
684         }
685
686         scope_t *old_scope = current_scope;
687         current_scope      = new_scope;
688         return old_scope;
689 }
690
691 /**
692  * Pop the current scope from the scope stack.
693  */
694 static void scope_pop(scope_t *old_scope)
695 {
696         current_scope = old_scope;
697 }
698
699 /**
700  * Search an entity by its symbol in a given namespace.
701  */
702 static entity_t *get_entity(const symbol_t *const symbol,
703                             namespace_tag_t namespc)
704 {
705         entity_t *entity = symbol->entity;
706         for (; entity != NULL; entity = entity->base.symbol_next) {
707                 if (entity->base.namespc == namespc)
708                         return entity;
709         }
710
711         return NULL;
712 }
713
714 /* §6.2.3:1 24)  There is only one name space for tags even though three are
715  * possible. */
716 static entity_t *get_tag(symbol_t const *const symbol,
717                          entity_kind_tag_t const kind)
718 {
719         entity_t *entity = get_entity(symbol, NAMESPACE_TAG);
720         if (entity != NULL && entity->kind != kind) {
721                 errorf(HERE,
722                                 "'%Y' defined as wrong kind of tag (previous definition %P)",
723                                 symbol, &entity->base.source_position);
724                 entity = NULL;
725         }
726         return entity;
727 }
728
729 /**
730  * pushs an entity on the environment stack and links the corresponding symbol
731  * it.
732  */
733 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
734 {
735         symbol_t           *symbol  = entity->base.symbol;
736         entity_namespace_t  namespc = entity->base.namespc;
737         assert(namespc != NAMESPACE_INVALID);
738
739         /* replace/add entity into entity list of the symbol */
740         entity_t **anchor;
741         entity_t  *iter;
742         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
743                 iter = *anchor;
744                 if (iter == NULL)
745                         break;
746
747                 /* replace an entry? */
748                 if (iter->base.namespc == namespc) {
749                         entity->base.symbol_next = iter->base.symbol_next;
750                         break;
751                 }
752         }
753         *anchor = entity;
754
755         /* remember old declaration */
756         stack_entry_t entry;
757         entry.symbol     = symbol;
758         entry.old_entity = iter;
759         entry.namespc    = namespc;
760         ARR_APP1(stack_entry_t, *stack_ptr, entry);
761 }
762
763 /**
764  * Push an entity on the environment stack.
765  */
766 static void environment_push(entity_t *entity)
767 {
768         assert(entity->base.source_position.input_name != NULL);
769         assert(entity->base.parent_scope != NULL);
770         stack_push(&environment_stack, entity);
771 }
772
773 /**
774  * Push a declaration on the global label stack.
775  *
776  * @param declaration  the declaration
777  */
778 static void label_push(entity_t *label)
779 {
780         /* we abuse the parameters scope as parent for the labels */
781         label->base.parent_scope = &current_function->parameters;
782         stack_push(&label_stack, label);
783 }
784
785 /**
786  * pops symbols from the environment stack until @p new_top is the top element
787  */
788 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
789 {
790         stack_entry_t *stack = *stack_ptr;
791         size_t         top   = ARR_LEN(stack);
792         size_t         i;
793
794         assert(new_top <= top);
795         if (new_top == top)
796                 return;
797
798         for (i = top; i > new_top; --i) {
799                 stack_entry_t *entry = &stack[i - 1];
800
801                 entity_t           *old_entity = entry->old_entity;
802                 symbol_t           *symbol     = entry->symbol;
803                 entity_namespace_t  namespc    = entry->namespc;
804
805                 /* replace with old_entity/remove */
806                 entity_t **anchor;
807                 entity_t  *iter;
808                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
809                         iter = *anchor;
810                         assert(iter != NULL);
811                         /* replace an entry? */
812                         if (iter->base.namespc == namespc)
813                                 break;
814                 }
815
816                 /* restore definition from outer scopes (if there was one) */
817                 if (old_entity != NULL) {
818                         old_entity->base.symbol_next = iter->base.symbol_next;
819                         *anchor                      = old_entity;
820                 } else {
821                         /* remove entry from list */
822                         *anchor = iter->base.symbol_next;
823                 }
824         }
825
826         ARR_SHRINKLEN(*stack_ptr, new_top);
827 }
828
829 /**
830  * Pop all entries from the environment stack until the new_top
831  * is reached.
832  *
833  * @param new_top  the new stack top
834  */
835 static void environment_pop_to(size_t new_top)
836 {
837         stack_pop_to(&environment_stack, new_top);
838 }
839
840 /**
841  * Pop all entries from the global label stack until the new_top
842  * is reached.
843  *
844  * @param new_top  the new stack top
845  */
846 static void label_pop_to(size_t new_top)
847 {
848         stack_pop_to(&label_stack, new_top);
849 }
850
851 static int get_akind_rank(atomic_type_kind_t akind)
852 {
853         return (int) akind;
854 }
855
856 /**
857  * Return the type rank for an atomic type.
858  */
859 static int get_rank(const type_t *type)
860 {
861         assert(!is_typeref(type));
862         if (type->kind == TYPE_ENUM)
863                 return get_akind_rank(type->enumt.akind);
864
865         assert(type->kind == TYPE_ATOMIC);
866         return get_akind_rank(type->atomic.akind);
867 }
868
869 /**
870  * §6.3.1.1:2  Do integer promotion for a given type.
871  *
872  * @param type  the type to promote
873  * @return the promoted type
874  */
875 static type_t *promote_integer(type_t *type)
876 {
877         if (type->kind == TYPE_BITFIELD)
878                 type = type->bitfield.base_type;
879
880         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
881                 type = type_int;
882
883         return type;
884 }
885
886 /**
887  * Create a cast expression.
888  *
889  * @param expression  the expression to cast
890  * @param dest_type   the destination type
891  */
892 static expression_t *create_cast_expression(expression_t *expression,
893                                             type_t *dest_type)
894 {
895         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
896
897         cast->unary.value = expression;
898         cast->base.type   = dest_type;
899
900         return cast;
901 }
902
903 /**
904  * Check if a given expression represents a null pointer constant.
905  *
906  * @param expression  the expression to check
907  */
908 static bool is_null_pointer_constant(const expression_t *expression)
909 {
910         /* skip void* cast */
911         if (expression->kind == EXPR_UNARY_CAST ||
912                         expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
913                 type_t *const type = skip_typeref(expression->base.type);
914                 if (types_compatible(type, type_void_ptr))
915                         expression = expression->unary.value;
916         }
917
918         type_t *const type = skip_typeref(expression->base.type);
919         return
920                 is_type_integer(type)              &&
921                 is_constant_expression(expression) &&
922                 !fold_constant_to_bool(expression);
923 }
924
925 /**
926  * Create an implicit cast expression.
927  *
928  * @param expression  the expression to cast
929  * @param dest_type   the destination type
930  */
931 static expression_t *create_implicit_cast(expression_t *expression,
932                                           type_t *dest_type)
933 {
934         type_t *const source_type = expression->base.type;
935
936         if (source_type == dest_type)
937                 return expression;
938
939         return create_cast_expression(expression, dest_type);
940 }
941
942 typedef enum assign_error_t {
943         ASSIGN_SUCCESS,
944         ASSIGN_ERROR_INCOMPATIBLE,
945         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
946         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
947         ASSIGN_WARNING_POINTER_FROM_INT,
948         ASSIGN_WARNING_INT_FROM_POINTER
949 } assign_error_t;
950
951 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
952                                 const expression_t *const right,
953                                 const char *context,
954                                 const source_position_t *source_position)
955 {
956         type_t *const orig_type_right = right->base.type;
957         type_t *const type_left       = skip_typeref(orig_type_left);
958         type_t *const type_right      = skip_typeref(orig_type_right);
959
960         switch (error) {
961         case ASSIGN_SUCCESS:
962                 return;
963         case ASSIGN_ERROR_INCOMPATIBLE:
964                 errorf(source_position,
965                        "destination type '%T' in %s is incompatible with type '%T'",
966                        orig_type_left, context, orig_type_right);
967                 return;
968
969         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
970                 if (warning.other) {
971                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
972                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
973
974                         /* the left type has all qualifiers from the right type */
975                         unsigned missing_qualifiers
976                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
977                         warningf(source_position,
978                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
979                                         orig_type_left, context, orig_type_right, missing_qualifiers);
980                 }
981                 return;
982         }
983
984         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
985                 if (warning.other) {
986                         warningf(source_position,
987                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
988                                         orig_type_left, context, right, orig_type_right);
989                 }
990                 return;
991
992         case ASSIGN_WARNING_POINTER_FROM_INT:
993                 if (warning.other) {
994                         warningf(source_position,
995                                         "%s makes pointer '%T' from integer '%T' without a cast",
996                                         context, orig_type_left, orig_type_right);
997                 }
998                 return;
999
1000         case ASSIGN_WARNING_INT_FROM_POINTER:
1001                 if (warning.other) {
1002                         warningf(source_position,
1003                                         "%s makes integer '%T' from pointer '%T' without a cast",
1004                                         context, orig_type_left, orig_type_right);
1005                 }
1006                 return;
1007
1008         default:
1009                 panic("invalid error value");
1010         }
1011 }
1012
1013 /** Implements the rules from §6.5.16.1 */
1014 static assign_error_t semantic_assign(type_t *orig_type_left,
1015                                       const expression_t *const right)
1016 {
1017         type_t *const orig_type_right = right->base.type;
1018         type_t *const type_left       = skip_typeref(orig_type_left);
1019         type_t *const type_right      = skip_typeref(orig_type_right);
1020
1021         if (is_type_pointer(type_left)) {
1022                 if (is_null_pointer_constant(right)) {
1023                         return ASSIGN_SUCCESS;
1024                 } else if (is_type_pointer(type_right)) {
1025                         type_t *points_to_left
1026                                 = skip_typeref(type_left->pointer.points_to);
1027                         type_t *points_to_right
1028                                 = skip_typeref(type_right->pointer.points_to);
1029                         assign_error_t res = ASSIGN_SUCCESS;
1030
1031                         /* the left type has all qualifiers from the right type */
1032                         unsigned missing_qualifiers
1033                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1034                         if (missing_qualifiers != 0) {
1035                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1036                         }
1037
1038                         points_to_left  = get_unqualified_type(points_to_left);
1039                         points_to_right = get_unqualified_type(points_to_right);
1040
1041                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1042                                 return res;
1043
1044                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1045                                 /* ISO/IEC 14882:1998(E) §C.1.2:6 */
1046                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1047                         }
1048
1049                         if (!types_compatible(points_to_left, points_to_right)) {
1050                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1051                         }
1052
1053                         return res;
1054                 } else if (is_type_integer(type_right)) {
1055                         return ASSIGN_WARNING_POINTER_FROM_INT;
1056                 }
1057         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1058                         (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1059                                 && is_type_pointer(type_right))) {
1060                 return ASSIGN_SUCCESS;
1061         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1062                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1063                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1064                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1065                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1066                         return ASSIGN_SUCCESS;
1067                 }
1068         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1069                 return ASSIGN_WARNING_INT_FROM_POINTER;
1070         }
1071
1072         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1073                 return ASSIGN_SUCCESS;
1074
1075         return ASSIGN_ERROR_INCOMPATIBLE;
1076 }
1077
1078 static expression_t *parse_constant_expression(void)
1079 {
1080         expression_t *result = parse_subexpression(PREC_CONDITIONAL);
1081
1082         if (!is_constant_expression(result)) {
1083                 errorf(&result->base.source_position,
1084                        "expression '%E' is not constant", result);
1085         }
1086
1087         return result;
1088 }
1089
1090 static expression_t *parse_assignment_expression(void)
1091 {
1092         return parse_subexpression(PREC_ASSIGNMENT);
1093 }
1094
1095 static void warn_string_concat(const source_position_t *pos)
1096 {
1097         if (warning.traditional) {
1098                 warningf(pos, "traditional C rejects string constant concatenation");
1099         }
1100 }
1101
1102 static string_t parse_string_literals(void)
1103 {
1104         assert(token.type == T_STRING_LITERAL);
1105         string_t result = token.literal;
1106
1107         next_token();
1108
1109         while (token.type == T_STRING_LITERAL) {
1110                 warn_string_concat(&token.source_position);
1111                 result = concat_strings(&result, &token.literal);
1112                 next_token();
1113         }
1114
1115         return result;
1116 }
1117
1118 /**
1119  * compare two string, ignoring double underscores on the second.
1120  */
1121 static int strcmp_underscore(const char *s1, const char *s2)
1122 {
1123         if (s2[0] == '_' && s2[1] == '_') {
1124                 size_t len2 = strlen(s2);
1125                 size_t len1 = strlen(s1);
1126                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1127                         return strncmp(s1, s2+2, len2-4);
1128                 }
1129         }
1130
1131         return strcmp(s1, s2);
1132 }
1133
1134 static attribute_t *allocate_attribute_zero(attribute_kind_t kind)
1135 {
1136         attribute_t *attribute = allocate_ast_zero(sizeof(*attribute));
1137         attribute->kind        = kind;
1138         return attribute;
1139 }
1140
1141 /**
1142  * Parse (gcc) attribute argument. From gcc comments in gcc source:
1143  *
1144  *  attribute:
1145  *    __attribute__ ( ( attribute-list ) )
1146  *
1147  *  attribute-list:
1148  *    attrib
1149  *    attribute_list , attrib
1150  *
1151  *  attrib:
1152  *    empty
1153  *    any-word
1154  *    any-word ( identifier )
1155  *    any-word ( identifier , nonempty-expr-list )
1156  *    any-word ( expr-list )
1157  *
1158  *  where the "identifier" must not be declared as a type, and
1159  *  "any-word" may be any identifier (including one declared as a
1160  *  type), a reserved word storage class specifier, type specifier or
1161  *  type qualifier.  ??? This still leaves out most reserved keywords
1162  *  (following the old parser), shouldn't we include them, and why not
1163  *  allow identifiers declared as types to start the arguments?
1164  *
1165  *  Matze: this all looks confusing and little systematic, so we're even less
1166  *  strict and parse any list of things which are identifiers or
1167  *  (assignment-)expressions.
1168  */
1169 static attribute_argument_t *parse_attribute_arguments(void)
1170 {
1171         attribute_argument_t  *first  = NULL;
1172         attribute_argument_t **anchor = &first;
1173         if (token.type != ')') do {
1174                 attribute_argument_t *argument = allocate_ast_zero(sizeof(*argument));
1175
1176                 /* is it an identifier */
1177                 if (token.type == T_IDENTIFIER
1178                                 && (look_ahead(1)->type == ',' || look_ahead(1)->type == ')')) {
1179                         symbol_t *symbol   = token.symbol;
1180                         argument->kind     = ATTRIBUTE_ARGUMENT_SYMBOL;
1181                         argument->v.symbol = symbol;
1182                         next_token();
1183                 } else {
1184                         /* must be an expression */
1185                         expression_t *expression = parse_assignment_expression();
1186
1187                         argument->kind         = ATTRIBUTE_ARGUMENT_EXPRESSION;
1188                         argument->v.expression = expression;
1189                 }
1190
1191                 /* append argument */
1192                 *anchor = argument;
1193                 anchor  = &argument->next;
1194         } while (next_if(','));
1195         expect(')', end_error);
1196
1197         return first;
1198
1199 end_error:
1200         /* TODO... */
1201         return first;
1202 }
1203
1204 static attribute_t *parse_attribute_asm(void)
1205 {
1206         eat(T_asm);
1207
1208         attribute_t *attribute = allocate_attribute_zero(ATTRIBUTE_GNU_ASM);
1209
1210         expect('(', end_error);
1211         attribute->a.arguments = parse_attribute_arguments();
1212         return attribute;
1213
1214 end_error:
1215         return NULL;
1216 }
1217
1218 static symbol_t *get_symbol_from_token(void)
1219 {
1220         switch(token.type) {
1221         case T_IDENTIFIER:
1222                 return token.symbol;
1223         case T_auto:
1224         case T_char:
1225         case T_double:
1226         case T_enum:
1227         case T_extern:
1228         case T_float:
1229         case T_int:
1230         case T_long:
1231         case T_register:
1232         case T_short:
1233         case T_static:
1234         case T_struct:
1235         case T_union:
1236         case T_unsigned:
1237         case T_void:
1238         case T_bool:
1239         case T__Bool:
1240         case T_class:
1241         case T_explicit:
1242         case T_export:
1243         case T_wchar_t:
1244         case T_const:
1245         case T_signed:
1246         case T___real__:
1247         case T___imag__:
1248         case T_restrict:
1249         case T_volatile:
1250         case T_inline:
1251                 /* maybe we need more tokens ... add them on demand */
1252                 return get_token_symbol(&token);
1253         default:
1254                 return NULL;
1255         }
1256 }
1257
1258 static attribute_t *parse_attribute_gnu_single(void)
1259 {
1260         /* parse "any-word" */
1261         symbol_t *symbol = get_symbol_from_token();
1262         if (symbol == NULL) {
1263                 parse_error_expected("while parsing attribute((", T_IDENTIFIER, NULL);
1264                 return NULL;
1265         }
1266
1267         const char *name = symbol->string;
1268         next_token();
1269
1270         attribute_kind_t kind;
1271         for (kind = ATTRIBUTE_GNU_FIRST; kind <= ATTRIBUTE_GNU_LAST; ++kind) {
1272                 const char *attribute_name = get_attribute_name(kind);
1273                 if (attribute_name != NULL
1274                                 && strcmp_underscore(attribute_name, name) == 0)
1275                         break;
1276         }
1277
1278         if (kind >= ATTRIBUTE_GNU_LAST) {
1279                 if (warning.attribute) {
1280                         warningf(HERE, "unknown attribute '%s' ignored", name);
1281                 }
1282                 /* TODO: we should still save the attribute in the list... */
1283                 kind = ATTRIBUTE_UNKNOWN;
1284         }
1285
1286         attribute_t *attribute = allocate_attribute_zero(kind);
1287
1288         /* parse arguments */
1289         if (next_if('('))
1290                 attribute->a.arguments = parse_attribute_arguments();
1291
1292         return attribute;
1293 }
1294
1295 static attribute_t *parse_attribute_gnu(void)
1296 {
1297         attribute_t  *first  = NULL;
1298         attribute_t **anchor = &first;
1299
1300         eat(T___attribute__);
1301         expect('(', end_error);
1302         expect('(', end_error);
1303
1304         if (token.type != ')') do {
1305                 attribute_t *attribute = parse_attribute_gnu_single();
1306                 if (attribute == NULL)
1307                         goto end_error;
1308
1309                 *anchor = attribute;
1310                 anchor  = &attribute->next;
1311         } while (next_if(','));
1312         expect(')', end_error);
1313         expect(')', end_error);
1314
1315 end_error:
1316         return first;
1317 }
1318
1319 /** Parse attributes. */
1320 static attribute_t *parse_attributes(attribute_t *first)
1321 {
1322         attribute_t **anchor = &first;
1323         for (;;) {
1324                 while (*anchor != NULL)
1325                         anchor = &(*anchor)->next;
1326
1327                 attribute_t *attribute;
1328                 switch (token.type) {
1329                 case T___attribute__:
1330                         attribute = parse_attribute_gnu();
1331                         break;
1332
1333                 case T_asm:
1334                         attribute = parse_attribute_asm();
1335                         break;
1336
1337                 case T_cdecl:
1338                         next_token();
1339                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_CDECL);
1340                         break;
1341
1342                 case T__fastcall:
1343                         next_token();
1344                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FASTCALL);
1345                         break;
1346
1347                 case T__forceinline:
1348                         next_token();
1349                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FORCEINLINE);
1350                         break;
1351
1352                 case T__stdcall:
1353                         next_token();
1354                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_STDCALL);
1355                         break;
1356
1357                 case T___thiscall:
1358                         next_token();
1359                         /* TODO record modifier */
1360                         if (warning.other)
1361                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1362                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_THISCALL);
1363                         break;
1364
1365                 default:
1366                         return first;
1367                 }
1368
1369                 *anchor = attribute;
1370                 anchor  = &attribute->next;
1371         }
1372 }
1373
1374 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1375
1376 static entity_t *determine_lhs_ent(expression_t *const expr,
1377                                    entity_t *lhs_ent)
1378 {
1379         switch (expr->kind) {
1380                 case EXPR_REFERENCE: {
1381                         entity_t *const entity = expr->reference.entity;
1382                         /* we should only find variables as lvalues... */
1383                         if (entity->base.kind != ENTITY_VARIABLE
1384                                         && entity->base.kind != ENTITY_PARAMETER)
1385                                 return NULL;
1386
1387                         return entity;
1388                 }
1389
1390                 case EXPR_ARRAY_ACCESS: {
1391                         expression_t *const ref = expr->array_access.array_ref;
1392                         entity_t     *      ent = NULL;
1393                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1394                                 ent     = determine_lhs_ent(ref, lhs_ent);
1395                                 lhs_ent = ent;
1396                         } else {
1397                                 mark_vars_read(expr->select.compound, lhs_ent);
1398                         }
1399                         mark_vars_read(expr->array_access.index, lhs_ent);
1400                         return ent;
1401                 }
1402
1403                 case EXPR_SELECT: {
1404                         if (is_type_compound(skip_typeref(expr->base.type))) {
1405                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1406                         } else {
1407                                 mark_vars_read(expr->select.compound, lhs_ent);
1408                                 return NULL;
1409                         }
1410                 }
1411
1412                 case EXPR_UNARY_DEREFERENCE: {
1413                         expression_t *const val = expr->unary.value;
1414                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1415                                 /* *&x is a NOP */
1416                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1417                         } else {
1418                                 mark_vars_read(val, NULL);
1419                                 return NULL;
1420                         }
1421                 }
1422
1423                 default:
1424                         mark_vars_read(expr, NULL);
1425                         return NULL;
1426         }
1427 }
1428
1429 #define ENT_ANY ((entity_t*)-1)
1430
1431 /**
1432  * Mark declarations, which are read.  This is used to detect variables, which
1433  * are never read.
1434  * Example:
1435  * x = x + 1;
1436  *   x is not marked as "read", because it is only read to calculate its own new
1437  *   value.
1438  *
1439  * x += y; y += x;
1440  *   x and y are not detected as "not read", because multiple variables are
1441  *   involved.
1442  */
1443 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
1444 {
1445         switch (expr->kind) {
1446                 case EXPR_REFERENCE: {
1447                         entity_t *const entity = expr->reference.entity;
1448                         if (entity->kind != ENTITY_VARIABLE
1449                                         && entity->kind != ENTITY_PARAMETER)
1450                                 return;
1451
1452                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
1453                                 if (entity->kind == ENTITY_VARIABLE) {
1454                                         entity->variable.read = true;
1455                                 } else {
1456                                         entity->parameter.read = true;
1457                                 }
1458                         }
1459                         return;
1460                 }
1461
1462                 case EXPR_CALL:
1463                         // TODO respect pure/const
1464                         mark_vars_read(expr->call.function, NULL);
1465                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
1466                                 mark_vars_read(arg->expression, NULL);
1467                         }
1468                         return;
1469
1470                 case EXPR_CONDITIONAL:
1471                         // TODO lhs_decl should depend on whether true/false have an effect
1472                         mark_vars_read(expr->conditional.condition, NULL);
1473                         if (expr->conditional.true_expression != NULL)
1474                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
1475                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
1476                         return;
1477
1478                 case EXPR_SELECT:
1479                         if (lhs_ent == ENT_ANY
1480                                         && !is_type_compound(skip_typeref(expr->base.type)))
1481                                 lhs_ent = NULL;
1482                         mark_vars_read(expr->select.compound, lhs_ent);
1483                         return;
1484
1485                 case EXPR_ARRAY_ACCESS: {
1486                         expression_t *const ref = expr->array_access.array_ref;
1487                         mark_vars_read(ref, lhs_ent);
1488                         lhs_ent = determine_lhs_ent(ref, lhs_ent);
1489                         mark_vars_read(expr->array_access.index, lhs_ent);
1490                         return;
1491                 }
1492
1493                 case EXPR_VA_ARG:
1494                         mark_vars_read(expr->va_arge.ap, lhs_ent);
1495                         return;
1496
1497                 case EXPR_VA_COPY:
1498                         mark_vars_read(expr->va_copye.src, lhs_ent);
1499                         return;
1500
1501                 case EXPR_UNARY_CAST:
1502                         /* Special case: Use void cast to mark a variable as "read" */
1503                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
1504                                 lhs_ent = NULL;
1505                         goto unary;
1506
1507
1508                 case EXPR_UNARY_THROW:
1509                         if (expr->unary.value == NULL)
1510                                 return;
1511                         /* FALLTHROUGH */
1512                 case EXPR_UNARY_DEREFERENCE:
1513                 case EXPR_UNARY_DELETE:
1514                 case EXPR_UNARY_DELETE_ARRAY:
1515                         if (lhs_ent == ENT_ANY)
1516                                 lhs_ent = NULL;
1517                         goto unary;
1518
1519                 case EXPR_UNARY_NEGATE:
1520                 case EXPR_UNARY_PLUS:
1521                 case EXPR_UNARY_BITWISE_NEGATE:
1522                 case EXPR_UNARY_NOT:
1523                 case EXPR_UNARY_TAKE_ADDRESS:
1524                 case EXPR_UNARY_POSTFIX_INCREMENT:
1525                 case EXPR_UNARY_POSTFIX_DECREMENT:
1526                 case EXPR_UNARY_PREFIX_INCREMENT:
1527                 case EXPR_UNARY_PREFIX_DECREMENT:
1528                 case EXPR_UNARY_CAST_IMPLICIT:
1529                 case EXPR_UNARY_ASSUME:
1530 unary:
1531                         mark_vars_read(expr->unary.value, lhs_ent);
1532                         return;
1533
1534                 case EXPR_BINARY_ADD:
1535                 case EXPR_BINARY_SUB:
1536                 case EXPR_BINARY_MUL:
1537                 case EXPR_BINARY_DIV:
1538                 case EXPR_BINARY_MOD:
1539                 case EXPR_BINARY_EQUAL:
1540                 case EXPR_BINARY_NOTEQUAL:
1541                 case EXPR_BINARY_LESS:
1542                 case EXPR_BINARY_LESSEQUAL:
1543                 case EXPR_BINARY_GREATER:
1544                 case EXPR_BINARY_GREATEREQUAL:
1545                 case EXPR_BINARY_BITWISE_AND:
1546                 case EXPR_BINARY_BITWISE_OR:
1547                 case EXPR_BINARY_BITWISE_XOR:
1548                 case EXPR_BINARY_LOGICAL_AND:
1549                 case EXPR_BINARY_LOGICAL_OR:
1550                 case EXPR_BINARY_SHIFTLEFT:
1551                 case EXPR_BINARY_SHIFTRIGHT:
1552                 case EXPR_BINARY_COMMA:
1553                 case EXPR_BINARY_ISGREATER:
1554                 case EXPR_BINARY_ISGREATEREQUAL:
1555                 case EXPR_BINARY_ISLESS:
1556                 case EXPR_BINARY_ISLESSEQUAL:
1557                 case EXPR_BINARY_ISLESSGREATER:
1558                 case EXPR_BINARY_ISUNORDERED:
1559                         mark_vars_read(expr->binary.left,  lhs_ent);
1560                         mark_vars_read(expr->binary.right, lhs_ent);
1561                         return;
1562
1563                 case EXPR_BINARY_ASSIGN:
1564                 case EXPR_BINARY_MUL_ASSIGN:
1565                 case EXPR_BINARY_DIV_ASSIGN:
1566                 case EXPR_BINARY_MOD_ASSIGN:
1567                 case EXPR_BINARY_ADD_ASSIGN:
1568                 case EXPR_BINARY_SUB_ASSIGN:
1569                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1570                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1571                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
1572                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1573                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
1574                         if (lhs_ent == ENT_ANY)
1575                                 lhs_ent = NULL;
1576                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
1577                         mark_vars_read(expr->binary.right, lhs_ent);
1578                         return;
1579                 }
1580
1581                 case EXPR_VA_START:
1582                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
1583                         return;
1584
1585                 EXPR_LITERAL_CASES
1586                 case EXPR_UNKNOWN:
1587                 case EXPR_INVALID:
1588                 case EXPR_STRING_LITERAL:
1589                 case EXPR_WIDE_STRING_LITERAL:
1590                 case EXPR_COMPOUND_LITERAL: // TODO init?
1591                 case EXPR_SIZEOF:
1592                 case EXPR_CLASSIFY_TYPE:
1593                 case EXPR_ALIGNOF:
1594                 case EXPR_FUNCNAME:
1595                 case EXPR_BUILTIN_CONSTANT_P:
1596                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
1597                 case EXPR_OFFSETOF:
1598                 case EXPR_STATEMENT: // TODO
1599                 case EXPR_LABEL_ADDRESS:
1600                 case EXPR_REFERENCE_ENUM_VALUE:
1601                         return;
1602         }
1603
1604         panic("unhandled expression");
1605 }
1606
1607 static designator_t *parse_designation(void)
1608 {
1609         designator_t  *result = NULL;
1610         designator_t **anchor = &result;
1611
1612         for (;;) {
1613                 designator_t *designator;
1614                 switch (token.type) {
1615                 case '[':
1616                         designator = allocate_ast_zero(sizeof(designator[0]));
1617                         designator->source_position = token.source_position;
1618                         next_token();
1619                         add_anchor_token(']');
1620                         designator->array_index = parse_constant_expression();
1621                         rem_anchor_token(']');
1622                         expect(']', end_error);
1623                         break;
1624                 case '.':
1625                         designator = allocate_ast_zero(sizeof(designator[0]));
1626                         designator->source_position = token.source_position;
1627                         next_token();
1628                         if (token.type != T_IDENTIFIER) {
1629                                 parse_error_expected("while parsing designator",
1630                                                      T_IDENTIFIER, NULL);
1631                                 return NULL;
1632                         }
1633                         designator->symbol = token.symbol;
1634                         next_token();
1635                         break;
1636                 default:
1637                         expect('=', end_error);
1638                         return result;
1639                 }
1640
1641                 assert(designator != NULL);
1642                 *anchor = designator;
1643                 anchor  = &designator->next;
1644         }
1645 end_error:
1646         return NULL;
1647 }
1648
1649 static initializer_t *initializer_from_string(array_type_t *const type,
1650                                               const string_t *const string)
1651 {
1652         /* TODO: check len vs. size of array type */
1653         (void) type;
1654
1655         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1656         initializer->string.string = *string;
1657
1658         return initializer;
1659 }
1660
1661 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1662                                                    const string_t *const string)
1663 {
1664         /* TODO: check len vs. size of array type */
1665         (void) type;
1666
1667         initializer_t *const initializer =
1668                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1669         initializer->wide_string.string = *string;
1670
1671         return initializer;
1672 }
1673
1674 /**
1675  * Build an initializer from a given expression.
1676  */
1677 static initializer_t *initializer_from_expression(type_t *orig_type,
1678                                                   expression_t *expression)
1679 {
1680         /* TODO check that expression is a constant expression */
1681
1682         /* §6.7.8.14/15 char array may be initialized by string literals */
1683         type_t *type           = skip_typeref(orig_type);
1684         type_t *expr_type_orig = expression->base.type;
1685         type_t *expr_type      = skip_typeref(expr_type_orig);
1686
1687         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1688                 array_type_t *const array_type   = &type->array;
1689                 type_t       *const element_type = skip_typeref(array_type->element_type);
1690
1691                 if (element_type->kind == TYPE_ATOMIC) {
1692                         atomic_type_kind_t akind = element_type->atomic.akind;
1693                         switch (expression->kind) {
1694                         case EXPR_STRING_LITERAL:
1695                                 if (akind == ATOMIC_TYPE_CHAR
1696                                                 || akind == ATOMIC_TYPE_SCHAR
1697                                                 || akind == ATOMIC_TYPE_UCHAR) {
1698                                         return initializer_from_string(array_type,
1699                                                         &expression->string_literal.value);
1700                                 }
1701                                 break;
1702
1703                         case EXPR_WIDE_STRING_LITERAL: {
1704                                 type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1705                                 if (get_unqualified_type(element_type) == bare_wchar_type) {
1706                                         return initializer_from_wide_string(array_type,
1707                                                         &expression->string_literal.value);
1708                                 }
1709                                 break;
1710                         }
1711
1712                         default:
1713                                 break;
1714                         }
1715                 }
1716         }
1717
1718         assign_error_t error = semantic_assign(type, expression);
1719         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1720                 return NULL;
1721         report_assign_error(error, type, expression, "initializer",
1722                             &expression->base.source_position);
1723
1724         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1725         result->value.value = create_implicit_cast(expression, type);
1726
1727         return result;
1728 }
1729
1730 /**
1731  * Checks if a given expression can be used as an constant initializer.
1732  */
1733 static bool is_initializer_constant(const expression_t *expression)
1734 {
1735         return is_constant_expression(expression)
1736                 || is_address_constant(expression);
1737 }
1738
1739 /**
1740  * Parses an scalar initializer.
1741  *
1742  * §6.7.8.11; eat {} without warning
1743  */
1744 static initializer_t *parse_scalar_initializer(type_t *type,
1745                                                bool must_be_constant)
1746 {
1747         /* there might be extra {} hierarchies */
1748         int braces = 0;
1749         if (next_if('{')) {
1750                 if (warning.other)
1751                         warningf(HERE, "extra curly braces around scalar initializer");
1752                 do {
1753                         ++braces;
1754                 } while (next_if('{'));
1755         }
1756
1757         expression_t *expression = parse_assignment_expression();
1758         mark_vars_read(expression, NULL);
1759         if (must_be_constant && !is_initializer_constant(expression)) {
1760                 errorf(&expression->base.source_position,
1761                        "initialisation expression '%E' is not constant",
1762                        expression);
1763         }
1764
1765         initializer_t *initializer = initializer_from_expression(type, expression);
1766
1767         if (initializer == NULL) {
1768                 errorf(&expression->base.source_position,
1769                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1770                        expression, expression->base.type, type);
1771                 /* TODO */
1772                 return NULL;
1773         }
1774
1775         bool additional_warning_displayed = false;
1776         while (braces > 0) {
1777                 next_if(',');
1778                 if (token.type != '}') {
1779                         if (!additional_warning_displayed && warning.other) {
1780                                 warningf(HERE, "additional elements in scalar initializer");
1781                                 additional_warning_displayed = true;
1782                         }
1783                 }
1784                 eat_block();
1785                 braces--;
1786         }
1787
1788         return initializer;
1789 }
1790
1791 /**
1792  * An entry in the type path.
1793  */
1794 typedef struct type_path_entry_t type_path_entry_t;
1795 struct type_path_entry_t {
1796         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
1797         union {
1798                 size_t         index;          /**< For array types: the current index. */
1799                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
1800         } v;
1801 };
1802
1803 /**
1804  * A type path expression a position inside compound or array types.
1805  */
1806 typedef struct type_path_t type_path_t;
1807 struct type_path_t {
1808         type_path_entry_t *path;         /**< An flexible array containing the current path. */
1809         type_t            *top_type;     /**< type of the element the path points */
1810         size_t             max_index;    /**< largest index in outermost array */
1811 };
1812
1813 /**
1814  * Prints a type path for debugging.
1815  */
1816 static __attribute__((unused)) void debug_print_type_path(
1817                 const type_path_t *path)
1818 {
1819         size_t len = ARR_LEN(path->path);
1820
1821         for (size_t i = 0; i < len; ++i) {
1822                 const type_path_entry_t *entry = & path->path[i];
1823
1824                 type_t *type = skip_typeref(entry->type);
1825                 if (is_type_compound(type)) {
1826                         /* in gcc mode structs can have no members */
1827                         if (entry->v.compound_entry == NULL) {
1828                                 assert(i == len-1);
1829                                 continue;
1830                         }
1831                         fprintf(stderr, ".%s",
1832                                 entry->v.compound_entry->base.symbol->string);
1833                 } else if (is_type_array(type)) {
1834                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
1835                 } else {
1836                         fprintf(stderr, "-INVALID-");
1837                 }
1838         }
1839         if (path->top_type != NULL) {
1840                 fprintf(stderr, "  (");
1841                 print_type(path->top_type);
1842                 fprintf(stderr, ")");
1843         }
1844 }
1845
1846 /**
1847  * Return the top type path entry, ie. in a path
1848  * (type).a.b returns the b.
1849  */
1850 static type_path_entry_t *get_type_path_top(const type_path_t *path)
1851 {
1852         size_t len = ARR_LEN(path->path);
1853         assert(len > 0);
1854         return &path->path[len-1];
1855 }
1856
1857 /**
1858  * Enlarge the type path by an (empty) element.
1859  */
1860 static type_path_entry_t *append_to_type_path(type_path_t *path)
1861 {
1862         size_t len = ARR_LEN(path->path);
1863         ARR_RESIZE(type_path_entry_t, path->path, len+1);
1864
1865         type_path_entry_t *result = & path->path[len];
1866         memset(result, 0, sizeof(result[0]));
1867         return result;
1868 }
1869
1870 /**
1871  * Descending into a sub-type. Enter the scope of the current top_type.
1872  */
1873 static void descend_into_subtype(type_path_t *path)
1874 {
1875         type_t *orig_top_type = path->top_type;
1876         type_t *top_type      = skip_typeref(orig_top_type);
1877
1878         type_path_entry_t *top = append_to_type_path(path);
1879         top->type              = top_type;
1880
1881         if (is_type_compound(top_type)) {
1882                 compound_t *compound  = top_type->compound.compound;
1883                 entity_t   *entry     = compound->members.entities;
1884
1885                 if (entry != NULL) {
1886                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
1887                         top->v.compound_entry = &entry->declaration;
1888                         path->top_type = entry->declaration.type;
1889                 } else {
1890                         path->top_type = NULL;
1891                 }
1892         } else if (is_type_array(top_type)) {
1893                 top->v.index   = 0;
1894                 path->top_type = top_type->array.element_type;
1895         } else {
1896                 assert(!is_type_valid(top_type));
1897         }
1898 }
1899
1900 /**
1901  * Pop an entry from the given type path, ie. returning from
1902  * (type).a.b to (type).a
1903  */
1904 static void ascend_from_subtype(type_path_t *path)
1905 {
1906         type_path_entry_t *top = get_type_path_top(path);
1907
1908         path->top_type = top->type;
1909
1910         size_t len = ARR_LEN(path->path);
1911         ARR_RESIZE(type_path_entry_t, path->path, len-1);
1912 }
1913
1914 /**
1915  * Pop entries from the given type path until the given
1916  * path level is reached.
1917  */
1918 static void ascend_to(type_path_t *path, size_t top_path_level)
1919 {
1920         size_t len = ARR_LEN(path->path);
1921
1922         while (len > top_path_level) {
1923                 ascend_from_subtype(path);
1924                 len = ARR_LEN(path->path);
1925         }
1926 }
1927
1928 static bool walk_designator(type_path_t *path, const designator_t *designator,
1929                             bool used_in_offsetof)
1930 {
1931         for (; designator != NULL; designator = designator->next) {
1932                 type_path_entry_t *top       = get_type_path_top(path);
1933                 type_t            *orig_type = top->type;
1934
1935                 type_t *type = skip_typeref(orig_type);
1936
1937                 if (designator->symbol != NULL) {
1938                         symbol_t *symbol = designator->symbol;
1939                         if (!is_type_compound(type)) {
1940                                 if (is_type_valid(type)) {
1941                                         errorf(&designator->source_position,
1942                                                "'.%Y' designator used for non-compound type '%T'",
1943                                                symbol, orig_type);
1944                                 }
1945
1946                                 top->type             = type_error_type;
1947                                 top->v.compound_entry = NULL;
1948                                 orig_type             = type_error_type;
1949                         } else {
1950                                 compound_t *compound = type->compound.compound;
1951                                 entity_t   *iter     = compound->members.entities;
1952                                 for (; iter != NULL; iter = iter->base.next) {
1953                                         if (iter->base.symbol == symbol) {
1954                                                 break;
1955                                         }
1956                                 }
1957                                 if (iter == NULL) {
1958                                         errorf(&designator->source_position,
1959                                                "'%T' has no member named '%Y'", orig_type, symbol);
1960                                         goto failed;
1961                                 }
1962                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
1963                                 if (used_in_offsetof) {
1964                                         type_t *real_type = skip_typeref(iter->declaration.type);
1965                                         if (real_type->kind == TYPE_BITFIELD) {
1966                                                 errorf(&designator->source_position,
1967                                                        "offsetof designator '%Y' must not specify bitfield",
1968                                                        symbol);
1969                                                 goto failed;
1970                                         }
1971                                 }
1972
1973                                 top->type             = orig_type;
1974                                 top->v.compound_entry = &iter->declaration;
1975                                 orig_type             = iter->declaration.type;
1976                         }
1977                 } else {
1978                         expression_t *array_index = designator->array_index;
1979                         assert(designator->array_index != NULL);
1980
1981                         if (!is_type_array(type)) {
1982                                 if (is_type_valid(type)) {
1983                                         errorf(&designator->source_position,
1984                                                "[%E] designator used for non-array type '%T'",
1985                                                array_index, orig_type);
1986                                 }
1987                                 goto failed;
1988                         }
1989
1990                         long index = fold_constant_to_int(array_index);
1991                         if (!used_in_offsetof) {
1992                                 if (index < 0) {
1993                                         errorf(&designator->source_position,
1994                                                "array index [%E] must be positive", array_index);
1995                                 } else if (type->array.size_constant) {
1996                                         long array_size = type->array.size;
1997                                         if (index >= array_size) {
1998                                                 errorf(&designator->source_position,
1999                                                        "designator [%E] (%d) exceeds array size %d",
2000                                                        array_index, index, array_size);
2001                                         }
2002                                 }
2003                         }
2004
2005                         top->type    = orig_type;
2006                         top->v.index = (size_t) index;
2007                         orig_type    = type->array.element_type;
2008                 }
2009                 path->top_type = orig_type;
2010
2011                 if (designator->next != NULL) {
2012                         descend_into_subtype(path);
2013                 }
2014         }
2015         return true;
2016
2017 failed:
2018         return false;
2019 }
2020
2021 static void advance_current_object(type_path_t *path, size_t top_path_level)
2022 {
2023         type_path_entry_t *top = get_type_path_top(path);
2024
2025         type_t *type = skip_typeref(top->type);
2026         if (is_type_union(type)) {
2027                 /* in unions only the first element is initialized */
2028                 top->v.compound_entry = NULL;
2029         } else if (is_type_struct(type)) {
2030                 declaration_t *entry = top->v.compound_entry;
2031
2032                 entity_t *next_entity = entry->base.next;
2033                 if (next_entity != NULL) {
2034                         assert(is_declaration(next_entity));
2035                         entry = &next_entity->declaration;
2036                 } else {
2037                         entry = NULL;
2038                 }
2039
2040                 top->v.compound_entry = entry;
2041                 if (entry != NULL) {
2042                         path->top_type = entry->type;
2043                         return;
2044                 }
2045         } else if (is_type_array(type)) {
2046                 assert(is_type_array(type));
2047
2048                 top->v.index++;
2049
2050                 if (!type->array.size_constant || top->v.index < type->array.size) {
2051                         return;
2052                 }
2053         } else {
2054                 assert(!is_type_valid(type));
2055                 return;
2056         }
2057
2058         /* we're past the last member of the current sub-aggregate, try if we
2059          * can ascend in the type hierarchy and continue with another subobject */
2060         size_t len = ARR_LEN(path->path);
2061
2062         if (len > top_path_level) {
2063                 ascend_from_subtype(path);
2064                 advance_current_object(path, top_path_level);
2065         } else {
2066                 path->top_type = NULL;
2067         }
2068 }
2069
2070 /**
2071  * skip any {...} blocks until a closing bracket is reached.
2072  */
2073 static void skip_initializers(void)
2074 {
2075         next_if('{');
2076
2077         while (token.type != '}') {
2078                 if (token.type == T_EOF)
2079                         return;
2080                 if (token.type == '{') {
2081                         eat_block();
2082                         continue;
2083                 }
2084                 next_token();
2085         }
2086 }
2087
2088 static initializer_t *create_empty_initializer(void)
2089 {
2090         static initializer_t empty_initializer
2091                 = { .list = { { INITIALIZER_LIST }, 0 } };
2092         return &empty_initializer;
2093 }
2094
2095 /**
2096  * Parse a part of an initialiser for a struct or union,
2097  */
2098 static initializer_t *parse_sub_initializer(type_path_t *path,
2099                 type_t *outer_type, size_t top_path_level,
2100                 parse_initializer_env_t *env)
2101 {
2102         if (token.type == '}') {
2103                 /* empty initializer */
2104                 return create_empty_initializer();
2105         }
2106
2107         type_t *orig_type = path->top_type;
2108         type_t *type      = NULL;
2109
2110         if (orig_type == NULL) {
2111                 /* We are initializing an empty compound. */
2112         } else {
2113                 type = skip_typeref(orig_type);
2114         }
2115
2116         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2117
2118         while (true) {
2119                 designator_t *designator = NULL;
2120                 if (token.type == '.' || token.type == '[') {
2121                         designator = parse_designation();
2122                         goto finish_designator;
2123                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2124                         /* GNU-style designator ("identifier: value") */
2125                         designator = allocate_ast_zero(sizeof(designator[0]));
2126                         designator->source_position = token.source_position;
2127                         designator->symbol          = token.symbol;
2128                         eat(T_IDENTIFIER);
2129                         eat(':');
2130
2131 finish_designator:
2132                         /* reset path to toplevel, evaluate designator from there */
2133                         ascend_to(path, top_path_level);
2134                         if (!walk_designator(path, designator, false)) {
2135                                 /* can't continue after designation error */
2136                                 goto end_error;
2137                         }
2138
2139                         initializer_t *designator_initializer
2140                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2141                         designator_initializer->designator.designator = designator;
2142                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2143
2144                         orig_type = path->top_type;
2145                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2146                 }
2147
2148                 initializer_t *sub;
2149
2150                 if (token.type == '{') {
2151                         if (type != NULL && is_type_scalar(type)) {
2152                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2153                         } else {
2154                                 eat('{');
2155                                 if (type == NULL) {
2156                                         if (env->entity != NULL) {
2157                                                 errorf(HERE,
2158                                                      "extra brace group at end of initializer for '%Y'",
2159                                                      env->entity->base.symbol);
2160                                         } else {
2161                                                 errorf(HERE, "extra brace group at end of initializer");
2162                                         }
2163                                 } else
2164                                         descend_into_subtype(path);
2165
2166                                 add_anchor_token('}');
2167                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2168                                                             env);
2169                                 rem_anchor_token('}');
2170
2171                                 if (type != NULL) {
2172                                         ascend_from_subtype(path);
2173                                         expect('}', end_error);
2174                                 } else {
2175                                         expect('}', end_error);
2176                                         goto error_parse_next;
2177                                 }
2178                         }
2179                 } else {
2180                         /* must be an expression */
2181                         expression_t *expression = parse_assignment_expression();
2182                         mark_vars_read(expression, NULL);
2183
2184                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2185                                 errorf(&expression->base.source_position,
2186                                        "Initialisation expression '%E' is not constant",
2187                                        expression);
2188                         }
2189
2190                         if (type == NULL) {
2191                                 /* we are already outside, ... */
2192                                 if (outer_type == NULL)
2193                                         goto error_parse_next;
2194                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2195                                 if (is_type_compound(outer_type_skip) &&
2196                                     !outer_type_skip->compound.compound->complete) {
2197                                         goto error_parse_next;
2198                                 }
2199                                 goto error_excess;
2200                         }
2201
2202                         /* handle { "string" } special case */
2203                         if ((expression->kind == EXPR_STRING_LITERAL
2204                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2205                                         && outer_type != NULL) {
2206                                 sub = initializer_from_expression(outer_type, expression);
2207                                 if (sub != NULL) {
2208                                         next_if(',');
2209                                         if (token.type != '}' && warning.other) {
2210                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2211                                                                  orig_type);
2212                                         }
2213                                         /* TODO: eat , ... */
2214                                         return sub;
2215                                 }
2216                         }
2217
2218                         /* descend into subtypes until expression matches type */
2219                         while (true) {
2220                                 orig_type = path->top_type;
2221                                 type      = skip_typeref(orig_type);
2222
2223                                 sub = initializer_from_expression(orig_type, expression);
2224                                 if (sub != NULL) {
2225                                         break;
2226                                 }
2227                                 if (!is_type_valid(type)) {
2228                                         goto end_error;
2229                                 }
2230                                 if (is_type_scalar(type)) {
2231                                         errorf(&expression->base.source_position,
2232                                                         "expression '%E' doesn't match expected type '%T'",
2233                                                         expression, orig_type);
2234                                         goto end_error;
2235                                 }
2236
2237                                 descend_into_subtype(path);
2238                         }
2239                 }
2240
2241                 /* update largest index of top array */
2242                 const type_path_entry_t *first      = &path->path[0];
2243                 type_t                  *first_type = first->type;
2244                 first_type                          = skip_typeref(first_type);
2245                 if (is_type_array(first_type)) {
2246                         size_t index = first->v.index;
2247                         if (index > path->max_index)
2248                                 path->max_index = index;
2249                 }
2250
2251                 if (type != NULL) {
2252                         /* append to initializers list */
2253                         ARR_APP1(initializer_t*, initializers, sub);
2254                 } else {
2255 error_excess:
2256                         if (warning.other) {
2257                                 if (env->entity != NULL) {
2258                                         warningf(HERE, "excess elements in initializer for '%Y'",
2259                                                  env->entity->base.symbol);
2260                                 } else {
2261                                         warningf(HERE, "excess elements in initializer");
2262                                 }
2263                         }
2264                 }
2265
2266 error_parse_next:
2267                 if (token.type == '}') {
2268                         break;
2269                 }
2270                 expect(',', end_error);
2271                 if (token.type == '}') {
2272                         break;
2273                 }
2274
2275                 if (type != NULL) {
2276                         /* advance to the next declaration if we are not at the end */
2277                         advance_current_object(path, top_path_level);
2278                         orig_type = path->top_type;
2279                         if (orig_type != NULL)
2280                                 type = skip_typeref(orig_type);
2281                         else
2282                                 type = NULL;
2283                 }
2284         }
2285
2286         size_t len  = ARR_LEN(initializers);
2287         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2288         initializer_t *result = allocate_ast_zero(size);
2289         result->kind          = INITIALIZER_LIST;
2290         result->list.len      = len;
2291         memcpy(&result->list.initializers, initializers,
2292                len * sizeof(initializers[0]));
2293
2294         DEL_ARR_F(initializers);
2295         ascend_to(path, top_path_level+1);
2296
2297         return result;
2298
2299 end_error:
2300         skip_initializers();
2301         DEL_ARR_F(initializers);
2302         ascend_to(path, top_path_level+1);
2303         return NULL;
2304 }
2305
2306 static expression_t *make_size_literal(size_t value)
2307 {
2308         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_INTEGER);
2309         literal->base.type    = type_size_t;
2310
2311         char buf[128];
2312         snprintf(buf, sizeof(buf), "%u", (unsigned) value);
2313         literal->literal.value = make_string(buf);
2314
2315         return literal;
2316 }
2317
2318 /**
2319  * Parses an initializer. Parsers either a compound literal
2320  * (env->declaration == NULL) or an initializer of a declaration.
2321  */
2322 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2323 {
2324         type_t        *type      = skip_typeref(env->type);
2325         size_t         max_index = 0;
2326         initializer_t *result;
2327
2328         if (is_type_scalar(type)) {
2329                 result = parse_scalar_initializer(type, env->must_be_constant);
2330         } else if (token.type == '{') {
2331                 eat('{');
2332
2333                 type_path_t path;
2334                 memset(&path, 0, sizeof(path));
2335                 path.top_type = env->type;
2336                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2337
2338                 descend_into_subtype(&path);
2339
2340                 add_anchor_token('}');
2341                 result = parse_sub_initializer(&path, env->type, 1, env);
2342                 rem_anchor_token('}');
2343
2344                 max_index = path.max_index;
2345                 DEL_ARR_F(path.path);
2346
2347                 expect('}', end_error);
2348         } else {
2349                 /* parse_scalar_initializer() also works in this case: we simply
2350                  * have an expression without {} around it */
2351                 result = parse_scalar_initializer(type, env->must_be_constant);
2352         }
2353
2354         /* §6.7.8:22 array initializers for arrays with unknown size determine
2355          * the array type size */
2356         if (is_type_array(type) && type->array.size_expression == NULL
2357                         && result != NULL) {
2358                 size_t size;
2359                 switch (result->kind) {
2360                 case INITIALIZER_LIST:
2361                         assert(max_index != 0xdeadbeaf);
2362                         size = max_index + 1;
2363                         break;
2364
2365                 case INITIALIZER_STRING:
2366                         size = result->string.string.size;
2367                         break;
2368
2369                 case INITIALIZER_WIDE_STRING:
2370                         size = result->wide_string.string.size;
2371                         break;
2372
2373                 case INITIALIZER_DESIGNATOR:
2374                 case INITIALIZER_VALUE:
2375                         /* can happen for parse errors */
2376                         size = 0;
2377                         break;
2378
2379                 default:
2380                         internal_errorf(HERE, "invalid initializer type");
2381                 }
2382
2383                 type_t *new_type = duplicate_type(type);
2384
2385                 new_type->array.size_expression   = make_size_literal(size);
2386                 new_type->array.size_constant     = true;
2387                 new_type->array.has_implicit_size = true;
2388                 new_type->array.size              = size;
2389                 env->type = new_type;
2390         }
2391
2392         return result;
2393 end_error:
2394         return NULL;
2395 }
2396
2397 static void append_entity(scope_t *scope, entity_t *entity)
2398 {
2399         if (scope->last_entity != NULL) {
2400                 scope->last_entity->base.next = entity;
2401         } else {
2402                 scope->entities = entity;
2403         }
2404         entity->base.parent_entity = current_entity;
2405         scope->last_entity         = entity;
2406 }
2407
2408
2409 static compound_t *parse_compound_type_specifier(bool is_struct)
2410 {
2411         eat(is_struct ? T_struct : T_union);
2412
2413         symbol_t    *symbol   = NULL;
2414         compound_t  *compound = NULL;
2415         attribute_t *attributes = NULL;
2416
2417         if (token.type == T___attribute__) {
2418                 attributes = parse_attributes(NULL);
2419         }
2420
2421         entity_kind_tag_t const kind = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
2422         if (token.type == T_IDENTIFIER) {
2423                 /* the compound has a name, check if we have seen it already */
2424                 symbol = token.symbol;
2425                 next_token();
2426
2427                 entity_t *entity = get_tag(symbol, kind);
2428                 if (entity != NULL) {
2429                         compound = &entity->compound;
2430                         if (compound->base.parent_scope != current_scope &&
2431                             (token.type == '{' || token.type == ';')) {
2432                                 /* we're in an inner scope and have a definition. Shadow
2433                                  * existing definition in outer scope */
2434                                 compound = NULL;
2435                         } else if (compound->complete && token.type == '{') {
2436                                 assert(symbol != NULL);
2437                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
2438                                        is_struct ? "struct" : "union", symbol,
2439                                        &compound->base.source_position);
2440                                 /* clear members in the hope to avoid further errors */
2441                                 compound->members.entities = NULL;
2442                         }
2443                 }
2444         } else if (token.type != '{') {
2445                 if (is_struct) {
2446                         parse_error_expected("while parsing struct type specifier",
2447                                              T_IDENTIFIER, '{', NULL);
2448                 } else {
2449                         parse_error_expected("while parsing union type specifier",
2450                                              T_IDENTIFIER, '{', NULL);
2451                 }
2452
2453                 return NULL;
2454         }
2455
2456         if (compound == NULL) {
2457                 entity_t *entity = allocate_entity_zero(kind);
2458                 compound         = &entity->compound;
2459
2460                 compound->alignment            = 1;
2461                 compound->base.namespc         = NAMESPACE_TAG;
2462                 compound->base.source_position = token.source_position;
2463                 compound->base.symbol          = symbol;
2464                 compound->base.parent_scope    = current_scope;
2465                 if (symbol != NULL) {
2466                         environment_push(entity);
2467                 }
2468                 append_entity(current_scope, entity);
2469         }
2470
2471         if (token.type == '{') {
2472                 parse_compound_type_entries(compound);
2473
2474                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2475                 if (symbol == NULL) {
2476                         assert(anonymous_entity == NULL);
2477                         anonymous_entity = (entity_t*)compound;
2478                 }
2479         }
2480
2481         if (attributes != NULL) {
2482                 handle_entity_attributes(attributes, (entity_t*) compound);
2483         }
2484
2485         return compound;
2486 }
2487
2488 static void parse_enum_entries(type_t *const enum_type)
2489 {
2490         eat('{');
2491
2492         if (token.type == '}') {
2493                 errorf(HERE, "empty enum not allowed");
2494                 next_token();
2495                 return;
2496         }
2497
2498         add_anchor_token('}');
2499         do {
2500                 if (token.type != T_IDENTIFIER) {
2501                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2502                         eat_block();
2503                         rem_anchor_token('}');
2504                         return;
2505                 }
2506
2507                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
2508                 entity->enum_value.enum_type = enum_type;
2509                 entity->base.symbol          = token.symbol;
2510                 entity->base.source_position = token.source_position;
2511                 next_token();
2512
2513                 if (next_if('=')) {
2514                         expression_t *value = parse_constant_expression();
2515
2516                         value = create_implicit_cast(value, enum_type);
2517                         entity->enum_value.value = value;
2518
2519                         /* TODO semantic */
2520                 }
2521
2522                 record_entity(entity, false);
2523         } while (next_if(',') && token.type != '}');
2524         rem_anchor_token('}');
2525
2526         expect('}', end_error);
2527
2528 end_error:
2529         ;
2530 }
2531
2532 static type_t *parse_enum_specifier(void)
2533 {
2534         entity_t *entity;
2535         symbol_t *symbol;
2536
2537         eat(T_enum);
2538         switch (token.type) {
2539                 case T_IDENTIFIER:
2540                         symbol = token.symbol;
2541                         next_token();
2542
2543                         entity = get_tag(symbol, ENTITY_ENUM);
2544                         if (entity != NULL) {
2545                                 if (entity->base.parent_scope != current_scope &&
2546                                                 (token.type == '{' || token.type == ';')) {
2547                                         /* we're in an inner scope and have a definition. Shadow
2548                                          * existing definition in outer scope */
2549                                         entity = NULL;
2550                                 } else if (entity->enume.complete && token.type == '{') {
2551                                         errorf(HERE, "multiple definitions of 'enum %Y' (previous definition %P)",
2552                                                         symbol, &entity->base.source_position);
2553                                 }
2554                         }
2555                         break;
2556
2557                 case '{':
2558                         entity = NULL;
2559                         symbol = NULL;
2560                         break;
2561
2562                 default:
2563                         parse_error_expected("while parsing enum type specifier",
2564                                         T_IDENTIFIER, '{', NULL);
2565                         return NULL;
2566         }
2567
2568         if (entity == NULL) {
2569                 entity                       = allocate_entity_zero(ENTITY_ENUM);
2570                 entity->base.namespc         = NAMESPACE_TAG;
2571                 entity->base.source_position = token.source_position;
2572                 entity->base.symbol          = symbol;
2573                 entity->base.parent_scope    = current_scope;
2574         }
2575
2576         type_t *const type = allocate_type_zero(TYPE_ENUM);
2577         type->enumt.enume  = &entity->enume;
2578         type->enumt.akind  = ATOMIC_TYPE_INT;
2579
2580         if (token.type == '{') {
2581                 if (symbol != NULL) {
2582                         environment_push(entity);
2583                 }
2584                 append_entity(current_scope, entity);
2585                 entity->enume.complete = true;
2586
2587                 parse_enum_entries(type);
2588                 parse_attributes(NULL);
2589
2590                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2591                 if (symbol == NULL) {
2592                         assert(anonymous_entity == NULL);
2593                         anonymous_entity = entity;
2594                 }
2595         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
2596                 errorf(HERE, "'enum %Y' used before definition (incomplete enums are a GNU extension)",
2597                        symbol);
2598         }
2599
2600         return type;
2601 }
2602
2603 /**
2604  * if a symbol is a typedef to another type, return true
2605  */
2606 static bool is_typedef_symbol(symbol_t *symbol)
2607 {
2608         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
2609         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
2610 }
2611
2612 static type_t *parse_typeof(void)
2613 {
2614         eat(T___typeof__);
2615
2616         type_t *type;
2617
2618         expect('(', end_error);
2619         add_anchor_token(')');
2620
2621         expression_t *expression  = NULL;
2622
2623         bool old_type_prop     = in_type_prop;
2624         bool old_gcc_extension = in_gcc_extension;
2625         in_type_prop           = true;
2626
2627         while (next_if(T___extension__)) {
2628                 /* This can be a prefix to a typename or an expression. */
2629                 in_gcc_extension = true;
2630         }
2631         switch (token.type) {
2632         case T_IDENTIFIER:
2633                 if (is_typedef_symbol(token.symbol)) {
2634         TYPENAME_START
2635                         type = parse_typename();
2636                 } else {
2637         default:
2638                         expression = parse_expression();
2639                         type       = revert_automatic_type_conversion(expression);
2640                 }
2641                 break;
2642         }
2643         in_type_prop     = old_type_prop;
2644         in_gcc_extension = old_gcc_extension;
2645
2646         rem_anchor_token(')');
2647         expect(')', end_error);
2648
2649         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
2650         typeof_type->typeoft.expression  = expression;
2651         typeof_type->typeoft.typeof_type = type;
2652
2653         return typeof_type;
2654 end_error:
2655         return NULL;
2656 }
2657
2658 typedef enum specifiers_t {
2659         SPECIFIER_SIGNED    = 1 << 0,
2660         SPECIFIER_UNSIGNED  = 1 << 1,
2661         SPECIFIER_LONG      = 1 << 2,
2662         SPECIFIER_INT       = 1 << 3,
2663         SPECIFIER_DOUBLE    = 1 << 4,
2664         SPECIFIER_CHAR      = 1 << 5,
2665         SPECIFIER_WCHAR_T   = 1 << 6,
2666         SPECIFIER_SHORT     = 1 << 7,
2667         SPECIFIER_LONG_LONG = 1 << 8,
2668         SPECIFIER_FLOAT     = 1 << 9,
2669         SPECIFIER_BOOL      = 1 << 10,
2670         SPECIFIER_VOID      = 1 << 11,
2671         SPECIFIER_INT8      = 1 << 12,
2672         SPECIFIER_INT16     = 1 << 13,
2673         SPECIFIER_INT32     = 1 << 14,
2674         SPECIFIER_INT64     = 1 << 15,
2675         SPECIFIER_INT128    = 1 << 16,
2676         SPECIFIER_COMPLEX   = 1 << 17,
2677         SPECIFIER_IMAGINARY = 1 << 18,
2678 } specifiers_t;
2679
2680 static type_t *create_builtin_type(symbol_t *const symbol,
2681                                    type_t *const real_type)
2682 {
2683         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
2684         type->builtin.symbol    = symbol;
2685         type->builtin.real_type = real_type;
2686         return identify_new_type(type);
2687 }
2688
2689 static type_t *get_typedef_type(symbol_t *symbol)
2690 {
2691         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
2692         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
2693                 return NULL;
2694
2695         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
2696         type->typedeft.typedefe = &entity->typedefe;
2697
2698         return type;
2699 }
2700
2701 static attribute_t *parse_attribute_ms_property(attribute_t *attribute)
2702 {
2703         expect('(', end_error);
2704
2705         attribute_property_argument_t *property
2706                 = allocate_ast_zero(sizeof(*property));
2707
2708         do {
2709                 if (token.type != T_IDENTIFIER) {
2710                         parse_error_expected("while parsing property declspec",
2711                                              T_IDENTIFIER, NULL);
2712                         goto end_error;
2713                 }
2714
2715                 bool is_put;
2716                 symbol_t *symbol = token.symbol;
2717                 next_token();
2718                 if (strcmp(symbol->string, "put") == 0) {
2719                         is_put = true;
2720                 } else if (strcmp(symbol->string, "get") == 0) {
2721                         is_put = false;
2722                 } else {
2723                         errorf(HERE, "expected put or get in property declspec");
2724                         goto end_error;
2725                 }
2726                 expect('=', end_error);
2727                 if (token.type != T_IDENTIFIER) {
2728                         parse_error_expected("while parsing property declspec",
2729                                              T_IDENTIFIER, NULL);
2730                         goto end_error;
2731                 }
2732                 if (is_put) {
2733                         property->put_symbol = token.symbol;
2734                 } else {
2735                         property->get_symbol = token.symbol;
2736                 }
2737                 next_token();
2738         } while (next_if(','));
2739
2740         attribute->a.property = property;
2741
2742         expect(')', end_error);
2743
2744 end_error:
2745         return attribute;
2746 }
2747
2748 static attribute_t *parse_microsoft_extended_decl_modifier_single(void)
2749 {
2750         attribute_kind_t kind = ATTRIBUTE_UNKNOWN;
2751         if (next_if(T_restrict)) {
2752                 kind = ATTRIBUTE_MS_RESTRICT;
2753         } else if (token.type == T_IDENTIFIER) {
2754                 const char *name = token.symbol->string;
2755                 next_token();
2756                 for (attribute_kind_t k = ATTRIBUTE_MS_FIRST; k <= ATTRIBUTE_MS_LAST;
2757                      ++k) {
2758                         const char *attribute_name = get_attribute_name(k);
2759                         if (attribute_name != NULL && strcmp(attribute_name, name) == 0) {
2760                                 kind = k;
2761                                 break;
2762                         }
2763                 }
2764
2765                 if (kind == ATTRIBUTE_UNKNOWN && warning.attribute) {
2766                         warningf(HERE, "unknown __declspec '%s' ignored", name);
2767                 }
2768         } else {
2769                 parse_error_expected("while parsing __declspec", T_IDENTIFIER, NULL);
2770                 return NULL;
2771         }
2772
2773         attribute_t *attribute = allocate_attribute_zero(kind);
2774
2775         if (kind == ATTRIBUTE_MS_PROPERTY) {
2776                 return parse_attribute_ms_property(attribute);
2777         }
2778
2779         /* parse arguments */
2780         if (next_if('('))
2781                 attribute->a.arguments = parse_attribute_arguments();
2782
2783         return attribute;
2784 }
2785
2786 static attribute_t *parse_microsoft_extended_decl_modifier(attribute_t *first)
2787 {
2788         eat(T__declspec);
2789
2790         expect('(', end_error);
2791
2792         if (next_if(')'))
2793                 return NULL;
2794
2795         add_anchor_token(')');
2796
2797         attribute_t **anchor = &first;
2798         do {
2799                 while (*anchor != NULL)
2800                         anchor = &(*anchor)->next;
2801
2802                 attribute_t *attribute
2803                         = parse_microsoft_extended_decl_modifier_single();
2804                 if (attribute == NULL)
2805                         goto end_error;
2806
2807                 *anchor = attribute;
2808                 anchor  = &attribute->next;
2809         } while (next_if(','));
2810
2811         rem_anchor_token(')');
2812         expect(')', end_error);
2813         return first;
2814
2815 end_error:
2816         rem_anchor_token(')');
2817         return first;
2818 }
2819
2820 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
2821 {
2822         entity_t *entity             = allocate_entity_zero(kind);
2823         entity->base.source_position = *HERE;
2824         entity->base.symbol          = symbol;
2825         if (is_declaration(entity)) {
2826                 entity->declaration.type     = type_error_type;
2827                 entity->declaration.implicit = true;
2828         } else if (kind == ENTITY_TYPEDEF) {
2829                 entity->typedefe.type    = type_error_type;
2830                 entity->typedefe.builtin = true;
2831         }
2832         if (kind != ENTITY_COMPOUND_MEMBER)
2833                 record_entity(entity, false);
2834         return entity;
2835 }
2836
2837 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
2838 {
2839         type_t            *type              = NULL;
2840         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
2841         unsigned           type_specifiers   = 0;
2842         bool               newtype           = false;
2843         bool               saw_error         = false;
2844         bool               old_gcc_extension = in_gcc_extension;
2845
2846         specifiers->source_position = token.source_position;
2847
2848         while (true) {
2849                 specifiers->attributes = parse_attributes(specifiers->attributes);
2850
2851                 switch (token.type) {
2852                 /* storage class */
2853 #define MATCH_STORAGE_CLASS(token, class)                                  \
2854                 case token:                                                        \
2855                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
2856                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
2857                         }                                                              \
2858                         specifiers->storage_class = class;                             \
2859                         if (specifiers->thread_local)                                  \
2860                                 goto check_thread_storage_class;                           \
2861                         next_token();                                                  \
2862                         break;
2863
2864                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
2865                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
2866                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
2867                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
2868                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
2869
2870                 case T__declspec:
2871                         specifiers->attributes
2872                                 = parse_microsoft_extended_decl_modifier(specifiers->attributes);
2873                         break;
2874
2875                 case T___thread:
2876                         if (specifiers->thread_local) {
2877                                 errorf(HERE, "duplicate '__thread'");
2878                         } else {
2879                                 specifiers->thread_local = true;
2880 check_thread_storage_class:
2881                                 switch (specifiers->storage_class) {
2882                                         case STORAGE_CLASS_EXTERN:
2883                                         case STORAGE_CLASS_NONE:
2884                                         case STORAGE_CLASS_STATIC:
2885                                                 break;
2886
2887                                                 char const* wrong;
2888                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_storage_class;
2889                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_storage_class;
2890                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_storage_class;
2891 wrong_thread_storage_class:
2892                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
2893                                                 break;
2894                                 }
2895                         }
2896                         next_token();
2897                         break;
2898
2899                 /* type qualifiers */
2900 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
2901                 case token:                                                     \
2902                         qualifiers |= qualifier;                                    \
2903                         next_token();                                               \
2904                         break
2905
2906                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
2907                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
2908                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
2909                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
2910                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
2911                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
2912                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
2913                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
2914
2915                 case T___extension__:
2916                         next_token();
2917                         in_gcc_extension = true;
2918                         break;
2919
2920                 /* type specifiers */
2921 #define MATCH_SPECIFIER(token, specifier, name)                         \
2922                 case token:                                                     \
2923                         if (type_specifiers & specifier) {                           \
2924                                 errorf(HERE, "multiple " name " type specifiers given"); \
2925                         } else {                                                    \
2926                                 type_specifiers |= specifier;                           \
2927                         }                                                           \
2928                         next_token();                                               \
2929                         break
2930
2931                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
2932                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
2933                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
2934                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
2935                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
2936                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
2937                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
2938                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
2939                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
2940                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
2941                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
2942                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
2943                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
2944                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
2945                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
2946                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
2947                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
2948                 MATCH_SPECIFIER(T_wchar_t,    SPECIFIER_WCHAR_T,   "wchar_t");
2949
2950                 case T_inline:
2951                         next_token();
2952                         specifiers->is_inline = true;
2953                         break;
2954
2955 #if 0
2956                 case T__forceinline:
2957                         next_token();
2958                         specifiers->modifiers |= DM_FORCEINLINE;
2959                         break;
2960 #endif
2961
2962                 case T_long:
2963                         if (type_specifiers & SPECIFIER_LONG_LONG) {
2964                                 errorf(HERE, "multiple type specifiers given");
2965                         } else if (type_specifiers & SPECIFIER_LONG) {
2966                                 type_specifiers |= SPECIFIER_LONG_LONG;
2967                         } else {
2968                                 type_specifiers |= SPECIFIER_LONG;
2969                         }
2970                         next_token();
2971                         break;
2972
2973 #define CHECK_DOUBLE_TYPE()        \
2974                         if ( type != NULL)     \
2975                                 errorf(HERE, "multiple data types in declaration specifiers");
2976
2977                 case T_struct:
2978                         CHECK_DOUBLE_TYPE();
2979                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
2980
2981                         type->compound.compound = parse_compound_type_specifier(true);
2982                         break;
2983                 case T_union:
2984                         CHECK_DOUBLE_TYPE();
2985                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
2986                         type->compound.compound = parse_compound_type_specifier(false);
2987                         break;
2988                 case T_enum:
2989                         CHECK_DOUBLE_TYPE();
2990                         type = parse_enum_specifier();
2991                         break;
2992                 case T___typeof__:
2993                         CHECK_DOUBLE_TYPE();
2994                         type = parse_typeof();
2995                         break;
2996                 case T___builtin_va_list:
2997                         CHECK_DOUBLE_TYPE();
2998                         type = duplicate_type(type_valist);
2999                         next_token();
3000                         break;
3001
3002                 case T_IDENTIFIER: {
3003                         /* only parse identifier if we haven't found a type yet */
3004                         if (type != NULL || type_specifiers != 0) {
3005                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3006                                  * declaration, so it doesn't generate errors about expecting '(' or
3007                                  * '{' later on. */
3008                                 switch (look_ahead(1)->type) {
3009                                         STORAGE_CLASSES
3010                                         TYPE_SPECIFIERS
3011                                         case T_const:
3012                                         case T_restrict:
3013                                         case T_volatile:
3014                                         case T_inline:
3015                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3016                                         case T_IDENTIFIER:
3017                                         case '&':
3018                                         case '*':
3019                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3020                                                 next_token();
3021                                                 continue;
3022
3023                                         default:
3024                                                 goto finish_specifiers;
3025                                 }
3026                         }
3027
3028                         type_t *const typedef_type = get_typedef_type(token.symbol);
3029                         if (typedef_type == NULL) {
3030                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3031                                  * declaration, so it doesn't generate 'implicit int' followed by more
3032                                  * errors later on. */
3033                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3034                                 switch (la1_type) {
3035                                         DECLARATION_START
3036                                         case T_IDENTIFIER:
3037                                         case '&':
3038                                         case '*': {
3039                                                 errorf(HERE, "%K does not name a type", &token);
3040
3041                                                 entity_t *entity =
3042                                                         create_error_entity(token.symbol, ENTITY_TYPEDEF);
3043
3044                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3045                                                 type->typedeft.typedefe = &entity->typedefe;
3046
3047                                                 next_token();
3048                                                 saw_error = true;
3049                                                 if (la1_type == '&' || la1_type == '*')
3050                                                         goto finish_specifiers;
3051                                                 continue;
3052                                         }
3053
3054                                         default:
3055                                                 goto finish_specifiers;
3056                                 }
3057                         }
3058
3059                         next_token();
3060                         type = typedef_type;
3061                         break;
3062                 }
3063
3064                 /* function specifier */
3065                 default:
3066                         goto finish_specifiers;
3067                 }
3068         }
3069
3070 finish_specifiers:
3071         specifiers->attributes = parse_attributes(specifiers->attributes);
3072
3073         in_gcc_extension = old_gcc_extension;
3074
3075         if (type == NULL || (saw_error && type_specifiers != 0)) {
3076                 atomic_type_kind_t atomic_type;
3077
3078                 /* match valid basic types */
3079                 switch (type_specifiers) {
3080                 case SPECIFIER_VOID:
3081                         atomic_type = ATOMIC_TYPE_VOID;
3082                         break;
3083                 case SPECIFIER_WCHAR_T:
3084                         atomic_type = ATOMIC_TYPE_WCHAR_T;
3085                         break;
3086                 case SPECIFIER_CHAR:
3087                         atomic_type = ATOMIC_TYPE_CHAR;
3088                         break;
3089                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3090                         atomic_type = ATOMIC_TYPE_SCHAR;
3091                         break;
3092                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3093                         atomic_type = ATOMIC_TYPE_UCHAR;
3094                         break;
3095                 case SPECIFIER_SHORT:
3096                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3097                 case SPECIFIER_SHORT | SPECIFIER_INT:
3098                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3099                         atomic_type = ATOMIC_TYPE_SHORT;
3100                         break;
3101                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3102                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3103                         atomic_type = ATOMIC_TYPE_USHORT;
3104                         break;
3105                 case SPECIFIER_INT:
3106                 case SPECIFIER_SIGNED:
3107                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3108                         atomic_type = ATOMIC_TYPE_INT;
3109                         break;
3110                 case SPECIFIER_UNSIGNED:
3111                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3112                         atomic_type = ATOMIC_TYPE_UINT;
3113                         break;
3114                 case SPECIFIER_LONG:
3115                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3116                 case SPECIFIER_LONG | SPECIFIER_INT:
3117                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3118                         atomic_type = ATOMIC_TYPE_LONG;
3119                         break;
3120                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3121                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3122                         atomic_type = ATOMIC_TYPE_ULONG;
3123                         break;
3124
3125                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3126                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3127                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3128                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3129                         | SPECIFIER_INT:
3130                         atomic_type = ATOMIC_TYPE_LONGLONG;
3131                         goto warn_about_long_long;
3132
3133                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3134                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3135                         | SPECIFIER_INT:
3136                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3137 warn_about_long_long:
3138                         if (warning.long_long) {
3139                                 warningf(&specifiers->source_position,
3140                                          "ISO C90 does not support 'long long'");
3141                         }
3142                         break;
3143
3144                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3145                         atomic_type = unsigned_int8_type_kind;
3146                         break;
3147
3148                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3149                         atomic_type = unsigned_int16_type_kind;
3150                         break;
3151
3152                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3153                         atomic_type = unsigned_int32_type_kind;
3154                         break;
3155
3156                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3157                         atomic_type = unsigned_int64_type_kind;
3158                         break;
3159
3160                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3161                         atomic_type = unsigned_int128_type_kind;
3162                         break;
3163
3164                 case SPECIFIER_INT8:
3165                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3166                         atomic_type = int8_type_kind;
3167                         break;
3168
3169                 case SPECIFIER_INT16:
3170                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3171                         atomic_type = int16_type_kind;
3172                         break;
3173
3174                 case SPECIFIER_INT32:
3175                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3176                         atomic_type = int32_type_kind;
3177                         break;
3178
3179                 case SPECIFIER_INT64:
3180                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3181                         atomic_type = int64_type_kind;
3182                         break;
3183
3184                 case SPECIFIER_INT128:
3185                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3186                         atomic_type = int128_type_kind;
3187                         break;
3188
3189                 case SPECIFIER_FLOAT:
3190                         atomic_type = ATOMIC_TYPE_FLOAT;
3191                         break;
3192                 case SPECIFIER_DOUBLE:
3193                         atomic_type = ATOMIC_TYPE_DOUBLE;
3194                         break;
3195                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3196                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3197                         break;
3198                 case SPECIFIER_BOOL:
3199                         atomic_type = ATOMIC_TYPE_BOOL;
3200                         break;
3201                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3202                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3203                         atomic_type = ATOMIC_TYPE_FLOAT;
3204                         break;
3205                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3206                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3207                         atomic_type = ATOMIC_TYPE_DOUBLE;
3208                         break;
3209                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3210                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3211                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3212                         break;
3213                 default:
3214                         /* invalid specifier combination, give an error message */
3215                         if (type_specifiers == 0) {
3216                                 if (saw_error)
3217                                         goto end_error;
3218
3219                                 /* ISO/IEC 14882:1998(E) §C.1.5:4 */
3220                                 if (!(c_mode & _CXX) && !strict_mode) {
3221                                         if (warning.implicit_int) {
3222                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3223                                         }
3224                                         atomic_type = ATOMIC_TYPE_INT;
3225                                         break;
3226                                 } else {
3227                                         errorf(HERE, "no type specifiers given in declaration");
3228                                 }
3229                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3230                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3231                                 errorf(HERE, "signed and unsigned specifiers given");
3232                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3233                                 errorf(HERE, "only integer types can be signed or unsigned");
3234                         } else {
3235                                 errorf(HERE, "multiple datatypes in declaration");
3236                         }
3237                         goto end_error;
3238                 }
3239
3240                 if (type_specifiers & SPECIFIER_COMPLEX) {
3241                         type                = allocate_type_zero(TYPE_COMPLEX);
3242                         type->complex.akind = atomic_type;
3243                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3244                         type                  = allocate_type_zero(TYPE_IMAGINARY);
3245                         type->imaginary.akind = atomic_type;
3246                 } else {
3247                         type                 = allocate_type_zero(TYPE_ATOMIC);
3248                         type->atomic.akind   = atomic_type;
3249                 }
3250                 newtype = true;
3251         } else if (type_specifiers != 0) {
3252                 errorf(HERE, "multiple datatypes in declaration");
3253         }
3254
3255         /* FIXME: check type qualifiers here */
3256         type->base.qualifiers = qualifiers;
3257
3258         if (newtype) {
3259                 type = identify_new_type(type);
3260         } else {
3261                 type = typehash_insert(type);
3262         }
3263
3264         if (specifiers->attributes != NULL)
3265                 type = handle_type_attributes(specifiers->attributes, type);
3266         specifiers->type = type;
3267         return;
3268
3269 end_error:
3270         specifiers->type = type_error_type;
3271 }
3272
3273 static type_qualifiers_t parse_type_qualifiers(void)
3274 {
3275         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3276
3277         while (true) {
3278                 switch (token.type) {
3279                 /* type qualifiers */
3280                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3281                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3282                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3283                 /* microsoft extended type modifiers */
3284                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3285                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3286                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3287                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3288                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3289
3290                 default:
3291                         return qualifiers;
3292                 }
3293         }
3294 }
3295
3296 /**
3297  * Parses an K&R identifier list
3298  */
3299 static void parse_identifier_list(scope_t *scope)
3300 {
3301         do {
3302                 entity_t *entity = allocate_entity_zero(ENTITY_PARAMETER);
3303                 entity->base.source_position = token.source_position;
3304                 entity->base.namespc         = NAMESPACE_NORMAL;
3305                 entity->base.symbol          = token.symbol;
3306                 /* a K&R parameter has no type, yet */
3307                 next_token();
3308
3309                 if (scope != NULL)
3310                         append_entity(scope, entity);
3311         } while (next_if(',') && token.type == T_IDENTIFIER);
3312 }
3313
3314 static entity_t *parse_parameter(void)
3315 {
3316         declaration_specifiers_t specifiers;
3317         memset(&specifiers, 0, sizeof(specifiers));
3318
3319         parse_declaration_specifiers(&specifiers);
3320
3321         entity_t *entity = parse_declarator(&specifiers,
3322                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
3323         anonymous_entity = NULL;
3324         return entity;
3325 }
3326
3327 static void semantic_parameter_incomplete(const entity_t *entity)
3328 {
3329         assert(entity->kind == ENTITY_PARAMETER);
3330
3331         /* §6.7.5.3:4  After adjustment, the parameters in a parameter type
3332          *             list in a function declarator that is part of a
3333          *             definition of that function shall not have
3334          *             incomplete type. */
3335         type_t *type = skip_typeref(entity->declaration.type);
3336         if (is_type_incomplete(type)) {
3337                 errorf(&entity->base.source_position,
3338                                 "parameter '%#T' has incomplete type",
3339                                 entity->declaration.type, entity->base.symbol);
3340         }
3341 }
3342
3343 static bool has_parameters(void)
3344 {
3345         /* func(void) is not a parameter */
3346         if (token.type == T_IDENTIFIER) {
3347                 entity_t const *const entity = get_entity(token.symbol, NAMESPACE_NORMAL);
3348                 if (entity == NULL)
3349                         return true;
3350                 if (entity->kind != ENTITY_TYPEDEF)
3351                         return true;
3352                 if (skip_typeref(entity->typedefe.type) != type_void)
3353                         return true;
3354         } else if (token.type != T_void) {
3355                 return true;
3356         }
3357         if (look_ahead(1)->type != ')')
3358                 return true;
3359         next_token();
3360         return false;
3361 }
3362
3363 /**
3364  * Parses function type parameters (and optionally creates variable_t entities
3365  * for them in a scope)
3366  */
3367 static void parse_parameters(function_type_t *type, scope_t *scope)
3368 {
3369         eat('(');
3370         add_anchor_token(')');
3371         int saved_comma_state = save_and_reset_anchor_state(',');
3372
3373         if (token.type == T_IDENTIFIER &&
3374             !is_typedef_symbol(token.symbol)) {
3375                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3376                 if (la1_type == ',' || la1_type == ')') {
3377                         type->kr_style_parameters = true;
3378                         parse_identifier_list(scope);
3379                         goto parameters_finished;
3380                 }
3381         }
3382
3383         if (token.type == ')') {
3384                 /* ISO/IEC 14882:1998(E) §C.1.6:1 */
3385                 if (!(c_mode & _CXX))
3386                         type->unspecified_parameters = true;
3387                 goto parameters_finished;
3388         }
3389
3390         if (has_parameters()) {
3391                 function_parameter_t **anchor = &type->parameters;
3392                 do {
3393                         switch (token.type) {
3394                         case T_DOTDOTDOT:
3395                                 next_token();
3396                                 type->variadic = true;
3397                                 goto parameters_finished;
3398
3399                         case T_IDENTIFIER:
3400                         case T___extension__:
3401                         DECLARATION_START
3402                         {
3403                                 entity_t *entity = parse_parameter();
3404                                 if (entity->kind == ENTITY_TYPEDEF) {
3405                                         errorf(&entity->base.source_position,
3406                                                         "typedef not allowed as function parameter");
3407                                         break;
3408                                 }
3409                                 assert(is_declaration(entity));
3410
3411                                 semantic_parameter_incomplete(entity);
3412
3413                                 function_parameter_t *const parameter =
3414                                         allocate_parameter(entity->declaration.type);
3415
3416                                 if (scope != NULL) {
3417                                         append_entity(scope, entity);
3418                                 }
3419
3420                                 *anchor = parameter;
3421                                 anchor  = &parameter->next;
3422                                 break;
3423                         }
3424
3425                         default:
3426                                 goto parameters_finished;
3427                         }
3428                 } while (next_if(','));
3429         }
3430
3431
3432 parameters_finished:
3433         rem_anchor_token(')');
3434         expect(')', end_error);
3435
3436 end_error:
3437         restore_anchor_state(',', saved_comma_state);
3438 }
3439
3440 typedef enum construct_type_kind_t {
3441         CONSTRUCT_INVALID,
3442         CONSTRUCT_POINTER,
3443         CONSTRUCT_REFERENCE,
3444         CONSTRUCT_FUNCTION,
3445         CONSTRUCT_ARRAY
3446 } construct_type_kind_t;
3447
3448 typedef union construct_type_t construct_type_t;
3449
3450 typedef struct construct_type_base_t {
3451         construct_type_kind_t  kind;
3452         construct_type_t      *next;
3453 } construct_type_base_t;
3454
3455 typedef struct parsed_pointer_t {
3456         construct_type_base_t  base;
3457         type_qualifiers_t      type_qualifiers;
3458         variable_t            *base_variable;  /**< MS __based extension. */
3459 } parsed_pointer_t;
3460
3461 typedef struct parsed_reference_t {
3462         construct_type_base_t base;
3463 } parsed_reference_t;
3464
3465 typedef struct construct_function_type_t {
3466         construct_type_base_t  base;
3467         type_t                *function_type;
3468 } construct_function_type_t;
3469
3470 typedef struct parsed_array_t {
3471         construct_type_base_t  base;
3472         type_qualifiers_t      type_qualifiers;
3473         bool                   is_static;
3474         bool                   is_variable;
3475         expression_t          *size;
3476 } parsed_array_t;
3477
3478 union construct_type_t {
3479         construct_type_kind_t     kind;
3480         construct_type_base_t     base;
3481         parsed_pointer_t          pointer;
3482         parsed_reference_t        reference;
3483         construct_function_type_t function;
3484         parsed_array_t            array;
3485 };
3486
3487 static construct_type_t *allocate_declarator_zero(construct_type_kind_t const kind, size_t const size)
3488 {
3489         construct_type_t *const cons = obstack_alloc(&temp_obst, size);
3490         memset(cons, 0, size);
3491         cons->kind = kind;
3492         return cons;
3493 }
3494
3495 /* §6.7.5.1 */
3496 static construct_type_t *parse_pointer_declarator(void)
3497 {
3498         eat('*');
3499
3500         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_POINTER, sizeof(parsed_pointer_t));
3501         cons->pointer.type_qualifiers = parse_type_qualifiers();
3502         //cons->pointer.base_variable   = base_variable;
3503
3504         return cons;
3505 }
3506
3507 /* ISO/IEC 14882:1998(E) §8.3.2 */
3508 static construct_type_t *parse_reference_declarator(void)
3509 {
3510         eat('&');
3511
3512         if (!(c_mode & _CXX))
3513                 errorf(HERE, "references are only available for C++");
3514
3515         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_REFERENCE, sizeof(parsed_reference_t));
3516
3517         return cons;
3518 }
3519
3520 /* §6.7.5.2 */
3521 static construct_type_t *parse_array_declarator(void)
3522 {
3523         eat('[');
3524         add_anchor_token(']');
3525
3526         construct_type_t *const cons  = allocate_declarator_zero(CONSTRUCT_ARRAY, sizeof(parsed_array_t));
3527         parsed_array_t   *const array = &cons->array;
3528
3529         bool is_static = next_if(T_static);
3530
3531         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3532
3533         if (!is_static)
3534                 is_static = next_if(T_static);
3535
3536         array->type_qualifiers = type_qualifiers;
3537         array->is_static       = is_static;
3538
3539         expression_t *size = NULL;
3540         if (token.type == '*' && look_ahead(1)->type == ']') {
3541                 array->is_variable = true;
3542                 next_token();
3543         } else if (token.type != ']') {
3544                 size = parse_assignment_expression();
3545
3546                 /* §6.7.5.2:1  Array size must have integer type */
3547                 type_t *const orig_type = size->base.type;
3548                 type_t *const type      = skip_typeref(orig_type);
3549                 if (!is_type_integer(type) && is_type_valid(type)) {
3550                         errorf(&size->base.source_position,
3551                                "array size '%E' must have integer type but has type '%T'",
3552                                size, orig_type);
3553                 }
3554
3555                 array->size = size;
3556                 mark_vars_read(size, NULL);
3557         }
3558
3559         if (is_static && size == NULL)
3560                 errorf(HERE, "static array parameters require a size");
3561
3562         rem_anchor_token(']');
3563         expect(']', end_error);
3564
3565 end_error:
3566         return cons;
3567 }
3568
3569 /* §6.7.5.3 */
3570 static construct_type_t *parse_function_declarator(scope_t *scope)
3571 {
3572         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
3573         function_type_t *ftype = &type->function;
3574
3575         ftype->linkage            = current_linkage;
3576         ftype->calling_convention = CC_DEFAULT;
3577
3578         parse_parameters(ftype, scope);
3579
3580         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_FUNCTION, sizeof(construct_function_type_t));
3581         cons->function.function_type = type;
3582
3583         return cons;
3584 }
3585
3586 typedef struct parse_declarator_env_t {
3587         bool               may_be_abstract : 1;
3588         bool               must_be_abstract : 1;
3589         decl_modifiers_t   modifiers;
3590         symbol_t          *symbol;
3591         source_position_t  source_position;
3592         scope_t            parameters;
3593         attribute_t       *attributes;
3594 } parse_declarator_env_t;
3595
3596 /* §6.7.5 */
3597 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env)
3598 {
3599         /* construct a single linked list of construct_type_t's which describe
3600          * how to construct the final declarator type */
3601         construct_type_t  *first      = NULL;
3602         construct_type_t **anchor     = &first;
3603
3604         env->attributes = parse_attributes(env->attributes);
3605
3606         for (;;) {
3607                 construct_type_t *type;
3608                 //variable_t       *based = NULL; /* MS __based extension */
3609                 switch (token.type) {
3610                         case '&':
3611                                 type = parse_reference_declarator();
3612                                 break;
3613
3614                         case T__based: {
3615                                 panic("based not supported anymore");
3616                                 /* FALLTHROUGH */
3617                         }
3618
3619                         case '*':
3620                                 type = parse_pointer_declarator();
3621                                 break;
3622
3623                         default:
3624                                 goto ptr_operator_end;
3625                 }
3626
3627                 *anchor = type;
3628                 anchor  = &type->base.next;
3629
3630                 /* TODO: find out if this is correct */
3631                 env->attributes = parse_attributes(env->attributes);
3632         }
3633
3634 ptr_operator_end: ;
3635         construct_type_t *inner_types = NULL;
3636
3637         switch (token.type) {
3638         case T_IDENTIFIER:
3639                 if (env->must_be_abstract) {
3640                         errorf(HERE, "no identifier expected in typename");
3641                 } else {
3642                         env->symbol          = token.symbol;
3643                         env->source_position = token.source_position;
3644                 }
3645                 next_token();
3646                 break;
3647         case '(':
3648                 /* §6.7.6:2 footnote 126:  Empty parentheses in a type name are
3649                  * interpreted as ``function with no parameter specification'', rather
3650                  * than redundant parentheses around the omitted identifier. */
3651                 if (look_ahead(1)->type != ')') {
3652                         next_token();
3653                         add_anchor_token(')');
3654                         inner_types = parse_inner_declarator(env);
3655                         if (inner_types != NULL) {
3656                                 /* All later declarators only modify the return type */
3657                                 env->must_be_abstract = true;
3658                         }
3659                         rem_anchor_token(')');
3660                         expect(')', end_error);
3661                 }
3662                 break;
3663         default:
3664                 if (env->may_be_abstract)
3665                         break;
3666                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3667                 eat_until_anchor();
3668                 return NULL;
3669         }
3670
3671         construct_type_t **const p = anchor;
3672
3673         for (;;) {
3674                 construct_type_t *type;
3675                 switch (token.type) {
3676                 case '(': {
3677                         scope_t *scope = NULL;
3678                         if (!env->must_be_abstract) {
3679                                 scope = &env->parameters;
3680                         }
3681
3682                         type = parse_function_declarator(scope);
3683                         break;
3684                 }
3685                 case '[':
3686                         type = parse_array_declarator();
3687                         break;
3688                 default:
3689                         goto declarator_finished;
3690                 }
3691
3692                 /* insert in the middle of the list (at p) */
3693                 type->base.next = *p;
3694                 *p              = type;
3695                 if (anchor == p)
3696                         anchor = &type->base.next;
3697         }
3698
3699 declarator_finished:
3700         /* append inner_types at the end of the list, we don't to set anchor anymore
3701          * as it's not needed anymore */
3702         *anchor = inner_types;
3703
3704         return first;
3705 end_error:
3706         return NULL;
3707 }
3708
3709 static type_t *construct_declarator_type(construct_type_t *construct_list,
3710                                          type_t *type)
3711 {
3712         construct_type_t *iter = construct_list;
3713         for (; iter != NULL; iter = iter->base.next) {
3714                 switch (iter->kind) {
3715                 case CONSTRUCT_INVALID:
3716                         break;
3717                 case CONSTRUCT_FUNCTION: {
3718                         construct_function_type_t *function      = &iter->function;
3719                         type_t                    *function_type = function->function_type;
3720
3721                         function_type->function.return_type = type;
3722
3723                         type_t *skipped_return_type = skip_typeref(type);
3724                         /* §6.7.5.3:1 */
3725                         if (is_type_function(skipped_return_type)) {
3726                                 errorf(HERE, "function returning function is not allowed");
3727                         } else if (is_type_array(skipped_return_type)) {
3728                                 errorf(HERE, "function returning array is not allowed");
3729                         } else {
3730                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
3731                                         warningf(HERE,
3732                                                 "type qualifiers in return type of function type are meaningless");
3733                                 }
3734                         }
3735
3736                         /* The function type was constructed earlier.  Freeing it here will
3737                          * destroy other types. */
3738                         type = typehash_insert(function_type);
3739                         continue;
3740                 }
3741
3742                 case CONSTRUCT_POINTER: {
3743                         if (is_type_reference(skip_typeref(type)))
3744                                 errorf(HERE, "cannot declare a pointer to reference");
3745
3746                         parsed_pointer_t *pointer = &iter->pointer;
3747                         type = make_based_pointer_type(type, pointer->type_qualifiers, pointer->base_variable);
3748                         continue;
3749                 }
3750
3751                 case CONSTRUCT_REFERENCE:
3752                         if (is_type_reference(skip_typeref(type)))
3753                                 errorf(HERE, "cannot declare a reference to reference");
3754
3755                         type = make_reference_type(type);
3756                         continue;
3757
3758                 case CONSTRUCT_ARRAY: {
3759                         if (is_type_reference(skip_typeref(type)))
3760                                 errorf(HERE, "cannot declare an array of references");
3761
3762                         parsed_array_t *array      = &iter->array;
3763                         type_t         *array_type = allocate_type_zero(TYPE_ARRAY);
3764
3765                         expression_t *size_expression = array->size;
3766                         if (size_expression != NULL) {
3767                                 size_expression
3768                                         = create_implicit_cast(size_expression, type_size_t);
3769                         }
3770
3771                         array_type->base.qualifiers       = array->type_qualifiers;
3772                         array_type->array.element_type    = type;
3773                         array_type->array.is_static       = array->is_static;
3774                         array_type->array.is_variable     = array->is_variable;
3775                         array_type->array.size_expression = size_expression;
3776
3777                         if (size_expression != NULL) {
3778                                 if (is_constant_expression(size_expression)) {
3779                                         long const size
3780                                                 = fold_constant_to_int(size_expression);
3781                                         array_type->array.size          = size;
3782                                         array_type->array.size_constant = true;
3783                                         /* §6.7.5.2:1  If the expression is a constant expression, it shall
3784                                          * have a value greater than zero. */
3785                                         if (size <= 0) {
3786                                                 if (size < 0 || !GNU_MODE) {
3787                                                         errorf(&size_expression->base.source_position,
3788                                                                         "size of array must be greater than zero");
3789                                                 } else if (warning.other) {
3790                                                         warningf(&size_expression->base.source_position,
3791                                                                         "zero length arrays are a GCC extension");
3792                                                 }
3793                                         }
3794                                 } else {
3795                                         array_type->array.is_vla = true;
3796                                 }
3797                         }
3798
3799                         type_t *skipped_type = skip_typeref(type);
3800                         /* §6.7.5.2:1 */
3801                         if (is_type_incomplete(skipped_type)) {
3802                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
3803                         } else if (is_type_function(skipped_type)) {
3804                                 errorf(HERE, "array of functions is not allowed");
3805                         }
3806                         type = identify_new_type(array_type);
3807                         continue;
3808                 }
3809                 }
3810                 internal_errorf(HERE, "invalid type construction found");
3811         }
3812
3813         return type;
3814 }
3815
3816 static type_t *automatic_type_conversion(type_t *orig_type);
3817
3818 static type_t *semantic_parameter(const source_position_t *pos,
3819                                   type_t *type,
3820                                   const declaration_specifiers_t *specifiers,
3821                                   symbol_t *symbol)
3822 {
3823         /* §6.7.5.3:7  A declaration of a parameter as ``array of type''
3824          *             shall be adjusted to ``qualified pointer to type'',
3825          *             [...]
3826          * §6.7.5.3:8  A declaration of a parameter as ``function returning
3827          *             type'' shall be adjusted to ``pointer to function
3828          *             returning type'', as in 6.3.2.1. */
3829         type = automatic_type_conversion(type);
3830
3831         if (specifiers->is_inline && is_type_valid(type)) {
3832                 errorf(pos, "parameter '%#T' declared 'inline'", type, symbol);
3833         }
3834
3835         /* §6.9.1:6  The declarations in the declaration list shall contain
3836          *           no storage-class specifier other than register and no
3837          *           initializations. */
3838         if (specifiers->thread_local || (
3839                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3840                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
3841            ) {
3842                 errorf(pos, "invalid storage class for parameter '%#T'", type, symbol);
3843         }
3844
3845         /* delay test for incomplete type, because we might have (void)
3846          * which is legal but incomplete... */
3847
3848         return type;
3849 }
3850
3851 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
3852                                   declarator_flags_t flags)
3853 {
3854         parse_declarator_env_t env;
3855         memset(&env, 0, sizeof(env));
3856         env.may_be_abstract = (flags & DECL_MAY_BE_ABSTRACT) != 0;
3857
3858         construct_type_t *construct_type = parse_inner_declarator(&env);
3859         type_t           *orig_type      =
3860                 construct_declarator_type(construct_type, specifiers->type);
3861         type_t           *type           = skip_typeref(orig_type);
3862
3863         if (construct_type != NULL) {
3864                 obstack_free(&temp_obst, construct_type);
3865         }
3866
3867         attribute_t *attributes = parse_attributes(env.attributes);
3868         /* append (shared) specifier attribute behind attributes of this
3869          * declarator */
3870         attribute_t **anchor = &attributes;
3871         while (*anchor != NULL)
3872                 anchor = &(*anchor)->next;
3873         *anchor = specifiers->attributes;
3874
3875         entity_t *entity;
3876         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
3877                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
3878                 entity->base.symbol          = env.symbol;
3879                 entity->base.source_position = env.source_position;
3880                 entity->typedefe.type        = orig_type;
3881
3882                 if (anonymous_entity != NULL) {
3883                         if (is_type_compound(type)) {
3884                                 assert(anonymous_entity->compound.alias == NULL);
3885                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
3886                                        anonymous_entity->kind == ENTITY_UNION);
3887                                 anonymous_entity->compound.alias = entity;
3888                                 anonymous_entity = NULL;
3889                         } else if (is_type_enum(type)) {
3890                                 assert(anonymous_entity->enume.alias == NULL);
3891                                 assert(anonymous_entity->kind == ENTITY_ENUM);
3892                                 anonymous_entity->enume.alias = entity;
3893                                 anonymous_entity = NULL;
3894                         }
3895                 }
3896         } else {
3897                 /* create a declaration type entity */
3898                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
3899                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
3900
3901                         if (env.symbol != NULL) {
3902                                 if (specifiers->is_inline && is_type_valid(type)) {
3903                                         errorf(&env.source_position,
3904                                                         "compound member '%Y' declared 'inline'", env.symbol);
3905                                 }
3906
3907                                 if (specifiers->thread_local ||
3908                                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
3909                                         errorf(&env.source_position,
3910                                                         "compound member '%Y' must have no storage class",
3911                                                         env.symbol);
3912                                 }
3913                         }
3914                 } else if (flags & DECL_IS_PARAMETER) {
3915                         orig_type = semantic_parameter(&env.source_position, orig_type,
3916                                                        specifiers, env.symbol);
3917
3918                         entity = allocate_entity_zero(ENTITY_PARAMETER);
3919                 } else if (is_type_function(type)) {
3920                         entity = allocate_entity_zero(ENTITY_FUNCTION);
3921
3922                         entity->function.is_inline  = specifiers->is_inline;
3923                         entity->function.parameters = env.parameters;
3924
3925                         if (env.symbol != NULL) {
3926                                 /* this needs fixes for C++ */
3927                                 bool in_function_scope = current_function != NULL;
3928
3929                                 if (specifiers->thread_local || (
3930                                                         specifiers->storage_class != STORAGE_CLASS_EXTERN &&
3931                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3932                                                         (in_function_scope || specifiers->storage_class != STORAGE_CLASS_STATIC)
3933                                                 )) {
3934                                         errorf(&env.source_position,
3935                                                         "invalid storage class for function '%Y'", env.symbol);
3936                                 }
3937                         }
3938                 } else {
3939                         entity = allocate_entity_zero(ENTITY_VARIABLE);
3940
3941                         entity->variable.thread_local = specifiers->thread_local;
3942
3943                         if (env.symbol != NULL) {
3944                                 if (specifiers->is_inline && is_type_valid(type)) {
3945                                         errorf(&env.source_position,
3946                                                         "variable '%Y' declared 'inline'", env.symbol);
3947                                 }
3948
3949                                 bool invalid_storage_class = false;
3950                                 if (current_scope == file_scope) {
3951                                         if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
3952                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3953                                                         specifiers->storage_class != STORAGE_CLASS_STATIC) {
3954                                                 invalid_storage_class = true;
3955                                         }
3956                                 } else {
3957                                         if (specifiers->thread_local &&
3958                                                         specifiers->storage_class == STORAGE_CLASS_NONE) {
3959                                                 invalid_storage_class = true;
3960                                         }
3961                                 }
3962                                 if (invalid_storage_class) {
3963                                         errorf(&env.source_position,
3964                                                         "invalid storage class for variable '%Y'", env.symbol);
3965                                 }
3966                         }
3967                 }
3968
3969                 if (env.symbol != NULL) {
3970                         entity->base.symbol          = env.symbol;
3971                         entity->base.source_position = env.source_position;
3972                 } else {
3973                         entity->base.source_position = specifiers->source_position;
3974                 }
3975                 entity->base.namespc           = NAMESPACE_NORMAL;
3976                 entity->declaration.type       = orig_type;
3977                 entity->declaration.alignment  = get_type_alignment(orig_type);
3978                 entity->declaration.modifiers  = env.modifiers;
3979                 entity->declaration.attributes = attributes;
3980
3981                 storage_class_t storage_class = specifiers->storage_class;
3982                 entity->declaration.declared_storage_class = storage_class;
3983
3984                 if (storage_class == STORAGE_CLASS_NONE && current_function != NULL)
3985                         storage_class = STORAGE_CLASS_AUTO;
3986                 entity->declaration.storage_class = storage_class;
3987         }
3988
3989         if (attributes != NULL) {
3990                 handle_entity_attributes(attributes, entity);
3991         }
3992
3993         return entity;
3994 }
3995
3996 static type_t *parse_abstract_declarator(type_t *base_type)
3997 {
3998         parse_declarator_env_t env;
3999         memset(&env, 0, sizeof(env));
4000         env.may_be_abstract = true;
4001         env.must_be_abstract = true;
4002
4003         construct_type_t *construct_type = parse_inner_declarator(&env);
4004
4005         type_t *result = construct_declarator_type(construct_type, base_type);
4006         if (construct_type != NULL) {
4007                 obstack_free(&temp_obst, construct_type);
4008         }
4009         result = handle_type_attributes(env.attributes, result);
4010
4011         return result;
4012 }
4013
4014 /**
4015  * Check if the declaration of main is suspicious.  main should be a
4016  * function with external linkage, returning int, taking either zero
4017  * arguments, two, or three arguments of appropriate types, ie.
4018  *
4019  * int main([ int argc, char **argv [, char **env ] ]).
4020  *
4021  * @param decl    the declaration to check
4022  * @param type    the function type of the declaration
4023  */
4024 static void check_main(const entity_t *entity)
4025 {
4026         const source_position_t *pos = &entity->base.source_position;
4027         if (entity->kind != ENTITY_FUNCTION) {
4028                 warningf(pos, "'main' is not a function");
4029                 return;
4030         }
4031
4032         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4033                 warningf(pos, "'main' is normally a non-static function");
4034         }
4035
4036         type_t *type = skip_typeref(entity->declaration.type);
4037         assert(is_type_function(type));
4038
4039         function_type_t *func_type = &type->function;
4040         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4041                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4042                          func_type->return_type);
4043         }
4044         const function_parameter_t *parm = func_type->parameters;
4045         if (parm != NULL) {
4046                 type_t *const first_type = parm->type;
4047                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4048                         warningf(pos,
4049                                  "first argument of 'main' should be 'int', but is '%T'",
4050                                  first_type);
4051                 }
4052                 parm = parm->next;
4053                 if (parm != NULL) {
4054                         type_t *const second_type = parm->type;
4055                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4056                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4057                         }
4058                         parm = parm->next;
4059                         if (parm != NULL) {
4060                                 type_t *const third_type = parm->type;
4061                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4062                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4063                                 }
4064                                 parm = parm->next;
4065                                 if (parm != NULL)
4066                                         goto warn_arg_count;
4067                         }
4068                 } else {
4069 warn_arg_count:
4070                         warningf(pos, "'main' takes only zero, two or three arguments");
4071                 }
4072         }
4073 }
4074
4075 /**
4076  * Check if a symbol is the equal to "main".
4077  */
4078 static bool is_sym_main(const symbol_t *const sym)
4079 {
4080         return strcmp(sym->string, "main") == 0;
4081 }
4082
4083 static void error_redefined_as_different_kind(const source_position_t *pos,
4084                 const entity_t *old, entity_kind_t new_kind)
4085 {
4086         errorf(pos, "redeclaration of %s '%Y' as %s (declared %P)",
4087                get_entity_kind_name(old->kind), old->base.symbol,
4088                get_entity_kind_name(new_kind), &old->base.source_position);
4089 }
4090
4091 static bool is_error_entity(entity_t *const ent)
4092 {
4093         if (is_declaration(ent)) {
4094                 return is_type_valid(skip_typeref(ent->declaration.type));
4095         } else if (ent->kind == ENTITY_TYPEDEF) {
4096                 return is_type_valid(skip_typeref(ent->typedefe.type));
4097         }
4098         return false;
4099 }
4100
4101 static bool contains_attribute(const attribute_t *list, const attribute_t *attr)
4102 {
4103         for (const attribute_t *tattr = list; tattr != NULL; tattr = tattr->next) {
4104                 if (attributes_equal(tattr, attr))
4105                         return true;
4106         }
4107         return false;
4108 }
4109
4110 /**
4111  * test wether new_list contains any attributes not included in old_list
4112  */
4113 static bool has_new_attributes(const attribute_t *old_list,
4114                                const attribute_t *new_list)
4115 {
4116         for (const attribute_t *attr = new_list; attr != NULL; attr = attr->next) {
4117                 if (!contains_attribute(old_list, attr))
4118                         return true;
4119         }
4120         return false;
4121 }
4122
4123 /**
4124  * Merge in attributes from an attribute list (probably from a previous
4125  * declaration with the same name). Warning: destroys the old structure
4126  * of the attribute list - don't reuse attributes after this call.
4127  */
4128 static void merge_in_attributes(declaration_t *decl, attribute_t *attributes)
4129 {
4130         attribute_t *next;
4131         for (attribute_t *attr = attributes; attr != NULL; attr = next) {
4132                 next = attr->next;
4133                 if (contains_attribute(decl->attributes, attr))
4134                         continue;
4135
4136                 /* move attribute to new declarations attributes list */
4137                 attr->next       = decl->attributes;
4138                 decl->attributes = attr;
4139         }
4140 }
4141
4142 /**
4143  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4144  * for various problems that occur for multiple definitions
4145  */
4146 entity_t *record_entity(entity_t *entity, const bool is_definition)
4147 {
4148         const symbol_t *const    symbol  = entity->base.symbol;
4149         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
4150         const source_position_t *pos     = &entity->base.source_position;
4151
4152         /* can happen in error cases */
4153         if (symbol == NULL)
4154                 return entity;
4155
4156         entity_t *const previous_entity = get_entity(symbol, namespc);
4157         /* pushing the same entity twice will break the stack structure */
4158         assert(previous_entity != entity);
4159
4160         if (entity->kind == ENTITY_FUNCTION) {
4161                 type_t *const orig_type = entity->declaration.type;
4162                 type_t *const type      = skip_typeref(orig_type);
4163
4164                 assert(is_type_function(type));
4165                 if (type->function.unspecified_parameters &&
4166                                 warning.strict_prototypes &&
4167                                 previous_entity == NULL) {
4168                         warningf(pos, "function declaration '%#T' is not a prototype",
4169                                          orig_type, symbol);
4170                 }
4171
4172                 if (warning.main && current_scope == file_scope
4173                                 && is_sym_main(symbol)) {
4174                         check_main(entity);
4175                 }
4176         }
4177
4178         if (is_declaration(entity) &&
4179                         warning.nested_externs &&
4180                         entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
4181                         current_scope != file_scope) {
4182                 warningf(pos, "nested extern declaration of '%#T'",
4183                          entity->declaration.type, symbol);
4184         }
4185
4186         if (previous_entity != NULL) {
4187                 if (previous_entity->base.parent_scope == &current_function->parameters &&
4188                                 previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
4189                         assert(previous_entity->kind == ENTITY_PARAMETER);
4190                         errorf(pos,
4191                                         "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4192                                         entity->declaration.type, symbol,
4193                                         previous_entity->declaration.type, symbol,
4194                                         &previous_entity->base.source_position);
4195                         goto finish;
4196                 }
4197
4198                 if (previous_entity->base.parent_scope == current_scope) {
4199                         if (previous_entity->kind != entity->kind) {
4200                                 if (!is_error_entity(previous_entity) && !is_error_entity(entity)) {
4201                                         error_redefined_as_different_kind(pos, previous_entity,
4202                                                         entity->kind);
4203                                 }
4204                                 goto finish;
4205                         }
4206                         if (previous_entity->kind == ENTITY_ENUM_VALUE) {
4207                                 errorf(pos, "redeclaration of enum entry '%Y' (declared %P)",
4208                                                 symbol, &previous_entity->base.source_position);
4209                                 goto finish;
4210                         }
4211                         if (previous_entity->kind == ENTITY_TYPEDEF) {
4212                                 /* TODO: C++ allows this for exactly the same type */
4213                                 errorf(pos, "redefinition of typedef '%Y' (declared %P)",
4214                                                 symbol, &previous_entity->base.source_position);
4215                                 goto finish;
4216                         }
4217
4218                         /* at this point we should have only VARIABLES or FUNCTIONS */
4219                         assert(is_declaration(previous_entity) && is_declaration(entity));
4220
4221                         declaration_t *const prev_decl = &previous_entity->declaration;
4222                         declaration_t *const decl      = &entity->declaration;
4223
4224                         /* can happen for K&R style declarations */
4225                         if (prev_decl->type       == NULL             &&
4226                                         previous_entity->kind == ENTITY_PARAMETER &&
4227                                         entity->kind          == ENTITY_PARAMETER) {
4228                                 prev_decl->type                   = decl->type;
4229                                 prev_decl->storage_class          = decl->storage_class;
4230                                 prev_decl->declared_storage_class = decl->declared_storage_class;
4231                                 prev_decl->modifiers              = decl->modifiers;
4232                                 return previous_entity;
4233                         }
4234
4235                         type_t *const orig_type = decl->type;
4236                         assert(orig_type != NULL);
4237                         type_t *const type      = skip_typeref(orig_type);
4238                         type_t *const prev_type = skip_typeref(prev_decl->type);
4239
4240                         if (!types_compatible(type, prev_type)) {
4241                                 errorf(pos,
4242                                                 "declaration '%#T' is incompatible with '%#T' (declared %P)",
4243                                                 orig_type, symbol, prev_decl->type, symbol,
4244                                                 &previous_entity->base.source_position);
4245                         } else {
4246                                 unsigned old_storage_class = prev_decl->storage_class;
4247
4248                                 if (warning.redundant_decls               &&
4249                                                 is_definition                     &&
4250                                                 !prev_decl->used                  &&
4251                                                 !(prev_decl->modifiers & DM_USED) &&
4252                                                 prev_decl->storage_class == STORAGE_CLASS_STATIC) {
4253                                         warningf(&previous_entity->base.source_position,
4254                                                         "unnecessary static forward declaration for '%#T'",
4255                                                         prev_decl->type, symbol);
4256                                 }
4257
4258                                 storage_class_t new_storage_class = decl->storage_class;
4259
4260                                 /* pretend no storage class means extern for function
4261                                  * declarations (except if the previous declaration is neither
4262                                  * none nor extern) */
4263                                 if (entity->kind == ENTITY_FUNCTION) {
4264                                         /* the previous declaration could have unspecified parameters or
4265                                          * be a typedef, so use the new type */
4266                                         if (prev_type->function.unspecified_parameters || is_definition)
4267                                                 prev_decl->type = type;
4268
4269                                         switch (old_storage_class) {
4270                                                 case STORAGE_CLASS_NONE:
4271                                                         old_storage_class = STORAGE_CLASS_EXTERN;
4272                                                         /* FALLTHROUGH */
4273
4274                                                 case STORAGE_CLASS_EXTERN:
4275                                                         if (is_definition) {
4276                                                                 if (warning.missing_prototypes &&
4277                                                                                 prev_type->function.unspecified_parameters &&
4278                                                                                 !is_sym_main(symbol)) {
4279                                                                         warningf(pos, "no previous prototype for '%#T'",
4280                                                                                         orig_type, symbol);
4281                                                                 }
4282                                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4283                                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4284                                                         }
4285                                                         break;
4286
4287                                                 default:
4288                                                         break;
4289                                         }
4290                                 } else if (is_type_incomplete(prev_type)) {
4291                                         prev_decl->type = type;
4292                                 }
4293
4294                                 if (old_storage_class == STORAGE_CLASS_EXTERN &&
4295                                                 new_storage_class == STORAGE_CLASS_EXTERN) {
4296
4297 warn_redundant_declaration: ;
4298                                         bool has_new_attrs
4299                                                 = has_new_attributes(prev_decl->attributes,
4300                                                                      decl->attributes);
4301                                         if (has_new_attrs) {
4302                                                 merge_in_attributes(decl, prev_decl->attributes);
4303                                         } else if (!is_definition        &&
4304                                                         warning.redundant_decls  &&
4305                                                         is_type_valid(prev_type) &&
4306                                                         strcmp(previous_entity->base.source_position.input_name,
4307                                                                 "<builtin>") != 0) {
4308                                                 warningf(pos,
4309                                                          "redundant declaration for '%Y' (declared %P)",
4310                                                          symbol, &previous_entity->base.source_position);
4311                                         }
4312                                 } else if (current_function == NULL) {
4313                                         if (old_storage_class != STORAGE_CLASS_STATIC &&
4314                                                         new_storage_class == STORAGE_CLASS_STATIC) {
4315                                                 errorf(pos,
4316                                                        "static declaration of '%Y' follows non-static declaration (declared %P)",
4317                                                        symbol, &previous_entity->base.source_position);
4318                                         } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4319                                                 prev_decl->storage_class          = STORAGE_CLASS_NONE;
4320                                                 prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
4321                                         } else {
4322                                                 /* ISO/IEC 14882:1998(E) §C.1.2:1 */
4323                                                 if (c_mode & _CXX)
4324                                                         goto error_redeclaration;
4325                                                 goto warn_redundant_declaration;
4326                                         }
4327                                 } else if (is_type_valid(prev_type)) {
4328                                         if (old_storage_class == new_storage_class) {
4329 error_redeclaration:
4330                                                 errorf(pos, "redeclaration of '%Y' (declared %P)",
4331                                                                 symbol, &previous_entity->base.source_position);
4332                                         } else {
4333                                                 errorf(pos,
4334                                                                 "redeclaration of '%Y' with different linkage (declared %P)",
4335                                                                 symbol, &previous_entity->base.source_position);
4336                                         }
4337                                 }
4338                         }
4339
4340                         prev_decl->modifiers |= decl->modifiers;
4341                         if (entity->kind == ENTITY_FUNCTION) {
4342                                 previous_entity->function.is_inline |= entity->function.is_inline;
4343                         }
4344                         return previous_entity;
4345                 }
4346
4347                 if (warning.shadow) {
4348                         warningf(pos, "%s '%Y' shadows %s (declared %P)",
4349                                         get_entity_kind_name(entity->kind), symbol,
4350                                         get_entity_kind_name(previous_entity->kind),
4351                                         &previous_entity->base.source_position);
4352                 }
4353         }
4354
4355         if (entity->kind == ENTITY_FUNCTION) {
4356                 if (is_definition &&
4357                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
4358                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4359                                 warningf(pos, "no previous prototype for '%#T'",
4360                                          entity->declaration.type, symbol);
4361                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4362                                 warningf(pos, "no previous declaration for '%#T'",
4363                                          entity->declaration.type, symbol);
4364                         }
4365                 }
4366         } else if (warning.missing_declarations &&
4367                         entity->kind == ENTITY_VARIABLE &&
4368                         current_scope == file_scope) {
4369                 declaration_t *declaration = &entity->declaration;
4370                 if (declaration->storage_class == STORAGE_CLASS_NONE) {
4371                         warningf(pos, "no previous declaration for '%#T'",
4372                                  declaration->type, symbol);
4373                 }
4374         }
4375
4376 finish:
4377         assert(entity->base.parent_scope == NULL);
4378         assert(current_scope != NULL);
4379
4380         entity->base.parent_scope = current_scope;
4381         entity->base.namespc      = NAMESPACE_NORMAL;
4382         environment_push(entity);
4383         append_entity(current_scope, entity);
4384
4385         return entity;
4386 }
4387
4388 static void parser_error_multiple_definition(entity_t *entity,
4389                 const source_position_t *source_position)
4390 {
4391         errorf(source_position, "multiple definition of '%Y' (declared %P)",
4392                entity->base.symbol, &entity->base.source_position);
4393 }
4394
4395 static bool is_declaration_specifier(const token_t *token,
4396                                      bool only_specifiers_qualifiers)
4397 {
4398         switch (token->type) {
4399                 TYPE_SPECIFIERS
4400                 TYPE_QUALIFIERS
4401                         return true;
4402                 case T_IDENTIFIER:
4403                         return is_typedef_symbol(token->symbol);
4404
4405                 case T___extension__:
4406                 STORAGE_CLASSES
4407                         return !only_specifiers_qualifiers;
4408
4409                 default:
4410                         return false;
4411         }
4412 }
4413
4414 static void parse_init_declarator_rest(entity_t *entity)
4415 {
4416         assert(is_declaration(entity));
4417         declaration_t *const declaration = &entity->declaration;
4418
4419         eat('=');
4420
4421         type_t *orig_type = declaration->type;
4422         type_t *type      = skip_typeref(orig_type);
4423
4424         if (entity->kind == ENTITY_VARIABLE
4425                         && entity->variable.initializer != NULL) {
4426                 parser_error_multiple_definition(entity, HERE);
4427         }
4428
4429         bool must_be_constant = false;
4430         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
4431             entity->base.parent_scope  == file_scope) {
4432                 must_be_constant = true;
4433         }
4434
4435         if (is_type_function(type)) {
4436                 errorf(&entity->base.source_position,
4437                        "function '%#T' is initialized like a variable",
4438                        orig_type, entity->base.symbol);
4439                 orig_type = type_error_type;
4440         }
4441
4442         parse_initializer_env_t env;
4443         env.type             = orig_type;
4444         env.must_be_constant = must_be_constant;
4445         env.entity           = entity;
4446         current_init_decl    = entity;
4447
4448         initializer_t *initializer = parse_initializer(&env);
4449         current_init_decl = NULL;
4450
4451         if (entity->kind == ENTITY_VARIABLE) {
4452                 /* §6.7.5:22  array initializers for arrays with unknown size
4453                  * determine the array type size */
4454                 declaration->type            = env.type;
4455                 entity->variable.initializer = initializer;
4456         }
4457 }
4458
4459 /* parse rest of a declaration without any declarator */
4460 static void parse_anonymous_declaration_rest(
4461                 const declaration_specifiers_t *specifiers)
4462 {
4463         eat(';');
4464         anonymous_entity = NULL;
4465
4466         if (warning.other) {
4467                 if (specifiers->storage_class != STORAGE_CLASS_NONE ||
4468                                 specifiers->thread_local) {
4469                         warningf(&specifiers->source_position,
4470                                  "useless storage class in empty declaration");
4471                 }
4472
4473                 type_t *type = specifiers->type;
4474                 switch (type->kind) {
4475                         case TYPE_COMPOUND_STRUCT:
4476                         case TYPE_COMPOUND_UNION: {
4477                                 if (type->compound.compound->base.symbol == NULL) {
4478                                         warningf(&specifiers->source_position,
4479                                                  "unnamed struct/union that defines no instances");
4480                                 }
4481                                 break;
4482                         }
4483
4484                         case TYPE_ENUM:
4485                                 break;
4486
4487                         default:
4488                                 warningf(&specifiers->source_position, "empty declaration");
4489                                 break;
4490                 }
4491         }
4492 }
4493
4494 static void check_variable_type_complete(entity_t *ent)
4495 {
4496         if (ent->kind != ENTITY_VARIABLE)
4497                 return;
4498
4499         /* §6.7:7  If an identifier for an object is declared with no linkage, the
4500          *         type for the object shall be complete [...] */
4501         declaration_t *decl = &ent->declaration;
4502         if (decl->storage_class == STORAGE_CLASS_EXTERN ||
4503                         decl->storage_class == STORAGE_CLASS_STATIC)
4504                 return;
4505
4506         type_t *const orig_type = decl->type;
4507         type_t *const type      = skip_typeref(orig_type);
4508         if (!is_type_incomplete(type))
4509                 return;
4510
4511         /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
4512          * are given length one. */
4513         if (is_type_array(type) && ent->base.parent_scope == file_scope) {
4514                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
4515                 return;
4516         }
4517
4518         errorf(&ent->base.source_position, "variable '%#T' has incomplete type",
4519                         orig_type, ent->base.symbol);
4520 }
4521
4522
4523 static void parse_declaration_rest(entity_t *ndeclaration,
4524                 const declaration_specifiers_t *specifiers,
4525                 parsed_declaration_func         finished_declaration,
4526                 declarator_flags_t              flags)
4527 {
4528         add_anchor_token(';');
4529         add_anchor_token(',');
4530         while (true) {
4531                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
4532
4533                 if (token.type == '=') {
4534                         parse_init_declarator_rest(entity);
4535                 } else if (entity->kind == ENTITY_VARIABLE) {
4536                         /* ISO/IEC 14882:1998(E) §8.5.3:3  The initializer can be omitted
4537                          * [...] where the extern specifier is explicitly used. */
4538                         declaration_t *decl = &entity->declaration;
4539                         if (decl->storage_class != STORAGE_CLASS_EXTERN) {
4540                                 type_t *type = decl->type;
4541                                 if (is_type_reference(skip_typeref(type))) {
4542                                         errorf(&entity->base.source_position,
4543                                                         "reference '%#T' must be initialized",
4544                                                         type, entity->base.symbol);
4545                                 }
4546                         }
4547                 }
4548
4549                 check_variable_type_complete(entity);
4550
4551                 if (!next_if(','))
4552                         break;
4553
4554                 add_anchor_token('=');
4555                 ndeclaration = parse_declarator(specifiers, flags);
4556                 rem_anchor_token('=');
4557         }
4558         expect(';', end_error);
4559
4560 end_error:
4561         anonymous_entity = NULL;
4562         rem_anchor_token(';');
4563         rem_anchor_token(',');
4564 }
4565
4566 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
4567 {
4568         symbol_t *symbol = entity->base.symbol;
4569         if (symbol == NULL) {
4570                 errorf(HERE, "anonymous declaration not valid as function parameter");
4571                 return entity;
4572         }
4573
4574         assert(entity->base.namespc == NAMESPACE_NORMAL);
4575         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
4576         if (previous_entity == NULL
4577                         || previous_entity->base.parent_scope != current_scope) {
4578                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4579                        symbol);
4580                 return entity;
4581         }
4582
4583         if (is_definition) {
4584                 errorf(HERE, "parameter '%Y' is initialised", entity->base.symbol);
4585         }
4586
4587         return record_entity(entity, false);
4588 }
4589
4590 static void parse_declaration(parsed_declaration_func finished_declaration,
4591                               declarator_flags_t      flags)
4592 {
4593         declaration_specifiers_t specifiers;
4594         memset(&specifiers, 0, sizeof(specifiers));
4595
4596         add_anchor_token(';');
4597         parse_declaration_specifiers(&specifiers);
4598         rem_anchor_token(';');
4599
4600         if (token.type == ';') {
4601                 parse_anonymous_declaration_rest(&specifiers);
4602         } else {
4603                 entity_t *entity = parse_declarator(&specifiers, flags);
4604                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
4605         }
4606 }
4607
4608 /* §6.5.2.2:6 */
4609 static type_t *get_default_promoted_type(type_t *orig_type)
4610 {
4611         type_t *result = orig_type;
4612
4613         type_t *type = skip_typeref(orig_type);
4614         if (is_type_integer(type)) {
4615                 result = promote_integer(type);
4616         } else if (is_type_atomic(type, ATOMIC_TYPE_FLOAT)) {
4617                 result = type_double;
4618         }
4619
4620         return result;
4621 }
4622
4623 static void parse_kr_declaration_list(entity_t *entity)
4624 {
4625         if (entity->kind != ENTITY_FUNCTION)
4626                 return;
4627
4628         type_t *type = skip_typeref(entity->declaration.type);
4629         assert(is_type_function(type));
4630         if (!type->function.kr_style_parameters)
4631                 return;
4632
4633         add_anchor_token('{');
4634
4635         /* push function parameters */
4636         size_t const  top       = environment_top();
4637         scope_t      *old_scope = scope_push(&entity->function.parameters);
4638
4639         entity_t *parameter = entity->function.parameters.entities;
4640         for ( ; parameter != NULL; parameter = parameter->base.next) {
4641                 assert(parameter->base.parent_scope == NULL);
4642                 parameter->base.parent_scope = current_scope;
4643                 environment_push(parameter);
4644         }
4645
4646         /* parse declaration list */
4647         for (;;) {
4648                 switch (token.type) {
4649                         DECLARATION_START
4650                         case T___extension__:
4651                         /* This covers symbols, which are no type, too, and results in
4652                          * better error messages.  The typical cases are misspelled type
4653                          * names and missing includes. */
4654                         case T_IDENTIFIER:
4655                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
4656                                 break;
4657                         default:
4658                                 goto decl_list_end;
4659                 }
4660         }
4661 decl_list_end:
4662
4663         /* pop function parameters */
4664         assert(current_scope == &entity->function.parameters);
4665         scope_pop(old_scope);
4666         environment_pop_to(top);
4667
4668         /* update function type */
4669         type_t *new_type = duplicate_type(type);
4670
4671         function_parameter_t  *parameters = NULL;
4672         function_parameter_t **anchor     = &parameters;
4673
4674         /* did we have an earlier prototype? */
4675         entity_t *proto_type = get_entity(entity->base.symbol, NAMESPACE_NORMAL);
4676         if (proto_type != NULL && proto_type->kind != ENTITY_FUNCTION)
4677                 proto_type = NULL;
4678
4679         function_parameter_t *proto_parameter = NULL;
4680         if (proto_type != NULL) {
4681                 type_t *proto_type_type = proto_type->declaration.type;
4682                 proto_parameter         = proto_type_type->function.parameters;
4683                 /* If a K&R function definition has a variadic prototype earlier, then
4684                  * make the function definition variadic, too. This should conform to
4685                  * §6.7.5.3:15 and §6.9.1:8. */
4686                 new_type->function.variadic = proto_type_type->function.variadic;
4687         } else {
4688                 /* §6.9.1.7: A K&R style parameter list does NOT act as a function
4689                  * prototype */
4690                 new_type->function.unspecified_parameters = true;
4691         }
4692
4693         bool need_incompatible_warning = false;
4694         parameter = entity->function.parameters.entities;
4695         for (; parameter != NULL; parameter = parameter->base.next,
4696                         proto_parameter =
4697                                 proto_parameter == NULL ? NULL : proto_parameter->next) {
4698                 if (parameter->kind != ENTITY_PARAMETER)
4699                         continue;
4700
4701                 type_t *parameter_type = parameter->declaration.type;
4702                 if (parameter_type == NULL) {
4703                         if (strict_mode) {
4704                                 errorf(HERE, "no type specified for function parameter '%Y'",
4705                                        parameter->base.symbol);
4706                                 parameter_type = type_error_type;
4707                         } else {
4708                                 if (warning.implicit_int) {
4709                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4710                                                  parameter->base.symbol);
4711                                 }
4712                                 parameter_type = type_int;
4713                         }
4714                         parameter->declaration.type = parameter_type;
4715                 }
4716
4717                 semantic_parameter_incomplete(parameter);
4718
4719                 /* we need the default promoted types for the function type */
4720                 type_t *not_promoted = parameter_type;
4721                 parameter_type       = get_default_promoted_type(parameter_type);
4722
4723                 /* gcc special: if the type of the prototype matches the unpromoted
4724                  * type don't promote */
4725                 if (!strict_mode && proto_parameter != NULL) {
4726                         type_t *proto_p_type = skip_typeref(proto_parameter->type);
4727                         type_t *promo_skip   = skip_typeref(parameter_type);
4728                         type_t *param_skip   = skip_typeref(not_promoted);
4729                         if (!types_compatible(proto_p_type, promo_skip)
4730                                 && types_compatible(proto_p_type, param_skip)) {
4731                                 /* don't promote */
4732                                 need_incompatible_warning = true;
4733                                 parameter_type = not_promoted;
4734                         }
4735                 }
4736                 function_parameter_t *const parameter
4737                         = allocate_parameter(parameter_type);
4738
4739                 *anchor = parameter;
4740                 anchor  = &parameter->next;
4741         }
4742
4743         new_type->function.parameters = parameters;
4744         new_type = identify_new_type(new_type);
4745
4746         if (warning.other && need_incompatible_warning) {
4747                 type_t *proto_type_type = proto_type->declaration.type;
4748                 warningf(HERE,
4749                          "declaration '%#T' is incompatible with '%#T' (declared %P)",
4750                          proto_type_type, proto_type->base.symbol,
4751                          new_type, entity->base.symbol,
4752                          &proto_type->base.source_position);
4753         }
4754
4755         entity->declaration.type = new_type;
4756
4757         rem_anchor_token('{');
4758 }
4759
4760 static bool first_err = true;
4761
4762 /**
4763  * When called with first_err set, prints the name of the current function,
4764  * else does noting.
4765  */
4766 static void print_in_function(void)
4767 {
4768         if (first_err) {
4769                 first_err = false;
4770                 diagnosticf("%s: In function '%Y':\n",
4771                             current_function->base.base.source_position.input_name,
4772                             current_function->base.base.symbol);
4773         }
4774 }
4775
4776 /**
4777  * Check if all labels are defined in the current function.
4778  * Check if all labels are used in the current function.
4779  */
4780 static void check_labels(void)
4781 {
4782         for (const goto_statement_t *goto_statement = goto_first;
4783             goto_statement != NULL;
4784             goto_statement = goto_statement->next) {
4785                 /* skip computed gotos */
4786                 if (goto_statement->expression != NULL)
4787                         continue;
4788
4789                 label_t *label = goto_statement->label;
4790
4791                 label->used = true;
4792                 if (label->base.source_position.input_name == NULL) {
4793                         print_in_function();
4794                         errorf(&goto_statement->base.source_position,
4795                                "label '%Y' used but not defined", label->base.symbol);
4796                  }
4797         }
4798
4799         if (warning.unused_label) {
4800                 for (const label_statement_t *label_statement = label_first;
4801                          label_statement != NULL;
4802                          label_statement = label_statement->next) {
4803                         label_t *label = label_statement->label;
4804
4805                         if (! label->used) {
4806                                 print_in_function();
4807                                 warningf(&label_statement->base.source_position,
4808                                          "label '%Y' defined but not used", label->base.symbol);
4809                         }
4810                 }
4811         }
4812 }
4813
4814 static void warn_unused_entity(entity_t *entity, entity_t *last)
4815 {
4816         entity_t const *const end = last != NULL ? last->base.next : NULL;
4817         for (; entity != end; entity = entity->base.next) {
4818                 if (!is_declaration(entity))
4819                         continue;
4820
4821                 declaration_t *declaration = &entity->declaration;
4822                 if (declaration->implicit)
4823                         continue;
4824
4825                 if (!declaration->used) {
4826                         print_in_function();
4827                         const char *what = get_entity_kind_name(entity->kind);
4828                         warningf(&entity->base.source_position, "%s '%Y' is unused",
4829                                  what, entity->base.symbol);
4830                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
4831                         print_in_function();
4832                         const char *what = get_entity_kind_name(entity->kind);
4833                         warningf(&entity->base.source_position, "%s '%Y' is never read",
4834                                  what, entity->base.symbol);
4835                 }
4836         }
4837 }
4838
4839 static void check_unused_variables(statement_t *const stmt, void *const env)
4840 {
4841         (void)env;
4842
4843         switch (stmt->kind) {
4844                 case STATEMENT_DECLARATION: {
4845                         declaration_statement_t const *const decls = &stmt->declaration;
4846                         warn_unused_entity(decls->declarations_begin,
4847                                            decls->declarations_end);
4848                         return;
4849                 }
4850
4851                 case STATEMENT_FOR:
4852                         warn_unused_entity(stmt->fors.scope.entities, NULL);
4853                         return;
4854
4855                 default:
4856                         return;
4857         }
4858 }
4859
4860 /**
4861  * Check declarations of current_function for unused entities.
4862  */
4863 static void check_declarations(void)
4864 {
4865         if (warning.unused_parameter) {
4866                 const scope_t *scope = &current_function->parameters;
4867
4868                 /* do not issue unused warnings for main */
4869                 if (!is_sym_main(current_function->base.base.symbol)) {
4870                         warn_unused_entity(scope->entities, NULL);
4871                 }
4872         }
4873         if (warning.unused_variable) {
4874                 walk_statements(current_function->statement, check_unused_variables,
4875                                 NULL);
4876         }
4877 }
4878
4879 static int determine_truth(expression_t const* const cond)
4880 {
4881         return
4882                 !is_constant_expression(cond) ? 0 :
4883                 fold_constant_to_bool(cond)   ? 1 :
4884                 -1;
4885 }
4886
4887 static void check_reachable(statement_t *);
4888 static bool reaches_end;
4889
4890 static bool expression_returns(expression_t const *const expr)
4891 {
4892         switch (expr->kind) {
4893                 case EXPR_CALL: {
4894                         expression_t const *const func = expr->call.function;
4895                         if (func->kind == EXPR_REFERENCE) {
4896                                 entity_t *entity = func->reference.entity;
4897                                 if (entity->kind == ENTITY_FUNCTION
4898                                                 && entity->declaration.modifiers & DM_NORETURN)
4899                                         return false;
4900                         }
4901
4902                         if (!expression_returns(func))
4903                                 return false;
4904
4905                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
4906                                 if (!expression_returns(arg->expression))
4907                                         return false;
4908                         }
4909
4910                         return true;
4911                 }
4912
4913                 case EXPR_REFERENCE:
4914                 case EXPR_REFERENCE_ENUM_VALUE:
4915                 EXPR_LITERAL_CASES
4916                 case EXPR_STRING_LITERAL:
4917                 case EXPR_WIDE_STRING_LITERAL:
4918                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
4919                 case EXPR_LABEL_ADDRESS:
4920                 case EXPR_CLASSIFY_TYPE:
4921                 case EXPR_SIZEOF: // TODO handle obscure VLA case
4922                 case EXPR_ALIGNOF:
4923                 case EXPR_FUNCNAME:
4924                 case EXPR_BUILTIN_CONSTANT_P:
4925                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
4926                 case EXPR_OFFSETOF:
4927                 case EXPR_INVALID:
4928                         return true;
4929
4930                 case EXPR_STATEMENT: {
4931                         bool old_reaches_end = reaches_end;
4932                         reaches_end = false;
4933                         check_reachable(expr->statement.statement);
4934                         bool returns = reaches_end;
4935                         reaches_end = old_reaches_end;
4936                         return returns;
4937                 }
4938
4939                 case EXPR_CONDITIONAL:
4940                         // TODO handle constant expression
4941
4942                         if (!expression_returns(expr->conditional.condition))
4943                                 return false;
4944
4945                         if (expr->conditional.true_expression != NULL
4946                                         && expression_returns(expr->conditional.true_expression))
4947                                 return true;
4948
4949                         return expression_returns(expr->conditional.false_expression);
4950
4951                 case EXPR_SELECT:
4952                         return expression_returns(expr->select.compound);
4953
4954                 case EXPR_ARRAY_ACCESS:
4955                         return
4956                                 expression_returns(expr->array_access.array_ref) &&
4957                                 expression_returns(expr->array_access.index);
4958
4959                 case EXPR_VA_START:
4960                         return expression_returns(expr->va_starte.ap);
4961
4962                 case EXPR_VA_ARG:
4963                         return expression_returns(expr->va_arge.ap);
4964
4965                 case EXPR_VA_COPY:
4966                         return expression_returns(expr->va_copye.src);
4967
4968                 EXPR_UNARY_CASES_MANDATORY
4969                         return expression_returns(expr->unary.value);
4970
4971                 case EXPR_UNARY_THROW:
4972                         return false;
4973
4974                 EXPR_BINARY_CASES
4975                         // TODO handle constant lhs of && and ||
4976                         return
4977                                 expression_returns(expr->binary.left) &&
4978                                 expression_returns(expr->binary.right);
4979
4980                 case EXPR_UNKNOWN:
4981                         break;
4982         }
4983
4984         panic("unhandled expression");
4985 }
4986
4987 static bool initializer_returns(initializer_t const *const init)
4988 {
4989         switch (init->kind) {
4990                 case INITIALIZER_VALUE:
4991                         return expression_returns(init->value.value);
4992
4993                 case INITIALIZER_LIST: {
4994                         initializer_t * const*       i       = init->list.initializers;
4995                         initializer_t * const* const end     = i + init->list.len;
4996                         bool                         returns = true;
4997                         for (; i != end; ++i) {
4998                                 if (!initializer_returns(*i))
4999                                         returns = false;
5000                         }
5001                         return returns;
5002                 }
5003
5004                 case INITIALIZER_STRING:
5005                 case INITIALIZER_WIDE_STRING:
5006                 case INITIALIZER_DESIGNATOR: // designators have no payload
5007                         return true;
5008         }
5009         panic("unhandled initializer");
5010 }
5011
5012 static bool noreturn_candidate;
5013
5014 static void check_reachable(statement_t *const stmt)
5015 {
5016         if (stmt->base.reachable)
5017                 return;
5018         if (stmt->kind != STATEMENT_DO_WHILE)
5019                 stmt->base.reachable = true;
5020
5021         statement_t *last = stmt;
5022         statement_t *next;
5023         switch (stmt->kind) {
5024                 case STATEMENT_INVALID:
5025                 case STATEMENT_EMPTY:
5026                 case STATEMENT_ASM:
5027                         next = stmt->base.next;
5028                         break;
5029
5030                 case STATEMENT_DECLARATION: {
5031                         declaration_statement_t const *const decl = &stmt->declaration;
5032                         entity_t                const *      ent  = decl->declarations_begin;
5033                         entity_t                const *const last = decl->declarations_end;
5034                         if (ent != NULL) {
5035                                 for (;; ent = ent->base.next) {
5036                                         if (ent->kind                 == ENTITY_VARIABLE &&
5037                                                         ent->variable.initializer != NULL            &&
5038                                                         !initializer_returns(ent->variable.initializer)) {
5039                                                 return;
5040                                         }
5041                                         if (ent == last)
5042                                                 break;
5043                                 }
5044                         }
5045                         next = stmt->base.next;
5046                         break;
5047                 }
5048
5049                 case STATEMENT_COMPOUND:
5050                         next = stmt->compound.statements;
5051                         if (next == NULL)
5052                                 next = stmt->base.next;
5053                         break;
5054
5055                 case STATEMENT_RETURN: {
5056                         expression_t const *const val = stmt->returns.value;
5057                         if (val == NULL || expression_returns(val))
5058                                 noreturn_candidate = false;
5059                         return;
5060                 }
5061
5062                 case STATEMENT_IF: {
5063                         if_statement_t const *const ifs  = &stmt->ifs;
5064                         expression_t   const *const cond = ifs->condition;
5065
5066                         if (!expression_returns(cond))
5067                                 return;
5068
5069                         int const val = determine_truth(cond);
5070
5071                         if (val >= 0)
5072                                 check_reachable(ifs->true_statement);
5073
5074                         if (val > 0)
5075                                 return;
5076
5077                         if (ifs->false_statement != NULL) {
5078                                 check_reachable(ifs->false_statement);
5079                                 return;
5080                         }
5081
5082                         next = stmt->base.next;
5083                         break;
5084                 }
5085
5086                 case STATEMENT_SWITCH: {
5087                         switch_statement_t const *const switchs = &stmt->switchs;
5088                         expression_t       const *const expr    = switchs->expression;
5089
5090                         if (!expression_returns(expr))
5091                                 return;
5092
5093                         if (is_constant_expression(expr)) {
5094                                 long                    const val      = fold_constant_to_int(expr);
5095                                 case_label_statement_t *      defaults = NULL;
5096                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5097                                         if (i->expression == NULL) {
5098                                                 defaults = i;
5099                                                 continue;
5100                                         }
5101
5102                                         if (i->first_case <= val && val <= i->last_case) {
5103                                                 check_reachable((statement_t*)i);
5104                                                 return;
5105                                         }
5106                                 }
5107
5108                                 if (defaults != NULL) {
5109                                         check_reachable((statement_t*)defaults);
5110                                         return;
5111                                 }
5112                         } else {
5113                                 bool has_default = false;
5114                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5115                                         if (i->expression == NULL)
5116                                                 has_default = true;
5117
5118                                         check_reachable((statement_t*)i);
5119                                 }
5120
5121                                 if (has_default)
5122                                         return;
5123                         }
5124
5125                         next = stmt->base.next;
5126                         break;
5127                 }
5128
5129                 case STATEMENT_EXPRESSION: {
5130                         /* Check for noreturn function call */
5131                         expression_t const *const expr = stmt->expression.expression;
5132                         if (!expression_returns(expr))
5133                                 return;
5134
5135                         next = stmt->base.next;
5136                         break;
5137                 }
5138
5139                 case STATEMENT_CONTINUE:
5140                         for (statement_t *parent = stmt;;) {
5141                                 parent = parent->base.parent;
5142                                 if (parent == NULL) /* continue not within loop */
5143                                         return;
5144
5145                                 next = parent;
5146                                 switch (parent->kind) {
5147                                         case STATEMENT_WHILE:    goto continue_while;
5148                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5149                                         case STATEMENT_FOR:      goto continue_for;
5150
5151                                         default: break;
5152                                 }
5153                         }
5154
5155                 case STATEMENT_BREAK:
5156                         for (statement_t *parent = stmt;;) {
5157                                 parent = parent->base.parent;
5158                                 if (parent == NULL) /* break not within loop/switch */
5159                                         return;
5160
5161                                 switch (parent->kind) {
5162                                         case STATEMENT_SWITCH:
5163                                         case STATEMENT_WHILE:
5164                                         case STATEMENT_DO_WHILE:
5165                                         case STATEMENT_FOR:
5166                                                 last = parent;
5167                                                 next = parent->base.next;
5168                                                 goto found_break_parent;
5169
5170                                         default: break;
5171                                 }
5172                         }
5173 found_break_parent:
5174                         break;
5175
5176                 case STATEMENT_GOTO:
5177                         if (stmt->gotos.expression) {
5178                                 if (!expression_returns(stmt->gotos.expression))
5179                                         return;
5180
5181                                 statement_t *parent = stmt->base.parent;
5182                                 if (parent == NULL) /* top level goto */
5183                                         return;
5184                                 next = parent;
5185                         } else {
5186                                 next = stmt->gotos.label->statement;
5187                                 if (next == NULL) /* missing label */
5188                                         return;
5189                         }
5190                         break;
5191
5192                 case STATEMENT_LABEL:
5193                         next = stmt->label.statement;
5194                         break;
5195
5196                 case STATEMENT_CASE_LABEL:
5197                         next = stmt->case_label.statement;
5198                         break;
5199
5200                 case STATEMENT_WHILE: {
5201                         while_statement_t const *const whiles = &stmt->whiles;
5202                         expression_t      const *const cond   = whiles->condition;
5203
5204                         if (!expression_returns(cond))
5205                                 return;
5206
5207                         int const val = determine_truth(cond);
5208
5209                         if (val >= 0)
5210                                 check_reachable(whiles->body);
5211
5212                         if (val > 0)
5213                                 return;
5214
5215                         next = stmt->base.next;
5216                         break;
5217                 }
5218
5219                 case STATEMENT_DO_WHILE:
5220                         next = stmt->do_while.body;
5221                         break;
5222
5223                 case STATEMENT_FOR: {
5224                         for_statement_t *const fors = &stmt->fors;
5225
5226                         if (fors->condition_reachable)
5227                                 return;
5228                         fors->condition_reachable = true;
5229
5230                         expression_t const *const cond = fors->condition;
5231
5232                         int val;
5233                         if (cond == NULL) {
5234                                 val = 1;
5235                         } else if (expression_returns(cond)) {
5236                                 val = determine_truth(cond);
5237                         } else {
5238                                 return;
5239                         }
5240
5241                         if (val >= 0)
5242                                 check_reachable(fors->body);
5243
5244                         if (val > 0)
5245                                 return;
5246
5247                         next = stmt->base.next;
5248                         break;
5249                 }
5250
5251                 case STATEMENT_MS_TRY: {
5252                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5253                         check_reachable(ms_try->try_statement);
5254                         next = ms_try->final_statement;
5255                         break;
5256                 }
5257
5258                 case STATEMENT_LEAVE: {
5259                         statement_t *parent = stmt;
5260                         for (;;) {
5261                                 parent = parent->base.parent;
5262                                 if (parent == NULL) /* __leave not within __try */
5263                                         return;
5264
5265                                 if (parent->kind == STATEMENT_MS_TRY) {
5266                                         last = parent;
5267                                         next = parent->ms_try.final_statement;
5268                                         break;
5269                                 }
5270                         }
5271                         break;
5272                 }
5273
5274                 default:
5275                         panic("invalid statement kind");
5276         }
5277
5278         while (next == NULL) {
5279                 next = last->base.parent;
5280                 if (next == NULL) {
5281                         noreturn_candidate = false;
5282
5283                         type_t *const type = skip_typeref(current_function->base.type);
5284                         assert(is_type_function(type));
5285                         type_t *const ret  = skip_typeref(type->function.return_type);
5286                         if (warning.return_type                    &&
5287                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5288                             is_type_valid(ret)                     &&
5289                             !is_sym_main(current_function->base.base.symbol)) {
5290                                 warningf(&stmt->base.source_position,
5291                                          "control reaches end of non-void function");
5292                         }
5293                         return;
5294                 }
5295
5296                 switch (next->kind) {
5297                         case STATEMENT_INVALID:
5298                         case STATEMENT_EMPTY:
5299                         case STATEMENT_DECLARATION:
5300                         case STATEMENT_EXPRESSION:
5301                         case STATEMENT_ASM:
5302                         case STATEMENT_RETURN:
5303                         case STATEMENT_CONTINUE:
5304                         case STATEMENT_BREAK:
5305                         case STATEMENT_GOTO:
5306                         case STATEMENT_LEAVE:
5307                                 panic("invalid control flow in function");
5308
5309                         case STATEMENT_COMPOUND:
5310                                 if (next->compound.stmt_expr) {
5311                                         reaches_end = true;
5312                                         return;
5313                                 }
5314                                 /* FALLTHROUGH */
5315                         case STATEMENT_IF:
5316                         case STATEMENT_SWITCH:
5317                         case STATEMENT_LABEL:
5318                         case STATEMENT_CASE_LABEL:
5319                                 last = next;
5320                                 next = next->base.next;
5321                                 break;
5322
5323                         case STATEMENT_WHILE: {
5324 continue_while:
5325                                 if (next->base.reachable)
5326                                         return;
5327                                 next->base.reachable = true;
5328
5329                                 while_statement_t const *const whiles = &next->whiles;
5330                                 expression_t      const *const cond   = whiles->condition;
5331
5332                                 if (!expression_returns(cond))
5333                                         return;
5334
5335                                 int const val = determine_truth(cond);
5336
5337                                 if (val >= 0)
5338                                         check_reachable(whiles->body);
5339
5340                                 if (val > 0)
5341                                         return;
5342
5343                                 last = next;
5344                                 next = next->base.next;
5345                                 break;
5346                         }
5347
5348                         case STATEMENT_DO_WHILE: {
5349 continue_do_while:
5350                                 if (next->base.reachable)
5351                                         return;
5352                                 next->base.reachable = true;
5353
5354                                 do_while_statement_t const *const dw   = &next->do_while;
5355                                 expression_t         const *const cond = dw->condition;
5356
5357                                 if (!expression_returns(cond))
5358                                         return;
5359
5360                                 int const val = determine_truth(cond);
5361
5362                                 if (val >= 0)
5363                                         check_reachable(dw->body);
5364
5365                                 if (val > 0)
5366                                         return;
5367
5368                                 last = next;
5369                                 next = next->base.next;
5370                                 break;
5371                         }
5372
5373                         case STATEMENT_FOR: {
5374 continue_for:;
5375                                 for_statement_t *const fors = &next->fors;
5376
5377                                 fors->step_reachable = true;
5378
5379                                 if (fors->condition_reachable)
5380                                         return;
5381                                 fors->condition_reachable = true;
5382
5383                                 expression_t const *const cond = fors->condition;
5384
5385                                 int val;
5386                                 if (cond == NULL) {
5387                                         val = 1;
5388                                 } else if (expression_returns(cond)) {
5389                                         val = determine_truth(cond);
5390                                 } else {
5391                                         return;
5392                                 }
5393
5394                                 if (val >= 0)
5395                                         check_reachable(fors->body);
5396
5397                                 if (val > 0)
5398                                         return;
5399
5400                                 last = next;
5401                                 next = next->base.next;
5402                                 break;
5403                         }
5404
5405                         case STATEMENT_MS_TRY:
5406                                 last = next;
5407                                 next = next->ms_try.final_statement;
5408                                 break;
5409                 }
5410         }
5411
5412         check_reachable(next);
5413 }
5414
5415 static void check_unreachable(statement_t* const stmt, void *const env)
5416 {
5417         (void)env;
5418
5419         switch (stmt->kind) {
5420                 case STATEMENT_DO_WHILE:
5421                         if (!stmt->base.reachable) {
5422                                 expression_t const *const cond = stmt->do_while.condition;
5423                                 if (determine_truth(cond) >= 0) {
5424                                         warningf(&cond->base.source_position,
5425                                                  "condition of do-while-loop is unreachable");
5426                                 }
5427                         }
5428                         return;
5429
5430                 case STATEMENT_FOR: {
5431                         for_statement_t const* const fors = &stmt->fors;
5432
5433                         // if init and step are unreachable, cond is unreachable, too
5434                         if (!stmt->base.reachable && !fors->step_reachable) {
5435                                 warningf(&stmt->base.source_position, "statement is unreachable");
5436                         } else {
5437                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5438                                         warningf(&fors->initialisation->base.source_position,
5439                                                  "initialisation of for-statement is unreachable");
5440                                 }
5441
5442                                 if (!fors->condition_reachable && fors->condition != NULL) {
5443                                         warningf(&fors->condition->base.source_position,
5444                                                  "condition of for-statement is unreachable");
5445                                 }
5446
5447                                 if (!fors->step_reachable && fors->step != NULL) {
5448                                         warningf(&fors->step->base.source_position,
5449                                                  "step of for-statement is unreachable");
5450                                 }
5451                         }
5452                         return;
5453                 }
5454
5455                 case STATEMENT_COMPOUND:
5456                         if (stmt->compound.statements != NULL)
5457                                 return;
5458                         goto warn_unreachable;
5459
5460                 case STATEMENT_DECLARATION: {
5461                         /* Only warn if there is at least one declarator with an initializer.
5462                          * This typically occurs in switch statements. */
5463                         declaration_statement_t const *const decl = &stmt->declaration;
5464                         entity_t                const *      ent  = decl->declarations_begin;
5465                         entity_t                const *const last = decl->declarations_end;
5466                         if (ent != NULL) {
5467                                 for (;; ent = ent->base.next) {
5468                                         if (ent->kind                 == ENTITY_VARIABLE &&
5469                                                         ent->variable.initializer != NULL) {
5470                                                 goto warn_unreachable;
5471                                         }
5472                                         if (ent == last)
5473                                                 return;
5474                                 }
5475                         }
5476                 }
5477
5478                 default:
5479 warn_unreachable:
5480                         if (!stmt->base.reachable)
5481                                 warningf(&stmt->base.source_position, "statement is unreachable");
5482                         return;
5483         }
5484 }
5485
5486 static void parse_external_declaration(void)
5487 {
5488         /* function-definitions and declarations both start with declaration
5489          * specifiers */
5490         declaration_specifiers_t specifiers;
5491         memset(&specifiers, 0, sizeof(specifiers));
5492
5493         add_anchor_token(';');
5494         parse_declaration_specifiers(&specifiers);
5495         rem_anchor_token(';');
5496
5497         /* must be a declaration */
5498         if (token.type == ';') {
5499                 parse_anonymous_declaration_rest(&specifiers);
5500                 return;
5501         }
5502
5503         add_anchor_token(',');
5504         add_anchor_token('=');
5505         add_anchor_token(';');
5506         add_anchor_token('{');
5507
5508         /* declarator is common to both function-definitions and declarations */
5509         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
5510
5511         rem_anchor_token('{');
5512         rem_anchor_token(';');
5513         rem_anchor_token('=');
5514         rem_anchor_token(',');
5515
5516         /* must be a declaration */
5517         switch (token.type) {
5518                 case ',':
5519                 case ';':
5520                 case '=':
5521                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
5522                                         DECL_FLAGS_NONE);
5523                         return;
5524         }
5525
5526         /* must be a function definition */
5527         parse_kr_declaration_list(ndeclaration);
5528
5529         if (token.type != '{') {
5530                 parse_error_expected("while parsing function definition", '{', NULL);
5531                 eat_until_matching_token(';');
5532                 return;
5533         }
5534
5535         assert(is_declaration(ndeclaration));
5536         type_t *const orig_type = ndeclaration->declaration.type;
5537         type_t *      type      = skip_typeref(orig_type);
5538
5539         if (!is_type_function(type)) {
5540                 if (is_type_valid(type)) {
5541                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5542                                type, ndeclaration->base.symbol);
5543                 }
5544                 eat_block();
5545                 return;
5546         } else if (is_typeref(orig_type)) {
5547                 /* §6.9.1:2 */
5548                 errorf(&ndeclaration->base.source_position,
5549                                 "type of function definition '%#T' is a typedef",
5550                                 orig_type, ndeclaration->base.symbol);
5551         }
5552
5553         if (warning.aggregate_return &&
5554             is_type_compound(skip_typeref(type->function.return_type))) {
5555                 warningf(HERE, "function '%Y' returns an aggregate",
5556                          ndeclaration->base.symbol);
5557         }
5558         if (warning.traditional && !type->function.unspecified_parameters) {
5559                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5560                         ndeclaration->base.symbol);
5561         }
5562         if (warning.old_style_definition && type->function.unspecified_parameters) {
5563                 warningf(HERE, "old-style function definition '%Y'",
5564                         ndeclaration->base.symbol);
5565         }
5566
5567         /* §6.7.5.3:14 a function definition with () means no
5568          * parameters (and not unspecified parameters) */
5569         if (type->function.unspecified_parameters &&
5570                         type->function.parameters == NULL) {
5571                 type_t *copy                          = duplicate_type(type);
5572                 copy->function.unspecified_parameters = false;
5573                 type                                  = identify_new_type(copy);
5574
5575                 ndeclaration->declaration.type = type;
5576         }
5577
5578         entity_t *const entity = record_entity(ndeclaration, true);
5579         assert(entity->kind == ENTITY_FUNCTION);
5580         assert(ndeclaration->kind == ENTITY_FUNCTION);
5581
5582         function_t *function = &entity->function;
5583         if (ndeclaration != entity) {
5584                 function->parameters = ndeclaration->function.parameters;
5585         }
5586         assert(is_declaration(entity));
5587         type = skip_typeref(entity->declaration.type);
5588
5589         /* push function parameters and switch scope */
5590         size_t const  top       = environment_top();
5591         scope_t      *old_scope = scope_push(&function->parameters);
5592
5593         entity_t *parameter = function->parameters.entities;
5594         for (; parameter != NULL; parameter = parameter->base.next) {
5595                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
5596                         parameter->base.parent_scope = current_scope;
5597                 }
5598                 assert(parameter->base.parent_scope == NULL
5599                                 || parameter->base.parent_scope == current_scope);
5600                 parameter->base.parent_scope = current_scope;
5601                 if (parameter->base.symbol == NULL) {
5602                         errorf(&parameter->base.source_position, "parameter name omitted");
5603                         continue;
5604                 }
5605                 environment_push(parameter);
5606         }
5607
5608         if (function->statement != NULL) {
5609                 parser_error_multiple_definition(entity, HERE);
5610                 eat_block();
5611         } else {
5612                 /* parse function body */
5613                 int         label_stack_top      = label_top();
5614                 function_t *old_current_function = current_function;
5615                 entity_t   *old_current_entity   = current_entity;
5616                 current_function                 = function;
5617                 current_entity                   = (entity_t*) function;
5618                 current_parent                   = NULL;
5619
5620                 goto_first   = NULL;
5621                 goto_anchor  = &goto_first;
5622                 label_first  = NULL;
5623                 label_anchor = &label_first;
5624
5625                 statement_t *const body = parse_compound_statement(false);
5626                 function->statement = body;
5627                 first_err = true;
5628                 check_labels();
5629                 check_declarations();
5630                 if (warning.return_type      ||
5631                     warning.unreachable_code ||
5632                     (warning.missing_noreturn
5633                      && !(function->base.modifiers & DM_NORETURN))) {
5634                         noreturn_candidate = true;
5635                         check_reachable(body);
5636                         if (warning.unreachable_code)
5637                                 walk_statements(body, check_unreachable, NULL);
5638                         if (warning.missing_noreturn &&
5639                             noreturn_candidate       &&
5640                             !(function->base.modifiers & DM_NORETURN)) {
5641                                 warningf(&body->base.source_position,
5642                                          "function '%#T' is candidate for attribute 'noreturn'",
5643                                          type, entity->base.symbol);
5644                         }
5645                 }
5646
5647                 assert(current_parent   == NULL);
5648                 assert(current_function == function);
5649                 assert(current_entity   == (entity_t*) function);
5650                 current_entity   = old_current_entity;
5651                 current_function = old_current_function;
5652                 label_pop_to(label_stack_top);
5653         }
5654
5655         assert(current_scope == &function->parameters);
5656         scope_pop(old_scope);
5657         environment_pop_to(top);
5658 }
5659
5660 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5661                                   source_position_t *source_position,
5662                                   const symbol_t *symbol)
5663 {
5664         type_t *type = allocate_type_zero(TYPE_BITFIELD);
5665
5666         type->bitfield.base_type       = base_type;
5667         type->bitfield.size_expression = size;
5668
5669         il_size_t bit_size;
5670         type_t *skipped_type = skip_typeref(base_type);
5671         if (!is_type_integer(skipped_type)) {
5672                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5673                        base_type);
5674                 bit_size = 0;
5675         } else {
5676                 bit_size = get_type_size(base_type) * 8;
5677         }
5678
5679         if (is_constant_expression(size)) {
5680                 long v = fold_constant_to_int(size);
5681                 const symbol_t *user_symbol = symbol == NULL ? sym_anonymous : symbol;
5682
5683                 if (v < 0) {
5684                         errorf(source_position, "negative width in bit-field '%Y'",
5685                                user_symbol);
5686                 } else if (v == 0 && symbol != NULL) {
5687                         errorf(source_position, "zero width for bit-field '%Y'",
5688                                user_symbol);
5689                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5690                         errorf(source_position, "width of '%Y' exceeds its type",
5691                                user_symbol);
5692                 } else {
5693                         type->bitfield.bit_size = v;
5694                 }
5695         }
5696
5697         return type;
5698 }
5699
5700 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
5701 {
5702         entity_t *iter = compound->members.entities;
5703         for (; iter != NULL; iter = iter->base.next) {
5704                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5705                         continue;
5706
5707                 if (iter->base.symbol == symbol) {
5708                         return iter;
5709                 } else if (iter->base.symbol == NULL) {
5710                         /* search in anonymous structs and unions */
5711                         type_t *type = skip_typeref(iter->declaration.type);
5712                         if (is_type_compound(type)) {
5713                                 if (find_compound_entry(type->compound.compound, symbol)
5714                                                 != NULL)
5715                                         return iter;
5716                         }
5717                         continue;
5718                 }
5719         }
5720
5721         return NULL;
5722 }
5723
5724 static void check_deprecated(const source_position_t *source_position,
5725                              const entity_t *entity)
5726 {
5727         if (!warning.deprecated_declarations)
5728                 return;
5729         if (!is_declaration(entity))
5730                 return;
5731         if ((entity->declaration.modifiers & DM_DEPRECATED) == 0)
5732                 return;
5733
5734         char const *const prefix = get_entity_kind_name(entity->kind);
5735         const char *deprecated_string
5736                         = get_deprecated_string(entity->declaration.attributes);
5737         if (deprecated_string != NULL) {
5738                 warningf(source_position, "%s '%Y' is deprecated (declared %P): \"%s\"",
5739                                  prefix, entity->base.symbol, &entity->base.source_position,
5740                                  deprecated_string);
5741         } else {
5742                 warningf(source_position, "%s '%Y' is deprecated (declared %P)", prefix,
5743                                  entity->base.symbol, &entity->base.source_position);
5744         }
5745 }
5746
5747
5748 static expression_t *create_select(const source_position_t *pos,
5749                                    expression_t *addr,
5750                                    type_qualifiers_t qualifiers,
5751                                                                    entity_t *entry)
5752 {
5753         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
5754
5755         check_deprecated(pos, entry);
5756
5757         expression_t *select          = allocate_expression_zero(EXPR_SELECT);
5758         select->select.compound       = addr;
5759         select->select.compound_entry = entry;
5760
5761         type_t *entry_type = entry->declaration.type;
5762         type_t *res_type   = get_qualified_type(entry_type, qualifiers);
5763
5764         /* we always do the auto-type conversions; the & and sizeof parser contains
5765          * code to revert this! */
5766         select->base.type = automatic_type_conversion(res_type);
5767         if (res_type->kind == TYPE_BITFIELD) {
5768                 select->base.type = res_type->bitfield.base_type;
5769         }
5770
5771         return select;
5772 }
5773
5774 /**
5775  * Find entry with symbol in compound. Search anonymous structs and unions and
5776  * creates implicit select expressions for them.
5777  * Returns the adress for the innermost compound.
5778  */
5779 static expression_t *find_create_select(const source_position_t *pos,
5780                                         expression_t *addr,
5781                                         type_qualifiers_t qualifiers,
5782                                         compound_t *compound, symbol_t *symbol)
5783 {
5784         entity_t *iter = compound->members.entities;
5785         for (; iter != NULL; iter = iter->base.next) {
5786                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5787                         continue;
5788
5789                 symbol_t *iter_symbol = iter->base.symbol;
5790                 if (iter_symbol == NULL) {
5791                         type_t *type = iter->declaration.type;
5792                         if (type->kind != TYPE_COMPOUND_STRUCT
5793                                         && type->kind != TYPE_COMPOUND_UNION)
5794                                 continue;
5795
5796                         compound_t *sub_compound = type->compound.compound;
5797
5798                         if (find_compound_entry(sub_compound, symbol) == NULL)
5799                                 continue;
5800
5801                         expression_t *sub_addr = create_select(pos, addr, qualifiers, iter);
5802                         sub_addr->base.source_position = *pos;
5803                         sub_addr->select.implicit      = true;
5804                         return find_create_select(pos, sub_addr, qualifiers, sub_compound,
5805                                                   symbol);
5806                 }
5807
5808                 if (iter_symbol == symbol) {
5809                         return create_select(pos, addr, qualifiers, iter);
5810                 }
5811         }
5812
5813         return NULL;
5814 }
5815
5816 static void parse_compound_declarators(compound_t *compound,
5817                 const declaration_specifiers_t *specifiers)
5818 {
5819         do {
5820                 entity_t *entity;
5821
5822                 if (token.type == ':') {
5823                         source_position_t source_position = *HERE;
5824                         next_token();
5825
5826                         type_t *base_type = specifiers->type;
5827                         expression_t *size = parse_constant_expression();
5828
5829                         type_t *type = make_bitfield_type(base_type, size,
5830                                         &source_position, NULL);
5831
5832                         attribute_t  *attributes = parse_attributes(NULL);
5833                         attribute_t **anchor     = &attributes;
5834                         while (*anchor != NULL)
5835                                 anchor = &(*anchor)->next;
5836                         *anchor = specifiers->attributes;
5837
5838                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
5839                         entity->base.namespc                       = NAMESPACE_NORMAL;
5840                         entity->base.source_position               = source_position;
5841                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
5842                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
5843                         entity->declaration.type                   = type;
5844                         entity->declaration.attributes             = attributes;
5845
5846                         if (attributes != NULL) {
5847                                 handle_entity_attributes(attributes, entity);
5848                         }
5849                         append_entity(&compound->members, entity);
5850                 } else {
5851                         entity = parse_declarator(specifiers,
5852                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
5853                         if (entity->kind == ENTITY_TYPEDEF) {
5854                                 errorf(&entity->base.source_position,
5855                                                 "typedef not allowed as compound member");
5856                         } else {
5857                                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
5858
5859                                 /* make sure we don't define a symbol multiple times */
5860                                 symbol_t *symbol = entity->base.symbol;
5861                                 if (symbol != NULL) {
5862                                         entity_t *prev = find_compound_entry(compound, symbol);
5863                                         if (prev != NULL) {
5864                                                 errorf(&entity->base.source_position,
5865                                                                 "multiple declarations of symbol '%Y' (declared %P)",
5866                                                                 symbol, &prev->base.source_position);
5867                                         }
5868                                 }
5869
5870                                 if (token.type == ':') {
5871                                         source_position_t source_position = *HERE;
5872                                         next_token();
5873                                         expression_t *size = parse_constant_expression();
5874
5875                                         type_t *type          = entity->declaration.type;
5876                                         type_t *bitfield_type = make_bitfield_type(type, size,
5877                                                         &source_position, entity->base.symbol);
5878
5879                                         attribute_t *attributes = parse_attributes(NULL);
5880                                         entity->declaration.type = bitfield_type;
5881                                         handle_entity_attributes(attributes, entity);
5882                                 } else {
5883                                         type_t *orig_type = entity->declaration.type;
5884                                         type_t *type      = skip_typeref(orig_type);
5885                                         if (is_type_function(type)) {
5886                                                 errorf(&entity->base.source_position,
5887                                                        "compound member '%Y' must not have function type '%T'",
5888                                                                 entity->base.symbol, orig_type);
5889                                         } else if (is_type_incomplete(type)) {
5890                                                 /* §6.7.2.1:16 flexible array member */
5891                                                 if (!is_type_array(type)       ||
5892                                                                 token.type          != ';' ||
5893                                                                 look_ahead(1)->type != '}') {
5894                                                         errorf(&entity->base.source_position,
5895                                                                "compound member '%Y' has incomplete type '%T'",
5896                                                                         entity->base.symbol, orig_type);
5897                                                 }
5898                                         }
5899                                 }
5900
5901                                 append_entity(&compound->members, entity);
5902                         }
5903                 }
5904         } while (next_if(','));
5905         expect(';', end_error);
5906
5907 end_error:
5908         anonymous_entity = NULL;
5909 }
5910
5911 static void parse_compound_type_entries(compound_t *compound)
5912 {
5913         eat('{');
5914         add_anchor_token('}');
5915
5916         while (token.type != '}') {
5917                 if (token.type == T_EOF) {
5918                         errorf(HERE, "EOF while parsing struct");
5919                         break;
5920                 }
5921                 declaration_specifiers_t specifiers;
5922                 memset(&specifiers, 0, sizeof(specifiers));
5923                 parse_declaration_specifiers(&specifiers);
5924
5925                 parse_compound_declarators(compound, &specifiers);
5926         }
5927         rem_anchor_token('}');
5928         next_token();
5929
5930         /* §6.7.2.1:7 */
5931         compound->complete = true;
5932 }
5933
5934 static type_t *parse_typename(void)
5935 {
5936         declaration_specifiers_t specifiers;
5937         memset(&specifiers, 0, sizeof(specifiers));
5938         parse_declaration_specifiers(&specifiers);
5939         if (specifiers.storage_class != STORAGE_CLASS_NONE
5940                         || specifiers.thread_local) {
5941                 /* TODO: improve error message, user does probably not know what a
5942                  * storage class is...
5943                  */
5944                 errorf(HERE, "typename must not have a storage class");
5945         }
5946
5947         type_t *result = parse_abstract_declarator(specifiers.type);
5948
5949         return result;
5950 }
5951
5952
5953
5954
5955 typedef expression_t* (*parse_expression_function)(void);
5956 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
5957
5958 typedef struct expression_parser_function_t expression_parser_function_t;
5959 struct expression_parser_function_t {
5960         parse_expression_function        parser;
5961         precedence_t                     infix_precedence;
5962         parse_expression_infix_function  infix_parser;
5963 };
5964
5965 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5966
5967 /**
5968  * Prints an error message if an expression was expected but not read
5969  */
5970 static expression_t *expected_expression_error(void)
5971 {
5972         /* skip the error message if the error token was read */
5973         if (token.type != T_ERROR) {
5974                 errorf(HERE, "expected expression, got token %K", &token);
5975         }
5976         next_token();
5977
5978         return create_invalid_expression();
5979 }
5980
5981 static type_t *get_string_type(void)
5982 {
5983         return warning.write_strings ? type_const_char_ptr : type_char_ptr;
5984 }
5985
5986 static type_t *get_wide_string_type(void)
5987 {
5988         return warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5989 }
5990
5991 /**
5992  * Parse a string constant.
5993  */
5994 static expression_t *parse_string_literal(void)
5995 {
5996         source_position_t begin   = token.source_position;
5997         string_t          res     = token.literal;
5998         bool              is_wide = (token.type == T_WIDE_STRING_LITERAL);
5999
6000         next_token();
6001         while (token.type == T_STRING_LITERAL
6002                         || token.type == T_WIDE_STRING_LITERAL) {
6003                 warn_string_concat(&token.source_position);
6004                 res = concat_strings(&res, &token.literal);
6005                 next_token();
6006                 is_wide |= token.type == T_WIDE_STRING_LITERAL;
6007         }
6008
6009         expression_t *literal;
6010         if (is_wide) {
6011                 literal = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6012                 literal->base.type = get_wide_string_type();
6013         } else {
6014                 literal = allocate_expression_zero(EXPR_STRING_LITERAL);
6015                 literal->base.type = get_string_type();
6016         }
6017         literal->base.source_position = begin;
6018         literal->literal.value        = res;
6019
6020         return literal;
6021 }
6022
6023 /**
6024  * Parse a boolean constant.
6025  */
6026 static expression_t *parse_boolean_literal(bool value)
6027 {
6028         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_BOOLEAN);
6029         literal->base.source_position = token.source_position;
6030         literal->base.type            = type_bool;
6031         literal->literal.value.begin  = value ? "true" : "false";
6032         literal->literal.value.size   = value ? 4 : 5;
6033
6034         next_token();
6035         return literal;
6036 }
6037
6038 static void warn_traditional_suffix(void)
6039 {
6040         if (!warning.traditional)
6041                 return;
6042         warningf(&token.source_position, "traditional C rejects the '%Y' suffix",
6043                  token.symbol);
6044 }
6045
6046 static void check_integer_suffix(void)
6047 {
6048         symbol_t *suffix = token.symbol;
6049         if (suffix == NULL)
6050                 return;
6051
6052         bool not_traditional = false;
6053         const char *c = suffix->string;
6054         if (*c == 'l' || *c == 'L') {
6055                 ++c;
6056                 if (*c == *(c-1)) {
6057                         not_traditional = true;
6058                         ++c;
6059                         if (*c == 'u' || *c == 'U') {
6060                                 ++c;
6061                         }
6062                 } else if (*c == 'u' || *c == 'U') {
6063                         not_traditional = true;
6064                         ++c;
6065                 }
6066         } else if (*c == 'u' || *c == 'U') {
6067                 not_traditional = true;
6068                 ++c;
6069                 if (*c == 'l' || *c == 'L') {
6070                         ++c;
6071                         if (*c == *(c-1)) {
6072                                 ++c;
6073                         }
6074                 }
6075         }
6076         if (*c != '\0') {
6077                 errorf(&token.source_position,
6078                        "invalid suffix '%s' on integer constant", suffix->string);
6079         } else if (not_traditional) {
6080                 warn_traditional_suffix();
6081         }
6082 }
6083
6084 static type_t *check_floatingpoint_suffix(void)
6085 {
6086         symbol_t *suffix = token.symbol;
6087         type_t   *type   = type_double;
6088         if (suffix == NULL)
6089                 return type;
6090
6091         bool not_traditional = false;
6092         const char *c = suffix->string;
6093         if (*c == 'f' || *c == 'F') {
6094                 ++c;
6095                 type = type_float;
6096         } else if (*c == 'l' || *c == 'L') {
6097                 ++c;
6098                 type = type_long_double;
6099         }
6100         if (*c != '\0') {
6101                 errorf(&token.source_position,
6102                        "invalid suffix '%s' on floatingpoint constant", suffix->string);
6103         } else if (not_traditional) {
6104                 warn_traditional_suffix();
6105         }
6106
6107         return type;
6108 }
6109
6110 /**
6111  * Parse an integer constant.
6112  */
6113 static expression_t *parse_number_literal(void)
6114 {
6115         expression_kind_t  kind;
6116         type_t            *type;
6117
6118         switch (token.type) {
6119         case T_INTEGER:
6120                 kind = EXPR_LITERAL_INTEGER;
6121                 check_integer_suffix();
6122                 type = type_int;
6123                 break;
6124         case T_INTEGER_OCTAL:
6125                 kind = EXPR_LITERAL_INTEGER_OCTAL;
6126                 check_integer_suffix();
6127                 type = type_int;
6128                 break;
6129         case T_INTEGER_HEXADECIMAL:
6130                 kind = EXPR_LITERAL_INTEGER_HEXADECIMAL;
6131                 check_integer_suffix();
6132                 type = type_int;
6133                 break;
6134         case T_FLOATINGPOINT:
6135                 kind = EXPR_LITERAL_FLOATINGPOINT;
6136                 type = check_floatingpoint_suffix();
6137                 break;
6138         case T_FLOATINGPOINT_HEXADECIMAL:
6139                 kind = EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL;
6140                 type = check_floatingpoint_suffix();
6141                 break;
6142         default:
6143                 panic("unexpected token type in parse_number_literal");
6144         }
6145
6146         expression_t *literal = allocate_expression_zero(kind);
6147         literal->base.source_position = token.source_position;
6148         literal->base.type            = type;
6149         literal->literal.value        = token.literal;
6150         literal->literal.suffix       = token.symbol;
6151         next_token();
6152
6153         /* integer type depends on the size of the number and the size
6154          * representable by the types. The backend/codegeneration has to determine
6155          * that
6156          */
6157         determine_literal_type(&literal->literal);
6158         return literal;
6159 }
6160
6161 /**
6162  * Parse a character constant.
6163  */
6164 static expression_t *parse_character_constant(void)
6165 {
6166         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_CHARACTER);
6167         literal->base.source_position = token.source_position;
6168         literal->base.type            = c_mode & _CXX ? type_char : type_int;
6169         literal->literal.value        = token.literal;
6170
6171         size_t len = literal->literal.value.size;
6172         if (len != 1) {
6173                 if (!GNU_MODE && !(c_mode & _C99)) {
6174                         errorf(HERE, "more than 1 character in character constant");
6175                 } else if (warning.multichar) {
6176                         literal->base.type = type_int;
6177                         warningf(HERE, "multi-character character constant");
6178                 }
6179         }
6180
6181         next_token();
6182         return literal;
6183 }
6184
6185 /**
6186  * Parse a wide character constant.
6187  */
6188 static expression_t *parse_wide_character_constant(void)
6189 {
6190         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_WIDE_CHARACTER);
6191         literal->base.source_position = token.source_position;
6192         literal->base.type            = type_int;
6193         literal->literal.value        = token.literal;
6194
6195         size_t len = wstrlen(&literal->literal.value);
6196         if (len != 1) {
6197                 warningf(HERE, "multi-character character constant");
6198         }
6199
6200         next_token();
6201         return literal;
6202 }
6203
6204 static entity_t *create_implicit_function(symbol_t *symbol,
6205                 const source_position_t *source_position)
6206 {
6207         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6208         ntype->function.return_type            = type_int;
6209         ntype->function.unspecified_parameters = true;
6210         ntype->function.linkage                = LINKAGE_C;
6211         type_t *type                           = identify_new_type(ntype);
6212
6213         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6214         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6215         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6216         entity->declaration.type                   = type;
6217         entity->declaration.implicit               = true;
6218         entity->base.symbol                        = symbol;
6219         entity->base.source_position               = *source_position;
6220
6221         if (current_scope != NULL) {
6222                 bool strict_prototypes_old = warning.strict_prototypes;
6223                 warning.strict_prototypes  = false;
6224                 record_entity(entity, false);
6225                 warning.strict_prototypes = strict_prototypes_old;
6226         }
6227
6228         return entity;
6229 }
6230
6231 /**
6232  * Performs automatic type cast as described in §6.3.2.1.
6233  *
6234  * @param orig_type  the original type
6235  */
6236 static type_t *automatic_type_conversion(type_t *orig_type)
6237 {
6238         type_t *type = skip_typeref(orig_type);
6239         if (is_type_array(type)) {
6240                 array_type_t *array_type   = &type->array;
6241                 type_t       *element_type = array_type->element_type;
6242                 unsigned      qualifiers   = array_type->base.qualifiers;
6243
6244                 return make_pointer_type(element_type, qualifiers);
6245         }
6246
6247         if (is_type_function(type)) {
6248                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6249         }
6250
6251         return orig_type;
6252 }
6253
6254 /**
6255  * reverts the automatic casts of array to pointer types and function
6256  * to function-pointer types as defined §6.3.2.1
6257  */
6258 type_t *revert_automatic_type_conversion(const expression_t *expression)
6259 {
6260         switch (expression->kind) {
6261         case EXPR_REFERENCE: {
6262                 entity_t *entity = expression->reference.entity;
6263                 if (is_declaration(entity)) {
6264                         return entity->declaration.type;
6265                 } else if (entity->kind == ENTITY_ENUM_VALUE) {
6266                         return entity->enum_value.enum_type;
6267                 } else {
6268                         panic("no declaration or enum in reference");
6269                 }
6270         }
6271
6272         case EXPR_SELECT: {
6273                 entity_t *entity = expression->select.compound_entry;
6274                 assert(is_declaration(entity));
6275                 type_t   *type   = entity->declaration.type;
6276                 return get_qualified_type(type,
6277                                 expression->base.type->base.qualifiers);
6278         }
6279
6280         case EXPR_UNARY_DEREFERENCE: {
6281                 const expression_t *const value = expression->unary.value;
6282                 type_t             *const type  = skip_typeref(value->base.type);
6283                 if (!is_type_pointer(type))
6284                         return type_error_type;
6285                 return type->pointer.points_to;
6286         }
6287
6288         case EXPR_ARRAY_ACCESS: {
6289                 const expression_t *array_ref = expression->array_access.array_ref;
6290                 type_t             *type_left = skip_typeref(array_ref->base.type);
6291                 if (!is_type_pointer(type_left))
6292                         return type_error_type;
6293                 return type_left->pointer.points_to;
6294         }
6295
6296         case EXPR_STRING_LITERAL: {
6297                 size_t size = expression->string_literal.value.size;
6298                 return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6299         }
6300
6301         case EXPR_WIDE_STRING_LITERAL: {
6302                 size_t size = wstrlen(&expression->string_literal.value);
6303                 return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6304         }
6305
6306         case EXPR_COMPOUND_LITERAL:
6307                 return expression->compound_literal.type;
6308
6309         default:
6310                 break;
6311         }
6312         return expression->base.type;
6313 }
6314
6315 /**
6316  * Find an entity matching a symbol in a scope.
6317  * Uses current scope if scope is NULL
6318  */
6319 static entity_t *lookup_entity(const scope_t *scope, symbol_t *symbol,
6320                                namespace_tag_t namespc)
6321 {
6322         if (scope == NULL) {
6323                 return get_entity(symbol, namespc);
6324         }
6325
6326         /* we should optimize here, if scope grows above a certain size we should
6327            construct a hashmap here... */
6328         entity_t *entity = scope->entities;
6329         for ( ; entity != NULL; entity = entity->base.next) {
6330                 if (entity->base.symbol == symbol && entity->base.namespc == namespc)
6331                         break;
6332         }
6333
6334         return entity;
6335 }
6336
6337 static entity_t *parse_qualified_identifier(void)
6338 {
6339         /* namespace containing the symbol */
6340         symbol_t          *symbol;
6341         source_position_t  pos;
6342         const scope_t     *lookup_scope = NULL;
6343
6344         if (next_if(T_COLONCOLON))
6345                 lookup_scope = &unit->scope;
6346
6347         entity_t *entity;
6348         while (true) {
6349                 if (token.type != T_IDENTIFIER) {
6350                         parse_error_expected("while parsing identifier", T_IDENTIFIER, NULL);
6351                         return create_error_entity(sym_anonymous, ENTITY_VARIABLE);
6352                 }
6353                 symbol = token.symbol;
6354                 pos    = *HERE;
6355                 next_token();
6356
6357                 /* lookup entity */
6358                 entity = lookup_entity(lookup_scope, symbol, NAMESPACE_NORMAL);
6359
6360                 if (!next_if(T_COLONCOLON))
6361                         break;
6362
6363                 switch (entity->kind) {
6364                 case ENTITY_NAMESPACE:
6365                         lookup_scope = &entity->namespacee.members;
6366                         break;
6367                 case ENTITY_STRUCT:
6368                 case ENTITY_UNION:
6369                 case ENTITY_CLASS:
6370                         lookup_scope = &entity->compound.members;
6371                         break;
6372                 default:
6373                         errorf(&pos, "'%Y' must be a namespace, class, struct or union (but is a %s)",
6374                                symbol, get_entity_kind_name(entity->kind));
6375                         goto end_error;
6376                 }
6377         }
6378
6379         if (entity == NULL) {
6380                 if (!strict_mode && token.type == '(') {
6381                         /* an implicitly declared function */
6382                         if (warning.error_implicit_function_declaration) {
6383                                 errorf(&pos, "implicit declaration of function '%Y'", symbol);
6384                         } else if (warning.implicit_function_declaration) {
6385                                 warningf(&pos, "implicit declaration of function '%Y'", symbol);
6386                         }
6387
6388                         entity = create_implicit_function(symbol, &pos);
6389                 } else {
6390                         errorf(&pos, "unknown identifier '%Y' found.", symbol);
6391                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6392                 }
6393         }
6394
6395         return entity;
6396
6397 end_error:
6398         /* skip further qualifications */
6399         while (next_if(T_IDENTIFIER) && next_if(T_COLONCOLON)) {}
6400
6401         return create_error_entity(sym_anonymous, ENTITY_VARIABLE);
6402 }
6403
6404 static expression_t *parse_reference(void)
6405 {
6406         entity_t *entity = parse_qualified_identifier();
6407
6408         type_t *orig_type;
6409         if (is_declaration(entity)) {
6410                 orig_type = entity->declaration.type;
6411         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6412                 orig_type = entity->enum_value.enum_type;
6413         } else {
6414                 panic("expected declaration or enum value in reference");
6415         }
6416
6417         /* we always do the auto-type conversions; the & and sizeof parser contains
6418          * code to revert this! */
6419         type_t *type = automatic_type_conversion(orig_type);
6420
6421         expression_kind_t kind = EXPR_REFERENCE;
6422         if (entity->kind == ENTITY_ENUM_VALUE)
6423                 kind = EXPR_REFERENCE_ENUM_VALUE;
6424
6425         expression_t *expression     = allocate_expression_zero(kind);
6426         expression->reference.entity = entity;
6427         expression->base.type        = type;
6428
6429         /* this declaration is used */
6430         if (is_declaration(entity)) {
6431                 entity->declaration.used = true;
6432         }
6433
6434         if (entity->base.parent_scope != file_scope
6435                 && (current_function != NULL
6436                         && entity->base.parent_scope->depth < current_function->parameters.depth)
6437                 && (entity->kind == ENTITY_VARIABLE || entity->kind == ENTITY_PARAMETER)) {
6438                 if (entity->kind == ENTITY_VARIABLE) {
6439                         /* access of a variable from an outer function */
6440                         entity->variable.address_taken = true;
6441                 } else if (entity->kind == ENTITY_PARAMETER) {
6442                         entity->parameter.address_taken = true;
6443                 }
6444                 current_function->need_closure = true;
6445         }
6446
6447         check_deprecated(HERE, entity);
6448
6449         if (warning.init_self && entity == current_init_decl && !in_type_prop
6450             && entity->kind == ENTITY_VARIABLE) {
6451                 current_init_decl = NULL;
6452                 warningf(HERE, "variable '%#T' is initialized by itself",
6453                          entity->declaration.type, entity->base.symbol);
6454         }
6455
6456         return expression;
6457 }
6458
6459 static bool semantic_cast(expression_t *cast)
6460 {
6461         expression_t            *expression      = cast->unary.value;
6462         type_t                  *orig_dest_type  = cast->base.type;
6463         type_t                  *orig_type_right = expression->base.type;
6464         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6465         type_t            const *src_type        = skip_typeref(orig_type_right);
6466         source_position_t const *pos             = &cast->base.source_position;
6467
6468         /* §6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6469         if (dst_type == type_void)
6470                 return true;
6471
6472         /* only integer and pointer can be casted to pointer */
6473         if (is_type_pointer(dst_type)  &&
6474             !is_type_pointer(src_type) &&
6475             !is_type_integer(src_type) &&
6476             is_type_valid(src_type)) {
6477                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6478                 return false;
6479         }
6480
6481         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6482                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6483                 return false;
6484         }
6485
6486         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6487                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6488                 return false;
6489         }
6490
6491         if (warning.cast_qual &&
6492             is_type_pointer(src_type) &&
6493             is_type_pointer(dst_type)) {
6494                 type_t *src = skip_typeref(src_type->pointer.points_to);
6495                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6496                 unsigned missing_qualifiers =
6497                         src->base.qualifiers & ~dst->base.qualifiers;
6498                 if (missing_qualifiers != 0) {
6499                         warningf(pos,
6500                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6501                                  missing_qualifiers, orig_type_right);
6502                 }
6503         }
6504         return true;
6505 }
6506
6507 static expression_t *parse_compound_literal(type_t *type)
6508 {
6509         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6510
6511         parse_initializer_env_t env;
6512         env.type             = type;
6513         env.entity           = NULL;
6514         env.must_be_constant = false;
6515         initializer_t *initializer = parse_initializer(&env);
6516         type = env.type;
6517
6518         expression->compound_literal.initializer = initializer;
6519         expression->compound_literal.type        = type;
6520         expression->base.type                    = automatic_type_conversion(type);
6521
6522         return expression;
6523 }
6524
6525 /**
6526  * Parse a cast expression.
6527  */
6528 static expression_t *parse_cast(void)
6529 {
6530         add_anchor_token(')');
6531
6532         source_position_t source_position = token.source_position;
6533
6534         type_t *type = parse_typename();
6535
6536         rem_anchor_token(')');
6537         expect(')', end_error);
6538
6539         if (token.type == '{') {
6540                 return parse_compound_literal(type);
6541         }
6542
6543         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6544         cast->base.source_position = source_position;
6545
6546         expression_t *value = parse_subexpression(PREC_CAST);
6547         cast->base.type   = type;
6548         cast->unary.value = value;
6549
6550         if (! semantic_cast(cast)) {
6551                 /* TODO: record the error in the AST. else it is impossible to detect it */
6552         }
6553
6554         return cast;
6555 end_error:
6556         return create_invalid_expression();
6557 }
6558
6559 /**
6560  * Parse a statement expression.
6561  */
6562 static expression_t *parse_statement_expression(void)
6563 {
6564         add_anchor_token(')');
6565
6566         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6567
6568         statement_t *statement          = parse_compound_statement(true);
6569         statement->compound.stmt_expr   = true;
6570         expression->statement.statement = statement;
6571
6572         /* find last statement and use its type */
6573         type_t *type = type_void;
6574         const statement_t *stmt = statement->compound.statements;
6575         if (stmt != NULL) {
6576                 while (stmt->base.next != NULL)
6577                         stmt = stmt->base.next;
6578
6579                 if (stmt->kind == STATEMENT_EXPRESSION) {
6580                         type = stmt->expression.expression->base.type;
6581                 }
6582         } else if (warning.other) {
6583                 warningf(&expression->base.source_position, "empty statement expression ({})");
6584         }
6585         expression->base.type = type;
6586
6587         rem_anchor_token(')');
6588         expect(')', end_error);
6589
6590 end_error:
6591         return expression;
6592 }
6593
6594 /**
6595  * Parse a parenthesized expression.
6596  */
6597 static expression_t *parse_parenthesized_expression(void)
6598 {
6599         eat('(');
6600
6601         switch (token.type) {
6602         case '{':
6603                 /* gcc extension: a statement expression */
6604                 return parse_statement_expression();
6605
6606         TYPE_QUALIFIERS
6607         TYPE_SPECIFIERS
6608                 return parse_cast();
6609         case T_IDENTIFIER:
6610                 if (is_typedef_symbol(token.symbol)) {
6611                         return parse_cast();
6612                 }
6613         }
6614
6615         add_anchor_token(')');
6616         expression_t *result = parse_expression();
6617         result->base.parenthesized = true;
6618         rem_anchor_token(')');
6619         expect(')', end_error);
6620
6621 end_error:
6622         return result;
6623 }
6624
6625 static expression_t *parse_function_keyword(void)
6626 {
6627         /* TODO */
6628
6629         if (current_function == NULL) {
6630                 errorf(HERE, "'__func__' used outside of a function");
6631         }
6632
6633         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6634         expression->base.type     = type_char_ptr;
6635         expression->funcname.kind = FUNCNAME_FUNCTION;
6636
6637         next_token();
6638
6639         return expression;
6640 }
6641
6642 static expression_t *parse_pretty_function_keyword(void)
6643 {
6644         if (current_function == NULL) {
6645                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6646         }
6647
6648         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6649         expression->base.type     = type_char_ptr;
6650         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6651
6652         eat(T___PRETTY_FUNCTION__);
6653
6654         return expression;
6655 }
6656
6657 static expression_t *parse_funcsig_keyword(void)
6658 {
6659         if (current_function == NULL) {
6660                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6661         }
6662
6663         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6664         expression->base.type     = type_char_ptr;
6665         expression->funcname.kind = FUNCNAME_FUNCSIG;
6666
6667         eat(T___FUNCSIG__);
6668
6669         return expression;
6670 }
6671
6672 static expression_t *parse_funcdname_keyword(void)
6673 {
6674         if (current_function == NULL) {
6675                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6676         }
6677
6678         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6679         expression->base.type     = type_char_ptr;
6680         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6681
6682         eat(T___FUNCDNAME__);
6683
6684         return expression;
6685 }
6686
6687 static designator_t *parse_designator(void)
6688 {
6689         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6690         result->source_position = *HERE;
6691
6692         if (token.type != T_IDENTIFIER) {
6693                 parse_error_expected("while parsing member designator",
6694                                      T_IDENTIFIER, NULL);
6695                 return NULL;
6696         }
6697         result->symbol = token.symbol;
6698         next_token();
6699
6700         designator_t *last_designator = result;
6701         while (true) {
6702                 if (next_if('.')) {
6703                         if (token.type != T_IDENTIFIER) {
6704                                 parse_error_expected("while parsing member designator",
6705                                                      T_IDENTIFIER, NULL);
6706                                 return NULL;
6707                         }
6708                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6709                         designator->source_position = *HERE;
6710                         designator->symbol          = token.symbol;
6711                         next_token();
6712
6713                         last_designator->next = designator;
6714                         last_designator       = designator;
6715                         continue;
6716                 }
6717                 if (next_if('[')) {
6718                         add_anchor_token(']');
6719                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6720                         designator->source_position = *HERE;
6721                         designator->array_index     = parse_expression();
6722                         rem_anchor_token(']');
6723                         expect(']', end_error);
6724                         if (designator->array_index == NULL) {
6725                                 return NULL;
6726                         }
6727
6728                         last_designator->next = designator;
6729                         last_designator       = designator;
6730                         continue;
6731                 }
6732                 break;
6733         }
6734
6735         return result;
6736 end_error:
6737         return NULL;
6738 }
6739
6740 /**
6741  * Parse the __builtin_offsetof() expression.
6742  */
6743 static expression_t *parse_offsetof(void)
6744 {
6745         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6746         expression->base.type    = type_size_t;
6747
6748         eat(T___builtin_offsetof);
6749
6750         expect('(', end_error);
6751         add_anchor_token(',');
6752         type_t *type = parse_typename();
6753         rem_anchor_token(',');
6754         expect(',', end_error);
6755         add_anchor_token(')');
6756         designator_t *designator = parse_designator();
6757         rem_anchor_token(')');
6758         expect(')', end_error);
6759
6760         expression->offsetofe.type       = type;
6761         expression->offsetofe.designator = designator;
6762
6763         type_path_t path;
6764         memset(&path, 0, sizeof(path));
6765         path.top_type = type;
6766         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6767
6768         descend_into_subtype(&path);
6769
6770         if (!walk_designator(&path, designator, true)) {
6771                 return create_invalid_expression();
6772         }
6773
6774         DEL_ARR_F(path.path);
6775
6776         return expression;
6777 end_error:
6778         return create_invalid_expression();
6779 }
6780
6781 /**
6782  * Parses a _builtin_va_start() expression.
6783  */
6784 static expression_t *parse_va_start(void)
6785 {
6786         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6787
6788         eat(T___builtin_va_start);
6789
6790         expect('(', end_error);
6791         add_anchor_token(',');
6792         expression->va_starte.ap = parse_assignment_expression();
6793         rem_anchor_token(',');
6794         expect(',', end_error);
6795         expression_t *const expr = parse_assignment_expression();
6796         if (expr->kind == EXPR_REFERENCE) {
6797                 entity_t *const entity = expr->reference.entity;
6798                 if (!current_function->base.type->function.variadic) {
6799                         errorf(&expr->base.source_position,
6800                                         "'va_start' used in non-variadic function");
6801                 } else if (entity->base.parent_scope != &current_function->parameters ||
6802                                 entity->base.next != NULL ||
6803                                 entity->kind != ENTITY_PARAMETER) {
6804                         errorf(&expr->base.source_position,
6805                                "second argument of 'va_start' must be last parameter of the current function");
6806                 } else {
6807                         expression->va_starte.parameter = &entity->variable;
6808                 }
6809                 expect(')', end_error);
6810                 return expression;
6811         }
6812         expect(')', end_error);
6813 end_error:
6814         return create_invalid_expression();
6815 }
6816
6817 /**
6818  * Parses a __builtin_va_arg() expression.
6819  */
6820 static expression_t *parse_va_arg(void)
6821 {
6822         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6823
6824         eat(T___builtin_va_arg);
6825
6826         expect('(', end_error);
6827         call_argument_t ap;
6828         ap.expression = parse_assignment_expression();
6829         expression->va_arge.ap = ap.expression;
6830         check_call_argument(type_valist, &ap, 1);
6831
6832         expect(',', end_error);
6833         expression->base.type = parse_typename();
6834         expect(')', end_error);
6835
6836         return expression;
6837 end_error:
6838         return create_invalid_expression();
6839 }
6840
6841 /**
6842  * Parses a __builtin_va_copy() expression.
6843  */
6844 static expression_t *parse_va_copy(void)
6845 {
6846         expression_t *expression = allocate_expression_zero(EXPR_VA_COPY);
6847
6848         eat(T___builtin_va_copy);
6849
6850         expect('(', end_error);
6851         expression_t *dst = parse_assignment_expression();
6852         assign_error_t error = semantic_assign(type_valist, dst);
6853         report_assign_error(error, type_valist, dst, "call argument 1",
6854                             &dst->base.source_position);
6855         expression->va_copye.dst = dst;
6856
6857         expect(',', end_error);
6858
6859         call_argument_t src;
6860         src.expression = parse_assignment_expression();
6861         check_call_argument(type_valist, &src, 2);
6862         expression->va_copye.src = src.expression;
6863         expect(')', end_error);
6864
6865         return expression;
6866 end_error:
6867         return create_invalid_expression();
6868 }
6869
6870 /**
6871  * Parses a __builtin_constant_p() expression.
6872  */
6873 static expression_t *parse_builtin_constant(void)
6874 {
6875         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6876
6877         eat(T___builtin_constant_p);
6878
6879         expect('(', end_error);
6880         add_anchor_token(')');
6881         expression->builtin_constant.value = parse_assignment_expression();
6882         rem_anchor_token(')');
6883         expect(')', end_error);
6884         expression->base.type = type_int;
6885
6886         return expression;
6887 end_error:
6888         return create_invalid_expression();
6889 }
6890
6891 /**
6892  * Parses a __builtin_types_compatible_p() expression.
6893  */
6894 static expression_t *parse_builtin_types_compatible(void)
6895 {
6896         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_TYPES_COMPATIBLE_P);
6897
6898         eat(T___builtin_types_compatible_p);
6899
6900         expect('(', end_error);
6901         add_anchor_token(')');
6902         add_anchor_token(',');
6903         expression->builtin_types_compatible.left = parse_typename();
6904         rem_anchor_token(',');
6905         expect(',', end_error);
6906         expression->builtin_types_compatible.right = parse_typename();
6907         rem_anchor_token(')');
6908         expect(')', end_error);
6909         expression->base.type = type_int;
6910
6911         return expression;
6912 end_error:
6913         return create_invalid_expression();
6914 }
6915
6916 /**
6917  * Parses a __builtin_is_*() compare expression.
6918  */
6919 static expression_t *parse_compare_builtin(void)
6920 {
6921         expression_t *expression;
6922
6923         switch (token.type) {
6924         case T___builtin_isgreater:
6925                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6926                 break;
6927         case T___builtin_isgreaterequal:
6928                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6929                 break;
6930         case T___builtin_isless:
6931                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6932                 break;
6933         case T___builtin_islessequal:
6934                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6935                 break;
6936         case T___builtin_islessgreater:
6937                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6938                 break;
6939         case T___builtin_isunordered:
6940                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6941                 break;
6942         default:
6943                 internal_errorf(HERE, "invalid compare builtin found");
6944         }
6945         expression->base.source_position = *HERE;
6946         next_token();
6947
6948         expect('(', end_error);
6949         expression->binary.left = parse_assignment_expression();
6950         expect(',', end_error);
6951         expression->binary.right = parse_assignment_expression();
6952         expect(')', end_error);
6953
6954         type_t *const orig_type_left  = expression->binary.left->base.type;
6955         type_t *const orig_type_right = expression->binary.right->base.type;
6956
6957         type_t *const type_left  = skip_typeref(orig_type_left);
6958         type_t *const type_right = skip_typeref(orig_type_right);
6959         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6960                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6961                         type_error_incompatible("invalid operands in comparison",
6962                                 &expression->base.source_position, orig_type_left, orig_type_right);
6963                 }
6964         } else {
6965                 semantic_comparison(&expression->binary);
6966         }
6967
6968         return expression;
6969 end_error:
6970         return create_invalid_expression();
6971 }
6972
6973 /**
6974  * Parses a MS assume() expression.
6975  */
6976 static expression_t *parse_assume(void)
6977 {
6978         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
6979
6980         eat(T__assume);
6981
6982         expect('(', end_error);
6983         add_anchor_token(')');
6984         expression->unary.value = parse_assignment_expression();
6985         rem_anchor_token(')');
6986         expect(')', end_error);
6987
6988         expression->base.type = type_void;
6989         return expression;
6990 end_error:
6991         return create_invalid_expression();
6992 }
6993
6994 /**
6995  * Return the declaration for a given label symbol or create a new one.
6996  *
6997  * @param symbol  the symbol of the label
6998  */
6999 static label_t *get_label(symbol_t *symbol)
7000 {
7001         entity_t *label;
7002         assert(current_function != NULL);
7003
7004         label = get_entity(symbol, NAMESPACE_LABEL);
7005         /* if we found a local label, we already created the declaration */
7006         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7007                 if (label->base.parent_scope != current_scope) {
7008                         assert(label->base.parent_scope->depth < current_scope->depth);
7009                         current_function->goto_to_outer = true;
7010                 }
7011                 return &label->label;
7012         }
7013
7014         label = get_entity(symbol, NAMESPACE_LABEL);
7015         /* if we found a label in the same function, then we already created the
7016          * declaration */
7017         if (label != NULL
7018                         && label->base.parent_scope == &current_function->parameters) {
7019                 return &label->label;
7020         }
7021
7022         /* otherwise we need to create a new one */
7023         label               = allocate_entity_zero(ENTITY_LABEL);
7024         label->base.namespc = NAMESPACE_LABEL;
7025         label->base.symbol  = symbol;
7026
7027         label_push(label);
7028
7029         return &label->label;
7030 }
7031
7032 /**
7033  * Parses a GNU && label address expression.
7034  */
7035 static expression_t *parse_label_address(void)
7036 {
7037         source_position_t source_position = token.source_position;
7038         eat(T_ANDAND);
7039         if (token.type != T_IDENTIFIER) {
7040                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7041                 goto end_error;
7042         }
7043         symbol_t *symbol = token.symbol;
7044         next_token();
7045
7046         label_t *label       = get_label(symbol);
7047         label->used          = true;
7048         label->address_taken = true;
7049
7050         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7051         expression->base.source_position = source_position;
7052
7053         /* label address is threaten as a void pointer */
7054         expression->base.type           = type_void_ptr;
7055         expression->label_address.label = label;
7056         return expression;
7057 end_error:
7058         return create_invalid_expression();
7059 }
7060
7061 /**
7062  * Parse a microsoft __noop expression.
7063  */
7064 static expression_t *parse_noop_expression(void)
7065 {
7066         /* the result is a (int)0 */
7067         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_MS_NOOP);
7068         literal->base.type            = type_int;
7069         literal->base.source_position = token.source_position;
7070         literal->literal.value.begin  = "__noop";
7071         literal->literal.value.size   = 6;
7072
7073         eat(T___noop);
7074
7075         if (token.type == '(') {
7076                 /* parse arguments */
7077                 eat('(');
7078                 add_anchor_token(')');
7079                 add_anchor_token(',');
7080
7081                 if (token.type != ')') do {
7082                         (void)parse_assignment_expression();
7083                 } while (next_if(','));
7084         }
7085         rem_anchor_token(',');
7086         rem_anchor_token(')');
7087         expect(')', end_error);
7088
7089 end_error:
7090         return literal;
7091 }
7092
7093 /**
7094  * Parses a primary expression.
7095  */
7096 static expression_t *parse_primary_expression(void)
7097 {
7098         switch (token.type) {
7099         case T_false:                        return parse_boolean_literal(false);
7100         case T_true:                         return parse_boolean_literal(true);
7101         case T_INTEGER:
7102         case T_INTEGER_OCTAL:
7103         case T_INTEGER_HEXADECIMAL:
7104         case T_FLOATINGPOINT:
7105         case T_FLOATINGPOINT_HEXADECIMAL:    return parse_number_literal();
7106         case T_CHARACTER_CONSTANT:           return parse_character_constant();
7107         case T_WIDE_CHARACTER_CONSTANT:      return parse_wide_character_constant();
7108         case T_STRING_LITERAL:
7109         case T_WIDE_STRING_LITERAL:          return parse_string_literal();
7110         case T___FUNCTION__:
7111         case T___func__:                     return parse_function_keyword();
7112         case T___PRETTY_FUNCTION__:          return parse_pretty_function_keyword();
7113         case T___FUNCSIG__:                  return parse_funcsig_keyword();
7114         case T___FUNCDNAME__:                return parse_funcdname_keyword();
7115         case T___builtin_offsetof:           return parse_offsetof();
7116         case T___builtin_va_start:           return parse_va_start();
7117         case T___builtin_va_arg:             return parse_va_arg();
7118         case T___builtin_va_copy:            return parse_va_copy();
7119         case T___builtin_isgreater:
7120         case T___builtin_isgreaterequal:
7121         case T___builtin_isless:
7122         case T___builtin_islessequal:
7123         case T___builtin_islessgreater:
7124         case T___builtin_isunordered:        return parse_compare_builtin();
7125         case T___builtin_constant_p:         return parse_builtin_constant();
7126         case T___builtin_types_compatible_p: return parse_builtin_types_compatible();
7127         case T__assume:                      return parse_assume();
7128         case T_ANDAND:
7129                 if (GNU_MODE)
7130                         return parse_label_address();
7131                 break;
7132
7133         case '(':                            return parse_parenthesized_expression();
7134         case T___noop:                       return parse_noop_expression();
7135
7136         /* Gracefully handle type names while parsing expressions. */
7137         case T_COLONCOLON:
7138                 return parse_reference();
7139         case T_IDENTIFIER:
7140                 if (!is_typedef_symbol(token.symbol)) {
7141                         return parse_reference();
7142                 }
7143                 /* FALLTHROUGH */
7144         TYPENAME_START {
7145                 source_position_t  const pos  = *HERE;
7146                 type_t const      *const type = parse_typename();
7147                 errorf(&pos, "encountered type '%T' while parsing expression", type);
7148                 return create_invalid_expression();
7149         }
7150         }
7151
7152         errorf(HERE, "unexpected token %K, expected an expression", &token);
7153         return create_invalid_expression();
7154 }
7155
7156 /**
7157  * Check if the expression has the character type and issue a warning then.
7158  */
7159 static void check_for_char_index_type(const expression_t *expression)
7160 {
7161         type_t       *const type      = expression->base.type;
7162         const type_t *const base_type = skip_typeref(type);
7163
7164         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7165                         warning.char_subscripts) {
7166                 warningf(&expression->base.source_position,
7167                          "array subscript has type '%T'", type);
7168         }
7169 }
7170
7171 static expression_t *parse_array_expression(expression_t *left)
7172 {
7173         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7174
7175         eat('[');
7176         add_anchor_token(']');
7177
7178         expression_t *inside = parse_expression();
7179
7180         type_t *const orig_type_left   = left->base.type;
7181         type_t *const orig_type_inside = inside->base.type;
7182
7183         type_t *const type_left   = skip_typeref(orig_type_left);
7184         type_t *const type_inside = skip_typeref(orig_type_inside);
7185
7186         type_t                    *return_type;
7187         array_access_expression_t *array_access = &expression->array_access;
7188         if (is_type_pointer(type_left)) {
7189                 return_type             = type_left->pointer.points_to;
7190                 array_access->array_ref = left;
7191                 array_access->index     = inside;
7192                 check_for_char_index_type(inside);
7193         } else if (is_type_pointer(type_inside)) {
7194                 return_type             = type_inside->pointer.points_to;
7195                 array_access->array_ref = inside;
7196                 array_access->index     = left;
7197                 array_access->flipped   = true;
7198                 check_for_char_index_type(left);
7199         } else {
7200                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7201                         errorf(HERE,
7202                                 "array access on object with non-pointer types '%T', '%T'",
7203                                 orig_type_left, orig_type_inside);
7204                 }
7205                 return_type             = type_error_type;
7206                 array_access->array_ref = left;
7207                 array_access->index     = inside;
7208         }
7209
7210         expression->base.type = automatic_type_conversion(return_type);
7211
7212         rem_anchor_token(']');
7213         expect(']', end_error);
7214 end_error:
7215         return expression;
7216 }
7217
7218 static expression_t *parse_typeprop(expression_kind_t const kind)
7219 {
7220         expression_t  *tp_expression = allocate_expression_zero(kind);
7221         tp_expression->base.type     = type_size_t;
7222
7223         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7224
7225         /* we only refer to a type property, mark this case */
7226         bool old     = in_type_prop;
7227         in_type_prop = true;
7228
7229         type_t       *orig_type;
7230         expression_t *expression;
7231         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7232                 next_token();
7233                 add_anchor_token(')');
7234                 orig_type = parse_typename();
7235                 rem_anchor_token(')');
7236                 expect(')', end_error);
7237
7238                 if (token.type == '{') {
7239                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7240                          * starting with a compound literal */
7241                         expression = parse_compound_literal(orig_type);
7242                         goto typeprop_expression;
7243                 }
7244         } else {
7245                 expression = parse_subexpression(PREC_UNARY);
7246
7247 typeprop_expression:
7248                 tp_expression->typeprop.tp_expression = expression;
7249
7250                 orig_type = revert_automatic_type_conversion(expression);
7251                 expression->base.type = orig_type;
7252         }
7253
7254         tp_expression->typeprop.type   = orig_type;
7255         type_t const* const type       = skip_typeref(orig_type);
7256         char   const* const wrong_type =
7257                 GNU_MODE && is_type_atomic(type, ATOMIC_TYPE_VOID) ? NULL                  :
7258                 is_type_incomplete(type)                           ? "incomplete"          :
7259                 type->kind == TYPE_FUNCTION                        ? "function designator" :
7260                 type->kind == TYPE_BITFIELD                        ? "bitfield"            :
7261                 NULL;
7262         if (wrong_type != NULL) {
7263                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7264                 errorf(&tp_expression->base.source_position,
7265                                 "operand of %s expression must not be of %s type '%T'",
7266                                 what, wrong_type, orig_type);
7267         }
7268
7269 end_error:
7270         in_type_prop = old;
7271         return tp_expression;
7272 }
7273
7274 static expression_t *parse_sizeof(void)
7275 {
7276         return parse_typeprop(EXPR_SIZEOF);
7277 }
7278
7279 static expression_t *parse_alignof(void)
7280 {
7281         return parse_typeprop(EXPR_ALIGNOF);
7282 }
7283
7284 static expression_t *parse_select_expression(expression_t *addr)
7285 {
7286         assert(token.type == '.' || token.type == T_MINUSGREATER);
7287         bool select_left_arrow = (token.type == T_MINUSGREATER);
7288         next_token();
7289
7290         if (token.type != T_IDENTIFIER) {
7291                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7292                 return create_invalid_expression();
7293         }
7294         symbol_t *symbol = token.symbol;
7295         next_token();
7296
7297         type_t *const orig_type = addr->base.type;
7298         type_t *const type      = skip_typeref(orig_type);
7299
7300         type_t *type_left;
7301         bool    saw_error = false;
7302         if (is_type_pointer(type)) {
7303                 if (!select_left_arrow) {
7304                         errorf(HERE,
7305                                "request for member '%Y' in something not a struct or union, but '%T'",
7306                                symbol, orig_type);
7307                         saw_error = true;
7308                 }
7309                 type_left = skip_typeref(type->pointer.points_to);
7310         } else {
7311                 if (select_left_arrow && is_type_valid(type)) {
7312                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7313                         saw_error = true;
7314                 }
7315                 type_left = type;
7316         }
7317
7318         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
7319             type_left->kind != TYPE_COMPOUND_UNION) {
7320
7321                 if (is_type_valid(type_left) && !saw_error) {
7322                         errorf(HERE,
7323                                "request for member '%Y' in something not a struct or union, but '%T'",
7324                                symbol, type_left);
7325                 }
7326                 return create_invalid_expression();
7327         }
7328
7329         compound_t *compound = type_left->compound.compound;
7330         if (!compound->complete) {
7331                 errorf(HERE, "request for member '%Y' in incomplete type '%T'",
7332                        symbol, type_left);
7333                 return create_invalid_expression();
7334         }
7335
7336         type_qualifiers_t  qualifiers = type_left->base.qualifiers;
7337         expression_t      *result
7338                 = find_create_select(HERE, addr, qualifiers, compound, symbol);
7339
7340         if (result == NULL) {
7341                 errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7342                 return create_invalid_expression();
7343         }
7344
7345         return result;
7346 }
7347
7348 static void check_call_argument(type_t          *expected_type,
7349                                 call_argument_t *argument, unsigned pos)
7350 {
7351         type_t         *expected_type_skip = skip_typeref(expected_type);
7352         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7353         expression_t   *arg_expr           = argument->expression;
7354         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7355
7356         /* handle transparent union gnu extension */
7357         if (is_type_union(expected_type_skip)
7358                         && (get_type_modifiers(expected_type) & DM_TRANSPARENT_UNION)) {
7359                 compound_t *union_decl  = expected_type_skip->compound.compound;
7360                 type_t     *best_type   = NULL;
7361                 entity_t   *entry       = union_decl->members.entities;
7362                 for ( ; entry != NULL; entry = entry->base.next) {
7363                         assert(is_declaration(entry));
7364                         type_t *decl_type = entry->declaration.type;
7365                         error = semantic_assign(decl_type, arg_expr);
7366                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7367                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7368                                 continue;
7369
7370                         if (error == ASSIGN_SUCCESS) {
7371                                 best_type = decl_type;
7372                         } else if (best_type == NULL) {
7373                                 best_type = decl_type;
7374                         }
7375                 }
7376
7377                 if (best_type != NULL) {
7378                         expected_type = best_type;
7379                 }
7380         }
7381
7382         error                = semantic_assign(expected_type, arg_expr);
7383         argument->expression = create_implicit_cast(arg_expr, expected_type);
7384
7385         if (error != ASSIGN_SUCCESS) {
7386                 /* report exact scope in error messages (like "in argument 3") */
7387                 char buf[64];
7388                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7389                 report_assign_error(error, expected_type, arg_expr,     buf,
7390                                                         &arg_expr->base.source_position);
7391         } else if (warning.traditional || warning.conversion) {
7392                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7393                 if (!types_compatible(expected_type_skip, promoted_type) &&
7394                     !types_compatible(expected_type_skip, type_void_ptr) &&
7395                     !types_compatible(type_void_ptr,      promoted_type)) {
7396                         /* Deliberately show the skipped types in this warning */
7397                         warningf(&arg_expr->base.source_position,
7398                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7399                                 pos, expected_type_skip, promoted_type);
7400                 }
7401         }
7402 }
7403
7404 /**
7405  * Handle the semantic restrictions of builtin calls
7406  */
7407 static void handle_builtin_argument_restrictions(call_expression_t *call) {
7408         switch (call->function->reference.entity->function.btk) {
7409                 case bk_gnu_builtin_return_address:
7410                 case bk_gnu_builtin_frame_address: {
7411                         /* argument must be constant */
7412                         call_argument_t *argument = call->arguments;
7413
7414                         if (! is_constant_expression(argument->expression)) {
7415                                 errorf(&call->base.source_position,
7416                                        "argument of '%Y' must be a constant expression",
7417                                        call->function->reference.entity->base.symbol);
7418                         }
7419                         break;
7420                 }
7421                 case bk_gnu_builtin_object_size:
7422                         if (call->arguments == NULL)
7423                                 break;
7424
7425                         call_argument_t *arg = call->arguments->next;
7426                         if (arg != NULL && ! is_constant_expression(arg->expression)) {
7427                                 errorf(&call->base.source_position,
7428                                            "second argument of '%Y' must be a constant expression",
7429                                            call->function->reference.entity->base.symbol);
7430                         }
7431                         break;
7432                 case bk_gnu_builtin_prefetch:
7433                         /* second and third argument must be constant if existent */
7434                         if (call->arguments == NULL)
7435                                 break;
7436                         call_argument_t *rw = call->arguments->next;
7437                         call_argument_t *locality = NULL;
7438
7439                         if (rw != NULL) {
7440                                 if (! is_constant_expression(rw->expression)) {
7441                                         errorf(&call->base.source_position,
7442                                                "second argument of '%Y' must be a constant expression",
7443                                                call->function->reference.entity->base.symbol);
7444                                 }
7445                                 locality = rw->next;
7446                         }
7447                         if (locality != NULL) {
7448                                 if (! is_constant_expression(locality->expression)) {
7449                                         errorf(&call->base.source_position,
7450                                                "third argument of '%Y' must be a constant expression",
7451                                                call->function->reference.entity->base.symbol);
7452                                 }
7453                                 locality = rw->next;
7454                         }
7455                         break;
7456                 default:
7457                         break;
7458         }
7459 }
7460
7461 /**
7462  * Parse a call expression, ie. expression '( ... )'.
7463  *
7464  * @param expression  the function address
7465  */
7466 static expression_t *parse_call_expression(expression_t *expression)
7467 {
7468         expression_t      *result = allocate_expression_zero(EXPR_CALL);
7469         call_expression_t *call   = &result->call;
7470         call->function            = expression;
7471
7472         type_t *const orig_type = expression->base.type;
7473         type_t *const type      = skip_typeref(orig_type);
7474
7475         function_type_t *function_type = NULL;
7476         if (is_type_pointer(type)) {
7477                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7478
7479                 if (is_type_function(to_type)) {
7480                         function_type   = &to_type->function;
7481                         call->base.type = function_type->return_type;
7482                 }
7483         }
7484
7485         if (function_type == NULL && is_type_valid(type)) {
7486                 errorf(HERE,
7487                        "called object '%E' (type '%T') is not a pointer to a function",
7488                        expression, orig_type);
7489         }
7490
7491         /* parse arguments */
7492         eat('(');
7493         add_anchor_token(')');
7494         add_anchor_token(',');
7495
7496         if (token.type != ')') {
7497                 call_argument_t **anchor = &call->arguments;
7498                 do {
7499                         call_argument_t *argument = allocate_ast_zero(sizeof(*argument));
7500                         argument->expression = parse_assignment_expression();
7501
7502                         *anchor = argument;
7503                         anchor  = &argument->next;
7504                 } while (next_if(','));
7505         }
7506         rem_anchor_token(',');
7507         rem_anchor_token(')');
7508         expect(')', end_error);
7509
7510         if (function_type == NULL)
7511                 return result;
7512
7513         /* check type and count of call arguments */
7514         function_parameter_t *parameter = function_type->parameters;
7515         call_argument_t      *argument  = call->arguments;
7516         if (!function_type->unspecified_parameters) {
7517                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7518                                 parameter = parameter->next, argument = argument->next) {
7519                         check_call_argument(parameter->type, argument, ++pos);
7520                 }
7521
7522                 if (parameter != NULL) {
7523                         errorf(HERE, "too few arguments to function '%E'", expression);
7524                 } else if (argument != NULL && !function_type->variadic) {
7525                         errorf(HERE, "too many arguments to function '%E'", expression);
7526                 }
7527         }
7528
7529         /* do default promotion for other arguments */
7530         for (; argument != NULL; argument = argument->next) {
7531                 type_t *type = argument->expression->base.type;
7532                 if (!is_type_object(skip_typeref(type))) {
7533                         errorf(&argument->expression->base.source_position,
7534                                "call argument '%E' must not be void", argument->expression);
7535                 }
7536
7537                 type = get_default_promoted_type(type);
7538
7539                 argument->expression
7540                         = create_implicit_cast(argument->expression, type);
7541         }
7542
7543         check_format(&result->call);
7544
7545         if (warning.aggregate_return &&
7546             is_type_compound(skip_typeref(function_type->return_type))) {
7547                 warningf(&result->base.source_position,
7548                          "function call has aggregate value");
7549         }
7550
7551         if (call->function->kind == EXPR_REFERENCE) {
7552                 reference_expression_t *reference = &call->function->reference;
7553                 if (reference->entity->kind == ENTITY_FUNCTION &&
7554                     reference->entity->function.btk != bk_none)
7555                         handle_builtin_argument_restrictions(call);
7556         }
7557
7558 end_error:
7559         return result;
7560 }
7561
7562 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7563
7564 static bool same_compound_type(const type_t *type1, const type_t *type2)
7565 {
7566         return
7567                 is_type_compound(type1) &&
7568                 type1->kind == type2->kind &&
7569                 type1->compound.compound == type2->compound.compound;
7570 }
7571
7572 static expression_t const *get_reference_address(expression_t const *expr)
7573 {
7574         bool regular_take_address = true;
7575         for (;;) {
7576                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7577                         expr = expr->unary.value;
7578                 } else {
7579                         regular_take_address = false;
7580                 }
7581
7582                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7583                         break;
7584
7585                 expr = expr->unary.value;
7586         }
7587
7588         if (expr->kind != EXPR_REFERENCE)
7589                 return NULL;
7590
7591         /* special case for functions which are automatically converted to a
7592          * pointer to function without an extra TAKE_ADDRESS operation */
7593         if (!regular_take_address &&
7594                         expr->reference.entity->kind != ENTITY_FUNCTION) {
7595                 return NULL;
7596         }
7597
7598         return expr;
7599 }
7600
7601 static void warn_reference_address_as_bool(expression_t const* expr)
7602 {
7603         if (!warning.address)
7604                 return;
7605
7606         expr = get_reference_address(expr);
7607         if (expr != NULL) {
7608                 warningf(&expr->base.source_position,
7609                          "the address of '%Y' will always evaluate as 'true'",
7610                          expr->reference.entity->base.symbol);
7611         }
7612 }
7613
7614 static void warn_assignment_in_condition(const expression_t *const expr)
7615 {
7616         if (!warning.parentheses)
7617                 return;
7618         if (expr->base.kind != EXPR_BINARY_ASSIGN)
7619                 return;
7620         if (expr->base.parenthesized)
7621                 return;
7622         warningf(&expr->base.source_position,
7623                         "suggest parentheses around assignment used as truth value");
7624 }
7625
7626 static void semantic_condition(expression_t const *const expr,
7627                                char const *const context)
7628 {
7629         type_t *const type = skip_typeref(expr->base.type);
7630         if (is_type_scalar(type)) {
7631                 warn_reference_address_as_bool(expr);
7632                 warn_assignment_in_condition(expr);
7633         } else if (is_type_valid(type)) {
7634                 errorf(&expr->base.source_position,
7635                                 "%s must have scalar type", context);
7636         }
7637 }
7638
7639 /**
7640  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7641  *
7642  * @param expression  the conditional expression
7643  */
7644 static expression_t *parse_conditional_expression(expression_t *expression)
7645 {
7646         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7647
7648         conditional_expression_t *conditional = &result->conditional;
7649         conditional->condition                = expression;
7650
7651         eat('?');
7652         add_anchor_token(':');
7653
7654         /* §6.5.15:2  The first operand shall have scalar type. */
7655         semantic_condition(expression, "condition of conditional operator");
7656
7657         expression_t *true_expression = expression;
7658         bool          gnu_cond = false;
7659         if (GNU_MODE && token.type == ':') {
7660                 gnu_cond = true;
7661         } else {
7662                 true_expression = parse_expression();
7663         }
7664         rem_anchor_token(':');
7665         expect(':', end_error);
7666 end_error:;
7667         expression_t *false_expression =
7668                 parse_subexpression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
7669
7670         type_t *const orig_true_type  = true_expression->base.type;
7671         type_t *const orig_false_type = false_expression->base.type;
7672         type_t *const true_type       = skip_typeref(orig_true_type);
7673         type_t *const false_type      = skip_typeref(orig_false_type);
7674
7675         /* 6.5.15.3 */
7676         type_t *result_type;
7677         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7678                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7679                 /* ISO/IEC 14882:1998(E) §5.16:2 */
7680                 if (true_expression->kind == EXPR_UNARY_THROW) {
7681                         result_type = false_type;
7682                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
7683                         result_type = true_type;
7684                 } else {
7685                         if (warning.other && (
7686                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7687                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
7688                                         )) {
7689                                 warningf(&conditional->base.source_position,
7690                                                 "ISO C forbids conditional expression with only one void side");
7691                         }
7692                         result_type = type_void;
7693                 }
7694         } else if (is_type_arithmetic(true_type)
7695                    && is_type_arithmetic(false_type)) {
7696                 result_type = semantic_arithmetic(true_type, false_type);
7697         } else if (same_compound_type(true_type, false_type)) {
7698                 /* just take 1 of the 2 types */
7699                 result_type = true_type;
7700         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7701                 type_t *pointer_type;
7702                 type_t *other_type;
7703                 expression_t *other_expression;
7704                 if (is_type_pointer(true_type) &&
7705                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7706                         pointer_type     = true_type;
7707                         other_type       = false_type;
7708                         other_expression = false_expression;
7709                 } else {
7710                         pointer_type     = false_type;
7711                         other_type       = true_type;
7712                         other_expression = true_expression;
7713                 }
7714
7715                 if (is_null_pointer_constant(other_expression)) {
7716                         result_type = pointer_type;
7717                 } else if (is_type_pointer(other_type)) {
7718                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7719                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7720
7721                         type_t *to;
7722                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7723                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7724                                 to = type_void;
7725                         } else if (types_compatible(get_unqualified_type(to1),
7726                                                     get_unqualified_type(to2))) {
7727                                 to = to1;
7728                         } else {
7729                                 if (warning.other) {
7730                                         warningf(&conditional->base.source_position,
7731                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7732                                                         true_type, false_type);
7733                                 }
7734                                 to = type_void;
7735                         }
7736
7737                         type_t *const type =
7738                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7739                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7740                 } else if (is_type_integer(other_type)) {
7741                         if (warning.other) {
7742                                 warningf(&conditional->base.source_position,
7743                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7744                         }
7745                         result_type = pointer_type;
7746                 } else {
7747                         if (is_type_valid(other_type)) {
7748                                 type_error_incompatible("while parsing conditional",
7749                                                 &expression->base.source_position, true_type, false_type);
7750                         }
7751                         result_type = type_error_type;
7752                 }
7753         } else {
7754                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7755                         type_error_incompatible("while parsing conditional",
7756                                                 &conditional->base.source_position, true_type,
7757                                                 false_type);
7758                 }
7759                 result_type = type_error_type;
7760         }
7761
7762         conditional->true_expression
7763                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7764         conditional->false_expression
7765                 = create_implicit_cast(false_expression, result_type);
7766         conditional->base.type = result_type;
7767         return result;
7768 }
7769
7770 /**
7771  * Parse an extension expression.
7772  */
7773 static expression_t *parse_extension(void)
7774 {
7775         eat(T___extension__);
7776
7777         bool old_gcc_extension   = in_gcc_extension;
7778         in_gcc_extension         = true;
7779         expression_t *expression = parse_subexpression(PREC_UNARY);
7780         in_gcc_extension         = old_gcc_extension;
7781         return expression;
7782 }
7783
7784 /**
7785  * Parse a __builtin_classify_type() expression.
7786  */
7787 static expression_t *parse_builtin_classify_type(void)
7788 {
7789         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7790         result->base.type    = type_int;
7791
7792         eat(T___builtin_classify_type);
7793
7794         expect('(', end_error);
7795         add_anchor_token(')');
7796         expression_t *expression = parse_expression();
7797         rem_anchor_token(')');
7798         expect(')', end_error);
7799         result->classify_type.type_expression = expression;
7800
7801         return result;
7802 end_error:
7803         return create_invalid_expression();
7804 }
7805
7806 /**
7807  * Parse a delete expression
7808  * ISO/IEC 14882:1998(E) §5.3.5
7809  */
7810 static expression_t *parse_delete(void)
7811 {
7812         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
7813         result->base.type          = type_void;
7814
7815         eat(T_delete);
7816
7817         if (next_if('[')) {
7818                 result->kind = EXPR_UNARY_DELETE_ARRAY;
7819                 expect(']', end_error);
7820 end_error:;
7821         }
7822
7823         expression_t *const value = parse_subexpression(PREC_CAST);
7824         result->unary.value = value;
7825
7826         type_t *const type = skip_typeref(value->base.type);
7827         if (!is_type_pointer(type)) {
7828                 if (is_type_valid(type)) {
7829                         errorf(&value->base.source_position,
7830                                         "operand of delete must have pointer type");
7831                 }
7832         } else if (warning.other &&
7833                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
7834                 warningf(&value->base.source_position,
7835                                 "deleting 'void*' is undefined");
7836         }
7837
7838         return result;
7839 }
7840
7841 /**
7842  * Parse a throw expression
7843  * ISO/IEC 14882:1998(E) §15:1
7844  */
7845 static expression_t *parse_throw(void)
7846 {
7847         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
7848         result->base.type          = type_void;
7849
7850         eat(T_throw);
7851
7852         expression_t *value = NULL;
7853         switch (token.type) {
7854                 EXPRESSION_START {
7855                         value = parse_assignment_expression();
7856                         /* ISO/IEC 14882:1998(E) §15.1:3 */
7857                         type_t *const orig_type = value->base.type;
7858                         type_t *const type      = skip_typeref(orig_type);
7859                         if (is_type_incomplete(type)) {
7860                                 errorf(&value->base.source_position,
7861                                                 "cannot throw object of incomplete type '%T'", orig_type);
7862                         } else if (is_type_pointer(type)) {
7863                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
7864                                 if (is_type_incomplete(points_to) &&
7865                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7866                                         errorf(&value->base.source_position,
7867                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
7868                                 }
7869                         }
7870                 }
7871
7872                 default:
7873                         break;
7874         }
7875         result->unary.value = value;
7876
7877         return result;
7878 }
7879
7880 static bool check_pointer_arithmetic(const source_position_t *source_position,
7881                                      type_t *pointer_type,
7882                                      type_t *orig_pointer_type)
7883 {
7884         type_t *points_to = pointer_type->pointer.points_to;
7885         points_to = skip_typeref(points_to);
7886
7887         if (is_type_incomplete(points_to)) {
7888                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7889                         errorf(source_position,
7890                                "arithmetic with pointer to incomplete type '%T' not allowed",
7891                                orig_pointer_type);
7892                         return false;
7893                 } else if (warning.pointer_arith) {
7894                         warningf(source_position,
7895                                  "pointer of type '%T' used in arithmetic",
7896                                  orig_pointer_type);
7897                 }
7898         } else if (is_type_function(points_to)) {
7899                 if (!GNU_MODE) {
7900                         errorf(source_position,
7901                                "arithmetic with pointer to function type '%T' not allowed",
7902                                orig_pointer_type);
7903                         return false;
7904                 } else if (warning.pointer_arith) {
7905                         warningf(source_position,
7906                                  "pointer to a function '%T' used in arithmetic",
7907                                  orig_pointer_type);
7908                 }
7909         }
7910         return true;
7911 }
7912
7913 static bool is_lvalue(const expression_t *expression)
7914 {
7915         /* TODO: doesn't seem to be consistent with §6.3.2.1:1 */
7916         switch (expression->kind) {
7917         case EXPR_ARRAY_ACCESS:
7918         case EXPR_COMPOUND_LITERAL:
7919         case EXPR_REFERENCE:
7920         case EXPR_SELECT:
7921         case EXPR_UNARY_DEREFERENCE:
7922                 return true;
7923
7924         default: {
7925                 type_t *type = skip_typeref(expression->base.type);
7926                 return
7927                         /* ISO/IEC 14882:1998(E) §3.10:3 */
7928                         is_type_reference(type) ||
7929                         /* Claim it is an lvalue, if the type is invalid.  There was a parse
7930                          * error before, which maybe prevented properly recognizing it as
7931                          * lvalue. */
7932                         !is_type_valid(type);
7933         }
7934         }
7935 }
7936
7937 static void semantic_incdec(unary_expression_t *expression)
7938 {
7939         type_t *const orig_type = expression->value->base.type;
7940         type_t *const type      = skip_typeref(orig_type);
7941         if (is_type_pointer(type)) {
7942                 if (!check_pointer_arithmetic(&expression->base.source_position,
7943                                               type, orig_type)) {
7944                         return;
7945                 }
7946         } else if (!is_type_real(type) && is_type_valid(type)) {
7947                 /* TODO: improve error message */
7948                 errorf(&expression->base.source_position,
7949                        "operation needs an arithmetic or pointer type");
7950                 return;
7951         }
7952         if (!is_lvalue(expression->value)) {
7953                 /* TODO: improve error message */
7954                 errorf(&expression->base.source_position, "lvalue required as operand");
7955         }
7956         expression->base.type = orig_type;
7957 }
7958
7959 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7960 {
7961         type_t *const orig_type = expression->value->base.type;
7962         type_t *const type      = skip_typeref(orig_type);
7963         if (!is_type_arithmetic(type)) {
7964                 if (is_type_valid(type)) {
7965                         /* TODO: improve error message */
7966                         errorf(&expression->base.source_position,
7967                                 "operation needs an arithmetic type");
7968                 }
7969                 return;
7970         }
7971
7972         expression->base.type = orig_type;
7973 }
7974
7975 static void semantic_unexpr_plus(unary_expression_t *expression)
7976 {
7977         semantic_unexpr_arithmetic(expression);
7978         if (warning.traditional)
7979                 warningf(&expression->base.source_position,
7980                         "traditional C rejects the unary plus operator");
7981 }
7982
7983 static void semantic_not(unary_expression_t *expression)
7984 {
7985         /* §6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
7986         semantic_condition(expression->value, "operand of !");
7987         expression->base.type = c_mode & _CXX ? type_bool : type_int;
7988 }
7989
7990 static void semantic_unexpr_integer(unary_expression_t *expression)
7991 {
7992         type_t *const orig_type = expression->value->base.type;
7993         type_t *const type      = skip_typeref(orig_type);
7994         if (!is_type_integer(type)) {
7995                 if (is_type_valid(type)) {
7996                         errorf(&expression->base.source_position,
7997                                "operand of ~ must be of integer type");
7998                 }
7999                 return;
8000         }
8001
8002         expression->base.type = orig_type;
8003 }
8004
8005 static void semantic_dereference(unary_expression_t *expression)
8006 {
8007         type_t *const orig_type = expression->value->base.type;
8008         type_t *const type      = skip_typeref(orig_type);
8009         if (!is_type_pointer(type)) {
8010                 if (is_type_valid(type)) {
8011                         errorf(&expression->base.source_position,
8012                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8013                 }
8014                 return;
8015         }
8016
8017         type_t *result_type   = type->pointer.points_to;
8018         result_type           = automatic_type_conversion(result_type);
8019         expression->base.type = result_type;
8020 }
8021
8022 /**
8023  * Record that an address is taken (expression represents an lvalue).
8024  *
8025  * @param expression       the expression
8026  * @param may_be_register  if true, the expression might be an register
8027  */
8028 static void set_address_taken(expression_t *expression, bool may_be_register)
8029 {
8030         if (expression->kind != EXPR_REFERENCE)
8031                 return;
8032
8033         entity_t *const entity = expression->reference.entity;
8034
8035         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
8036                 return;
8037
8038         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8039                         && !may_be_register) {
8040                 errorf(&expression->base.source_position,
8041                                 "address of register %s '%Y' requested",
8042                                 get_entity_kind_name(entity->kind),     entity->base.symbol);
8043         }
8044
8045         if (entity->kind == ENTITY_VARIABLE) {
8046                 entity->variable.address_taken = true;
8047         } else {
8048                 assert(entity->kind == ENTITY_PARAMETER);
8049                 entity->parameter.address_taken = true;
8050         }
8051 }
8052
8053 /**
8054  * Check the semantic of the address taken expression.
8055  */
8056 static void semantic_take_addr(unary_expression_t *expression)
8057 {
8058         expression_t *value = expression->value;
8059         value->base.type    = revert_automatic_type_conversion(value);
8060
8061         type_t *orig_type = value->base.type;
8062         type_t *type      = skip_typeref(orig_type);
8063         if (!is_type_valid(type))
8064                 return;
8065
8066         /* §6.5.3.2 */
8067         if (!is_lvalue(value)) {
8068                 errorf(&expression->base.source_position, "'&' requires an lvalue");
8069         }
8070         if (type->kind == TYPE_BITFIELD) {
8071                 errorf(&expression->base.source_position,
8072                        "'&' not allowed on object with bitfield type '%T'",
8073                        type);
8074         }
8075
8076         set_address_taken(value, false);
8077
8078         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8079 }
8080
8081 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8082 static expression_t *parse_##unexpression_type(void)                         \
8083 {                                                                            \
8084         expression_t *unary_expression                                           \
8085                 = allocate_expression_zero(unexpression_type);                       \
8086         eat(token_type);                                                         \
8087         unary_expression->unary.value = parse_subexpression(PREC_UNARY);         \
8088                                                                                  \
8089         sfunc(&unary_expression->unary);                                         \
8090                                                                                  \
8091         return unary_expression;                                                 \
8092 }
8093
8094 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8095                                semantic_unexpr_arithmetic)
8096 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8097                                semantic_unexpr_plus)
8098 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8099                                semantic_not)
8100 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8101                                semantic_dereference)
8102 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8103                                semantic_take_addr)
8104 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8105                                semantic_unexpr_integer)
8106 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8107                                semantic_incdec)
8108 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8109                                semantic_incdec)
8110
8111 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8112                                                sfunc)                         \
8113 static expression_t *parse_##unexpression_type(expression_t *left)            \
8114 {                                                                             \
8115         expression_t *unary_expression                                            \
8116                 = allocate_expression_zero(unexpression_type);                        \
8117         eat(token_type);                                                          \
8118         unary_expression->unary.value = left;                                     \
8119                                                                                   \
8120         sfunc(&unary_expression->unary);                                          \
8121                                                                               \
8122         return unary_expression;                                                  \
8123 }
8124
8125 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8126                                        EXPR_UNARY_POSTFIX_INCREMENT,
8127                                        semantic_incdec)
8128 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8129                                        EXPR_UNARY_POSTFIX_DECREMENT,
8130                                        semantic_incdec)
8131
8132 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8133 {
8134         /* TODO: handle complex + imaginary types */
8135
8136         type_left  = get_unqualified_type(type_left);
8137         type_right = get_unqualified_type(type_right);
8138
8139         /* §6.3.1.8 Usual arithmetic conversions */
8140         if (type_left == type_long_double || type_right == type_long_double) {
8141                 return type_long_double;
8142         } else if (type_left == type_double || type_right == type_double) {
8143                 return type_double;
8144         } else if (type_left == type_float || type_right == type_float) {
8145                 return type_float;
8146         }
8147
8148         type_left  = promote_integer(type_left);
8149         type_right = promote_integer(type_right);
8150
8151         if (type_left == type_right)
8152                 return type_left;
8153
8154         bool const signed_left  = is_type_signed(type_left);
8155         bool const signed_right = is_type_signed(type_right);
8156         int const  rank_left    = get_rank(type_left);
8157         int const  rank_right   = get_rank(type_right);
8158
8159         if (signed_left == signed_right)
8160                 return rank_left >= rank_right ? type_left : type_right;
8161
8162         int     s_rank;
8163         int     u_rank;
8164         type_t *s_type;
8165         type_t *u_type;
8166         if (signed_left) {
8167                 s_rank = rank_left;
8168                 s_type = type_left;
8169                 u_rank = rank_right;
8170                 u_type = type_right;
8171         } else {
8172                 s_rank = rank_right;
8173                 s_type = type_right;
8174                 u_rank = rank_left;
8175                 u_type = type_left;
8176         }
8177
8178         if (u_rank >= s_rank)
8179                 return u_type;
8180
8181         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8182          * easier here... */
8183         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8184                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8185                 return s_type;
8186
8187         switch (s_rank) {
8188                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8189                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8190                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8191
8192                 default: panic("invalid atomic type");
8193         }
8194 }
8195
8196 /**
8197  * Check the semantic restrictions for a binary expression.
8198  */
8199 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8200 {
8201         expression_t *const left            = expression->left;
8202         expression_t *const right           = expression->right;
8203         type_t       *const orig_type_left  = left->base.type;
8204         type_t       *const orig_type_right = right->base.type;
8205         type_t       *const type_left       = skip_typeref(orig_type_left);
8206         type_t       *const type_right      = skip_typeref(orig_type_right);
8207
8208         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8209                 /* TODO: improve error message */
8210                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8211                         errorf(&expression->base.source_position,
8212                                "operation needs arithmetic types");
8213                 }
8214                 return;
8215         }
8216
8217         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8218         expression->left      = create_implicit_cast(left, arithmetic_type);
8219         expression->right     = create_implicit_cast(right, arithmetic_type);
8220         expression->base.type = arithmetic_type;
8221 }
8222
8223 static void warn_div_by_zero(binary_expression_t const *const expression)
8224 {
8225         if (!warning.div_by_zero ||
8226             !is_type_integer(expression->base.type))
8227                 return;
8228
8229         expression_t const *const right = expression->right;
8230         /* The type of the right operand can be different for /= */
8231         if (is_type_integer(right->base.type) &&
8232             is_constant_expression(right)     &&
8233             !fold_constant_to_bool(right)) {
8234                 warningf(&expression->base.source_position, "division by zero");
8235         }
8236 }
8237
8238 /**
8239  * Check the semantic restrictions for a div/mod expression.
8240  */
8241 static void semantic_divmod_arithmetic(binary_expression_t *expression)
8242 {
8243         semantic_binexpr_arithmetic(expression);
8244         warn_div_by_zero(expression);
8245 }
8246
8247 static void warn_addsub_in_shift(const expression_t *const expr)
8248 {
8249         if (expr->base.parenthesized)
8250                 return;
8251
8252         char op;
8253         switch (expr->kind) {
8254                 case EXPR_BINARY_ADD: op = '+'; break;
8255                 case EXPR_BINARY_SUB: op = '-'; break;
8256                 default:              return;
8257         }
8258
8259         warningf(&expr->base.source_position,
8260                         "suggest parentheses around '%c' inside shift", op);
8261 }
8262
8263 static bool semantic_shift(binary_expression_t *expression)
8264 {
8265         expression_t *const left            = expression->left;
8266         expression_t *const right           = expression->right;
8267         type_t       *const orig_type_left  = left->base.type;
8268         type_t       *const orig_type_right = right->base.type;
8269         type_t       *      type_left       = skip_typeref(orig_type_left);
8270         type_t       *      type_right      = skip_typeref(orig_type_right);
8271
8272         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8273                 /* TODO: improve error message */
8274                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8275                         errorf(&expression->base.source_position,
8276                                "operands of shift operation must have integer types");
8277                 }
8278                 return false;
8279         }
8280
8281         type_left = promote_integer(type_left);
8282
8283         if (is_constant_expression(right)) {
8284                 long count = fold_constant_to_int(right);
8285                 if (count < 0) {
8286                         warningf(&right->base.source_position,
8287                                         "shift count must be non-negative");
8288                 } else if ((unsigned long)count >=
8289                                 get_atomic_type_size(type_left->atomic.akind) * 8) {
8290                         warningf(&right->base.source_position,
8291                                         "shift count must be less than type width");
8292                 }
8293         }
8294
8295         type_right        = promote_integer(type_right);
8296         expression->right = create_implicit_cast(right, type_right);
8297
8298         return true;
8299 }
8300
8301 static void semantic_shift_op(binary_expression_t *expression)
8302 {
8303         expression_t *const left  = expression->left;
8304         expression_t *const right = expression->right;
8305
8306         if (!semantic_shift(expression))
8307                 return;
8308
8309         if (warning.parentheses) {
8310                 warn_addsub_in_shift(left);
8311                 warn_addsub_in_shift(right);
8312         }
8313
8314         type_t *const orig_type_left = left->base.type;
8315         type_t *      type_left      = skip_typeref(orig_type_left);
8316
8317         type_left             = promote_integer(type_left);
8318         expression->left      = create_implicit_cast(left, type_left);
8319         expression->base.type = type_left;
8320 }
8321
8322 static void semantic_add(binary_expression_t *expression)
8323 {
8324         expression_t *const left            = expression->left;
8325         expression_t *const right           = expression->right;
8326         type_t       *const orig_type_left  = left->base.type;
8327         type_t       *const orig_type_right = right->base.type;
8328         type_t       *const type_left       = skip_typeref(orig_type_left);
8329         type_t       *const type_right      = skip_typeref(orig_type_right);
8330
8331         /* §6.5.6 */
8332         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8333                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8334                 expression->left  = create_implicit_cast(left, arithmetic_type);
8335                 expression->right = create_implicit_cast(right, arithmetic_type);
8336                 expression->base.type = arithmetic_type;
8337         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8338                 check_pointer_arithmetic(&expression->base.source_position,
8339                                          type_left, orig_type_left);
8340                 expression->base.type = type_left;
8341         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8342                 check_pointer_arithmetic(&expression->base.source_position,
8343                                          type_right, orig_type_right);
8344                 expression->base.type = type_right;
8345         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8346                 errorf(&expression->base.source_position,
8347                        "invalid operands to binary + ('%T', '%T')",
8348                        orig_type_left, orig_type_right);
8349         }
8350 }
8351
8352 static void semantic_sub(binary_expression_t *expression)
8353 {
8354         expression_t            *const left            = expression->left;
8355         expression_t            *const right           = expression->right;
8356         type_t                  *const orig_type_left  = left->base.type;
8357         type_t                  *const orig_type_right = right->base.type;
8358         type_t                  *const type_left       = skip_typeref(orig_type_left);
8359         type_t                  *const type_right      = skip_typeref(orig_type_right);
8360         source_position_t const *const pos             = &expression->base.source_position;
8361
8362         /* §5.6.5 */
8363         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8364                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8365                 expression->left        = create_implicit_cast(left, arithmetic_type);
8366                 expression->right       = create_implicit_cast(right, arithmetic_type);
8367                 expression->base.type =  arithmetic_type;
8368         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8369                 check_pointer_arithmetic(&expression->base.source_position,
8370                                          type_left, orig_type_left);
8371                 expression->base.type = type_left;
8372         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8373                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8374                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8375                 if (!types_compatible(unqual_left, unqual_right)) {
8376                         errorf(pos,
8377                                "subtracting pointers to incompatible types '%T' and '%T'",
8378                                orig_type_left, orig_type_right);
8379                 } else if (!is_type_object(unqual_left)) {
8380                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8381                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8382                                        orig_type_left);
8383                         } else if (warning.other) {
8384                                 warningf(pos, "subtracting pointers to void");
8385                         }
8386                 }
8387                 expression->base.type = type_ptrdiff_t;
8388         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8389                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8390                        orig_type_left, orig_type_right);
8391         }
8392 }
8393
8394 static void warn_string_literal_address(expression_t const* expr)
8395 {
8396         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8397                 expr = expr->unary.value;
8398                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8399                         return;
8400                 expr = expr->unary.value;
8401         }
8402
8403         if (expr->kind == EXPR_STRING_LITERAL
8404                         || expr->kind == EXPR_WIDE_STRING_LITERAL) {
8405                 warningf(&expr->base.source_position,
8406                         "comparison with string literal results in unspecified behaviour");
8407         }
8408 }
8409
8410 static void warn_comparison_in_comparison(const expression_t *const expr)
8411 {
8412         if (expr->base.parenthesized)
8413                 return;
8414         switch (expr->base.kind) {
8415                 case EXPR_BINARY_LESS:
8416                 case EXPR_BINARY_GREATER:
8417                 case EXPR_BINARY_LESSEQUAL:
8418                 case EXPR_BINARY_GREATEREQUAL:
8419                 case EXPR_BINARY_NOTEQUAL:
8420                 case EXPR_BINARY_EQUAL:
8421                         warningf(&expr->base.source_position,
8422                                         "comparisons like 'x <= y < z' do not have their mathematical meaning");
8423                         break;
8424                 default:
8425                         break;
8426         }
8427 }
8428
8429 static bool maybe_negative(expression_t const *const expr)
8430 {
8431         return
8432                 !is_constant_expression(expr) ||
8433                 fold_constant_to_int(expr) < 0;
8434 }
8435
8436 /**
8437  * Check the semantics of comparison expressions.
8438  *
8439  * @param expression   The expression to check.
8440  */
8441 static void semantic_comparison(binary_expression_t *expression)
8442 {
8443         expression_t *left  = expression->left;
8444         expression_t *right = expression->right;
8445
8446         if (warning.address) {
8447                 warn_string_literal_address(left);
8448                 warn_string_literal_address(right);
8449
8450                 expression_t const* const func_left = get_reference_address(left);
8451                 if (func_left != NULL && is_null_pointer_constant(right)) {
8452                         warningf(&expression->base.source_position,
8453                                  "the address of '%Y' will never be NULL",
8454                                  func_left->reference.entity->base.symbol);
8455                 }
8456
8457                 expression_t const* const func_right = get_reference_address(right);
8458                 if (func_right != NULL && is_null_pointer_constant(right)) {
8459                         warningf(&expression->base.source_position,
8460                                  "the address of '%Y' will never be NULL",
8461                                  func_right->reference.entity->base.symbol);
8462                 }
8463         }
8464
8465         if (warning.parentheses) {
8466                 warn_comparison_in_comparison(left);
8467                 warn_comparison_in_comparison(right);
8468         }
8469
8470         type_t *orig_type_left  = left->base.type;
8471         type_t *orig_type_right = right->base.type;
8472         type_t *type_left       = skip_typeref(orig_type_left);
8473         type_t *type_right      = skip_typeref(orig_type_right);
8474
8475         /* TODO non-arithmetic types */
8476         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8477                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8478
8479                 /* test for signed vs unsigned compares */
8480                 if (warning.sign_compare && is_type_integer(arithmetic_type)) {
8481                         bool const signed_left  = is_type_signed(type_left);
8482                         bool const signed_right = is_type_signed(type_right);
8483                         if (signed_left != signed_right) {
8484                                 /* FIXME long long needs better const folding magic */
8485                                 /* TODO check whether constant value can be represented by other type */
8486                                 if ((signed_left  && maybe_negative(left)) ||
8487                                                 (signed_right && maybe_negative(right))) {
8488                                         warningf(&expression->base.source_position,
8489                                                         "comparison between signed and unsigned");
8490                                 }
8491                         }
8492                 }
8493
8494                 expression->left        = create_implicit_cast(left, arithmetic_type);
8495                 expression->right       = create_implicit_cast(right, arithmetic_type);
8496                 expression->base.type   = arithmetic_type;
8497                 if (warning.float_equal &&
8498                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8499                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8500                     is_type_float(arithmetic_type)) {
8501                         warningf(&expression->base.source_position,
8502                                  "comparing floating point with == or != is unsafe");
8503                 }
8504         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8505                 /* TODO check compatibility */
8506         } else if (is_type_pointer(type_left)) {
8507                 expression->right = create_implicit_cast(right, type_left);
8508         } else if (is_type_pointer(type_right)) {
8509                 expression->left = create_implicit_cast(left, type_right);
8510         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8511                 type_error_incompatible("invalid operands in comparison",
8512                                         &expression->base.source_position,
8513                                         type_left, type_right);
8514         }
8515         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8516 }
8517
8518 /**
8519  * Checks if a compound type has constant fields.
8520  */
8521 static bool has_const_fields(const compound_type_t *type)
8522 {
8523         compound_t *compound = type->compound;
8524         entity_t   *entry    = compound->members.entities;
8525
8526         for (; entry != NULL; entry = entry->base.next) {
8527                 if (!is_declaration(entry))
8528                         continue;
8529
8530                 const type_t *decl_type = skip_typeref(entry->declaration.type);
8531                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8532                         return true;
8533         }
8534
8535         return false;
8536 }
8537
8538 static bool is_valid_assignment_lhs(expression_t const* const left)
8539 {
8540         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8541         type_t *const type_left      = skip_typeref(orig_type_left);
8542
8543         if (!is_lvalue(left)) {
8544                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
8545                        left);
8546                 return false;
8547         }
8548
8549         if (left->kind == EXPR_REFERENCE
8550                         && left->reference.entity->kind == ENTITY_FUNCTION) {
8551                 errorf(HERE, "cannot assign to function '%E'", left);
8552                 return false;
8553         }
8554
8555         if (is_type_array(type_left)) {
8556                 errorf(HERE, "cannot assign to array '%E'", left);
8557                 return false;
8558         }
8559         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8560                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
8561                        orig_type_left);
8562                 return false;
8563         }
8564         if (is_type_incomplete(type_left)) {
8565                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
8566                        left, orig_type_left);
8567                 return false;
8568         }
8569         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8570                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
8571                        left, orig_type_left);
8572                 return false;
8573         }
8574
8575         return true;
8576 }
8577
8578 static void semantic_arithmetic_assign(binary_expression_t *expression)
8579 {
8580         expression_t *left            = expression->left;
8581         expression_t *right           = expression->right;
8582         type_t       *orig_type_left  = left->base.type;
8583         type_t       *orig_type_right = right->base.type;
8584
8585         if (!is_valid_assignment_lhs(left))
8586                 return;
8587
8588         type_t *type_left  = skip_typeref(orig_type_left);
8589         type_t *type_right = skip_typeref(orig_type_right);
8590
8591         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8592                 /* TODO: improve error message */
8593                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8594                         errorf(&expression->base.source_position,
8595                                "operation needs arithmetic types");
8596                 }
8597                 return;
8598         }
8599
8600         /* combined instructions are tricky. We can't create an implicit cast on
8601          * the left side, because we need the uncasted form for the store.
8602          * The ast2firm pass has to know that left_type must be right_type
8603          * for the arithmetic operation and create a cast by itself */
8604         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8605         expression->right       = create_implicit_cast(right, arithmetic_type);
8606         expression->base.type   = type_left;
8607 }
8608
8609 static void semantic_divmod_assign(binary_expression_t *expression)
8610 {
8611         semantic_arithmetic_assign(expression);
8612         warn_div_by_zero(expression);
8613 }
8614
8615 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8616 {
8617         expression_t *const left            = expression->left;
8618         expression_t *const right           = expression->right;
8619         type_t       *const orig_type_left  = left->base.type;
8620         type_t       *const orig_type_right = right->base.type;
8621         type_t       *const type_left       = skip_typeref(orig_type_left);
8622         type_t       *const type_right      = skip_typeref(orig_type_right);
8623
8624         if (!is_valid_assignment_lhs(left))
8625                 return;
8626
8627         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8628                 /* combined instructions are tricky. We can't create an implicit cast on
8629                  * the left side, because we need the uncasted form for the store.
8630                  * The ast2firm pass has to know that left_type must be right_type
8631                  * for the arithmetic operation and create a cast by itself */
8632                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8633                 expression->right     = create_implicit_cast(right, arithmetic_type);
8634                 expression->base.type = type_left;
8635         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8636                 check_pointer_arithmetic(&expression->base.source_position,
8637                                          type_left, orig_type_left);
8638                 expression->base.type = type_left;
8639         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8640                 errorf(&expression->base.source_position,
8641                        "incompatible types '%T' and '%T' in assignment",
8642                        orig_type_left, orig_type_right);
8643         }
8644 }
8645
8646 static void semantic_integer_assign(binary_expression_t *expression)
8647 {
8648         expression_t *left            = expression->left;
8649         expression_t *right           = expression->right;
8650         type_t       *orig_type_left  = left->base.type;
8651         type_t       *orig_type_right = right->base.type;
8652
8653         if (!is_valid_assignment_lhs(left))
8654                 return;
8655
8656         type_t *type_left  = skip_typeref(orig_type_left);
8657         type_t *type_right = skip_typeref(orig_type_right);
8658
8659         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8660                 /* TODO: improve error message */
8661                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8662                         errorf(&expression->base.source_position,
8663                                "operation needs integer types");
8664                 }
8665                 return;
8666         }
8667
8668         /* combined instructions are tricky. We can't create an implicit cast on
8669          * the left side, because we need the uncasted form for the store.
8670          * The ast2firm pass has to know that left_type must be right_type
8671          * for the arithmetic operation and create a cast by itself */
8672         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8673         expression->right       = create_implicit_cast(right, arithmetic_type);
8674         expression->base.type   = type_left;
8675 }
8676
8677 static void semantic_shift_assign(binary_expression_t *expression)
8678 {
8679         expression_t *left           = expression->left;
8680
8681         if (!is_valid_assignment_lhs(left))
8682                 return;
8683
8684         if (!semantic_shift(expression))
8685                 return;
8686
8687         expression->base.type = skip_typeref(left->base.type);
8688 }
8689
8690 static void warn_logical_and_within_or(const expression_t *const expr)
8691 {
8692         if (expr->base.kind != EXPR_BINARY_LOGICAL_AND)
8693                 return;
8694         if (expr->base.parenthesized)
8695                 return;
8696         warningf(&expr->base.source_position,
8697                         "suggest parentheses around && within ||");
8698 }
8699
8700 /**
8701  * Check the semantic restrictions of a logical expression.
8702  */
8703 static void semantic_logical_op(binary_expression_t *expression)
8704 {
8705         /* §6.5.13:2  Each of the operands shall have scalar type.
8706          * §6.5.14:2  Each of the operands shall have scalar type. */
8707         semantic_condition(expression->left,   "left operand of logical operator");
8708         semantic_condition(expression->right, "right operand of logical operator");
8709         if (expression->base.kind == EXPR_BINARY_LOGICAL_OR &&
8710                         warning.parentheses) {
8711                 warn_logical_and_within_or(expression->left);
8712                 warn_logical_and_within_or(expression->right);
8713         }
8714         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8715 }
8716
8717 /**
8718  * Check the semantic restrictions of a binary assign expression.
8719  */
8720 static void semantic_binexpr_assign(binary_expression_t *expression)
8721 {
8722         expression_t *left           = expression->left;
8723         type_t       *orig_type_left = left->base.type;
8724
8725         if (!is_valid_assignment_lhs(left))
8726                 return;
8727
8728         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8729         report_assign_error(error, orig_type_left, expression->right,
8730                         "assignment", &left->base.source_position);
8731         expression->right = create_implicit_cast(expression->right, orig_type_left);
8732         expression->base.type = orig_type_left;
8733 }
8734
8735 /**
8736  * Determine if the outermost operation (or parts thereof) of the given
8737  * expression has no effect in order to generate a warning about this fact.
8738  * Therefore in some cases this only examines some of the operands of the
8739  * expression (see comments in the function and examples below).
8740  * Examples:
8741  *   f() + 23;    // warning, because + has no effect
8742  *   x || f();    // no warning, because x controls execution of f()
8743  *   x ? y : f(); // warning, because y has no effect
8744  *   (void)x;     // no warning to be able to suppress the warning
8745  * This function can NOT be used for an "expression has definitely no effect"-
8746  * analysis. */
8747 static bool expression_has_effect(const expression_t *const expr)
8748 {
8749         switch (expr->kind) {
8750                 case EXPR_UNKNOWN:                    break;
8751                 case EXPR_INVALID:                    return true; /* do NOT warn */
8752                 case EXPR_REFERENCE:                  return false;
8753                 case EXPR_REFERENCE_ENUM_VALUE:       return false;
8754                 case EXPR_LABEL_ADDRESS:              return false;
8755
8756                 /* suppress the warning for microsoft __noop operations */
8757                 case EXPR_LITERAL_MS_NOOP:            return true;
8758                 case EXPR_LITERAL_BOOLEAN:
8759                 case EXPR_LITERAL_CHARACTER:
8760                 case EXPR_LITERAL_WIDE_CHARACTER:
8761                 case EXPR_LITERAL_INTEGER:
8762                 case EXPR_LITERAL_INTEGER_OCTAL:
8763                 case EXPR_LITERAL_INTEGER_HEXADECIMAL:
8764                 case EXPR_LITERAL_FLOATINGPOINT:
8765                 case EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL: return false;
8766                 case EXPR_STRING_LITERAL:             return false;
8767                 case EXPR_WIDE_STRING_LITERAL:        return false;
8768
8769                 case EXPR_CALL: {
8770                         const call_expression_t *const call = &expr->call;
8771                         if (call->function->kind != EXPR_REFERENCE)
8772                                 return true;
8773
8774                         switch (call->function->reference.entity->function.btk) {
8775                                 /* FIXME: which builtins have no effect? */
8776                                 default:                      return true;
8777                         }
8778                 }
8779
8780                 /* Generate the warning if either the left or right hand side of a
8781                  * conditional expression has no effect */
8782                 case EXPR_CONDITIONAL: {
8783                         conditional_expression_t const *const cond = &expr->conditional;
8784                         expression_t             const *const t    = cond->true_expression;
8785                         return
8786                                 (t == NULL || expression_has_effect(t)) &&
8787                                 expression_has_effect(cond->false_expression);
8788                 }
8789
8790                 case EXPR_SELECT:                     return false;
8791                 case EXPR_ARRAY_ACCESS:               return false;
8792                 case EXPR_SIZEOF:                     return false;
8793                 case EXPR_CLASSIFY_TYPE:              return false;
8794                 case EXPR_ALIGNOF:                    return false;
8795
8796                 case EXPR_FUNCNAME:                   return false;
8797                 case EXPR_BUILTIN_CONSTANT_P:         return false;
8798                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P: return false;
8799                 case EXPR_OFFSETOF:                   return false;
8800                 case EXPR_VA_START:                   return true;
8801                 case EXPR_VA_ARG:                     return true;
8802                 case EXPR_VA_COPY:                    return true;
8803                 case EXPR_STATEMENT:                  return true; // TODO
8804                 case EXPR_COMPOUND_LITERAL:           return false;
8805
8806                 case EXPR_UNARY_NEGATE:               return false;
8807                 case EXPR_UNARY_PLUS:                 return false;
8808                 case EXPR_UNARY_BITWISE_NEGATE:       return false;
8809                 case EXPR_UNARY_NOT:                  return false;
8810                 case EXPR_UNARY_DEREFERENCE:          return false;
8811                 case EXPR_UNARY_TAKE_ADDRESS:         return false;
8812                 case EXPR_UNARY_POSTFIX_INCREMENT:    return true;
8813                 case EXPR_UNARY_POSTFIX_DECREMENT:    return true;
8814                 case EXPR_UNARY_PREFIX_INCREMENT:     return true;
8815                 case EXPR_UNARY_PREFIX_DECREMENT:     return true;
8816
8817                 /* Treat void casts as if they have an effect in order to being able to
8818                  * suppress the warning */
8819                 case EXPR_UNARY_CAST: {
8820                         type_t *const type = skip_typeref(expr->base.type);
8821                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8822                 }
8823
8824                 case EXPR_UNARY_CAST_IMPLICIT:        return true;
8825                 case EXPR_UNARY_ASSUME:               return true;
8826                 case EXPR_UNARY_DELETE:               return true;
8827                 case EXPR_UNARY_DELETE_ARRAY:         return true;
8828                 case EXPR_UNARY_THROW:                return true;
8829
8830                 case EXPR_BINARY_ADD:                 return false;
8831                 case EXPR_BINARY_SUB:                 return false;
8832                 case EXPR_BINARY_MUL:                 return false;
8833                 case EXPR_BINARY_DIV:                 return false;
8834                 case EXPR_BINARY_MOD:                 return false;
8835                 case EXPR_BINARY_EQUAL:               return false;
8836                 case EXPR_BINARY_NOTEQUAL:            return false;
8837                 case EXPR_BINARY_LESS:                return false;
8838                 case EXPR_BINARY_LESSEQUAL:           return false;
8839                 case EXPR_BINARY_GREATER:             return false;
8840                 case EXPR_BINARY_GREATEREQUAL:        return false;
8841                 case EXPR_BINARY_BITWISE_AND:         return false;
8842                 case EXPR_BINARY_BITWISE_OR:          return false;
8843                 case EXPR_BINARY_BITWISE_XOR:         return false;
8844                 case EXPR_BINARY_SHIFTLEFT:           return false;
8845                 case EXPR_BINARY_SHIFTRIGHT:          return false;
8846                 case EXPR_BINARY_ASSIGN:              return true;
8847                 case EXPR_BINARY_MUL_ASSIGN:          return true;
8848                 case EXPR_BINARY_DIV_ASSIGN:          return true;
8849                 case EXPR_BINARY_MOD_ASSIGN:          return true;
8850                 case EXPR_BINARY_ADD_ASSIGN:          return true;
8851                 case EXPR_BINARY_SUB_ASSIGN:          return true;
8852                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:    return true;
8853                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:   return true;
8854                 case EXPR_BINARY_BITWISE_AND_ASSIGN:  return true;
8855                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:  return true;
8856                 case EXPR_BINARY_BITWISE_OR_ASSIGN:   return true;
8857
8858                 /* Only examine the right hand side of && and ||, because the left hand
8859                  * side already has the effect of controlling the execution of the right
8860                  * hand side */
8861                 case EXPR_BINARY_LOGICAL_AND:
8862                 case EXPR_BINARY_LOGICAL_OR:
8863                 /* Only examine the right hand side of a comma expression, because the left
8864                  * hand side has a separate warning */
8865                 case EXPR_BINARY_COMMA:
8866                         return expression_has_effect(expr->binary.right);
8867
8868                 case EXPR_BINARY_ISGREATER:           return false;
8869                 case EXPR_BINARY_ISGREATEREQUAL:      return false;
8870                 case EXPR_BINARY_ISLESS:              return false;
8871                 case EXPR_BINARY_ISLESSEQUAL:         return false;
8872                 case EXPR_BINARY_ISLESSGREATER:       return false;
8873                 case EXPR_BINARY_ISUNORDERED:         return false;
8874         }
8875
8876         internal_errorf(HERE, "unexpected expression");
8877 }
8878
8879 static void semantic_comma(binary_expression_t *expression)
8880 {
8881         if (warning.unused_value) {
8882                 const expression_t *const left = expression->left;
8883                 if (!expression_has_effect(left)) {
8884                         warningf(&left->base.source_position,
8885                                  "left-hand operand of comma expression has no effect");
8886                 }
8887         }
8888         expression->base.type = expression->right->base.type;
8889 }
8890
8891 /**
8892  * @param prec_r precedence of the right operand
8893  */
8894 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
8895 static expression_t *parse_##binexpression_type(expression_t *left)          \
8896 {                                                                            \
8897         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
8898         binexpr->binary.left  = left;                                            \
8899         eat(token_type);                                                         \
8900                                                                              \
8901         expression_t *right = parse_subexpression(prec_r);                       \
8902                                                                              \
8903         binexpr->binary.right = right;                                           \
8904         sfunc(&binexpr->binary);                                                 \
8905                                                                              \
8906         return binexpr;                                                          \
8907 }
8908
8909 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
8910 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
8911 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
8912 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
8913 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
8914 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
8915 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
8916 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
8917 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
8918 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
8919 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
8920 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
8921 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
8922 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
8923 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
8924 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
8925 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
8926 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
8927 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
8928 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8929 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8930 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8931 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8932 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8933 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_shift_assign)
8934 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_shift_assign)
8935 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8936 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_integer_assign)
8937 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8938 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
8939
8940
8941 static expression_t *parse_subexpression(precedence_t precedence)
8942 {
8943         if (token.type < 0) {
8944                 return expected_expression_error();
8945         }
8946
8947         expression_parser_function_t *parser
8948                 = &expression_parsers[token.type];
8949         source_position_t             source_position = token.source_position;
8950         expression_t                 *left;
8951
8952         if (parser->parser != NULL) {
8953                 left = parser->parser();
8954         } else {
8955                 left = parse_primary_expression();
8956         }
8957         assert(left != NULL);
8958         left->base.source_position = source_position;
8959
8960         while (true) {
8961                 if (token.type < 0) {
8962                         return expected_expression_error();
8963                 }
8964
8965                 parser = &expression_parsers[token.type];
8966                 if (parser->infix_parser == NULL)
8967                         break;
8968                 if (parser->infix_precedence < precedence)
8969                         break;
8970
8971                 left = parser->infix_parser(left);
8972
8973                 assert(left != NULL);
8974                 assert(left->kind != EXPR_UNKNOWN);
8975                 left->base.source_position = source_position;
8976         }
8977
8978         return left;
8979 }
8980
8981 /**
8982  * Parse an expression.
8983  */
8984 static expression_t *parse_expression(void)
8985 {
8986         return parse_subexpression(PREC_EXPRESSION);
8987 }
8988
8989 /**
8990  * Register a parser for a prefix-like operator.
8991  *
8992  * @param parser      the parser function
8993  * @param token_type  the token type of the prefix token
8994  */
8995 static void register_expression_parser(parse_expression_function parser,
8996                                        int token_type)
8997 {
8998         expression_parser_function_t *entry = &expression_parsers[token_type];
8999
9000         if (entry->parser != NULL) {
9001                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9002                 panic("trying to register multiple expression parsers for a token");
9003         }
9004         entry->parser = parser;
9005 }
9006
9007 /**
9008  * Register a parser for an infix operator with given precedence.
9009  *
9010  * @param parser      the parser function
9011  * @param token_type  the token type of the infix operator
9012  * @param precedence  the precedence of the operator
9013  */
9014 static void register_infix_parser(parse_expression_infix_function parser,
9015                 int token_type, precedence_t precedence)
9016 {
9017         expression_parser_function_t *entry = &expression_parsers[token_type];
9018
9019         if (entry->infix_parser != NULL) {
9020                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9021                 panic("trying to register multiple infix expression parsers for a "
9022                       "token");
9023         }
9024         entry->infix_parser     = parser;
9025         entry->infix_precedence = precedence;
9026 }
9027
9028 /**
9029  * Initialize the expression parsers.
9030  */
9031 static void init_expression_parsers(void)
9032 {
9033         memset(&expression_parsers, 0, sizeof(expression_parsers));
9034
9035         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9036         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9037         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9038         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9039         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9040         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9041         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9042         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9043         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9044         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9045         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9046         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9047         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9048         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9049         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9050         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9051         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9052         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9053         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9054         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9055         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9056         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9057         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9058         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9059         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9060         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9061         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9062         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9063         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9064         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9065         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9066         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9067         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9068         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9069         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9070         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9071         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9072
9073         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9074         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9075         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9076         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9077         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9078         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9079         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9080         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9081         register_expression_parser(parse_sizeof,                      T_sizeof);
9082         register_expression_parser(parse_alignof,                     T___alignof__);
9083         register_expression_parser(parse_extension,                   T___extension__);
9084         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9085         register_expression_parser(parse_delete,                      T_delete);
9086         register_expression_parser(parse_throw,                       T_throw);
9087 }
9088
9089 /**
9090  * Parse a asm statement arguments specification.
9091  */
9092 static asm_argument_t *parse_asm_arguments(bool is_out)
9093 {
9094         asm_argument_t  *result = NULL;
9095         asm_argument_t **anchor = &result;
9096
9097         while (token.type == T_STRING_LITERAL || token.type == '[') {
9098                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9099                 memset(argument, 0, sizeof(argument[0]));
9100
9101                 if (next_if('[')) {
9102                         if (token.type != T_IDENTIFIER) {
9103                                 parse_error_expected("while parsing asm argument",
9104                                                      T_IDENTIFIER, NULL);
9105                                 return NULL;
9106                         }
9107                         argument->symbol = token.symbol;
9108
9109                         expect(']', end_error);
9110                 }
9111
9112                 argument->constraints = parse_string_literals();
9113                 expect('(', end_error);
9114                 add_anchor_token(')');
9115                 expression_t *expression = parse_expression();
9116                 rem_anchor_token(')');
9117                 if (is_out) {
9118                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9119                          * change size or type representation (e.g. int -> long is ok, but
9120                          * int -> float is not) */
9121                         if (expression->kind == EXPR_UNARY_CAST) {
9122                                 type_t      *const type = expression->base.type;
9123                                 type_kind_t  const kind = type->kind;
9124                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9125                                         unsigned flags;
9126                                         unsigned size;
9127                                         if (kind == TYPE_ATOMIC) {
9128                                                 atomic_type_kind_t const akind = type->atomic.akind;
9129                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9130                                                 size  = get_atomic_type_size(akind);
9131                                         } else {
9132                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9133                                                 size  = get_atomic_type_size(get_intptr_kind());
9134                                         }
9135
9136                                         do {
9137                                                 expression_t *const value      = expression->unary.value;
9138                                                 type_t       *const value_type = value->base.type;
9139                                                 type_kind_t   const value_kind = value_type->kind;
9140
9141                                                 unsigned value_flags;
9142                                                 unsigned value_size;
9143                                                 if (value_kind == TYPE_ATOMIC) {
9144                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9145                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9146                                                         value_size  = get_atomic_type_size(value_akind);
9147                                                 } else if (value_kind == TYPE_POINTER) {
9148                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9149                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9150                                                 } else {
9151                                                         break;
9152                                                 }
9153
9154                                                 if (value_flags != flags || value_size != size)
9155                                                         break;
9156
9157                                                 expression = value;
9158                                         } while (expression->kind == EXPR_UNARY_CAST);
9159                                 }
9160                         }
9161
9162                         if (!is_lvalue(expression)) {
9163                                 errorf(&expression->base.source_position,
9164                                        "asm output argument is not an lvalue");
9165                         }
9166
9167                         if (argument->constraints.begin[0] == '=')
9168                                 determine_lhs_ent(expression, NULL);
9169                         else
9170                                 mark_vars_read(expression, NULL);
9171                 } else {
9172                         mark_vars_read(expression, NULL);
9173                 }
9174                 argument->expression = expression;
9175                 expect(')', end_error);
9176
9177                 set_address_taken(expression, true);
9178
9179                 *anchor = argument;
9180                 anchor  = &argument->next;
9181
9182                 if (!next_if(','))
9183                         break;
9184         }
9185
9186         return result;
9187 end_error:
9188         return NULL;
9189 }
9190
9191 /**
9192  * Parse a asm statement clobber specification.
9193  */
9194 static asm_clobber_t *parse_asm_clobbers(void)
9195 {
9196         asm_clobber_t *result  = NULL;
9197         asm_clobber_t **anchor = &result;
9198
9199         while (token.type == T_STRING_LITERAL) {
9200                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9201                 clobber->clobber       = parse_string_literals();
9202
9203                 *anchor = clobber;
9204                 anchor  = &clobber->next;
9205
9206                 if (!next_if(','))
9207                         break;
9208         }
9209
9210         return result;
9211 }
9212
9213 /**
9214  * Parse an asm statement.
9215  */
9216 static statement_t *parse_asm_statement(void)
9217 {
9218         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9219         asm_statement_t *asm_statement = &statement->asms;
9220
9221         eat(T_asm);
9222
9223         if (next_if(T_volatile))
9224                 asm_statement->is_volatile = true;
9225
9226         expect('(', end_error);
9227         add_anchor_token(')');
9228         if (token.type != T_STRING_LITERAL) {
9229                 parse_error_expected("after asm(", T_STRING_LITERAL, NULL);
9230                 goto end_of_asm;
9231         }
9232         asm_statement->asm_text = parse_string_literals();
9233
9234         add_anchor_token(':');
9235         if (!next_if(':')) {
9236                 rem_anchor_token(':');
9237                 goto end_of_asm;
9238         }
9239
9240         asm_statement->outputs = parse_asm_arguments(true);
9241         if (!next_if(':')) {
9242                 rem_anchor_token(':');
9243                 goto end_of_asm;
9244         }
9245
9246         asm_statement->inputs = parse_asm_arguments(false);
9247         if (!next_if(':')) {
9248                 rem_anchor_token(':');
9249                 goto end_of_asm;
9250         }
9251         rem_anchor_token(':');
9252
9253         asm_statement->clobbers = parse_asm_clobbers();
9254
9255 end_of_asm:
9256         rem_anchor_token(')');
9257         expect(')', end_error);
9258         expect(';', end_error);
9259
9260         if (asm_statement->outputs == NULL) {
9261                 /* GCC: An 'asm' instruction without any output operands will be treated
9262                  * identically to a volatile 'asm' instruction. */
9263                 asm_statement->is_volatile = true;
9264         }
9265
9266         return statement;
9267 end_error:
9268         return create_invalid_statement();
9269 }
9270
9271 static statement_t *parse_label_inner_statement(char const *const label, bool const eat_empty_stmt)
9272 {
9273         statement_t *inner_stmt;
9274         switch (token.type) {
9275                 case '}':
9276                         errorf(HERE, "%s at end of compound statement", label);
9277                         inner_stmt = create_invalid_statement();
9278                         break;
9279
9280                 case ';':
9281                         if (eat_empty_stmt) {
9282                                 /* Eat an empty statement here, to avoid the warning about an empty
9283                                  * statement after a label.  label:; is commonly used to have a label
9284                                  * before a closing brace. */
9285                                 inner_stmt = create_empty_statement();
9286                                 next_token();
9287                                 break;
9288                         }
9289                         /* FALLTHROUGH */
9290
9291                 default:
9292                         inner_stmt = parse_statement();
9293                         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9294                                 errorf(&inner_stmt->base.source_position, "declaration after %s", label);
9295                         }
9296                         break;
9297         }
9298         return inner_stmt;
9299 }
9300
9301 /**
9302  * Parse a case statement.
9303  */
9304 static statement_t *parse_case_statement(void)
9305 {
9306         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9307         source_position_t *const pos       = &statement->base.source_position;
9308
9309         eat(T_case);
9310
9311         expression_t *const expression   = parse_expression();
9312         statement->case_label.expression = expression;
9313         if (!is_constant_expression(expression)) {
9314                 /* This check does not prevent the error message in all cases of an
9315                  * prior error while parsing the expression.  At least it catches the
9316                  * common case of a mistyped enum entry. */
9317                 if (is_type_valid(skip_typeref(expression->base.type))) {
9318                         errorf(pos, "case label does not reduce to an integer constant");
9319                 }
9320                 statement->case_label.is_bad = true;
9321         } else {
9322                 long const val = fold_constant_to_int(expression);
9323                 statement->case_label.first_case = val;
9324                 statement->case_label.last_case  = val;
9325         }
9326
9327         if (GNU_MODE) {
9328                 if (next_if(T_DOTDOTDOT)) {
9329                         expression_t *const end_range   = parse_expression();
9330                         statement->case_label.end_range = end_range;
9331                         if (!is_constant_expression(end_range)) {
9332                                 /* This check does not prevent the error message in all cases of an
9333                                  * prior error while parsing the expression.  At least it catches the
9334                                  * common case of a mistyped enum entry. */
9335                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9336                                         errorf(pos, "case range does not reduce to an integer constant");
9337                                 }
9338                                 statement->case_label.is_bad = true;
9339                         } else {
9340                                 long const val = fold_constant_to_int(end_range);
9341                                 statement->case_label.last_case = val;
9342
9343                                 if (warning.other && val < statement->case_label.first_case) {
9344                                         statement->case_label.is_empty_range = true;
9345                                         warningf(pos, "empty range specified");
9346                                 }
9347                         }
9348                 }
9349         }
9350
9351         PUSH_PARENT(statement);
9352
9353         expect(':', end_error);
9354 end_error:
9355
9356         if (current_switch != NULL) {
9357                 if (! statement->case_label.is_bad) {
9358                         /* Check for duplicate case values */
9359                         case_label_statement_t *c = &statement->case_label;
9360                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9361                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9362                                         continue;
9363
9364                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9365                                         continue;
9366
9367                                 errorf(pos, "duplicate case value (previously used %P)",
9368                                        &l->base.source_position);
9369                                 break;
9370                         }
9371                 }
9372                 /* link all cases into the switch statement */
9373                 if (current_switch->last_case == NULL) {
9374                         current_switch->first_case      = &statement->case_label;
9375                 } else {
9376                         current_switch->last_case->next = &statement->case_label;
9377                 }
9378                 current_switch->last_case = &statement->case_label;
9379         } else {
9380                 errorf(pos, "case label not within a switch statement");
9381         }
9382
9383         statement->case_label.statement = parse_label_inner_statement("case label", false);
9384
9385         POP_PARENT;
9386         return statement;
9387 }
9388
9389 /**
9390  * Parse a default statement.
9391  */
9392 static statement_t *parse_default_statement(void)
9393 {
9394         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9395
9396         eat(T_default);
9397
9398         PUSH_PARENT(statement);
9399
9400         expect(':', end_error);
9401 end_error:
9402
9403         if (current_switch != NULL) {
9404                 const case_label_statement_t *def_label = current_switch->default_label;
9405                 if (def_label != NULL) {
9406                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9407                                &def_label->base.source_position);
9408                 } else {
9409                         current_switch->default_label = &statement->case_label;
9410
9411                         /* link all cases into the switch statement */
9412                         if (current_switch->last_case == NULL) {
9413                                 current_switch->first_case      = &statement->case_label;
9414                         } else {
9415                                 current_switch->last_case->next = &statement->case_label;
9416                         }
9417                         current_switch->last_case = &statement->case_label;
9418                 }
9419         } else {
9420                 errorf(&statement->base.source_position,
9421                         "'default' label not within a switch statement");
9422         }
9423
9424         statement->case_label.statement = parse_label_inner_statement("default label", false);
9425
9426         POP_PARENT;
9427         return statement;
9428 }
9429
9430 /**
9431  * Parse a label statement.
9432  */
9433 static statement_t *parse_label_statement(void)
9434 {
9435         assert(token.type == T_IDENTIFIER);
9436         symbol_t *symbol = token.symbol;
9437         label_t  *label  = get_label(symbol);
9438
9439         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9440         statement->label.label       = label;
9441
9442         next_token();
9443
9444         PUSH_PARENT(statement);
9445
9446         /* if statement is already set then the label is defined twice,
9447          * otherwise it was just mentioned in a goto/local label declaration so far
9448          */
9449         if (label->statement != NULL) {
9450                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9451                        symbol, &label->base.source_position);
9452         } else {
9453                 label->base.source_position = token.source_position;
9454                 label->statement            = statement;
9455         }
9456
9457         eat(':');
9458
9459         statement->label.statement = parse_label_inner_statement("label", true);
9460
9461         /* remember the labels in a list for later checking */
9462         *label_anchor = &statement->label;
9463         label_anchor  = &statement->label.next;
9464
9465         POP_PARENT;
9466         return statement;
9467 }
9468
9469 /**
9470  * Parse an if statement.
9471  */
9472 static statement_t *parse_if(void)
9473 {
9474         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9475
9476         eat(T_if);
9477
9478         PUSH_PARENT(statement);
9479
9480         add_anchor_token('{');
9481
9482         expect('(', end_error);
9483         add_anchor_token(')');
9484         expression_t *const expr = parse_expression();
9485         statement->ifs.condition = expr;
9486         /* §6.8.4.1:1  The controlling expression of an if statement shall have
9487          *             scalar type. */
9488         semantic_condition(expr, "condition of 'if'-statment");
9489         mark_vars_read(expr, NULL);
9490         rem_anchor_token(')');
9491         expect(')', end_error);
9492
9493 end_error:
9494         rem_anchor_token('{');
9495
9496         add_anchor_token(T_else);
9497         statement_t *const true_stmt = parse_statement();
9498         statement->ifs.true_statement = true_stmt;
9499         rem_anchor_token(T_else);
9500
9501         if (next_if(T_else)) {
9502                 statement->ifs.false_statement = parse_statement();
9503         } else if (warning.parentheses &&
9504                         true_stmt->kind == STATEMENT_IF &&
9505                         true_stmt->ifs.false_statement != NULL) {
9506                 warningf(&true_stmt->base.source_position,
9507                                 "suggest explicit braces to avoid ambiguous 'else'");
9508         }
9509
9510         POP_PARENT;
9511         return statement;
9512 }
9513
9514 /**
9515  * Check that all enums are handled in a switch.
9516  *
9517  * @param statement  the switch statement to check
9518  */
9519 static void check_enum_cases(const switch_statement_t *statement)
9520 {
9521         const type_t *type = skip_typeref(statement->expression->base.type);
9522         if (! is_type_enum(type))
9523                 return;
9524         const enum_type_t *enumt = &type->enumt;
9525
9526         /* if we have a default, no warnings */
9527         if (statement->default_label != NULL)
9528                 return;
9529
9530         /* FIXME: calculation of value should be done while parsing */
9531         /* TODO: quadratic algorithm here. Change to an n log n one */
9532         long            last_value = -1;
9533         const entity_t *entry      = enumt->enume->base.next;
9534         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9535              entry = entry->base.next) {
9536                 const expression_t *expression = entry->enum_value.value;
9537                 long                value      = expression != NULL ? fold_constant_to_int(expression) : last_value + 1;
9538                 bool                found      = false;
9539                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9540                         if (l->expression == NULL)
9541                                 continue;
9542                         if (l->first_case <= value && value <= l->last_case) {
9543                                 found = true;
9544                                 break;
9545                         }
9546                 }
9547                 if (! found) {
9548                         warningf(&statement->base.source_position,
9549                                  "enumeration value '%Y' not handled in switch",
9550                                  entry->base.symbol);
9551                 }
9552                 last_value = value;
9553         }
9554 }
9555
9556 /**
9557  * Parse a switch statement.
9558  */
9559 static statement_t *parse_switch(void)
9560 {
9561         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9562
9563         eat(T_switch);
9564
9565         PUSH_PARENT(statement);
9566
9567         expect('(', end_error);
9568         add_anchor_token(')');
9569         expression_t *const expr = parse_expression();
9570         mark_vars_read(expr, NULL);
9571         type_t       *      type = skip_typeref(expr->base.type);
9572         if (is_type_integer(type)) {
9573                 type = promote_integer(type);
9574                 if (warning.traditional) {
9575                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9576                                 warningf(&expr->base.source_position,
9577                                         "'%T' switch expression not converted to '%T' in ISO C",
9578                                         type, type_int);
9579                         }
9580                 }
9581         } else if (is_type_valid(type)) {
9582                 errorf(&expr->base.source_position,
9583                        "switch quantity is not an integer, but '%T'", type);
9584                 type = type_error_type;
9585         }
9586         statement->switchs.expression = create_implicit_cast(expr, type);
9587         expect(')', end_error);
9588         rem_anchor_token(')');
9589
9590         switch_statement_t *rem = current_switch;
9591         current_switch          = &statement->switchs;
9592         statement->switchs.body = parse_statement();
9593         current_switch          = rem;
9594
9595         if (warning.switch_default &&
9596             statement->switchs.default_label == NULL) {
9597                 warningf(&statement->base.source_position, "switch has no default case");
9598         }
9599         if (warning.switch_enum)
9600                 check_enum_cases(&statement->switchs);
9601
9602         POP_PARENT;
9603         return statement;
9604 end_error:
9605         POP_PARENT;
9606         return create_invalid_statement();
9607 }
9608
9609 static statement_t *parse_loop_body(statement_t *const loop)
9610 {
9611         statement_t *const rem = current_loop;
9612         current_loop = loop;
9613
9614         statement_t *const body = parse_statement();
9615
9616         current_loop = rem;
9617         return body;
9618 }
9619
9620 /**
9621  * Parse a while statement.
9622  */
9623 static statement_t *parse_while(void)
9624 {
9625         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9626
9627         eat(T_while);
9628
9629         PUSH_PARENT(statement);
9630
9631         expect('(', end_error);
9632         add_anchor_token(')');
9633         expression_t *const cond = parse_expression();
9634         statement->whiles.condition = cond;
9635         /* §6.8.5:2    The controlling expression of an iteration statement shall
9636          *             have scalar type. */
9637         semantic_condition(cond, "condition of 'while'-statement");
9638         mark_vars_read(cond, NULL);
9639         rem_anchor_token(')');
9640         expect(')', end_error);
9641
9642         statement->whiles.body = parse_loop_body(statement);
9643
9644         POP_PARENT;
9645         return statement;
9646 end_error:
9647         POP_PARENT;
9648         return create_invalid_statement();
9649 }
9650
9651 /**
9652  * Parse a do statement.
9653  */
9654 static statement_t *parse_do(void)
9655 {
9656         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9657
9658         eat(T_do);
9659
9660         PUSH_PARENT(statement);
9661
9662         add_anchor_token(T_while);
9663         statement->do_while.body = parse_loop_body(statement);
9664         rem_anchor_token(T_while);
9665
9666         expect(T_while, end_error);
9667         expect('(', end_error);
9668         add_anchor_token(')');
9669         expression_t *const cond = parse_expression();
9670         statement->do_while.condition = cond;
9671         /* §6.8.5:2    The controlling expression of an iteration statement shall
9672          *             have scalar type. */
9673         semantic_condition(cond, "condition of 'do-while'-statement");
9674         mark_vars_read(cond, NULL);
9675         rem_anchor_token(')');
9676         expect(')', end_error);
9677         expect(';', end_error);
9678
9679         POP_PARENT;
9680         return statement;
9681 end_error:
9682         POP_PARENT;
9683         return create_invalid_statement();
9684 }
9685
9686 /**
9687  * Parse a for statement.
9688  */
9689 static statement_t *parse_for(void)
9690 {
9691         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9692
9693         eat(T_for);
9694
9695         expect('(', end_error1);
9696         add_anchor_token(')');
9697
9698         PUSH_PARENT(statement);
9699
9700         size_t const  top       = environment_top();
9701         scope_t      *old_scope = scope_push(&statement->fors.scope);
9702
9703         bool old_gcc_extension = in_gcc_extension;
9704         while (next_if(T___extension__)) {
9705                 in_gcc_extension = true;
9706         }
9707
9708         if (next_if(';')) {
9709         } else if (is_declaration_specifier(&token, false)) {
9710                 parse_declaration(record_entity, DECL_FLAGS_NONE);
9711         } else {
9712                 add_anchor_token(';');
9713                 expression_t *const init = parse_expression();
9714                 statement->fors.initialisation = init;
9715                 mark_vars_read(init, ENT_ANY);
9716                 if (warning.unused_value && !expression_has_effect(init)) {
9717                         warningf(&init->base.source_position,
9718                                         "initialisation of 'for'-statement has no effect");
9719                 }
9720                 rem_anchor_token(';');
9721                 expect(';', end_error2);
9722         }
9723         in_gcc_extension = old_gcc_extension;
9724
9725         if (token.type != ';') {
9726                 add_anchor_token(';');
9727                 expression_t *const cond = parse_expression();
9728                 statement->fors.condition = cond;
9729                 /* §6.8.5:2    The controlling expression of an iteration statement
9730                  *             shall have scalar type. */
9731                 semantic_condition(cond, "condition of 'for'-statement");
9732                 mark_vars_read(cond, NULL);
9733                 rem_anchor_token(';');
9734         }
9735         expect(';', end_error2);
9736         if (token.type != ')') {
9737                 expression_t *const step = parse_expression();
9738                 statement->fors.step = step;
9739                 mark_vars_read(step, ENT_ANY);
9740                 if (warning.unused_value && !expression_has_effect(step)) {
9741                         warningf(&step->base.source_position,
9742                                  "step of 'for'-statement has no effect");
9743                 }
9744         }
9745         expect(')', end_error2);
9746         rem_anchor_token(')');
9747         statement->fors.body = parse_loop_body(statement);
9748
9749         assert(current_scope == &statement->fors.scope);
9750         scope_pop(old_scope);
9751         environment_pop_to(top);
9752
9753         POP_PARENT;
9754         return statement;
9755
9756 end_error2:
9757         POP_PARENT;
9758         rem_anchor_token(')');
9759         assert(current_scope == &statement->fors.scope);
9760         scope_pop(old_scope);
9761         environment_pop_to(top);
9762         /* fallthrough */
9763
9764 end_error1:
9765         return create_invalid_statement();
9766 }
9767
9768 /**
9769  * Parse a goto statement.
9770  */
9771 static statement_t *parse_goto(void)
9772 {
9773         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
9774         eat(T_goto);
9775
9776         if (GNU_MODE && next_if('*')) {
9777                 expression_t *expression = parse_expression();
9778                 mark_vars_read(expression, NULL);
9779
9780                 /* Argh: although documentation says the expression must be of type void*,
9781                  * gcc accepts anything that can be casted into void* without error */
9782                 type_t *type = expression->base.type;
9783
9784                 if (type != type_error_type) {
9785                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9786                                 errorf(&expression->base.source_position,
9787                                         "cannot convert to a pointer type");
9788                         } else if (warning.other && type != type_void_ptr) {
9789                                 warningf(&expression->base.source_position,
9790                                         "type of computed goto expression should be 'void*' not '%T'", type);
9791                         }
9792                         expression = create_implicit_cast(expression, type_void_ptr);
9793                 }
9794
9795                 statement->gotos.expression = expression;
9796         } else if (token.type == T_IDENTIFIER) {
9797                 symbol_t *symbol = token.symbol;
9798                 next_token();
9799                 statement->gotos.label = get_label(symbol);
9800         } else {
9801                 if (GNU_MODE)
9802                         parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9803                 else
9804                         parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9805                 eat_until_anchor();
9806                 return create_invalid_statement();
9807         }
9808
9809         /* remember the goto's in a list for later checking */
9810         *goto_anchor = &statement->gotos;
9811         goto_anchor  = &statement->gotos.next;
9812
9813         expect(';', end_error);
9814
9815 end_error:
9816         return statement;
9817 }
9818
9819 /**
9820  * Parse a continue statement.
9821  */
9822 static statement_t *parse_continue(void)
9823 {
9824         if (current_loop == NULL) {
9825                 errorf(HERE, "continue statement not within loop");
9826         }
9827
9828         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9829
9830         eat(T_continue);
9831         expect(';', end_error);
9832
9833 end_error:
9834         return statement;
9835 }
9836
9837 /**
9838  * Parse a break statement.
9839  */
9840 static statement_t *parse_break(void)
9841 {
9842         if (current_switch == NULL && current_loop == NULL) {
9843                 errorf(HERE, "break statement not within loop or switch");
9844         }
9845
9846         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9847
9848         eat(T_break);
9849         expect(';', end_error);
9850
9851 end_error:
9852         return statement;
9853 }
9854
9855 /**
9856  * Parse a __leave statement.
9857  */
9858 static statement_t *parse_leave_statement(void)
9859 {
9860         if (current_try == NULL) {
9861                 errorf(HERE, "__leave statement not within __try");
9862         }
9863
9864         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9865
9866         eat(T___leave);
9867         expect(';', end_error);
9868
9869 end_error:
9870         return statement;
9871 }
9872
9873 /**
9874  * Check if a given entity represents a local variable.
9875  */
9876 static bool is_local_variable(const entity_t *entity)
9877 {
9878         if (entity->kind != ENTITY_VARIABLE)
9879                 return false;
9880
9881         switch ((storage_class_tag_t) entity->declaration.storage_class) {
9882         case STORAGE_CLASS_AUTO:
9883         case STORAGE_CLASS_REGISTER: {
9884                 const type_t *type = skip_typeref(entity->declaration.type);
9885                 if (is_type_function(type)) {
9886                         return false;
9887                 } else {
9888                         return true;
9889                 }
9890         }
9891         default:
9892                 return false;
9893         }
9894 }
9895
9896 /**
9897  * Check if a given expression represents a local variable.
9898  */
9899 static bool expression_is_local_variable(const expression_t *expression)
9900 {
9901         if (expression->base.kind != EXPR_REFERENCE) {
9902                 return false;
9903         }
9904         const entity_t *entity = expression->reference.entity;
9905         return is_local_variable(entity);
9906 }
9907
9908 /**
9909  * Check if a given expression represents a local variable and
9910  * return its declaration then, else return NULL.
9911  */
9912 entity_t *expression_is_variable(const expression_t *expression)
9913 {
9914         if (expression->base.kind != EXPR_REFERENCE) {
9915                 return NULL;
9916         }
9917         entity_t *entity = expression->reference.entity;
9918         if (entity->kind != ENTITY_VARIABLE)
9919                 return NULL;
9920
9921         return entity;
9922 }
9923
9924 /**
9925  * Parse a return statement.
9926  */
9927 static statement_t *parse_return(void)
9928 {
9929         eat(T_return);
9930
9931         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9932
9933         expression_t *return_value = NULL;
9934         if (token.type != ';') {
9935                 return_value = parse_expression();
9936                 mark_vars_read(return_value, NULL);
9937         }
9938
9939         const type_t *const func_type = skip_typeref(current_function->base.type);
9940         assert(is_type_function(func_type));
9941         type_t *const return_type = skip_typeref(func_type->function.return_type);
9942
9943         source_position_t const *const pos = &statement->base.source_position;
9944         if (return_value != NULL) {
9945                 type_t *return_value_type = skip_typeref(return_value->base.type);
9946
9947                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9948                         if (is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9949                                 /* ISO/IEC 14882:1998(E) §6.6.3:2 */
9950                                 /* Only warn in C mode, because GCC does the same */
9951                                 if (c_mode & _CXX || strict_mode) {
9952                                         errorf(pos,
9953                                                         "'return' with a value, in function returning 'void'");
9954                                 } else if (warning.other) {
9955                                         warningf(pos,
9956                                                         "'return' with a value, in function returning 'void'");
9957                                 }
9958                         } else if (!(c_mode & _CXX)) { /* ISO/IEC 14882:1998(E) §6.6.3:3 */
9959                                 /* Only warn in C mode, because GCC does the same */
9960                                 if (strict_mode) {
9961                                         errorf(pos,
9962                                                         "'return' with expression in function returning 'void'");
9963                                 } else if (warning.other) {
9964                                         warningf(pos,
9965                                                         "'return' with expression in function returning 'void'");
9966                                 }
9967                         }
9968                 } else {
9969                         assign_error_t error = semantic_assign(return_type, return_value);
9970                         report_assign_error(error, return_type, return_value, "'return'",
9971                                         pos);
9972                 }
9973                 return_value = create_implicit_cast(return_value, return_type);
9974                 /* check for returning address of a local var */
9975                 if (warning.other && return_value != NULL
9976                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9977                         const expression_t *expression = return_value->unary.value;
9978                         if (expression_is_local_variable(expression)) {
9979                                 warningf(pos, "function returns address of local variable");
9980                         }
9981                 }
9982         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9983                 /* ISO/IEC 14882:1998(E) §6.6.3:3 */
9984                 if (c_mode & _CXX || strict_mode) {
9985                         errorf(pos,
9986                                         "'return' without value, in function returning non-void");
9987                 } else {
9988                         warningf(pos,
9989                                         "'return' without value, in function returning non-void");
9990                 }
9991         }
9992         statement->returns.value = return_value;
9993
9994         expect(';', end_error);
9995
9996 end_error:
9997         return statement;
9998 }
9999
10000 /**
10001  * Parse a declaration statement.
10002  */
10003 static statement_t *parse_declaration_statement(void)
10004 {
10005         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10006
10007         entity_t *before = current_scope->last_entity;
10008         if (GNU_MODE) {
10009                 parse_external_declaration();
10010         } else {
10011                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10012         }
10013
10014         declaration_statement_t *const decl  = &statement->declaration;
10015         entity_t                *const begin =
10016                 before != NULL ? before->base.next : current_scope->entities;
10017         decl->declarations_begin = begin;
10018         decl->declarations_end   = begin != NULL ? current_scope->last_entity : NULL;
10019
10020         return statement;
10021 }
10022
10023 /**
10024  * Parse an expression statement, ie. expr ';'.
10025  */
10026 static statement_t *parse_expression_statement(void)
10027 {
10028         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10029
10030         expression_t *const expr         = parse_expression();
10031         statement->expression.expression = expr;
10032         mark_vars_read(expr, ENT_ANY);
10033
10034         expect(';', end_error);
10035
10036 end_error:
10037         return statement;
10038 }
10039
10040 /**
10041  * Parse a microsoft __try { } __finally { } or
10042  * __try{ } __except() { }
10043  */
10044 static statement_t *parse_ms_try_statment(void)
10045 {
10046         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10047         eat(T___try);
10048
10049         PUSH_PARENT(statement);
10050
10051         ms_try_statement_t *rem = current_try;
10052         current_try = &statement->ms_try;
10053         statement->ms_try.try_statement = parse_compound_statement(false);
10054         current_try = rem;
10055
10056         POP_PARENT;
10057
10058         if (next_if(T___except)) {
10059                 expect('(', end_error);
10060                 add_anchor_token(')');
10061                 expression_t *const expr = parse_expression();
10062                 mark_vars_read(expr, NULL);
10063                 type_t       *      type = skip_typeref(expr->base.type);
10064                 if (is_type_integer(type)) {
10065                         type = promote_integer(type);
10066                 } else if (is_type_valid(type)) {
10067                         errorf(&expr->base.source_position,
10068                                "__expect expression is not an integer, but '%T'", type);
10069                         type = type_error_type;
10070                 }
10071                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10072                 rem_anchor_token(')');
10073                 expect(')', end_error);
10074                 statement->ms_try.final_statement = parse_compound_statement(false);
10075         } else if (next_if(T__finally)) {
10076                 statement->ms_try.final_statement = parse_compound_statement(false);
10077         } else {
10078                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10079                 return create_invalid_statement();
10080         }
10081         return statement;
10082 end_error:
10083         return create_invalid_statement();
10084 }
10085
10086 static statement_t *parse_empty_statement(void)
10087 {
10088         if (warning.empty_statement) {
10089                 warningf(HERE, "statement is empty");
10090         }
10091         statement_t *const statement = create_empty_statement();
10092         eat(';');
10093         return statement;
10094 }
10095
10096 static statement_t *parse_local_label_declaration(void)
10097 {
10098         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10099
10100         eat(T___label__);
10101
10102         entity_t *begin = NULL, *end = NULL;
10103
10104         do {
10105                 if (token.type != T_IDENTIFIER) {
10106                         parse_error_expected("while parsing local label declaration",
10107                                 T_IDENTIFIER, NULL);
10108                         goto end_error;
10109                 }
10110                 symbol_t *symbol = token.symbol;
10111                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
10112                 if (entity != NULL && entity->base.parent_scope == current_scope) {
10113                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10114                                symbol, &entity->base.source_position);
10115                 } else {
10116                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10117
10118                         entity->base.parent_scope    = current_scope;
10119                         entity->base.namespc         = NAMESPACE_LABEL;
10120                         entity->base.source_position = token.source_position;
10121                         entity->base.symbol          = symbol;
10122
10123                         if (end != NULL)
10124                                 end->base.next = entity;
10125                         end = entity;
10126                         if (begin == NULL)
10127                                 begin = entity;
10128
10129                         environment_push(entity);
10130                 }
10131                 next_token();
10132         } while (next_if(','));
10133         expect(';', end_error);
10134 end_error:
10135         statement->declaration.declarations_begin = begin;
10136         statement->declaration.declarations_end   = end;
10137         return statement;
10138 }
10139
10140 static void parse_namespace_definition(void)
10141 {
10142         eat(T_namespace);
10143
10144         entity_t *entity = NULL;
10145         symbol_t *symbol = NULL;
10146
10147         if (token.type == T_IDENTIFIER) {
10148                 symbol = token.symbol;
10149                 next_token();
10150
10151                 entity = get_entity(symbol, NAMESPACE_NORMAL);
10152                 if (entity != NULL
10153                                 && entity->kind != ENTITY_NAMESPACE
10154                                 && entity->base.parent_scope == current_scope) {
10155                         if (!is_error_entity(entity)) {
10156                                 error_redefined_as_different_kind(&token.source_position,
10157                                                 entity, ENTITY_NAMESPACE);
10158                         }
10159                         entity = NULL;
10160                 }
10161         }
10162
10163         if (entity == NULL) {
10164                 entity                       = allocate_entity_zero(ENTITY_NAMESPACE);
10165                 entity->base.symbol          = symbol;
10166                 entity->base.source_position = token.source_position;
10167                 entity->base.namespc         = NAMESPACE_NORMAL;
10168                 entity->base.parent_scope    = current_scope;
10169         }
10170
10171         if (token.type == '=') {
10172                 /* TODO: parse namespace alias */
10173                 panic("namespace alias definition not supported yet");
10174         }
10175
10176         environment_push(entity);
10177         append_entity(current_scope, entity);
10178
10179         size_t const  top       = environment_top();
10180         scope_t      *old_scope = scope_push(&entity->namespacee.members);
10181
10182         entity_t     *old_current_entity = current_entity;
10183         current_entity = entity;
10184
10185         expect('{', end_error);
10186         parse_externals();
10187         expect('}', end_error);
10188
10189 end_error:
10190         assert(current_scope == &entity->namespacee.members);
10191         assert(current_entity == entity);
10192         current_entity = old_current_entity;
10193         scope_pop(old_scope);
10194         environment_pop_to(top);
10195 }
10196
10197 /**
10198  * Parse a statement.
10199  * There's also parse_statement() which additionally checks for
10200  * "statement has no effect" warnings
10201  */
10202 static statement_t *intern_parse_statement(void)
10203 {
10204         statement_t *statement = NULL;
10205
10206         /* declaration or statement */
10207         add_anchor_token(';');
10208         switch (token.type) {
10209         case T_IDENTIFIER: {
10210                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10211                 if (la1_type == ':') {
10212                         statement = parse_label_statement();
10213                 } else if (is_typedef_symbol(token.symbol)) {
10214                         statement = parse_declaration_statement();
10215                 } else {
10216                         /* it's an identifier, the grammar says this must be an
10217                          * expression statement. However it is common that users mistype
10218                          * declaration types, so we guess a bit here to improve robustness
10219                          * for incorrect programs */
10220                         switch (la1_type) {
10221                         case '&':
10222                         case '*':
10223                                 if (get_entity(token.symbol, NAMESPACE_NORMAL) != NULL) {
10224                         default:
10225                                         statement = parse_expression_statement();
10226                                 } else {
10227                         DECLARATION_START
10228                         case T_IDENTIFIER:
10229                                         statement = parse_declaration_statement();
10230                                 }
10231                                 break;
10232                         }
10233                 }
10234                 break;
10235         }
10236
10237         case T___extension__:
10238                 /* This can be a prefix to a declaration or an expression statement.
10239                  * We simply eat it now and parse the rest with tail recursion. */
10240                 while (next_if(T___extension__)) {}
10241                 bool old_gcc_extension = in_gcc_extension;
10242                 in_gcc_extension       = true;
10243                 statement = intern_parse_statement();
10244                 in_gcc_extension = old_gcc_extension;
10245                 break;
10246
10247         DECLARATION_START
10248                 statement = parse_declaration_statement();
10249                 break;
10250
10251         case T___label__:
10252                 statement = parse_local_label_declaration();
10253                 break;
10254
10255         case ';':         statement = parse_empty_statement();         break;
10256         case '{':         statement = parse_compound_statement(false); break;
10257         case T___leave:   statement = parse_leave_statement();         break;
10258         case T___try:     statement = parse_ms_try_statment();         break;
10259         case T_asm:       statement = parse_asm_statement();           break;
10260         case T_break:     statement = parse_break();                   break;
10261         case T_case:      statement = parse_case_statement();          break;
10262         case T_continue:  statement = parse_continue();                break;
10263         case T_default:   statement = parse_default_statement();       break;
10264         case T_do:        statement = parse_do();                      break;
10265         case T_for:       statement = parse_for();                     break;
10266         case T_goto:      statement = parse_goto();                    break;
10267         case T_if:        statement = parse_if();                      break;
10268         case T_return:    statement = parse_return();                  break;
10269         case T_switch:    statement = parse_switch();                  break;
10270         case T_while:     statement = parse_while();                   break;
10271
10272         EXPRESSION_START
10273                 statement = parse_expression_statement();
10274                 break;
10275
10276         default:
10277                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10278                 statement = create_invalid_statement();
10279                 if (!at_anchor())
10280                         next_token();
10281                 break;
10282         }
10283         rem_anchor_token(';');
10284
10285         assert(statement != NULL
10286                         && statement->base.source_position.input_name != NULL);
10287
10288         return statement;
10289 }
10290
10291 /**
10292  * parse a statement and emits "statement has no effect" warning if needed
10293  * (This is really a wrapper around intern_parse_statement with check for 1
10294  *  single warning. It is needed, because for statement expressions we have
10295  *  to avoid the warning on the last statement)
10296  */
10297 static statement_t *parse_statement(void)
10298 {
10299         statement_t *statement = intern_parse_statement();
10300
10301         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10302                 expression_t *expression = statement->expression.expression;
10303                 if (!expression_has_effect(expression)) {
10304                         warningf(&expression->base.source_position,
10305                                         "statement has no effect");
10306                 }
10307         }
10308
10309         return statement;
10310 }
10311
10312 /**
10313  * Parse a compound statement.
10314  */
10315 static statement_t *parse_compound_statement(bool inside_expression_statement)
10316 {
10317         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10318
10319         PUSH_PARENT(statement);
10320
10321         eat('{');
10322         add_anchor_token('}');
10323         /* tokens, which can start a statement */
10324         /* TODO MS, __builtin_FOO */
10325         add_anchor_token('!');
10326         add_anchor_token('&');
10327         add_anchor_token('(');
10328         add_anchor_token('*');
10329         add_anchor_token('+');
10330         add_anchor_token('-');
10331         add_anchor_token('{');
10332         add_anchor_token('~');
10333         add_anchor_token(T_CHARACTER_CONSTANT);
10334         add_anchor_token(T_COLONCOLON);
10335         add_anchor_token(T_FLOATINGPOINT);
10336         add_anchor_token(T_IDENTIFIER);
10337         add_anchor_token(T_INTEGER);
10338         add_anchor_token(T_MINUSMINUS);
10339         add_anchor_token(T_PLUSPLUS);
10340         add_anchor_token(T_STRING_LITERAL);
10341         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10342         add_anchor_token(T_WIDE_STRING_LITERAL);
10343         add_anchor_token(T__Bool);
10344         add_anchor_token(T__Complex);
10345         add_anchor_token(T__Imaginary);
10346         add_anchor_token(T___FUNCTION__);
10347         add_anchor_token(T___PRETTY_FUNCTION__);
10348         add_anchor_token(T___alignof__);
10349         add_anchor_token(T___attribute__);
10350         add_anchor_token(T___builtin_va_start);
10351         add_anchor_token(T___extension__);
10352         add_anchor_token(T___func__);
10353         add_anchor_token(T___imag__);
10354         add_anchor_token(T___label__);
10355         add_anchor_token(T___real__);
10356         add_anchor_token(T___thread);
10357         add_anchor_token(T_asm);
10358         add_anchor_token(T_auto);
10359         add_anchor_token(T_bool);
10360         add_anchor_token(T_break);
10361         add_anchor_token(T_case);
10362         add_anchor_token(T_char);
10363         add_anchor_token(T_class);
10364         add_anchor_token(T_const);
10365         add_anchor_token(T_const_cast);
10366         add_anchor_token(T_continue);
10367         add_anchor_token(T_default);
10368         add_anchor_token(T_delete);
10369         add_anchor_token(T_double);
10370         add_anchor_token(T_do);
10371         add_anchor_token(T_dynamic_cast);
10372         add_anchor_token(T_enum);
10373         add_anchor_token(T_extern);
10374         add_anchor_token(T_false);
10375         add_anchor_token(T_float);
10376         add_anchor_token(T_for);
10377         add_anchor_token(T_goto);
10378         add_anchor_token(T_if);
10379         add_anchor_token(T_inline);
10380         add_anchor_token(T_int);
10381         add_anchor_token(T_long);
10382         add_anchor_token(T_new);
10383         add_anchor_token(T_operator);
10384         add_anchor_token(T_register);
10385         add_anchor_token(T_reinterpret_cast);
10386         add_anchor_token(T_restrict);
10387         add_anchor_token(T_return);
10388         add_anchor_token(T_short);
10389         add_anchor_token(T_signed);
10390         add_anchor_token(T_sizeof);
10391         add_anchor_token(T_static);
10392         add_anchor_token(T_static_cast);
10393         add_anchor_token(T_struct);
10394         add_anchor_token(T_switch);
10395         add_anchor_token(T_template);
10396         add_anchor_token(T_this);
10397         add_anchor_token(T_throw);
10398         add_anchor_token(T_true);
10399         add_anchor_token(T_try);
10400         add_anchor_token(T_typedef);
10401         add_anchor_token(T_typeid);
10402         add_anchor_token(T_typename);
10403         add_anchor_token(T_typeof);
10404         add_anchor_token(T_union);
10405         add_anchor_token(T_unsigned);
10406         add_anchor_token(T_using);
10407         add_anchor_token(T_void);
10408         add_anchor_token(T_volatile);
10409         add_anchor_token(T_wchar_t);
10410         add_anchor_token(T_while);
10411
10412         size_t const  top       = environment_top();
10413         scope_t      *old_scope = scope_push(&statement->compound.scope);
10414
10415         statement_t **anchor            = &statement->compound.statements;
10416         bool          only_decls_so_far = true;
10417         while (token.type != '}') {
10418                 if (token.type == T_EOF) {
10419                         errorf(&statement->base.source_position,
10420                                "EOF while parsing compound statement");
10421                         break;
10422                 }
10423                 statement_t *sub_statement = intern_parse_statement();
10424                 if (is_invalid_statement(sub_statement)) {
10425                         /* an error occurred. if we are at an anchor, return */
10426                         if (at_anchor())
10427                                 goto end_error;
10428                         continue;
10429                 }
10430
10431                 if (warning.declaration_after_statement) {
10432                         if (sub_statement->kind != STATEMENT_DECLARATION) {
10433                                 only_decls_so_far = false;
10434                         } else if (!only_decls_so_far) {
10435                                 warningf(&sub_statement->base.source_position,
10436                                          "ISO C90 forbids mixed declarations and code");
10437                         }
10438                 }
10439
10440                 *anchor = sub_statement;
10441
10442                 while (sub_statement->base.next != NULL)
10443                         sub_statement = sub_statement->base.next;
10444
10445                 anchor = &sub_statement->base.next;
10446         }
10447         next_token();
10448
10449         /* look over all statements again to produce no effect warnings */
10450         if (warning.unused_value) {
10451                 statement_t *sub_statement = statement->compound.statements;
10452                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10453                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10454                                 continue;
10455                         /* don't emit a warning for the last expression in an expression
10456                          * statement as it has always an effect */
10457                         if (inside_expression_statement && sub_statement->base.next == NULL)
10458                                 continue;
10459
10460                         expression_t *expression = sub_statement->expression.expression;
10461                         if (!expression_has_effect(expression)) {
10462                                 warningf(&expression->base.source_position,
10463                                          "statement has no effect");
10464                         }
10465                 }
10466         }
10467
10468 end_error:
10469         rem_anchor_token(T_while);
10470         rem_anchor_token(T_wchar_t);
10471         rem_anchor_token(T_volatile);
10472         rem_anchor_token(T_void);
10473         rem_anchor_token(T_using);
10474         rem_anchor_token(T_unsigned);
10475         rem_anchor_token(T_union);
10476         rem_anchor_token(T_typeof);
10477         rem_anchor_token(T_typename);
10478         rem_anchor_token(T_typeid);
10479         rem_anchor_token(T_typedef);
10480         rem_anchor_token(T_try);
10481         rem_anchor_token(T_true);
10482         rem_anchor_token(T_throw);
10483         rem_anchor_token(T_this);
10484         rem_anchor_token(T_template);
10485         rem_anchor_token(T_switch);
10486         rem_anchor_token(T_struct);
10487         rem_anchor_token(T_static_cast);
10488         rem_anchor_token(T_static);
10489         rem_anchor_token(T_sizeof);
10490         rem_anchor_token(T_signed);
10491         rem_anchor_token(T_short);
10492         rem_anchor_token(T_return);
10493         rem_anchor_token(T_restrict);
10494         rem_anchor_token(T_reinterpret_cast);
10495         rem_anchor_token(T_register);
10496         rem_anchor_token(T_operator);
10497         rem_anchor_token(T_new);
10498         rem_anchor_token(T_long);
10499         rem_anchor_token(T_int);
10500         rem_anchor_token(T_inline);
10501         rem_anchor_token(T_if);
10502         rem_anchor_token(T_goto);
10503         rem_anchor_token(T_for);
10504         rem_anchor_token(T_float);
10505         rem_anchor_token(T_false);
10506         rem_anchor_token(T_extern);
10507         rem_anchor_token(T_enum);
10508         rem_anchor_token(T_dynamic_cast);
10509         rem_anchor_token(T_do);
10510         rem_anchor_token(T_double);
10511         rem_anchor_token(T_delete);
10512         rem_anchor_token(T_default);
10513         rem_anchor_token(T_continue);
10514         rem_anchor_token(T_const_cast);
10515         rem_anchor_token(T_const);
10516         rem_anchor_token(T_class);
10517         rem_anchor_token(T_char);
10518         rem_anchor_token(T_case);
10519         rem_anchor_token(T_break);
10520         rem_anchor_token(T_bool);
10521         rem_anchor_token(T_auto);
10522         rem_anchor_token(T_asm);
10523         rem_anchor_token(T___thread);
10524         rem_anchor_token(T___real__);
10525         rem_anchor_token(T___label__);
10526         rem_anchor_token(T___imag__);
10527         rem_anchor_token(T___func__);
10528         rem_anchor_token(T___extension__);
10529         rem_anchor_token(T___builtin_va_start);
10530         rem_anchor_token(T___attribute__);
10531         rem_anchor_token(T___alignof__);
10532         rem_anchor_token(T___PRETTY_FUNCTION__);
10533         rem_anchor_token(T___FUNCTION__);
10534         rem_anchor_token(T__Imaginary);
10535         rem_anchor_token(T__Complex);
10536         rem_anchor_token(T__Bool);
10537         rem_anchor_token(T_WIDE_STRING_LITERAL);
10538         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10539         rem_anchor_token(T_STRING_LITERAL);
10540         rem_anchor_token(T_PLUSPLUS);
10541         rem_anchor_token(T_MINUSMINUS);
10542         rem_anchor_token(T_INTEGER);
10543         rem_anchor_token(T_IDENTIFIER);
10544         rem_anchor_token(T_FLOATINGPOINT);
10545         rem_anchor_token(T_COLONCOLON);
10546         rem_anchor_token(T_CHARACTER_CONSTANT);
10547         rem_anchor_token('~');
10548         rem_anchor_token('{');
10549         rem_anchor_token('-');
10550         rem_anchor_token('+');
10551         rem_anchor_token('*');
10552         rem_anchor_token('(');
10553         rem_anchor_token('&');
10554         rem_anchor_token('!');
10555         rem_anchor_token('}');
10556         assert(current_scope == &statement->compound.scope);
10557         scope_pop(old_scope);
10558         environment_pop_to(top);
10559
10560         POP_PARENT;
10561         return statement;
10562 }
10563
10564 /**
10565  * Check for unused global static functions and variables
10566  */
10567 static void check_unused_globals(void)
10568 {
10569         if (!warning.unused_function && !warning.unused_variable)
10570                 return;
10571
10572         for (const entity_t *entity = file_scope->entities; entity != NULL;
10573              entity = entity->base.next) {
10574                 if (!is_declaration(entity))
10575                         continue;
10576
10577                 const declaration_t *declaration = &entity->declaration;
10578                 if (declaration->used                  ||
10579                     declaration->modifiers & DM_UNUSED ||
10580                     declaration->modifiers & DM_USED   ||
10581                     declaration->storage_class != STORAGE_CLASS_STATIC)
10582                         continue;
10583
10584                 type_t *const type = declaration->type;
10585                 const char *s;
10586                 if (entity->kind == ENTITY_FUNCTION) {
10587                         /* inhibit warning for static inline functions */
10588                         if (entity->function.is_inline)
10589                                 continue;
10590
10591                         s = entity->function.statement != NULL ? "defined" : "declared";
10592                 } else {
10593                         s = "defined";
10594                 }
10595
10596                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
10597                         type, declaration->base.symbol, s);
10598         }
10599 }
10600
10601 static void parse_global_asm(void)
10602 {
10603         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
10604
10605         eat(T_asm);
10606         expect('(', end_error);
10607
10608         statement->asms.asm_text = parse_string_literals();
10609         statement->base.next     = unit->global_asm;
10610         unit->global_asm         = statement;
10611
10612         expect(')', end_error);
10613         expect(';', end_error);
10614
10615 end_error:;
10616 }
10617
10618 static void parse_linkage_specification(void)
10619 {
10620         eat(T_extern);
10621         assert(token.type == T_STRING_LITERAL);
10622
10623         const char *linkage = parse_string_literals().begin;
10624
10625         linkage_kind_t old_linkage = current_linkage;
10626         linkage_kind_t new_linkage;
10627         if (strcmp(linkage, "C") == 0) {
10628                 new_linkage = LINKAGE_C;
10629         } else if (strcmp(linkage, "C++") == 0) {
10630                 new_linkage = LINKAGE_CXX;
10631         } else {
10632                 errorf(HERE, "linkage string \"%s\" not recognized", linkage);
10633                 new_linkage = LINKAGE_INVALID;
10634         }
10635         current_linkage = new_linkage;
10636
10637         if (next_if('{')) {
10638                 parse_externals();
10639                 expect('}', end_error);
10640         } else {
10641                 parse_external();
10642         }
10643
10644 end_error:
10645         assert(current_linkage == new_linkage);
10646         current_linkage = old_linkage;
10647 }
10648
10649 static void parse_external(void)
10650 {
10651         switch (token.type) {
10652                 DECLARATION_START_NO_EXTERN
10653                 case T_IDENTIFIER:
10654                 case T___extension__:
10655                 /* tokens below are for implicit int */
10656                 case '&': /* & x; -> int& x; (and error later, because C++ has no
10657                              implicit int) */
10658                 case '*': /* * x; -> int* x; */
10659                 case '(': /* (x); -> int (x); */
10660                         parse_external_declaration();
10661                         return;
10662
10663                 case T_extern:
10664                         if (look_ahead(1)->type == T_STRING_LITERAL) {
10665                                 parse_linkage_specification();
10666                         } else {
10667                                 parse_external_declaration();
10668                         }
10669                         return;
10670
10671                 case T_asm:
10672                         parse_global_asm();
10673                         return;
10674
10675                 case T_namespace:
10676                         parse_namespace_definition();
10677                         return;
10678
10679                 case ';':
10680                         if (!strict_mode) {
10681                                 if (warning.other)
10682                                         warningf(HERE, "stray ';' outside of function");
10683                                 next_token();
10684                                 return;
10685                         }
10686                         /* FALLTHROUGH */
10687
10688                 default:
10689                         errorf(HERE, "stray %K outside of function", &token);
10690                         if (token.type == '(' || token.type == '{' || token.type == '[')
10691                                 eat_until_matching_token(token.type);
10692                         next_token();
10693                         return;
10694         }
10695 }
10696
10697 static void parse_externals(void)
10698 {
10699         add_anchor_token('}');
10700         add_anchor_token(T_EOF);
10701
10702 #ifndef NDEBUG
10703         unsigned char token_anchor_copy[T_LAST_TOKEN];
10704         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
10705 #endif
10706
10707         while (token.type != T_EOF && token.type != '}') {
10708 #ifndef NDEBUG
10709                 bool anchor_leak = false;
10710                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
10711                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
10712                         if (count != 0) {
10713                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
10714                                 anchor_leak = true;
10715                         }
10716                 }
10717                 if (in_gcc_extension) {
10718                         errorf(HERE, "Leaked __extension__");
10719                         anchor_leak = true;
10720                 }
10721
10722                 if (anchor_leak)
10723                         abort();
10724 #endif
10725
10726                 parse_external();
10727         }
10728
10729         rem_anchor_token(T_EOF);
10730         rem_anchor_token('}');
10731 }
10732
10733 /**
10734  * Parse a translation unit.
10735  */
10736 static void parse_translation_unit(void)
10737 {
10738         add_anchor_token(T_EOF);
10739
10740         while (true) {
10741                 parse_externals();
10742
10743                 if (token.type == T_EOF)
10744                         break;
10745
10746                 errorf(HERE, "stray %K outside of function", &token);
10747                 if (token.type == '(' || token.type == '{' || token.type == '[')
10748                         eat_until_matching_token(token.type);
10749                 next_token();
10750         }
10751 }
10752
10753 /**
10754  * Parse the input.
10755  *
10756  * @return  the translation unit or NULL if errors occurred.
10757  */
10758 void start_parsing(void)
10759 {
10760         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10761         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10762         diagnostic_count  = 0;
10763         error_count       = 0;
10764         warning_count     = 0;
10765
10766         print_to_file(stderr);
10767
10768         assert(unit == NULL);
10769         unit = allocate_ast_zero(sizeof(unit[0]));
10770
10771         assert(file_scope == NULL);
10772         file_scope = &unit->scope;
10773
10774         assert(current_scope == NULL);
10775         scope_push(&unit->scope);
10776
10777         create_gnu_builtins();
10778         if (c_mode & _MS)
10779                 create_microsoft_intrinsics();
10780 }
10781
10782 translation_unit_t *finish_parsing(void)
10783 {
10784         assert(current_scope == &unit->scope);
10785         scope_pop(NULL);
10786
10787         assert(file_scope == &unit->scope);
10788         check_unused_globals();
10789         file_scope = NULL;
10790
10791         DEL_ARR_F(environment_stack);
10792         DEL_ARR_F(label_stack);
10793
10794         translation_unit_t *result = unit;
10795         unit = NULL;
10796         return result;
10797 }
10798
10799 /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
10800  * are given length one. */
10801 static void complete_incomplete_arrays(void)
10802 {
10803         size_t n = ARR_LEN(incomplete_arrays);
10804         for (size_t i = 0; i != n; ++i) {
10805                 declaration_t *const decl      = incomplete_arrays[i];
10806                 type_t        *const orig_type = decl->type;
10807                 type_t        *const type      = skip_typeref(orig_type);
10808
10809                 if (!is_type_incomplete(type))
10810                         continue;
10811
10812                 if (warning.other) {
10813                         warningf(&decl->base.source_position,
10814                                         "array '%#T' assumed to have one element",
10815                                         orig_type, decl->base.symbol);
10816                 }
10817
10818                 type_t *const new_type = duplicate_type(type);
10819                 new_type->array.size_constant     = true;
10820                 new_type->array.has_implicit_size = true;
10821                 new_type->array.size              = 1;
10822
10823                 type_t *const result = identify_new_type(new_type);
10824
10825                 decl->type = result;
10826         }
10827 }
10828
10829 void prepare_main_collect2(entity_t *entity)
10830 {
10831         // create call to __main
10832         symbol_t *symbol         = symbol_table_insert("__main");
10833         entity_t *subsubmain_ent
10834                 = create_implicit_function(symbol, &builtin_source_position);
10835
10836         expression_t *ref         = allocate_expression_zero(EXPR_REFERENCE);
10837         type_t       *ftype       = subsubmain_ent->declaration.type;
10838         ref->base.source_position = builtin_source_position;
10839         ref->base.type            = make_pointer_type(ftype, TYPE_QUALIFIER_NONE);
10840         ref->reference.entity     = subsubmain_ent;
10841
10842         expression_t *call = allocate_expression_zero(EXPR_CALL);
10843         call->base.source_position = builtin_source_position;
10844         call->base.type            = type_void;
10845         call->call.function        = ref;
10846
10847         statement_t *expr_statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10848         expr_statement->base.source_position  = builtin_source_position;
10849         expr_statement->expression.expression = call;
10850
10851         statement_t *statement = entity->function.statement;
10852         assert(statement->kind == STATEMENT_COMPOUND);
10853         compound_statement_t *compounds = &statement->compound;
10854
10855         expr_statement->base.next = compounds->statements;
10856         compounds->statements     = expr_statement;
10857 }
10858
10859 void parse(void)
10860 {
10861         lookahead_bufpos = 0;
10862         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10863                 next_token();
10864         }
10865         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
10866         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
10867         parse_translation_unit();
10868         complete_incomplete_arrays();
10869         DEL_ARR_F(incomplete_arrays);
10870         incomplete_arrays = NULL;
10871 }
10872
10873 /**
10874  * Initialize the parser.
10875  */
10876 void init_parser(void)
10877 {
10878         sym_anonymous = symbol_table_insert("<anonymous>");
10879
10880         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10881
10882         init_expression_parsers();
10883         obstack_init(&temp_obst);
10884
10885         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
10886         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
10887 }
10888
10889 /**
10890  * Terminate the parser.
10891  */
10892 void exit_parser(void)
10893 {
10894         obstack_free(&temp_obst, NULL);
10895 }