c1709fcfb8f8e5ad998c56419e024e3d62c86d96
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "lang_features.h"
38 #include "walk_statements.h"
39 #include "warning.h"
40 #include "adt/bitfiddle.h"
41 #include "adt/error.h"
42 #include "adt/array.h"
43
44 /** if wchar_t is equal to unsigned short. */
45 bool opt_short_wchar_t =
46 #ifdef _WIN32
47         true;
48 #else
49         false;
50 #endif
51
52 //#define PRINT_TOKENS
53 #define MAX_LOOKAHEAD 2
54
55 typedef struct {
56         entity_t    *old_entity;
57         symbol_t    *symbol;
58         namespace_t  namespc;
59 } stack_entry_t;
60
61 typedef struct argument_list_t argument_list_t;
62 struct argument_list_t {
63         long              argument;
64         argument_list_t  *next;
65 };
66
67 typedef struct gnu_attribute_t gnu_attribute_t;
68 struct gnu_attribute_t {
69         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
70         gnu_attribute_t     *next;
71         bool                 invalid;        /**< Set if this attribute had argument errors, */
72         bool                 have_arguments; /**< True, if this attribute has arguments. */
73         union {
74                 size_t              value;
75                 string_t            string;
76                 atomic_type_kind_t  akind;
77                 long                argument;  /**< Single argument. */
78                 argument_list_t    *arguments; /**< List of argument expressions. */
79         } u;
80 };
81
82 typedef struct declaration_specifiers_t  declaration_specifiers_t;
83 struct declaration_specifiers_t {
84         source_position_t  source_position;
85         storage_class_t    storage_class;
86         unsigned char      alignment;         /**< Alignment, 0 if not set. */
87         bool               is_inline : 1;
88         bool               deprecated : 1;
89         decl_modifiers_t   modifiers;         /**< declaration modifiers */
90         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
91         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
92         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
93         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
94         type_t            *type;
95 };
96
97 /**
98  * An environment for parsing initializers (and compound literals).
99  */
100 typedef struct parse_initializer_env_t {
101         type_t     *type;   /**< the type of the initializer. In case of an
102                                  array type with unspecified size this gets
103                                  adjusted to the actual size. */
104         entity_t   *entity; /**< the variable that is initialized if any */
105         bool        must_be_constant;
106 } parse_initializer_env_t;
107
108 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
109
110 /** The current token. */
111 static token_t             token;
112 /** The lookahead ring-buffer. */
113 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
114 /** Position of the next token in the lookahead buffer. */
115 static int                 lookahead_bufpos;
116 static stack_entry_t      *environment_stack = NULL;
117 static stack_entry_t      *label_stack       = NULL;
118 static stack_entry_t      *local_label_stack = NULL;
119 /** The global file scope. */
120 static scope_t            *file_scope        = NULL;
121 /** The current scope. */
122 static scope_t            *scope             = NULL;
123 /** Point to the current function declaration if inside a function. */
124 static function_t         *current_function  = NULL;
125 static entity_t           *current_init_decl = NULL;
126 static switch_statement_t *current_switch    = NULL;
127 static statement_t        *current_loop      = NULL;
128 static statement_t        *current_parent    = NULL;
129 static ms_try_statement_t *current_try       = NULL;
130 static goto_statement_t   *goto_first        = NULL;
131 static goto_statement_t   *goto_last         = NULL;
132 static label_statement_t  *label_first       = NULL;
133 static label_statement_t  *label_last        = NULL;
134 /** current translation unit. */
135 static translation_unit_t *unit              = NULL;
136 /** true if we are in a type property context (evaluation only for type. */
137 static bool                in_type_prop      = false;
138 /** true in we are in a __extension__ context. */
139 static bool                in_gcc_extension  = false;
140 static struct obstack      temp_obst;
141
142
143 #define PUSH_PARENT(stmt)                          \
144         statement_t *const prev_parent = current_parent; \
145         ((void)(current_parent = (stmt)))
146 #define POP_PARENT ((void)(current_parent = prev_parent))
147
148 /** special symbol used for anonymous entities. */
149 static const symbol_t *sym_anonymous = NULL;
150
151 /* symbols for Microsoft extended-decl-modifier */
152 static const symbol_t *sym_align      = NULL;
153 static const symbol_t *sym_allocate   = NULL;
154 static const symbol_t *sym_dllimport  = NULL;
155 static const symbol_t *sym_dllexport  = NULL;
156 static const symbol_t *sym_naked      = NULL;
157 static const symbol_t *sym_noinline   = NULL;
158 static const symbol_t *sym_noreturn   = NULL;
159 static const symbol_t *sym_nothrow    = NULL;
160 static const symbol_t *sym_novtable   = NULL;
161 static const symbol_t *sym_property   = NULL;
162 static const symbol_t *sym_get        = NULL;
163 static const symbol_t *sym_put        = NULL;
164 static const symbol_t *sym_selectany  = NULL;
165 static const symbol_t *sym_thread     = NULL;
166 static const symbol_t *sym_uuid       = NULL;
167 static const symbol_t *sym_deprecated = NULL;
168 static const symbol_t *sym_restrict   = NULL;
169 static const symbol_t *sym_noalias    = NULL;
170
171 /** The token anchor set */
172 static unsigned char token_anchor_set[T_LAST_TOKEN];
173
174 /** The current source position. */
175 #define HERE (&token.source_position)
176
177 /** true if we are in GCC mode. */
178 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
179
180 static type_t *type_valist;
181
182 static statement_t *parse_compound_statement(bool inside_expression_statement);
183 static statement_t *parse_statement(void);
184
185 static expression_t *parse_sub_expression(precedence_t);
186 static expression_t *parse_expression(void);
187 static type_t       *parse_typename(void);
188
189 static void parse_compound_type_entries(compound_t *compound_declaration);
190 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
191                                   bool may_be_abstract,
192                                   bool create_compound_member);
193 static entity_t *record_entity(entity_t *entity, bool is_definition);
194
195 static void semantic_comparison(binary_expression_t *expression);
196
197 #define STORAGE_CLASSES     \
198         case T_typedef:         \
199         case T_extern:          \
200         case T_static:          \
201         case T_auto:            \
202         case T_register:        \
203         case T___thread:
204
205 #define TYPE_QUALIFIERS     \
206         case T_const:           \
207         case T_restrict:        \
208         case T_volatile:        \
209         case T_inline:          \
210         case T__forceinline:    \
211         case T___attribute__:
212
213 #ifdef PROVIDE_COMPLEX
214 #define COMPLEX_SPECIFIERS  \
215         case T__Complex:
216 #define IMAGINARY_SPECIFIERS \
217         case T__Imaginary:
218 #else
219 #define COMPLEX_SPECIFIERS
220 #define IMAGINARY_SPECIFIERS
221 #endif
222
223 #define TYPE_SPECIFIERS       \
224         case T_void:              \
225         case T_char:              \
226         case T_short:             \
227         case T_int:               \
228         case T_long:              \
229         case T_float:             \
230         case T_double:            \
231         case T_signed:            \
232         case T_unsigned:          \
233         case T__Bool:             \
234         case T_struct:            \
235         case T_union:             \
236         case T_enum:              \
237         case T___typeof__:        \
238         case T___builtin_va_list: \
239         case T__declspec:         \
240         COMPLEX_SPECIFIERS        \
241         IMAGINARY_SPECIFIERS
242
243 #define DECLARATION_START   \
244         STORAGE_CLASSES         \
245         TYPE_QUALIFIERS         \
246         TYPE_SPECIFIERS
247
248 #define TYPENAME_START      \
249         TYPE_QUALIFIERS         \
250         TYPE_SPECIFIERS
251
252 #define EXPRESSION_START           \
253         case '!':                        \
254         case '&':                        \
255         case '(':                        \
256         case '*':                        \
257         case '+':                        \
258         case '-':                        \
259         case '~':                        \
260         case T_ANDAND:                   \
261         case T_CHARACTER_CONSTANT:       \
262         case T_FLOATINGPOINT:            \
263         case T_INTEGER:                  \
264         case T_MINUSMINUS:               \
265         case T_PLUSPLUS:                 \
266         case T_STRING_LITERAL:           \
267         case T_WIDE_CHARACTER_CONSTANT:  \
268         case T_WIDE_STRING_LITERAL:      \
269         case T___FUNCDNAME__:            \
270         case T___FUNCSIG__:              \
271         case T___FUNCTION__:             \
272         case T___PRETTY_FUNCTION__:      \
273         case T___alignof__:              \
274         case T___builtin_alloca:         \
275         case T___builtin_classify_type:  \
276         case T___builtin_constant_p:     \
277         case T___builtin_expect:         \
278         case T___builtin_huge_val:       \
279         case T___builtin_inf:            \
280         case T___builtin_inff:           \
281         case T___builtin_infl:           \
282         case T___builtin_isgreater:      \
283         case T___builtin_isgreaterequal: \
284         case T___builtin_isless:         \
285         case T___builtin_islessequal:    \
286         case T___builtin_islessgreater:  \
287         case T___builtin_isunordered:    \
288         case T___builtin_nan:            \
289         case T___builtin_nanf:           \
290         case T___builtin_nanl:           \
291         case T___builtin_offsetof:       \
292         case T___builtin_prefetch:       \
293         case T___builtin_va_arg:         \
294         case T___builtin_va_end:         \
295         case T___builtin_va_start:       \
296         case T___func__:                 \
297         case T___noop:                   \
298         case T__assume:                  \
299         case T_sizeof:                   \
300         case T_delete:                   \
301         case T_throw:
302
303 /**
304  * Allocate an AST node with given size and
305  * initialize all fields with zero.
306  */
307 static void *allocate_ast_zero(size_t size)
308 {
309         void *res = allocate_ast(size);
310         memset(res, 0, size);
311         return res;
312 }
313
314 static size_t get_entity_struct_size(entity_kind_t kind)
315 {
316         static const size_t sizes[] = {
317                 [ENTITY_VARIABLE]        = sizeof(variable_t),
318                 [ENTITY_COMPOUND_MEMBER] = sizeof(variable_t),
319                 [ENTITY_FUNCTION]        = sizeof(function_t),
320                 [ENTITY_TYPEDEF]         = sizeof(typedef_t),
321                 [ENTITY_STRUCT]          = sizeof(compound_t),
322                 [ENTITY_UNION]           = sizeof(compound_t),
323                 [ENTITY_ENUM]            = sizeof(enum_t),
324                 [ENTITY_ENUM_VALUE]      = sizeof(enum_value_t),
325                 [ENTITY_LABEL]           = sizeof(label_t),
326                 [ENTITY_LOCAL_LABEL]     = sizeof(label_t)
327         };
328         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
329         assert(sizes[kind] != 0);
330         return sizes[kind];
331 }
332
333 static entity_t *allocate_entity_zero(entity_kind_t kind)
334 {
335         size_t    size   = get_entity_struct_size(kind);
336         entity_t *entity = allocate_ast_zero(size);
337         entity->kind     = kind;
338         return entity;
339 }
340
341 /**
342  * Returns the size of a statement node.
343  *
344  * @param kind  the statement kind
345  */
346 static size_t get_statement_struct_size(statement_kind_t kind)
347 {
348         static const size_t sizes[] = {
349                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
350                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
351                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
352                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
353                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
354                 [STATEMENT_LOCAL_LABEL] = sizeof(local_label_statement_t),
355                 [STATEMENT_IF]          = sizeof(if_statement_t),
356                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
357                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
358                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
359                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
360                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
361                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
362                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
363                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
364                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
365                 [STATEMENT_FOR]         = sizeof(for_statement_t),
366                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
367                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
368                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
369         };
370         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
371         assert(sizes[kind] != 0);
372         return sizes[kind];
373 }
374
375 /**
376  * Returns the size of an expression node.
377  *
378  * @param kind  the expression kind
379  */
380 static size_t get_expression_struct_size(expression_kind_t kind)
381 {
382         static const size_t sizes[] = {
383                 [EXPR_INVALID]                 = sizeof(expression_base_t),
384                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
385                 [EXPR_REFERENCE_ENUM_VALUE]    = sizeof(reference_expression_t),
386                 [EXPR_CONST]                   = sizeof(const_expression_t),
387                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
388                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
389                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
390                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
391                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
392                 [EXPR_CALL]                    = sizeof(call_expression_t),
393                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
394                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
395                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
396                 [EXPR_SELECT]                  = sizeof(select_expression_t),
397                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
398                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
399                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
400                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
401                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
402                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
403                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
404                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
405                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
406                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
407                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
408                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
409                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
410         };
411         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
412                 return sizes[EXPR_UNARY_FIRST];
413         }
414         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
415                 return sizes[EXPR_BINARY_FIRST];
416         }
417         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
418         assert(sizes[kind] != 0);
419         return sizes[kind];
420 }
421
422 /**
423  * Allocate a statement node of given kind and initialize all
424  * fields with zero.
425  */
426 static statement_t *allocate_statement_zero(statement_kind_t kind)
427 {
428         size_t       size = get_statement_struct_size(kind);
429         statement_t *res  = allocate_ast_zero(size);
430
431         res->base.kind            = kind;
432         res->base.parent          = current_parent;
433         res->base.source_position = token.source_position;
434         return res;
435 }
436
437 /**
438  * Allocate an expression node of given kind and initialize all
439  * fields with zero.
440  */
441 static expression_t *allocate_expression_zero(expression_kind_t kind)
442 {
443         size_t        size = get_expression_struct_size(kind);
444         expression_t *res  = allocate_ast_zero(size);
445
446         res->base.kind            = kind;
447         res->base.type            = type_error_type;
448         res->base.source_position = token.source_position;
449         return res;
450 }
451
452 /**
453  * Creates a new invalid expression.
454  */
455 static expression_t *create_invalid_expression(void)
456 {
457         return allocate_expression_zero(EXPR_INVALID);
458 }
459
460 /**
461  * Creates a new invalid statement.
462  */
463 static statement_t *create_invalid_statement(void)
464 {
465         return allocate_statement_zero(STATEMENT_INVALID);
466 }
467
468 /**
469  * Allocate a new empty statement.
470  */
471 static statement_t *create_empty_statement(void)
472 {
473         return allocate_statement_zero(STATEMENT_EMPTY);
474 }
475
476 /**
477  * Returns the size of a type node.
478  *
479  * @param kind  the type kind
480  */
481 static size_t get_type_struct_size(type_kind_t kind)
482 {
483         static const size_t sizes[] = {
484                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
485                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
486                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
487                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
488                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
489                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
490                 [TYPE_ENUM]            = sizeof(enum_type_t),
491                 [TYPE_FUNCTION]        = sizeof(function_type_t),
492                 [TYPE_POINTER]         = sizeof(pointer_type_t),
493                 [TYPE_ARRAY]           = sizeof(array_type_t),
494                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
495                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
496                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
497         };
498         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
499         assert(kind <= TYPE_TYPEOF);
500         assert(sizes[kind] != 0);
501         return sizes[kind];
502 }
503
504 /**
505  * Allocate a type node of given kind and initialize all
506  * fields with zero.
507  *
508  * @param kind             type kind to allocate
509  */
510 static type_t *allocate_type_zero(type_kind_t kind)
511 {
512         size_t  size = get_type_struct_size(kind);
513         type_t *res  = obstack_alloc(type_obst, size);
514         memset(res, 0, size);
515         res->base.kind = kind;
516
517         return res;
518 }
519
520 /**
521  * Returns the size of an initializer node.
522  *
523  * @param kind  the initializer kind
524  */
525 static size_t get_initializer_size(initializer_kind_t kind)
526 {
527         static const size_t sizes[] = {
528                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
529                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
530                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
531                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
532                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
533         };
534         assert(kind < sizeof(sizes) / sizeof(*sizes));
535         assert(sizes[kind] != 0);
536         return sizes[kind];
537 }
538
539 /**
540  * Allocate an initializer node of given kind and initialize all
541  * fields with zero.
542  */
543 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
544 {
545         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
546         result->kind          = kind;
547
548         return result;
549 }
550
551 /**
552  * Free a type from the type obstack.
553  */
554 static void free_type(void *type)
555 {
556         obstack_free(type_obst, type);
557 }
558
559 /**
560  * Returns the index of the top element of the environment stack.
561  */
562 static size_t environment_top(void)
563 {
564         return ARR_LEN(environment_stack);
565 }
566
567 /**
568  * Returns the index of the top element of the global label stack.
569  */
570 static size_t label_top(void)
571 {
572         return ARR_LEN(label_stack);
573 }
574
575 /**
576  * Returns the index of the top element of the local label stack.
577  */
578 static size_t local_label_top(void)
579 {
580         return ARR_LEN(local_label_stack);
581 }
582
583 /**
584  * Return the next token.
585  */
586 static inline void next_token(void)
587 {
588         token                              = lookahead_buffer[lookahead_bufpos];
589         lookahead_buffer[lookahead_bufpos] = lexer_token;
590         lexer_next_token();
591
592         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
593
594 #ifdef PRINT_TOKENS
595         print_token(stderr, &token);
596         fprintf(stderr, "\n");
597 #endif
598 }
599
600 /**
601  * Return the next token with a given lookahead.
602  */
603 static inline const token_t *look_ahead(int num)
604 {
605         assert(num > 0 && num <= MAX_LOOKAHEAD);
606         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
607         return &lookahead_buffer[pos];
608 }
609
610 /**
611  * Adds a token to the token anchor set (a multi-set).
612  */
613 static void add_anchor_token(int token_type)
614 {
615         assert(0 <= token_type && token_type < T_LAST_TOKEN);
616         ++token_anchor_set[token_type];
617 }
618
619 static int save_and_reset_anchor_state(int token_type)
620 {
621         assert(0 <= token_type && token_type < T_LAST_TOKEN);
622         int count = token_anchor_set[token_type];
623         token_anchor_set[token_type] = 0;
624         return count;
625 }
626
627 static void restore_anchor_state(int token_type, int count)
628 {
629         assert(0 <= token_type && token_type < T_LAST_TOKEN);
630         token_anchor_set[token_type] = count;
631 }
632
633 /**
634  * Remove a token from the token anchor set (a multi-set).
635  */
636 static void rem_anchor_token(int token_type)
637 {
638         assert(0 <= token_type && token_type < T_LAST_TOKEN);
639         assert(token_anchor_set[token_type] != 0);
640         --token_anchor_set[token_type];
641 }
642
643 static bool at_anchor(void)
644 {
645         if (token.type < 0)
646                 return false;
647         return token_anchor_set[token.type];
648 }
649
650 /**
651  * Eat tokens until a matching token is found.
652  */
653 static void eat_until_matching_token(int type)
654 {
655         int end_token;
656         switch (type) {
657                 case '(': end_token = ')';  break;
658                 case '{': end_token = '}';  break;
659                 case '[': end_token = ']';  break;
660                 default:  end_token = type; break;
661         }
662
663         unsigned parenthesis_count = 0;
664         unsigned brace_count       = 0;
665         unsigned bracket_count     = 0;
666         while (token.type        != end_token ||
667                parenthesis_count != 0         ||
668                brace_count       != 0         ||
669                bracket_count     != 0) {
670                 switch (token.type) {
671                 case T_EOF: return;
672                 case '(': ++parenthesis_count; break;
673                 case '{': ++brace_count;       break;
674                 case '[': ++bracket_count;     break;
675
676                 case ')':
677                         if (parenthesis_count > 0)
678                                 --parenthesis_count;
679                         goto check_stop;
680
681                 case '}':
682                         if (brace_count > 0)
683                                 --brace_count;
684                         goto check_stop;
685
686                 case ']':
687                         if (bracket_count > 0)
688                                 --bracket_count;
689 check_stop:
690                         if (token.type        == end_token &&
691                             parenthesis_count == 0         &&
692                             brace_count       == 0         &&
693                             bracket_count     == 0)
694                                 return;
695                         break;
696
697                 default:
698                         break;
699                 }
700                 next_token();
701         }
702 }
703
704 /**
705  * Eat input tokens until an anchor is found.
706  */
707 static void eat_until_anchor(void)
708 {
709         while (token_anchor_set[token.type] == 0) {
710                 if (token.type == '(' || token.type == '{' || token.type == '[')
711                         eat_until_matching_token(token.type);
712                 next_token();
713         }
714 }
715
716 static void eat_block(void)
717 {
718         eat_until_matching_token('{');
719         if (token.type == '}')
720                 next_token();
721 }
722
723 #define eat(token_type)  do { assert(token.type == (token_type)); next_token(); } while (0)
724
725 /**
726  * Report a parse error because an expected token was not found.
727  */
728 static
729 #if defined __GNUC__ && __GNUC__ >= 4
730 __attribute__((sentinel))
731 #endif
732 void parse_error_expected(const char *message, ...)
733 {
734         if (message != NULL) {
735                 errorf(HERE, "%s", message);
736         }
737         va_list ap;
738         va_start(ap, message);
739         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
740         va_end(ap);
741 }
742
743 /**
744  * Report a type error.
745  */
746 static void type_error(const char *msg, const source_position_t *source_position,
747                        type_t *type)
748 {
749         errorf(source_position, "%s, but found type '%T'", msg, type);
750 }
751
752 /**
753  * Report an incompatible type.
754  */
755 static void type_error_incompatible(const char *msg,
756                 const source_position_t *source_position, type_t *type1, type_t *type2)
757 {
758         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
759                msg, type1, type2);
760 }
761
762 /**
763  * Expect the the current token is the expected token.
764  * If not, generate an error, eat the current statement,
765  * and goto the end_error label.
766  */
767 #define expect(expected)                                  \
768         do {                                                  \
769                 if (UNLIKELY(token.type != (expected))) {         \
770                         parse_error_expected(NULL, (expected), NULL); \
771                         add_anchor_token(expected);                   \
772                         eat_until_anchor();                           \
773                         if (token.type == expected)                   \
774                                 next_token();                             \
775                         rem_anchor_token(expected);                   \
776                         goto end_error;                               \
777                 }                                                 \
778                 next_token();                                     \
779         } while (0)
780
781 static void scope_push(scope_t *new_scope)
782 {
783         if (scope != NULL) {
784                 new_scope->depth = scope->depth + 1;
785         }
786         new_scope->parent = scope;
787         scope             = new_scope;
788 }
789
790 static void scope_pop(void)
791 {
792         scope = scope->parent;
793 }
794
795 /**
796  * Search an entity by its symbol in a given namespace.
797  */
798 static entity_t *get_entity(const symbol_t *const symbol, namespace_t namespc)
799 {
800         entity_t *entity = symbol->entity;
801         for( ; entity != NULL; entity = entity->base.symbol_next) {
802                 if (entity->base.namespc == namespc)
803                         return entity;
804         }
805
806         return NULL;
807 }
808
809 /**
810  * pushs an entity on the environment stack and links the corresponding symbol
811  * it.
812  */
813 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
814 {
815         symbol_t    *symbol  = entity->base.symbol;
816         namespace_t  namespc = entity->base.namespc;
817         assert(namespc != NAMESPACE_INVALID);
818
819         /* replace/add entity into entity list of the symbol */
820         entity_t **anchor;
821         entity_t  *iter;
822         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
823                 iter = *anchor;
824                 if (iter == NULL)
825                         break;
826
827                 /* replace an entry? */
828                 if (iter->base.namespc == namespc) {
829                         entity->base.symbol_next = iter->base.symbol_next;
830                         break;
831                 }
832         }
833         *anchor = entity;
834
835         /* remember old declaration */
836         stack_entry_t entry;
837         entry.symbol     = symbol;
838         entry.old_entity = iter;
839         entry.namespc    = namespc;
840         ARR_APP1(stack_entry_t, *stack_ptr, entry);
841 }
842
843 /**
844  * Push an entity on the environment stack.
845  */
846 static void environment_push(entity_t *entity)
847 {
848         assert(entity->base.source_position.input_name != NULL);
849         assert(entity->base.parent_scope != NULL);
850         stack_push(&environment_stack, entity);
851 }
852
853 /**
854  * Push a declaration on the global label stack.
855  *
856  * @param declaration  the declaration
857  */
858 static void label_push(entity_t *label)
859 {
860         /* we abuse the parameters scope as parent for the labels */
861         label->base.parent_scope = &current_function->parameters;
862         stack_push(&label_stack, label);
863 }
864
865 /**
866  * Push a declaration of the local label stack.
867  *
868  * @param declaration  the declaration
869  */
870 static void local_label_push(entity_t *label)
871 {
872         assert(label->base.parent_scope != NULL);
873         label->base.parent_scope = scope;
874         stack_push(&local_label_stack, label);
875 }
876
877 /**
878  * pops symbols from the environment stack until @p new_top is the top element
879  */
880 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
881 {
882         stack_entry_t *stack = *stack_ptr;
883         size_t         top   = ARR_LEN(stack);
884         size_t         i;
885
886         assert(new_top <= top);
887         if (new_top == top)
888                 return;
889
890         for(i = top; i > new_top; --i) {
891                 stack_entry_t *entry = &stack[i - 1];
892
893                 entity_t    *old_entity = entry->old_entity;
894                 symbol_t    *symbol     = entry->symbol;
895                 namespace_t  namespc    = entry->namespc;
896
897                 /* replace with old_entity/remove */
898                 entity_t **anchor;
899                 entity_t  *iter;
900                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
901                         iter = *anchor;
902                         assert(iter != NULL);
903                         /* replace an entry? */
904                         if (iter->base.namespc == namespc)
905                                 break;
906                 }
907
908                 /* restore definition from outer scopes (if there was one) */
909                 if (old_entity != NULL) {
910                         old_entity->base.symbol_next = iter->base.symbol_next;
911                         *anchor                      = old_entity;
912                 } else {
913                         /* remove entry from list */
914                         *anchor = iter->base.symbol_next;
915                 }
916         }
917
918         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
919 }
920
921 /**
922  * Pop all entries from the environment stack until the new_top
923  * is reached.
924  *
925  * @param new_top  the new stack top
926  */
927 static void environment_pop_to(size_t new_top)
928 {
929         stack_pop_to(&environment_stack, new_top);
930 }
931
932 /**
933  * Pop all entries from the global label stack until the new_top
934  * is reached.
935  *
936  * @param new_top  the new stack top
937  */
938 static void label_pop_to(size_t new_top)
939 {
940         stack_pop_to(&label_stack, new_top);
941 }
942
943 /**
944  * Pop all entries from the local label stack until the new_top
945  * is reached.
946  *
947  * @param new_top  the new stack top
948  */
949 static void local_label_pop_to(size_t new_top)
950 {
951         stack_pop_to(&local_label_stack, new_top);
952 }
953
954
955 static int get_akind_rank(atomic_type_kind_t akind)
956 {
957         return (int) akind;
958 }
959
960 static int get_rank(const type_t *type)
961 {
962         assert(!is_typeref(type));
963         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
964          * and esp. footnote 108). However we can't fold constants (yet), so we
965          * can't decide whether unsigned int is possible, while int always works.
966          * (unsigned int would be preferable when possible... for stuff like
967          *  struct { enum { ... } bla : 4; } ) */
968         if (type->kind == TYPE_ENUM)
969                 return get_akind_rank(ATOMIC_TYPE_INT);
970
971         assert(type->kind == TYPE_ATOMIC);
972         return get_akind_rank(type->atomic.akind);
973 }
974
975 static type_t *promote_integer(type_t *type)
976 {
977         if (type->kind == TYPE_BITFIELD)
978                 type = type->bitfield.base_type;
979
980         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
981                 type = type_int;
982
983         return type;
984 }
985
986 /**
987  * Create a cast expression.
988  *
989  * @param expression  the expression to cast
990  * @param dest_type   the destination type
991  */
992 static expression_t *create_cast_expression(expression_t *expression,
993                                             type_t *dest_type)
994 {
995         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
996
997         cast->unary.value = expression;
998         cast->base.type   = dest_type;
999
1000         return cast;
1001 }
1002
1003 /**
1004  * Check if a given expression represents the 0 pointer constant.
1005  */
1006 static bool is_null_pointer_constant(const expression_t *expression)
1007 {
1008         /* skip void* cast */
1009         if (expression->kind == EXPR_UNARY_CAST
1010                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
1011                 expression = expression->unary.value;
1012         }
1013
1014         /* TODO: not correct yet, should be any constant integer expression
1015          * which evaluates to 0 */
1016         if (expression->kind != EXPR_CONST)
1017                 return false;
1018
1019         type_t *const type = skip_typeref(expression->base.type);
1020         if (!is_type_integer(type))
1021                 return false;
1022
1023         return expression->conste.v.int_value == 0;
1024 }
1025
1026 /**
1027  * Create an implicit cast expression.
1028  *
1029  * @param expression  the expression to cast
1030  * @param dest_type   the destination type
1031  */
1032 static expression_t *create_implicit_cast(expression_t *expression,
1033                                           type_t *dest_type)
1034 {
1035         type_t *const source_type = expression->base.type;
1036
1037         if (source_type == dest_type)
1038                 return expression;
1039
1040         return create_cast_expression(expression, dest_type);
1041 }
1042
1043 typedef enum assign_error_t {
1044         ASSIGN_SUCCESS,
1045         ASSIGN_ERROR_INCOMPATIBLE,
1046         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
1047         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
1048         ASSIGN_WARNING_POINTER_FROM_INT,
1049         ASSIGN_WARNING_INT_FROM_POINTER
1050 } assign_error_t;
1051
1052 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
1053                                 const expression_t *const right,
1054                                 const char *context,
1055                                 const source_position_t *source_position)
1056 {
1057         type_t *const orig_type_right = right->base.type;
1058         type_t *const type_left       = skip_typeref(orig_type_left);
1059         type_t *const type_right      = skip_typeref(orig_type_right);
1060
1061         switch (error) {
1062         case ASSIGN_SUCCESS:
1063                 return;
1064         case ASSIGN_ERROR_INCOMPATIBLE:
1065                 errorf(source_position,
1066                        "destination type '%T' in %s is incompatible with type '%T'",
1067                        orig_type_left, context, orig_type_right);
1068                 return;
1069
1070         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1071                 if (warning.other) {
1072                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
1073                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
1074
1075                         /* the left type has all qualifiers from the right type */
1076                         unsigned missing_qualifiers
1077                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1078                         warningf(source_position,
1079                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1080                                         orig_type_left, context, orig_type_right, missing_qualifiers);
1081                 }
1082                 return;
1083         }
1084
1085         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1086                 if (warning.other) {
1087                         warningf(source_position,
1088                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1089                                         orig_type_left, context, right, orig_type_right);
1090                 }
1091                 return;
1092
1093         case ASSIGN_WARNING_POINTER_FROM_INT:
1094                 if (warning.other) {
1095                         warningf(source_position,
1096                                         "%s makes pointer '%T' from integer '%T' without a cast",
1097                                         context, orig_type_left, orig_type_right);
1098                 }
1099                 return;
1100
1101         case ASSIGN_WARNING_INT_FROM_POINTER:
1102                 if (warning.other) {
1103                         warningf(source_position,
1104                                         "%s makes integer '%T' from pointer '%T' without a cast",
1105                                         context, orig_type_left, orig_type_right);
1106                 }
1107                 return;
1108
1109         default:
1110                 panic("invalid error value");
1111         }
1112 }
1113
1114 /** Implements the rules from Â§ 6.5.16.1 */
1115 static assign_error_t semantic_assign(type_t *orig_type_left,
1116                                       const expression_t *const right)
1117 {
1118         type_t *const orig_type_right = right->base.type;
1119         type_t *const type_left       = skip_typeref(orig_type_left);
1120         type_t *const type_right      = skip_typeref(orig_type_right);
1121
1122         if (is_type_pointer(type_left)) {
1123                 if (is_null_pointer_constant(right)) {
1124                         return ASSIGN_SUCCESS;
1125                 } else if (is_type_pointer(type_right)) {
1126                         type_t *points_to_left
1127                                 = skip_typeref(type_left->pointer.points_to);
1128                         type_t *points_to_right
1129                                 = skip_typeref(type_right->pointer.points_to);
1130                         assign_error_t res = ASSIGN_SUCCESS;
1131
1132                         /* the left type has all qualifiers from the right type */
1133                         unsigned missing_qualifiers
1134                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1135                         if (missing_qualifiers != 0) {
1136                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1137                         }
1138
1139                         points_to_left  = get_unqualified_type(points_to_left);
1140                         points_to_right = get_unqualified_type(points_to_right);
1141
1142                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1143                                 return res;
1144
1145                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1146                                 /* ISO/IEC 14882:1998(E) Â§C.1.2:6 */
1147                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1148                         }
1149
1150                         if (!types_compatible(points_to_left, points_to_right)) {
1151                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1152                         }
1153
1154                         return res;
1155                 } else if (is_type_integer(type_right)) {
1156                         return ASSIGN_WARNING_POINTER_FROM_INT;
1157                 }
1158         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1159             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1160                 && is_type_pointer(type_right))) {
1161                 return ASSIGN_SUCCESS;
1162         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1163                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1164                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1165                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1166                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1167                         return ASSIGN_SUCCESS;
1168                 }
1169         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1170                 return ASSIGN_WARNING_INT_FROM_POINTER;
1171         }
1172
1173         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1174                 return ASSIGN_SUCCESS;
1175
1176         return ASSIGN_ERROR_INCOMPATIBLE;
1177 }
1178
1179 static expression_t *parse_constant_expression(void)
1180 {
1181         expression_t *result = parse_sub_expression(PREC_CONDITIONAL);
1182
1183         if (!is_constant_expression(result)) {
1184                 errorf(&result->base.source_position,
1185                        "expression '%E' is not constant\n", result);
1186         }
1187
1188         return result;
1189 }
1190
1191 static expression_t *parse_assignment_expression(void)
1192 {
1193         return parse_sub_expression(PREC_ASSIGNMENT);
1194 }
1195
1196 static type_t *make_global_typedef(const char *name, type_t *type)
1197 {
1198         symbol_t *const symbol = symbol_table_insert(name);
1199
1200         entity_t *const entity       = allocate_entity_zero(ENTITY_TYPEDEF);
1201         entity->base.symbol          = symbol;
1202         entity->base.source_position = builtin_source_position;
1203         entity->base.namespc         = NAMESPACE_NORMAL;
1204         entity->typedefe.type        = type;
1205         entity->typedefe.builtin     = true;
1206
1207         record_entity(entity, false);
1208
1209         type_t *typedef_type            = allocate_type_zero(TYPE_TYPEDEF);
1210         typedef_type->typedeft.typedefe = &entity->typedefe;
1211
1212         return typedef_type;
1213 }
1214
1215 static string_t parse_string_literals(void)
1216 {
1217         assert(token.type == T_STRING_LITERAL);
1218         string_t result = token.v.string;
1219
1220         next_token();
1221
1222         while (token.type == T_STRING_LITERAL) {
1223                 result = concat_strings(&result, &token.v.string);
1224                 next_token();
1225         }
1226
1227         return result;
1228 }
1229
1230 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1231         [GNU_AK_CONST]                  = "const",
1232         [GNU_AK_VOLATILE]               = "volatile",
1233         [GNU_AK_CDECL]                  = "cdecl",
1234         [GNU_AK_STDCALL]                = "stdcall",
1235         [GNU_AK_FASTCALL]               = "fastcall",
1236         [GNU_AK_DEPRECATED]             = "deprecated",
1237         [GNU_AK_NOINLINE]               = "noinline",
1238         [GNU_AK_NORETURN]               = "noreturn",
1239         [GNU_AK_NAKED]                  = "naked",
1240         [GNU_AK_PURE]                   = "pure",
1241         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1242         [GNU_AK_MALLOC]                 = "malloc",
1243         [GNU_AK_WEAK]                   = "weak",
1244         [GNU_AK_CONSTRUCTOR]            = "constructor",
1245         [GNU_AK_DESTRUCTOR]             = "destructor",
1246         [GNU_AK_NOTHROW]                = "nothrow",
1247         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1248         [GNU_AK_COMMON]                 = "common",
1249         [GNU_AK_NOCOMMON]               = "nocommon",
1250         [GNU_AK_PACKED]                 = "packed",
1251         [GNU_AK_SHARED]                 = "shared",
1252         [GNU_AK_NOTSHARED]              = "notshared",
1253         [GNU_AK_USED]                   = "used",
1254         [GNU_AK_UNUSED]                 = "unused",
1255         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1256         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1257         [GNU_AK_LONGCALL]               = "longcall",
1258         [GNU_AK_SHORTCALL]              = "shortcall",
1259         [GNU_AK_LONG_CALL]              = "long_call",
1260         [GNU_AK_SHORT_CALL]             = "short_call",
1261         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1262         [GNU_AK_INTERRUPT]              = "interrupt",
1263         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1264         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1265         [GNU_AK_NESTING]                = "nesting",
1266         [GNU_AK_NEAR]                   = "near",
1267         [GNU_AK_FAR]                    = "far",
1268         [GNU_AK_SIGNAL]                 = "signal",
1269         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1270         [GNU_AK_TINY_DATA]              = "tiny_data",
1271         [GNU_AK_SAVEALL]                = "saveall",
1272         [GNU_AK_FLATTEN]                = "flatten",
1273         [GNU_AK_SSEREGPARM]             = "sseregparm",
1274         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1275         [GNU_AK_RETURN_TWICE]           = "return_twice",
1276         [GNU_AK_MAY_ALIAS]              = "may_alias",
1277         [GNU_AK_MS_STRUCT]              = "ms_struct",
1278         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1279         [GNU_AK_DLLIMPORT]              = "dllimport",
1280         [GNU_AK_DLLEXPORT]              = "dllexport",
1281         [GNU_AK_ALIGNED]                = "aligned",
1282         [GNU_AK_ALIAS]                  = "alias",
1283         [GNU_AK_SECTION]                = "section",
1284         [GNU_AK_FORMAT]                 = "format",
1285         [GNU_AK_FORMAT_ARG]             = "format_arg",
1286         [GNU_AK_WEAKREF]                = "weakref",
1287         [GNU_AK_NONNULL]                = "nonnull",
1288         [GNU_AK_TLS_MODEL]              = "tls_model",
1289         [GNU_AK_VISIBILITY]             = "visibility",
1290         [GNU_AK_REGPARM]                = "regparm",
1291         [GNU_AK_MODE]                   = "mode",
1292         [GNU_AK_MODEL]                  = "model",
1293         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1294         [GNU_AK_SP_SWITCH]              = "sp_switch",
1295         [GNU_AK_SENTINEL]               = "sentinel"
1296 };
1297
1298 /**
1299  * compare two string, ignoring double underscores on the second.
1300  */
1301 static int strcmp_underscore(const char *s1, const char *s2)
1302 {
1303         if (s2[0] == '_' && s2[1] == '_') {
1304                 size_t len2 = strlen(s2);
1305                 size_t len1 = strlen(s1);
1306                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1307                         return strncmp(s1, s2+2, len2-4);
1308                 }
1309         }
1310
1311         return strcmp(s1, s2);
1312 }
1313
1314 /**
1315  * Allocate a new gnu temporal attribute.
1316  */
1317 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1318 {
1319         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1320         attribute->kind            = kind;
1321         attribute->next            = NULL;
1322         attribute->invalid         = false;
1323         attribute->have_arguments  = false;
1324
1325         return attribute;
1326 }
1327
1328 /**
1329  * parse one constant expression argument.
1330  */
1331 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1332 {
1333         expression_t *expression;
1334         add_anchor_token(')');
1335         expression = parse_constant_expression();
1336         rem_anchor_token(')');
1337         expect(')');
1338         attribute->u.argument = fold_constant(expression);
1339         return;
1340 end_error:
1341         attribute->invalid = true;
1342 }
1343
1344 /**
1345  * parse a list of constant expressions arguments.
1346  */
1347 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1348 {
1349         argument_list_t **list = &attribute->u.arguments;
1350         argument_list_t  *entry;
1351         expression_t     *expression;
1352         add_anchor_token(')');
1353         add_anchor_token(',');
1354         while (true) {
1355                 expression = parse_constant_expression();
1356                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1357                 entry->argument = fold_constant(expression);
1358                 entry->next     = NULL;
1359                 *list = entry;
1360                 list = &entry->next;
1361                 if (token.type != ',')
1362                         break;
1363                 next_token();
1364         }
1365         rem_anchor_token(',');
1366         rem_anchor_token(')');
1367         expect(')');
1368         return;
1369 end_error:
1370         attribute->invalid = true;
1371 }
1372
1373 /**
1374  * parse one string literal argument.
1375  */
1376 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1377                                            string_t *string)
1378 {
1379         add_anchor_token('(');
1380         if (token.type != T_STRING_LITERAL) {
1381                 parse_error_expected("while parsing attribute directive",
1382                                      T_STRING_LITERAL, NULL);
1383                 goto end_error;
1384         }
1385         *string = parse_string_literals();
1386         rem_anchor_token('(');
1387         expect(')');
1388         return;
1389 end_error:
1390         attribute->invalid = true;
1391 }
1392
1393 /**
1394  * parse one tls model.
1395  */
1396 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1397 {
1398         static const char *const tls_models[] = {
1399                 "global-dynamic",
1400                 "local-dynamic",
1401                 "initial-exec",
1402                 "local-exec"
1403         };
1404         string_t string = { NULL, 0 };
1405         parse_gnu_attribute_string_arg(attribute, &string);
1406         if (string.begin != NULL) {
1407                 for(size_t i = 0; i < 4; ++i) {
1408                         if (strcmp(tls_models[i], string.begin) == 0) {
1409                                 attribute->u.value = i;
1410                                 return;
1411                         }
1412                 }
1413                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1414         }
1415         attribute->invalid = true;
1416 }
1417
1418 /**
1419  * parse one tls model.
1420  */
1421 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1422 {
1423         static const char *const visibilities[] = {
1424                 "default",
1425                 "protected",
1426                 "hidden",
1427                 "internal"
1428         };
1429         string_t string = { NULL, 0 };
1430         parse_gnu_attribute_string_arg(attribute, &string);
1431         if (string.begin != NULL) {
1432                 for(size_t i = 0; i < 4; ++i) {
1433                         if (strcmp(visibilities[i], string.begin) == 0) {
1434                                 attribute->u.value = i;
1435                                 return;
1436                         }
1437                 }
1438                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1439         }
1440         attribute->invalid = true;
1441 }
1442
1443 /**
1444  * parse one (code) model.
1445  */
1446 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1447 {
1448         static const char *const visibilities[] = {
1449                 "small",
1450                 "medium",
1451                 "large"
1452         };
1453         string_t string = { NULL, 0 };
1454         parse_gnu_attribute_string_arg(attribute, &string);
1455         if (string.begin != NULL) {
1456                 for(int i = 0; i < 3; ++i) {
1457                         if (strcmp(visibilities[i], string.begin) == 0) {
1458                                 attribute->u.value = i;
1459                                 return;
1460                         }
1461                 }
1462                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1463         }
1464         attribute->invalid = true;
1465 }
1466
1467 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1468 {
1469         /* TODO: find out what is allowed here... */
1470
1471         /* at least: byte, word, pointer, list of machine modes
1472          * __XXX___ is interpreted as XXX */
1473         add_anchor_token(')');
1474
1475         if (token.type != T_IDENTIFIER) {
1476                 expect(T_IDENTIFIER);
1477         }
1478
1479         /* This isn't really correct, the backend should provide a list of machine
1480          * specific modes (according to gcc philosophy that is...) */
1481         const char *symbol_str = token.v.symbol->string;
1482         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1483             strcmp_underscore("byte", symbol_str) == 0) {
1484                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1485         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1486                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1487         } else if (strcmp_underscore("SI",      symbol_str) == 0
1488                 || strcmp_underscore("word",    symbol_str) == 0
1489                 || strcmp_underscore("pointer", symbol_str) == 0) {
1490                 attribute->u.akind = ATOMIC_TYPE_INT;
1491         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1492                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1493         } else {
1494                 if (warning.other)
1495                         warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1496                 attribute->invalid = true;
1497         }
1498         next_token();
1499
1500         rem_anchor_token(')');
1501         expect(')');
1502         return;
1503 end_error:
1504         attribute->invalid = true;
1505 }
1506
1507 /**
1508  * parse one interrupt argument.
1509  */
1510 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1511 {
1512         static const char *const interrupts[] = {
1513                 "IRQ",
1514                 "FIQ",
1515                 "SWI",
1516                 "ABORT",
1517                 "UNDEF"
1518         };
1519         string_t string = { NULL, 0 };
1520         parse_gnu_attribute_string_arg(attribute, &string);
1521         if (string.begin != NULL) {
1522                 for(size_t i = 0; i < 5; ++i) {
1523                         if (strcmp(interrupts[i], string.begin) == 0) {
1524                                 attribute->u.value = i;
1525                                 return;
1526                         }
1527                 }
1528                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1529         }
1530         attribute->invalid = true;
1531 }
1532
1533 /**
1534  * parse ( identifier, const expression, const expression )
1535  */
1536 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1537 {
1538         static const char *const format_names[] = {
1539                 "printf",
1540                 "scanf",
1541                 "strftime",
1542                 "strfmon"
1543         };
1544         int i;
1545
1546         if (token.type != T_IDENTIFIER) {
1547                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1548                 goto end_error;
1549         }
1550         const char *name = token.v.symbol->string;
1551         for(i = 0; i < 4; ++i) {
1552                 if (strcmp_underscore(format_names[i], name) == 0)
1553                         break;
1554         }
1555         if (i >= 4) {
1556                 if (warning.attribute)
1557                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1558         }
1559         next_token();
1560
1561         expect(',');
1562         add_anchor_token(')');
1563         add_anchor_token(',');
1564         parse_constant_expression();
1565         rem_anchor_token(',');
1566         rem_anchor_token(')');
1567
1568         expect(',');
1569         add_anchor_token(')');
1570         parse_constant_expression();
1571         rem_anchor_token(')');
1572         expect(')');
1573         return;
1574 end_error:
1575         attribute->u.value = true;
1576 }
1577
1578 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1579 {
1580         if (!attribute->have_arguments)
1581                 return;
1582
1583         /* should have no arguments */
1584         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1585         eat_until_matching_token('(');
1586         /* we have already consumed '(', so we stop before ')', eat it */
1587         eat(')');
1588         attribute->invalid = true;
1589 }
1590
1591 /**
1592  * Parse one GNU attribute.
1593  *
1594  * Note that attribute names can be specified WITH or WITHOUT
1595  * double underscores, ie const or __const__.
1596  *
1597  * The following attributes are parsed without arguments
1598  *  const
1599  *  volatile
1600  *  cdecl
1601  *  stdcall
1602  *  fastcall
1603  *  deprecated
1604  *  noinline
1605  *  noreturn
1606  *  naked
1607  *  pure
1608  *  always_inline
1609  *  malloc
1610  *  weak
1611  *  constructor
1612  *  destructor
1613  *  nothrow
1614  *  transparent_union
1615  *  common
1616  *  nocommon
1617  *  packed
1618  *  shared
1619  *  notshared
1620  *  used
1621  *  unused
1622  *  no_instrument_function
1623  *  warn_unused_result
1624  *  longcall
1625  *  shortcall
1626  *  long_call
1627  *  short_call
1628  *  function_vector
1629  *  interrupt_handler
1630  *  nmi_handler
1631  *  nesting
1632  *  near
1633  *  far
1634  *  signal
1635  *  eightbit_data
1636  *  tiny_data
1637  *  saveall
1638  *  flatten
1639  *  sseregparm
1640  *  externally_visible
1641  *  return_twice
1642  *  may_alias
1643  *  ms_struct
1644  *  gcc_struct
1645  *  dllimport
1646  *  dllexport
1647  *
1648  * The following attributes are parsed with arguments
1649  *  aligned( const expression )
1650  *  alias( string literal )
1651  *  section( string literal )
1652  *  format( identifier, const expression, const expression )
1653  *  format_arg( const expression )
1654  *  tls_model( string literal )
1655  *  visibility( string literal )
1656  *  regparm( const expression )
1657  *  model( string leteral )
1658  *  trap_exit( const expression )
1659  *  sp_switch( string literal )
1660  *
1661  * The following attributes might have arguments
1662  *  weak_ref( string literal )
1663  *  non_null( const expression // ',' )
1664  *  interrupt( string literal )
1665  *  sentinel( constant expression )
1666  */
1667 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1668 {
1669         gnu_attribute_t *head      = *attributes;
1670         gnu_attribute_t *last      = *attributes;
1671         decl_modifiers_t modifiers = 0;
1672         gnu_attribute_t *attribute;
1673
1674         eat(T___attribute__);
1675         expect('(');
1676         expect('(');
1677
1678         if (token.type != ')') {
1679                 /* find the end of the list */
1680                 if (last != NULL) {
1681                         while (last->next != NULL)
1682                                 last = last->next;
1683                 }
1684
1685                 /* non-empty attribute list */
1686                 while (true) {
1687                         const char *name;
1688                         if (token.type == T_const) {
1689                                 name = "const";
1690                         } else if (token.type == T_volatile) {
1691                                 name = "volatile";
1692                         } else if (token.type == T_cdecl) {
1693                                 /* __attribute__((cdecl)), WITH ms mode */
1694                                 name = "cdecl";
1695                         } else if (token.type == T_IDENTIFIER) {
1696                                 const symbol_t *sym = token.v.symbol;
1697                                 name = sym->string;
1698                         } else {
1699                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1700                                 break;
1701                         }
1702
1703                         next_token();
1704
1705                         int i;
1706                         for(i = 0; i < GNU_AK_LAST; ++i) {
1707                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1708                                         break;
1709                         }
1710                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1711
1712                         attribute = NULL;
1713                         if (kind == GNU_AK_LAST) {
1714                                 if (warning.attribute)
1715                                         warningf(HERE, "'%s' attribute directive ignored", name);
1716
1717                                 /* skip possible arguments */
1718                                 if (token.type == '(') {
1719                                         eat_until_matching_token(')');
1720                                 }
1721                         } else {
1722                                 /* check for arguments */
1723                                 attribute = allocate_gnu_attribute(kind);
1724                                 if (token.type == '(') {
1725                                         next_token();
1726                                         if (token.type == ')') {
1727                                                 /* empty args are allowed */
1728                                                 next_token();
1729                                         } else
1730                                                 attribute->have_arguments = true;
1731                                 }
1732
1733                                 switch (kind) {
1734                                 case GNU_AK_VOLATILE:
1735                                 case GNU_AK_NAKED:
1736                                 case GNU_AK_MALLOC:
1737                                 case GNU_AK_WEAK:
1738                                 case GNU_AK_COMMON:
1739                                 case GNU_AK_NOCOMMON:
1740                                 case GNU_AK_SHARED:
1741                                 case GNU_AK_NOTSHARED:
1742                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1743                                 case GNU_AK_WARN_UNUSED_RESULT:
1744                                 case GNU_AK_LONGCALL:
1745                                 case GNU_AK_SHORTCALL:
1746                                 case GNU_AK_LONG_CALL:
1747                                 case GNU_AK_SHORT_CALL:
1748                                 case GNU_AK_FUNCTION_VECTOR:
1749                                 case GNU_AK_INTERRUPT_HANDLER:
1750                                 case GNU_AK_NMI_HANDLER:
1751                                 case GNU_AK_NESTING:
1752                                 case GNU_AK_NEAR:
1753                                 case GNU_AK_FAR:
1754                                 case GNU_AK_SIGNAL:
1755                                 case GNU_AK_EIGTHBIT_DATA:
1756                                 case GNU_AK_TINY_DATA:
1757                                 case GNU_AK_SAVEALL:
1758                                 case GNU_AK_FLATTEN:
1759                                 case GNU_AK_SSEREGPARM:
1760                                 case GNU_AK_EXTERNALLY_VISIBLE:
1761                                 case GNU_AK_RETURN_TWICE:
1762                                 case GNU_AK_MAY_ALIAS:
1763                                 case GNU_AK_MS_STRUCT:
1764                                 case GNU_AK_GCC_STRUCT:
1765                                         goto no_arg;
1766
1767                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1768                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1769                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1770                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1771                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1772                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1773                                 case GNU_AK_CONST:             modifiers |= DM_CONST;             goto no_arg;
1774                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1775                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1776                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1777                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1778                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1779                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1780                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1781                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1782                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1783                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1784                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1785
1786                                 case GNU_AK_ALIGNED:
1787                                         /* __align__ may be used without an argument */
1788                                         if (attribute->have_arguments) {
1789                                                 parse_gnu_attribute_const_arg(attribute);
1790                                         }
1791                                         break;
1792
1793                                 case GNU_AK_FORMAT_ARG:
1794                                 case GNU_AK_REGPARM:
1795                                 case GNU_AK_TRAP_EXIT:
1796                                         if (!attribute->have_arguments) {
1797                                                 /* should have arguments */
1798                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1799                                                 attribute->invalid = true;
1800                                         } else
1801                                                 parse_gnu_attribute_const_arg(attribute);
1802                                         break;
1803                                 case GNU_AK_ALIAS:
1804                                 case GNU_AK_SECTION:
1805                                 case GNU_AK_SP_SWITCH:
1806                                         if (!attribute->have_arguments) {
1807                                                 /* should have arguments */
1808                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1809                                                 attribute->invalid = true;
1810                                         } else
1811                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1812                                         break;
1813                                 case GNU_AK_FORMAT:
1814                                         if (!attribute->have_arguments) {
1815                                                 /* should have arguments */
1816                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1817                                                 attribute->invalid = true;
1818                                         } else
1819                                                 parse_gnu_attribute_format_args(attribute);
1820                                         break;
1821                                 case GNU_AK_WEAKREF:
1822                                         /* may have one string argument */
1823                                         if (attribute->have_arguments)
1824                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1825                                         break;
1826                                 case GNU_AK_NONNULL:
1827                                         if (attribute->have_arguments)
1828                                                 parse_gnu_attribute_const_arg_list(attribute);
1829                                         break;
1830                                 case GNU_AK_TLS_MODEL:
1831                                         if (!attribute->have_arguments) {
1832                                                 /* should have arguments */
1833                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1834                                         } else
1835                                                 parse_gnu_attribute_tls_model_arg(attribute);
1836                                         break;
1837                                 case GNU_AK_VISIBILITY:
1838                                         if (!attribute->have_arguments) {
1839                                                 /* should have arguments */
1840                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1841                                         } else
1842                                                 parse_gnu_attribute_visibility_arg(attribute);
1843                                         break;
1844                                 case GNU_AK_MODEL:
1845                                         if (!attribute->have_arguments) {
1846                                                 /* should have arguments */
1847                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1848                                         } else {
1849                                                 parse_gnu_attribute_model_arg(attribute);
1850                                         }
1851                                         break;
1852                                 case GNU_AK_MODE:
1853                                         if (!attribute->have_arguments) {
1854                                                 /* should have arguments */
1855                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1856                                         } else {
1857                                                 parse_gnu_attribute_mode_arg(attribute);
1858                                         }
1859                                         break;
1860                                 case GNU_AK_INTERRUPT:
1861                                         /* may have one string argument */
1862                                         if (attribute->have_arguments)
1863                                                 parse_gnu_attribute_interrupt_arg(attribute);
1864                                         break;
1865                                 case GNU_AK_SENTINEL:
1866                                         /* may have one string argument */
1867                                         if (attribute->have_arguments)
1868                                                 parse_gnu_attribute_const_arg(attribute);
1869                                         break;
1870                                 case GNU_AK_LAST:
1871                                         /* already handled */
1872                                         break;
1873
1874 no_arg:
1875                                         check_no_argument(attribute, name);
1876                                 }
1877                         }
1878                         if (attribute != NULL) {
1879                                 if (last != NULL) {
1880                                         last->next = attribute;
1881                                         last       = attribute;
1882                                 } else {
1883                                         head = last = attribute;
1884                                 }
1885                         }
1886
1887                         if (token.type != ',')
1888                                 break;
1889                         next_token();
1890                 }
1891         }
1892         expect(')');
1893         expect(')');
1894 end_error:
1895         *attributes = head;
1896
1897         return modifiers;
1898 }
1899
1900 /**
1901  * Parse GNU attributes.
1902  */
1903 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1904 {
1905         decl_modifiers_t modifiers = 0;
1906
1907         while (true) {
1908                 switch (token.type) {
1909                 case T___attribute__:
1910                         modifiers |= parse_gnu_attribute(attributes);
1911                         continue;
1912
1913                 case T_asm:
1914                         next_token();
1915                         expect('(');
1916                         if (token.type != T_STRING_LITERAL) {
1917                                 parse_error_expected("while parsing assembler attribute",
1918                                                      T_STRING_LITERAL, NULL);
1919                                 eat_until_matching_token('(');
1920                                 break;
1921                         } else {
1922                                 parse_string_literals();
1923                         }
1924                         expect(')');
1925                         continue;
1926
1927                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1928                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1929                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1930
1931                 case T___thiscall:
1932                         /* TODO record modifier */
1933                         if (warning.other)
1934                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1935                         break;
1936
1937 end_error:
1938                 default: return modifiers;
1939                 }
1940
1941                 next_token();
1942         }
1943 }
1944
1945 static void mark_vars_read(expression_t *expr, variable_t *lhs_var);
1946
1947 static variable_t *determine_lhs_var(expression_t *const expr,
1948                                      variable_t *lhs_var)
1949 {
1950         switch (expr->kind) {
1951                 case EXPR_REFERENCE: {
1952                         entity_t *const entity = expr->reference.entity;
1953                         /* we should only find variables as lavlues... */
1954                         if (entity->base.kind != ENTITY_VARIABLE)
1955                                 return NULL;
1956
1957                         return &entity->variable;
1958                 }
1959
1960                 case EXPR_ARRAY_ACCESS: {
1961                         expression_t  *const ref = expr->array_access.array_ref;
1962                         variable_t    *      var = NULL;
1963                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1964                                 var     = determine_lhs_var(ref, lhs_var);
1965                                 lhs_var = var;
1966                         } else {
1967                                 mark_vars_read(expr->select.compound, lhs_var);
1968                         }
1969                         mark_vars_read(expr->array_access.index, lhs_var);
1970                         return var;
1971                 }
1972
1973                 case EXPR_SELECT: {
1974                         if (is_type_compound(skip_typeref(expr->base.type))) {
1975                                 return determine_lhs_var(expr->select.compound, lhs_var);
1976                         } else {
1977                                 mark_vars_read(expr->select.compound, lhs_var);
1978                                 return NULL;
1979                         }
1980                 }
1981
1982                 case EXPR_UNARY_DEREFERENCE: {
1983                         expression_t *const val = expr->unary.value;
1984                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1985                                 /* *&x is a NOP */
1986                                 return determine_lhs_var(val->unary.value, lhs_var);
1987                         } else {
1988                                 mark_vars_read(val, NULL);
1989                                 return NULL;
1990                         }
1991                 }
1992
1993                 default:
1994                         mark_vars_read(expr, NULL);
1995                         return NULL;
1996         }
1997 }
1998
1999 #define VAR_ANY ((variable_t*)-1)
2000
2001 /**
2002  * Mark declarations, which are read.  This is used to deted variables, which
2003  * are never read.
2004  * Example:
2005  * x = x + 1;
2006  *   x is not marked as "read", because it is only read to calculate its own new
2007  *   value.
2008  *
2009  * x += y; y += x;
2010  *   x and y are not detected as "not read", because multiple variables are
2011  *   involved.
2012  */
2013 static void mark_vars_read(expression_t *const expr, variable_t *lhs_var)
2014 {
2015         switch (expr->kind) {
2016                 case EXPR_REFERENCE: {
2017                         entity_t *const entity = expr->reference.entity;
2018                         if (entity->kind != ENTITY_VARIABLE)
2019                                 return;
2020
2021                         variable_t *variable = &entity->variable;
2022                         if (lhs_var != variable && lhs_var != VAR_ANY) {
2023                                 variable->read = true;
2024                         }
2025                         return;
2026                 }
2027
2028                 case EXPR_CALL:
2029                         // TODO respect pure/const
2030                         mark_vars_read(expr->call.function, NULL);
2031                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
2032                                 mark_vars_read(arg->expression, NULL);
2033                         }
2034                         return;
2035
2036                 case EXPR_CONDITIONAL:
2037                         // TODO lhs_decl should depend on whether true/false have an effect
2038                         mark_vars_read(expr->conditional.condition, NULL);
2039                         if (expr->conditional.true_expression != NULL)
2040                                 mark_vars_read(expr->conditional.true_expression, lhs_var);
2041                         mark_vars_read(expr->conditional.false_expression, lhs_var);
2042                         return;
2043
2044                 case EXPR_SELECT:
2045                         if (lhs_var == VAR_ANY && !is_type_compound(skip_typeref(expr->base.type)))
2046                                 lhs_var = NULL;
2047                         mark_vars_read(expr->select.compound, lhs_var);
2048                         return;
2049
2050                 case EXPR_ARRAY_ACCESS: {
2051                         expression_t *const ref = expr->array_access.array_ref;
2052                         mark_vars_read(ref, lhs_var);
2053                         lhs_var = determine_lhs_var(ref, lhs_var);
2054                         mark_vars_read(expr->array_access.index, lhs_var);
2055                         return;
2056                 }
2057
2058                 case EXPR_VA_ARG:
2059                         mark_vars_read(expr->va_arge.ap, lhs_var);
2060                         return;
2061
2062                 case EXPR_UNARY_CAST:
2063                         /* Special case: Use void cast to mark a variable as "read" */
2064                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
2065                                 lhs_var = NULL;
2066                         goto unary;
2067
2068
2069                 case EXPR_UNARY_THROW:
2070                         if (expr->unary.value == NULL)
2071                                 return;
2072                         /* FALLTHROUGH */
2073                 case EXPR_UNARY_DEREFERENCE:
2074                 case EXPR_UNARY_DELETE:
2075                 case EXPR_UNARY_DELETE_ARRAY:
2076                         if (lhs_var == VAR_ANY)
2077                                 lhs_var = NULL;
2078                         goto unary;
2079
2080                 case EXPR_UNARY_NEGATE:
2081                 case EXPR_UNARY_PLUS:
2082                 case EXPR_UNARY_BITWISE_NEGATE:
2083                 case EXPR_UNARY_NOT:
2084                 case EXPR_UNARY_TAKE_ADDRESS:
2085                 case EXPR_UNARY_POSTFIX_INCREMENT:
2086                 case EXPR_UNARY_POSTFIX_DECREMENT:
2087                 case EXPR_UNARY_PREFIX_INCREMENT:
2088                 case EXPR_UNARY_PREFIX_DECREMENT:
2089                 case EXPR_UNARY_CAST_IMPLICIT:
2090                 case EXPR_UNARY_ASSUME:
2091 unary:
2092                         mark_vars_read(expr->unary.value, lhs_var);
2093                         return;
2094
2095                 case EXPR_BINARY_ADD:
2096                 case EXPR_BINARY_SUB:
2097                 case EXPR_BINARY_MUL:
2098                 case EXPR_BINARY_DIV:
2099                 case EXPR_BINARY_MOD:
2100                 case EXPR_BINARY_EQUAL:
2101                 case EXPR_BINARY_NOTEQUAL:
2102                 case EXPR_BINARY_LESS:
2103                 case EXPR_BINARY_LESSEQUAL:
2104                 case EXPR_BINARY_GREATER:
2105                 case EXPR_BINARY_GREATEREQUAL:
2106                 case EXPR_BINARY_BITWISE_AND:
2107                 case EXPR_BINARY_BITWISE_OR:
2108                 case EXPR_BINARY_BITWISE_XOR:
2109                 case EXPR_BINARY_LOGICAL_AND:
2110                 case EXPR_BINARY_LOGICAL_OR:
2111                 case EXPR_BINARY_SHIFTLEFT:
2112                 case EXPR_BINARY_SHIFTRIGHT:
2113                 case EXPR_BINARY_COMMA:
2114                 case EXPR_BINARY_ISGREATER:
2115                 case EXPR_BINARY_ISGREATEREQUAL:
2116                 case EXPR_BINARY_ISLESS:
2117                 case EXPR_BINARY_ISLESSEQUAL:
2118                 case EXPR_BINARY_ISLESSGREATER:
2119                 case EXPR_BINARY_ISUNORDERED:
2120                         mark_vars_read(expr->binary.left,  lhs_var);
2121                         mark_vars_read(expr->binary.right, lhs_var);
2122                         return;
2123
2124                 case EXPR_BINARY_ASSIGN:
2125                 case EXPR_BINARY_MUL_ASSIGN:
2126                 case EXPR_BINARY_DIV_ASSIGN:
2127                 case EXPR_BINARY_MOD_ASSIGN:
2128                 case EXPR_BINARY_ADD_ASSIGN:
2129                 case EXPR_BINARY_SUB_ASSIGN:
2130                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2131                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2132                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
2133                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2134                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
2135                         if (lhs_var == VAR_ANY)
2136                                 lhs_var = NULL;
2137                         lhs_var = determine_lhs_var(expr->binary.left, lhs_var);
2138                         mark_vars_read(expr->binary.right, lhs_var);
2139                         return;
2140                 }
2141
2142                 case EXPR_VA_START:
2143                         determine_lhs_var(expr->va_starte.ap, lhs_var);
2144                         return;
2145
2146                 case EXPR_UNKNOWN:
2147                 case EXPR_INVALID:
2148                 case EXPR_CONST:
2149                 case EXPR_CHARACTER_CONSTANT:
2150                 case EXPR_WIDE_CHARACTER_CONSTANT:
2151                 case EXPR_STRING_LITERAL:
2152                 case EXPR_WIDE_STRING_LITERAL:
2153                 case EXPR_COMPOUND_LITERAL: // TODO init?
2154                 case EXPR_SIZEOF:
2155                 case EXPR_CLASSIFY_TYPE:
2156                 case EXPR_ALIGNOF:
2157                 case EXPR_FUNCNAME:
2158                 case EXPR_BUILTIN_SYMBOL:
2159                 case EXPR_BUILTIN_CONSTANT_P:
2160                 case EXPR_BUILTIN_PREFETCH:
2161                 case EXPR_OFFSETOF:
2162                 case EXPR_STATEMENT: // TODO
2163                 case EXPR_LABEL_ADDRESS:
2164                 case EXPR_BINARY_BUILTIN_EXPECT:
2165                 case EXPR_REFERENCE_ENUM_VALUE:
2166                         return;
2167         }
2168
2169         panic("unhandled expression");
2170 }
2171
2172 static designator_t *parse_designation(void)
2173 {
2174         designator_t *result = NULL;
2175         designator_t *last   = NULL;
2176
2177         while (true) {
2178                 designator_t *designator;
2179                 switch (token.type) {
2180                 case '[':
2181                         designator = allocate_ast_zero(sizeof(designator[0]));
2182                         designator->source_position = token.source_position;
2183                         next_token();
2184                         add_anchor_token(']');
2185                         designator->array_index = parse_constant_expression();
2186                         rem_anchor_token(']');
2187                         expect(']');
2188                         break;
2189                 case '.':
2190                         designator = allocate_ast_zero(sizeof(designator[0]));
2191                         designator->source_position = token.source_position;
2192                         next_token();
2193                         if (token.type != T_IDENTIFIER) {
2194                                 parse_error_expected("while parsing designator",
2195                                                      T_IDENTIFIER, NULL);
2196                                 return NULL;
2197                         }
2198                         designator->symbol = token.v.symbol;
2199                         next_token();
2200                         break;
2201                 default:
2202                         expect('=');
2203                         return result;
2204                 }
2205
2206                 assert(designator != NULL);
2207                 if (last != NULL) {
2208                         last->next = designator;
2209                 } else {
2210                         result = designator;
2211                 }
2212                 last = designator;
2213         }
2214 end_error:
2215         return NULL;
2216 }
2217
2218 static initializer_t *initializer_from_string(array_type_t *type,
2219                                               const string_t *const string)
2220 {
2221         /* TODO: check len vs. size of array type */
2222         (void) type;
2223
2224         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
2225         initializer->string.string = *string;
2226
2227         return initializer;
2228 }
2229
2230 static initializer_t *initializer_from_wide_string(array_type_t *const type,
2231                                                    wide_string_t *const string)
2232 {
2233         /* TODO: check len vs. size of array type */
2234         (void) type;
2235
2236         initializer_t *const initializer =
2237                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
2238         initializer->wide_string.string = *string;
2239
2240         return initializer;
2241 }
2242
2243 /**
2244  * Build an initializer from a given expression.
2245  */
2246 static initializer_t *initializer_from_expression(type_t *orig_type,
2247                                                   expression_t *expression)
2248 {
2249         /* TODO check that expression is a constant expression */
2250
2251         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
2252         type_t *type           = skip_typeref(orig_type);
2253         type_t *expr_type_orig = expression->base.type;
2254         type_t *expr_type      = skip_typeref(expr_type_orig);
2255         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
2256                 array_type_t *const array_type   = &type->array;
2257                 type_t       *const element_type = skip_typeref(array_type->element_type);
2258
2259                 if (element_type->kind == TYPE_ATOMIC) {
2260                         atomic_type_kind_t akind = element_type->atomic.akind;
2261                         switch (expression->kind) {
2262                                 case EXPR_STRING_LITERAL:
2263                                         if (akind == ATOMIC_TYPE_CHAR
2264                                                         || akind == ATOMIC_TYPE_SCHAR
2265                                                         || akind == ATOMIC_TYPE_UCHAR) {
2266                                                 return initializer_from_string(array_type,
2267                                                         &expression->string.value);
2268                                         }
2269
2270                                 case EXPR_WIDE_STRING_LITERAL: {
2271                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
2272                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
2273                                                 return initializer_from_wide_string(array_type,
2274                                                         &expression->wide_string.value);
2275                                         }
2276                                 }
2277
2278                                 default:
2279                                         break;
2280                         }
2281                 }
2282         }
2283
2284         assign_error_t error = semantic_assign(type, expression);
2285         if (error == ASSIGN_ERROR_INCOMPATIBLE)
2286                 return NULL;
2287         report_assign_error(error, type, expression, "initializer",
2288                             &expression->base.source_position);
2289
2290         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2291 #if 0
2292         if (type->kind == TYPE_BITFIELD) {
2293                 type = type->bitfield.base_type;
2294         }
2295 #endif
2296         result->value.value = create_implicit_cast(expression, type);
2297
2298         return result;
2299 }
2300
2301 /**
2302  * Checks if a given expression can be used as an constant initializer.
2303  */
2304 static bool is_initializer_constant(const expression_t *expression)
2305 {
2306         return is_constant_expression(expression)
2307                 || is_address_constant(expression);
2308 }
2309
2310 /**
2311  * Parses an scalar initializer.
2312  *
2313  * Â§ 6.7.8.11; eat {} without warning
2314  */
2315 static initializer_t *parse_scalar_initializer(type_t *type,
2316                                                bool must_be_constant)
2317 {
2318         /* there might be extra {} hierarchies */
2319         int braces = 0;
2320         if (token.type == '{') {
2321                 if (warning.other)
2322                         warningf(HERE, "extra curly braces around scalar initializer");
2323                 do {
2324                         ++braces;
2325                         next_token();
2326                 } while (token.type == '{');
2327         }
2328
2329         expression_t *expression = parse_assignment_expression();
2330         mark_vars_read(expression, NULL);
2331         if (must_be_constant && !is_initializer_constant(expression)) {
2332                 errorf(&expression->base.source_position,
2333                        "Initialisation expression '%E' is not constant\n",
2334                        expression);
2335         }
2336
2337         initializer_t *initializer = initializer_from_expression(type, expression);
2338
2339         if (initializer == NULL) {
2340                 errorf(&expression->base.source_position,
2341                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2342                        expression, expression->base.type, type);
2343                 /* TODO */
2344                 return NULL;
2345         }
2346
2347         bool additional_warning_displayed = false;
2348         while (braces > 0) {
2349                 if (token.type == ',') {
2350                         next_token();
2351                 }
2352                 if (token.type != '}') {
2353                         if (!additional_warning_displayed && warning.other) {
2354                                 warningf(HERE, "additional elements in scalar initializer");
2355                                 additional_warning_displayed = true;
2356                         }
2357                 }
2358                 eat_block();
2359                 braces--;
2360         }
2361
2362         return initializer;
2363 }
2364
2365 /**
2366  * An entry in the type path.
2367  */
2368 typedef struct type_path_entry_t type_path_entry_t;
2369 struct type_path_entry_t {
2370         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2371         union {
2372                 size_t         index;          /**< For array types: the current index. */
2373                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2374         } v;
2375 };
2376
2377 /**
2378  * A type path expression a position inside compound or array types.
2379  */
2380 typedef struct type_path_t type_path_t;
2381 struct type_path_t {
2382         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2383         type_t            *top_type;     /**< type of the element the path points */
2384         size_t             max_index;    /**< largest index in outermost array */
2385 };
2386
2387 /**
2388  * Prints a type path for debugging.
2389  */
2390 static __attribute__((unused)) void debug_print_type_path(
2391                 const type_path_t *path)
2392 {
2393         size_t len = ARR_LEN(path->path);
2394
2395         for(size_t i = 0; i < len; ++i) {
2396                 const type_path_entry_t *entry = & path->path[i];
2397
2398                 type_t *type = skip_typeref(entry->type);
2399                 if (is_type_compound(type)) {
2400                         /* in gcc mode structs can have no members */
2401                         if (entry->v.compound_entry == NULL) {
2402                                 assert(i == len-1);
2403                                 continue;
2404                         }
2405                         fprintf(stderr, ".%s",
2406                                 entry->v.compound_entry->base.symbol->string);
2407                 } else if (is_type_array(type)) {
2408                         fprintf(stderr, "[%zu]", entry->v.index);
2409                 } else {
2410                         fprintf(stderr, "-INVALID-");
2411                 }
2412         }
2413         if (path->top_type != NULL) {
2414                 fprintf(stderr, "  (");
2415                 print_type(path->top_type);
2416                 fprintf(stderr, ")");
2417         }
2418 }
2419
2420 /**
2421  * Return the top type path entry, ie. in a path
2422  * (type).a.b returns the b.
2423  */
2424 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2425 {
2426         size_t len = ARR_LEN(path->path);
2427         assert(len > 0);
2428         return &path->path[len-1];
2429 }
2430
2431 /**
2432  * Enlarge the type path by an (empty) element.
2433  */
2434 static type_path_entry_t *append_to_type_path(type_path_t *path)
2435 {
2436         size_t len = ARR_LEN(path->path);
2437         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2438
2439         type_path_entry_t *result = & path->path[len];
2440         memset(result, 0, sizeof(result[0]));
2441         return result;
2442 }
2443
2444 /**
2445  * Descending into a sub-type. Enter the scope of the current top_type.
2446  */
2447 static void descend_into_subtype(type_path_t *path)
2448 {
2449         type_t *orig_top_type = path->top_type;
2450         type_t *top_type      = skip_typeref(orig_top_type);
2451
2452         type_path_entry_t *top = append_to_type_path(path);
2453         top->type              = top_type;
2454
2455         if (is_type_compound(top_type)) {
2456                 compound_t *compound  = top_type->compound.compound;
2457                 entity_t   *entry     = compound->members.entities;
2458
2459                 if (entry != NULL) {
2460                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2461                         top->v.compound_entry = &entry->declaration;
2462                         path->top_type = entry->declaration.type;
2463                 } else {
2464                         path->top_type = NULL;
2465                 }
2466         } else if (is_type_array(top_type)) {
2467                 top->v.index   = 0;
2468                 path->top_type = top_type->array.element_type;
2469         } else {
2470                 assert(!is_type_valid(top_type));
2471         }
2472 }
2473
2474 /**
2475  * Pop an entry from the given type path, ie. returning from
2476  * (type).a.b to (type).a
2477  */
2478 static void ascend_from_subtype(type_path_t *path)
2479 {
2480         type_path_entry_t *top = get_type_path_top(path);
2481
2482         path->top_type = top->type;
2483
2484         size_t len = ARR_LEN(path->path);
2485         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2486 }
2487
2488 /**
2489  * Pop entries from the given type path until the given
2490  * path level is reached.
2491  */
2492 static void ascend_to(type_path_t *path, size_t top_path_level)
2493 {
2494         size_t len = ARR_LEN(path->path);
2495
2496         while (len > top_path_level) {
2497                 ascend_from_subtype(path);
2498                 len = ARR_LEN(path->path);
2499         }
2500 }
2501
2502 static bool walk_designator(type_path_t *path, const designator_t *designator,
2503                             bool used_in_offsetof)
2504 {
2505         for( ; designator != NULL; designator = designator->next) {
2506                 type_path_entry_t *top       = get_type_path_top(path);
2507                 type_t            *orig_type = top->type;
2508
2509                 type_t *type = skip_typeref(orig_type);
2510
2511                 if (designator->symbol != NULL) {
2512                         symbol_t *symbol = designator->symbol;
2513                         if (!is_type_compound(type)) {
2514                                 if (is_type_valid(type)) {
2515                                         errorf(&designator->source_position,
2516                                                "'.%Y' designator used for non-compound type '%T'",
2517                                                symbol, orig_type);
2518                                 }
2519
2520                                 top->type             = type_error_type;
2521                                 top->v.compound_entry = NULL;
2522                                 orig_type             = type_error_type;
2523                         } else {
2524                                 compound_t *compound = type->compound.compound;
2525                                 entity_t   *iter     = compound->members.entities;
2526                                 for( ; iter != NULL; iter = iter->base.next) {
2527                                         if (iter->base.symbol == symbol) {
2528                                                 break;
2529                                         }
2530                                 }
2531                                 if (iter == NULL) {
2532                                         errorf(&designator->source_position,
2533                                                "'%T' has no member named '%Y'", orig_type, symbol);
2534                                         goto failed;
2535                                 }
2536                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2537                                 if (used_in_offsetof) {
2538                                         type_t *real_type = skip_typeref(iter->declaration.type);
2539                                         if (real_type->kind == TYPE_BITFIELD) {
2540                                                 errorf(&designator->source_position,
2541                                                        "offsetof designator '%Y' may not specify bitfield",
2542                                                        symbol);
2543                                                 goto failed;
2544                                         }
2545                                 }
2546
2547                                 top->type             = orig_type;
2548                                 top->v.compound_entry = &iter->declaration;
2549                                 orig_type             = iter->declaration.type;
2550                         }
2551                 } else {
2552                         expression_t *array_index = designator->array_index;
2553                         assert(designator->array_index != NULL);
2554
2555                         if (!is_type_array(type)) {
2556                                 if (is_type_valid(type)) {
2557                                         errorf(&designator->source_position,
2558                                                "[%E] designator used for non-array type '%T'",
2559                                                array_index, orig_type);
2560                                 }
2561                                 goto failed;
2562                         }
2563
2564                         long index = fold_constant(array_index);
2565                         if (!used_in_offsetof) {
2566                                 if (index < 0) {
2567                                         errorf(&designator->source_position,
2568                                                "array index [%E] must be positive", array_index);
2569                                 } else if (type->array.size_constant) {
2570                                         long array_size = type->array.size;
2571                                         if (index >= array_size) {
2572                                                 errorf(&designator->source_position,
2573                                                        "designator [%E] (%d) exceeds array size %d",
2574                                                        array_index, index, array_size);
2575                                         }
2576                                 }
2577                         }
2578
2579                         top->type    = orig_type;
2580                         top->v.index = (size_t) index;
2581                         orig_type    = type->array.element_type;
2582                 }
2583                 path->top_type = orig_type;
2584
2585                 if (designator->next != NULL) {
2586                         descend_into_subtype(path);
2587                 }
2588         }
2589         return true;
2590
2591 failed:
2592         return false;
2593 }
2594
2595 static void advance_current_object(type_path_t *path, size_t top_path_level)
2596 {
2597         type_path_entry_t *top = get_type_path_top(path);
2598
2599         type_t *type = skip_typeref(top->type);
2600         if (is_type_union(type)) {
2601                 /* in unions only the first element is initialized */
2602                 top->v.compound_entry = NULL;
2603         } else if (is_type_struct(type)) {
2604                 declaration_t *entry = top->v.compound_entry;
2605
2606                 entity_t *next_entity = entry->base.next;
2607                 if (next_entity != NULL) {
2608                         assert(is_declaration(next_entity));
2609                         entry = &next_entity->declaration;
2610                 } else {
2611                         entry = NULL;
2612                 }
2613
2614                 top->v.compound_entry = entry;
2615                 if (entry != NULL) {
2616                         path->top_type = entry->type;
2617                         return;
2618                 }
2619         } else if (is_type_array(type)) {
2620                 assert(is_type_array(type));
2621
2622                 top->v.index++;
2623
2624                 if (!type->array.size_constant || top->v.index < type->array.size) {
2625                         return;
2626                 }
2627         } else {
2628                 assert(!is_type_valid(type));
2629                 return;
2630         }
2631
2632         /* we're past the last member of the current sub-aggregate, try if we
2633          * can ascend in the type hierarchy and continue with another subobject */
2634         size_t len = ARR_LEN(path->path);
2635
2636         if (len > top_path_level) {
2637                 ascend_from_subtype(path);
2638                 advance_current_object(path, top_path_level);
2639         } else {
2640                 path->top_type = NULL;
2641         }
2642 }
2643
2644 /**
2645  * skip until token is found.
2646  */
2647 static void skip_until(int type)
2648 {
2649         while (token.type != type) {
2650                 if (token.type == T_EOF)
2651                         return;
2652                 next_token();
2653         }
2654 }
2655
2656 /**
2657  * skip any {...} blocks until a closing bracket is reached.
2658  */
2659 static void skip_initializers(void)
2660 {
2661         if (token.type == '{')
2662                 next_token();
2663
2664         while (token.type != '}') {
2665                 if (token.type == T_EOF)
2666                         return;
2667                 if (token.type == '{') {
2668                         eat_block();
2669                         continue;
2670                 }
2671                 next_token();
2672         }
2673 }
2674
2675 static initializer_t *create_empty_initializer(void)
2676 {
2677         static initializer_t empty_initializer
2678                 = { .list = { { INITIALIZER_LIST }, 0 } };
2679         return &empty_initializer;
2680 }
2681
2682 /**
2683  * Parse a part of an initialiser for a struct or union,
2684  */
2685 static initializer_t *parse_sub_initializer(type_path_t *path,
2686                 type_t *outer_type, size_t top_path_level,
2687                 parse_initializer_env_t *env)
2688 {
2689         if (token.type == '}') {
2690                 /* empty initializer */
2691                 return create_empty_initializer();
2692         }
2693
2694         type_t *orig_type = path->top_type;
2695         type_t *type      = NULL;
2696
2697         if (orig_type == NULL) {
2698                 /* We are initializing an empty compound. */
2699         } else {
2700                 type = skip_typeref(orig_type);
2701         }
2702
2703         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2704
2705         while (true) {
2706                 designator_t *designator = NULL;
2707                 if (token.type == '.' || token.type == '[') {
2708                         designator = parse_designation();
2709                         goto finish_designator;
2710                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2711                         /* GNU-style designator ("identifier: value") */
2712                         designator = allocate_ast_zero(sizeof(designator[0]));
2713                         designator->source_position = token.source_position;
2714                         designator->symbol          = token.v.symbol;
2715                         eat(T_IDENTIFIER);
2716                         eat(':');
2717
2718 finish_designator:
2719                         /* reset path to toplevel, evaluate designator from there */
2720                         ascend_to(path, top_path_level);
2721                         if (!walk_designator(path, designator, false)) {
2722                                 /* can't continue after designation error */
2723                                 goto end_error;
2724                         }
2725
2726                         initializer_t *designator_initializer
2727                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2728                         designator_initializer->designator.designator = designator;
2729                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2730
2731                         orig_type = path->top_type;
2732                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2733                 }
2734
2735                 initializer_t *sub;
2736
2737                 if (token.type == '{') {
2738                         if (type != NULL && is_type_scalar(type)) {
2739                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2740                         } else {
2741                                 eat('{');
2742                                 if (type == NULL) {
2743                                         if (env->entity != NULL) {
2744                                                 errorf(HERE,
2745                                                      "extra brace group at end of initializer for '%Y'",
2746                                                      env->entity->base.symbol);
2747                                         } else {
2748                                                 errorf(HERE, "extra brace group at end of initializer");
2749                                         }
2750                                 } else
2751                                         descend_into_subtype(path);
2752
2753                                 add_anchor_token('}');
2754                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2755                                                             env);
2756                                 rem_anchor_token('}');
2757
2758                                 if (type != NULL) {
2759                                         ascend_from_subtype(path);
2760                                         expect('}');
2761                                 } else {
2762                                         expect('}');
2763                                         goto error_parse_next;
2764                                 }
2765                         }
2766                 } else {
2767                         /* must be an expression */
2768                         expression_t *expression = parse_assignment_expression();
2769
2770                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2771                                 errorf(&expression->base.source_position,
2772                                        "Initialisation expression '%E' is not constant\n",
2773                                        expression);
2774                         }
2775
2776                         if (type == NULL) {
2777                                 /* we are already outside, ... */
2778                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2779                                 if (is_type_compound(outer_type_skip) &&
2780                                     !outer_type_skip->compound.compound->complete) {
2781                                         goto error_parse_next;
2782                                 }
2783                                 goto error_excess;
2784                         }
2785
2786                         /* handle { "string" } special case */
2787                         if ((expression->kind == EXPR_STRING_LITERAL
2788                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2789                                         && outer_type != NULL) {
2790                                 sub = initializer_from_expression(outer_type, expression);
2791                                 if (sub != NULL) {
2792                                         if (token.type == ',') {
2793                                                 next_token();
2794                                         }
2795                                         if (token.type != '}' && warning.other) {
2796                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2797                                                                  orig_type);
2798                                         }
2799                                         /* TODO: eat , ... */
2800                                         return sub;
2801                                 }
2802                         }
2803
2804                         /* descend into subtypes until expression matches type */
2805                         while (true) {
2806                                 orig_type = path->top_type;
2807                                 type      = skip_typeref(orig_type);
2808
2809                                 sub = initializer_from_expression(orig_type, expression);
2810                                 if (sub != NULL) {
2811                                         break;
2812                                 }
2813                                 if (!is_type_valid(type)) {
2814                                         goto end_error;
2815                                 }
2816                                 if (is_type_scalar(type)) {
2817                                         errorf(&expression->base.source_position,
2818                                                         "expression '%E' doesn't match expected type '%T'",
2819                                                         expression, orig_type);
2820                                         goto end_error;
2821                                 }
2822
2823                                 descend_into_subtype(path);
2824                         }
2825                 }
2826
2827                 /* update largest index of top array */
2828                 const type_path_entry_t *first      = &path->path[0];
2829                 type_t                  *first_type = first->type;
2830                 first_type                          = skip_typeref(first_type);
2831                 if (is_type_array(first_type)) {
2832                         size_t index = first->v.index;
2833                         if (index > path->max_index)
2834                                 path->max_index = index;
2835                 }
2836
2837                 if (type != NULL) {
2838                         /* append to initializers list */
2839                         ARR_APP1(initializer_t*, initializers, sub);
2840                 } else {
2841 error_excess:
2842                         if (warning.other) {
2843                                 if (env->entity != NULL) {
2844                                         warningf(HERE, "excess elements in struct initializer for '%Y'",
2845                                            env->entity->base.symbol);
2846                                 } else {
2847                                         warningf(HERE, "excess elements in struct initializer");
2848                                 }
2849                         }
2850                 }
2851
2852 error_parse_next:
2853                 if (token.type == '}') {
2854                         break;
2855                 }
2856                 expect(',');
2857                 if (token.type == '}') {
2858                         break;
2859                 }
2860
2861                 if (type != NULL) {
2862                         /* advance to the next declaration if we are not at the end */
2863                         advance_current_object(path, top_path_level);
2864                         orig_type = path->top_type;
2865                         if (orig_type != NULL)
2866                                 type = skip_typeref(orig_type);
2867                         else
2868                                 type = NULL;
2869                 }
2870         }
2871
2872         size_t len  = ARR_LEN(initializers);
2873         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2874         initializer_t *result = allocate_ast_zero(size);
2875         result->kind          = INITIALIZER_LIST;
2876         result->list.len      = len;
2877         memcpy(&result->list.initializers, initializers,
2878                len * sizeof(initializers[0]));
2879
2880         DEL_ARR_F(initializers);
2881         ascend_to(path, top_path_level+1);
2882
2883         return result;
2884
2885 end_error:
2886         skip_initializers();
2887         DEL_ARR_F(initializers);
2888         ascend_to(path, top_path_level+1);
2889         return NULL;
2890 }
2891
2892 /**
2893  * Parses an initializer. Parsers either a compound literal
2894  * (env->declaration == NULL) or an initializer of a declaration.
2895  */
2896 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2897 {
2898         type_t        *type   = skip_typeref(env->type);
2899         initializer_t *result = NULL;
2900         size_t         max_index;
2901
2902         if (is_type_scalar(type)) {
2903                 result = parse_scalar_initializer(type, env->must_be_constant);
2904         } else if (token.type == '{') {
2905                 eat('{');
2906
2907                 type_path_t path;
2908                 memset(&path, 0, sizeof(path));
2909                 path.top_type = env->type;
2910                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2911
2912                 descend_into_subtype(&path);
2913
2914                 add_anchor_token('}');
2915                 result = parse_sub_initializer(&path, env->type, 1, env);
2916                 rem_anchor_token('}');
2917
2918                 max_index = path.max_index;
2919                 DEL_ARR_F(path.path);
2920
2921                 expect('}');
2922         } else {
2923                 /* parse_scalar_initializer() also works in this case: we simply
2924                  * have an expression without {} around it */
2925                 result = parse_scalar_initializer(type, env->must_be_constant);
2926         }
2927
2928         /* Â§ 6.7.8 (22) array initializers for arrays with unknown size determine
2929          * the array type size */
2930         if (is_type_array(type) && type->array.size_expression == NULL
2931                         && result != NULL) {
2932                 size_t size;
2933                 switch (result->kind) {
2934                 case INITIALIZER_LIST:
2935                         size = max_index + 1;
2936                         break;
2937
2938                 case INITIALIZER_STRING:
2939                         size = result->string.string.size;
2940                         break;
2941
2942                 case INITIALIZER_WIDE_STRING:
2943                         size = result->wide_string.string.size;
2944                         break;
2945
2946                 case INITIALIZER_DESIGNATOR:
2947                 case INITIALIZER_VALUE:
2948                         /* can happen for parse errors */
2949                         size = 0;
2950                         break;
2951
2952                 default:
2953                         internal_errorf(HERE, "invalid initializer type");
2954                 }
2955
2956                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2957                 cnst->base.type          = type_size_t;
2958                 cnst->conste.v.int_value = size;
2959
2960                 type_t *new_type = duplicate_type(type);
2961
2962                 new_type->array.size_expression   = cnst;
2963                 new_type->array.size_constant     = true;
2964                 new_type->array.has_implicit_size = true;
2965                 new_type->array.size              = size;
2966                 env->type = new_type;
2967         }
2968
2969         return result;
2970 end_error:
2971         return NULL;
2972 }
2973
2974 static void append_entity(scope_t *scope, entity_t *entity)
2975 {
2976         if (scope->last_entity != NULL) {
2977                 scope->last_entity->base.next = entity;
2978         } else {
2979                 scope->entities = entity;
2980         }
2981         scope->last_entity = entity;
2982 }
2983
2984
2985 static compound_t *parse_compound_type_specifier(bool is_struct)
2986 {
2987         gnu_attribute_t  *attributes = NULL;
2988         decl_modifiers_t  modifiers  = 0;
2989         if (is_struct) {
2990                 eat(T_struct);
2991         } else {
2992                 eat(T_union);
2993         }
2994
2995         symbol_t   *symbol      = NULL;
2996         compound_t *compound = NULL;
2997
2998         if (token.type == T___attribute__) {
2999                 modifiers |= parse_attributes(&attributes);
3000         }
3001
3002         if (token.type == T_IDENTIFIER) {
3003                 symbol = token.v.symbol;
3004                 next_token();
3005
3006                 namespace_t const namespc =
3007                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
3008                 entity_t *entity = get_entity(symbol, namespc);
3009                 if (entity != NULL) {
3010                         assert(entity->kind == (is_struct ? ENTITY_STRUCT : ENTITY_UNION));
3011                         compound = &entity->compound;
3012                         if (compound->base.parent_scope != scope &&
3013                             (token.type == '{' || token.type == ';')) {
3014                                 /* we're in an inner scope and have a definition. Override
3015                                    existing definition in outer scope */
3016                                 compound = NULL;
3017                         } else if (compound->complete && token.type == '{') {
3018                                 assert(symbol != NULL);
3019                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
3020                                        is_struct ? "struct" : "union", symbol,
3021                                        &compound->base.source_position);
3022                                 /* clear members in the hope to avoid further errors */
3023                                 compound->members.entities = NULL;
3024                         }
3025                 }
3026         } else if (token.type != '{') {
3027                 if (is_struct) {
3028                         parse_error_expected("while parsing struct type specifier",
3029                                              T_IDENTIFIER, '{', NULL);
3030                 } else {
3031                         parse_error_expected("while parsing union type specifier",
3032                                              T_IDENTIFIER, '{', NULL);
3033                 }
3034
3035                 return NULL;
3036         }
3037
3038         if (compound == NULL) {
3039                 entity_kind_t  kind   = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
3040                 entity_t      *entity = allocate_entity_zero(kind);
3041                 compound              = &entity->compound;
3042
3043                 compound->base.namespc =
3044                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
3045                 compound->base.source_position = token.source_position;
3046                 compound->base.symbol          = symbol;
3047                 compound->base.parent_scope    = scope;
3048                 if (symbol != NULL) {
3049                         environment_push(entity);
3050                 }
3051                 append_entity(scope, entity);
3052         }
3053
3054         if (token.type == '{') {
3055                 compound->complete = true;
3056
3057                 parse_compound_type_entries(compound);
3058                 modifiers |= parse_attributes(&attributes);
3059         }
3060
3061         compound->modifiers |= modifiers;
3062         return compound;
3063 }
3064
3065 static void parse_enum_entries(type_t *const enum_type)
3066 {
3067         eat('{');
3068
3069         if (token.type == '}') {
3070                 next_token();
3071                 errorf(HERE, "empty enum not allowed");
3072                 return;
3073         }
3074
3075         add_anchor_token('}');
3076         do {
3077                 if (token.type != T_IDENTIFIER) {
3078                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
3079                         eat_block();
3080                         rem_anchor_token('}');
3081                         return;
3082                 }
3083
3084                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
3085                 entity->enum_value.enum_type = enum_type;
3086                 entity->base.symbol          = token.v.symbol;
3087                 entity->base.source_position = token.source_position;
3088                 next_token();
3089
3090                 if (token.type == '=') {
3091                         next_token();
3092                         expression_t *value = parse_constant_expression();
3093
3094                         value = create_implicit_cast(value, enum_type);
3095                         entity->enum_value.value = value;
3096
3097                         /* TODO semantic */
3098                 }
3099
3100                 record_entity(entity, false);
3101
3102                 if (token.type != ',')
3103                         break;
3104                 next_token();
3105         } while (token.type != '}');
3106         rem_anchor_token('}');
3107
3108         expect('}');
3109
3110 end_error:
3111         ;
3112 }
3113
3114 static type_t *parse_enum_specifier(void)
3115 {
3116         gnu_attribute_t *attributes = NULL;
3117         entity_t        *entity;
3118         symbol_t        *symbol;
3119
3120         eat(T_enum);
3121         if (token.type == T_IDENTIFIER) {
3122                 symbol = token.v.symbol;
3123                 next_token();
3124
3125                 entity = get_entity(symbol, NAMESPACE_ENUM);
3126                 assert(entity == NULL || entity->kind == ENTITY_ENUM);
3127         } else if (token.type != '{') {
3128                 parse_error_expected("while parsing enum type specifier",
3129                                      T_IDENTIFIER, '{', NULL);
3130                 return NULL;
3131         } else {
3132                 entity  = NULL;
3133                 symbol  = NULL;
3134         }
3135
3136         if (entity == NULL) {
3137                 entity                       = allocate_entity_zero(ENTITY_ENUM);
3138                 entity->base.namespc         = NAMESPACE_ENUM;
3139                 entity->base.source_position = token.source_position;
3140                 entity->base.symbol          = symbol;
3141                 entity->base.parent_scope    = scope;
3142         }
3143
3144         type_t *const type = allocate_type_zero(TYPE_ENUM);
3145         type->enumt.enume  = &entity->enume;
3146
3147         if (token.type == '{') {
3148                 if (entity->enume.complete) {
3149                         errorf(HERE, "multiple definitions of enum %Y (previous definition %P)",
3150                                symbol, &entity->base.source_position);
3151                 }
3152                 if (symbol != NULL) {
3153                         environment_push(entity);
3154                 }
3155                 append_entity(scope, entity);
3156                 entity->enume.complete = true;
3157
3158                 parse_enum_entries(type);
3159                 parse_attributes(&attributes);
3160         } else if(!entity->enume.complete && !(c_mode & _GNUC)) {
3161                 errorf(HERE, "enum %Y used before definition (incomplete enumes are a GNU extension)",
3162                        symbol);
3163         }
3164
3165         return type;
3166 }
3167
3168 /**
3169  * if a symbol is a typedef to another type, return true
3170  */
3171 static bool is_typedef_symbol(symbol_t *symbol)
3172 {
3173         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
3174         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
3175 }
3176
3177 static type_t *parse_typeof(void)
3178 {
3179         eat(T___typeof__);
3180
3181         type_t *type;
3182
3183         expect('(');
3184         add_anchor_token(')');
3185
3186         expression_t *expression  = NULL;
3187
3188         bool old_type_prop     = in_type_prop;
3189         bool old_gcc_extension = in_gcc_extension;
3190         in_type_prop           = true;
3191
3192         while (token.type == T___extension__) {
3193                 /* This can be a prefix to a typename or an expression. */
3194                 next_token();
3195                 in_gcc_extension = true;
3196         }
3197         switch (token.type) {
3198         case T_IDENTIFIER:
3199                 if (is_typedef_symbol(token.v.symbol)) {
3200                         type = parse_typename();
3201                 } else {
3202                         expression = parse_expression();
3203                         type       = expression->base.type;
3204                 }
3205                 break;
3206
3207         TYPENAME_START
3208                 type = parse_typename();
3209                 break;
3210
3211         default:
3212                 expression = parse_expression();
3213                 type       = expression->base.type;
3214                 break;
3215         }
3216         in_type_prop     = old_type_prop;
3217         in_gcc_extension = old_gcc_extension;
3218
3219         rem_anchor_token(')');
3220         expect(')');
3221
3222         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
3223         typeof_type->typeoft.expression  = expression;
3224         typeof_type->typeoft.typeof_type = type;
3225
3226         return typeof_type;
3227 end_error:
3228         return NULL;
3229 }
3230
3231 typedef enum specifiers_t {
3232         SPECIFIER_SIGNED    = 1 << 0,
3233         SPECIFIER_UNSIGNED  = 1 << 1,
3234         SPECIFIER_LONG      = 1 << 2,
3235         SPECIFIER_INT       = 1 << 3,
3236         SPECIFIER_DOUBLE    = 1 << 4,
3237         SPECIFIER_CHAR      = 1 << 5,
3238         SPECIFIER_SHORT     = 1 << 6,
3239         SPECIFIER_LONG_LONG = 1 << 7,
3240         SPECIFIER_FLOAT     = 1 << 8,
3241         SPECIFIER_BOOL      = 1 << 9,
3242         SPECIFIER_VOID      = 1 << 10,
3243         SPECIFIER_INT8      = 1 << 11,
3244         SPECIFIER_INT16     = 1 << 12,
3245         SPECIFIER_INT32     = 1 << 13,
3246         SPECIFIER_INT64     = 1 << 14,
3247         SPECIFIER_INT128    = 1 << 15,
3248         SPECIFIER_COMPLEX   = 1 << 16,
3249         SPECIFIER_IMAGINARY = 1 << 17,
3250 } specifiers_t;
3251
3252 static type_t *create_builtin_type(symbol_t *const symbol,
3253                                    type_t *const real_type)
3254 {
3255         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
3256         type->builtin.symbol    = symbol;
3257         type->builtin.real_type = real_type;
3258
3259         type_t *result = typehash_insert(type);
3260         if (type != result) {
3261                 free_type(type);
3262         }
3263
3264         return result;
3265 }
3266
3267 static type_t *get_typedef_type(symbol_t *symbol)
3268 {
3269         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3270         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
3271                 return NULL;
3272
3273         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
3274         type->typedeft.typedefe = &entity->typedefe;
3275
3276         return type;
3277 }
3278
3279 /**
3280  * check for the allowed MS alignment values.
3281  */
3282 static bool check_alignment_value(long long intvalue)
3283 {
3284         if (intvalue < 1 || intvalue > 8192) {
3285                 errorf(HERE, "illegal alignment value");
3286                 return false;
3287         }
3288         unsigned v = (unsigned)intvalue;
3289         for (unsigned i = 1; i <= 8192; i += i) {
3290                 if (i == v)
3291                         return true;
3292         }
3293         errorf(HERE, "alignment must be power of two");
3294         return false;
3295 }
3296
3297 #define DET_MOD(name, tag) do { \
3298         if (*modifiers & tag && warning.other) warningf(HERE, #name " used more than once"); \
3299         *modifiers |= tag; \
3300 } while (0)
3301
3302 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
3303 {
3304         decl_modifiers_t *modifiers = &specifiers->modifiers;
3305
3306         while (true) {
3307                 if (token.type == T_restrict) {
3308                         next_token();
3309                         DET_MOD(restrict, DM_RESTRICT);
3310                         goto end_loop;
3311                 } else if (token.type != T_IDENTIFIER)
3312                         break;
3313                 symbol_t *symbol = token.v.symbol;
3314                 if (symbol == sym_align) {
3315                         next_token();
3316                         expect('(');
3317                         if (token.type != T_INTEGER)
3318                                 goto end_error;
3319                         if (check_alignment_value(token.v.intvalue)) {
3320                                 if (specifiers->alignment != 0 && warning.other)
3321                                         warningf(HERE, "align used more than once");
3322                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3323                         }
3324                         next_token();
3325                         expect(')');
3326                 } else if (symbol == sym_allocate) {
3327                         next_token();
3328                         expect('(');
3329                         if (token.type != T_IDENTIFIER)
3330                                 goto end_error;
3331                         (void)token.v.symbol;
3332                         expect(')');
3333                 } else if (symbol == sym_dllimport) {
3334                         next_token();
3335                         DET_MOD(dllimport, DM_DLLIMPORT);
3336                 } else if (symbol == sym_dllexport) {
3337                         next_token();
3338                         DET_MOD(dllexport, DM_DLLEXPORT);
3339                 } else if (symbol == sym_thread) {
3340                         next_token();
3341                         DET_MOD(thread, DM_THREAD);
3342                 } else if (symbol == sym_naked) {
3343                         next_token();
3344                         DET_MOD(naked, DM_NAKED);
3345                 } else if (symbol == sym_noinline) {
3346                         next_token();
3347                         DET_MOD(noinline, DM_NOINLINE);
3348                 } else if (symbol == sym_noreturn) {
3349                         next_token();
3350                         DET_MOD(noreturn, DM_NORETURN);
3351                 } else if (symbol == sym_nothrow) {
3352                         next_token();
3353                         DET_MOD(nothrow, DM_NOTHROW);
3354                 } else if (symbol == sym_novtable) {
3355                         next_token();
3356                         DET_MOD(novtable, DM_NOVTABLE);
3357                 } else if (symbol == sym_property) {
3358                         next_token();
3359                         expect('(');
3360                         for (;;) {
3361                                 bool is_get = false;
3362                                 if (token.type != T_IDENTIFIER)
3363                                         goto end_error;
3364                                 if (token.v.symbol == sym_get) {
3365                                         is_get = true;
3366                                 } else if (token.v.symbol == sym_put) {
3367                                 } else {
3368                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3369                                         goto end_error;
3370                                 }
3371                                 next_token();
3372                                 expect('=');
3373                                 if (token.type != T_IDENTIFIER)
3374                                         goto end_error;
3375                                 if (is_get) {
3376                                         if (specifiers->get_property_sym != NULL) {
3377                                                 errorf(HERE, "get property name already specified");
3378                                         } else {
3379                                                 specifiers->get_property_sym = token.v.symbol;
3380                                         }
3381                                 } else {
3382                                         if (specifiers->put_property_sym != NULL) {
3383                                                 errorf(HERE, "put property name already specified");
3384                                         } else {
3385                                                 specifiers->put_property_sym = token.v.symbol;
3386                                         }
3387                                 }
3388                                 next_token();
3389                                 if (token.type == ',') {
3390                                         next_token();
3391                                         continue;
3392                                 }
3393                                 break;
3394                         }
3395                         expect(')');
3396                 } else if (symbol == sym_selectany) {
3397                         next_token();
3398                         DET_MOD(selectany, DM_SELECTANY);
3399                 } else if (symbol == sym_uuid) {
3400                         next_token();
3401                         expect('(');
3402                         if (token.type != T_STRING_LITERAL)
3403                                 goto end_error;
3404                         next_token();
3405                         expect(')');
3406                 } else if (symbol == sym_deprecated) {
3407                         next_token();
3408                         if (specifiers->deprecated != 0 && warning.other)
3409                                 warningf(HERE, "deprecated used more than once");
3410                         specifiers->deprecated = true;
3411                         if (token.type == '(') {
3412                                 next_token();
3413                                 if (token.type == T_STRING_LITERAL) {
3414                                         specifiers->deprecated_string = token.v.string.begin;
3415                                         next_token();
3416                                 } else {
3417                                         errorf(HERE, "string literal expected");
3418                                 }
3419                                 expect(')');
3420                         }
3421                 } else if (symbol == sym_noalias) {
3422                         next_token();
3423                         DET_MOD(noalias, DM_NOALIAS);
3424                 } else {
3425                         if (warning.other)
3426                                 warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3427                         next_token();
3428                         if (token.type == '(')
3429                                 skip_until(')');
3430                 }
3431 end_loop:
3432                 if (token.type == ',')
3433                         next_token();
3434         }
3435 end_error:
3436         return;
3437 }
3438
3439 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
3440 {
3441         entity_t *entity             = allocate_entity_zero(kind);
3442         entity->base.source_position = *HERE;
3443         entity->base.symbol          = symbol;
3444         if (is_declaration(entity)) {
3445                 entity->declaration.type     = type_error_type;
3446                 entity->declaration.implicit = true;
3447         }
3448         record_entity(entity, false);
3449         return entity;
3450 }
3451
3452 /**
3453  * Finish the construction of a struct type by calculating
3454  * its size, offsets, alignment.
3455  */
3456 static void finish_struct_type(compound_type_t *type)
3457 {
3458         assert(type->compound != NULL);
3459
3460         compound_t *compound = type->compound;
3461         if (!compound->complete)
3462                 return;
3463
3464         il_size_t      size           = 0;
3465         il_size_t      offset;
3466         il_alignment_t alignment      = 1;
3467         bool           need_pad       = false;
3468
3469         entity_t *entry = compound->members.entities;
3470         for (; entry != NULL; entry = entry->base.next) {
3471                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3472                         continue;
3473
3474                 type_t *m_type = skip_typeref(entry->declaration.type);
3475                 if (! is_type_valid(m_type)) {
3476                         /* simply ignore errors here */
3477                         continue;
3478                 }
3479                 il_alignment_t m_alignment = m_type->base.alignment;
3480                 if (m_alignment > alignment)
3481                         alignment = m_alignment;
3482
3483                 offset = (size + m_alignment - 1) & -m_alignment;
3484
3485                 if (offset > size)
3486                         need_pad = true;
3487                 entry->compound_member.offset = offset;
3488                 size = offset + m_type->base.size;
3489         }
3490         if (type->base.alignment != 0) {
3491                 alignment = type->base.alignment;
3492         }
3493
3494         offset = (size + alignment - 1) & -alignment;
3495         if (offset > size)
3496                 need_pad = true;
3497
3498         if (warning.padded && need_pad) {
3499                 warningf(&compound->base.source_position,
3500                         "'%#T' needs padding", type, compound->base.symbol);
3501         }
3502         if (warning.packed && !need_pad) {
3503                 warningf(&compound->base.source_position,
3504                         "superfluous packed attribute on '%#T'",
3505                         type, compound->base.symbol);
3506         }
3507
3508         type->base.size      = offset;
3509         type->base.alignment = alignment;
3510 }
3511
3512 /**
3513  * Finish the construction of an union type by calculating
3514  * its size and alignment.
3515  */
3516 static void finish_union_type(compound_type_t *type)
3517 {
3518         assert(type->compound != NULL);
3519
3520         compound_t *compound = type->compound;
3521         if (! compound->complete)
3522                 return;
3523
3524         il_size_t      size      = 0;
3525         il_alignment_t alignment = 1;
3526
3527         entity_t *entry = compound->members.entities;
3528         for (; entry != NULL; entry = entry->base.next) {
3529                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3530                         continue;
3531
3532                 type_t *m_type = skip_typeref(entry->declaration.type);
3533                 if (! is_type_valid(m_type))
3534                         continue;
3535
3536                 entry->compound_member.offset = 0;
3537                 if (m_type->base.size > size)
3538                         size = m_type->base.size;
3539                 if (m_type->base.alignment > alignment)
3540                         alignment = m_type->base.alignment;
3541         }
3542         if (type->base.alignment != 0) {
3543                 alignment = type->base.alignment;
3544         }
3545         size = (size + alignment - 1) & -alignment;
3546         type->base.size      = size;
3547         type->base.alignment = alignment;
3548 }
3549
3550 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3551 {
3552         type_t            *type              = NULL;
3553         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3554         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3555         unsigned           type_specifiers   = 0;
3556         bool               newtype           = false;
3557         bool               saw_error         = false;
3558         bool               old_gcc_extension = in_gcc_extension;
3559
3560         specifiers->source_position = token.source_position;
3561
3562         while (true) {
3563                 specifiers->modifiers
3564                         |= parse_attributes(&specifiers->gnu_attributes);
3565                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3566                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3567
3568                 switch (token.type) {
3569
3570                 /* storage class */
3571 #define MATCH_STORAGE_CLASS(token, class)                                  \
3572                 case token:                                                        \
3573                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
3574                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3575                         }                                                              \
3576                         specifiers->storage_class = class;                             \
3577                         next_token();                                                  \
3578                         break;
3579
3580                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3581                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3582                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3583                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3584                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3585
3586                 case T__declspec:
3587                         next_token();
3588                         expect('(');
3589                         add_anchor_token(')');
3590                         parse_microsoft_extended_decl_modifier(specifiers);
3591                         rem_anchor_token(')');
3592                         expect(')');
3593                         break;
3594
3595                 case T___thread:
3596                         switch (specifiers->storage_class) {
3597                         case STORAGE_CLASS_NONE:
3598                                 specifiers->storage_class = STORAGE_CLASS_THREAD;
3599                                 break;
3600
3601                         case STORAGE_CLASS_EXTERN:
3602                                 specifiers->storage_class = STORAGE_CLASS_THREAD_EXTERN;
3603                                 break;
3604
3605                         case STORAGE_CLASS_STATIC:
3606                                 specifiers->storage_class = STORAGE_CLASS_THREAD_STATIC;
3607                                 break;
3608
3609                         default:
3610                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3611                                 break;
3612                         }
3613                         next_token();
3614                         break;
3615
3616                 /* type qualifiers */
3617 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3618                 case token:                                                     \
3619                         qualifiers |= qualifier;                                    \
3620                         next_token();                                               \
3621                         break
3622
3623                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3624                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3625                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3626                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3627                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3628                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3629                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3630                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3631
3632                 case T___extension__:
3633                         next_token();
3634                         in_gcc_extension = true;
3635                         break;
3636
3637                 /* type specifiers */
3638 #define MATCH_SPECIFIER(token, specifier, name)                         \
3639                 case token:                                                     \
3640                         next_token();                                               \
3641                         if (type_specifiers & specifier) {                           \
3642                                 errorf(HERE, "multiple " name " type specifiers given"); \
3643                         } else {                                                    \
3644                                 type_specifiers |= specifier;                           \
3645                         }                                                           \
3646                         break
3647
3648                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3649                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3650                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3651                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3652                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3653                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3654                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3655                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3656                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3657                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3658                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3659                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3660                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3661                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3662                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3663                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3664
3665                 case T__forceinline:
3666                         /* only in microsoft mode */
3667                         specifiers->modifiers |= DM_FORCEINLINE;
3668                         /* FALLTHROUGH */
3669
3670                 case T_inline:
3671                         next_token();
3672                         specifiers->is_inline = true;
3673                         break;
3674
3675                 case T_long:
3676                         next_token();
3677                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3678                                 errorf(HERE, "multiple type specifiers given");
3679                         } else if (type_specifiers & SPECIFIER_LONG) {
3680                                 type_specifiers |= SPECIFIER_LONG_LONG;
3681                         } else {
3682                                 type_specifiers |= SPECIFIER_LONG;
3683                         }
3684                         break;
3685
3686                 case T_struct: {
3687                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
3688
3689                         type->compound.compound = parse_compound_type_specifier(true);
3690                         finish_struct_type(&type->compound);
3691                         break;
3692                 }
3693                 case T_union: {
3694                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
3695                         type->compound.compound = parse_compound_type_specifier(false);
3696                         if (type->compound.compound->modifiers & DM_TRANSPARENT_UNION)
3697                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3698                         finish_union_type(&type->compound);
3699                         break;
3700                 }
3701                 case T_enum:
3702                         type = parse_enum_specifier();
3703                         break;
3704                 case T___typeof__:
3705                         type = parse_typeof();
3706                         break;
3707                 case T___builtin_va_list:
3708                         type = duplicate_type(type_valist);
3709                         next_token();
3710                         break;
3711
3712                 case T_IDENTIFIER: {
3713                         /* only parse identifier if we haven't found a type yet */
3714                         if (type != NULL || type_specifiers != 0) {
3715                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3716                                  * declaration, so it doesn't generate errors about expecting '(' or
3717                                  * '{' later on. */
3718                                 switch (look_ahead(1)->type) {
3719                                         STORAGE_CLASSES
3720                                         TYPE_SPECIFIERS
3721                                         case T_const:
3722                                         case T_restrict:
3723                                         case T_volatile:
3724                                         case T_inline:
3725                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3726                                         case T_IDENTIFIER:
3727                                         case '*':
3728                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3729                                                 next_token();
3730                                                 continue;
3731
3732                                         default:
3733                                                 goto finish_specifiers;
3734                                 }
3735                         }
3736
3737                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3738                         if (typedef_type == NULL) {
3739                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3740                                  * declaration, so it doesn't generate 'implicit int' followed by more
3741                                  * errors later on. */
3742                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3743                                 switch (la1_type) {
3744                                         DECLARATION_START
3745                                         case T_IDENTIFIER:
3746                                         case '*': {
3747                                                 errorf(HERE, "%K does not name a type", &token);
3748
3749                                                 entity_t *entity =
3750                                                         create_error_entity(token.v.symbol, ENTITY_TYPEDEF);
3751
3752                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3753                                                 type->typedeft.typedefe = &entity->typedefe;
3754
3755                                                 next_token();
3756                                                 saw_error = true;
3757                                                 if (la1_type == '*')
3758                                                         goto finish_specifiers;
3759                                                 continue;
3760                                         }
3761
3762                                         default:
3763                                                 goto finish_specifiers;
3764                                 }
3765                         }
3766
3767                         next_token();
3768                         type = typedef_type;
3769                         break;
3770                 }
3771
3772                 /* function specifier */
3773                 default:
3774                         goto finish_specifiers;
3775                 }
3776         }
3777
3778 finish_specifiers:
3779         in_gcc_extension = old_gcc_extension;
3780
3781         if (type == NULL || (saw_error && type_specifiers != 0)) {
3782                 atomic_type_kind_t atomic_type;
3783
3784                 /* match valid basic types */
3785                 switch (type_specifiers) {
3786                 case SPECIFIER_VOID:
3787                         atomic_type = ATOMIC_TYPE_VOID;
3788                         break;
3789                 case SPECIFIER_CHAR:
3790                         atomic_type = ATOMIC_TYPE_CHAR;
3791                         break;
3792                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3793                         atomic_type = ATOMIC_TYPE_SCHAR;
3794                         break;
3795                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3796                         atomic_type = ATOMIC_TYPE_UCHAR;
3797                         break;
3798                 case SPECIFIER_SHORT:
3799                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3800                 case SPECIFIER_SHORT | SPECIFIER_INT:
3801                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3802                         atomic_type = ATOMIC_TYPE_SHORT;
3803                         break;
3804                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3805                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3806                         atomic_type = ATOMIC_TYPE_USHORT;
3807                         break;
3808                 case SPECIFIER_INT:
3809                 case SPECIFIER_SIGNED:
3810                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3811                         atomic_type = ATOMIC_TYPE_INT;
3812                         break;
3813                 case SPECIFIER_UNSIGNED:
3814                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3815                         atomic_type = ATOMIC_TYPE_UINT;
3816                         break;
3817                 case SPECIFIER_LONG:
3818                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3819                 case SPECIFIER_LONG | SPECIFIER_INT:
3820                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3821                         atomic_type = ATOMIC_TYPE_LONG;
3822                         break;
3823                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3824                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3825                         atomic_type = ATOMIC_TYPE_ULONG;
3826                         break;
3827
3828                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3829                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3830                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3831                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3832                         | SPECIFIER_INT:
3833                         atomic_type = ATOMIC_TYPE_LONGLONG;
3834                         goto warn_about_long_long;
3835
3836                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3837                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3838                         | SPECIFIER_INT:
3839                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3840 warn_about_long_long:
3841                         if (warning.long_long) {
3842                                 warningf(&specifiers->source_position,
3843                                          "ISO C90 does not support 'long long'");
3844                         }
3845                         break;
3846
3847                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3848                         atomic_type = unsigned_int8_type_kind;
3849                         break;
3850
3851                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3852                         atomic_type = unsigned_int16_type_kind;
3853                         break;
3854
3855                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3856                         atomic_type = unsigned_int32_type_kind;
3857                         break;
3858
3859                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3860                         atomic_type = unsigned_int64_type_kind;
3861                         break;
3862
3863                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3864                         atomic_type = unsigned_int128_type_kind;
3865                         break;
3866
3867                 case SPECIFIER_INT8:
3868                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3869                         atomic_type = int8_type_kind;
3870                         break;
3871
3872                 case SPECIFIER_INT16:
3873                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3874                         atomic_type = int16_type_kind;
3875                         break;
3876
3877                 case SPECIFIER_INT32:
3878                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3879                         atomic_type = int32_type_kind;
3880                         break;
3881
3882                 case SPECIFIER_INT64:
3883                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3884                         atomic_type = int64_type_kind;
3885                         break;
3886
3887                 case SPECIFIER_INT128:
3888                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3889                         atomic_type = int128_type_kind;
3890                         break;
3891
3892                 case SPECIFIER_FLOAT:
3893                         atomic_type = ATOMIC_TYPE_FLOAT;
3894                         break;
3895                 case SPECIFIER_DOUBLE:
3896                         atomic_type = ATOMIC_TYPE_DOUBLE;
3897                         break;
3898                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3899                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3900                         break;
3901                 case SPECIFIER_BOOL:
3902                         atomic_type = ATOMIC_TYPE_BOOL;
3903                         break;
3904                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3905                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3906                         atomic_type = ATOMIC_TYPE_FLOAT;
3907                         break;
3908                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3909                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3910                         atomic_type = ATOMIC_TYPE_DOUBLE;
3911                         break;
3912                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3913                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3914                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3915                         break;
3916                 default:
3917                         /* invalid specifier combination, give an error message */
3918                         if (type_specifiers == 0) {
3919                                 if (saw_error)
3920                                         goto end_error;
3921
3922                                 /* ISO/IEC 14882:1998(E) Â§C.1.5:4 */
3923                                 if (!(c_mode & _CXX) && !strict_mode) {
3924                                         if (warning.implicit_int) {
3925                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3926                                         }
3927                                         atomic_type = ATOMIC_TYPE_INT;
3928                                         break;
3929                                 } else {
3930                                         errorf(HERE, "no type specifiers given in declaration");
3931                                 }
3932                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3933                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3934                                 errorf(HERE, "signed and unsigned specifiers given");
3935                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3936                                 errorf(HERE, "only integer types can be signed or unsigned");
3937                         } else {
3938                                 errorf(HERE, "multiple datatypes in declaration");
3939                         }
3940                         goto end_error;
3941                 }
3942
3943                 if (type_specifiers & SPECIFIER_COMPLEX) {
3944                         type                = allocate_type_zero(TYPE_COMPLEX);
3945                         type->complex.akind = atomic_type;
3946                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3947                         type                  = allocate_type_zero(TYPE_IMAGINARY);
3948                         type->imaginary.akind = atomic_type;
3949                 } else {
3950                         type               = allocate_type_zero(TYPE_ATOMIC);
3951                         type->atomic.akind = atomic_type;
3952                 }
3953                 newtype = true;
3954         } else if (type_specifiers != 0) {
3955                 errorf(HERE, "multiple datatypes in declaration");
3956         }
3957
3958         /* FIXME: check type qualifiers here */
3959
3960         type->base.qualifiers = qualifiers;
3961         type->base.modifiers  = modifiers;
3962
3963         type_t *result = typehash_insert(type);
3964         if (newtype && result != type) {
3965                 free_type(type);
3966         }
3967
3968         specifiers->type = result;
3969         return;
3970
3971 end_error:
3972         specifiers->type = type_error_type;
3973         return;
3974 }
3975
3976 static type_qualifiers_t parse_type_qualifiers(void)
3977 {
3978         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3979
3980         while (true) {
3981                 switch (token.type) {
3982                 /* type qualifiers */
3983                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3984                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3985                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3986                 /* microsoft extended type modifiers */
3987                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3988                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3989                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3990                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3991                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3992
3993                 default:
3994                         return qualifiers;
3995                 }
3996         }
3997 }
3998
3999 /**
4000  * Parses an K&R identifier list
4001  */
4002 static void parse_identifier_list(scope_t *scope)
4003 {
4004         do {
4005                 entity_t *entity = allocate_entity_zero(ENTITY_VARIABLE);
4006                 entity->base.source_position = token.source_position;
4007                 entity->base.namespc         = NAMESPACE_NORMAL;
4008                 entity->base.symbol          = token.v.symbol;
4009                 /* a K&R parameter has no type, yet */
4010                 next_token();
4011
4012                 append_entity(scope, entity);
4013
4014                 if (token.type != ',') {
4015                         break;
4016                 }
4017                 next_token();
4018         } while (token.type == T_IDENTIFIER);
4019 }
4020
4021 static type_t *automatic_type_conversion(type_t *orig_type);
4022
4023 static void semantic_parameter(declaration_t *declaration)
4024 {
4025         /* TODO: improve error messages */
4026         source_position_t const* const pos = &declaration->base.source_position;
4027
4028         /* Â§6.9.1:6 */
4029         switch (declaration->declared_storage_class) {
4030                 /* Allowed storage classes */
4031                 case STORAGE_CLASS_NONE:
4032                 case STORAGE_CLASS_REGISTER:
4033                         break;
4034
4035                 default:
4036                         errorf(pos, "parameter may only have none or register storage class");
4037                         break;
4038         }
4039
4040         type_t *const orig_type = declaration->type;
4041         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
4042          * sugar.  Turn it into a pointer.
4043          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
4044          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
4045          */
4046         type_t *const type = automatic_type_conversion(orig_type);
4047         declaration->type = type;
4048
4049         if (is_type_incomplete(skip_typeref(type))) {
4050                 errorf(pos, "parameter '%#T' is of incomplete type",
4051                        orig_type, declaration->base.symbol);
4052         }
4053 }
4054
4055 static entity_t *parse_parameter(void)
4056 {
4057         declaration_specifiers_t specifiers;
4058         memset(&specifiers, 0, sizeof(specifiers));
4059
4060         parse_declaration_specifiers(&specifiers);
4061
4062         entity_t *entity = parse_declarator(&specifiers, true, false);
4063         return entity;
4064 }
4065
4066 /**
4067  * Parses function type parameters (and optionally creates variable_t entities
4068  * for them in a scope)
4069  */
4070 static void parse_parameters(function_type_t *type, scope_t *scope)
4071 {
4072         eat('(');
4073         add_anchor_token(')');
4074         int saved_comma_state = save_and_reset_anchor_state(',');
4075
4076         if (token.type == T_IDENTIFIER &&
4077             !is_typedef_symbol(token.v.symbol)) {
4078                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
4079                 if (la1_type == ',' || la1_type == ')') {
4080                         type->kr_style_parameters = true;
4081                         parse_identifier_list(scope);
4082                         goto parameters_finished;
4083                 }
4084         }
4085
4086         if (token.type == ')') {
4087                 /* ISO/IEC 14882:1998(E) Â§C.1.6:1 */
4088                 if (!(c_mode & _CXX))
4089                         type->unspecified_parameters = true;
4090                 goto parameters_finished;
4091         }
4092
4093         function_parameter_t *parameter;
4094         function_parameter_t *last_parameter = NULL;
4095
4096         while (true) {
4097                 switch (token.type) {
4098                 case T_DOTDOTDOT:
4099                         next_token();
4100                         type->variadic = true;
4101                         goto parameters_finished;
4102
4103                 case T_IDENTIFIER:
4104                 case T___extension__:
4105                 DECLARATION_START
4106                 {
4107                         entity_t *entity = parse_parameter();
4108                         if (entity->kind == ENTITY_TYPEDEF) {
4109                                 errorf(&entity->base.source_position,
4110                                        "typedef not allowed as function parameter");
4111                                 break;
4112                         }
4113                         assert(is_declaration(entity));
4114
4115                         /* func(void) is not a parameter */
4116                         if (last_parameter == NULL
4117                                         && token.type == ')'
4118                                         && entity->base.symbol == NULL
4119                                         && skip_typeref(entity->declaration.type) == type_void) {
4120                                 goto parameters_finished;
4121                         }
4122                         semantic_parameter(&entity->declaration);
4123
4124                         parameter = obstack_alloc(type_obst, sizeof(parameter[0]));
4125                         memset(parameter, 0, sizeof(parameter[0]));
4126                         parameter->type = entity->declaration.type;
4127
4128                         if (scope != NULL) {
4129                                 append_entity(scope, entity);
4130                         }
4131
4132                         if (last_parameter != NULL) {
4133                                 last_parameter->next = parameter;
4134                         } else {
4135                                 type->parameters = parameter;
4136                         }
4137                         last_parameter   = parameter;
4138                         break;
4139                 }
4140
4141                 default:
4142                         goto parameters_finished;
4143                 }
4144                 if (token.type != ',') {
4145                         goto parameters_finished;
4146                 }
4147                 next_token();
4148         }
4149
4150
4151 parameters_finished:
4152         rem_anchor_token(')');
4153         expect(')');
4154
4155 end_error:
4156         restore_anchor_state(',', saved_comma_state);
4157 }
4158
4159 typedef enum construct_type_kind_t {
4160         CONSTRUCT_INVALID,
4161         CONSTRUCT_POINTER,
4162         CONSTRUCT_FUNCTION,
4163         CONSTRUCT_ARRAY
4164 } construct_type_kind_t;
4165
4166 typedef struct construct_type_t construct_type_t;
4167 struct construct_type_t {
4168         construct_type_kind_t  kind;
4169         construct_type_t      *next;
4170 };
4171
4172 typedef struct parsed_pointer_t parsed_pointer_t;
4173 struct parsed_pointer_t {
4174         construct_type_t  construct_type;
4175         type_qualifiers_t type_qualifiers;
4176 };
4177
4178 typedef struct construct_function_type_t construct_function_type_t;
4179 struct construct_function_type_t {
4180         construct_type_t  construct_type;
4181         type_t           *function_type;
4182 };
4183
4184 typedef struct parsed_array_t parsed_array_t;
4185 struct parsed_array_t {
4186         construct_type_t  construct_type;
4187         type_qualifiers_t type_qualifiers;
4188         bool              is_static;
4189         bool              is_variable;
4190         expression_t     *size;
4191 };
4192
4193 typedef struct construct_base_type_t construct_base_type_t;
4194 struct construct_base_type_t {
4195         construct_type_t  construct_type;
4196         type_t           *type;
4197 };
4198
4199 static construct_type_t *parse_pointer_declarator(void)
4200 {
4201         eat('*');
4202
4203         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
4204         memset(pointer, 0, sizeof(pointer[0]));
4205         pointer->construct_type.kind = CONSTRUCT_POINTER;
4206         pointer->type_qualifiers     = parse_type_qualifiers();
4207
4208         return (construct_type_t*) pointer;
4209 }
4210
4211 static construct_type_t *parse_array_declarator(void)
4212 {
4213         eat('[');
4214         add_anchor_token(']');
4215
4216         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
4217         memset(array, 0, sizeof(array[0]));
4218         array->construct_type.kind = CONSTRUCT_ARRAY;
4219
4220         if (token.type == T_static) {
4221                 array->is_static = true;
4222                 next_token();
4223         }
4224
4225         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
4226         if (type_qualifiers != 0) {
4227                 if (token.type == T_static) {
4228                         array->is_static = true;
4229                         next_token();
4230                 }
4231         }
4232         array->type_qualifiers = type_qualifiers;
4233
4234         if (token.type == '*' && look_ahead(1)->type == ']') {
4235                 array->is_variable = true;
4236                 next_token();
4237         } else if (token.type != ']') {
4238                 array->size = parse_assignment_expression();
4239         }
4240
4241         rem_anchor_token(']');
4242         expect(']');
4243
4244 end_error:
4245         return (construct_type_t*) array;
4246 }
4247
4248 static construct_type_t *parse_function_declarator(scope_t *scope)
4249 {
4250         type_t *type = allocate_type_zero(TYPE_FUNCTION);
4251
4252         /* TODO: revive this... once we know exactly how to do it */
4253 #if 0
4254         decl_modifiers_t  modifiers = entity->declaration.modifiers;
4255
4256         unsigned mask = modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
4257
4258         if (mask & (mask-1)) {
4259                 const char *first = NULL, *second = NULL;
4260
4261                 /* more than one calling convention set */
4262                 if (modifiers & DM_CDECL) {
4263                         if (first == NULL)       first = "cdecl";
4264                         else if (second == NULL) second = "cdecl";
4265                 }
4266                 if (modifiers & DM_STDCALL) {
4267                         if (first == NULL)       first = "stdcall";
4268                         else if (second == NULL) second = "stdcall";
4269                 }
4270                 if (modifiers & DM_FASTCALL) {
4271                         if (first == NULL)       first = "fastcall";
4272                         else if (second == NULL) second = "fastcall";
4273                 }
4274                 if (modifiers & DM_THISCALL) {
4275                         if (first == NULL)       first = "thiscall";
4276                         else if (second == NULL) second = "thiscall";
4277                 }
4278                 errorf(&entity->base.source_position,
4279                            "%s and %s attributes are not compatible", first, second);
4280         }
4281
4282         if (modifiers & DM_CDECL)
4283                 type->function.calling_convention = CC_CDECL;
4284         else if (modifiers & DM_STDCALL)
4285                 type->function.calling_convention = CC_STDCALL;
4286         else if (modifiers & DM_FASTCALL)
4287                 type->function.calling_convention = CC_FASTCALL;
4288         else if (modifiers & DM_THISCALL)
4289                 type->function.calling_convention = CC_THISCALL;
4290 #endif
4291
4292         parse_parameters(&type->function, scope);
4293
4294         construct_function_type_t *construct_function_type =
4295                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
4296         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
4297         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
4298         construct_function_type->function_type       = type;
4299
4300         return &construct_function_type->construct_type;
4301 }
4302
4303 typedef struct parse_declarator_env_t {
4304         decl_modifiers_t   modifiers;
4305         symbol_t          *symbol;
4306         source_position_t  source_position;
4307         scope_t            parameters;
4308 } parse_declarator_env_t;
4309
4310 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env,
4311                 bool may_be_abstract)
4312 {
4313         /* construct a single linked list of construct_type_t's which describe
4314          * how to construct the final declarator type */
4315         construct_type_t *first      = NULL;
4316         construct_type_t *last       = NULL;
4317         gnu_attribute_t  *attributes = NULL;
4318
4319         decl_modifiers_t modifiers = parse_attributes(&attributes);
4320
4321         /* pointers */
4322         while (token.type == '*') {
4323                 construct_type_t *type = parse_pointer_declarator();
4324
4325                 if (last == NULL) {
4326                         first = type;
4327                         last  = type;
4328                 } else {
4329                         last->next = type;
4330                         last       = type;
4331                 }
4332
4333                 /* TODO: find out if this is correct */
4334                 modifiers |= parse_attributes(&attributes);
4335         }
4336
4337         if (env != NULL)
4338                 env->modifiers |= modifiers;
4339
4340         construct_type_t *inner_types = NULL;
4341
4342         switch (token.type) {
4343         case T_IDENTIFIER:
4344                 if (env == NULL) {
4345                         errorf(HERE, "no identifier expected in typename");
4346                 } else {
4347                         env->symbol          = token.v.symbol;
4348                         env->source_position = token.source_position;
4349                 }
4350                 next_token();
4351                 break;
4352         case '(':
4353                 next_token();
4354                 add_anchor_token(')');
4355                 inner_types = parse_inner_declarator(env, may_be_abstract);
4356                 if (inner_types != NULL) {
4357                         /* All later declarators only modify the return type */
4358                         env = NULL;
4359                 }
4360                 rem_anchor_token(')');
4361                 expect(')');
4362                 break;
4363         default:
4364                 if (may_be_abstract)
4365                         break;
4366                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4367                 eat_until_anchor();
4368                 return NULL;
4369         }
4370
4371         construct_type_t *p = last;
4372
4373         while(true) {
4374                 construct_type_t *type;
4375                 switch (token.type) {
4376                 case '(': {
4377                         scope_t *scope = NULL;
4378                         if (env != NULL)
4379                                 scope = &env->parameters;
4380
4381                         type = parse_function_declarator(scope);
4382                         break;
4383                 }
4384                 case '[':
4385                         type = parse_array_declarator();
4386                         break;
4387                 default:
4388                         goto declarator_finished;
4389                 }
4390
4391                 /* insert in the middle of the list (behind p) */
4392                 if (p != NULL) {
4393                         type->next = p->next;
4394                         p->next    = type;
4395                 } else {
4396                         type->next = first;
4397                         first      = type;
4398                 }
4399                 if (last == p) {
4400                         last = type;
4401                 }
4402         }
4403
4404 declarator_finished:
4405         /* append inner_types at the end of the list, we don't to set last anymore
4406          * as it's not needed anymore */
4407         if (last == NULL) {
4408                 assert(first == NULL);
4409                 first = inner_types;
4410         } else {
4411                 last->next = inner_types;
4412         }
4413
4414         return first;
4415 end_error:
4416         return NULL;
4417 }
4418
4419 static void parse_declaration_attributes(entity_t *entity)
4420 {
4421         gnu_attribute_t  *attributes = NULL;
4422         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4423
4424         if (entity == NULL)
4425                 return;
4426
4427         type_t *type;
4428         if (entity->kind == ENTITY_TYPEDEF) {
4429                 modifiers |= entity->typedefe.modifiers;
4430                 type       = entity->typedefe.type;
4431         } else {
4432                 assert(is_declaration(entity));
4433                 modifiers |= entity->declaration.modifiers;
4434                 type       = entity->declaration.type;
4435         }
4436         if (type == NULL)
4437                 return;
4438
4439         /* handle these strange/stupid mode attributes */
4440         gnu_attribute_t *attribute = attributes;
4441         for ( ; attribute != NULL; attribute = attribute->next) {
4442                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4443                         continue;
4444
4445                 atomic_type_kind_t  akind = attribute->u.akind;
4446                 if (!is_type_signed(type)) {
4447                         switch (akind) {
4448                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4449                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4450                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4451                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4452                         default:
4453                                 panic("invalid akind in mode attribute");
4454                         }
4455                 } else {
4456                         switch (akind) {
4457                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_SCHAR; break;
4458                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_SHORT; break;
4459                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_INT; break;
4460                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_LONGLONG; break;
4461                         default:
4462                                 panic("invalid akind in mode attribute");
4463                         }
4464                 }
4465
4466                 type = make_atomic_type(akind, type->base.qualifiers);
4467         }
4468
4469         type_modifiers_t type_modifiers = type->base.modifiers;
4470         if (modifiers & DM_TRANSPARENT_UNION)
4471                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4472
4473         if (type->base.modifiers != type_modifiers) {
4474                 type_t *copy = duplicate_type(type);
4475                 copy->base.modifiers = type_modifiers;
4476
4477                 type = typehash_insert(copy);
4478                 if (type != copy) {
4479                         obstack_free(type_obst, copy);
4480                 }
4481         }
4482
4483         if (entity->kind == ENTITY_TYPEDEF) {
4484                 entity->typedefe.type      = type;
4485                 entity->typedefe.modifiers = modifiers;
4486         } else {
4487                 entity->declaration.type      = type;
4488                 entity->declaration.modifiers = modifiers;
4489         }
4490 }
4491
4492 static type_t *construct_declarator_type(construct_type_t *construct_list,
4493                                          type_t *type)
4494 {
4495         construct_type_t *iter = construct_list;
4496         for( ; iter != NULL; iter = iter->next) {
4497                 switch (iter->kind) {
4498                 case CONSTRUCT_INVALID:
4499                         internal_errorf(HERE, "invalid type construction found");
4500                 case CONSTRUCT_FUNCTION: {
4501                         construct_function_type_t *construct_function_type
4502                                 = (construct_function_type_t*) iter;
4503
4504                         type_t *function_type = construct_function_type->function_type;
4505
4506                         function_type->function.return_type = type;
4507
4508                         type_t *skipped_return_type = skip_typeref(type);
4509                         /* Â§6.7.5.3(1) */
4510                         if (is_type_function(skipped_return_type)) {
4511                                 errorf(HERE, "function returning function is not allowed");
4512                         } else if (is_type_array(skipped_return_type)) {
4513                                 errorf(HERE, "function returning array is not allowed");
4514                         } else {
4515                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
4516                                         warningf(HERE,
4517                                                 "type qualifiers in return type of function type are meaningless");
4518                                 }
4519                         }
4520
4521                         type = function_type;
4522                         break;
4523                 }
4524
4525                 case CONSTRUCT_POINTER: {
4526                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4527                         type = make_pointer_type(type, parsed_pointer->type_qualifiers);
4528                         continue;
4529                 }
4530
4531                 case CONSTRUCT_ARRAY: {
4532                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4533                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY);
4534
4535                         expression_t *size_expression = parsed_array->size;
4536                         if (size_expression != NULL) {
4537                                 size_expression
4538                                         = create_implicit_cast(size_expression, type_size_t);
4539                         }
4540
4541                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4542                         array_type->array.element_type    = type;
4543                         array_type->array.is_static       = parsed_array->is_static;
4544                         array_type->array.is_variable     = parsed_array->is_variable;
4545                         array_type->array.size_expression = size_expression;
4546
4547                         if (size_expression != NULL) {
4548                                 if (is_constant_expression(size_expression)) {
4549                                         array_type->array.size_constant = true;
4550                                         array_type->array.size
4551                                                 = fold_constant(size_expression);
4552                                 } else {
4553                                         array_type->array.is_vla = true;
4554                                 }
4555                         }
4556
4557                         type_t *skipped_type = skip_typeref(type);
4558                         /* Â§6.7.5.2(1) */
4559                         if (is_type_incomplete(skipped_type)) {
4560                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4561                         } else if (is_type_function(skipped_type)) {
4562                                 errorf(HERE, "array of functions is not allowed");
4563                         }
4564                         type = array_type;
4565                         break;
4566                 }
4567                 }
4568
4569                 type_t *hashed_type = typehash_insert(type);
4570                 if (hashed_type != type) {
4571                         /* the function type was constructed earlier freeing it here will
4572                          * destroy other types... */
4573                         if (iter->kind != CONSTRUCT_FUNCTION) {
4574                                 free_type(type);
4575                         }
4576                         type = hashed_type;
4577                 }
4578         }
4579
4580         return type;
4581 }
4582
4583 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
4584                                   bool may_be_abstract,
4585                                   bool create_compound_member)
4586 {
4587         parse_declarator_env_t env;
4588         memset(&env, 0, sizeof(env));
4589
4590         construct_type_t *construct_type
4591                 = parse_inner_declarator(&env, may_be_abstract);
4592         type_t *type = construct_declarator_type(construct_type, specifiers->type);
4593
4594         if (construct_type != NULL) {
4595                 obstack_free(&temp_obst, construct_type);
4596         }
4597
4598         entity_t *entity;
4599         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
4600                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
4601                 entity->base.symbol          = env.symbol;
4602                 entity->base.source_position = env.source_position;
4603                 entity->typedefe.type        = type;
4604         } else {
4605                 if (create_compound_member) {
4606                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
4607                 } else if (is_type_function(skip_typeref(type))) {
4608                         entity = allocate_entity_zero(ENTITY_FUNCTION);
4609
4610                         entity->function.is_inline  = specifiers->is_inline;
4611                         entity->function.parameters = env.parameters;
4612                 } else {
4613                         entity = allocate_entity_zero(ENTITY_VARIABLE);
4614
4615                         entity->variable.get_property_sym = specifiers->get_property_sym;
4616                         entity->variable.put_property_sym = specifiers->put_property_sym;
4617                         if (specifiers->alignment != 0) {
4618                                 /* TODO: add checks here */
4619                                 entity->variable.alignment = specifiers->alignment;
4620                         }
4621
4622                         if (warning.other && specifiers->is_inline && is_type_valid(type)) {
4623                                 warningf(&env.source_position,
4624                                                  "variable '%Y' declared 'inline'\n", env.symbol);
4625                         }
4626                 }
4627
4628                 entity->base.source_position  = env.source_position;
4629                 entity->base.symbol           = env.symbol;
4630                 entity->base.namespc          = NAMESPACE_NORMAL;
4631                 entity->declaration.type      = type;
4632                 entity->declaration.modifiers = env.modifiers | specifiers->modifiers;
4633                 entity->declaration.deprecated_string = specifiers->deprecated_string;
4634
4635                 storage_class_t storage_class = specifiers->storage_class;
4636                 entity->declaration.declared_storage_class = storage_class;
4637
4638                 if (storage_class == STORAGE_CLASS_NONE && scope != file_scope) {
4639                         storage_class = STORAGE_CLASS_AUTO;
4640                 }
4641                 entity->declaration.storage_class = storage_class;
4642         }
4643
4644         parse_declaration_attributes(entity);
4645
4646         return entity;
4647 }
4648
4649 static type_t *parse_abstract_declarator(type_t *base_type)
4650 {
4651         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4652
4653         type_t *result = construct_declarator_type(construct_type, base_type);
4654         if (construct_type != NULL) {
4655                 obstack_free(&temp_obst, construct_type);
4656         }
4657
4658         return result;
4659 }
4660
4661 /**
4662  * Check if the declaration of main is suspicious.  main should be a
4663  * function with external linkage, returning int, taking either zero
4664  * arguments, two, or three arguments of appropriate types, ie.
4665  *
4666  * int main([ int argc, char **argv [, char **env ] ]).
4667  *
4668  * @param decl    the declaration to check
4669  * @param type    the function type of the declaration
4670  */
4671 static void check_type_of_main(const entity_t *entity)
4672 {
4673         const source_position_t *pos = &entity->base.source_position;
4674         if (entity->kind != ENTITY_FUNCTION) {
4675                 warningf(pos, "'main' is not a function");
4676                 return;
4677         }
4678
4679         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4680                 warningf(pos, "'main' is normally a non-static function");
4681         }
4682
4683         type_t *type = skip_typeref(entity->declaration.type);
4684         assert(is_type_function(type));
4685
4686         function_type_t *func_type = &type->function;
4687         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4688                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4689                          func_type->return_type);
4690         }
4691         const function_parameter_t *parm = func_type->parameters;
4692         if (parm != NULL) {
4693                 type_t *const first_type = parm->type;
4694                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4695                         warningf(pos,
4696                                  "first argument of 'main' should be 'int', but is '%T'",
4697                                  first_type);
4698                 }
4699                 parm = parm->next;
4700                 if (parm != NULL) {
4701                         type_t *const second_type = parm->type;
4702                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4703                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4704                         }
4705                         parm = parm->next;
4706                         if (parm != NULL) {
4707                                 type_t *const third_type = parm->type;
4708                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4709                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4710                                 }
4711                                 parm = parm->next;
4712                                 if (parm != NULL)
4713                                         goto warn_arg_count;
4714                         }
4715                 } else {
4716 warn_arg_count:
4717                         warningf(pos, "'main' takes only zero, two or three arguments");
4718                 }
4719         }
4720 }
4721
4722 /**
4723  * Check if a symbol is the equal to "main".
4724  */
4725 static bool is_sym_main(const symbol_t *const sym)
4726 {
4727         return strcmp(sym->string, "main") == 0;
4728 }
4729
4730 /**
4731  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4732  * for various problems that occur for multiple definitions
4733  */
4734 static entity_t *record_entity(entity_t *entity, const bool is_definition)
4735 {
4736         const symbol_t *const    symbol  = entity->base.symbol;
4737         const namespace_t        namespc = entity->base.namespc;
4738         const source_position_t *pos     = &entity->base.source_position;
4739
4740         assert(symbol != NULL);
4741         entity_t *previous_entity = get_entity(symbol, namespc);
4742         /* pushing the same entity twice will break the stack structure */
4743         assert(previous_entity != entity);
4744
4745         if (entity->kind == ENTITY_FUNCTION) {
4746                 type_t *const orig_type = entity->declaration.type;
4747                 type_t *const type      = skip_typeref(orig_type);
4748
4749                 assert(is_type_function(type));
4750                 if (type->function.unspecified_parameters &&
4751                                 warning.strict_prototypes &&
4752                                 previous_entity == NULL) {
4753                         warningf(pos, "function declaration '%#T' is not a prototype",
4754                                          orig_type, symbol);
4755                 }
4756
4757                 if (warning.main && scope == file_scope && is_sym_main(symbol)) {
4758                         check_type_of_main(entity);
4759                 }
4760         }
4761
4762         if (is_declaration(entity)) {
4763                 if (warning.nested_externs
4764                                 && entity->declaration.storage_class == STORAGE_CLASS_EXTERN
4765                                 && scope != file_scope) {
4766                         warningf(pos, "nested extern declaration of '%#T'",
4767                                  entity->declaration.type, symbol);
4768                 }
4769         }
4770
4771         if (previous_entity != NULL
4772             && previous_entity->base.parent_scope == &current_function->parameters
4773                 && scope->depth == previous_entity->base.parent_scope->depth + 1) {
4774
4775                 assert(previous_entity->kind == ENTITY_VARIABLE);
4776                 errorf(pos,
4777                        "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4778                        entity->declaration.type, symbol,
4779                            previous_entity->declaration.type, symbol,
4780                            &previous_entity->base.source_position);
4781                 goto finish;
4782         }
4783
4784         if (previous_entity != NULL
4785                         && previous_entity->base.parent_scope == scope) {
4786
4787                 if (previous_entity->kind != entity->kind) {
4788                         errorf(pos,
4789                                "redeclaration of '%Y' as different kind of symbol (declared %P)",
4790                                symbol, &previous_entity->base.source_position);
4791                         goto finish;
4792                 }
4793                 if (previous_entity->kind == ENTITY_ENUM_VALUE) {
4794                         errorf(pos,
4795                                    "redeclaration of enum entry '%Y' (declared %P)",
4796                                    symbol, &previous_entity->base.source_position);
4797                         goto finish;
4798                 }
4799                 if (previous_entity->kind == ENTITY_TYPEDEF) {
4800                         /* TODO: C++ allows this for exactly the same type */
4801                         errorf(pos,
4802                                "redefinition of typedef '%Y' (declared %P)",
4803                                symbol, &previous_entity->base.source_position);
4804                         goto finish;
4805                 }
4806
4807                 /* at this point we should have only VARIABLES or FUNCTIONS */
4808                 assert(is_declaration(previous_entity) && is_declaration(entity));
4809
4810                 /* can happen for K&R style declarations */
4811                 if (previous_entity->kind == ENTITY_VARIABLE
4812                                 && previous_entity->declaration.type == NULL
4813                                 && entity->kind == ENTITY_VARIABLE) {
4814                         previous_entity->declaration.type = entity->declaration.type;
4815                         previous_entity->declaration.storage_class
4816                                 = entity->declaration.storage_class;
4817                         previous_entity->declaration.declared_storage_class
4818                                 = entity->declaration.declared_storage_class;
4819                         previous_entity->declaration.modifiers
4820                                 = entity->declaration.modifiers;
4821                         previous_entity->declaration.deprecated_string
4822                                 = entity->declaration.deprecated_string;
4823                 }
4824                 assert(entity->declaration.type != NULL);
4825
4826                 declaration_t *const previous_declaration
4827                         = &previous_entity->declaration;
4828                 declaration_t *const declaration = &entity->declaration;
4829                 type_t *const orig_type = entity->declaration.type;
4830                 type_t *const type      = skip_typeref(orig_type);
4831
4832                 type_t *prev_type       = skip_typeref(previous_declaration->type);
4833
4834                 if (!types_compatible(type, prev_type)) {
4835                         errorf(pos,
4836                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4837                                    orig_type, symbol, previous_declaration->type, symbol,
4838                                    &previous_entity->base.source_position);
4839                 } else {
4840                         unsigned old_storage_class = previous_declaration->storage_class;
4841                         if (warning.redundant_decls     && is_definition
4842                                 && previous_declaration->storage_class == STORAGE_CLASS_STATIC
4843                                 && !(previous_declaration->modifiers & DM_USED)
4844                                 && !previous_declaration->used) {
4845                                 warningf(&previous_entity->base.source_position,
4846                                          "unnecessary static forward declaration for '%#T'",
4847                                          previous_declaration->type, symbol);
4848                         }
4849
4850                         unsigned new_storage_class = declaration->storage_class;
4851                         if (is_type_incomplete(prev_type)) {
4852                                 previous_declaration->type = type;
4853                                 prev_type                  = type;
4854                         }
4855
4856                         /* pretend no storage class means extern for function
4857                          * declarations (except if the previous declaration is neither
4858                          * none nor extern) */
4859                         if (entity->kind == ENTITY_FUNCTION) {
4860                                 if (prev_type->function.unspecified_parameters) {
4861                                         previous_declaration->type = type;
4862                                         prev_type                  = type;
4863                                 }
4864
4865                                 switch (old_storage_class) {
4866                                 case STORAGE_CLASS_NONE:
4867                                         old_storage_class = STORAGE_CLASS_EXTERN;
4868                                         /* FALLTHROUGH */
4869
4870                                 case STORAGE_CLASS_EXTERN:
4871                                         if (is_definition) {
4872                                                 if (warning.missing_prototypes &&
4873                                                     prev_type->function.unspecified_parameters &&
4874                                                     !is_sym_main(symbol)) {
4875                                                         warningf(pos, "no previous prototype for '%#T'",
4876                                                                          orig_type, symbol);
4877                                                 }
4878                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4879                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4880                                         }
4881                                         break;
4882
4883                                 default:
4884                                         break;
4885                                 }
4886                         }
4887
4888                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4889                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4890 warn_redundant_declaration:
4891                                 if (!is_definition           &&
4892                                     warning.redundant_decls  &&
4893                                     is_type_valid(prev_type) &&
4894                                     strcmp(previous_entity->base.source_position.input_name, "<builtin>") != 0) {
4895                                         warningf(pos,
4896                                                  "redundant declaration for '%Y' (declared %P)",
4897                                                  symbol, &previous_entity->base.source_position);
4898                                 }
4899                         } else if (current_function == NULL) {
4900                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4901                                     new_storage_class == STORAGE_CLASS_STATIC) {
4902                                         errorf(pos,
4903                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4904                                                symbol, &previous_entity->base.source_position);
4905                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4906                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4907                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4908                                 } else {
4909                                         /* ISO/IEC 14882:1998(E) Â§C.1.2:1 */
4910                                         if (c_mode & _CXX)
4911                                                 goto error_redeclaration;
4912                                         goto warn_redundant_declaration;
4913                                 }
4914                         } else if (is_type_valid(prev_type)) {
4915                                 if (old_storage_class == new_storage_class) {
4916 error_redeclaration:
4917                                         errorf(pos, "redeclaration of '%Y' (declared %P)",
4918                                                symbol, &previous_entity->base.source_position);
4919                                 } else {
4920                                         errorf(pos,
4921                                                "redeclaration of '%Y' with different linkage (declared %P)",
4922                                                symbol, &previous_entity->base.source_position);
4923                                 }
4924                         }
4925                 }
4926
4927                 previous_declaration->modifiers |= declaration->modifiers;
4928                 if (entity->kind == ENTITY_FUNCTION) {
4929                         previous_entity->function.is_inline |= entity->function.is_inline;
4930                 }
4931                 return previous_entity;
4932         }
4933
4934         if (entity->kind == ENTITY_FUNCTION) {
4935                 if (is_definition &&
4936                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
4937                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4938                                 warningf(pos, "no previous prototype for '%#T'",
4939                                          entity->declaration.type, symbol);
4940                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4941                                 warningf(pos, "no previous declaration for '%#T'",
4942                                          entity->declaration.type, symbol);
4943                         }
4944                 }
4945         } else if (warning.missing_declarations
4946                         && entity->kind == ENTITY_VARIABLE
4947                         && scope == file_scope) {
4948                 declaration_t *declaration = &entity->declaration;
4949                 if (declaration->storage_class == STORAGE_CLASS_NONE ||
4950                                 declaration->storage_class == STORAGE_CLASS_THREAD) {
4951                         warningf(pos, "no previous declaration for '%#T'",
4952                                  declaration->type, symbol);
4953                 }
4954         }
4955
4956 finish:
4957         assert(entity->base.parent_scope == NULL);
4958         assert(scope != NULL);
4959
4960         entity->base.parent_scope = scope;
4961         entity->base.namespc      = NAMESPACE_NORMAL;
4962         environment_push(entity);
4963         append_entity(scope, entity);
4964
4965         return entity;
4966 }
4967
4968 static void parser_error_multiple_definition(entity_t *entity,
4969                 const source_position_t *source_position)
4970 {
4971         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4972                entity->base.symbol, &entity->base.source_position);
4973 }
4974
4975 static bool is_declaration_specifier(const token_t *token,
4976                                      bool only_specifiers_qualifiers)
4977 {
4978         switch (token->type) {
4979                 TYPE_SPECIFIERS
4980                 TYPE_QUALIFIERS
4981                         return true;
4982                 case T_IDENTIFIER:
4983                         return is_typedef_symbol(token->v.symbol);
4984
4985                 case T___extension__:
4986                 STORAGE_CLASSES
4987                         return !only_specifiers_qualifiers;
4988
4989                 default:
4990                         return false;
4991         }
4992 }
4993
4994 static void parse_init_declarator_rest(entity_t *entity)
4995 {
4996         assert(is_declaration(entity));
4997         declaration_t *const declaration = &entity->declaration;
4998
4999         eat('=');
5000
5001         type_t *orig_type = declaration->type;
5002         type_t *type      = skip_typeref(orig_type);
5003
5004         if (entity->kind == ENTITY_VARIABLE
5005                         && entity->variable.initializer != NULL) {
5006                 parser_error_multiple_definition(entity, HERE);
5007         }
5008
5009         bool must_be_constant = false;
5010         if (declaration->storage_class == STORAGE_CLASS_STATIC        ||
5011             declaration->storage_class == STORAGE_CLASS_THREAD_STATIC ||
5012             entity->base.parent_scope  == file_scope) {
5013                 must_be_constant = true;
5014         }
5015
5016         if (is_type_function(type)) {
5017                 errorf(&entity->base.source_position,
5018                        "function '%#T' is initialized like a variable",
5019                        orig_type, entity->base.symbol);
5020                 orig_type = type_error_type;
5021         }
5022
5023         parse_initializer_env_t env;
5024         env.type             = orig_type;
5025         env.must_be_constant = must_be_constant;
5026         env.entity           = entity;
5027         current_init_decl    = entity;
5028
5029         initializer_t *initializer = parse_initializer(&env);
5030         current_init_decl = NULL;
5031
5032         if (entity->kind == ENTITY_VARIABLE) {
5033                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size
5034                  * determine the array type size */
5035                 declaration->type            = env.type;
5036                 entity->variable.initializer = initializer;
5037         }
5038 }
5039
5040 /* parse rest of a declaration without any declarator */
5041 static void parse_anonymous_declaration_rest(
5042                 const declaration_specifiers_t *specifiers)
5043 {
5044         eat(';');
5045
5046         if (warning.other) {
5047                 if (specifiers->storage_class != STORAGE_CLASS_NONE) {
5048                         warningf(&specifiers->source_position,
5049                                  "useless storage class in empty declaration");
5050                 }
5051
5052                 type_t *type = specifiers->type;
5053                 switch (type->kind) {
5054                         case TYPE_COMPOUND_STRUCT:
5055                         case TYPE_COMPOUND_UNION: {
5056                                 if (type->compound.compound->base.symbol == NULL) {
5057                                         warningf(&specifiers->source_position,
5058                                                  "unnamed struct/union that defines no instances");
5059                                 }
5060                                 break;
5061                         }
5062
5063                         case TYPE_ENUM:
5064                                 break;
5065
5066                         default:
5067                                 warningf(&specifiers->source_position, "empty declaration");
5068                                 break;
5069                 }
5070         }
5071 }
5072
5073 static void parse_declaration_rest(entity_t *ndeclaration,
5074                 const declaration_specifiers_t *specifiers,
5075                 parsed_declaration_func finished_declaration)
5076 {
5077         add_anchor_token(';');
5078         add_anchor_token(',');
5079         while(true) {
5080                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
5081
5082                 if (token.type == '=') {
5083                         parse_init_declarator_rest(entity);
5084                 }
5085
5086                 if (token.type != ',')
5087                         break;
5088                 eat(',');
5089
5090                 add_anchor_token('=');
5091                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false, false);
5092                 rem_anchor_token('=');
5093         }
5094         expect(';');
5095
5096 end_error:
5097         rem_anchor_token(';');
5098         rem_anchor_token(',');
5099 }
5100
5101 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
5102 {
5103         symbol_t *symbol = entity->base.symbol;
5104         if (symbol == NULL) {
5105                 errorf(HERE, "anonymous declaration not valid as function parameter");
5106                 return entity;
5107         }
5108
5109         assert(entity->base.namespc == NAMESPACE_NORMAL);
5110         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
5111         if (previous_entity == NULL
5112                         || previous_entity->base.parent_scope != scope) {
5113                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
5114                        symbol);
5115                 return entity;
5116         }
5117
5118         if (is_definition) {
5119                 errorf(HERE, "parameter %Y is initialised", entity->base.symbol);
5120         }
5121
5122         return record_entity(entity, false);
5123 }
5124
5125 static void parse_declaration(parsed_declaration_func finished_declaration)
5126 {
5127         declaration_specifiers_t specifiers;
5128         memset(&specifiers, 0, sizeof(specifiers));
5129
5130         add_anchor_token(';');
5131         parse_declaration_specifiers(&specifiers);
5132         rem_anchor_token(';');
5133
5134         if (token.type == ';') {
5135                 parse_anonymous_declaration_rest(&specifiers);
5136         } else {
5137                 entity_t *entity = parse_declarator(&specifiers, /*may_be_abstract=*/false, false);
5138                 parse_declaration_rest(entity, &specifiers, finished_declaration);
5139         }
5140 }
5141
5142 static type_t *get_default_promoted_type(type_t *orig_type)
5143 {
5144         type_t *result = orig_type;
5145
5146         type_t *type = skip_typeref(orig_type);
5147         if (is_type_integer(type)) {
5148                 result = promote_integer(type);
5149         } else if (type == type_float) {
5150                 result = type_double;
5151         }
5152
5153         return result;
5154 }
5155
5156 static void parse_kr_declaration_list(entity_t *entity)
5157 {
5158         if (entity->kind != ENTITY_FUNCTION)
5159                 return;
5160
5161         type_t *type = skip_typeref(entity->declaration.type);
5162         assert(is_type_function(type));
5163         if (!type->function.kr_style_parameters)
5164                 return;
5165
5166
5167         add_anchor_token('{');
5168
5169         /* push function parameters */
5170         size_t const top = environment_top();
5171         scope_push(&entity->function.parameters);
5172
5173         entity_t *parameter = entity->function.parameters.entities;
5174         for ( ; parameter != NULL; parameter = parameter->base.next) {
5175                 assert(parameter->base.parent_scope == NULL);
5176                 parameter->base.parent_scope = scope;
5177                 environment_push(parameter);
5178         }
5179
5180         /* parse declaration list */
5181         while (is_declaration_specifier(&token, false)) {
5182                 parse_declaration(finished_kr_declaration);
5183         }
5184
5185         /* pop function parameters */
5186         assert(scope == &entity->function.parameters);
5187         scope_pop();
5188         environment_pop_to(top);
5189
5190         /* update function type */
5191         type_t *new_type = duplicate_type(type);
5192
5193         function_parameter_t *parameters     = NULL;
5194         function_parameter_t *last_parameter = NULL;
5195
5196         entity_t *parameter_declaration = entity->function.parameters.entities;
5197         for( ; parameter_declaration != NULL;
5198                         parameter_declaration = parameter_declaration->base.next) {
5199                 type_t *parameter_type = parameter_declaration->declaration.type;
5200                 if (parameter_type == NULL) {
5201                         if (strict_mode) {
5202                                 errorf(HERE, "no type specified for function parameter '%Y'",
5203                                        parameter_declaration->base.symbol);
5204                         } else {
5205                                 if (warning.implicit_int) {
5206                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
5207                                                  parameter_declaration->base.symbol);
5208                                 }
5209                                 parameter_type                          = type_int;
5210                                 parameter_declaration->declaration.type = parameter_type;
5211                         }
5212                 }
5213
5214                 semantic_parameter(&parameter_declaration->declaration);
5215                 parameter_type = parameter_declaration->declaration.type;
5216
5217                 /*
5218                  * we need the default promoted types for the function type
5219                  */
5220                 parameter_type = get_default_promoted_type(parameter_type);
5221
5222                 function_parameter_t *function_parameter
5223                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
5224                 memset(function_parameter, 0, sizeof(function_parameter[0]));
5225
5226                 function_parameter->type = parameter_type;
5227                 if (last_parameter != NULL) {
5228                         last_parameter->next = function_parameter;
5229                 } else {
5230                         parameters = function_parameter;
5231                 }
5232                 last_parameter = function_parameter;
5233         }
5234
5235         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
5236          * prototype */
5237         new_type->function.parameters             = parameters;
5238         new_type->function.unspecified_parameters = true;
5239
5240         type = typehash_insert(new_type);
5241         if (type != new_type) {
5242                 obstack_free(type_obst, new_type);
5243         }
5244
5245         entity->declaration.type = type;
5246
5247         rem_anchor_token('{');
5248 }
5249
5250 static bool first_err = true;
5251
5252 /**
5253  * When called with first_err set, prints the name of the current function,
5254  * else does noting.
5255  */
5256 static void print_in_function(void)
5257 {
5258         if (first_err) {
5259                 first_err = false;
5260                 diagnosticf("%s: In function '%Y':\n",
5261                             current_function->base.base.source_position.input_name,
5262                             current_function->base.base.symbol);
5263         }
5264 }
5265
5266 /**
5267  * Check if all labels are defined in the current function.
5268  * Check if all labels are used in the current function.
5269  */
5270 static void check_labels(void)
5271 {
5272         for (const goto_statement_t *goto_statement = goto_first;
5273             goto_statement != NULL;
5274             goto_statement = goto_statement->next) {
5275                 /* skip computed gotos */
5276                 if (goto_statement->expression != NULL)
5277                         continue;
5278
5279                 label_t *label = goto_statement->label;
5280
5281                 label->used = true;
5282                 if (label->base.source_position.input_name == NULL) {
5283                         print_in_function();
5284                         errorf(&goto_statement->base.source_position,
5285                                "label '%Y' used but not defined", label->base.symbol);
5286                  }
5287         }
5288         goto_first = NULL;
5289         goto_last  = NULL;
5290
5291         if (warning.unused_label) {
5292                 for (const label_statement_t *label_statement = label_first;
5293                          label_statement != NULL;
5294                          label_statement = label_statement->next) {
5295                         label_t *label = label_statement->label;
5296
5297                         if (! label->used) {
5298                                 print_in_function();
5299                                 warningf(&label_statement->base.source_position,
5300                                          "label '%Y' defined but not used", label->base.symbol);
5301                         }
5302                 }
5303         }
5304         label_first = label_last = NULL;
5305 }
5306
5307 static void warn_unused_decl(entity_t *entity, entity_t *end,
5308                              char const *const what)
5309 {
5310         for (; entity != NULL; entity = entity->base.next) {
5311                 if (!is_declaration(entity))
5312                         continue;
5313
5314                 declaration_t *declaration = &entity->declaration;
5315                 if (declaration->implicit)
5316                         continue;
5317
5318                 if (!declaration->used) {
5319                         print_in_function();
5320                         warningf(&entity->base.source_position, "%s '%Y' is unused",
5321                                  what, entity->base.symbol);
5322                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
5323                         print_in_function();
5324                         warningf(&entity->base.source_position, "%s '%Y' is never read",
5325                                  what, entity->base.symbol);
5326                 }
5327
5328                 if (entity == end)
5329                         break;
5330         }
5331 }
5332
5333 static void check_unused_variables(statement_t *const stmt, void *const env)
5334 {
5335         (void)env;
5336
5337         switch (stmt->kind) {
5338                 case STATEMENT_DECLARATION: {
5339                         declaration_statement_t const *const decls = &stmt->declaration;
5340                         warn_unused_decl(decls->declarations_begin, decls->declarations_end,
5341                                          "variable");
5342                         return;
5343                 }
5344
5345                 case STATEMENT_FOR:
5346                         warn_unused_decl(stmt->fors.scope.entities, NULL, "variable");
5347                         return;
5348
5349                 default:
5350                         return;
5351         }
5352 }
5353
5354 /**
5355  * Check declarations of current_function for unused entities.
5356  */
5357 static void check_declarations(void)
5358 {
5359         if (warning.unused_parameter) {
5360                 const scope_t *scope = &current_function->parameters;
5361
5362                 /* do not issue unused warnings for main */
5363                 if (!is_sym_main(current_function->base.base.symbol)) {
5364                         warn_unused_decl(scope->entities, NULL, "parameter");
5365                 }
5366         }
5367         if (warning.unused_variable) {
5368                 walk_statements(current_function->statement, check_unused_variables,
5369                                 NULL);
5370         }
5371 }
5372
5373 static int determine_truth(expression_t const* const cond)
5374 {
5375         return
5376                 !is_constant_expression(cond) ? 0 :
5377                 fold_constant(cond) != 0      ? 1 :
5378                 -1;
5379 }
5380
5381 static bool expression_returns(expression_t const *const expr)
5382 {
5383         switch (expr->kind) {
5384                 case EXPR_CALL: {
5385                         expression_t const *const func = expr->call.function;
5386                         if (func->kind == EXPR_REFERENCE) {
5387                                 entity_t *entity = func->reference.entity;
5388                                 if (entity->kind == ENTITY_FUNCTION
5389                                                 && entity->declaration.modifiers & DM_NORETURN)
5390                                         return false;
5391                         }
5392
5393                         if (!expression_returns(func))
5394                                 return false;
5395
5396                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
5397                                 if (!expression_returns(arg->expression))
5398                                         return false;
5399                         }
5400
5401                         return true;
5402                 }
5403
5404                 case EXPR_REFERENCE:
5405                 case EXPR_REFERENCE_ENUM_VALUE:
5406                 case EXPR_CONST:
5407                 case EXPR_CHARACTER_CONSTANT:
5408                 case EXPR_WIDE_CHARACTER_CONSTANT:
5409                 case EXPR_STRING_LITERAL:
5410                 case EXPR_WIDE_STRING_LITERAL:
5411                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
5412                 case EXPR_LABEL_ADDRESS:
5413                 case EXPR_CLASSIFY_TYPE:
5414                 case EXPR_SIZEOF: // TODO handle obscure VLA case
5415                 case EXPR_ALIGNOF:
5416                 case EXPR_FUNCNAME:
5417                 case EXPR_BUILTIN_SYMBOL:
5418                 case EXPR_BUILTIN_CONSTANT_P:
5419                 case EXPR_BUILTIN_PREFETCH:
5420                 case EXPR_OFFSETOF:
5421                 case EXPR_INVALID:
5422                 case EXPR_STATEMENT: // TODO implement
5423                         return true;
5424
5425                 case EXPR_CONDITIONAL:
5426                         // TODO handle constant expression
5427                         return
5428                                 expression_returns(expr->conditional.condition) && (
5429                                         expression_returns(expr->conditional.true_expression) ||
5430                                         expression_returns(expr->conditional.false_expression)
5431                                 );
5432
5433                 case EXPR_SELECT:
5434                         return expression_returns(expr->select.compound);
5435
5436                 case EXPR_ARRAY_ACCESS:
5437                         return
5438                                 expression_returns(expr->array_access.array_ref) &&
5439                                 expression_returns(expr->array_access.index);
5440
5441                 case EXPR_VA_START:
5442                         return expression_returns(expr->va_starte.ap);
5443
5444                 case EXPR_VA_ARG:
5445                         return expression_returns(expr->va_arge.ap);
5446
5447                 EXPR_UNARY_CASES_MANDATORY
5448                         return expression_returns(expr->unary.value);
5449
5450                 case EXPR_UNARY_THROW:
5451                         return false;
5452
5453                 EXPR_BINARY_CASES
5454                         // TODO handle constant lhs of && and ||
5455                         return
5456                                 expression_returns(expr->binary.left) &&
5457                                 expression_returns(expr->binary.right);
5458
5459                 case EXPR_UNKNOWN:
5460                         break;
5461         }
5462
5463         panic("unhandled expression");
5464 }
5465
5466 static bool noreturn_candidate;
5467
5468 static void check_reachable(statement_t *const stmt)
5469 {
5470         if (stmt->base.reachable)
5471                 return;
5472         if (stmt->kind != STATEMENT_DO_WHILE)
5473                 stmt->base.reachable = true;
5474
5475         statement_t *last = stmt;
5476         statement_t *next;
5477         switch (stmt->kind) {
5478                 case STATEMENT_INVALID:
5479                 case STATEMENT_EMPTY:
5480                 case STATEMENT_DECLARATION:
5481                 case STATEMENT_LOCAL_LABEL:
5482                 case STATEMENT_ASM:
5483                         next = stmt->base.next;
5484                         break;
5485
5486                 case STATEMENT_COMPOUND:
5487                         next = stmt->compound.statements;
5488                         break;
5489
5490                 case STATEMENT_RETURN:
5491                         noreturn_candidate = false;
5492                         return;
5493
5494                 case STATEMENT_IF: {
5495                         if_statement_t const* const ifs = &stmt->ifs;
5496                         int            const        val = determine_truth(ifs->condition);
5497
5498                         if (val >= 0)
5499                                 check_reachable(ifs->true_statement);
5500
5501                         if (val > 0)
5502                                 return;
5503
5504                         if (ifs->false_statement != NULL) {
5505                                 check_reachable(ifs->false_statement);
5506                                 return;
5507                         }
5508
5509                         next = stmt->base.next;
5510                         break;
5511                 }
5512
5513                 case STATEMENT_SWITCH: {
5514                         switch_statement_t const *const switchs = &stmt->switchs;
5515                         expression_t       const *const expr    = switchs->expression;
5516
5517                         if (is_constant_expression(expr)) {
5518                                 long                    const val      = fold_constant(expr);
5519                                 case_label_statement_t *      defaults = NULL;
5520                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5521                                         if (i->expression == NULL) {
5522                                                 defaults = i;
5523                                                 continue;
5524                                         }
5525
5526                                         if (i->first_case <= val && val <= i->last_case) {
5527                                                 check_reachable((statement_t*)i);
5528                                                 return;
5529                                         }
5530                                 }
5531
5532                                 if (defaults != NULL) {
5533                                         check_reachable((statement_t*)defaults);
5534                                         return;
5535                                 }
5536                         } else {
5537                                 bool has_default = false;
5538                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5539                                         if (i->expression == NULL)
5540                                                 has_default = true;
5541
5542                                         check_reachable((statement_t*)i);
5543                                 }
5544
5545                                 if (has_default)
5546                                         return;
5547                         }
5548
5549                         next = stmt->base.next;
5550                         break;
5551                 }
5552
5553                 case STATEMENT_EXPRESSION: {
5554                         /* Check for noreturn function call */
5555                         expression_t const *const expr = stmt->expression.expression;
5556                         if (!expression_returns(expr))
5557                                 return;
5558
5559                         next = stmt->base.next;
5560                         break;
5561                 }
5562
5563                 case STATEMENT_CONTINUE: {
5564                         statement_t *parent = stmt;
5565                         for (;;) {
5566                                 parent = parent->base.parent;
5567                                 if (parent == NULL) /* continue not within loop */
5568                                         return;
5569
5570                                 next = parent;
5571                                 switch (parent->kind) {
5572                                         case STATEMENT_WHILE:    goto continue_while;
5573                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5574                                         case STATEMENT_FOR:      goto continue_for;
5575
5576                                         default: break;
5577                                 }
5578                         }
5579                 }
5580
5581                 case STATEMENT_BREAK: {
5582                         statement_t *parent = stmt;
5583                         for (;;) {
5584                                 parent = parent->base.parent;
5585                                 if (parent == NULL) /* break not within loop/switch */
5586                                         return;
5587
5588                                 switch (parent->kind) {
5589                                         case STATEMENT_SWITCH:
5590                                         case STATEMENT_WHILE:
5591                                         case STATEMENT_DO_WHILE:
5592                                         case STATEMENT_FOR:
5593                                                 last = parent;
5594                                                 next = parent->base.next;
5595                                                 goto found_break_parent;
5596
5597                                         default: break;
5598                                 }
5599                         }
5600 found_break_parent:
5601                         break;
5602                 }
5603
5604                 case STATEMENT_GOTO:
5605                         if (stmt->gotos.expression) {
5606                                 statement_t *parent = stmt->base.parent;
5607                                 if (parent == NULL) /* top level goto */
5608                                         return;
5609                                 next = parent;
5610                         } else {
5611                                 next = stmt->gotos.label->statement;
5612                                 if (next == NULL) /* missing label */
5613                                         return;
5614                         }
5615                         break;
5616
5617                 case STATEMENT_LABEL:
5618                         next = stmt->label.statement;
5619                         break;
5620
5621                 case STATEMENT_CASE_LABEL:
5622                         next = stmt->case_label.statement;
5623                         break;
5624
5625                 case STATEMENT_WHILE: {
5626                         while_statement_t const *const whiles = &stmt->whiles;
5627                         int                      const val    = determine_truth(whiles->condition);
5628
5629                         if (val >= 0)
5630                                 check_reachable(whiles->body);
5631
5632                         if (val > 0)
5633                                 return;
5634
5635                         next = stmt->base.next;
5636                         break;
5637                 }
5638
5639                 case STATEMENT_DO_WHILE:
5640                         next = stmt->do_while.body;
5641                         break;
5642
5643                 case STATEMENT_FOR: {
5644                         for_statement_t *const fors = &stmt->fors;
5645
5646                         if (fors->condition_reachable)
5647                                 return;
5648                         fors->condition_reachable = true;
5649
5650                         expression_t const *const cond = fors->condition;
5651                         int          const        val  =
5652                                 cond == NULL ? 1 : determine_truth(cond);
5653
5654                         if (val >= 0)
5655                                 check_reachable(fors->body);
5656
5657                         if (val > 0)
5658                                 return;
5659
5660                         next = stmt->base.next;
5661                         break;
5662                 }
5663
5664                 case STATEMENT_MS_TRY: {
5665                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5666                         check_reachable(ms_try->try_statement);
5667                         next = ms_try->final_statement;
5668                         break;
5669                 }
5670
5671                 case STATEMENT_LEAVE: {
5672                         statement_t *parent = stmt;
5673                         for (;;) {
5674                                 parent = parent->base.parent;
5675                                 if (parent == NULL) /* __leave not within __try */
5676                                         return;
5677
5678                                 if (parent->kind == STATEMENT_MS_TRY) {
5679                                         last = parent;
5680                                         next = parent->ms_try.final_statement;
5681                                         break;
5682                                 }
5683                         }
5684                         break;
5685                 }
5686         }
5687
5688         while (next == NULL) {
5689                 next = last->base.parent;
5690                 if (next == NULL) {
5691                         noreturn_candidate = false;
5692
5693                         type_t *const type = current_function->base.type;
5694                         assert(is_type_function(type));
5695                         type_t *const ret  = skip_typeref(type->function.return_type);
5696                         if (warning.return_type                    &&
5697                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5698                             is_type_valid(ret)                     &&
5699                             !is_sym_main(current_function->base.base.symbol)) {
5700                                 warningf(&stmt->base.source_position,
5701                                          "control reaches end of non-void function");
5702                         }
5703                         return;
5704                 }
5705
5706                 switch (next->kind) {
5707                         case STATEMENT_INVALID:
5708                         case STATEMENT_EMPTY:
5709                         case STATEMENT_DECLARATION:
5710                         case STATEMENT_LOCAL_LABEL:
5711                         case STATEMENT_EXPRESSION:
5712                         case STATEMENT_ASM:
5713                         case STATEMENT_RETURN:
5714                         case STATEMENT_CONTINUE:
5715                         case STATEMENT_BREAK:
5716                         case STATEMENT_GOTO:
5717                         case STATEMENT_LEAVE:
5718                                 panic("invalid control flow in function");
5719
5720                         case STATEMENT_COMPOUND:
5721                         case STATEMENT_IF:
5722                         case STATEMENT_SWITCH:
5723                         case STATEMENT_LABEL:
5724                         case STATEMENT_CASE_LABEL:
5725                                 last = next;
5726                                 next = next->base.next;
5727                                 break;
5728
5729                         case STATEMENT_WHILE: {
5730 continue_while:
5731                                 if (next->base.reachable)
5732                                         return;
5733                                 next->base.reachable = true;
5734
5735                                 while_statement_t const *const whiles = &next->whiles;
5736                                 int                      const val    = determine_truth(whiles->condition);
5737
5738                                 if (val >= 0)
5739                                         check_reachable(whiles->body);
5740
5741                                 if (val > 0)
5742                                         return;
5743
5744                                 last = next;
5745                                 next = next->base.next;
5746                                 break;
5747                         }
5748
5749                         case STATEMENT_DO_WHILE: {
5750 continue_do_while:
5751                                 if (next->base.reachable)
5752                                         return;
5753                                 next->base.reachable = true;
5754
5755                                 do_while_statement_t const *const dw  = &next->do_while;
5756                                 int                  const        val = determine_truth(dw->condition);
5757
5758                                 if (val >= 0)
5759                                         check_reachable(dw->body);
5760
5761                                 if (val > 0)
5762                                         return;
5763
5764                                 last = next;
5765                                 next = next->base.next;
5766                                 break;
5767                         }
5768
5769                         case STATEMENT_FOR: {
5770 continue_for:;
5771                                 for_statement_t *const fors = &next->fors;
5772
5773                                 fors->step_reachable = true;
5774
5775                                 if (fors->condition_reachable)
5776                                         return;
5777                                 fors->condition_reachable = true;
5778
5779                                 expression_t const *const cond = fors->condition;
5780                                 int          const        val  =
5781                                         cond == NULL ? 1 : determine_truth(cond);
5782
5783                                 if (val >= 0)
5784                                         check_reachable(fors->body);
5785
5786                                 if (val > 0)
5787                                         return;
5788
5789                                 last = next;
5790                                 next = next->base.next;
5791                                 break;
5792                         }
5793
5794                         case STATEMENT_MS_TRY:
5795                                 last = next;
5796                                 next = next->ms_try.final_statement;
5797                                 break;
5798                 }
5799         }
5800
5801         check_reachable(next);
5802 }
5803
5804 static void check_unreachable(statement_t* const stmt, void *const env)
5805 {
5806         (void)env;
5807
5808         switch (stmt->kind) {
5809                 case STATEMENT_DO_WHILE:
5810                         if (!stmt->base.reachable) {
5811                                 expression_t const *const cond = stmt->do_while.condition;
5812                                 if (determine_truth(cond) >= 0) {
5813                                         warningf(&cond->base.source_position,
5814                                                  "condition of do-while-loop is unreachable");
5815                                 }
5816                         }
5817                         return;
5818
5819                 case STATEMENT_FOR: {
5820                         for_statement_t const* const fors = &stmt->fors;
5821
5822                         // if init and step are unreachable, cond is unreachable, too
5823                         if (!stmt->base.reachable && !fors->step_reachable) {
5824                                 warningf(&stmt->base.source_position, "statement is unreachable");
5825                         } else {
5826                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5827                                         warningf(&fors->initialisation->base.source_position,
5828                                                  "initialisation of for-statement is unreachable");
5829                                 }
5830
5831                                 if (!fors->condition_reachable && fors->condition != NULL) {
5832                                         warningf(&fors->condition->base.source_position,
5833                                                  "condition of for-statement is unreachable");
5834                                 }
5835
5836                                 if (!fors->step_reachable && fors->step != NULL) {
5837                                         warningf(&fors->step->base.source_position,
5838                                                  "step of for-statement is unreachable");
5839                                 }
5840                         }
5841                         return;
5842                 }
5843
5844                 case STATEMENT_COMPOUND:
5845                         if (stmt->compound.statements != NULL)
5846                                 return;
5847                         /* FALLTHROUGH*/
5848
5849                 default:
5850                         if (!stmt->base.reachable)
5851                                 warningf(&stmt->base.source_position, "statement is unreachable");
5852                         return;
5853         }
5854 }
5855
5856 static void parse_external_declaration(void)
5857 {
5858         /* function-definitions and declarations both start with declaration
5859          * specifiers */
5860         declaration_specifiers_t specifiers;
5861         memset(&specifiers, 0, sizeof(specifiers));
5862
5863         add_anchor_token(';');
5864         parse_declaration_specifiers(&specifiers);
5865         rem_anchor_token(';');
5866
5867         /* must be a declaration */
5868         if (token.type == ';') {
5869                 parse_anonymous_declaration_rest(&specifiers);
5870                 return;
5871         }
5872
5873         add_anchor_token(',');
5874         add_anchor_token('=');
5875         add_anchor_token(';');
5876         add_anchor_token('{');
5877
5878         /* declarator is common to both function-definitions and declarations */
5879         entity_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false, false);
5880
5881         rem_anchor_token('{');
5882         rem_anchor_token(';');
5883         rem_anchor_token('=');
5884         rem_anchor_token(',');
5885
5886         /* must be a declaration */
5887         switch (token.type) {
5888                 case ',':
5889                 case ';':
5890                 case '=':
5891                         parse_declaration_rest(ndeclaration, &specifiers, record_entity);
5892                         return;
5893         }
5894
5895         /* must be a function definition */
5896         parse_kr_declaration_list(ndeclaration);
5897
5898         if (token.type != '{') {
5899                 parse_error_expected("while parsing function definition", '{', NULL);
5900                 eat_until_matching_token(';');
5901                 return;
5902         }
5903
5904         assert(is_declaration(ndeclaration));
5905         type_t *type = ndeclaration->declaration.type;
5906
5907         /* note that we don't skip typerefs: the standard doesn't allow them here
5908          * (so we can't use is_type_function here) */
5909         if (type->kind != TYPE_FUNCTION) {
5910                 if (is_type_valid(type)) {
5911                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5912                                type, ndeclaration->base.symbol);
5913                 }
5914                 eat_block();
5915                 return;
5916         }
5917
5918         if (warning.aggregate_return &&
5919             is_type_compound(skip_typeref(type->function.return_type))) {
5920                 warningf(HERE, "function '%Y' returns an aggregate",
5921                          ndeclaration->base.symbol);
5922         }
5923         if (warning.traditional && !type->function.unspecified_parameters) {
5924                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5925                         ndeclaration->base.symbol);
5926         }
5927         if (warning.old_style_definition && type->function.unspecified_parameters) {
5928                 warningf(HERE, "old-style function definition '%Y'",
5929                         ndeclaration->base.symbol);
5930         }
5931
5932         /* Â§ 6.7.5.3 (14) a function definition with () means no
5933          * parameters (and not unspecified parameters) */
5934         if (type->function.unspecified_parameters
5935                         && type->function.parameters == NULL
5936                         && !type->function.kr_style_parameters) {
5937                 type_t *duplicate = duplicate_type(type);
5938                 duplicate->function.unspecified_parameters = false;
5939
5940                 type = typehash_insert(duplicate);
5941                 if (type != duplicate) {
5942                         obstack_free(type_obst, duplicate);
5943                 }
5944                 ndeclaration->declaration.type = type;
5945         }
5946
5947         entity_t *const entity = record_entity(ndeclaration, true);
5948         assert(entity->kind == ENTITY_FUNCTION);
5949         assert(ndeclaration->kind == ENTITY_FUNCTION);
5950
5951         function_t *function = &entity->function;
5952         if (ndeclaration != entity) {
5953                 function->parameters = ndeclaration->function.parameters;
5954         }
5955         assert(is_declaration(entity));
5956         type = skip_typeref(entity->declaration.type);
5957
5958         /* push function parameters and switch scope */
5959         size_t const top = environment_top();
5960         scope_push(&function->parameters);
5961
5962         entity_t *parameter = function->parameters.entities;
5963         for( ; parameter != NULL; parameter = parameter->base.next) {
5964                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
5965                         parameter->base.parent_scope = scope;
5966                 }
5967                 assert(parameter->base.parent_scope == NULL
5968                                 || parameter->base.parent_scope == scope);
5969                 parameter->base.parent_scope = scope;
5970                 if (parameter->base.symbol == NULL) {
5971                         errorf(&parameter->base.source_position, "parameter name omitted");
5972                         continue;
5973                 }
5974                 environment_push(parameter);
5975         }
5976
5977         if (function->statement != NULL) {
5978                 parser_error_multiple_definition(entity, HERE);
5979                 eat_block();
5980         } else {
5981                 /* parse function body */
5982                 int         label_stack_top      = label_top();
5983                 function_t *old_current_function = current_function;
5984                 current_function                 = function;
5985                 current_parent                   = NULL;
5986
5987                 statement_t *const body     = parse_compound_statement(false);
5988                 function->statement = body;
5989                 first_err = true;
5990                 check_labels();
5991                 check_declarations();
5992                 if (warning.return_type      ||
5993                     warning.unreachable_code ||
5994                     (warning.missing_noreturn
5995                      && !(function->base.modifiers & DM_NORETURN))) {
5996                         noreturn_candidate = true;
5997                         check_reachable(body);
5998                         if (warning.unreachable_code)
5999                                 walk_statements(body, check_unreachable, NULL);
6000                         if (warning.missing_noreturn &&
6001                             noreturn_candidate       &&
6002                             !(function->base.modifiers & DM_NORETURN)) {
6003                                 warningf(&body->base.source_position,
6004                                          "function '%#T' is candidate for attribute 'noreturn'",
6005                                          type, entity->base.symbol);
6006                         }
6007                 }
6008
6009                 assert(current_parent   == NULL);
6010                 assert(current_function == function);
6011                 current_function = old_current_function;
6012                 label_pop_to(label_stack_top);
6013         }
6014
6015         assert(scope == &function->parameters);
6016         scope_pop();
6017         environment_pop_to(top);
6018 }
6019
6020 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
6021                                   source_position_t *source_position,
6022                                   const symbol_t *symbol)
6023 {
6024         type_t *type = allocate_type_zero(TYPE_BITFIELD);
6025
6026         type->bitfield.base_type       = base_type;
6027         type->bitfield.size_expression = size;
6028
6029         il_size_t bit_size;
6030         type_t *skipped_type = skip_typeref(base_type);
6031         if (!is_type_integer(skipped_type)) {
6032                 errorf(HERE, "bitfield base type '%T' is not an integer type",
6033                         base_type);
6034                 bit_size = 0;
6035         } else {
6036                 bit_size = skipped_type->base.size * 8;
6037         }
6038
6039         if (is_constant_expression(size)) {
6040                 long v = fold_constant(size);
6041
6042                 if (v < 0) {
6043                         errorf(source_position, "negative width in bit-field '%Y'",
6044                                 symbol);
6045                 } else if (v == 0) {
6046                         errorf(source_position, "zero width for bit-field '%Y'",
6047                                 symbol);
6048                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
6049                         errorf(source_position, "width of '%Y' exceeds its type",
6050                                 symbol);
6051                 } else {
6052                         type->bitfield.bit_size = v;
6053                 }
6054         }
6055
6056         return type;
6057 }
6058
6059 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
6060 {
6061         entity_t *iter = compound->members.entities;
6062         for( ; iter != NULL; iter = iter->base.next) {
6063                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
6064                         continue;
6065
6066                 if (iter->base.symbol == NULL) {
6067                         type_t *type = skip_typeref(iter->declaration.type);
6068                         if (is_type_compound(type)) {
6069                                 entity_t *result
6070                                         = find_compound_entry(type->compound.compound, symbol);
6071                                 if (result != NULL)
6072                                         return result;
6073                         }
6074                         continue;
6075                 }
6076
6077                 if (iter->base.symbol == symbol) {
6078                         return iter;
6079                 }
6080         }
6081
6082         return NULL;
6083 }
6084
6085 static void parse_compound_declarators(compound_t *compound,
6086                 const declaration_specifiers_t *specifiers)
6087 {
6088         while (true) {
6089                 entity_t *entity;
6090
6091                 if (token.type == ':') {
6092                         source_position_t source_position = *HERE;
6093                         next_token();
6094
6095                         type_t *base_type = specifiers->type;
6096                         expression_t *size = parse_constant_expression();
6097
6098                         type_t *type = make_bitfield_type(base_type, size,
6099                                         &source_position, sym_anonymous);
6100
6101                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
6102                         entity->base.namespc                       = NAMESPACE_NORMAL;
6103                         entity->base.source_position               = source_position;
6104                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
6105                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
6106                         entity->declaration.modifiers              = specifiers->modifiers;
6107                         entity->declaration.type                   = type;
6108                 } else {
6109                         entity = parse_declarator(specifiers,/*may_be_abstract=*/true, true);
6110                         assert(entity->kind == ENTITY_COMPOUND_MEMBER);
6111
6112                         if (token.type == ':') {
6113                                 source_position_t source_position = *HERE;
6114                                 next_token();
6115                                 expression_t *size = parse_constant_expression();
6116
6117                                 type_t *type = entity->declaration.type;
6118                                 type_t *bitfield_type = make_bitfield_type(type, size,
6119                                                 &source_position, entity->base.symbol);
6120                                 entity->declaration.type = bitfield_type;
6121                         }
6122                 }
6123
6124                 /* make sure we don't define a symbol multiple times */
6125                 symbol_t *symbol = entity->base.symbol;
6126                 if (symbol != NULL) {
6127                         entity_t *prev = find_compound_entry(compound, symbol);
6128
6129                         if (prev != NULL) {
6130                                 assert(prev->base.symbol == symbol);
6131                                 errorf(&entity->base.source_position,
6132                                        "multiple declarations of symbol '%Y' (declared %P)",
6133                                        symbol, &prev->base.source_position);
6134                         }
6135                 }
6136
6137                 append_entity(&compound->members, entity);
6138
6139                 if (token.type != ',')
6140                         break;
6141                 next_token();
6142         }
6143         expect(';');
6144
6145 end_error:
6146         ;
6147 }
6148
6149 static void semantic_compound(compound_t *compound)
6150 {
6151         entity_t *entity = compound->members.entities;
6152         for ( ; entity != NULL; entity = entity->base.next) {
6153                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
6154
6155                 type_t *orig_type = entity->declaration.type;
6156                 type_t *type      = skip_typeref(orig_type);
6157
6158                 if (is_type_function(type)) {
6159                         errorf(HERE,
6160                                "compound member '%Y' must not have function type '%T'",
6161                                entity->base.symbol, orig_type);
6162                 } else if (is_type_incomplete(type)) {
6163                         /* Â§6.7.2.1 (16) flexible array member */
6164                         if (is_type_array(type) && entity->base.next == NULL) {
6165                                 compound->has_flexible_member = true;
6166                         } else {
6167                                 errorf(HERE,
6168                                        "compound member '%Y' has incomplete type '%T'",
6169                                        entity->base.symbol, orig_type);
6170                         }
6171                 }
6172         }
6173 }
6174
6175 static void parse_compound_type_entries(compound_t *compound)
6176 {
6177         eat('{');
6178         add_anchor_token('}');
6179
6180         while (token.type != '}') {
6181                 if (token.type == T_EOF) {
6182                         errorf(HERE, "EOF while parsing struct");
6183                         break;
6184                 }
6185                 declaration_specifiers_t specifiers;
6186                 memset(&specifiers, 0, sizeof(specifiers));
6187                 parse_declaration_specifiers(&specifiers);
6188
6189                 parse_compound_declarators(compound, &specifiers);
6190         }
6191         semantic_compound(compound);
6192         rem_anchor_token('}');
6193         next_token();
6194 }
6195
6196 static type_t *parse_typename(void)
6197 {
6198         declaration_specifiers_t specifiers;
6199         memset(&specifiers, 0, sizeof(specifiers));
6200         parse_declaration_specifiers(&specifiers);
6201         if (specifiers.storage_class != STORAGE_CLASS_NONE) {
6202                 /* TODO: improve error message, user does probably not know what a
6203                  * storage class is...
6204                  */
6205                 errorf(HERE, "typename may not have a storage class");
6206         }
6207
6208         type_t *result = parse_abstract_declarator(specifiers.type);
6209
6210         return result;
6211 }
6212
6213
6214
6215
6216 typedef expression_t* (*parse_expression_function)(void);
6217 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
6218
6219 typedef struct expression_parser_function_t expression_parser_function_t;
6220 struct expression_parser_function_t {
6221         parse_expression_function        parser;
6222         unsigned                         infix_precedence;
6223         parse_expression_infix_function  infix_parser;
6224 };
6225
6226 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
6227
6228 /**
6229  * Prints an error message if an expression was expected but not read
6230  */
6231 static expression_t *expected_expression_error(void)
6232 {
6233         /* skip the error message if the error token was read */
6234         if (token.type != T_ERROR) {
6235                 errorf(HERE, "expected expression, got token '%K'", &token);
6236         }
6237         next_token();
6238
6239         return create_invalid_expression();
6240 }
6241
6242 /**
6243  * Parse a string constant.
6244  */
6245 static expression_t *parse_string_const(void)
6246 {
6247         wide_string_t wres;
6248         if (token.type == T_STRING_LITERAL) {
6249                 string_t res = token.v.string;
6250                 next_token();
6251                 while (token.type == T_STRING_LITERAL) {
6252                         res = concat_strings(&res, &token.v.string);
6253                         next_token();
6254                 }
6255                 if (token.type != T_WIDE_STRING_LITERAL) {
6256                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
6257                         /* note: that we use type_char_ptr here, which is already the
6258                          * automatic converted type. revert_automatic_type_conversion
6259                          * will construct the array type */
6260                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
6261                         cnst->string.value = res;
6262                         return cnst;
6263                 }
6264
6265                 wres = concat_string_wide_string(&res, &token.v.wide_string);
6266         } else {
6267                 wres = token.v.wide_string;
6268         }
6269         next_token();
6270
6271         for (;;) {
6272                 switch (token.type) {
6273                         case T_WIDE_STRING_LITERAL:
6274                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
6275                                 break;
6276
6277                         case T_STRING_LITERAL:
6278                                 wres = concat_wide_string_string(&wres, &token.v.string);
6279                                 break;
6280
6281                         default: {
6282                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6283                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
6284                                 cnst->wide_string.value = wres;
6285                                 return cnst;
6286                         }
6287                 }
6288                 next_token();
6289         }
6290 }
6291
6292 /**
6293  * Parse an integer constant.
6294  */
6295 static expression_t *parse_int_const(void)
6296 {
6297         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6298         cnst->base.type          = token.datatype;
6299         cnst->conste.v.int_value = token.v.intvalue;
6300
6301         next_token();
6302
6303         return cnst;
6304 }
6305
6306 /**
6307  * Parse a character constant.
6308  */
6309 static expression_t *parse_character_constant(void)
6310 {
6311         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
6312         cnst->base.type          = token.datatype;
6313         cnst->conste.v.character = token.v.string;
6314
6315         if (cnst->conste.v.character.size != 1) {
6316                 if (warning.multichar && GNU_MODE) {
6317                         warningf(HERE, "multi-character character constant");
6318                 } else {
6319                         errorf(HERE, "more than 1 characters in character constant");
6320                 }
6321         }
6322         next_token();
6323
6324         return cnst;
6325 }
6326
6327 /**
6328  * Parse a wide character constant.
6329  */
6330 static expression_t *parse_wide_character_constant(void)
6331 {
6332         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
6333         cnst->base.type               = token.datatype;
6334         cnst->conste.v.wide_character = token.v.wide_string;
6335
6336         if (cnst->conste.v.wide_character.size != 1) {
6337                 if (warning.multichar && GNU_MODE) {
6338                         warningf(HERE, "multi-character character constant");
6339                 } else {
6340                         errorf(HERE, "more than 1 characters in character constant");
6341                 }
6342         }
6343         next_token();
6344
6345         return cnst;
6346 }
6347
6348 /**
6349  * Parse a float constant.
6350  */
6351 static expression_t *parse_float_const(void)
6352 {
6353         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6354         cnst->base.type            = token.datatype;
6355         cnst->conste.v.float_value = token.v.floatvalue;
6356
6357         next_token();
6358
6359         return cnst;
6360 }
6361
6362 static entity_t *create_implicit_function(symbol_t *symbol,
6363                 const source_position_t *source_position)
6364 {
6365         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6366         ntype->function.return_type            = type_int;
6367         ntype->function.unspecified_parameters = true;
6368
6369         type_t *type = typehash_insert(ntype);
6370         if (type != ntype) {
6371                 free_type(ntype);
6372         }
6373
6374         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6375         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6376         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6377         entity->declaration.type                   = type;
6378         entity->declaration.implicit               = true;
6379         entity->base.symbol                        = symbol;
6380         entity->base.source_position               = *source_position;
6381
6382         bool strict_prototypes_old = warning.strict_prototypes;
6383         warning.strict_prototypes  = false;
6384         record_entity(entity, false);
6385         warning.strict_prototypes = strict_prototypes_old;
6386
6387         return entity;
6388 }
6389
6390 /**
6391  * Creates a return_type (func)(argument_type) function type if not
6392  * already exists.
6393  */
6394 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
6395                                     type_t *argument_type2)
6396 {
6397         function_parameter_t *parameter2
6398                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
6399         memset(parameter2, 0, sizeof(parameter2[0]));
6400         parameter2->type = argument_type2;
6401
6402         function_parameter_t *parameter1
6403                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
6404         memset(parameter1, 0, sizeof(parameter1[0]));
6405         parameter1->type = argument_type1;
6406         parameter1->next = parameter2;
6407
6408         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6409         type->function.return_type = return_type;
6410         type->function.parameters  = parameter1;
6411
6412         type_t *result = typehash_insert(type);
6413         if (result != type) {
6414                 free_type(type);
6415         }
6416
6417         return result;
6418 }
6419
6420 /**
6421  * Creates a return_type (func)(argument_type) function type if not
6422  * already exists.
6423  *
6424  * @param return_type    the return type
6425  * @param argument_type  the argument type
6426  */
6427 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
6428 {
6429         function_parameter_t *parameter
6430                 = obstack_alloc(type_obst, sizeof(parameter[0]));
6431         memset(parameter, 0, sizeof(parameter[0]));
6432         parameter->type = argument_type;
6433
6434         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6435         type->function.return_type = return_type;
6436         type->function.parameters  = parameter;
6437
6438         type_t *result = typehash_insert(type);
6439         if (result != type) {
6440                 free_type(type);
6441         }
6442
6443         return result;
6444 }
6445
6446 static type_t *make_function_0_type(type_t *return_type)
6447 {
6448         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6449         type->function.return_type = return_type;
6450         type->function.parameters  = NULL;
6451
6452         type_t *result = typehash_insert(type);
6453         if (result != type) {
6454                 free_type(type);
6455         }
6456
6457         return result;
6458 }
6459
6460 /**
6461  * Creates a function type for some function like builtins.
6462  *
6463  * @param symbol   the symbol describing the builtin
6464  */
6465 static type_t *get_builtin_symbol_type(symbol_t *symbol)
6466 {
6467         switch (symbol->ID) {
6468         case T___builtin_alloca:
6469                 return make_function_1_type(type_void_ptr, type_size_t);
6470         case T___builtin_huge_val:
6471                 return make_function_0_type(type_double);
6472         case T___builtin_inf:
6473                 return make_function_0_type(type_double);
6474         case T___builtin_inff:
6475                 return make_function_0_type(type_float);
6476         case T___builtin_infl:
6477                 return make_function_0_type(type_long_double);
6478         case T___builtin_nan:
6479                 return make_function_1_type(type_double, type_char_ptr);
6480         case T___builtin_nanf:
6481                 return make_function_1_type(type_float, type_char_ptr);
6482         case T___builtin_nanl:
6483                 return make_function_1_type(type_long_double, type_char_ptr);
6484         case T___builtin_va_end:
6485                 return make_function_1_type(type_void, type_valist);
6486         case T___builtin_expect:
6487                 return make_function_2_type(type_long, type_long, type_long);
6488         default:
6489                 internal_errorf(HERE, "not implemented builtin symbol found");
6490         }
6491 }
6492
6493 /**
6494  * Performs automatic type cast as described in Â§ 6.3.2.1.
6495  *
6496  * @param orig_type  the original type
6497  */
6498 static type_t *automatic_type_conversion(type_t *orig_type)
6499 {
6500         type_t *type = skip_typeref(orig_type);
6501         if (is_type_array(type)) {
6502                 array_type_t *array_type   = &type->array;
6503                 type_t       *element_type = array_type->element_type;
6504                 unsigned      qualifiers   = array_type->base.qualifiers;
6505
6506                 return make_pointer_type(element_type, qualifiers);
6507         }
6508
6509         if (is_type_function(type)) {
6510                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6511         }
6512
6513         return orig_type;
6514 }
6515
6516 /**
6517  * reverts the automatic casts of array to pointer types and function
6518  * to function-pointer types as defined Â§ 6.3.2.1
6519  */
6520 type_t *revert_automatic_type_conversion(const expression_t *expression)
6521 {
6522         switch (expression->kind) {
6523                 case EXPR_REFERENCE: {
6524                         entity_t *entity = expression->reference.entity;
6525                         if (is_declaration(entity)) {
6526                                 return entity->declaration.type;
6527                         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6528                                 return entity->enum_value.enum_type;
6529                         } else {
6530                                 panic("no declaration or enum in reference");
6531                         }
6532                 }
6533
6534                 case EXPR_SELECT: {
6535                         entity_t *entity = expression->select.compound_entry;
6536                         assert(is_declaration(entity));
6537                         type_t   *type   = entity->declaration.type;
6538                         return get_qualified_type(type,
6539                                                   expression->base.type->base.qualifiers);
6540                 }
6541
6542                 case EXPR_UNARY_DEREFERENCE: {
6543                         const expression_t *const value = expression->unary.value;
6544                         type_t             *const type  = skip_typeref(value->base.type);
6545                         assert(is_type_pointer(type));
6546                         return type->pointer.points_to;
6547                 }
6548
6549                 case EXPR_BUILTIN_SYMBOL:
6550                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6551
6552                 case EXPR_ARRAY_ACCESS: {
6553                         const expression_t *array_ref = expression->array_access.array_ref;
6554                         type_t             *type_left = skip_typeref(array_ref->base.type);
6555                         if (!is_type_valid(type_left))
6556                                 return type_left;
6557                         assert(is_type_pointer(type_left));
6558                         return type_left->pointer.points_to;
6559                 }
6560
6561                 case EXPR_STRING_LITERAL: {
6562                         size_t size = expression->string.value.size;
6563                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6564                 }
6565
6566                 case EXPR_WIDE_STRING_LITERAL: {
6567                         size_t size = expression->wide_string.value.size;
6568                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6569                 }
6570
6571                 case EXPR_COMPOUND_LITERAL:
6572                         return expression->compound_literal.type;
6573
6574                 default: break;
6575         }
6576
6577         return expression->base.type;
6578 }
6579
6580 static expression_t *parse_reference(void)
6581 {
6582         symbol_t *const symbol = token.v.symbol;
6583
6584         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
6585
6586         if (entity == NULL) {
6587                 if (!strict_mode && look_ahead(1)->type == '(') {
6588                         /* an implicitly declared function */
6589                         if (warning.implicit_function_declaration) {
6590                                 warningf(HERE, "implicit declaration of function '%Y'",
6591                                         symbol);
6592                         }
6593
6594                         entity = create_implicit_function(symbol, HERE);
6595                 } else {
6596                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6597                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6598                 }
6599         }
6600
6601         type_t *orig_type;
6602
6603         if (is_declaration(entity)) {
6604                 orig_type = entity->declaration.type;
6605         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6606                 orig_type = entity->enum_value.enum_type;
6607         } else if (entity->kind == ENTITY_TYPEDEF) {
6608                 errorf(HERE, "encountered typedef name '%Y' while parsing expression",
6609                         symbol);
6610                 next_token();
6611                 return create_invalid_expression();
6612         } else {
6613                 panic("expected declaration or enum value in reference");
6614         }
6615
6616         /* we always do the auto-type conversions; the & and sizeof parser contains
6617          * code to revert this! */
6618         type_t *type = automatic_type_conversion(orig_type);
6619
6620         expression_kind_t kind = EXPR_REFERENCE;
6621         if (entity->kind == ENTITY_ENUM_VALUE)
6622                 kind = EXPR_REFERENCE_ENUM_VALUE;
6623
6624         expression_t *expression     = allocate_expression_zero(kind);
6625         expression->reference.entity = entity;
6626         expression->base.type        = type;
6627
6628         /* this declaration is used */
6629         if (is_declaration(entity)) {
6630                 entity->declaration.used = true;
6631         }
6632
6633         if (entity->base.parent_scope != file_scope
6634                 && entity->base.parent_scope->depth < current_function->parameters.depth
6635                 && is_type_valid(orig_type) && !is_type_function(orig_type)) {
6636                 if (entity->kind == ENTITY_VARIABLE) {
6637                         /* access of a variable from an outer function */
6638                         entity->variable.address_taken = true;
6639                 }
6640                 current_function->need_closure = true;
6641         }
6642
6643         /* check for deprecated functions */
6644         if (warning.deprecated_declarations
6645                 && is_declaration(entity)
6646                 && entity->declaration.modifiers & DM_DEPRECATED) {
6647                 declaration_t *declaration = &entity->declaration;
6648
6649                 char const *const prefix = entity->kind == ENTITY_FUNCTION ?
6650                         "function" : "variable";
6651
6652                 if (declaration->deprecated_string != NULL) {
6653                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6654                                  prefix, entity->base.symbol, &entity->base.source_position,
6655                                  declaration->deprecated_string);
6656                 } else {
6657                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6658                                  entity->base.symbol, &entity->base.source_position);
6659                 }
6660         }
6661
6662         if (warning.init_self && entity == current_init_decl && !in_type_prop
6663             && entity->kind == ENTITY_VARIABLE) {
6664                 current_init_decl = NULL;
6665                 warningf(HERE, "variable '%#T' is initialized by itself",
6666                          entity->declaration.type, entity->base.symbol);
6667         }
6668
6669         next_token();
6670         return expression;
6671 }
6672
6673 static bool semantic_cast(expression_t *cast)
6674 {
6675         expression_t            *expression      = cast->unary.value;
6676         type_t                  *orig_dest_type  = cast->base.type;
6677         type_t                  *orig_type_right = expression->base.type;
6678         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6679         type_t            const *src_type        = skip_typeref(orig_type_right);
6680         source_position_t const *pos             = &cast->base.source_position;
6681
6682         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6683         if (dst_type == type_void)
6684                 return true;
6685
6686         /* only integer and pointer can be casted to pointer */
6687         if (is_type_pointer(dst_type)  &&
6688             !is_type_pointer(src_type) &&
6689             !is_type_integer(src_type) &&
6690             is_type_valid(src_type)) {
6691                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6692                 return false;
6693         }
6694
6695         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6696                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6697                 return false;
6698         }
6699
6700         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6701                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6702                 return false;
6703         }
6704
6705         if (warning.cast_qual &&
6706             is_type_pointer(src_type) &&
6707             is_type_pointer(dst_type)) {
6708                 type_t *src = skip_typeref(src_type->pointer.points_to);
6709                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6710                 unsigned missing_qualifiers =
6711                         src->base.qualifiers & ~dst->base.qualifiers;
6712                 if (missing_qualifiers != 0) {
6713                         warningf(pos,
6714                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6715                                  missing_qualifiers, orig_type_right);
6716                 }
6717         }
6718         return true;
6719 }
6720
6721 static expression_t *parse_compound_literal(type_t *type)
6722 {
6723         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6724
6725         parse_initializer_env_t env;
6726         env.type             = type;
6727         env.entity           = NULL;
6728         env.must_be_constant = false;
6729         initializer_t *initializer = parse_initializer(&env);
6730         type = env.type;
6731
6732         expression->compound_literal.initializer = initializer;
6733         expression->compound_literal.type        = type;
6734         expression->base.type                    = automatic_type_conversion(type);
6735
6736         return expression;
6737 }
6738
6739 /**
6740  * Parse a cast expression.
6741  */
6742 static expression_t *parse_cast(void)
6743 {
6744         add_anchor_token(')');
6745
6746         source_position_t source_position = token.source_position;
6747
6748         type_t *type = parse_typename();
6749
6750         rem_anchor_token(')');
6751         expect(')');
6752
6753         if (token.type == '{') {
6754                 return parse_compound_literal(type);
6755         }
6756
6757         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6758         cast->base.source_position = source_position;
6759
6760         expression_t *value = parse_sub_expression(PREC_CAST);
6761         cast->base.type   = type;
6762         cast->unary.value = value;
6763
6764         if (! semantic_cast(cast)) {
6765                 /* TODO: record the error in the AST. else it is impossible to detect it */
6766         }
6767
6768         return cast;
6769 end_error:
6770         return create_invalid_expression();
6771 }
6772
6773 /**
6774  * Parse a statement expression.
6775  */
6776 static expression_t *parse_statement_expression(void)
6777 {
6778         add_anchor_token(')');
6779
6780         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6781
6782         statement_t *statement          = parse_compound_statement(true);
6783         expression->statement.statement = statement;
6784
6785         /* find last statement and use its type */
6786         type_t *type = type_void;
6787         const statement_t *stmt = statement->compound.statements;
6788         if (stmt != NULL) {
6789                 while (stmt->base.next != NULL)
6790                         stmt = stmt->base.next;
6791
6792                 if (stmt->kind == STATEMENT_EXPRESSION) {
6793                         type = stmt->expression.expression->base.type;
6794                 }
6795         } else if (warning.other) {
6796                 warningf(&expression->base.source_position, "empty statement expression ({})");
6797         }
6798         expression->base.type = type;
6799
6800         rem_anchor_token(')');
6801         expect(')');
6802
6803 end_error:
6804         return expression;
6805 }
6806
6807 /**
6808  * Parse a parenthesized expression.
6809  */
6810 static expression_t *parse_parenthesized_expression(void)
6811 {
6812         eat('(');
6813
6814         switch (token.type) {
6815         case '{':
6816                 /* gcc extension: a statement expression */
6817                 return parse_statement_expression();
6818
6819         TYPE_QUALIFIERS
6820         TYPE_SPECIFIERS
6821                 return parse_cast();
6822         case T_IDENTIFIER:
6823                 if (is_typedef_symbol(token.v.symbol)) {
6824                         return parse_cast();
6825                 }
6826         }
6827
6828         add_anchor_token(')');
6829         expression_t *result = parse_expression();
6830         rem_anchor_token(')');
6831         expect(')');
6832
6833 end_error:
6834         return result;
6835 }
6836
6837 static expression_t *parse_function_keyword(void)
6838 {
6839         /* TODO */
6840
6841         if (current_function == NULL) {
6842                 errorf(HERE, "'__func__' used outside of a function");
6843         }
6844
6845         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6846         expression->base.type     = type_char_ptr;
6847         expression->funcname.kind = FUNCNAME_FUNCTION;
6848
6849         next_token();
6850
6851         return expression;
6852 }
6853
6854 static expression_t *parse_pretty_function_keyword(void)
6855 {
6856         if (current_function == NULL) {
6857                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6858         }
6859
6860         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6861         expression->base.type     = type_char_ptr;
6862         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6863
6864         eat(T___PRETTY_FUNCTION__);
6865
6866         return expression;
6867 }
6868
6869 static expression_t *parse_funcsig_keyword(void)
6870 {
6871         if (current_function == NULL) {
6872                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6873         }
6874
6875         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6876         expression->base.type     = type_char_ptr;
6877         expression->funcname.kind = FUNCNAME_FUNCSIG;
6878
6879         eat(T___FUNCSIG__);
6880
6881         return expression;
6882 }
6883
6884 static expression_t *parse_funcdname_keyword(void)
6885 {
6886         if (current_function == NULL) {
6887                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6888         }
6889
6890         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6891         expression->base.type     = type_char_ptr;
6892         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6893
6894         eat(T___FUNCDNAME__);
6895
6896         return expression;
6897 }
6898
6899 static designator_t *parse_designator(void)
6900 {
6901         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6902         result->source_position = *HERE;
6903
6904         if (token.type != T_IDENTIFIER) {
6905                 parse_error_expected("while parsing member designator",
6906                                      T_IDENTIFIER, NULL);
6907                 return NULL;
6908         }
6909         result->symbol = token.v.symbol;
6910         next_token();
6911
6912         designator_t *last_designator = result;
6913         while(true) {
6914                 if (token.type == '.') {
6915                         next_token();
6916                         if (token.type != T_IDENTIFIER) {
6917                                 parse_error_expected("while parsing member designator",
6918                                                      T_IDENTIFIER, NULL);
6919                                 return NULL;
6920                         }
6921                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6922                         designator->source_position = *HERE;
6923                         designator->symbol          = token.v.symbol;
6924                         next_token();
6925
6926                         last_designator->next = designator;
6927                         last_designator       = designator;
6928                         continue;
6929                 }
6930                 if (token.type == '[') {
6931                         next_token();
6932                         add_anchor_token(']');
6933                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6934                         designator->source_position = *HERE;
6935                         designator->array_index     = parse_expression();
6936                         rem_anchor_token(']');
6937                         expect(']');
6938                         if (designator->array_index == NULL) {
6939                                 return NULL;
6940                         }
6941
6942                         last_designator->next = designator;
6943                         last_designator       = designator;
6944                         continue;
6945                 }
6946                 break;
6947         }
6948
6949         return result;
6950 end_error:
6951         return NULL;
6952 }
6953
6954 /**
6955  * Parse the __builtin_offsetof() expression.
6956  */
6957 static expression_t *parse_offsetof(void)
6958 {
6959         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6960         expression->base.type    = type_size_t;
6961
6962         eat(T___builtin_offsetof);
6963
6964         expect('(');
6965         add_anchor_token(',');
6966         type_t *type = parse_typename();
6967         rem_anchor_token(',');
6968         expect(',');
6969         add_anchor_token(')');
6970         designator_t *designator = parse_designator();
6971         rem_anchor_token(')');
6972         expect(')');
6973
6974         expression->offsetofe.type       = type;
6975         expression->offsetofe.designator = designator;
6976
6977         type_path_t path;
6978         memset(&path, 0, sizeof(path));
6979         path.top_type = type;
6980         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6981
6982         descend_into_subtype(&path);
6983
6984         if (!walk_designator(&path, designator, true)) {
6985                 return create_invalid_expression();
6986         }
6987
6988         DEL_ARR_F(path.path);
6989
6990         return expression;
6991 end_error:
6992         return create_invalid_expression();
6993 }
6994
6995 /**
6996  * Parses a _builtin_va_start() expression.
6997  */
6998 static expression_t *parse_va_start(void)
6999 {
7000         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
7001
7002         eat(T___builtin_va_start);
7003
7004         expect('(');
7005         add_anchor_token(',');
7006         expression->va_starte.ap = parse_assignment_expression();
7007         rem_anchor_token(',');
7008         expect(',');
7009         expression_t *const expr = parse_assignment_expression();
7010         if (expr->kind == EXPR_REFERENCE) {
7011                 entity_t *const entity = expr->reference.entity;
7012                 if (entity->base.parent_scope != &current_function->parameters
7013                                 || entity->base.next != NULL
7014                                 || entity->kind != ENTITY_VARIABLE) {
7015                         errorf(&expr->base.source_position,
7016                                "second argument of 'va_start' must be last parameter of the current function");
7017                 } else {
7018                         expression->va_starte.parameter = &entity->variable;
7019                 }
7020                 expect(')');
7021                 return expression;
7022         }
7023         expect(')');
7024 end_error:
7025         return create_invalid_expression();
7026 }
7027
7028 /**
7029  * Parses a _builtin_va_arg() expression.
7030  */
7031 static expression_t *parse_va_arg(void)
7032 {
7033         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
7034
7035         eat(T___builtin_va_arg);
7036
7037         expect('(');
7038         expression->va_arge.ap = parse_assignment_expression();
7039         expect(',');
7040         expression->base.type = parse_typename();
7041         expect(')');
7042
7043         return expression;
7044 end_error:
7045         return create_invalid_expression();
7046 }
7047
7048 static expression_t *parse_builtin_symbol(void)
7049 {
7050         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
7051
7052         symbol_t *symbol = token.v.symbol;
7053
7054         expression->builtin_symbol.symbol = symbol;
7055         next_token();
7056
7057         type_t *type = get_builtin_symbol_type(symbol);
7058         type = automatic_type_conversion(type);
7059
7060         expression->base.type = type;
7061         return expression;
7062 }
7063
7064 /**
7065  * Parses a __builtin_constant() expression.
7066  */
7067 static expression_t *parse_builtin_constant(void)
7068 {
7069         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
7070
7071         eat(T___builtin_constant_p);
7072
7073         expect('(');
7074         add_anchor_token(')');
7075         expression->builtin_constant.value = parse_assignment_expression();
7076         rem_anchor_token(')');
7077         expect(')');
7078         expression->base.type = type_int;
7079
7080         return expression;
7081 end_error:
7082         return create_invalid_expression();
7083 }
7084
7085 /**
7086  * Parses a __builtin_prefetch() expression.
7087  */
7088 static expression_t *parse_builtin_prefetch(void)
7089 {
7090         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
7091
7092         eat(T___builtin_prefetch);
7093
7094         expect('(');
7095         add_anchor_token(')');
7096         expression->builtin_prefetch.adr = parse_assignment_expression();
7097         if (token.type == ',') {
7098                 next_token();
7099                 expression->builtin_prefetch.rw = parse_assignment_expression();
7100         }
7101         if (token.type == ',') {
7102                 next_token();
7103                 expression->builtin_prefetch.locality = parse_assignment_expression();
7104         }
7105         rem_anchor_token(')');
7106         expect(')');
7107         expression->base.type = type_void;
7108
7109         return expression;
7110 end_error:
7111         return create_invalid_expression();
7112 }
7113
7114 /**
7115  * Parses a __builtin_is_*() compare expression.
7116  */
7117 static expression_t *parse_compare_builtin(void)
7118 {
7119         expression_t *expression;
7120
7121         switch (token.type) {
7122         case T___builtin_isgreater:
7123                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
7124                 break;
7125         case T___builtin_isgreaterequal:
7126                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
7127                 break;
7128         case T___builtin_isless:
7129                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
7130                 break;
7131         case T___builtin_islessequal:
7132                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
7133                 break;
7134         case T___builtin_islessgreater:
7135                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
7136                 break;
7137         case T___builtin_isunordered:
7138                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
7139                 break;
7140         default:
7141                 internal_errorf(HERE, "invalid compare builtin found");
7142         }
7143         expression->base.source_position = *HERE;
7144         next_token();
7145
7146         expect('(');
7147         expression->binary.left = parse_assignment_expression();
7148         expect(',');
7149         expression->binary.right = parse_assignment_expression();
7150         expect(')');
7151
7152         type_t *const orig_type_left  = expression->binary.left->base.type;
7153         type_t *const orig_type_right = expression->binary.right->base.type;
7154
7155         type_t *const type_left  = skip_typeref(orig_type_left);
7156         type_t *const type_right = skip_typeref(orig_type_right);
7157         if (!is_type_float(type_left) && !is_type_float(type_right)) {
7158                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7159                         type_error_incompatible("invalid operands in comparison",
7160                                 &expression->base.source_position, orig_type_left, orig_type_right);
7161                 }
7162         } else {
7163                 semantic_comparison(&expression->binary);
7164         }
7165
7166         return expression;
7167 end_error:
7168         return create_invalid_expression();
7169 }
7170
7171 #if 0
7172 /**
7173  * Parses a __builtin_expect() expression.
7174  */
7175 static expression_t *parse_builtin_expect(void)
7176 {
7177         expression_t *expression
7178                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
7179
7180         eat(T___builtin_expect);
7181
7182         expect('(');
7183         expression->binary.left = parse_assignment_expression();
7184         expect(',');
7185         expression->binary.right = parse_constant_expression();
7186         expect(')');
7187
7188         expression->base.type = expression->binary.left->base.type;
7189
7190         return expression;
7191 end_error:
7192         return create_invalid_expression();
7193 }
7194 #endif
7195
7196 /**
7197  * Parses a MS assume() expression.
7198  */
7199 static expression_t *parse_assume(void)
7200 {
7201         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
7202
7203         eat(T__assume);
7204
7205         expect('(');
7206         add_anchor_token(')');
7207         expression->unary.value = parse_assignment_expression();
7208         rem_anchor_token(')');
7209         expect(')');
7210
7211         expression->base.type = type_void;
7212         return expression;
7213 end_error:
7214         return create_invalid_expression();
7215 }
7216
7217 /**
7218  * Return the declaration for a given label symbol or create a new one.
7219  *
7220  * @param symbol  the symbol of the label
7221  */
7222 static label_t *get_label(symbol_t *symbol)
7223 {
7224         entity_t *label;
7225         assert(current_function != NULL);
7226
7227         label = get_entity(symbol, NAMESPACE_LOCAL_LABEL);
7228         /* if we found a local label, we already created the declaration */
7229         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7230                 if (label->base.parent_scope != scope) {
7231                         assert(label->base.parent_scope->depth < scope->depth);
7232                         current_function->goto_to_outer = true;
7233                 }
7234                 return &label->label;
7235         }
7236
7237         label = get_entity(symbol, NAMESPACE_LABEL);
7238         /* if we found a label in the same function, then we already created the
7239          * declaration */
7240         if (label != NULL
7241                         && label->base.parent_scope == &current_function->parameters) {
7242                 return &label->label;
7243         }
7244
7245         /* otherwise we need to create a new one */
7246         label               = allocate_entity_zero(ENTITY_LABEL);
7247         label->base.namespc = NAMESPACE_LABEL;
7248         label->base.symbol  = symbol;
7249
7250         label_push(label);
7251
7252         return &label->label;
7253 }
7254
7255 /**
7256  * Parses a GNU && label address expression.
7257  */
7258 static expression_t *parse_label_address(void)
7259 {
7260         source_position_t source_position = token.source_position;
7261         eat(T_ANDAND);
7262         if (token.type != T_IDENTIFIER) {
7263                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7264                 goto end_error;
7265         }
7266         symbol_t *symbol = token.v.symbol;
7267         next_token();
7268
7269         label_t *label       = get_label(symbol);
7270         label->used          = true;
7271         label->address_taken = true;
7272
7273         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7274         expression->base.source_position = source_position;
7275
7276         /* label address is threaten as a void pointer */
7277         expression->base.type           = type_void_ptr;
7278         expression->label_address.label = label;
7279         return expression;
7280 end_error:
7281         return create_invalid_expression();
7282 }
7283
7284 /**
7285  * Parse a microsoft __noop expression.
7286  */
7287 static expression_t *parse_noop_expression(void)
7288 {
7289         /* the result is a (int)0 */
7290         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
7291         cnst->base.type            = type_int;
7292         cnst->conste.v.int_value   = 0;
7293         cnst->conste.is_ms_noop    = true;
7294
7295         eat(T___noop);
7296
7297         if (token.type == '(') {
7298                 /* parse arguments */
7299                 eat('(');
7300                 add_anchor_token(')');
7301                 add_anchor_token(',');
7302
7303                 if (token.type != ')') {
7304                         while(true) {
7305                                 (void)parse_assignment_expression();
7306                                 if (token.type != ',')
7307                                         break;
7308                                 next_token();
7309                         }
7310                 }
7311         }
7312         rem_anchor_token(',');
7313         rem_anchor_token(')');
7314         expect(')');
7315
7316 end_error:
7317         return cnst;
7318 }
7319
7320 /**
7321  * Parses a primary expression.
7322  */
7323 static expression_t *parse_primary_expression(void)
7324 {
7325         switch (token.type) {
7326                 case T_INTEGER:                  return parse_int_const();
7327                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
7328                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
7329                 case T_FLOATINGPOINT:            return parse_float_const();
7330                 case T_STRING_LITERAL:
7331                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
7332                 case T_IDENTIFIER:               return parse_reference();
7333                 case T___FUNCTION__:
7334                 case T___func__:                 return parse_function_keyword();
7335                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
7336                 case T___FUNCSIG__:              return parse_funcsig_keyword();
7337                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
7338                 case T___builtin_offsetof:       return parse_offsetof();
7339                 case T___builtin_va_start:       return parse_va_start();
7340                 case T___builtin_va_arg:         return parse_va_arg();
7341                 case T___builtin_expect:
7342                 case T___builtin_alloca:
7343                 case T___builtin_inf:
7344                 case T___builtin_inff:
7345                 case T___builtin_infl:
7346                 case T___builtin_nan:
7347                 case T___builtin_nanf:
7348                 case T___builtin_nanl:
7349                 case T___builtin_huge_val:
7350                 case T___builtin_va_end:         return parse_builtin_symbol();
7351                 case T___builtin_isgreater:
7352                 case T___builtin_isgreaterequal:
7353                 case T___builtin_isless:
7354                 case T___builtin_islessequal:
7355                 case T___builtin_islessgreater:
7356                 case T___builtin_isunordered:    return parse_compare_builtin();
7357                 case T___builtin_constant_p:     return parse_builtin_constant();
7358                 case T___builtin_prefetch:       return parse_builtin_prefetch();
7359                 case T__assume:                  return parse_assume();
7360                 case T_ANDAND:
7361                         if (GNU_MODE)
7362                                 return parse_label_address();
7363                         break;
7364
7365                 case '(':                        return parse_parenthesized_expression();
7366                 case T___noop:                   return parse_noop_expression();
7367         }
7368
7369         errorf(HERE, "unexpected token %K, expected an expression", &token);
7370         return create_invalid_expression();
7371 }
7372
7373 /**
7374  * Check if the expression has the character type and issue a warning then.
7375  */
7376 static void check_for_char_index_type(const expression_t *expression)
7377 {
7378         type_t       *const type      = expression->base.type;
7379         const type_t *const base_type = skip_typeref(type);
7380
7381         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7382                         warning.char_subscripts) {
7383                 warningf(&expression->base.source_position,
7384                          "array subscript has type '%T'", type);
7385         }
7386 }
7387
7388 static expression_t *parse_array_expression(expression_t *left)
7389 {
7390         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7391
7392         eat('[');
7393         add_anchor_token(']');
7394
7395         expression_t *inside = parse_expression();
7396
7397         type_t *const orig_type_left   = left->base.type;
7398         type_t *const orig_type_inside = inside->base.type;
7399
7400         type_t *const type_left   = skip_typeref(orig_type_left);
7401         type_t *const type_inside = skip_typeref(orig_type_inside);
7402
7403         type_t                    *return_type;
7404         array_access_expression_t *array_access = &expression->array_access;
7405         if (is_type_pointer(type_left)) {
7406                 return_type             = type_left->pointer.points_to;
7407                 array_access->array_ref = left;
7408                 array_access->index     = inside;
7409                 check_for_char_index_type(inside);
7410         } else if (is_type_pointer(type_inside)) {
7411                 return_type             = type_inside->pointer.points_to;
7412                 array_access->array_ref = inside;
7413                 array_access->index     = left;
7414                 array_access->flipped   = true;
7415                 check_for_char_index_type(left);
7416         } else {
7417                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7418                         errorf(HERE,
7419                                 "array access on object with non-pointer types '%T', '%T'",
7420                                 orig_type_left, orig_type_inside);
7421                 }
7422                 return_type             = type_error_type;
7423                 array_access->array_ref = left;
7424                 array_access->index     = inside;
7425         }
7426
7427         expression->base.type = automatic_type_conversion(return_type);
7428
7429         rem_anchor_token(']');
7430         expect(']');
7431 end_error:
7432         return expression;
7433 }
7434
7435 static expression_t *parse_typeprop(expression_kind_t const kind)
7436 {
7437         expression_t  *tp_expression = allocate_expression_zero(kind);
7438         tp_expression->base.type     = type_size_t;
7439
7440         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7441
7442         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7443
7444         /* we only refer to a type property, mark this case */
7445         bool old     = in_type_prop;
7446         in_type_prop = true;
7447
7448         type_t       *orig_type;
7449         expression_t *expression;
7450         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7451                 next_token();
7452                 add_anchor_token(')');
7453                 orig_type = parse_typename();
7454                 rem_anchor_token(')');
7455                 expect(')');
7456
7457                 if (token.type == '{') {
7458                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7459                          * starting with a compound literal */
7460                         expression = parse_compound_literal(orig_type);
7461                         goto typeprop_expression;
7462                 }
7463         } else {
7464                 expression = parse_sub_expression(PREC_UNARY);
7465
7466 typeprop_expression:
7467                 tp_expression->typeprop.tp_expression = expression;
7468
7469                 orig_type = revert_automatic_type_conversion(expression);
7470                 expression->base.type = orig_type;
7471         }
7472
7473         tp_expression->typeprop.type   = orig_type;
7474         type_t const* const type       = skip_typeref(orig_type);
7475         char   const* const wrong_type =
7476                 is_type_incomplete(type)    ? "incomplete"          :
7477                 type->kind == TYPE_FUNCTION ? "function designator" :
7478                 type->kind == TYPE_BITFIELD ? "bitfield"            :
7479                 NULL;
7480         if (wrong_type != NULL) {
7481                 errorf(&tp_expression->base.source_position,
7482                                 "operand of %s expression must not be of %s type '%T'",
7483                                 what, wrong_type, orig_type);
7484         }
7485
7486 end_error:
7487         in_type_prop = old;
7488         return tp_expression;
7489 }
7490
7491 static expression_t *parse_sizeof(void)
7492 {
7493         return parse_typeprop(EXPR_SIZEOF);
7494 }
7495
7496 static expression_t *parse_alignof(void)
7497 {
7498         return parse_typeprop(EXPR_ALIGNOF);
7499 }
7500
7501 static expression_t *parse_select_expression(expression_t *compound)
7502 {
7503         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
7504         select->select.compound = compound;
7505
7506         assert(token.type == '.' || token.type == T_MINUSGREATER);
7507         bool is_pointer = (token.type == T_MINUSGREATER);
7508         next_token();
7509
7510         if (token.type != T_IDENTIFIER) {
7511                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7512                 return select;
7513         }
7514         symbol_t *symbol = token.v.symbol;
7515         next_token();
7516
7517         type_t *const orig_type = compound->base.type;
7518         type_t *const type      = skip_typeref(orig_type);
7519
7520         type_t *type_left;
7521         bool    saw_error = false;
7522         if (is_type_pointer(type)) {
7523                 if (!is_pointer) {
7524                         errorf(HERE,
7525                                "request for member '%Y' in something not a struct or union, but '%T'",
7526                                symbol, orig_type);
7527                         saw_error = true;
7528                 }
7529                 type_left = skip_typeref(type->pointer.points_to);
7530         } else {
7531                 if (is_pointer && is_type_valid(type)) {
7532                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7533                         saw_error = true;
7534                 }
7535                 type_left = type;
7536         }
7537
7538         entity_t *entry;
7539         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7540             type_left->kind == TYPE_COMPOUND_UNION) {
7541                 compound_t *compound = type_left->compound.compound;
7542
7543                 if (!compound->complete) {
7544                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7545                                symbol, type_left);
7546                         goto create_error_entry;
7547                 }
7548
7549                 entry = find_compound_entry(compound, symbol);
7550                 if (entry == NULL) {
7551                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7552                         goto create_error_entry;
7553                 }
7554         } else {
7555                 if (is_type_valid(type_left) && !saw_error) {
7556                         errorf(HERE,
7557                                "request for member '%Y' in something not a struct or union, but '%T'",
7558                                symbol, type_left);
7559                 }
7560 create_error_entry:
7561                 return create_invalid_expression();
7562         }
7563
7564         assert(is_declaration(entry));
7565         select->select.compound_entry = entry;
7566
7567         type_t *entry_type = entry->declaration.type;
7568         type_t *res_type
7569                 = get_qualified_type(entry_type, type_left->base.qualifiers);
7570
7571         /* we always do the auto-type conversions; the & and sizeof parser contains
7572          * code to revert this! */
7573         select->base.type = automatic_type_conversion(res_type);
7574
7575         type_t *skipped = skip_typeref(res_type);
7576         if (skipped->kind == TYPE_BITFIELD) {
7577                 select->base.type = skipped->bitfield.base_type;
7578         }
7579
7580         return select;
7581 }
7582
7583 static void check_call_argument(const function_parameter_t *parameter,
7584                                 call_argument_t *argument, unsigned pos)
7585 {
7586         type_t         *expected_type      = parameter->type;
7587         type_t         *expected_type_skip = skip_typeref(expected_type);
7588         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7589         expression_t   *arg_expr           = argument->expression;
7590         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7591
7592         /* handle transparent union gnu extension */
7593         if (is_type_union(expected_type_skip)
7594                         && (expected_type_skip->base.modifiers
7595                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7596                 compound_t *union_decl  = expected_type_skip->compound.compound;
7597                 type_t     *best_type   = NULL;
7598                 entity_t   *entry       = union_decl->members.entities;
7599                 for ( ; entry != NULL; entry = entry->base.next) {
7600                         assert(is_declaration(entry));
7601                         type_t *decl_type = entry->declaration.type;
7602                         error = semantic_assign(decl_type, arg_expr);
7603                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7604                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7605                                 continue;
7606
7607                         if (error == ASSIGN_SUCCESS) {
7608                                 best_type = decl_type;
7609                         } else if (best_type == NULL) {
7610                                 best_type = decl_type;
7611                         }
7612                 }
7613
7614                 if (best_type != NULL) {
7615                         expected_type = best_type;
7616                 }
7617         }
7618
7619         error                = semantic_assign(expected_type, arg_expr);
7620         argument->expression = create_implicit_cast(argument->expression,
7621                                                     expected_type);
7622
7623         if (error != ASSIGN_SUCCESS) {
7624                 /* report exact scope in error messages (like "in argument 3") */
7625                 char buf[64];
7626                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7627                 report_assign_error(error, expected_type, arg_expr,     buf,
7628                                                         &arg_expr->base.source_position);
7629         } else if (warning.traditional || warning.conversion) {
7630                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7631                 if (!types_compatible(expected_type_skip, promoted_type) &&
7632                     !types_compatible(expected_type_skip, type_void_ptr) &&
7633                     !types_compatible(type_void_ptr,      promoted_type)) {
7634                         /* Deliberately show the skipped types in this warning */
7635                         warningf(&arg_expr->base.source_position,
7636                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7637                                 pos, expected_type_skip, promoted_type);
7638                 }
7639         }
7640 }
7641
7642 /**
7643  * Parse a call expression, ie. expression '( ... )'.
7644  *
7645  * @param expression  the function address
7646  */
7647 static expression_t *parse_call_expression(expression_t *expression)
7648 {
7649         expression_t      *result = allocate_expression_zero(EXPR_CALL);
7650         call_expression_t *call   = &result->call;
7651         call->function            = expression;
7652
7653         type_t *const orig_type = expression->base.type;
7654         type_t *const type      = skip_typeref(orig_type);
7655
7656         function_type_t *function_type = NULL;
7657         if (is_type_pointer(type)) {
7658                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7659
7660                 if (is_type_function(to_type)) {
7661                         function_type   = &to_type->function;
7662                         call->base.type = function_type->return_type;
7663                 }
7664         }
7665
7666         if (function_type == NULL && is_type_valid(type)) {
7667                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7668         }
7669
7670         /* parse arguments */
7671         eat('(');
7672         add_anchor_token(')');
7673         add_anchor_token(',');
7674
7675         if (token.type != ')') {
7676                 call_argument_t *last_argument = NULL;
7677
7678                 while (true) {
7679                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7680
7681                         argument->expression = parse_assignment_expression();
7682                         if (last_argument == NULL) {
7683                                 call->arguments = argument;
7684                         } else {
7685                                 last_argument->next = argument;
7686                         }
7687                         last_argument = argument;
7688
7689                         if (token.type != ',')
7690                                 break;
7691                         next_token();
7692                 }
7693         }
7694         rem_anchor_token(',');
7695         rem_anchor_token(')');
7696         expect(')');
7697
7698         if (function_type == NULL)
7699                 return result;
7700
7701         function_parameter_t *parameter = function_type->parameters;
7702         call_argument_t      *argument  = call->arguments;
7703         if (!function_type->unspecified_parameters) {
7704                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7705                                 parameter = parameter->next, argument = argument->next) {
7706                         check_call_argument(parameter, argument, ++pos);
7707                 }
7708
7709                 if (parameter != NULL) {
7710                         errorf(HERE, "too few arguments to function '%E'", expression);
7711                 } else if (argument != NULL && !function_type->variadic) {
7712                         errorf(HERE, "too many arguments to function '%E'", expression);
7713                 }
7714         }
7715
7716         /* do default promotion */
7717         for( ; argument != NULL; argument = argument->next) {
7718                 type_t *type = argument->expression->base.type;
7719
7720                 type = get_default_promoted_type(type);
7721
7722                 argument->expression
7723                         = create_implicit_cast(argument->expression, type);
7724         }
7725
7726         check_format(&result->call);
7727
7728         if (warning.aggregate_return &&
7729             is_type_compound(skip_typeref(function_type->return_type))) {
7730                 warningf(&result->base.source_position,
7731                          "function call has aggregate value");
7732         }
7733
7734 end_error:
7735         return result;
7736 }
7737
7738 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7739
7740 static bool same_compound_type(const type_t *type1, const type_t *type2)
7741 {
7742         return
7743                 is_type_compound(type1) &&
7744                 type1->kind == type2->kind &&
7745                 type1->compound.compound == type2->compound.compound;
7746 }
7747
7748 /**
7749  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7750  *
7751  * @param expression  the conditional expression
7752  */
7753 static expression_t *parse_conditional_expression(expression_t *expression)
7754 {
7755         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7756
7757         conditional_expression_t *conditional = &result->conditional;
7758         conditional->condition                = expression;
7759
7760         eat('?');
7761         add_anchor_token(':');
7762
7763         /* 6.5.15.2 */
7764         type_t *const condition_type_orig = expression->base.type;
7765         type_t *const condition_type      = skip_typeref(condition_type_orig);
7766         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7767                 type_error("expected a scalar type in conditional condition",
7768                            &expression->base.source_position, condition_type_orig);
7769         }
7770
7771         expression_t *true_expression = expression;
7772         bool          gnu_cond = false;
7773         if (GNU_MODE && token.type == ':') {
7774                 gnu_cond = true;
7775         } else {
7776                 true_expression = parse_expression();
7777         }
7778         rem_anchor_token(':');
7779         expect(':');
7780         expression_t *false_expression =
7781                 parse_sub_expression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
7782
7783         type_t *const orig_true_type  = true_expression->base.type;
7784         type_t *const orig_false_type = false_expression->base.type;
7785         type_t *const true_type       = skip_typeref(orig_true_type);
7786         type_t *const false_type      = skip_typeref(orig_false_type);
7787
7788         /* 6.5.15.3 */
7789         type_t *result_type;
7790         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7791                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7792                 /* ISO/IEC 14882:1998(E) Â§5.16:2 */
7793                 if (true_expression->kind == EXPR_UNARY_THROW) {
7794                         result_type = false_type;
7795                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
7796                         result_type = true_type;
7797                 } else {
7798                         if (warning.other && (
7799                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7800                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
7801                                         )) {
7802                                 warningf(&conditional->base.source_position,
7803                                                 "ISO C forbids conditional expression with only one void side");
7804                         }
7805                         result_type = type_void;
7806                 }
7807         } else if (is_type_arithmetic(true_type)
7808                    && is_type_arithmetic(false_type)) {
7809                 result_type = semantic_arithmetic(true_type, false_type);
7810
7811                 true_expression  = create_implicit_cast(true_expression, result_type);
7812                 false_expression = create_implicit_cast(false_expression, result_type);
7813
7814                 conditional->true_expression  = true_expression;
7815                 conditional->false_expression = false_expression;
7816                 conditional->base.type        = result_type;
7817         } else if (same_compound_type(true_type, false_type)) {
7818                 /* just take 1 of the 2 types */
7819                 result_type = true_type;
7820         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7821                 type_t *pointer_type;
7822                 type_t *other_type;
7823                 expression_t *other_expression;
7824                 if (is_type_pointer(true_type) &&
7825                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7826                         pointer_type     = true_type;
7827                         other_type       = false_type;
7828                         other_expression = false_expression;
7829                 } else {
7830                         pointer_type     = false_type;
7831                         other_type       = true_type;
7832                         other_expression = true_expression;
7833                 }
7834
7835                 if (is_null_pointer_constant(other_expression)) {
7836                         result_type = pointer_type;
7837                 } else if (is_type_pointer(other_type)) {
7838                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7839                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7840
7841                         type_t *to;
7842                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7843                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7844                                 to = type_void;
7845                         } else if (types_compatible(get_unqualified_type(to1),
7846                                                     get_unqualified_type(to2))) {
7847                                 to = to1;
7848                         } else {
7849                                 if (warning.other) {
7850                                         warningf(&conditional->base.source_position,
7851                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7852                                                         true_type, false_type);
7853                                 }
7854                                 to = type_void;
7855                         }
7856
7857                         type_t *const type =
7858                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7859                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7860                 } else if (is_type_integer(other_type)) {
7861                         if (warning.other) {
7862                                 warningf(&conditional->base.source_position,
7863                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7864                         }
7865                         result_type = pointer_type;
7866                 } else {
7867                         if (is_type_valid(other_type)) {
7868                                 type_error_incompatible("while parsing conditional",
7869                                                 &expression->base.source_position, true_type, false_type);
7870                         }
7871                         result_type = type_error_type;
7872                 }
7873         } else {
7874                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7875                         type_error_incompatible("while parsing conditional",
7876                                                 &conditional->base.source_position, true_type,
7877                                                 false_type);
7878                 }
7879                 result_type = type_error_type;
7880         }
7881
7882         conditional->true_expression
7883                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7884         conditional->false_expression
7885                 = create_implicit_cast(false_expression, result_type);
7886         conditional->base.type = result_type;
7887         return result;
7888 end_error:
7889         return create_invalid_expression();
7890 }
7891
7892 /**
7893  * Parse an extension expression.
7894  */
7895 static expression_t *parse_extension(void)
7896 {
7897         eat(T___extension__);
7898
7899         bool old_gcc_extension   = in_gcc_extension;
7900         in_gcc_extension         = true;
7901         expression_t *expression = parse_sub_expression(PREC_UNARY);
7902         in_gcc_extension         = old_gcc_extension;
7903         return expression;
7904 }
7905
7906 /**
7907  * Parse a __builtin_classify_type() expression.
7908  */
7909 static expression_t *parse_builtin_classify_type(void)
7910 {
7911         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7912         result->base.type    = type_int;
7913
7914         eat(T___builtin_classify_type);
7915
7916         expect('(');
7917         add_anchor_token(')');
7918         expression_t *expression = parse_expression();
7919         rem_anchor_token(')');
7920         expect(')');
7921         result->classify_type.type_expression = expression;
7922
7923         return result;
7924 end_error:
7925         return create_invalid_expression();
7926 }
7927
7928 /**
7929  * Parse a delete expression
7930  * ISO/IEC 14882:1998(E) Â§5.3.5
7931  */
7932 static expression_t *parse_delete(void)
7933 {
7934         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
7935         result->base.type          = type_void;
7936
7937         eat(T_delete);
7938
7939         if (token.type == '[') {
7940                 next_token();
7941                 result->kind = EXPR_UNARY_DELETE_ARRAY;
7942                 expect(']');
7943 end_error:;
7944         }
7945
7946         expression_t *const value = parse_sub_expression(PREC_CAST);
7947         result->unary.value = value;
7948
7949         type_t *const type = skip_typeref(value->base.type);
7950         if (!is_type_pointer(type)) {
7951                 errorf(&value->base.source_position,
7952                                 "operand of delete must have pointer type");
7953         } else if (warning.other &&
7954                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
7955                 warningf(&value->base.source_position,
7956                                 "deleting 'void*' is undefined");
7957         }
7958
7959         return result;
7960 }
7961
7962 /**
7963  * Parse a throw expression
7964  * ISO/IEC 14882:1998(E) Â§15:1
7965  */
7966 static expression_t *parse_throw(void)
7967 {
7968         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
7969         result->base.type          = type_void;
7970
7971         eat(T_throw);
7972
7973         expression_t *value = NULL;
7974         switch (token.type) {
7975                 EXPRESSION_START {
7976                         value = parse_assignment_expression();
7977                         /* ISO/IEC 14882:1998(E) Â§15.1:3 */
7978                         type_t *const orig_type = value->base.type;
7979                         type_t *const type      = skip_typeref(orig_type);
7980                         if (is_type_incomplete(type)) {
7981                                 errorf(&value->base.source_position,
7982                                                 "cannot throw object of incomplete type '%T'", orig_type);
7983                         } else if (is_type_pointer(type)) {
7984                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
7985                                 if (is_type_incomplete(points_to) &&
7986                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7987                                         errorf(&value->base.source_position,
7988                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
7989                                 }
7990                         }
7991                 }
7992
7993                 default:
7994                         break;
7995         }
7996         result->unary.value = value;
7997
7998         return result;
7999 }
8000
8001 static bool check_pointer_arithmetic(const source_position_t *source_position,
8002                                      type_t *pointer_type,
8003                                      type_t *orig_pointer_type)
8004 {
8005         type_t *points_to = pointer_type->pointer.points_to;
8006         points_to = skip_typeref(points_to);
8007
8008         if (is_type_incomplete(points_to)) {
8009                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8010                         errorf(source_position,
8011                                "arithmetic with pointer to incomplete type '%T' not allowed",
8012                                orig_pointer_type);
8013                         return false;
8014                 } else if (warning.pointer_arith) {
8015                         warningf(source_position,
8016                                  "pointer of type '%T' used in arithmetic",
8017                                  orig_pointer_type);
8018                 }
8019         } else if (is_type_function(points_to)) {
8020                 if (!GNU_MODE) {
8021                         errorf(source_position,
8022                                "arithmetic with pointer to function type '%T' not allowed",
8023                                orig_pointer_type);
8024                         return false;
8025                 } else if (warning.pointer_arith) {
8026                         warningf(source_position,
8027                                  "pointer to a function '%T' used in arithmetic",
8028                                  orig_pointer_type);
8029                 }
8030         }
8031         return true;
8032 }
8033
8034 static bool is_lvalue(const expression_t *expression)
8035 {
8036         /* TODO: doesn't seem to be consistent with Â§6.3.2.1 (1) */
8037         switch (expression->kind) {
8038         case EXPR_REFERENCE:
8039         case EXPR_ARRAY_ACCESS:
8040         case EXPR_SELECT:
8041         case EXPR_UNARY_DEREFERENCE:
8042                 return true;
8043
8044         default:
8045                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
8046                  * error before, which maybe prevented properly recognizing it as
8047                  * lvalue. */
8048                 return !is_type_valid(skip_typeref(expression->base.type));
8049         }
8050 }
8051
8052 static void semantic_incdec(unary_expression_t *expression)
8053 {
8054         type_t *const orig_type = expression->value->base.type;
8055         type_t *const type      = skip_typeref(orig_type);
8056         if (is_type_pointer(type)) {
8057                 if (!check_pointer_arithmetic(&expression->base.source_position,
8058                                               type, orig_type)) {
8059                         return;
8060                 }
8061         } else if (!is_type_real(type) && is_type_valid(type)) {
8062                 /* TODO: improve error message */
8063                 errorf(&expression->base.source_position,
8064                        "operation needs an arithmetic or pointer type");
8065                 return;
8066         }
8067         if (!is_lvalue(expression->value)) {
8068                 /* TODO: improve error message */
8069                 errorf(&expression->base.source_position, "lvalue required as operand");
8070         }
8071         expression->base.type = orig_type;
8072 }
8073
8074 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
8075 {
8076         type_t *const orig_type = expression->value->base.type;
8077         type_t *const type      = skip_typeref(orig_type);
8078         if (!is_type_arithmetic(type)) {
8079                 if (is_type_valid(type)) {
8080                         /* TODO: improve error message */
8081                         errorf(&expression->base.source_position,
8082                                 "operation needs an arithmetic type");
8083                 }
8084                 return;
8085         }
8086
8087         expression->base.type = orig_type;
8088 }
8089
8090 static void semantic_unexpr_plus(unary_expression_t *expression)
8091 {
8092         semantic_unexpr_arithmetic(expression);
8093         if (warning.traditional)
8094                 warningf(&expression->base.source_position,
8095                         "traditional C rejects the unary plus operator");
8096 }
8097
8098 static expression_t const *get_reference_address(expression_t const *expr)
8099 {
8100         bool regular_take_address = true;
8101         for (;;) {
8102                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8103                         expr = expr->unary.value;
8104                 } else {
8105                         regular_take_address = false;
8106                 }
8107
8108                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8109                         break;
8110
8111                 expr = expr->unary.value;
8112         }
8113
8114         /* special case for functions which are automatically converted to a
8115          * pointer to function without an extra TAKE_ADDRESS operation */
8116         if (!regular_take_address && expr->kind == EXPR_REFERENCE
8117                         && expr->reference.entity->kind == ENTITY_FUNCTION) {
8118                 return expr;
8119         }
8120
8121         return NULL;
8122 }
8123
8124 static void warn_function_address_as_bool(expression_t const* expr)
8125 {
8126         if (!warning.address)
8127                 return;
8128
8129         expr = get_reference_address(expr);
8130         if (expr != NULL) {
8131                 warningf(&expr->base.source_position,
8132                          "the address of '%Y' will always evaluate as 'true'",
8133                          expr->reference.entity->base.symbol);
8134         }
8135 }
8136
8137 static void semantic_not(unary_expression_t *expression)
8138 {
8139         type_t *const orig_type = expression->value->base.type;
8140         type_t *const type      = skip_typeref(orig_type);
8141         if (!is_type_scalar(type) && is_type_valid(type)) {
8142                 errorf(&expression->base.source_position,
8143                        "operand of ! must be of scalar type");
8144         }
8145
8146         warn_function_address_as_bool(expression->value);
8147
8148         expression->base.type = type_int;
8149 }
8150
8151 static void semantic_unexpr_integer(unary_expression_t *expression)
8152 {
8153         type_t *const orig_type = expression->value->base.type;
8154         type_t *const type      = skip_typeref(orig_type);
8155         if (!is_type_integer(type)) {
8156                 if (is_type_valid(type)) {
8157                         errorf(&expression->base.source_position,
8158                                "operand of ~ must be of integer type");
8159                 }
8160                 return;
8161         }
8162
8163         expression->base.type = orig_type;
8164 }
8165
8166 static void semantic_dereference(unary_expression_t *expression)
8167 {
8168         type_t *const orig_type = expression->value->base.type;
8169         type_t *const type      = skip_typeref(orig_type);
8170         if (!is_type_pointer(type)) {
8171                 if (is_type_valid(type)) {
8172                         errorf(&expression->base.source_position,
8173                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8174                 }
8175                 return;
8176         }
8177
8178         type_t *result_type   = type->pointer.points_to;
8179         result_type           = automatic_type_conversion(result_type);
8180         expression->base.type = result_type;
8181 }
8182
8183 /**
8184  * Record that an address is taken (expression represents an lvalue).
8185  *
8186  * @param expression       the expression
8187  * @param may_be_register  if true, the expression might be an register
8188  */
8189 static void set_address_taken(expression_t *expression, bool may_be_register)
8190 {
8191         if (expression->kind != EXPR_REFERENCE)
8192                 return;
8193
8194         entity_t *const entity = expression->reference.entity;
8195
8196         if (entity->kind != ENTITY_VARIABLE)
8197                 return;
8198
8199         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8200                         && !may_be_register) {
8201                 errorf(&expression->base.source_position,
8202                                 "address of register variable '%Y' requested",
8203                                 entity->base.symbol);
8204         }
8205
8206         entity->variable.address_taken = true;
8207 }
8208
8209 /**
8210  * Check the semantic of the address taken expression.
8211  */
8212 static void semantic_take_addr(unary_expression_t *expression)
8213 {
8214         expression_t *value = expression->value;
8215         value->base.type    = revert_automatic_type_conversion(value);
8216
8217         type_t *orig_type = value->base.type;
8218         type_t *type      = skip_typeref(orig_type);
8219         if (!is_type_valid(type))
8220                 return;
8221
8222         /* Â§6.5.3.2 */
8223         if (value->kind != EXPR_ARRAY_ACCESS
8224                         && value->kind != EXPR_UNARY_DEREFERENCE
8225                         && !is_lvalue(value)) {
8226                 errorf(&expression->base.source_position,
8227                        "'&' requires an lvalue");
8228         }
8229         if (type->kind == TYPE_BITFIELD) {
8230                 errorf(&expression->base.source_position,
8231                        "'&' not allowed on object with bitfield type '%T'",
8232                        type);
8233         }
8234
8235         set_address_taken(value, false);
8236
8237         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8238 }
8239
8240 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8241 static expression_t *parse_##unexpression_type(void)                         \
8242 {                                                                            \
8243         expression_t *unary_expression                                           \
8244                 = allocate_expression_zero(unexpression_type);                       \
8245         eat(token_type);                                                         \
8246         unary_expression->unary.value = parse_sub_expression(PREC_UNARY);        \
8247                                                                                  \
8248         sfunc(&unary_expression->unary);                                         \
8249                                                                                  \
8250         return unary_expression;                                                 \
8251 }
8252
8253 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8254                                semantic_unexpr_arithmetic)
8255 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8256                                semantic_unexpr_plus)
8257 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8258                                semantic_not)
8259 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8260                                semantic_dereference)
8261 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8262                                semantic_take_addr)
8263 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8264                                semantic_unexpr_integer)
8265 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8266                                semantic_incdec)
8267 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8268                                semantic_incdec)
8269
8270 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8271                                                sfunc)                         \
8272 static expression_t *parse_##unexpression_type(expression_t *left)            \
8273 {                                                                             \
8274         expression_t *unary_expression                                            \
8275                 = allocate_expression_zero(unexpression_type);                        \
8276         eat(token_type);                                                          \
8277         unary_expression->unary.value = left;                                     \
8278                                                                                   \
8279         sfunc(&unary_expression->unary);                                          \
8280                                                                               \
8281         return unary_expression;                                                  \
8282 }
8283
8284 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8285                                        EXPR_UNARY_POSTFIX_INCREMENT,
8286                                        semantic_incdec)
8287 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8288                                        EXPR_UNARY_POSTFIX_DECREMENT,
8289                                        semantic_incdec)
8290
8291 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8292 {
8293         /* TODO: handle complex + imaginary types */
8294
8295         type_left  = get_unqualified_type(type_left);
8296         type_right = get_unqualified_type(type_right);
8297
8298         /* Â§ 6.3.1.8 Usual arithmetic conversions */
8299         if (type_left == type_long_double || type_right == type_long_double) {
8300                 return type_long_double;
8301         } else if (type_left == type_double || type_right == type_double) {
8302                 return type_double;
8303         } else if (type_left == type_float || type_right == type_float) {
8304                 return type_float;
8305         }
8306
8307         type_left  = promote_integer(type_left);
8308         type_right = promote_integer(type_right);
8309
8310         if (type_left == type_right)
8311                 return type_left;
8312
8313         bool const signed_left  = is_type_signed(type_left);
8314         bool const signed_right = is_type_signed(type_right);
8315         int const  rank_left    = get_rank(type_left);
8316         int const  rank_right   = get_rank(type_right);
8317
8318         if (signed_left == signed_right)
8319                 return rank_left >= rank_right ? type_left : type_right;
8320
8321         int     s_rank;
8322         int     u_rank;
8323         type_t *s_type;
8324         type_t *u_type;
8325         if (signed_left) {
8326                 s_rank = rank_left;
8327                 s_type = type_left;
8328                 u_rank = rank_right;
8329                 u_type = type_right;
8330         } else {
8331                 s_rank = rank_right;
8332                 s_type = type_right;
8333                 u_rank = rank_left;
8334                 u_type = type_left;
8335         }
8336
8337         if (u_rank >= s_rank)
8338                 return u_type;
8339
8340         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8341          * easier here... */
8342         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8343                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8344                 return s_type;
8345
8346         switch (s_rank) {
8347                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8348                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8349                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8350
8351                 default: panic("invalid atomic type");
8352         }
8353 }
8354
8355 /**
8356  * Check the semantic restrictions for a binary expression.
8357  */
8358 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8359 {
8360         expression_t *const left            = expression->left;
8361         expression_t *const right           = expression->right;
8362         type_t       *const orig_type_left  = left->base.type;
8363         type_t       *const orig_type_right = right->base.type;
8364         type_t       *const type_left       = skip_typeref(orig_type_left);
8365         type_t       *const type_right      = skip_typeref(orig_type_right);
8366
8367         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8368                 /* TODO: improve error message */
8369                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8370                         errorf(&expression->base.source_position,
8371                                "operation needs arithmetic types");
8372                 }
8373                 return;
8374         }
8375
8376         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8377         expression->left      = create_implicit_cast(left, arithmetic_type);
8378         expression->right     = create_implicit_cast(right, arithmetic_type);
8379         expression->base.type = arithmetic_type;
8380 }
8381
8382 static void warn_div_by_zero(binary_expression_t const *const expression)
8383 {
8384         if (!warning.div_by_zero ||
8385             !is_type_integer(expression->base.type))
8386                 return;
8387
8388         expression_t const *const right = expression->right;
8389         /* The type of the right operand can be different for /= */
8390         if (is_type_integer(right->base.type) &&
8391             is_constant_expression(right)     &&
8392             fold_constant(right) == 0) {
8393                 warningf(&expression->base.source_position, "division by zero");
8394         }
8395 }
8396
8397 /**
8398  * Check the semantic restrictions for a div/mod expression.
8399  */
8400 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
8401         semantic_binexpr_arithmetic(expression);
8402         warn_div_by_zero(expression);
8403 }
8404
8405 static void semantic_shift_op(binary_expression_t *expression)
8406 {
8407         expression_t *const left            = expression->left;
8408         expression_t *const right           = expression->right;
8409         type_t       *const orig_type_left  = left->base.type;
8410         type_t       *const orig_type_right = right->base.type;
8411         type_t       *      type_left       = skip_typeref(orig_type_left);
8412         type_t       *      type_right      = skip_typeref(orig_type_right);
8413
8414         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8415                 /* TODO: improve error message */
8416                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8417                         errorf(&expression->base.source_position,
8418                                "operands of shift operation must have integer types");
8419                 }
8420                 return;
8421         }
8422
8423         type_left  = promote_integer(type_left);
8424         type_right = promote_integer(type_right);
8425
8426         expression->left      = create_implicit_cast(left, type_left);
8427         expression->right     = create_implicit_cast(right, type_right);
8428         expression->base.type = type_left;
8429 }
8430
8431 static void semantic_add(binary_expression_t *expression)
8432 {
8433         expression_t *const left            = expression->left;
8434         expression_t *const right           = expression->right;
8435         type_t       *const orig_type_left  = left->base.type;
8436         type_t       *const orig_type_right = right->base.type;
8437         type_t       *const type_left       = skip_typeref(orig_type_left);
8438         type_t       *const type_right      = skip_typeref(orig_type_right);
8439
8440         /* Â§ 6.5.6 */
8441         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8442                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8443                 expression->left  = create_implicit_cast(left, arithmetic_type);
8444                 expression->right = create_implicit_cast(right, arithmetic_type);
8445                 expression->base.type = arithmetic_type;
8446                 return;
8447         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8448                 check_pointer_arithmetic(&expression->base.source_position,
8449                                          type_left, orig_type_left);
8450                 expression->base.type = type_left;
8451         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8452                 check_pointer_arithmetic(&expression->base.source_position,
8453                                          type_right, orig_type_right);
8454                 expression->base.type = type_right;
8455         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8456                 errorf(&expression->base.source_position,
8457                        "invalid operands to binary + ('%T', '%T')",
8458                        orig_type_left, orig_type_right);
8459         }
8460 }
8461
8462 static void semantic_sub(binary_expression_t *expression)
8463 {
8464         expression_t            *const left            = expression->left;
8465         expression_t            *const right           = expression->right;
8466         type_t                  *const orig_type_left  = left->base.type;
8467         type_t                  *const orig_type_right = right->base.type;
8468         type_t                  *const type_left       = skip_typeref(orig_type_left);
8469         type_t                  *const type_right      = skip_typeref(orig_type_right);
8470         source_position_t const *const pos             = &expression->base.source_position;
8471
8472         /* Â§ 5.6.5 */
8473         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8474                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8475                 expression->left        = create_implicit_cast(left, arithmetic_type);
8476                 expression->right       = create_implicit_cast(right, arithmetic_type);
8477                 expression->base.type =  arithmetic_type;
8478                 return;
8479         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8480                 check_pointer_arithmetic(&expression->base.source_position,
8481                                          type_left, orig_type_left);
8482                 expression->base.type = type_left;
8483         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8484                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8485                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8486                 if (!types_compatible(unqual_left, unqual_right)) {
8487                         errorf(pos,
8488                                "subtracting pointers to incompatible types '%T' and '%T'",
8489                                orig_type_left, orig_type_right);
8490                 } else if (!is_type_object(unqual_left)) {
8491                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8492                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8493                                        orig_type_left);
8494                         } else if (warning.other) {
8495                                 warningf(pos, "subtracting pointers to void");
8496                         }
8497                 }
8498                 expression->base.type = type_ptrdiff_t;
8499         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8500                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8501                        orig_type_left, orig_type_right);
8502         }
8503 }
8504
8505 static void warn_string_literal_address(expression_t const* expr)
8506 {
8507         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8508                 expr = expr->unary.value;
8509                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8510                         return;
8511                 expr = expr->unary.value;
8512         }
8513
8514         if (expr->kind == EXPR_STRING_LITERAL ||
8515             expr->kind == EXPR_WIDE_STRING_LITERAL) {
8516                 warningf(&expr->base.source_position,
8517                         "comparison with string literal results in unspecified behaviour");
8518         }
8519 }
8520
8521 /**
8522  * Check the semantics of comparison expressions.
8523  *
8524  * @param expression   The expression to check.
8525  */
8526 static void semantic_comparison(binary_expression_t *expression)
8527 {
8528         expression_t *left  = expression->left;
8529         expression_t *right = expression->right;
8530
8531         if (warning.address) {
8532                 warn_string_literal_address(left);
8533                 warn_string_literal_address(right);
8534
8535                 expression_t const* const func_left = get_reference_address(left);
8536                 if (func_left != NULL && is_null_pointer_constant(right)) {
8537                         warningf(&expression->base.source_position,
8538                                  "the address of '%Y' will never be NULL",
8539                                  func_left->reference.entity->base.symbol);
8540                 }
8541
8542                 expression_t const* const func_right = get_reference_address(right);
8543                 if (func_right != NULL && is_null_pointer_constant(right)) {
8544                         warningf(&expression->base.source_position,
8545                                  "the address of '%Y' will never be NULL",
8546                                  func_right->reference.entity->base.symbol);
8547                 }
8548         }
8549
8550         type_t *orig_type_left  = left->base.type;
8551         type_t *orig_type_right = right->base.type;
8552         type_t *type_left       = skip_typeref(orig_type_left);
8553         type_t *type_right      = skip_typeref(orig_type_right);
8554
8555         /* TODO non-arithmetic types */
8556         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8557                 /* test for signed vs unsigned compares */
8558                 if (warning.sign_compare &&
8559                     (expression->base.kind != EXPR_BINARY_EQUAL &&
8560                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
8561                     (is_type_signed(type_left) != is_type_signed(type_right))) {
8562
8563                         /* check if 1 of the operands is a constant, in this case we just
8564                          * check wether we can safely represent the resulting constant in
8565                          * the type of the other operand. */
8566                         expression_t *const_expr = NULL;
8567                         expression_t *other_expr = NULL;
8568
8569                         if (is_constant_expression(left)) {
8570                                 const_expr = left;
8571                                 other_expr = right;
8572                         } else if (is_constant_expression(right)) {
8573                                 const_expr = right;
8574                                 other_expr = left;
8575                         }
8576
8577                         if (const_expr != NULL) {
8578                                 type_t *other_type = skip_typeref(other_expr->base.type);
8579                                 long    val        = fold_constant(const_expr);
8580                                 /* TODO: check if val can be represented by other_type */
8581                                 (void) other_type;
8582                                 (void) val;
8583                         }
8584                         warningf(&expression->base.source_position,
8585                                  "comparison between signed and unsigned");
8586                 }
8587                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8588                 expression->left        = create_implicit_cast(left, arithmetic_type);
8589                 expression->right       = create_implicit_cast(right, arithmetic_type);
8590                 expression->base.type   = arithmetic_type;
8591                 if (warning.float_equal &&
8592                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8593                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8594                     is_type_float(arithmetic_type)) {
8595                         warningf(&expression->base.source_position,
8596                                  "comparing floating point with == or != is unsafe");
8597                 }
8598         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8599                 /* TODO check compatibility */
8600         } else if (is_type_pointer(type_left)) {
8601                 expression->right = create_implicit_cast(right, type_left);
8602         } else if (is_type_pointer(type_right)) {
8603                 expression->left = create_implicit_cast(left, type_right);
8604         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8605                 type_error_incompatible("invalid operands in comparison",
8606                                         &expression->base.source_position,
8607                                         type_left, type_right);
8608         }
8609         expression->base.type = type_int;
8610 }
8611
8612 /**
8613  * Checks if a compound type has constant fields.
8614  */
8615 static bool has_const_fields(const compound_type_t *type)
8616 {
8617         compound_t *compound = type->compound;
8618         entity_t   *entry    = compound->members.entities;
8619
8620         for (; entry != NULL; entry = entry->base.next) {
8621                 if (!is_declaration(entry))
8622                         continue;
8623
8624                 const type_t *decl_type = skip_typeref(entry->declaration.type);
8625                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8626                         return true;
8627         }
8628
8629         return false;
8630 }
8631
8632 static bool is_valid_assignment_lhs(expression_t const* const left)
8633 {
8634         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8635         type_t *const type_left      = skip_typeref(orig_type_left);
8636
8637         if (!is_lvalue(left)) {
8638                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
8639                        left);
8640                 return false;
8641         }
8642
8643         if (is_type_array(type_left)) {
8644                 errorf(HERE, "cannot assign to arrays ('%E')", left);
8645                 return false;
8646         }
8647         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8648                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
8649                        orig_type_left);
8650                 return false;
8651         }
8652         if (is_type_incomplete(type_left)) {
8653                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
8654                        left, orig_type_left);
8655                 return false;
8656         }
8657         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8658                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
8659                        left, orig_type_left);
8660                 return false;
8661         }
8662
8663         return true;
8664 }
8665
8666 static void semantic_arithmetic_assign(binary_expression_t *expression)
8667 {
8668         expression_t *left            = expression->left;
8669         expression_t *right           = expression->right;
8670         type_t       *orig_type_left  = left->base.type;
8671         type_t       *orig_type_right = right->base.type;
8672
8673         if (!is_valid_assignment_lhs(left))
8674                 return;
8675
8676         type_t *type_left  = skip_typeref(orig_type_left);
8677         type_t *type_right = skip_typeref(orig_type_right);
8678
8679         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8680                 /* TODO: improve error message */
8681                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8682                         errorf(&expression->base.source_position,
8683                                "operation needs arithmetic types");
8684                 }
8685                 return;
8686         }
8687
8688         /* combined instructions are tricky. We can't create an implicit cast on
8689          * the left side, because we need the uncasted form for the store.
8690          * The ast2firm pass has to know that left_type must be right_type
8691          * for the arithmetic operation and create a cast by itself */
8692         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8693         expression->right       = create_implicit_cast(right, arithmetic_type);
8694         expression->base.type   = type_left;
8695 }
8696
8697 static void semantic_divmod_assign(binary_expression_t *expression)
8698 {
8699         semantic_arithmetic_assign(expression);
8700         warn_div_by_zero(expression);
8701 }
8702
8703 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8704 {
8705         expression_t *const left            = expression->left;
8706         expression_t *const right           = expression->right;
8707         type_t       *const orig_type_left  = left->base.type;
8708         type_t       *const orig_type_right = right->base.type;
8709         type_t       *const type_left       = skip_typeref(orig_type_left);
8710         type_t       *const type_right      = skip_typeref(orig_type_right);
8711
8712         if (!is_valid_assignment_lhs(left))
8713                 return;
8714
8715         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8716                 /* combined instructions are tricky. We can't create an implicit cast on
8717                  * the left side, because we need the uncasted form for the store.
8718                  * The ast2firm pass has to know that left_type must be right_type
8719                  * for the arithmetic operation and create a cast by itself */
8720                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8721                 expression->right     = create_implicit_cast(right, arithmetic_type);
8722                 expression->base.type = type_left;
8723         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8724                 check_pointer_arithmetic(&expression->base.source_position,
8725                                          type_left, orig_type_left);
8726                 expression->base.type = type_left;
8727         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8728                 errorf(&expression->base.source_position,
8729                        "incompatible types '%T' and '%T' in assignment",
8730                        orig_type_left, orig_type_right);
8731         }
8732 }
8733
8734 /**
8735  * Check the semantic restrictions of a logical expression.
8736  */
8737 static void semantic_logical_op(binary_expression_t *expression)
8738 {
8739         expression_t *const left            = expression->left;
8740         expression_t *const right           = expression->right;
8741         type_t       *const orig_type_left  = left->base.type;
8742         type_t       *const orig_type_right = right->base.type;
8743         type_t       *const type_left       = skip_typeref(orig_type_left);
8744         type_t       *const type_right      = skip_typeref(orig_type_right);
8745
8746         warn_function_address_as_bool(left);
8747         warn_function_address_as_bool(right);
8748
8749         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8750                 /* TODO: improve error message */
8751                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8752                         errorf(&expression->base.source_position,
8753                                "operation needs scalar types");
8754                 }
8755                 return;
8756         }
8757
8758         expression->base.type = type_int;
8759 }
8760
8761 /**
8762  * Check the semantic restrictions of a binary assign expression.
8763  */
8764 static void semantic_binexpr_assign(binary_expression_t *expression)
8765 {
8766         expression_t *left           = expression->left;
8767         type_t       *orig_type_left = left->base.type;
8768
8769         if (!is_valid_assignment_lhs(left))
8770                 return;
8771
8772         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8773         report_assign_error(error, orig_type_left, expression->right,
8774                         "assignment", &left->base.source_position);
8775         expression->right = create_implicit_cast(expression->right, orig_type_left);
8776         expression->base.type = orig_type_left;
8777 }
8778
8779 /**
8780  * Determine if the outermost operation (or parts thereof) of the given
8781  * expression has no effect in order to generate a warning about this fact.
8782  * Therefore in some cases this only examines some of the operands of the
8783  * expression (see comments in the function and examples below).
8784  * Examples:
8785  *   f() + 23;    // warning, because + has no effect
8786  *   x || f();    // no warning, because x controls execution of f()
8787  *   x ? y : f(); // warning, because y has no effect
8788  *   (void)x;     // no warning to be able to suppress the warning
8789  * This function can NOT be used for an "expression has definitely no effect"-
8790  * analysis. */
8791 static bool expression_has_effect(const expression_t *const expr)
8792 {
8793         switch (expr->kind) {
8794                 case EXPR_UNKNOWN:                   break;
8795                 case EXPR_INVALID:                   return true; /* do NOT warn */
8796                 case EXPR_REFERENCE:                 return false;
8797                 case EXPR_REFERENCE_ENUM_VALUE:      return false;
8798                 /* suppress the warning for microsoft __noop operations */
8799                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8800                 case EXPR_CHARACTER_CONSTANT:        return false;
8801                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8802                 case EXPR_STRING_LITERAL:            return false;
8803                 case EXPR_WIDE_STRING_LITERAL:       return false;
8804                 case EXPR_LABEL_ADDRESS:             return false;
8805
8806                 case EXPR_CALL: {
8807                         const call_expression_t *const call = &expr->call;
8808                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8809                                 return true;
8810
8811                         switch (call->function->builtin_symbol.symbol->ID) {
8812                                 case T___builtin_va_end: return true;
8813                                 default:                 return false;
8814                         }
8815                 }
8816
8817                 /* Generate the warning if either the left or right hand side of a
8818                  * conditional expression has no effect */
8819                 case EXPR_CONDITIONAL: {
8820                         const conditional_expression_t *const cond = &expr->conditional;
8821                         return
8822                                 expression_has_effect(cond->true_expression) &&
8823                                 expression_has_effect(cond->false_expression);
8824                 }
8825
8826                 case EXPR_SELECT:                    return false;
8827                 case EXPR_ARRAY_ACCESS:              return false;
8828                 case EXPR_SIZEOF:                    return false;
8829                 case EXPR_CLASSIFY_TYPE:             return false;
8830                 case EXPR_ALIGNOF:                   return false;
8831
8832                 case EXPR_FUNCNAME:                  return false;
8833                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8834                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8835                 case EXPR_BUILTIN_PREFETCH:          return true;
8836                 case EXPR_OFFSETOF:                  return false;
8837                 case EXPR_VA_START:                  return true;
8838                 case EXPR_VA_ARG:                    return true;
8839                 case EXPR_STATEMENT:                 return true; // TODO
8840                 case EXPR_COMPOUND_LITERAL:          return false;
8841
8842                 case EXPR_UNARY_NEGATE:              return false;
8843                 case EXPR_UNARY_PLUS:                return false;
8844                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8845                 case EXPR_UNARY_NOT:                 return false;
8846                 case EXPR_UNARY_DEREFERENCE:         return false;
8847                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8848                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8849                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8850                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8851                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8852
8853                 /* Treat void casts as if they have an effect in order to being able to
8854                  * suppress the warning */
8855                 case EXPR_UNARY_CAST: {
8856                         type_t *const type = skip_typeref(expr->base.type);
8857                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8858                 }
8859
8860                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8861                 case EXPR_UNARY_ASSUME:              return true;
8862                 case EXPR_UNARY_DELETE:              return true;
8863                 case EXPR_UNARY_DELETE_ARRAY:        return true;
8864                 case EXPR_UNARY_THROW:               return true;
8865
8866                 case EXPR_BINARY_ADD:                return false;
8867                 case EXPR_BINARY_SUB:                return false;
8868                 case EXPR_BINARY_MUL:                return false;
8869                 case EXPR_BINARY_DIV:                return false;
8870                 case EXPR_BINARY_MOD:                return false;
8871                 case EXPR_BINARY_EQUAL:              return false;
8872                 case EXPR_BINARY_NOTEQUAL:           return false;
8873                 case EXPR_BINARY_LESS:               return false;
8874                 case EXPR_BINARY_LESSEQUAL:          return false;
8875                 case EXPR_BINARY_GREATER:            return false;
8876                 case EXPR_BINARY_GREATEREQUAL:       return false;
8877                 case EXPR_BINARY_BITWISE_AND:        return false;
8878                 case EXPR_BINARY_BITWISE_OR:         return false;
8879                 case EXPR_BINARY_BITWISE_XOR:        return false;
8880                 case EXPR_BINARY_SHIFTLEFT:          return false;
8881                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8882                 case EXPR_BINARY_ASSIGN:             return true;
8883                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8884                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8885                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8886                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8887                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8888                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8889                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8890                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8891                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8892                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8893
8894                 /* Only examine the right hand side of && and ||, because the left hand
8895                  * side already has the effect of controlling the execution of the right
8896                  * hand side */
8897                 case EXPR_BINARY_LOGICAL_AND:
8898                 case EXPR_BINARY_LOGICAL_OR:
8899                 /* Only examine the right hand side of a comma expression, because the left
8900                  * hand side has a separate warning */
8901                 case EXPR_BINARY_COMMA:
8902                         return expression_has_effect(expr->binary.right);
8903
8904                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8905                 case EXPR_BINARY_ISGREATER:          return false;
8906                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8907                 case EXPR_BINARY_ISLESS:             return false;
8908                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8909                 case EXPR_BINARY_ISLESSGREATER:      return false;
8910                 case EXPR_BINARY_ISUNORDERED:        return false;
8911         }
8912
8913         internal_errorf(HERE, "unexpected expression");
8914 }
8915
8916 static void semantic_comma(binary_expression_t *expression)
8917 {
8918         if (warning.unused_value) {
8919                 const expression_t *const left = expression->left;
8920                 if (!expression_has_effect(left)) {
8921                         warningf(&left->base.source_position,
8922                                  "left-hand operand of comma expression has no effect");
8923                 }
8924         }
8925         expression->base.type = expression->right->base.type;
8926 }
8927
8928 /**
8929  * @param prec_r precedence of the right operand
8930  */
8931 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
8932 static expression_t *parse_##binexpression_type(expression_t *left)          \
8933 {                                                                            \
8934         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
8935         binexpr->binary.left  = left;                                            \
8936         eat(token_type);                                                         \
8937                                                                              \
8938         expression_t *right = parse_sub_expression(prec_r);                      \
8939                                                                              \
8940         binexpr->binary.right = right;                                           \
8941         sfunc(&binexpr->binary);                                                 \
8942                                                                              \
8943         return binexpr;                                                          \
8944 }
8945
8946 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
8947 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
8948 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
8949 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
8950 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
8951 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
8952 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
8953 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
8954 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
8955 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
8956 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
8957 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
8958 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
8959 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
8960 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
8961 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
8962 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
8963 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
8964 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
8965 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8966 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8967 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8968 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8969 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8970 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8971 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8972 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8973 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8974 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8975 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
8976
8977
8978 static expression_t *parse_sub_expression(precedence_t precedence)
8979 {
8980         if (token.type < 0) {
8981                 return expected_expression_error();
8982         }
8983
8984         expression_parser_function_t *parser
8985                 = &expression_parsers[token.type];
8986         source_position_t             source_position = token.source_position;
8987         expression_t                 *left;
8988
8989         if (parser->parser != NULL) {
8990                 left = parser->parser();
8991         } else {
8992                 left = parse_primary_expression();
8993         }
8994         assert(left != NULL);
8995         left->base.source_position = source_position;
8996
8997         while(true) {
8998                 if (token.type < 0) {
8999                         return expected_expression_error();
9000                 }
9001
9002                 parser = &expression_parsers[token.type];
9003                 if (parser->infix_parser == NULL)
9004                         break;
9005                 if (parser->infix_precedence < precedence)
9006                         break;
9007
9008                 left = parser->infix_parser(left);
9009
9010                 assert(left != NULL);
9011                 assert(left->kind != EXPR_UNKNOWN);
9012                 left->base.source_position = source_position;
9013         }
9014
9015         return left;
9016 }
9017
9018 /**
9019  * Parse an expression.
9020  */
9021 static expression_t *parse_expression(void)
9022 {
9023         return parse_sub_expression(PREC_EXPRESSION);
9024 }
9025
9026 /**
9027  * Register a parser for a prefix-like operator.
9028  *
9029  * @param parser      the parser function
9030  * @param token_type  the token type of the prefix token
9031  */
9032 static void register_expression_parser(parse_expression_function parser,
9033                                        int token_type)
9034 {
9035         expression_parser_function_t *entry = &expression_parsers[token_type];
9036
9037         if (entry->parser != NULL) {
9038                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9039                 panic("trying to register multiple expression parsers for a token");
9040         }
9041         entry->parser = parser;
9042 }
9043
9044 /**
9045  * Register a parser for an infix operator with given precedence.
9046  *
9047  * @param parser      the parser function
9048  * @param token_type  the token type of the infix operator
9049  * @param precedence  the precedence of the operator
9050  */
9051 static void register_infix_parser(parse_expression_infix_function parser,
9052                 int token_type, unsigned precedence)
9053 {
9054         expression_parser_function_t *entry = &expression_parsers[token_type];
9055
9056         if (entry->infix_parser != NULL) {
9057                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9058                 panic("trying to register multiple infix expression parsers for a "
9059                       "token");
9060         }
9061         entry->infix_parser     = parser;
9062         entry->infix_precedence = precedence;
9063 }
9064
9065 /**
9066  * Initialize the expression parsers.
9067  */
9068 static void init_expression_parsers(void)
9069 {
9070         memset(&expression_parsers, 0, sizeof(expression_parsers));
9071
9072         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9073         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9074         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9075         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9076         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9077         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9078         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9079         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9080         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9081         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9082         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9083         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9084         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9085         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9086         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9087         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9088         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9089         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9090         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9091         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9092         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9093         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9094         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9095         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9096         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9097         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9098         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9099         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9100         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9101         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9102         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9103         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9104         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9105         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9106         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9107         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9108         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9109
9110         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9111         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9112         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9113         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9114         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9115         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9116         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9117         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9118         register_expression_parser(parse_sizeof,                      T_sizeof);
9119         register_expression_parser(parse_alignof,                     T___alignof__);
9120         register_expression_parser(parse_extension,                   T___extension__);
9121         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9122         register_expression_parser(parse_delete,                      T_delete);
9123         register_expression_parser(parse_throw,                       T_throw);
9124 }
9125
9126 /**
9127  * Parse a asm statement arguments specification.
9128  */
9129 static asm_argument_t *parse_asm_arguments(bool is_out)
9130 {
9131         asm_argument_t *result = NULL;
9132         asm_argument_t *last   = NULL;
9133
9134         while (token.type == T_STRING_LITERAL || token.type == '[') {
9135                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9136                 memset(argument, 0, sizeof(argument[0]));
9137
9138                 if (token.type == '[') {
9139                         eat('[');
9140                         if (token.type != T_IDENTIFIER) {
9141                                 parse_error_expected("while parsing asm argument",
9142                                                      T_IDENTIFIER, NULL);
9143                                 return NULL;
9144                         }
9145                         argument->symbol = token.v.symbol;
9146
9147                         expect(']');
9148                 }
9149
9150                 argument->constraints = parse_string_literals();
9151                 expect('(');
9152                 add_anchor_token(')');
9153                 expression_t *expression = parse_expression();
9154                 rem_anchor_token(')');
9155                 if (is_out) {
9156                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9157                          * change size or type representation (e.g. int -> long is ok, but
9158                          * int -> float is not) */
9159                         if (expression->kind == EXPR_UNARY_CAST) {
9160                                 type_t      *const type = expression->base.type;
9161                                 type_kind_t  const kind = type->kind;
9162                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9163                                         unsigned flags;
9164                                         unsigned size;
9165                                         if (kind == TYPE_ATOMIC) {
9166                                                 atomic_type_kind_t const akind = type->atomic.akind;
9167                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9168                                                 size  = get_atomic_type_size(akind);
9169                                         } else {
9170                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9171                                                 size  = get_atomic_type_size(get_intptr_kind());
9172                                         }
9173
9174                                         do {
9175                                                 expression_t *const value      = expression->unary.value;
9176                                                 type_t       *const value_type = value->base.type;
9177                                                 type_kind_t   const value_kind = value_type->kind;
9178
9179                                                 unsigned value_flags;
9180                                                 unsigned value_size;
9181                                                 if (value_kind == TYPE_ATOMIC) {
9182                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9183                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9184                                                         value_size  = get_atomic_type_size(value_akind);
9185                                                 } else if (value_kind == TYPE_POINTER) {
9186                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9187                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9188                                                 } else {
9189                                                         break;
9190                                                 }
9191
9192                                                 if (value_flags != flags || value_size != size)
9193                                                         break;
9194
9195                                                 expression = value;
9196                                         } while (expression->kind == EXPR_UNARY_CAST);
9197                                 }
9198                         }
9199
9200                         if (!is_lvalue(expression)) {
9201                                 errorf(&expression->base.source_position,
9202                                        "asm output argument is not an lvalue");
9203                         }
9204
9205                         if (argument->constraints.begin[0] == '+')
9206                                 mark_vars_read(expression, NULL);
9207                 } else {
9208                         mark_vars_read(expression, NULL);
9209                 }
9210                 argument->expression = expression;
9211                 expect(')');
9212
9213                 set_address_taken(expression, true);
9214
9215                 if (last != NULL) {
9216                         last->next = argument;
9217                 } else {
9218                         result = argument;
9219                 }
9220                 last = argument;
9221
9222                 if (token.type != ',')
9223                         break;
9224                 eat(',');
9225         }
9226
9227         return result;
9228 end_error:
9229         return NULL;
9230 }
9231
9232 /**
9233  * Parse a asm statement clobber specification.
9234  */
9235 static asm_clobber_t *parse_asm_clobbers(void)
9236 {
9237         asm_clobber_t *result = NULL;
9238         asm_clobber_t *last   = NULL;
9239
9240         while(token.type == T_STRING_LITERAL) {
9241                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9242                 clobber->clobber       = parse_string_literals();
9243
9244                 if (last != NULL) {
9245                         last->next = clobber;
9246                 } else {
9247                         result = clobber;
9248                 }
9249                 last = clobber;
9250
9251                 if (token.type != ',')
9252                         break;
9253                 eat(',');
9254         }
9255
9256         return result;
9257 }
9258
9259 /**
9260  * Parse an asm statement.
9261  */
9262 static statement_t *parse_asm_statement(void)
9263 {
9264         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9265         asm_statement_t *asm_statement = &statement->asms;
9266
9267         eat(T_asm);
9268
9269         if (token.type == T_volatile) {
9270                 next_token();
9271                 asm_statement->is_volatile = true;
9272         }
9273
9274         expect('(');
9275         add_anchor_token(')');
9276         add_anchor_token(':');
9277         asm_statement->asm_text = parse_string_literals();
9278
9279         if (token.type != ':') {
9280                 rem_anchor_token(':');
9281                 goto end_of_asm;
9282         }
9283         eat(':');
9284
9285         asm_statement->outputs = parse_asm_arguments(true);
9286         if (token.type != ':') {
9287                 rem_anchor_token(':');
9288                 goto end_of_asm;
9289         }
9290         eat(':');
9291
9292         asm_statement->inputs = parse_asm_arguments(false);
9293         if (token.type != ':') {
9294                 rem_anchor_token(':');
9295                 goto end_of_asm;
9296         }
9297         rem_anchor_token(':');
9298         eat(':');
9299
9300         asm_statement->clobbers = parse_asm_clobbers();
9301
9302 end_of_asm:
9303         rem_anchor_token(')');
9304         expect(')');
9305         expect(';');
9306
9307         if (asm_statement->outputs == NULL) {
9308                 /* GCC: An 'asm' instruction without any output operands will be treated
9309                  * identically to a volatile 'asm' instruction. */
9310                 asm_statement->is_volatile = true;
9311         }
9312
9313         return statement;
9314 end_error:
9315         return create_invalid_statement();
9316 }
9317
9318 /**
9319  * Parse a case statement.
9320  */
9321 static statement_t *parse_case_statement(void)
9322 {
9323         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9324         source_position_t *const pos       = &statement->base.source_position;
9325
9326         eat(T_case);
9327
9328         expression_t *const expression   = parse_expression();
9329         statement->case_label.expression = expression;
9330         if (!is_constant_expression(expression)) {
9331                 /* This check does not prevent the error message in all cases of an
9332                  * prior error while parsing the expression.  At least it catches the
9333                  * common case of a mistyped enum entry. */
9334                 if (is_type_valid(skip_typeref(expression->base.type))) {
9335                         errorf(pos, "case label does not reduce to an integer constant");
9336                 }
9337                 statement->case_label.is_bad = true;
9338         } else {
9339                 long const val = fold_constant(expression);
9340                 statement->case_label.first_case = val;
9341                 statement->case_label.last_case  = val;
9342         }
9343
9344         if (GNU_MODE) {
9345                 if (token.type == T_DOTDOTDOT) {
9346                         next_token();
9347                         expression_t *const end_range   = parse_expression();
9348                         statement->case_label.end_range = end_range;
9349                         if (!is_constant_expression(end_range)) {
9350                                 /* This check does not prevent the error message in all cases of an
9351                                  * prior error while parsing the expression.  At least it catches the
9352                                  * common case of a mistyped enum entry. */
9353                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9354                                         errorf(pos, "case range does not reduce to an integer constant");
9355                                 }
9356                                 statement->case_label.is_bad = true;
9357                         } else {
9358                                 long const val = fold_constant(end_range);
9359                                 statement->case_label.last_case = val;
9360
9361                                 if (warning.other && val < statement->case_label.first_case) {
9362                                         statement->case_label.is_empty_range = true;
9363                                         warningf(pos, "empty range specified");
9364                                 }
9365                         }
9366                 }
9367         }
9368
9369         PUSH_PARENT(statement);
9370
9371         expect(':');
9372
9373         if (current_switch != NULL) {
9374                 if (! statement->case_label.is_bad) {
9375                         /* Check for duplicate case values */
9376                         case_label_statement_t *c = &statement->case_label;
9377                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9378                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9379                                         continue;
9380
9381                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9382                                         continue;
9383
9384                                 errorf(pos, "duplicate case value (previously used %P)",
9385                                        &l->base.source_position);
9386                                 break;
9387                         }
9388                 }
9389                 /* link all cases into the switch statement */
9390                 if (current_switch->last_case == NULL) {
9391                         current_switch->first_case      = &statement->case_label;
9392                 } else {
9393                         current_switch->last_case->next = &statement->case_label;
9394                 }
9395                 current_switch->last_case = &statement->case_label;
9396         } else {
9397                 errorf(pos, "case label not within a switch statement");
9398         }
9399
9400         statement_t *const inner_stmt = parse_statement();
9401         statement->case_label.statement = inner_stmt;
9402         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9403                 errorf(&inner_stmt->base.source_position, "declaration after case label");
9404         }
9405
9406         POP_PARENT;
9407         return statement;
9408 end_error:
9409         POP_PARENT;
9410         return create_invalid_statement();
9411 }
9412
9413 /**
9414  * Parse a default statement.
9415  */
9416 static statement_t *parse_default_statement(void)
9417 {
9418         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9419
9420         eat(T_default);
9421
9422         PUSH_PARENT(statement);
9423
9424         expect(':');
9425         if (current_switch != NULL) {
9426                 const case_label_statement_t *def_label = current_switch->default_label;
9427                 if (def_label != NULL) {
9428                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9429                                &def_label->base.source_position);
9430                 } else {
9431                         current_switch->default_label = &statement->case_label;
9432
9433                         /* link all cases into the switch statement */
9434                         if (current_switch->last_case == NULL) {
9435                                 current_switch->first_case      = &statement->case_label;
9436                         } else {
9437                                 current_switch->last_case->next = &statement->case_label;
9438                         }
9439                         current_switch->last_case = &statement->case_label;
9440                 }
9441         } else {
9442                 errorf(&statement->base.source_position,
9443                         "'default' label not within a switch statement");
9444         }
9445
9446         statement_t *const inner_stmt = parse_statement();
9447         statement->case_label.statement = inner_stmt;
9448         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9449                 errorf(&inner_stmt->base.source_position, "declaration after default label");
9450         }
9451
9452         POP_PARENT;
9453         return statement;
9454 end_error:
9455         POP_PARENT;
9456         return create_invalid_statement();
9457 }
9458
9459 /**
9460  * Parse a label statement.
9461  */
9462 static statement_t *parse_label_statement(void)
9463 {
9464         assert(token.type == T_IDENTIFIER);
9465         symbol_t *symbol = token.v.symbol;
9466         label_t  *label  = get_label(symbol);
9467
9468         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9469         statement->label.label       = label;
9470
9471         next_token();
9472
9473         PUSH_PARENT(statement);
9474
9475         /* if statement is already set then the label is defined twice,
9476          * otherwise it was just mentioned in a goto/local label declaration so far
9477          */
9478         if (label->statement != NULL) {
9479                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9480                        symbol, &label->base.source_position);
9481         } else {
9482                 label->base.source_position = token.source_position;
9483                 label->statement            = statement;
9484         }
9485
9486         eat(':');
9487
9488         if (token.type == '}') {
9489                 /* TODO only warn? */
9490                 if (warning.other && false) {
9491                         warningf(HERE, "label at end of compound statement");
9492                         statement->label.statement = create_empty_statement();
9493                 } else {
9494                         errorf(HERE, "label at end of compound statement");
9495                         statement->label.statement = create_invalid_statement();
9496                 }
9497         } else if (token.type == ';') {
9498                 /* Eat an empty statement here, to avoid the warning about an empty
9499                  * statement after a label.  label:; is commonly used to have a label
9500                  * before a closing brace. */
9501                 statement->label.statement = create_empty_statement();
9502                 next_token();
9503         } else {
9504                 statement_t *const inner_stmt = parse_statement();
9505                 statement->label.statement = inner_stmt;
9506                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
9507                         errorf(&inner_stmt->base.source_position, "declaration after label");
9508                 }
9509         }
9510
9511         /* remember the labels in a list for later checking */
9512         if (label_last == NULL) {
9513                 label_first = &statement->label;
9514         } else {
9515                 label_last->next = &statement->label;
9516         }
9517         label_last = &statement->label;
9518
9519         POP_PARENT;
9520         return statement;
9521 }
9522
9523 /**
9524  * Parse an if statement.
9525  */
9526 static statement_t *parse_if(void)
9527 {
9528         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9529
9530         eat(T_if);
9531
9532         PUSH_PARENT(statement);
9533
9534         add_anchor_token('{');
9535
9536         expect('(');
9537         add_anchor_token(')');
9538         expression_t *const expr = parse_expression();
9539         statement->ifs.condition = expr;
9540         mark_vars_read(expr, NULL);
9541         rem_anchor_token(')');
9542         expect(')');
9543
9544 end_error:
9545         rem_anchor_token('{');
9546
9547         add_anchor_token(T_else);
9548         statement->ifs.true_statement = parse_statement();
9549         rem_anchor_token(T_else);
9550
9551         if (token.type == T_else) {
9552                 next_token();
9553                 statement->ifs.false_statement = parse_statement();
9554         }
9555
9556         POP_PARENT;
9557         return statement;
9558 }
9559
9560 /**
9561  * Check that all enums are handled in a switch.
9562  *
9563  * @param statement  the switch statement to check
9564  */
9565 static void check_enum_cases(const switch_statement_t *statement) {
9566         const type_t *type = skip_typeref(statement->expression->base.type);
9567         if (! is_type_enum(type))
9568                 return;
9569         const enum_type_t *enumt = &type->enumt;
9570
9571         /* if we have a default, no warnings */
9572         if (statement->default_label != NULL)
9573                 return;
9574
9575         /* FIXME: calculation of value should be done while parsing */
9576         /* TODO: quadratic algorithm here. Change to an n log n one */
9577         long            last_value = -1;
9578         const entity_t *entry      = enumt->enume->base.next;
9579         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9580              entry = entry->base.next) {
9581                 const expression_t *expression = entry->enum_value.value;
9582                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
9583                 bool                found      = false;
9584                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9585                         if (l->expression == NULL)
9586                                 continue;
9587                         if (l->first_case <= value && value <= l->last_case) {
9588                                 found = true;
9589                                 break;
9590                         }
9591                 }
9592                 if (! found) {
9593                         warningf(&statement->base.source_position,
9594                                  "enumeration value '%Y' not handled in switch",
9595                                  entry->base.symbol);
9596                 }
9597                 last_value = value;
9598         }
9599 }
9600
9601 /**
9602  * Parse a switch statement.
9603  */
9604 static statement_t *parse_switch(void)
9605 {
9606         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9607
9608         eat(T_switch);
9609
9610         PUSH_PARENT(statement);
9611
9612         expect('(');
9613         add_anchor_token(')');
9614         expression_t *const expr = parse_expression();
9615         mark_vars_read(expr, NULL);
9616         type_t       *      type = skip_typeref(expr->base.type);
9617         if (is_type_integer(type)) {
9618                 type = promote_integer(type);
9619                 if (warning.traditional) {
9620                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9621                                 warningf(&expr->base.source_position,
9622                                         "'%T' switch expression not converted to '%T' in ISO C",
9623                                         type, type_int);
9624                         }
9625                 }
9626         } else if (is_type_valid(type)) {
9627                 errorf(&expr->base.source_position,
9628                        "switch quantity is not an integer, but '%T'", type);
9629                 type = type_error_type;
9630         }
9631         statement->switchs.expression = create_implicit_cast(expr, type);
9632         expect(')');
9633         rem_anchor_token(')');
9634
9635         switch_statement_t *rem = current_switch;
9636         current_switch          = &statement->switchs;
9637         statement->switchs.body = parse_statement();
9638         current_switch          = rem;
9639
9640         if (warning.switch_default &&
9641             statement->switchs.default_label == NULL) {
9642                 warningf(&statement->base.source_position, "switch has no default case");
9643         }
9644         if (warning.switch_enum)
9645                 check_enum_cases(&statement->switchs);
9646
9647         POP_PARENT;
9648         return statement;
9649 end_error:
9650         POP_PARENT;
9651         return create_invalid_statement();
9652 }
9653
9654 static statement_t *parse_loop_body(statement_t *const loop)
9655 {
9656         statement_t *const rem = current_loop;
9657         current_loop = loop;
9658
9659         statement_t *const body = parse_statement();
9660
9661         current_loop = rem;
9662         return body;
9663 }
9664
9665 /**
9666  * Parse a while statement.
9667  */
9668 static statement_t *parse_while(void)
9669 {
9670         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9671
9672         eat(T_while);
9673
9674         PUSH_PARENT(statement);
9675
9676         expect('(');
9677         add_anchor_token(')');
9678         expression_t *const cond = parse_expression();
9679         statement->whiles.condition = cond;
9680         mark_vars_read(cond, NULL);
9681         rem_anchor_token(')');
9682         expect(')');
9683
9684         statement->whiles.body = parse_loop_body(statement);
9685
9686         POP_PARENT;
9687         return statement;
9688 end_error:
9689         POP_PARENT;
9690         return create_invalid_statement();
9691 }
9692
9693 /**
9694  * Parse a do statement.
9695  */
9696 static statement_t *parse_do(void)
9697 {
9698         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9699
9700         eat(T_do);
9701
9702         PUSH_PARENT(statement);
9703
9704         add_anchor_token(T_while);
9705         statement->do_while.body = parse_loop_body(statement);
9706         rem_anchor_token(T_while);
9707
9708         expect(T_while);
9709         expect('(');
9710         add_anchor_token(')');
9711         expression_t *const cond = parse_expression();
9712         statement->do_while.condition = cond;
9713         mark_vars_read(cond, NULL);
9714         rem_anchor_token(')');
9715         expect(')');
9716         expect(';');
9717
9718         POP_PARENT;
9719         return statement;
9720 end_error:
9721         POP_PARENT;
9722         return create_invalid_statement();
9723 }
9724
9725 /**
9726  * Parse a for statement.
9727  */
9728 static statement_t *parse_for(void)
9729 {
9730         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9731
9732         eat(T_for);
9733
9734         PUSH_PARENT(statement);
9735
9736         size_t const top = environment_top();
9737         scope_push(&statement->fors.scope);
9738
9739         expect('(');
9740         add_anchor_token(')');
9741
9742         if (token.type != ';') {
9743                 if (is_declaration_specifier(&token, false)) {
9744                         parse_declaration(record_entity);
9745                 } else {
9746                         add_anchor_token(';');
9747                         expression_t *const init = parse_expression();
9748                         statement->fors.initialisation = init;
9749                         mark_vars_read(init, VAR_ANY);
9750                         if (warning.unused_value && !expression_has_effect(init)) {
9751                                 warningf(&init->base.source_position,
9752                                          "initialisation of 'for'-statement has no effect");
9753                         }
9754                         rem_anchor_token(';');
9755                         expect(';');
9756                 }
9757         } else {
9758                 expect(';');
9759         }
9760
9761         if (token.type != ';') {
9762                 add_anchor_token(';');
9763                 expression_t *const cond = parse_expression();
9764                 statement->fors.condition = cond;
9765                 mark_vars_read(cond, NULL);
9766                 rem_anchor_token(';');
9767         }
9768         expect(';');
9769         if (token.type != ')') {
9770                 expression_t *const step = parse_expression();
9771                 statement->fors.step = step;
9772                 mark_vars_read(step, VAR_ANY);
9773                 if (warning.unused_value && !expression_has_effect(step)) {
9774                         warningf(&step->base.source_position,
9775                                  "step of 'for'-statement has no effect");
9776                 }
9777         }
9778         expect(')');
9779         rem_anchor_token(')');
9780         statement->fors.body = parse_loop_body(statement);
9781
9782         assert(scope == &statement->fors.scope);
9783         scope_pop();
9784         environment_pop_to(top);
9785
9786         POP_PARENT;
9787         return statement;
9788
9789 end_error:
9790         POP_PARENT;
9791         rem_anchor_token(')');
9792         assert(scope == &statement->fors.scope);
9793         scope_pop();
9794         environment_pop_to(top);
9795
9796         return create_invalid_statement();
9797 }
9798
9799 /**
9800  * Parse a goto statement.
9801  */
9802 static statement_t *parse_goto(void)
9803 {
9804         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
9805         eat(T_goto);
9806
9807         if (GNU_MODE && token.type == '*') {
9808                 next_token();
9809                 expression_t *expression = parse_expression();
9810                 mark_vars_read(expression, NULL);
9811
9812                 /* Argh: although documentation say the expression must be of type void *,
9813                  * gcc excepts anything that can be casted into void * without error */
9814                 type_t *type = expression->base.type;
9815
9816                 if (type != type_error_type) {
9817                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9818                                 errorf(&expression->base.source_position,
9819                                         "cannot convert to a pointer type");
9820                         } else if (warning.other && type != type_void_ptr) {
9821                                 warningf(&expression->base.source_position,
9822                                         "type of computed goto expression should be 'void*' not '%T'", type);
9823                         }
9824                         expression = create_implicit_cast(expression, type_void_ptr);
9825                 }
9826
9827                 statement->gotos.expression = expression;
9828         } else {
9829                 if (token.type != T_IDENTIFIER) {
9830                         if (GNU_MODE)
9831                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9832                         else
9833                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9834                         eat_until_anchor();
9835                         goto end_error;
9836                 }
9837                 symbol_t *symbol = token.v.symbol;
9838                 next_token();
9839
9840                 statement->gotos.label = get_label(symbol);
9841         }
9842
9843         /* remember the goto's in a list for later checking */
9844         if (goto_last == NULL) {
9845                 goto_first = &statement->gotos;
9846         } else {
9847                 goto_last->next = &statement->gotos;
9848         }
9849         goto_last = &statement->gotos;
9850
9851         expect(';');
9852
9853         return statement;
9854 end_error:
9855         return create_invalid_statement();
9856 }
9857
9858 /**
9859  * Parse a continue statement.
9860  */
9861 static statement_t *parse_continue(void)
9862 {
9863         if (current_loop == NULL) {
9864                 errorf(HERE, "continue statement not within loop");
9865         }
9866
9867         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9868
9869         eat(T_continue);
9870         expect(';');
9871
9872 end_error:
9873         return statement;
9874 }
9875
9876 /**
9877  * Parse a break statement.
9878  */
9879 static statement_t *parse_break(void)
9880 {
9881         if (current_switch == NULL && current_loop == NULL) {
9882                 errorf(HERE, "break statement not within loop or switch");
9883         }
9884
9885         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9886
9887         eat(T_break);
9888         expect(';');
9889
9890 end_error:
9891         return statement;
9892 }
9893
9894 /**
9895  * Parse a __leave statement.
9896  */
9897 static statement_t *parse_leave_statement(void)
9898 {
9899         if (current_try == NULL) {
9900                 errorf(HERE, "__leave statement not within __try");
9901         }
9902
9903         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9904
9905         eat(T___leave);
9906         expect(';');
9907
9908 end_error:
9909         return statement;
9910 }
9911
9912 /**
9913  * Check if a given entity represents a local variable.
9914  */
9915 static bool is_local_variable(const entity_t *entity)
9916 {
9917         if (entity->kind != ENTITY_VARIABLE)
9918                 return false;
9919
9920         switch ((storage_class_tag_t) entity->declaration.storage_class) {
9921         case STORAGE_CLASS_AUTO:
9922         case STORAGE_CLASS_REGISTER: {
9923                 const type_t *type = skip_typeref(entity->declaration.type);
9924                 if (is_type_function(type)) {
9925                         return false;
9926                 } else {
9927                         return true;
9928                 }
9929         }
9930         default:
9931                 return false;
9932         }
9933 }
9934
9935 /**
9936  * Check if a given expression represents a local variable.
9937  */
9938 static bool expression_is_local_variable(const expression_t *expression)
9939 {
9940         if (expression->base.kind != EXPR_REFERENCE) {
9941                 return false;
9942         }
9943         const entity_t *entity = expression->reference.entity;
9944         return is_local_variable(entity);
9945 }
9946
9947 /**
9948  * Check if a given expression represents a local variable and
9949  * return its declaration then, else return NULL.
9950  */
9951 entity_t *expression_is_variable(const expression_t *expression)
9952 {
9953         if (expression->base.kind != EXPR_REFERENCE) {
9954                 return NULL;
9955         }
9956         entity_t *entity = expression->reference.entity;
9957         if (entity->kind != ENTITY_VARIABLE)
9958                 return NULL;
9959
9960         return entity;
9961 }
9962
9963 /**
9964  * Parse a return statement.
9965  */
9966 static statement_t *parse_return(void)
9967 {
9968         eat(T_return);
9969
9970         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9971
9972         expression_t *return_value = NULL;
9973         if (token.type != ';') {
9974                 return_value = parse_expression();
9975                 mark_vars_read(return_value, NULL);
9976         }
9977
9978         const type_t *const func_type = current_function->base.type;
9979         assert(is_type_function(func_type));
9980         type_t *const return_type = skip_typeref(func_type->function.return_type);
9981
9982         if (return_value != NULL) {
9983                 type_t *return_value_type = skip_typeref(return_value->base.type);
9984
9985                 if (is_type_atomic(return_type,        ATOMIC_TYPE_VOID) &&
9986                                 !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9987                         if (warning.other) {
9988                                 warningf(&statement->base.source_position,
9989                                                 "'return' with a value, in function returning void");
9990                         }
9991                         return_value = NULL;
9992                 } else {
9993                         assign_error_t error = semantic_assign(return_type, return_value);
9994                         report_assign_error(error, return_type, return_value, "'return'",
9995                                             &statement->base.source_position);
9996                         return_value = create_implicit_cast(return_value, return_type);
9997                 }
9998                 /* check for returning address of a local var */
9999                 if (warning.other && return_value != NULL
10000                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
10001                         const expression_t *expression = return_value->unary.value;
10002                         if (expression_is_local_variable(expression)) {
10003                                 warningf(&statement->base.source_position,
10004                                          "function returns address of local variable");
10005                         }
10006                 }
10007         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10008                 warningf(&statement->base.source_position,
10009                                 "'return' without value, in function returning non-void");
10010         }
10011         statement->returns.value = return_value;
10012
10013         expect(';');
10014
10015 end_error:
10016         return statement;
10017 }
10018
10019 /**
10020  * Parse a declaration statement.
10021  */
10022 static statement_t *parse_declaration_statement(void)
10023 {
10024         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10025
10026         entity_t *before = scope->last_entity;
10027         if (GNU_MODE)
10028                 parse_external_declaration();
10029         else
10030                 parse_declaration(record_entity);
10031
10032         if (before == NULL) {
10033                 statement->declaration.declarations_begin = scope->entities;
10034         } else {
10035                 statement->declaration.declarations_begin = before->base.next;
10036         }
10037         statement->declaration.declarations_end = scope->last_entity;
10038
10039         return statement;
10040 }
10041
10042 /**
10043  * Parse an expression statement, ie. expr ';'.
10044  */
10045 static statement_t *parse_expression_statement(void)
10046 {
10047         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10048
10049         expression_t *const expr         = parse_expression();
10050         statement->expression.expression = expr;
10051         mark_vars_read(expr, VAR_ANY);
10052
10053         expect(';');
10054
10055 end_error:
10056         return statement;
10057 }
10058
10059 /**
10060  * Parse a microsoft __try { } __finally { } or
10061  * __try{ } __except() { }
10062  */
10063 static statement_t *parse_ms_try_statment(void)
10064 {
10065         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10066         eat(T___try);
10067
10068         PUSH_PARENT(statement);
10069
10070         ms_try_statement_t *rem = current_try;
10071         current_try = &statement->ms_try;
10072         statement->ms_try.try_statement = parse_compound_statement(false);
10073         current_try = rem;
10074
10075         POP_PARENT;
10076
10077         if (token.type == T___except) {
10078                 eat(T___except);
10079                 expect('(');
10080                 add_anchor_token(')');
10081                 expression_t *const expr = parse_expression();
10082                 mark_vars_read(expr, NULL);
10083                 type_t       *      type = skip_typeref(expr->base.type);
10084                 if (is_type_integer(type)) {
10085                         type = promote_integer(type);
10086                 } else if (is_type_valid(type)) {
10087                         errorf(&expr->base.source_position,
10088                                "__expect expression is not an integer, but '%T'", type);
10089                         type = type_error_type;
10090                 }
10091                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10092                 rem_anchor_token(')');
10093                 expect(')');
10094                 statement->ms_try.final_statement = parse_compound_statement(false);
10095         } else if (token.type == T__finally) {
10096                 eat(T___finally);
10097                 statement->ms_try.final_statement = parse_compound_statement(false);
10098         } else {
10099                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10100                 return create_invalid_statement();
10101         }
10102         return statement;
10103 end_error:
10104         return create_invalid_statement();
10105 }
10106
10107 static statement_t *parse_empty_statement(void)
10108 {
10109         if (warning.empty_statement) {
10110                 warningf(HERE, "statement is empty");
10111         }
10112         statement_t *const statement = create_empty_statement();
10113         eat(';');
10114         return statement;
10115 }
10116
10117 static statement_t *parse_local_label_declaration(void)
10118 {
10119         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10120
10121         eat(T___label__);
10122
10123         entity_t *begin = NULL, *end = NULL;
10124
10125         while (true) {
10126                 if (token.type != T_IDENTIFIER) {
10127                         parse_error_expected("while parsing local label declaration",
10128                                 T_IDENTIFIER, NULL);
10129                         goto end_error;
10130                 }
10131                 symbol_t *symbol = token.v.symbol;
10132                 entity_t *entity = get_entity(symbol, NAMESPACE_LOCAL_LABEL);
10133                 if (entity != NULL && entity->base.parent_scope == scope) {
10134                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10135                                symbol, &entity->base.source_position);
10136                 } else {
10137                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10138
10139                         entity->base.parent_scope    = scope;
10140                         entity->base.namespc         = NAMESPACE_LOCAL_LABEL;
10141                         entity->base.source_position = token.source_position;
10142                         entity->base.symbol          = symbol;
10143
10144                         if (end != NULL)
10145                                 end->base.next = entity;
10146                         end = entity;
10147                         if (begin == NULL)
10148                                 begin = entity;
10149
10150                         local_label_push(entity);
10151                 }
10152                 next_token();
10153
10154                 if (token.type != ',')
10155                         break;
10156                 next_token();
10157         }
10158         eat(';');
10159 end_error:
10160         statement->declaration.declarations_begin = begin;
10161         statement->declaration.declarations_end   = end;
10162         return statement;
10163 }
10164
10165 /**
10166  * Parse a statement.
10167  * There's also parse_statement() which additionally checks for
10168  * "statement has no effect" warnings
10169  */
10170 static statement_t *intern_parse_statement(void)
10171 {
10172         statement_t *statement = NULL;
10173
10174         /* declaration or statement */
10175         add_anchor_token(';');
10176         switch (token.type) {
10177         case T_IDENTIFIER: {
10178                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10179                 if (la1_type == ':') {
10180                         statement = parse_label_statement();
10181                 } else if (is_typedef_symbol(token.v.symbol)) {
10182                         statement = parse_declaration_statement();
10183                 } else {
10184                         /* it's an identifier, the grammar says this must be an
10185                          * expression statement. However it is common that users mistype
10186                          * declaration types, so we guess a bit here to improve robustness
10187                          * for incorrect programs */
10188                         switch (la1_type) {
10189                         case '*':
10190                                 if (get_entity(token.v.symbol, NAMESPACE_NORMAL) != NULL)
10191                                         goto expression_statment;
10192                                 /* FALLTHROUGH */
10193
10194                         DECLARATION_START
10195                         case T_IDENTIFIER:
10196                                 statement = parse_declaration_statement();
10197                                 break;
10198
10199                         default:
10200 expression_statment:
10201                                 statement = parse_expression_statement();
10202                                 break;
10203                         }
10204                 }
10205                 break;
10206         }
10207
10208         case T___extension__:
10209                 /* This can be a prefix to a declaration or an expression statement.
10210                  * We simply eat it now and parse the rest with tail recursion. */
10211                 do {
10212                         next_token();
10213                 } while (token.type == T___extension__);
10214                 bool old_gcc_extension = in_gcc_extension;
10215                 in_gcc_extension       = true;
10216                 statement = parse_statement();
10217                 in_gcc_extension = old_gcc_extension;
10218                 break;
10219
10220         DECLARATION_START
10221                 statement = parse_declaration_statement();
10222                 break;
10223
10224         case T___label__:
10225                 statement = parse_local_label_declaration();
10226                 break;
10227
10228         case ';':        statement = parse_empty_statement();         break;
10229         case '{':        statement = parse_compound_statement(false); break;
10230         case T___leave:  statement = parse_leave_statement();         break;
10231         case T___try:    statement = parse_ms_try_statment();         break;
10232         case T_asm:      statement = parse_asm_statement();           break;
10233         case T_break:    statement = parse_break();                   break;
10234         case T_case:     statement = parse_case_statement();          break;
10235         case T_continue: statement = parse_continue();                break;
10236         case T_default:  statement = parse_default_statement();       break;
10237         case T_do:       statement = parse_do();                      break;
10238         case T_for:      statement = parse_for();                     break;
10239         case T_goto:     statement = parse_goto();                    break;
10240         case T_if:       statement = parse_if();                      break;
10241         case T_return:   statement = parse_return();                  break;
10242         case T_switch:   statement = parse_switch();                  break;
10243         case T_while:    statement = parse_while();                   break;
10244
10245         EXPRESSION_START
10246                 statement = parse_expression_statement();
10247                 break;
10248
10249         default:
10250                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10251                 statement = create_invalid_statement();
10252                 if (!at_anchor())
10253                         next_token();
10254                 break;
10255         }
10256         rem_anchor_token(';');
10257
10258         assert(statement != NULL
10259                         && statement->base.source_position.input_name != NULL);
10260
10261         return statement;
10262 }
10263
10264 /**
10265  * parse a statement and emits "statement has no effect" warning if needed
10266  * (This is really a wrapper around intern_parse_statement with check for 1
10267  *  single warning. It is needed, because for statement expressions we have
10268  *  to avoid the warning on the last statement)
10269  */
10270 static statement_t *parse_statement(void)
10271 {
10272         statement_t *statement = intern_parse_statement();
10273
10274         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10275                 expression_t *expression = statement->expression.expression;
10276                 if (!expression_has_effect(expression)) {
10277                         warningf(&expression->base.source_position,
10278                                         "statement has no effect");
10279                 }
10280         }
10281
10282         return statement;
10283 }
10284
10285 /**
10286  * Parse a compound statement.
10287  */
10288 static statement_t *parse_compound_statement(bool inside_expression_statement)
10289 {
10290         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10291
10292         PUSH_PARENT(statement);
10293
10294         eat('{');
10295         add_anchor_token('}');
10296
10297         size_t const top       = environment_top();
10298         size_t const top_local = local_label_top();
10299         scope_push(&statement->compound.scope);
10300
10301         statement_t **anchor            = &statement->compound.statements;
10302         bool          only_decls_so_far = true;
10303         while (token.type != '}') {
10304                 if (token.type == T_EOF) {
10305                         errorf(&statement->base.source_position,
10306                                "EOF while parsing compound statement");
10307                         break;
10308                 }
10309                 statement_t *sub_statement = intern_parse_statement();
10310                 if (is_invalid_statement(sub_statement)) {
10311                         /* an error occurred. if we are at an anchor, return */
10312                         if (at_anchor())
10313                                 goto end_error;
10314                         continue;
10315                 }
10316
10317                 if (warning.declaration_after_statement) {
10318                         if (sub_statement->kind != STATEMENT_DECLARATION) {
10319                                 only_decls_so_far = false;
10320                         } else if (!only_decls_so_far) {
10321                                 warningf(&sub_statement->base.source_position,
10322                                          "ISO C90 forbids mixed declarations and code");
10323                         }
10324                 }
10325
10326                 *anchor = sub_statement;
10327
10328                 while (sub_statement->base.next != NULL)
10329                         sub_statement = sub_statement->base.next;
10330
10331                 anchor = &sub_statement->base.next;
10332         }
10333         next_token();
10334
10335         /* look over all statements again to produce no effect warnings */
10336         if (warning.unused_value) {
10337                 statement_t *sub_statement = statement->compound.statements;
10338                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10339                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10340                                 continue;
10341                         /* don't emit a warning for the last expression in an expression
10342                          * statement as it has always an effect */
10343                         if (inside_expression_statement && sub_statement->base.next == NULL)
10344                                 continue;
10345
10346                         expression_t *expression = sub_statement->expression.expression;
10347                         if (!expression_has_effect(expression)) {
10348                                 warningf(&expression->base.source_position,
10349                                          "statement has no effect");
10350                         }
10351                 }
10352         }
10353
10354 end_error:
10355         rem_anchor_token('}');
10356         assert(scope == &statement->compound.scope);
10357         scope_pop();
10358         environment_pop_to(top);
10359         local_label_pop_to(top_local);
10360
10361         POP_PARENT;
10362         return statement;
10363 }
10364
10365 /**
10366  * Initialize builtin types.
10367  */
10368 static void initialize_builtin_types(void)
10369 {
10370         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
10371         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
10372         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
10373         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
10374         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
10375         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
10376         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
10377         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
10378
10379         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
10380         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
10381         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
10382         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
10383
10384         /* const version of wchar_t */
10385         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF);
10386         type_const_wchar_t->typedeft.typedefe  = type_wchar_t->typedeft.typedefe;
10387         type_const_wchar_t->base.qualifiers   |= TYPE_QUALIFIER_CONST;
10388
10389         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
10390 }
10391
10392 /**
10393  * Check for unused global static functions and variables
10394  */
10395 static void check_unused_globals(void)
10396 {
10397         if (!warning.unused_function && !warning.unused_variable)
10398                 return;
10399
10400         for (const entity_t *entity = file_scope->entities; entity != NULL;
10401              entity = entity->base.next) {
10402                 if (!is_declaration(entity))
10403                         continue;
10404
10405                 const declaration_t *declaration = &entity->declaration;
10406                 if (declaration->used                  ||
10407                     declaration->modifiers & DM_UNUSED ||
10408                     declaration->modifiers & DM_USED   ||
10409                     declaration->storage_class != STORAGE_CLASS_STATIC)
10410                         continue;
10411
10412                 type_t *const type = declaration->type;
10413                 const char *s;
10414                 if (entity->kind == ENTITY_FUNCTION) {
10415                         /* inhibit warning for static inline functions */
10416                         if (entity->function.is_inline)
10417                                 continue;
10418
10419                         s = entity->function.statement != NULL ? "defined" : "declared";
10420                 } else {
10421                         s = "defined";
10422                 }
10423
10424                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
10425                         type, declaration->base.symbol, s);
10426         }
10427 }
10428
10429 static void parse_global_asm(void)
10430 {
10431         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
10432
10433         eat(T_asm);
10434         expect('(');
10435
10436         statement->asms.asm_text = parse_string_literals();
10437         statement->base.next     = unit->global_asm;
10438         unit->global_asm         = statement;
10439
10440         expect(')');
10441         expect(';');
10442
10443 end_error:;
10444 }
10445
10446 /**
10447  * Parse a translation unit.
10448  */
10449 static void parse_translation_unit(void)
10450 {
10451         add_anchor_token(T_EOF);
10452
10453 #ifndef NDEBUG
10454         unsigned char token_anchor_copy[T_LAST_TOKEN];
10455         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
10456 #endif
10457         for (;;) {
10458 #ifndef NDEBUG
10459                 bool anchor_leak = false;
10460                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
10461                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
10462                         if (count != 0) {
10463                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
10464                                 anchor_leak = true;
10465                         }
10466                 }
10467                 if (in_gcc_extension) {
10468                         errorf(HERE, "Leaked __extension__");
10469                         anchor_leak = true;
10470                 }
10471
10472                 if (anchor_leak)
10473                         abort();
10474 #endif
10475
10476                 switch (token.type) {
10477                         DECLARATION_START
10478                         case T_IDENTIFIER:
10479                         case T___extension__:
10480                                 parse_external_declaration();
10481                                 break;
10482
10483                         case T_asm:
10484                                 parse_global_asm();
10485                                 break;
10486
10487                         case T_EOF:
10488                                 rem_anchor_token(T_EOF);
10489                                 return;
10490
10491                         case ';':
10492                                 if (!strict_mode) {
10493                                         if (warning.other)
10494                                                 warningf(HERE, "stray ';' outside of function");
10495                                         next_token();
10496                                         break;
10497                                 }
10498                                 /* FALLTHROUGH */
10499
10500                         default:
10501                                 errorf(HERE, "stray %K outside of function", &token);
10502                                 if (token.type == '(' || token.type == '{' || token.type == '[')
10503                                         eat_until_matching_token(token.type);
10504                                 next_token();
10505                                 break;
10506                 }
10507         }
10508 }
10509
10510 /**
10511  * Parse the input.
10512  *
10513  * @return  the translation unit or NULL if errors occurred.
10514  */
10515 void start_parsing(void)
10516 {
10517         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10518         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10519         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
10520         diagnostic_count  = 0;
10521         error_count       = 0;
10522         warning_count     = 0;
10523
10524         type_set_output(stderr);
10525         ast_set_output(stderr);
10526
10527         assert(unit == NULL);
10528         unit = allocate_ast_zero(sizeof(unit[0]));
10529
10530         assert(file_scope == NULL);
10531         file_scope = &unit->scope;
10532
10533         assert(scope == NULL);
10534         scope_push(&unit->scope);
10535
10536         initialize_builtin_types();
10537 }
10538
10539 translation_unit_t *finish_parsing(void)
10540 {
10541         /* do NOT use scope_pop() here, this will crash, will it by hand */
10542         assert(scope == &unit->scope);
10543         scope            = NULL;
10544
10545         assert(file_scope == &unit->scope);
10546         check_unused_globals();
10547         file_scope = NULL;
10548
10549         DEL_ARR_F(environment_stack);
10550         DEL_ARR_F(label_stack);
10551         DEL_ARR_F(local_label_stack);
10552
10553         translation_unit_t *result = unit;
10554         unit = NULL;
10555         return result;
10556 }
10557
10558 void parse(void)
10559 {
10560         lookahead_bufpos = 0;
10561         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10562                 next_token();
10563         }
10564         parse_translation_unit();
10565 }
10566
10567 /**
10568  * Initialize the parser.
10569  */
10570 void init_parser(void)
10571 {
10572         sym_anonymous = symbol_table_insert("<anonymous>");
10573
10574         if (c_mode & _MS) {
10575                 /* add predefined symbols for extended-decl-modifier */
10576                 sym_align      = symbol_table_insert("align");
10577                 sym_allocate   = symbol_table_insert("allocate");
10578                 sym_dllimport  = symbol_table_insert("dllimport");
10579                 sym_dllexport  = symbol_table_insert("dllexport");
10580                 sym_naked      = symbol_table_insert("naked");
10581                 sym_noinline   = symbol_table_insert("noinline");
10582                 sym_noreturn   = symbol_table_insert("noreturn");
10583                 sym_nothrow    = symbol_table_insert("nothrow");
10584                 sym_novtable   = symbol_table_insert("novtable");
10585                 sym_property   = symbol_table_insert("property");
10586                 sym_get        = symbol_table_insert("get");
10587                 sym_put        = symbol_table_insert("put");
10588                 sym_selectany  = symbol_table_insert("selectany");
10589                 sym_thread     = symbol_table_insert("thread");
10590                 sym_uuid       = symbol_table_insert("uuid");
10591                 sym_deprecated = symbol_table_insert("deprecated");
10592                 sym_restrict   = symbol_table_insert("restrict");
10593                 sym_noalias    = symbol_table_insert("noalias");
10594         }
10595         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10596
10597         init_expression_parsers();
10598         obstack_init(&temp_obst);
10599
10600         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
10601         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
10602 }
10603
10604 /**
10605  * Terminate the parser.
10606  */
10607 void exit_parser(void)
10608 {
10609         obstack_free(&temp_obst, NULL);
10610 }