cparser.bootstrap2 depends on cparser.bootstrap.
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2009 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "adt/strutil.h"
27 #include "parser.h"
28 #include "diagnostic.h"
29 #include "format_check.h"
30 #include "lexer.h"
31 #include "symbol_t.h"
32 #include "token_t.h"
33 #include "types.h"
34 #include "type_t.h"
35 #include "type_hash.h"
36 #include "ast_t.h"
37 #include "entity_t.h"
38 #include "attribute_t.h"
39 #include "lang_features.h"
40 #include "walk.h"
41 #include "warning.h"
42 #include "printer.h"
43 #include "adt/bitfiddle.h"
44 #include "adt/error.h"
45 #include "adt/array.h"
46
47 //#define PRINT_TOKENS
48 #define MAX_LOOKAHEAD 1
49
50 typedef struct {
51         entity_t           *old_entity;
52         symbol_t           *symbol;
53         entity_namespace_t  namespc;
54 } stack_entry_t;
55
56 typedef struct declaration_specifiers_t  declaration_specifiers_t;
57 struct declaration_specifiers_t {
58         source_position_t  source_position;
59         storage_class_t    storage_class;
60         unsigned char      alignment;         /**< Alignment, 0 if not set. */
61         bool               is_inline    : 1;
62         bool               thread_local : 1;  /**< GCC __thread */
63         attribute_t       *attributes;        /**< list of attributes */
64         type_t            *type;
65 };
66
67 /**
68  * An environment for parsing initializers (and compound literals).
69  */
70 typedef struct parse_initializer_env_t {
71         type_t     *type;   /**< the type of the initializer. In case of an
72                                  array type with unspecified size this gets
73                                  adjusted to the actual size. */
74         entity_t   *entity; /**< the variable that is initialized if any */
75         bool        must_be_constant;
76 } parse_initializer_env_t;
77
78 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
79
80 /** The current token. */
81 static token_t              token;
82 /** The lookahead ring-buffer. */
83 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
84 /** Position of the next token in the lookahead buffer. */
85 static size_t               lookahead_bufpos;
86 static stack_entry_t       *environment_stack = NULL;
87 static stack_entry_t       *label_stack       = NULL;
88 static scope_t             *file_scope        = NULL;
89 static scope_t             *current_scope     = NULL;
90 /** Point to the current function declaration if inside a function. */
91 static function_t          *current_function  = NULL;
92 static entity_t            *current_entity    = NULL;
93 static switch_statement_t  *current_switch    = NULL;
94 static statement_t         *current_loop      = NULL;
95 static statement_t         *current_parent    = NULL;
96 static ms_try_statement_t  *current_try       = NULL;
97 static linkage_kind_t       current_linkage;
98 static goto_statement_t    *goto_first        = NULL;
99 static goto_statement_t   **goto_anchor       = NULL;
100 static label_statement_t   *label_first       = NULL;
101 static label_statement_t  **label_anchor      = NULL;
102 /** current translation unit. */
103 static translation_unit_t  *unit              = NULL;
104 /** true if we are in an __extension__ context. */
105 static bool                 in_gcc_extension  = false;
106 static struct obstack       temp_obst;
107 static entity_t            *anonymous_entity;
108 static declaration_t      **incomplete_arrays;
109 static elf_visibility_tag_t default_visibility = ELF_VISIBILITY_DEFAULT;
110
111
112 #define PUSH_PARENT(stmt) \
113         statement_t *const new_parent = (stmt); \
114         statement_t *const old_parent = current_parent; \
115         ((void)(current_parent = new_parent))
116 #define POP_PARENT() (assert(current_parent == new_parent), (void)(current_parent = old_parent))
117
118 #define PUSH_SCOPE(scope) \
119         size_t   const top       = environment_top(); \
120         scope_t *const new_scope = (scope); \
121         scope_t *const old_scope = scope_push(new_scope)
122 #define POP_SCOPE() (assert(current_scope == new_scope), scope_pop(old_scope), environment_pop_to(top))
123
124 #define PUSH_EXTENSION() \
125         (void)0; \
126         bool const old_gcc_extension = in_gcc_extension; \
127         while (next_if(T___extension__)) { \
128                 in_gcc_extension = true; \
129         } \
130         do {} while (0)
131 #define POP_EXTENSION() \
132         ((void)(in_gcc_extension = old_gcc_extension))
133
134 /** special symbol used for anonymous entities. */
135 static symbol_t *sym_anonymous = NULL;
136
137 /** The token anchor set */
138 static unsigned short token_anchor_set[T_LAST_TOKEN];
139
140 /** The current source position. */
141 #define HERE (&token.base.source_position)
142
143 /** true if we are in GCC mode. */
144 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
145
146 static statement_t *parse_compound_statement(bool inside_expression_statement);
147 static statement_t *parse_statement(void);
148
149 static expression_t *parse_subexpression(precedence_t);
150 static expression_t *parse_expression(void);
151 static type_t       *parse_typename(void);
152 static void          parse_externals(void);
153 static void          parse_external(void);
154
155 static void parse_compound_type_entries(compound_t *compound_declaration);
156
157 static void check_call_argument(type_t          *expected_type,
158                                                                 call_argument_t *argument, unsigned pos);
159
160 typedef enum declarator_flags_t {
161         DECL_FLAGS_NONE             = 0,
162         DECL_MAY_BE_ABSTRACT        = 1U << 0,
163         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
164         DECL_IS_PARAMETER           = 1U << 2
165 } declarator_flags_t;
166
167 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
168                                   declarator_flags_t flags);
169
170 static void semantic_comparison(binary_expression_t *expression);
171
172 #define STORAGE_CLASSES       \
173         STORAGE_CLASSES_NO_EXTERN \
174         case T_extern:
175
176 #define STORAGE_CLASSES_NO_EXTERN \
177         case T_typedef:         \
178         case T_static:          \
179         case T_auto:            \
180         case T_register:        \
181         case T___thread:
182
183 #define TYPE_QUALIFIERS     \
184         case T_const:           \
185         case T_restrict:        \
186         case T_volatile:        \
187         case T_inline:          \
188         case T__forceinline:    \
189         case T___attribute__:
190
191 #define COMPLEX_SPECIFIERS  \
192         case T__Complex:
193 #define IMAGINARY_SPECIFIERS \
194         case T__Imaginary:
195
196 #define TYPE_SPECIFIERS       \
197         case T__Bool:             \
198         case T___builtin_va_list: \
199         case T___typeof__:        \
200         case T__declspec:         \
201         case T_bool:              \
202         case T_char:              \
203         case T_double:            \
204         case T_enum:              \
205         case T_float:             \
206         case T_int:               \
207         case T_long:              \
208         case T_short:             \
209         case T_signed:            \
210         case T_struct:            \
211         case T_union:             \
212         case T_unsigned:          \
213         case T_void:              \
214         case T_wchar_t:           \
215         case T__int8:             \
216         case T__int16:            \
217         case T__int32:            \
218         case T__int64:            \
219         case T__int128:           \
220         COMPLEX_SPECIFIERS        \
221         IMAGINARY_SPECIFIERS
222
223 #define DECLARATION_START   \
224         STORAGE_CLASSES         \
225         TYPE_QUALIFIERS         \
226         TYPE_SPECIFIERS
227
228 #define DECLARATION_START_NO_EXTERN \
229         STORAGE_CLASSES_NO_EXTERN       \
230         TYPE_QUALIFIERS                 \
231         TYPE_SPECIFIERS
232
233 #define EXPRESSION_START              \
234         case '!':                         \
235         case '&':                         \
236         case '(':                         \
237         case '*':                         \
238         case '+':                         \
239         case '-':                         \
240         case '~':                         \
241         case T_ANDAND:                    \
242         case T_CHARACTER_CONSTANT:        \
243         case T_FLOATINGPOINT:             \
244         case T_FLOATINGPOINT_HEXADECIMAL: \
245         case T_INTEGER:                   \
246         case T_INTEGER_HEXADECIMAL:       \
247         case T_INTEGER_OCTAL:             \
248         case T_MINUSMINUS:                \
249         case T_PLUSPLUS:                  \
250         case T_STRING_LITERAL:            \
251         case T_WIDE_CHARACTER_CONSTANT:   \
252         case T_WIDE_STRING_LITERAL:       \
253         case T___FUNCDNAME__:             \
254         case T___FUNCSIG__:               \
255         case T___FUNCTION__:              \
256         case T___PRETTY_FUNCTION__:       \
257         case T___alignof__:               \
258         case T___builtin_classify_type:   \
259         case T___builtin_constant_p:      \
260         case T___builtin_isgreater:       \
261         case T___builtin_isgreaterequal:  \
262         case T___builtin_isless:          \
263         case T___builtin_islessequal:     \
264         case T___builtin_islessgreater:   \
265         case T___builtin_isunordered:     \
266         case T___builtin_offsetof:        \
267         case T___builtin_va_arg:          \
268         case T___builtin_va_copy:         \
269         case T___builtin_va_start:        \
270         case T___func__:                  \
271         case T___noop:                    \
272         case T__assume:                   \
273         case T_delete:                    \
274         case T_false:                     \
275         case T_sizeof:                    \
276         case T_throw:                     \
277         case T_true:
278
279 /**
280  * Returns the size of a statement node.
281  *
282  * @param kind  the statement kind
283  */
284 static size_t get_statement_struct_size(statement_kind_t kind)
285 {
286         static const size_t sizes[] = {
287                 [STATEMENT_ERROR]       = sizeof(statement_base_t),
288                 [STATEMENT_EMPTY]       = sizeof(statement_base_t),
289                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
290                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
291                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
292                 [STATEMENT_IF]          = sizeof(if_statement_t),
293                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
294                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
295                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
296                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
297                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
298                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
299                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
300                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
301                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
302                 [STATEMENT_FOR]         = sizeof(for_statement_t),
303                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
304                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
305                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
306         };
307         assert((size_t)kind < lengthof(sizes));
308         assert(sizes[kind] != 0);
309         return sizes[kind];
310 }
311
312 /**
313  * Returns the size of an expression node.
314  *
315  * @param kind  the expression kind
316  */
317 static size_t get_expression_struct_size(expression_kind_t kind)
318 {
319         static const size_t sizes[] = {
320                 [EXPR_ERROR]                      = sizeof(expression_base_t),
321                 [EXPR_REFERENCE]                  = sizeof(reference_expression_t),
322                 [EXPR_REFERENCE_ENUM_VALUE]       = sizeof(reference_expression_t),
323                 [EXPR_LITERAL_BOOLEAN]            = sizeof(literal_expression_t),
324                 [EXPR_LITERAL_INTEGER]            = sizeof(literal_expression_t),
325                 [EXPR_LITERAL_INTEGER_OCTAL]      = sizeof(literal_expression_t),
326                 [EXPR_LITERAL_INTEGER_HEXADECIMAL]= sizeof(literal_expression_t),
327                 [EXPR_LITERAL_FLOATINGPOINT]      = sizeof(literal_expression_t),
328                 [EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL] = sizeof(literal_expression_t),
329                 [EXPR_LITERAL_CHARACTER]          = sizeof(literal_expression_t),
330                 [EXPR_LITERAL_WIDE_CHARACTER]     = sizeof(literal_expression_t),
331                 [EXPR_STRING_LITERAL]             = sizeof(string_literal_expression_t),
332                 [EXPR_WIDE_STRING_LITERAL]        = sizeof(string_literal_expression_t),
333                 [EXPR_COMPOUND_LITERAL]           = sizeof(compound_literal_expression_t),
334                 [EXPR_CALL]                       = sizeof(call_expression_t),
335                 [EXPR_UNARY_FIRST]                = sizeof(unary_expression_t),
336                 [EXPR_BINARY_FIRST]               = sizeof(binary_expression_t),
337                 [EXPR_CONDITIONAL]                = sizeof(conditional_expression_t),
338                 [EXPR_SELECT]                     = sizeof(select_expression_t),
339                 [EXPR_ARRAY_ACCESS]               = sizeof(array_access_expression_t),
340                 [EXPR_SIZEOF]                     = sizeof(typeprop_expression_t),
341                 [EXPR_ALIGNOF]                    = sizeof(typeprop_expression_t),
342                 [EXPR_CLASSIFY_TYPE]              = sizeof(classify_type_expression_t),
343                 [EXPR_FUNCNAME]                   = sizeof(funcname_expression_t),
344                 [EXPR_BUILTIN_CONSTANT_P]         = sizeof(builtin_constant_expression_t),
345                 [EXPR_BUILTIN_TYPES_COMPATIBLE_P] = sizeof(builtin_types_compatible_expression_t),
346                 [EXPR_OFFSETOF]                   = sizeof(offsetof_expression_t),
347                 [EXPR_VA_START]                   = sizeof(va_start_expression_t),
348                 [EXPR_VA_ARG]                     = sizeof(va_arg_expression_t),
349                 [EXPR_VA_COPY]                    = sizeof(va_copy_expression_t),
350                 [EXPR_STATEMENT]                  = sizeof(statement_expression_t),
351                 [EXPR_LABEL_ADDRESS]              = sizeof(label_address_expression_t),
352         };
353         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
354                 return sizes[EXPR_UNARY_FIRST];
355         }
356         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
357                 return sizes[EXPR_BINARY_FIRST];
358         }
359         assert((size_t)kind < lengthof(sizes));
360         assert(sizes[kind] != 0);
361         return sizes[kind];
362 }
363
364 /**
365  * Allocate a statement node of given kind and initialize all
366  * fields with zero. Sets its source position to the position
367  * of the current token.
368  */
369 static statement_t *allocate_statement_zero(statement_kind_t kind)
370 {
371         size_t       size = get_statement_struct_size(kind);
372         statement_t *res  = allocate_ast_zero(size);
373
374         res->base.kind            = kind;
375         res->base.parent          = current_parent;
376         res->base.source_position = token.base.source_position;
377         return res;
378 }
379
380 /**
381  * Allocate an expression node of given kind and initialize all
382  * fields with zero.
383  *
384  * @param kind  the kind of the expression to allocate
385  */
386 static expression_t *allocate_expression_zero(expression_kind_t kind)
387 {
388         size_t        size = get_expression_struct_size(kind);
389         expression_t *res  = allocate_ast_zero(size);
390
391         res->base.kind            = kind;
392         res->base.type            = type_error_type;
393         res->base.source_position = token.base.source_position;
394         return res;
395 }
396
397 /**
398  * Creates a new invalid expression at the source position
399  * of the current token.
400  */
401 static expression_t *create_error_expression(void)
402 {
403         expression_t *expression = allocate_expression_zero(EXPR_ERROR);
404         expression->base.type = type_error_type;
405         return expression;
406 }
407
408 /**
409  * Creates a new invalid statement.
410  */
411 static statement_t *create_error_statement(void)
412 {
413         return allocate_statement_zero(STATEMENT_ERROR);
414 }
415
416 /**
417  * Allocate a new empty statement.
418  */
419 static statement_t *create_empty_statement(void)
420 {
421         return allocate_statement_zero(STATEMENT_EMPTY);
422 }
423
424 /**
425  * Returns the size of an initializer node.
426  *
427  * @param kind  the initializer kind
428  */
429 static size_t get_initializer_size(initializer_kind_t kind)
430 {
431         static const size_t sizes[] = {
432                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
433                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
434                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
435                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
436                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
437         };
438         assert((size_t)kind < lengthof(sizes));
439         assert(sizes[kind] != 0);
440         return sizes[kind];
441 }
442
443 /**
444  * Allocate an initializer node of given kind and initialize all
445  * fields with zero.
446  */
447 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
448 {
449         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
450         result->kind          = kind;
451
452         return result;
453 }
454
455 /**
456  * Returns the index of the top element of the environment stack.
457  */
458 static size_t environment_top(void)
459 {
460         return ARR_LEN(environment_stack);
461 }
462
463 /**
464  * Returns the index of the top element of the global label stack.
465  */
466 static size_t label_top(void)
467 {
468         return ARR_LEN(label_stack);
469 }
470
471 /**
472  * Return the next token.
473  */
474 static inline void next_token(void)
475 {
476         token                              = lookahead_buffer[lookahead_bufpos];
477         lookahead_buffer[lookahead_bufpos] = lexer_token;
478         lexer_next_token();
479
480         lookahead_bufpos = (lookahead_bufpos + 1) % MAX_LOOKAHEAD;
481
482 #ifdef PRINT_TOKENS
483         print_token(stderr, &token);
484         fprintf(stderr, "\n");
485 #endif
486 }
487
488 static inline bool next_if(int const type)
489 {
490         if (token.kind == type) {
491                 next_token();
492                 return true;
493         } else {
494                 return false;
495         }
496 }
497
498 /**
499  * Return the next token with a given lookahead.
500  */
501 static inline const token_t *look_ahead(size_t num)
502 {
503         assert(0 < num && num <= MAX_LOOKAHEAD);
504         size_t pos = (lookahead_bufpos + num - 1) % MAX_LOOKAHEAD;
505         return &lookahead_buffer[pos];
506 }
507
508 /**
509  * Adds a token type to the token type anchor set (a multi-set).
510  */
511 static void add_anchor_token(int token_kind)
512 {
513         assert(0 <= token_kind && token_kind < T_LAST_TOKEN);
514         ++token_anchor_set[token_kind];
515 }
516
517 /**
518  * Set the number of tokens types of the given type
519  * to zero and return the old count.
520  */
521 static int save_and_reset_anchor_state(int token_kind)
522 {
523         assert(0 <= token_kind && token_kind < T_LAST_TOKEN);
524         int count = token_anchor_set[token_kind];
525         token_anchor_set[token_kind] = 0;
526         return count;
527 }
528
529 /**
530  * Restore the number of token types to the given count.
531  */
532 static void restore_anchor_state(int token_kind, int count)
533 {
534         assert(0 <= token_kind && token_kind < T_LAST_TOKEN);
535         token_anchor_set[token_kind] = count;
536 }
537
538 /**
539  * Remove a token type from the token type anchor set (a multi-set).
540  */
541 static void rem_anchor_token(int token_kind)
542 {
543         assert(0 <= token_kind && token_kind < T_LAST_TOKEN);
544         assert(token_anchor_set[token_kind] != 0);
545         --token_anchor_set[token_kind];
546 }
547
548 /**
549  * Return true if the token type of the current token is
550  * in the anchor set.
551  */
552 static bool at_anchor(void)
553 {
554         if (token.kind < 0)
555                 return false;
556         return token_anchor_set[token.kind];
557 }
558
559 /**
560  * Eat tokens until a matching token type is found.
561  */
562 static void eat_until_matching_token(int type)
563 {
564         int end_token;
565         switch (type) {
566                 case '(': end_token = ')';  break;
567                 case '{': end_token = '}';  break;
568                 case '[': end_token = ']';  break;
569                 default:  end_token = type; break;
570         }
571
572         unsigned parenthesis_count = 0;
573         unsigned brace_count       = 0;
574         unsigned bracket_count     = 0;
575         while (token.kind        != end_token ||
576                parenthesis_count != 0         ||
577                brace_count       != 0         ||
578                bracket_count     != 0) {
579                 switch (token.kind) {
580                 case T_EOF: return;
581                 case '(': ++parenthesis_count; break;
582                 case '{': ++brace_count;       break;
583                 case '[': ++bracket_count;     break;
584
585                 case ')':
586                         if (parenthesis_count > 0)
587                                 --parenthesis_count;
588                         goto check_stop;
589
590                 case '}':
591                         if (brace_count > 0)
592                                 --brace_count;
593                         goto check_stop;
594
595                 case ']':
596                         if (bracket_count > 0)
597                                 --bracket_count;
598 check_stop:
599                         if (token.kind        == end_token &&
600                             parenthesis_count == 0         &&
601                             brace_count       == 0         &&
602                             bracket_count     == 0)
603                                 return;
604                         break;
605
606                 default:
607                         break;
608                 }
609                 next_token();
610         }
611 }
612
613 /**
614  * Eat input tokens until an anchor is found.
615  */
616 static void eat_until_anchor(void)
617 {
618         while (token_anchor_set[token.kind] == 0) {
619                 if (token.kind == '(' || token.kind == '{' || token.kind == '[')
620                         eat_until_matching_token(token.kind);
621                 next_token();
622         }
623 }
624
625 /**
626  * Eat a whole block from input tokens.
627  */
628 static void eat_block(void)
629 {
630         eat_until_matching_token('{');
631         next_if('}');
632 }
633
634 #define eat(token_kind) (assert(token.kind == (token_kind)), next_token())
635
636 /**
637  * Report a parse error because an expected token was not found.
638  */
639 static
640 #if defined __GNUC__ && __GNUC__ >= 4
641 __attribute__((sentinel))
642 #endif
643 void parse_error_expected(const char *message, ...)
644 {
645         if (message != NULL) {
646                 errorf(HERE, "%s", message);
647         }
648         va_list ap;
649         va_start(ap, message);
650         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
651         va_end(ap);
652 }
653
654 /**
655  * Report an incompatible type.
656  */
657 static void type_error_incompatible(const char *msg,
658                 const source_position_t *source_position, type_t *type1, type_t *type2)
659 {
660         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
661                msg, type1, type2);
662 }
663
664 /**
665  * Expect the current token is the expected token.
666  * If not, generate an error, eat the current statement,
667  * and goto the error_label label.
668  */
669 #define expect(expected, error_label)                     \
670         do {                                                  \
671                 if (UNLIKELY(token.kind != (expected))) {         \
672                         parse_error_expected(NULL, (expected), NULL); \
673                         add_anchor_token(expected);                   \
674                         eat_until_anchor();                           \
675                         rem_anchor_token(expected);                   \
676                         if (token.kind != (expected))                 \
677                           goto error_label;                           \
678                 }                                                 \
679                 next_token();                                     \
680         } while (0)
681
682 /**
683  * Push a given scope on the scope stack and make it the
684  * current scope
685  */
686 static scope_t *scope_push(scope_t *new_scope)
687 {
688         if (current_scope != NULL) {
689                 new_scope->depth = current_scope->depth + 1;
690         }
691
692         scope_t *old_scope = current_scope;
693         current_scope      = new_scope;
694         return old_scope;
695 }
696
697 /**
698  * Pop the current scope from the scope stack.
699  */
700 static void scope_pop(scope_t *old_scope)
701 {
702         current_scope = old_scope;
703 }
704
705 /**
706  * Search an entity by its symbol in a given namespace.
707  */
708 static entity_t *get_entity(const symbol_t *const symbol,
709                             namespace_tag_t namespc)
710 {
711         entity_t *entity = symbol->entity;
712         for (; entity != NULL; entity = entity->base.symbol_next) {
713                 if ((namespace_tag_t)entity->base.namespc == namespc)
714                         return entity;
715         }
716
717         return NULL;
718 }
719
720 /* §6.2.3:1 24)  There is only one name space for tags even though three are
721  * possible. */
722 static entity_t *get_tag(symbol_t const *const symbol,
723                          entity_kind_tag_t const kind)
724 {
725         entity_t *entity = get_entity(symbol, NAMESPACE_TAG);
726         if (entity != NULL && (entity_kind_tag_t)entity->kind != kind) {
727                 errorf(HERE,
728                                 "'%Y' defined as wrong kind of tag (previous definition %P)",
729                                 symbol, &entity->base.source_position);
730                 entity = NULL;
731         }
732         return entity;
733 }
734
735 /**
736  * pushs an entity on the environment stack and links the corresponding symbol
737  * it.
738  */
739 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
740 {
741         symbol_t           *symbol  = entity->base.symbol;
742         entity_namespace_t  namespc = entity->base.namespc;
743         assert(namespc != 0);
744
745         /* replace/add entity into entity list of the symbol */
746         entity_t **anchor;
747         entity_t  *iter;
748         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
749                 iter = *anchor;
750                 if (iter == NULL)
751                         break;
752
753                 /* replace an entry? */
754                 if (iter->base.namespc == namespc) {
755                         entity->base.symbol_next = iter->base.symbol_next;
756                         break;
757                 }
758         }
759         *anchor = entity;
760
761         /* remember old declaration */
762         stack_entry_t entry;
763         entry.symbol     = symbol;
764         entry.old_entity = iter;
765         entry.namespc    = namespc;
766         ARR_APP1(stack_entry_t, *stack_ptr, entry);
767 }
768
769 /**
770  * Push an entity on the environment stack.
771  */
772 static void environment_push(entity_t *entity)
773 {
774         assert(entity->base.source_position.input_name != NULL);
775         assert(entity->base.parent_scope != NULL);
776         stack_push(&environment_stack, entity);
777 }
778
779 /**
780  * Push a declaration on the global label stack.
781  *
782  * @param declaration  the declaration
783  */
784 static void label_push(entity_t *label)
785 {
786         /* we abuse the parameters scope as parent for the labels */
787         label->base.parent_scope = &current_function->parameters;
788         stack_push(&label_stack, label);
789 }
790
791 /**
792  * pops symbols from the environment stack until @p new_top is the top element
793  */
794 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
795 {
796         stack_entry_t *stack = *stack_ptr;
797         size_t         top   = ARR_LEN(stack);
798         size_t         i;
799
800         assert(new_top <= top);
801         if (new_top == top)
802                 return;
803
804         for (i = top; i > new_top; --i) {
805                 stack_entry_t *entry = &stack[i - 1];
806
807                 entity_t           *old_entity = entry->old_entity;
808                 symbol_t           *symbol     = entry->symbol;
809                 entity_namespace_t  namespc    = entry->namespc;
810
811                 /* replace with old_entity/remove */
812                 entity_t **anchor;
813                 entity_t  *iter;
814                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
815                         iter = *anchor;
816                         assert(iter != NULL);
817                         /* replace an entry? */
818                         if (iter->base.namespc == namespc)
819                                 break;
820                 }
821
822                 /* restore definition from outer scopes (if there was one) */
823                 if (old_entity != NULL) {
824                         old_entity->base.symbol_next = iter->base.symbol_next;
825                         *anchor                      = old_entity;
826                 } else {
827                         /* remove entry from list */
828                         *anchor = iter->base.symbol_next;
829                 }
830         }
831
832         ARR_SHRINKLEN(*stack_ptr, new_top);
833 }
834
835 /**
836  * Pop all entries from the environment stack until the new_top
837  * is reached.
838  *
839  * @param new_top  the new stack top
840  */
841 static void environment_pop_to(size_t new_top)
842 {
843         stack_pop_to(&environment_stack, new_top);
844 }
845
846 /**
847  * Pop all entries from the global label stack until the new_top
848  * is reached.
849  *
850  * @param new_top  the new stack top
851  */
852 static void label_pop_to(size_t new_top)
853 {
854         stack_pop_to(&label_stack, new_top);
855 }
856
857 static atomic_type_kind_t get_akind(const type_t *type)
858 {
859         assert(type->kind == TYPE_ATOMIC || type->kind == TYPE_COMPLEX
860                || type->kind == TYPE_IMAGINARY || type->kind == TYPE_ENUM);
861         return type->atomic.akind;
862 }
863
864 /**
865  * §6.3.1.1:2  Do integer promotion for a given type.
866  *
867  * @param type  the type to promote
868  * @return the promoted type
869  */
870 static type_t *promote_integer(type_t *type)
871 {
872         if (get_akind_rank(get_akind(type)) < get_akind_rank(ATOMIC_TYPE_INT))
873                 type = type_int;
874
875         return type;
876 }
877
878 /**
879  * Check if a given expression represents a null pointer constant.
880  *
881  * @param expression  the expression to check
882  */
883 static bool is_null_pointer_constant(const expression_t *expression)
884 {
885         /* skip void* cast */
886         if (expression->kind == EXPR_UNARY_CAST) {
887                 type_t *const type = skip_typeref(expression->base.type);
888                 if (types_compatible(type, type_void_ptr))
889                         expression = expression->unary.value;
890         }
891
892         type_t *const type = skip_typeref(expression->base.type);
893         if (!is_type_integer(type))
894                 return false;
895         switch (is_constant_expression(expression)) {
896                 case EXPR_CLASS_ERROR:    return true;
897                 case EXPR_CLASS_CONSTANT: return !fold_constant_to_bool(expression);
898                 default:                  return false;
899         }
900 }
901
902 /**
903  * Create an implicit cast expression.
904  *
905  * @param expression  the expression to cast
906  * @param dest_type   the destination type
907  */
908 static expression_t *create_implicit_cast(expression_t *expression,
909                                           type_t *dest_type)
910 {
911         type_t *const source_type = expression->base.type;
912
913         if (source_type == dest_type)
914                 return expression;
915
916         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
917         cast->unary.value   = expression;
918         cast->base.type     = dest_type;
919         cast->base.implicit = true;
920
921         return cast;
922 }
923
924 typedef enum assign_error_t {
925         ASSIGN_SUCCESS,
926         ASSIGN_ERROR_INCOMPATIBLE,
927         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
928         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
929         ASSIGN_WARNING_POINTER_FROM_INT,
930         ASSIGN_WARNING_INT_FROM_POINTER
931 } assign_error_t;
932
933 static void report_assign_error(assign_error_t error, type_t *orig_type_left, expression_t const *const right, char const *const context, source_position_t const *const pos)
934 {
935         type_t *const orig_type_right = right->base.type;
936         type_t *const type_left       = skip_typeref(orig_type_left);
937         type_t *const type_right      = skip_typeref(orig_type_right);
938
939         switch (error) {
940         case ASSIGN_SUCCESS:
941                 return;
942         case ASSIGN_ERROR_INCOMPATIBLE:
943                 errorf(pos, "destination type '%T' in %s is incompatible with type '%T'", orig_type_left, context, orig_type_right);
944                 return;
945
946         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
947                 type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
948                 type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
949
950                 /* the left type has all qualifiers from the right type */
951                 unsigned missing_qualifiers = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
952                 warningf(WARN_OTHER, pos, "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type", orig_type_left, context, orig_type_right, missing_qualifiers);
953                 return;
954         }
955
956         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
957                 warningf(WARN_OTHER, pos, "destination type '%T' in %s is incompatible with '%E' of type '%T'", orig_type_left, context, right, orig_type_right);
958                 return;
959
960         case ASSIGN_WARNING_POINTER_FROM_INT:
961                 warningf(WARN_OTHER, pos, "%s makes pointer '%T' from integer '%T' without a cast", context, orig_type_left, orig_type_right);
962                 return;
963
964         case ASSIGN_WARNING_INT_FROM_POINTER:
965                 warningf(WARN_OTHER, pos, "%s makes integer '%T' from pointer '%T' without a cast", context, orig_type_left, orig_type_right);
966                 return;
967
968         default:
969                 panic("invalid error value");
970         }
971 }
972
973 /** Implements the rules from §6.5.16.1 */
974 static assign_error_t semantic_assign(type_t *orig_type_left,
975                                       const expression_t *const right)
976 {
977         type_t *const orig_type_right = right->base.type;
978         type_t *const type_left       = skip_typeref(orig_type_left);
979         type_t *const type_right      = skip_typeref(orig_type_right);
980
981         if (is_type_pointer(type_left)) {
982                 if (is_null_pointer_constant(right)) {
983                         return ASSIGN_SUCCESS;
984                 } else if (is_type_pointer(type_right)) {
985                         type_t *points_to_left
986                                 = skip_typeref(type_left->pointer.points_to);
987                         type_t *points_to_right
988                                 = skip_typeref(type_right->pointer.points_to);
989                         assign_error_t res = ASSIGN_SUCCESS;
990
991                         /* the left type has all qualifiers from the right type */
992                         unsigned missing_qualifiers
993                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
994                         if (missing_qualifiers != 0) {
995                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
996                         }
997
998                         points_to_left  = get_unqualified_type(points_to_left);
999                         points_to_right = get_unqualified_type(points_to_right);
1000
1001                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1002                                 return res;
1003
1004                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1005                                 /* ISO/IEC 14882:1998(E) §C.1.2:6 */
1006                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1007                         }
1008
1009                         if (!types_compatible(points_to_left, points_to_right)) {
1010                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1011                         }
1012
1013                         return res;
1014                 } else if (is_type_integer(type_right)) {
1015                         return ASSIGN_WARNING_POINTER_FROM_INT;
1016                 }
1017         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1018                         (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1019                                 && is_type_pointer(type_right))) {
1020                 return ASSIGN_SUCCESS;
1021         } else if (is_type_compound(type_left) && is_type_compound(type_right)) {
1022                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1023                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1024                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1025                         return ASSIGN_SUCCESS;
1026                 }
1027         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1028                 return ASSIGN_WARNING_INT_FROM_POINTER;
1029         }
1030
1031         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1032                 return ASSIGN_SUCCESS;
1033
1034         return ASSIGN_ERROR_INCOMPATIBLE;
1035 }
1036
1037 static expression_t *parse_constant_expression(void)
1038 {
1039         expression_t *result = parse_subexpression(PREC_CONDITIONAL);
1040
1041         if (is_constant_expression(result) == EXPR_CLASS_VARIABLE) {
1042                 errorf(&result->base.source_position,
1043                        "expression '%E' is not constant", result);
1044         }
1045
1046         return result;
1047 }
1048
1049 static expression_t *parse_assignment_expression(void)
1050 {
1051         return parse_subexpression(PREC_ASSIGNMENT);
1052 }
1053
1054 static void warn_string_concat(const source_position_t *pos)
1055 {
1056         warningf(WARN_TRADITIONAL, pos, "traditional C rejects string constant concatenation");
1057 }
1058
1059 static string_t parse_string_literals(void)
1060 {
1061         assert(token.kind == T_STRING_LITERAL);
1062         string_t result = token.string.string;
1063
1064         next_token();
1065
1066         while (token.kind == T_STRING_LITERAL) {
1067                 warn_string_concat(&token.base.source_position);
1068                 result = concat_strings(&result, &token.string.string);
1069                 next_token();
1070         }
1071
1072         return result;
1073 }
1074
1075 static attribute_t *allocate_attribute_zero(attribute_kind_t kind)
1076 {
1077         attribute_t *attribute = allocate_ast_zero(sizeof(*attribute));
1078         attribute->kind            = kind;
1079         attribute->source_position = *HERE;
1080         return attribute;
1081 }
1082
1083 /**
1084  * Parse (gcc) attribute argument. From gcc comments in gcc source:
1085  *
1086  *  attribute:
1087  *    __attribute__ ( ( attribute-list ) )
1088  *
1089  *  attribute-list:
1090  *    attrib
1091  *    attribute_list , attrib
1092  *
1093  *  attrib:
1094  *    empty
1095  *    any-word
1096  *    any-word ( identifier )
1097  *    any-word ( identifier , nonempty-expr-list )
1098  *    any-word ( expr-list )
1099  *
1100  *  where the "identifier" must not be declared as a type, and
1101  *  "any-word" may be any identifier (including one declared as a
1102  *  type), a reserved word storage class specifier, type specifier or
1103  *  type qualifier.  ??? This still leaves out most reserved keywords
1104  *  (following the old parser), shouldn't we include them, and why not
1105  *  allow identifiers declared as types to start the arguments?
1106  *
1107  *  Matze: this all looks confusing and little systematic, so we're even less
1108  *  strict and parse any list of things which are identifiers or
1109  *  (assignment-)expressions.
1110  */
1111 static attribute_argument_t *parse_attribute_arguments(void)
1112 {
1113         attribute_argument_t  *first  = NULL;
1114         attribute_argument_t **anchor = &first;
1115         if (token.kind != ')') do {
1116                 attribute_argument_t *argument = allocate_ast_zero(sizeof(*argument));
1117
1118                 /* is it an identifier */
1119                 if (token.kind == T_IDENTIFIER
1120                                 && (look_ahead(1)->kind == ',' || look_ahead(1)->kind == ')')) {
1121                         symbol_t *symbol   = token.identifier.symbol;
1122                         argument->kind     = ATTRIBUTE_ARGUMENT_SYMBOL;
1123                         argument->v.symbol = symbol;
1124                         next_token();
1125                 } else {
1126                         /* must be an expression */
1127                         expression_t *expression = parse_assignment_expression();
1128
1129                         argument->kind         = ATTRIBUTE_ARGUMENT_EXPRESSION;
1130                         argument->v.expression = expression;
1131                 }
1132
1133                 /* append argument */
1134                 *anchor = argument;
1135                 anchor  = &argument->next;
1136         } while (next_if(','));
1137         expect(')', end_error);
1138
1139         return first;
1140
1141 end_error:
1142         /* TODO... */
1143         return first;
1144 }
1145
1146 static attribute_t *parse_attribute_asm(void)
1147 {
1148         attribute_t *attribute = allocate_attribute_zero(ATTRIBUTE_GNU_ASM);
1149         eat(T_asm);
1150
1151         expect('(', end_error);
1152         attribute->a.arguments = parse_attribute_arguments();
1153         return attribute;
1154
1155 end_error:
1156         return NULL;
1157 }
1158
1159 static symbol_t *get_symbol_from_token(void)
1160 {
1161         switch(token.kind) {
1162         case T_IDENTIFIER:
1163                 return token.identifier.symbol;
1164         case T_auto:
1165         case T_char:
1166         case T_double:
1167         case T_enum:
1168         case T_extern:
1169         case T_float:
1170         case T_int:
1171         case T_long:
1172         case T_register:
1173         case T_short:
1174         case T_static:
1175         case T_struct:
1176         case T_union:
1177         case T_unsigned:
1178         case T_void:
1179         case T_bool:
1180         case T__Bool:
1181         case T_class:
1182         case T_explicit:
1183         case T_export:
1184         case T_wchar_t:
1185         case T_const:
1186         case T_signed:
1187         case T___real__:
1188         case T___imag__:
1189         case T_restrict:
1190         case T_volatile:
1191         case T_inline:
1192                 /* maybe we need more tokens ... add them on demand */
1193                 return get_token_kind_symbol(token.kind);
1194         default:
1195                 return NULL;
1196         }
1197 }
1198
1199 static attribute_t *parse_attribute_gnu_single(void)
1200 {
1201         /* parse "any-word" */
1202         symbol_t *symbol = get_symbol_from_token();
1203         if (symbol == NULL) {
1204                 parse_error_expected("while parsing attribute((", T_IDENTIFIER, NULL);
1205                 return NULL;
1206         }
1207
1208         attribute_kind_t  kind;
1209         char const *const name = symbol->string;
1210         for (kind = ATTRIBUTE_GNU_FIRST;; ++kind) {
1211                 if (kind > ATTRIBUTE_GNU_LAST) {
1212                         warningf(WARN_ATTRIBUTE, HERE, "unknown attribute '%s' ignored", name);
1213                         /* TODO: we should still save the attribute in the list... */
1214                         kind = ATTRIBUTE_UNKNOWN;
1215                         break;
1216                 }
1217
1218                 const char *attribute_name = get_attribute_name(kind);
1219                 if (attribute_name != NULL && streq_underscore(attribute_name, name))
1220                         break;
1221         }
1222
1223         attribute_t *attribute = allocate_attribute_zero(kind);
1224         next_token();
1225
1226         /* parse arguments */
1227         if (next_if('('))
1228                 attribute->a.arguments = parse_attribute_arguments();
1229
1230         return attribute;
1231 }
1232
1233 static attribute_t *parse_attribute_gnu(void)
1234 {
1235         attribute_t  *first  = NULL;
1236         attribute_t **anchor = &first;
1237
1238         eat(T___attribute__);
1239         expect('(', end_error);
1240         expect('(', end_error);
1241
1242         if (token.kind != ')') do {
1243                 attribute_t *attribute = parse_attribute_gnu_single();
1244                 if (attribute == NULL)
1245                         goto end_error;
1246
1247                 *anchor = attribute;
1248                 anchor  = &attribute->next;
1249         } while (next_if(','));
1250         expect(')', end_error);
1251         expect(')', end_error);
1252
1253 end_error:
1254         return first;
1255 }
1256
1257 /** Parse attributes. */
1258 static attribute_t *parse_attributes(attribute_t *first)
1259 {
1260         attribute_t **anchor = &first;
1261         for (;;) {
1262                 while (*anchor != NULL)
1263                         anchor = &(*anchor)->next;
1264
1265                 attribute_t *attribute;
1266                 switch (token.kind) {
1267                 case T___attribute__:
1268                         attribute = parse_attribute_gnu();
1269                         if (attribute == NULL)
1270                                 continue;
1271                         break;
1272
1273                 case T_asm:
1274                         attribute = parse_attribute_asm();
1275                         break;
1276
1277                 case T_cdecl:
1278                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_CDECL);
1279                         eat(T_cdecl);
1280                         break;
1281
1282                 case T__fastcall:
1283                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FASTCALL);
1284                         eat(T__fastcall);
1285                         break;
1286
1287                 case T__forceinline:
1288                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FORCEINLINE);
1289                         eat(T__forceinline);
1290                         break;
1291
1292                 case T__stdcall:
1293                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_STDCALL);
1294                         eat(T__stdcall);
1295                         break;
1296
1297                 case T___thiscall:
1298                         /* TODO record modifier */
1299                         warningf(WARN_OTHER, HERE, "Ignoring declaration modifier %K", &token);
1300                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_THISCALL);
1301                         eat(T___thiscall);
1302                         break;
1303
1304                 default:
1305                         return first;
1306                 }
1307
1308                 *anchor = attribute;
1309                 anchor  = &attribute->next;
1310         }
1311 }
1312
1313 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1314
1315 static entity_t *determine_lhs_ent(expression_t *const expr,
1316                                    entity_t *lhs_ent)
1317 {
1318         switch (expr->kind) {
1319                 case EXPR_REFERENCE: {
1320                         entity_t *const entity = expr->reference.entity;
1321                         /* we should only find variables as lvalues... */
1322                         if (entity->base.kind != ENTITY_VARIABLE
1323                                         && entity->base.kind != ENTITY_PARAMETER)
1324                                 return NULL;
1325
1326                         return entity;
1327                 }
1328
1329                 case EXPR_ARRAY_ACCESS: {
1330                         expression_t *const ref = expr->array_access.array_ref;
1331                         entity_t     *      ent = NULL;
1332                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1333                                 ent     = determine_lhs_ent(ref, lhs_ent);
1334                                 lhs_ent = ent;
1335                         } else {
1336                                 mark_vars_read(ref, lhs_ent);
1337                         }
1338                         mark_vars_read(expr->array_access.index, lhs_ent);
1339                         return ent;
1340                 }
1341
1342                 case EXPR_SELECT: {
1343                         mark_vars_read(expr->select.compound, lhs_ent);
1344                         if (is_type_compound(skip_typeref(expr->base.type)))
1345                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1346                         return NULL;
1347                 }
1348
1349                 case EXPR_UNARY_DEREFERENCE: {
1350                         expression_t *const val = expr->unary.value;
1351                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1352                                 /* *&x is a NOP */
1353                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1354                         } else {
1355                                 mark_vars_read(val, NULL);
1356                                 return NULL;
1357                         }
1358                 }
1359
1360                 default:
1361                         mark_vars_read(expr, NULL);
1362                         return NULL;
1363         }
1364 }
1365
1366 #define ENT_ANY ((entity_t*)-1)
1367
1368 /**
1369  * Mark declarations, which are read.  This is used to detect variables, which
1370  * are never read.
1371  * Example:
1372  * x = x + 1;
1373  *   x is not marked as "read", because it is only read to calculate its own new
1374  *   value.
1375  *
1376  * x += y; y += x;
1377  *   x and y are not detected as "not read", because multiple variables are
1378  *   involved.
1379  */
1380 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
1381 {
1382         switch (expr->kind) {
1383                 case EXPR_REFERENCE: {
1384                         entity_t *const entity = expr->reference.entity;
1385                         if (entity->kind != ENTITY_VARIABLE
1386                                         && entity->kind != ENTITY_PARAMETER)
1387                                 return;
1388
1389                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
1390                                 if (entity->kind == ENTITY_VARIABLE) {
1391                                         entity->variable.read = true;
1392                                 } else {
1393                                         entity->parameter.read = true;
1394                                 }
1395                         }
1396                         return;
1397                 }
1398
1399                 case EXPR_CALL:
1400                         // TODO respect pure/const
1401                         mark_vars_read(expr->call.function, NULL);
1402                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
1403                                 mark_vars_read(arg->expression, NULL);
1404                         }
1405                         return;
1406
1407                 case EXPR_CONDITIONAL:
1408                         // TODO lhs_decl should depend on whether true/false have an effect
1409                         mark_vars_read(expr->conditional.condition, NULL);
1410                         if (expr->conditional.true_expression != NULL)
1411                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
1412                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
1413                         return;
1414
1415                 case EXPR_SELECT:
1416                         if (lhs_ent == ENT_ANY
1417                                         && !is_type_compound(skip_typeref(expr->base.type)))
1418                                 lhs_ent = NULL;
1419                         mark_vars_read(expr->select.compound, lhs_ent);
1420                         return;
1421
1422                 case EXPR_ARRAY_ACCESS: {
1423                         mark_vars_read(expr->array_access.index, lhs_ent);
1424                         expression_t *const ref = expr->array_access.array_ref;
1425                         if (!is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1426                                 if (lhs_ent == ENT_ANY)
1427                                         lhs_ent = NULL;
1428                         }
1429                         mark_vars_read(ref, lhs_ent);
1430                         return;
1431                 }
1432
1433                 case EXPR_VA_ARG:
1434                         mark_vars_read(expr->va_arge.ap, lhs_ent);
1435                         return;
1436
1437                 case EXPR_VA_COPY:
1438                         mark_vars_read(expr->va_copye.src, lhs_ent);
1439                         return;
1440
1441                 case EXPR_UNARY_CAST:
1442                         /* Special case: Use void cast to mark a variable as "read" */
1443                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
1444                                 lhs_ent = NULL;
1445                         goto unary;
1446
1447
1448                 case EXPR_UNARY_THROW:
1449                         if (expr->unary.value == NULL)
1450                                 return;
1451                         /* FALLTHROUGH */
1452                 case EXPR_UNARY_DEREFERENCE:
1453                 case EXPR_UNARY_DELETE:
1454                 case EXPR_UNARY_DELETE_ARRAY:
1455                         if (lhs_ent == ENT_ANY)
1456                                 lhs_ent = NULL;
1457                         goto unary;
1458
1459                 case EXPR_UNARY_NEGATE:
1460                 case EXPR_UNARY_PLUS:
1461                 case EXPR_UNARY_BITWISE_NEGATE:
1462                 case EXPR_UNARY_NOT:
1463                 case EXPR_UNARY_TAKE_ADDRESS:
1464                 case EXPR_UNARY_POSTFIX_INCREMENT:
1465                 case EXPR_UNARY_POSTFIX_DECREMENT:
1466                 case EXPR_UNARY_PREFIX_INCREMENT:
1467                 case EXPR_UNARY_PREFIX_DECREMENT:
1468                 case EXPR_UNARY_ASSUME:
1469 unary:
1470                         mark_vars_read(expr->unary.value, lhs_ent);
1471                         return;
1472
1473                 case EXPR_BINARY_ADD:
1474                 case EXPR_BINARY_SUB:
1475                 case EXPR_BINARY_MUL:
1476                 case EXPR_BINARY_DIV:
1477                 case EXPR_BINARY_MOD:
1478                 case EXPR_BINARY_EQUAL:
1479                 case EXPR_BINARY_NOTEQUAL:
1480                 case EXPR_BINARY_LESS:
1481                 case EXPR_BINARY_LESSEQUAL:
1482                 case EXPR_BINARY_GREATER:
1483                 case EXPR_BINARY_GREATEREQUAL:
1484                 case EXPR_BINARY_BITWISE_AND:
1485                 case EXPR_BINARY_BITWISE_OR:
1486                 case EXPR_BINARY_BITWISE_XOR:
1487                 case EXPR_BINARY_LOGICAL_AND:
1488                 case EXPR_BINARY_LOGICAL_OR:
1489                 case EXPR_BINARY_SHIFTLEFT:
1490                 case EXPR_BINARY_SHIFTRIGHT:
1491                 case EXPR_BINARY_COMMA:
1492                 case EXPR_BINARY_ISGREATER:
1493                 case EXPR_BINARY_ISGREATEREQUAL:
1494                 case EXPR_BINARY_ISLESS:
1495                 case EXPR_BINARY_ISLESSEQUAL:
1496                 case EXPR_BINARY_ISLESSGREATER:
1497                 case EXPR_BINARY_ISUNORDERED:
1498                         mark_vars_read(expr->binary.left,  lhs_ent);
1499                         mark_vars_read(expr->binary.right, lhs_ent);
1500                         return;
1501
1502                 case EXPR_BINARY_ASSIGN:
1503                 case EXPR_BINARY_MUL_ASSIGN:
1504                 case EXPR_BINARY_DIV_ASSIGN:
1505                 case EXPR_BINARY_MOD_ASSIGN:
1506                 case EXPR_BINARY_ADD_ASSIGN:
1507                 case EXPR_BINARY_SUB_ASSIGN:
1508                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1509                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1510                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
1511                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1512                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
1513                         if (lhs_ent == ENT_ANY)
1514                                 lhs_ent = NULL;
1515                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
1516                         mark_vars_read(expr->binary.right, lhs_ent);
1517                         return;
1518                 }
1519
1520                 case EXPR_VA_START:
1521                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
1522                         return;
1523
1524                 EXPR_LITERAL_CASES
1525                 case EXPR_ERROR:
1526                 case EXPR_STRING_LITERAL:
1527                 case EXPR_WIDE_STRING_LITERAL:
1528                 case EXPR_COMPOUND_LITERAL: // TODO init?
1529                 case EXPR_SIZEOF:
1530                 case EXPR_CLASSIFY_TYPE:
1531                 case EXPR_ALIGNOF:
1532                 case EXPR_FUNCNAME:
1533                 case EXPR_BUILTIN_CONSTANT_P:
1534                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
1535                 case EXPR_OFFSETOF:
1536                 case EXPR_STATEMENT: // TODO
1537                 case EXPR_LABEL_ADDRESS:
1538                 case EXPR_REFERENCE_ENUM_VALUE:
1539                         return;
1540         }
1541
1542         panic("unhandled expression");
1543 }
1544
1545 static designator_t *parse_designation(void)
1546 {
1547         designator_t  *result = NULL;
1548         designator_t **anchor = &result;
1549
1550         for (;;) {
1551                 designator_t *designator;
1552                 switch (token.kind) {
1553                 case '[':
1554                         designator = allocate_ast_zero(sizeof(designator[0]));
1555                         designator->source_position = token.base.source_position;
1556                         next_token();
1557                         add_anchor_token(']');
1558                         designator->array_index = parse_constant_expression();
1559                         rem_anchor_token(']');
1560                         expect(']', end_error);
1561                         break;
1562                 case '.':
1563                         designator = allocate_ast_zero(sizeof(designator[0]));
1564                         designator->source_position = token.base.source_position;
1565                         next_token();
1566                         if (token.kind != T_IDENTIFIER) {
1567                                 parse_error_expected("while parsing designator",
1568                                                      T_IDENTIFIER, NULL);
1569                                 return NULL;
1570                         }
1571                         designator->symbol = token.identifier.symbol;
1572                         next_token();
1573                         break;
1574                 default:
1575                         expect('=', end_error);
1576                         return result;
1577                 }
1578
1579                 assert(designator != NULL);
1580                 *anchor = designator;
1581                 anchor  = &designator->next;
1582         }
1583 end_error:
1584         return NULL;
1585 }
1586
1587 static initializer_t *initializer_from_string(array_type_t *const type,
1588                                               const string_t *const string)
1589 {
1590         /* TODO: check len vs. size of array type */
1591         (void) type;
1592
1593         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1594         initializer->string.string = *string;
1595
1596         return initializer;
1597 }
1598
1599 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1600                                                    const string_t *const string)
1601 {
1602         /* TODO: check len vs. size of array type */
1603         (void) type;
1604
1605         initializer_t *const initializer =
1606                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1607         initializer->wide_string.string = *string;
1608
1609         return initializer;
1610 }
1611
1612 /**
1613  * Build an initializer from a given expression.
1614  */
1615 static initializer_t *initializer_from_expression(type_t *orig_type,
1616                                                   expression_t *expression)
1617 {
1618         /* TODO check that expression is a constant expression */
1619
1620         /* §6.7.8.14/15 char array may be initialized by string literals */
1621         type_t *type           = skip_typeref(orig_type);
1622         type_t *expr_type_orig = expression->base.type;
1623         type_t *expr_type      = skip_typeref(expr_type_orig);
1624
1625         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1626                 array_type_t *const array_type   = &type->array;
1627                 type_t       *const element_type = skip_typeref(array_type->element_type);
1628
1629                 if (element_type->kind == TYPE_ATOMIC) {
1630                         atomic_type_kind_t akind = element_type->atomic.akind;
1631                         switch (expression->kind) {
1632                         case EXPR_STRING_LITERAL:
1633                                 if (akind == ATOMIC_TYPE_CHAR
1634                                                 || akind == ATOMIC_TYPE_SCHAR
1635                                                 || akind == ATOMIC_TYPE_UCHAR) {
1636                                         return initializer_from_string(array_type,
1637                                                         &expression->string_literal.value);
1638                                 }
1639                                 break;
1640
1641                         case EXPR_WIDE_STRING_LITERAL: {
1642                                 type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1643                                 if (get_unqualified_type(element_type) == bare_wchar_type) {
1644                                         return initializer_from_wide_string(array_type,
1645                                                         &expression->string_literal.value);
1646                                 }
1647                                 break;
1648                         }
1649
1650                         default:
1651                                 break;
1652                         }
1653                 }
1654         }
1655
1656         assign_error_t error = semantic_assign(type, expression);
1657         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1658                 return NULL;
1659         report_assign_error(error, type, expression, "initializer",
1660                             &expression->base.source_position);
1661
1662         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1663         result->value.value = create_implicit_cast(expression, type);
1664
1665         return result;
1666 }
1667
1668 /**
1669  * Checks if a given expression can be used as a constant initializer.
1670  */
1671 static bool is_initializer_constant(const expression_t *expression)
1672 {
1673         return is_constant_expression(expression) != EXPR_CLASS_VARIABLE ||
1674                is_linker_constant(expression)     != EXPR_CLASS_VARIABLE;
1675 }
1676
1677 /**
1678  * Parses an scalar initializer.
1679  *
1680  * §6.7.8.11; eat {} without warning
1681  */
1682 static initializer_t *parse_scalar_initializer(type_t *type,
1683                                                bool must_be_constant)
1684 {
1685         /* there might be extra {} hierarchies */
1686         int braces = 0;
1687         if (token.kind == '{') {
1688                 warningf(WARN_OTHER, HERE, "extra curly braces around scalar initializer");
1689                 do {
1690                         eat('{');
1691                         ++braces;
1692                 } while (token.kind == '{');
1693         }
1694
1695         expression_t *expression = parse_assignment_expression();
1696         mark_vars_read(expression, NULL);
1697         if (must_be_constant && !is_initializer_constant(expression)) {
1698                 errorf(&expression->base.source_position,
1699                        "initialisation expression '%E' is not constant",
1700                        expression);
1701         }
1702
1703         initializer_t *initializer = initializer_from_expression(type, expression);
1704
1705         if (initializer == NULL) {
1706                 errorf(&expression->base.source_position,
1707                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1708                        expression, expression->base.type, type);
1709                 /* TODO */
1710                 return NULL;
1711         }
1712
1713         bool additional_warning_displayed = false;
1714         while (braces > 0) {
1715                 next_if(',');
1716                 if (token.kind != '}') {
1717                         if (!additional_warning_displayed) {
1718                                 warningf(WARN_OTHER, HERE, "additional elements in scalar initializer");
1719                                 additional_warning_displayed = true;
1720                         }
1721                 }
1722                 eat_block();
1723                 braces--;
1724         }
1725
1726         return initializer;
1727 }
1728
1729 /**
1730  * An entry in the type path.
1731  */
1732 typedef struct type_path_entry_t type_path_entry_t;
1733 struct type_path_entry_t {
1734         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
1735         union {
1736                 size_t         index;          /**< For array types: the current index. */
1737                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
1738         } v;
1739 };
1740
1741 /**
1742  * A type path expression a position inside compound or array types.
1743  */
1744 typedef struct type_path_t type_path_t;
1745 struct type_path_t {
1746         type_path_entry_t *path;         /**< An flexible array containing the current path. */
1747         type_t            *top_type;     /**< type of the element the path points */
1748         size_t             max_index;    /**< largest index in outermost array */
1749 };
1750
1751 /**
1752  * Prints a type path for debugging.
1753  */
1754 static __attribute__((unused)) void debug_print_type_path(
1755                 const type_path_t *path)
1756 {
1757         size_t len = ARR_LEN(path->path);
1758
1759         for (size_t i = 0; i < len; ++i) {
1760                 const type_path_entry_t *entry = & path->path[i];
1761
1762                 type_t *type = skip_typeref(entry->type);
1763                 if (is_type_compound(type)) {
1764                         /* in gcc mode structs can have no members */
1765                         if (entry->v.compound_entry == NULL) {
1766                                 assert(i == len-1);
1767                                 continue;
1768                         }
1769                         fprintf(stderr, ".%s",
1770                                 entry->v.compound_entry->base.symbol->string);
1771                 } else if (is_type_array(type)) {
1772                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
1773                 } else {
1774                         fprintf(stderr, "-INVALID-");
1775                 }
1776         }
1777         if (path->top_type != NULL) {
1778                 fprintf(stderr, "  (");
1779                 print_type(path->top_type);
1780                 fprintf(stderr, ")");
1781         }
1782 }
1783
1784 /**
1785  * Return the top type path entry, ie. in a path
1786  * (type).a.b returns the b.
1787  */
1788 static type_path_entry_t *get_type_path_top(const type_path_t *path)
1789 {
1790         size_t len = ARR_LEN(path->path);
1791         assert(len > 0);
1792         return &path->path[len-1];
1793 }
1794
1795 /**
1796  * Enlarge the type path by an (empty) element.
1797  */
1798 static type_path_entry_t *append_to_type_path(type_path_t *path)
1799 {
1800         size_t len = ARR_LEN(path->path);
1801         ARR_RESIZE(type_path_entry_t, path->path, len+1);
1802
1803         type_path_entry_t *result = & path->path[len];
1804         memset(result, 0, sizeof(result[0]));
1805         return result;
1806 }
1807
1808 /**
1809  * Descending into a sub-type. Enter the scope of the current top_type.
1810  */
1811 static void descend_into_subtype(type_path_t *path)
1812 {
1813         type_t *orig_top_type = path->top_type;
1814         type_t *top_type      = skip_typeref(orig_top_type);
1815
1816         type_path_entry_t *top = append_to_type_path(path);
1817         top->type              = top_type;
1818
1819         if (is_type_compound(top_type)) {
1820                 compound_t *const compound = top_type->compound.compound;
1821                 entity_t   *const entry    = skip_unnamed_bitfields(compound->members.entities);
1822
1823                 if (entry != NULL) {
1824                         top->v.compound_entry = &entry->declaration;
1825                         path->top_type = entry->declaration.type;
1826                 } else {
1827                         path->top_type = NULL;
1828                 }
1829         } else if (is_type_array(top_type)) {
1830                 top->v.index   = 0;
1831                 path->top_type = top_type->array.element_type;
1832         } else {
1833                 assert(!is_type_valid(top_type));
1834         }
1835 }
1836
1837 /**
1838  * Pop an entry from the given type path, ie. returning from
1839  * (type).a.b to (type).a
1840  */
1841 static void ascend_from_subtype(type_path_t *path)
1842 {
1843         type_path_entry_t *top = get_type_path_top(path);
1844
1845         path->top_type = top->type;
1846
1847         size_t len = ARR_LEN(path->path);
1848         ARR_RESIZE(type_path_entry_t, path->path, len-1);
1849 }
1850
1851 /**
1852  * Pop entries from the given type path until the given
1853  * path level is reached.
1854  */
1855 static void ascend_to(type_path_t *path, size_t top_path_level)
1856 {
1857         size_t len = ARR_LEN(path->path);
1858
1859         while (len > top_path_level) {
1860                 ascend_from_subtype(path);
1861                 len = ARR_LEN(path->path);
1862         }
1863 }
1864
1865 static bool walk_designator(type_path_t *path, const designator_t *designator,
1866                             bool used_in_offsetof)
1867 {
1868         for (; designator != NULL; designator = designator->next) {
1869                 type_path_entry_t *top       = get_type_path_top(path);
1870                 type_t            *orig_type = top->type;
1871
1872                 type_t *type = skip_typeref(orig_type);
1873
1874                 if (designator->symbol != NULL) {
1875                         symbol_t *symbol = designator->symbol;
1876                         if (!is_type_compound(type)) {
1877                                 if (is_type_valid(type)) {
1878                                         errorf(&designator->source_position,
1879                                                "'.%Y' designator used for non-compound type '%T'",
1880                                                symbol, orig_type);
1881                                 }
1882
1883                                 top->type             = type_error_type;
1884                                 top->v.compound_entry = NULL;
1885                                 orig_type             = type_error_type;
1886                         } else {
1887                                 compound_t *compound = type->compound.compound;
1888                                 entity_t   *iter     = compound->members.entities;
1889                                 for (; iter != NULL; iter = iter->base.next) {
1890                                         if (iter->base.symbol == symbol) {
1891                                                 break;
1892                                         }
1893                                 }
1894                                 if (iter == NULL) {
1895                                         errorf(&designator->source_position,
1896                                                "'%T' has no member named '%Y'", orig_type, symbol);
1897                                         return false;
1898                                 }
1899                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
1900                                 if (used_in_offsetof && iter->compound_member.bitfield) {
1901                                         errorf(&designator->source_position,
1902                                                    "offsetof designator '%Y' must not specify bitfield",
1903                                                    symbol);
1904                                         return false;
1905                                 }
1906
1907                                 top->type             = orig_type;
1908                                 top->v.compound_entry = &iter->declaration;
1909                                 orig_type             = iter->declaration.type;
1910                         }
1911                 } else {
1912                         expression_t *array_index = designator->array_index;
1913                         assert(designator->array_index != NULL);
1914
1915                         if (!is_type_array(type)) {
1916                                 if (is_type_valid(type)) {
1917                                         errorf(&designator->source_position,
1918                                                "[%E] designator used for non-array type '%T'",
1919                                                array_index, orig_type);
1920                                 }
1921                                 return false;
1922                         }
1923
1924                         long index = fold_constant_to_int(array_index);
1925                         if (!used_in_offsetof) {
1926                                 if (index < 0) {
1927                                         errorf(&designator->source_position,
1928                                                "array index [%E] must be positive", array_index);
1929                                 } else if (type->array.size_constant) {
1930                                         long array_size = type->array.size;
1931                                         if (index >= array_size) {
1932                                                 errorf(&designator->source_position,
1933                                                        "designator [%E] (%d) exceeds array size %d",
1934                                                        array_index, index, array_size);
1935                                         }
1936                                 }
1937                         }
1938
1939                         top->type    = orig_type;
1940                         top->v.index = (size_t) index;
1941                         orig_type    = type->array.element_type;
1942                 }
1943                 path->top_type = orig_type;
1944
1945                 if (designator->next != NULL) {
1946                         descend_into_subtype(path);
1947                 }
1948         }
1949         return true;
1950 }
1951
1952 static void advance_current_object(type_path_t *path, size_t top_path_level)
1953 {
1954         type_path_entry_t *top = get_type_path_top(path);
1955
1956         type_t *type = skip_typeref(top->type);
1957         if (is_type_union(type)) {
1958                 /* in unions only the first element is initialized */
1959                 top->v.compound_entry = NULL;
1960         } else if (is_type_struct(type)) {
1961                 declaration_t *entry = top->v.compound_entry;
1962
1963                 entity_t *const next_entity = skip_unnamed_bitfields(entry->base.next);
1964                 if (next_entity != NULL) {
1965                         assert(is_declaration(next_entity));
1966                         entry = &next_entity->declaration;
1967                 } else {
1968                         entry = NULL;
1969                 }
1970
1971                 top->v.compound_entry = entry;
1972                 if (entry != NULL) {
1973                         path->top_type = entry->type;
1974                         return;
1975                 }
1976         } else if (is_type_array(type)) {
1977                 assert(is_type_array(type));
1978
1979                 top->v.index++;
1980
1981                 if (!type->array.size_constant || top->v.index < type->array.size) {
1982                         return;
1983                 }
1984         } else {
1985                 assert(!is_type_valid(type));
1986                 return;
1987         }
1988
1989         /* we're past the last member of the current sub-aggregate, try if we
1990          * can ascend in the type hierarchy and continue with another subobject */
1991         size_t len = ARR_LEN(path->path);
1992
1993         if (len > top_path_level) {
1994                 ascend_from_subtype(path);
1995                 advance_current_object(path, top_path_level);
1996         } else {
1997                 path->top_type = NULL;
1998         }
1999 }
2000
2001 /**
2002  * skip any {...} blocks until a closing bracket is reached.
2003  */
2004 static void skip_initializers(void)
2005 {
2006         next_if('{');
2007
2008         while (token.kind != '}') {
2009                 if (token.kind == T_EOF)
2010                         return;
2011                 if (token.kind == '{') {
2012                         eat_block();
2013                         continue;
2014                 }
2015                 next_token();
2016         }
2017 }
2018
2019 static initializer_t *create_empty_initializer(void)
2020 {
2021         static initializer_t empty_initializer
2022                 = { .list = { { INITIALIZER_LIST }, 0 } };
2023         return &empty_initializer;
2024 }
2025
2026 /**
2027  * Parse a part of an initialiser for a struct or union,
2028  */
2029 static initializer_t *parse_sub_initializer(type_path_t *path,
2030                 type_t *outer_type, size_t top_path_level,
2031                 parse_initializer_env_t *env)
2032 {
2033         if (token.kind == '}') {
2034                 /* empty initializer */
2035                 return create_empty_initializer();
2036         }
2037
2038         type_t *orig_type = path->top_type;
2039         type_t *type      = NULL;
2040
2041         if (orig_type == NULL) {
2042                 /* We are initializing an empty compound. */
2043         } else {
2044                 type = skip_typeref(orig_type);
2045         }
2046
2047         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2048
2049         while (true) {
2050                 designator_t *designator = NULL;
2051                 if (token.kind == '.' || token.kind == '[') {
2052                         designator = parse_designation();
2053                         goto finish_designator;
2054                 } else if (token.kind == T_IDENTIFIER && look_ahead(1)->kind == ':') {
2055                         /* GNU-style designator ("identifier: value") */
2056                         designator = allocate_ast_zero(sizeof(designator[0]));
2057                         designator->source_position = token.base.source_position;
2058                         designator->symbol          = token.identifier.symbol;
2059                         eat(T_IDENTIFIER);
2060                         eat(':');
2061
2062 finish_designator:
2063                         /* reset path to toplevel, evaluate designator from there */
2064                         ascend_to(path, top_path_level);
2065                         if (!walk_designator(path, designator, false)) {
2066                                 /* can't continue after designation error */
2067                                 goto end_error;
2068                         }
2069
2070                         initializer_t *designator_initializer
2071                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2072                         designator_initializer->designator.designator = designator;
2073                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2074
2075                         orig_type = path->top_type;
2076                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2077                 }
2078
2079                 initializer_t *sub;
2080
2081                 if (token.kind == '{') {
2082                         if (type != NULL && is_type_scalar(type)) {
2083                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2084                         } else {
2085                                 if (type == NULL) {
2086                                         if (env->entity != NULL) {
2087                                                 errorf(HERE,
2088                                                      "extra brace group at end of initializer for '%Y'",
2089                                                      env->entity->base.symbol);
2090                                         } else {
2091                                                 errorf(HERE, "extra brace group at end of initializer");
2092                                         }
2093                                         eat('{');
2094                                 } else {
2095                                         eat('{');
2096                                         descend_into_subtype(path);
2097                                 }
2098
2099                                 add_anchor_token('}');
2100                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2101                                                             env);
2102                                 rem_anchor_token('}');
2103
2104                                 if (type != NULL) {
2105                                         ascend_from_subtype(path);
2106                                         expect('}', end_error);
2107                                 } else {
2108                                         expect('}', end_error);
2109                                         goto error_parse_next;
2110                                 }
2111                         }
2112                 } else {
2113                         /* must be an expression */
2114                         expression_t *expression = parse_assignment_expression();
2115                         mark_vars_read(expression, NULL);
2116
2117                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2118                                 errorf(&expression->base.source_position,
2119                                        "Initialisation expression '%E' is not constant",
2120                                        expression);
2121                         }
2122
2123                         if (type == NULL) {
2124                                 /* we are already outside, ... */
2125                                 if (outer_type == NULL)
2126                                         goto error_parse_next;
2127                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2128                                 if (is_type_compound(outer_type_skip) &&
2129                                                 !outer_type_skip->compound.compound->complete) {
2130                                         goto error_parse_next;
2131                                 }
2132
2133                                 source_position_t const* const pos = &expression->base.source_position;
2134                                 if (env->entity != NULL) {
2135                                         warningf(WARN_OTHER, pos, "excess elements in initializer for '%Y'", env->entity->base.symbol);
2136                                 } else {
2137                                         warningf(WARN_OTHER, pos, "excess elements in initializer");
2138                                 }
2139                                 goto error_parse_next;
2140                         }
2141
2142                         /* handle { "string" } special case */
2143                         if ((expression->kind == EXPR_STRING_LITERAL
2144                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2145                                         && outer_type != NULL) {
2146                                 sub = initializer_from_expression(outer_type, expression);
2147                                 if (sub != NULL) {
2148                                         next_if(',');
2149                                         if (token.kind != '}') {
2150                                                 warningf(WARN_OTHER, HERE, "excessive elements in initializer for type '%T'", orig_type);
2151                                         }
2152                                         /* TODO: eat , ... */
2153                                         return sub;
2154                                 }
2155                         }
2156
2157                         /* descend into subtypes until expression matches type */
2158                         while (true) {
2159                                 orig_type = path->top_type;
2160                                 type      = skip_typeref(orig_type);
2161
2162                                 sub = initializer_from_expression(orig_type, expression);
2163                                 if (sub != NULL) {
2164                                         break;
2165                                 }
2166                                 if (!is_type_valid(type)) {
2167                                         goto end_error;
2168                                 }
2169                                 if (is_type_scalar(type)) {
2170                                         errorf(&expression->base.source_position,
2171                                                         "expression '%E' doesn't match expected type '%T'",
2172                                                         expression, orig_type);
2173                                         goto end_error;
2174                                 }
2175
2176                                 descend_into_subtype(path);
2177                         }
2178                 }
2179
2180                 /* update largest index of top array */
2181                 const type_path_entry_t *first      = &path->path[0];
2182                 type_t                  *first_type = first->type;
2183                 first_type                          = skip_typeref(first_type);
2184                 if (is_type_array(first_type)) {
2185                         size_t index = first->v.index;
2186                         if (index > path->max_index)
2187                                 path->max_index = index;
2188                 }
2189
2190                 /* append to initializers list */
2191                 ARR_APP1(initializer_t*, initializers, sub);
2192
2193 error_parse_next:
2194                 if (token.kind == '}') {
2195                         break;
2196                 }
2197                 expect(',', end_error);
2198                 if (token.kind == '}') {
2199                         break;
2200                 }
2201
2202                 if (type != NULL) {
2203                         /* advance to the next declaration if we are not at the end */
2204                         advance_current_object(path, top_path_level);
2205                         orig_type = path->top_type;
2206                         if (orig_type != NULL)
2207                                 type = skip_typeref(orig_type);
2208                         else
2209                                 type = NULL;
2210                 }
2211         }
2212
2213         size_t len  = ARR_LEN(initializers);
2214         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2215         initializer_t *result = allocate_ast_zero(size);
2216         result->kind          = INITIALIZER_LIST;
2217         result->list.len      = len;
2218         memcpy(&result->list.initializers, initializers,
2219                len * sizeof(initializers[0]));
2220
2221         DEL_ARR_F(initializers);
2222         ascend_to(path, top_path_level+1);
2223
2224         return result;
2225
2226 end_error:
2227         skip_initializers();
2228         DEL_ARR_F(initializers);
2229         ascend_to(path, top_path_level+1);
2230         return NULL;
2231 }
2232
2233 static expression_t *make_size_literal(size_t value)
2234 {
2235         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_INTEGER);
2236         literal->base.type    = type_size_t;
2237
2238         char buf[128];
2239         snprintf(buf, sizeof(buf), "%u", (unsigned) value);
2240         literal->literal.value = make_string(buf);
2241
2242         return literal;
2243 }
2244
2245 /**
2246  * Parses an initializer. Parsers either a compound literal
2247  * (env->declaration == NULL) or an initializer of a declaration.
2248  */
2249 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2250 {
2251         type_t        *type      = skip_typeref(env->type);
2252         size_t         max_index = 0;
2253         initializer_t *result;
2254
2255         if (is_type_scalar(type)) {
2256                 result = parse_scalar_initializer(type, env->must_be_constant);
2257         } else if (token.kind == '{') {
2258                 eat('{');
2259
2260                 type_path_t path;
2261                 memset(&path, 0, sizeof(path));
2262                 path.top_type = env->type;
2263                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2264
2265                 descend_into_subtype(&path);
2266
2267                 add_anchor_token('}');
2268                 result = parse_sub_initializer(&path, env->type, 1, env);
2269                 rem_anchor_token('}');
2270
2271                 max_index = path.max_index;
2272                 DEL_ARR_F(path.path);
2273
2274                 expect('}', end_error);
2275 end_error:;
2276         } else {
2277                 /* parse_scalar_initializer() also works in this case: we simply
2278                  * have an expression without {} around it */
2279                 result = parse_scalar_initializer(type, env->must_be_constant);
2280         }
2281
2282         /* §6.7.8:22 array initializers for arrays with unknown size determine
2283          * the array type size */
2284         if (is_type_array(type) && type->array.size_expression == NULL
2285                         && result != NULL) {
2286                 size_t size;
2287                 switch (result->kind) {
2288                 case INITIALIZER_LIST:
2289                         assert(max_index != 0xdeadbeaf);
2290                         size = max_index + 1;
2291                         break;
2292
2293                 case INITIALIZER_STRING:
2294                         size = result->string.string.size;
2295                         break;
2296
2297                 case INITIALIZER_WIDE_STRING:
2298                         size = result->wide_string.string.size;
2299                         break;
2300
2301                 case INITIALIZER_DESIGNATOR:
2302                 case INITIALIZER_VALUE:
2303                         /* can happen for parse errors */
2304                         size = 0;
2305                         break;
2306
2307                 default:
2308                         internal_errorf(HERE, "invalid initializer type");
2309                 }
2310
2311                 type_t *new_type = duplicate_type(type);
2312
2313                 new_type->array.size_expression   = make_size_literal(size);
2314                 new_type->array.size_constant     = true;
2315                 new_type->array.has_implicit_size = true;
2316                 new_type->array.size              = size;
2317                 env->type = new_type;
2318         }
2319
2320         return result;
2321 }
2322
2323 static void append_entity(scope_t *scope, entity_t *entity)
2324 {
2325         if (scope->last_entity != NULL) {
2326                 scope->last_entity->base.next = entity;
2327         } else {
2328                 scope->entities = entity;
2329         }
2330         entity->base.parent_entity = current_entity;
2331         scope->last_entity         = entity;
2332 }
2333
2334
2335 static compound_t *parse_compound_type_specifier(bool is_struct)
2336 {
2337         source_position_t const pos = *HERE;
2338         eat(is_struct ? T_struct : T_union);
2339
2340         symbol_t    *symbol     = NULL;
2341         entity_t    *entity     = NULL;
2342         attribute_t *attributes = NULL;
2343
2344         if (token.kind == T___attribute__) {
2345                 attributes = parse_attributes(NULL);
2346         }
2347
2348         entity_kind_tag_t const kind = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
2349         if (token.kind == T_IDENTIFIER) {
2350                 /* the compound has a name, check if we have seen it already */
2351                 symbol = token.identifier.symbol;
2352                 entity = get_tag(symbol, kind);
2353                 next_token();
2354
2355                 if (entity != NULL) {
2356                         if (entity->base.parent_scope != current_scope &&
2357                             (token.kind == '{' || token.kind == ';')) {
2358                                 /* we're in an inner scope and have a definition. Shadow
2359                                  * existing definition in outer scope */
2360                                 entity = NULL;
2361                         } else if (entity->compound.complete && token.kind == '{') {
2362                                 source_position_t const *const ppos = &entity->base.source_position;
2363                                 errorf(&pos, "multiple definitions of '%N' (previous definition %P)", entity, ppos);
2364                                 /* clear members in the hope to avoid further errors */
2365                                 entity->compound.members.entities = NULL;
2366                         }
2367                 }
2368         } else if (token.kind != '{') {
2369                 char const *const msg =
2370                         is_struct ? "while parsing struct type specifier" :
2371                                     "while parsing union type specifier";
2372                 parse_error_expected(msg, T_IDENTIFIER, '{', NULL);
2373
2374                 return NULL;
2375         }
2376
2377         if (entity == NULL) {
2378                 entity = allocate_entity_zero(kind, NAMESPACE_TAG, symbol);
2379                 entity->compound.alignment   = 1;
2380                 entity->base.source_position = pos;
2381                 entity->base.parent_scope    = current_scope;
2382                 if (symbol != NULL) {
2383                         environment_push(entity);
2384                 }
2385                 append_entity(current_scope, entity);
2386         }
2387
2388         if (token.kind == '{') {
2389                 parse_compound_type_entries(&entity->compound);
2390
2391                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2392                 if (symbol == NULL) {
2393                         assert(anonymous_entity == NULL);
2394                         anonymous_entity = entity;
2395                 }
2396         }
2397
2398         if (attributes != NULL) {
2399                 handle_entity_attributes(attributes, entity);
2400         }
2401
2402         return &entity->compound;
2403 }
2404
2405 static void parse_enum_entries(type_t *const enum_type)
2406 {
2407         eat('{');
2408
2409         if (token.kind == '}') {
2410                 errorf(HERE, "empty enum not allowed");
2411                 next_token();
2412                 return;
2413         }
2414
2415         add_anchor_token('}');
2416         do {
2417                 if (token.kind != T_IDENTIFIER) {
2418                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2419                         eat_block();
2420                         rem_anchor_token('}');
2421                         return;
2422                 }
2423
2424                 symbol_t *symbol       = token.identifier.symbol;
2425                 entity_t *const entity
2426                         = allocate_entity_zero(ENTITY_ENUM_VALUE, NAMESPACE_NORMAL, symbol);
2427                 entity->enum_value.enum_type = enum_type;
2428                 entity->base.source_position = token.base.source_position;
2429                 next_token();
2430
2431                 if (next_if('=')) {
2432                         expression_t *value = parse_constant_expression();
2433
2434                         value = create_implicit_cast(value, enum_type);
2435                         entity->enum_value.value = value;
2436
2437                         /* TODO semantic */
2438                 }
2439
2440                 record_entity(entity, false);
2441         } while (next_if(',') && token.kind != '}');
2442         rem_anchor_token('}');
2443
2444         expect('}', end_error);
2445
2446 end_error:
2447         ;
2448 }
2449
2450 static type_t *parse_enum_specifier(void)
2451 {
2452         source_position_t const pos = *HERE;
2453         entity_t               *entity;
2454         symbol_t               *symbol;
2455
2456         eat(T_enum);
2457         switch (token.kind) {
2458                 case T_IDENTIFIER:
2459                         symbol = token.identifier.symbol;
2460                         entity = get_tag(symbol, ENTITY_ENUM);
2461                         next_token();
2462
2463                         if (entity != NULL) {
2464                                 if (entity->base.parent_scope != current_scope &&
2465                                                 (token.kind == '{' || token.kind == ';')) {
2466                                         /* we're in an inner scope and have a definition. Shadow
2467                                          * existing definition in outer scope */
2468                                         entity = NULL;
2469                                 } else if (entity->enume.complete && token.kind == '{') {
2470                                         source_position_t const *const ppos = &entity->base.source_position;
2471                                         errorf(&pos, "multiple definitions of '%N' (previous definition %P)", entity, ppos);
2472                                 }
2473                         }
2474                         break;
2475
2476                 case '{':
2477                         entity = NULL;
2478                         symbol = NULL;
2479                         break;
2480
2481                 default:
2482                         parse_error_expected("while parsing enum type specifier",
2483                                         T_IDENTIFIER, '{', NULL);
2484                         return NULL;
2485         }
2486
2487         if (entity == NULL) {
2488                 entity = allocate_entity_zero(ENTITY_ENUM, NAMESPACE_TAG, symbol);
2489                 entity->base.source_position = pos;
2490                 entity->base.parent_scope    = current_scope;
2491         }
2492
2493         type_t *const type     = allocate_type_zero(TYPE_ENUM);
2494         type->enumt.enume      = &entity->enume;
2495         type->enumt.base.akind = ATOMIC_TYPE_INT;
2496
2497         if (token.kind == '{') {
2498                 if (symbol != NULL) {
2499                         environment_push(entity);
2500                 }
2501                 append_entity(current_scope, entity);
2502                 entity->enume.complete = true;
2503
2504                 parse_enum_entries(type);
2505                 parse_attributes(NULL);
2506
2507                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2508                 if (symbol == NULL) {
2509                         assert(anonymous_entity == NULL);
2510                         anonymous_entity = entity;
2511                 }
2512         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
2513                 errorf(HERE, "'%T' used before definition (incomplete enums are a GNU extension)", type);
2514         }
2515
2516         return type;
2517 }
2518
2519 /**
2520  * if a symbol is a typedef to another type, return true
2521  */
2522 static bool is_typedef_symbol(symbol_t *symbol)
2523 {
2524         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
2525         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
2526 }
2527
2528 static type_t *parse_typeof(void)
2529 {
2530         eat(T___typeof__);
2531
2532         type_t *type;
2533
2534         expect('(', end_error);
2535         add_anchor_token(')');
2536
2537         expression_t *expression  = NULL;
2538
2539         switch (token.kind) {
2540         case T_IDENTIFIER:
2541                 if (is_typedef_symbol(token.identifier.symbol)) {
2542         DECLARATION_START
2543                         type = parse_typename();
2544                 } else {
2545         default:
2546                         expression = parse_expression();
2547                         type       = revert_automatic_type_conversion(expression);
2548                 }
2549                 break;
2550         }
2551
2552         rem_anchor_token(')');
2553         expect(')', end_error);
2554
2555         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
2556         typeof_type->typeoft.expression  = expression;
2557         typeof_type->typeoft.typeof_type = type;
2558
2559         return typeof_type;
2560 end_error:
2561         return NULL;
2562 }
2563
2564 typedef enum specifiers_t {
2565         SPECIFIER_SIGNED    = 1 << 0,
2566         SPECIFIER_UNSIGNED  = 1 << 1,
2567         SPECIFIER_LONG      = 1 << 2,
2568         SPECIFIER_INT       = 1 << 3,
2569         SPECIFIER_DOUBLE    = 1 << 4,
2570         SPECIFIER_CHAR      = 1 << 5,
2571         SPECIFIER_WCHAR_T   = 1 << 6,
2572         SPECIFIER_SHORT     = 1 << 7,
2573         SPECIFIER_LONG_LONG = 1 << 8,
2574         SPECIFIER_FLOAT     = 1 << 9,
2575         SPECIFIER_BOOL      = 1 << 10,
2576         SPECIFIER_VOID      = 1 << 11,
2577         SPECIFIER_INT8      = 1 << 12,
2578         SPECIFIER_INT16     = 1 << 13,
2579         SPECIFIER_INT32     = 1 << 14,
2580         SPECIFIER_INT64     = 1 << 15,
2581         SPECIFIER_INT128    = 1 << 16,
2582         SPECIFIER_COMPLEX   = 1 << 17,
2583         SPECIFIER_IMAGINARY = 1 << 18,
2584 } specifiers_t;
2585
2586 static type_t *get_typedef_type(symbol_t *symbol)
2587 {
2588         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
2589         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
2590                 return NULL;
2591
2592         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
2593         type->typedeft.typedefe = &entity->typedefe;
2594
2595         return type;
2596 }
2597
2598 static attribute_t *parse_attribute_ms_property(attribute_t *attribute)
2599 {
2600         expect('(', end_error);
2601
2602         attribute_property_argument_t *property
2603                 = allocate_ast_zero(sizeof(*property));
2604
2605         do {
2606                 if (token.kind != T_IDENTIFIER) {
2607                         parse_error_expected("while parsing property declspec",
2608                                              T_IDENTIFIER, NULL);
2609                         goto end_error;
2610                 }
2611
2612                 symbol_t **prop;
2613                 symbol_t  *symbol = token.identifier.symbol;
2614                 if (streq(symbol->string, "put")) {
2615                         prop = &property->put_symbol;
2616                 } else if (streq(symbol->string, "get")) {
2617                         prop = &property->get_symbol;
2618                 } else {
2619                         errorf(HERE, "expected put or get in property declspec");
2620                         prop = NULL;
2621                 }
2622                 eat(T_IDENTIFIER);
2623                 expect('=', end_error);
2624                 if (token.kind != T_IDENTIFIER) {
2625                         parse_error_expected("while parsing property declspec",
2626                                              T_IDENTIFIER, NULL);
2627                         goto end_error;
2628                 }
2629                 if (prop != NULL)
2630                         *prop = token.identifier.symbol;
2631                 next_token();
2632         } while (next_if(','));
2633
2634         attribute->a.property = property;
2635
2636         expect(')', end_error);
2637
2638 end_error:
2639         return attribute;
2640 }
2641
2642 static attribute_t *parse_microsoft_extended_decl_modifier_single(void)
2643 {
2644         attribute_kind_t kind = ATTRIBUTE_UNKNOWN;
2645         if (next_if(T_restrict)) {
2646                 kind = ATTRIBUTE_MS_RESTRICT;
2647         } else if (token.kind == T_IDENTIFIER) {
2648                 const char *name = token.identifier.symbol->string;
2649                 for (attribute_kind_t k = ATTRIBUTE_MS_FIRST; k <= ATTRIBUTE_MS_LAST;
2650                      ++k) {
2651                         const char *attribute_name = get_attribute_name(k);
2652                         if (attribute_name != NULL && streq(attribute_name, name)) {
2653                                 kind = k;
2654                                 break;
2655                         }
2656                 }
2657
2658                 if (kind == ATTRIBUTE_UNKNOWN) {
2659                         warningf(WARN_ATTRIBUTE, HERE, "unknown __declspec '%s' ignored", name);
2660                 }
2661         } else {
2662                 parse_error_expected("while parsing __declspec", T_IDENTIFIER, NULL);
2663                 return NULL;
2664         }
2665
2666         attribute_t *attribute = allocate_attribute_zero(kind);
2667         eat(T_IDENTIFIER);
2668
2669         if (kind == ATTRIBUTE_MS_PROPERTY) {
2670                 return parse_attribute_ms_property(attribute);
2671         }
2672
2673         /* parse arguments */
2674         if (next_if('('))
2675                 attribute->a.arguments = parse_attribute_arguments();
2676
2677         return attribute;
2678 }
2679
2680 static attribute_t *parse_microsoft_extended_decl_modifier(attribute_t *first)
2681 {
2682         eat(T__declspec);
2683
2684         expect('(', end_error);
2685
2686         if (next_if(')'))
2687                 return NULL;
2688
2689         add_anchor_token(')');
2690
2691         attribute_t **anchor = &first;
2692         do {
2693                 while (*anchor != NULL)
2694                         anchor = &(*anchor)->next;
2695
2696                 attribute_t *attribute
2697                         = parse_microsoft_extended_decl_modifier_single();
2698                 if (attribute == NULL)
2699                         goto end_error;
2700
2701                 *anchor = attribute;
2702                 anchor  = &attribute->next;
2703         } while (next_if(','));
2704
2705         rem_anchor_token(')');
2706         expect(')', end_error);
2707         return first;
2708
2709 end_error:
2710         rem_anchor_token(')');
2711         return first;
2712 }
2713
2714 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
2715 {
2716         entity_t *const entity = allocate_entity_zero(kind, NAMESPACE_NORMAL, symbol);
2717         entity->base.source_position = *HERE;
2718         if (is_declaration(entity)) {
2719                 entity->declaration.type     = type_error_type;
2720                 entity->declaration.implicit = true;
2721         } else if (kind == ENTITY_TYPEDEF) {
2722                 entity->typedefe.type    = type_error_type;
2723                 entity->typedefe.builtin = true;
2724         }
2725         if (kind != ENTITY_COMPOUND_MEMBER)
2726                 record_entity(entity, false);
2727         return entity;
2728 }
2729
2730 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
2731 {
2732         type_t            *type            = NULL;
2733         type_qualifiers_t  qualifiers      = TYPE_QUALIFIER_NONE;
2734         unsigned           type_specifiers = 0;
2735         bool               newtype         = false;
2736         bool               saw_error       = false;
2737
2738         memset(specifiers, 0, sizeof(*specifiers));
2739         specifiers->source_position = token.base.source_position;
2740
2741         while (true) {
2742                 specifiers->attributes = parse_attributes(specifiers->attributes);
2743
2744                 switch (token.kind) {
2745                 /* storage class */
2746 #define MATCH_STORAGE_CLASS(token, class)                                  \
2747                 case token:                                                        \
2748                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
2749                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
2750                         }                                                              \
2751                         specifiers->storage_class = class;                             \
2752                         if (specifiers->thread_local)                                  \
2753                                 goto check_thread_storage_class;                           \
2754                         next_token();                                                  \
2755                         break;
2756
2757                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
2758                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
2759                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
2760                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
2761                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
2762
2763                 case T__declspec:
2764                         specifiers->attributes
2765                                 = parse_microsoft_extended_decl_modifier(specifiers->attributes);
2766                         break;
2767
2768                 case T___thread:
2769                         if (specifiers->thread_local) {
2770                                 errorf(HERE, "duplicate '__thread'");
2771                         } else {
2772                                 specifiers->thread_local = true;
2773 check_thread_storage_class:
2774                                 switch (specifiers->storage_class) {
2775                                         case STORAGE_CLASS_EXTERN:
2776                                         case STORAGE_CLASS_NONE:
2777                                         case STORAGE_CLASS_STATIC:
2778                                                 break;
2779
2780                                                 char const* wrong;
2781                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_storage_class;
2782                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_storage_class;
2783                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_storage_class;
2784 wrong_thread_storage_class:
2785                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
2786                                                 break;
2787                                 }
2788                         }
2789                         next_token();
2790                         break;
2791
2792                 /* type qualifiers */
2793 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
2794                 case token:                                                     \
2795                         qualifiers |= qualifier;                                    \
2796                         next_token();                                               \
2797                         break
2798
2799                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
2800                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
2801                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
2802                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
2803                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
2804                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
2805                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
2806                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
2807
2808                 /* type specifiers */
2809 #define MATCH_SPECIFIER(token, specifier, name)                         \
2810                 case token:                                                     \
2811                         if (type_specifiers & specifier) {                           \
2812                                 errorf(HERE, "multiple " name " type specifiers given"); \
2813                         } else {                                                    \
2814                                 type_specifiers |= specifier;                           \
2815                         }                                                           \
2816                         next_token();                                               \
2817                         break
2818
2819                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
2820                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
2821                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
2822                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
2823                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
2824                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
2825                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
2826                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
2827                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
2828                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
2829                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
2830                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
2831                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
2832                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
2833                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
2834                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
2835                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
2836                 MATCH_SPECIFIER(T_wchar_t,    SPECIFIER_WCHAR_T,   "wchar_t");
2837
2838                 case T_inline:
2839                         next_token();
2840                         specifiers->is_inline = true;
2841                         break;
2842
2843 #if 0
2844                 case T__forceinline:
2845                         next_token();
2846                         specifiers->modifiers |= DM_FORCEINLINE;
2847                         break;
2848 #endif
2849
2850                 case T_long:
2851                         if (type_specifiers & SPECIFIER_LONG_LONG) {
2852                                 errorf(HERE, "too many long type specifiers given");
2853                         } else if (type_specifiers & SPECIFIER_LONG) {
2854                                 type_specifiers |= SPECIFIER_LONG_LONG;
2855                         } else {
2856                                 type_specifiers |= SPECIFIER_LONG;
2857                         }
2858                         next_token();
2859                         break;
2860
2861 #define CHECK_DOUBLE_TYPE() \
2862         (type != NULL ? errorf(HERE, "multiple types in declaration specifiers") : (void)0)
2863
2864                 case T_struct:
2865                         CHECK_DOUBLE_TYPE();
2866                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
2867
2868                         type->compound.compound = parse_compound_type_specifier(true);
2869                         break;
2870                 case T_union:
2871                         CHECK_DOUBLE_TYPE();
2872                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
2873                         type->compound.compound = parse_compound_type_specifier(false);
2874                         break;
2875                 case T_enum:
2876                         CHECK_DOUBLE_TYPE();
2877                         type = parse_enum_specifier();
2878                         break;
2879                 case T___typeof__:
2880                         CHECK_DOUBLE_TYPE();
2881                         type = parse_typeof();
2882                         break;
2883                 case T___builtin_va_list:
2884                         CHECK_DOUBLE_TYPE();
2885                         type = duplicate_type(type_valist);
2886                         next_token();
2887                         break;
2888
2889                 case T_IDENTIFIER: {
2890                         /* only parse identifier if we haven't found a type yet */
2891                         if (type != NULL || type_specifiers != 0) {
2892                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
2893                                  * declaration, so it doesn't generate errors about expecting '(' or
2894                                  * '{' later on. */
2895                                 switch (look_ahead(1)->kind) {
2896                                         STORAGE_CLASSES
2897                                         TYPE_SPECIFIERS
2898                                         case T_const:
2899                                         case T_restrict:
2900                                         case T_volatile:
2901                                         case T_inline:
2902                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
2903                                         case T_IDENTIFIER:
2904                                         case '&':
2905                                         case '*':
2906                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
2907                                                 next_token();
2908                                                 continue;
2909
2910                                         default:
2911                                                 goto finish_specifiers;
2912                                 }
2913                         }
2914
2915                         type_t *const typedef_type = get_typedef_type(token.identifier.symbol);
2916                         if (typedef_type == NULL) {
2917                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
2918                                  * declaration, so it doesn't generate 'implicit int' followed by more
2919                                  * errors later on. */
2920                                 token_kind_t const la1_type = (token_kind_t)look_ahead(1)->kind;
2921                                 switch (la1_type) {
2922                                         DECLARATION_START
2923                                         case T_IDENTIFIER:
2924                                         case '&':
2925                                         case '*': {
2926                                                 errorf(HERE, "%K does not name a type", &token);
2927
2928                                                 symbol_t *symbol = token.identifier.symbol;
2929                                                 entity_t *entity
2930                                                         = create_error_entity(symbol, ENTITY_TYPEDEF);
2931
2932                                                 type = allocate_type_zero(TYPE_TYPEDEF);
2933                                                 type->typedeft.typedefe = &entity->typedefe;
2934
2935                                                 next_token();
2936                                                 saw_error = true;
2937                                                 continue;
2938                                         }
2939
2940                                         default:
2941                                                 goto finish_specifiers;
2942                                 }
2943                         }
2944
2945                         next_token();
2946                         type = typedef_type;
2947                         break;
2948                 }
2949
2950                 /* function specifier */
2951                 default:
2952                         goto finish_specifiers;
2953                 }
2954         }
2955
2956 finish_specifiers:
2957         specifiers->attributes = parse_attributes(specifiers->attributes);
2958
2959         if (type == NULL || (saw_error && type_specifiers != 0)) {
2960                 atomic_type_kind_t atomic_type;
2961
2962                 /* match valid basic types */
2963                 switch (type_specifiers) {
2964                 case SPECIFIER_VOID:
2965                         atomic_type = ATOMIC_TYPE_VOID;
2966                         break;
2967                 case SPECIFIER_WCHAR_T:
2968                         atomic_type = ATOMIC_TYPE_WCHAR_T;
2969                         break;
2970                 case SPECIFIER_CHAR:
2971                         atomic_type = ATOMIC_TYPE_CHAR;
2972                         break;
2973                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
2974                         atomic_type = ATOMIC_TYPE_SCHAR;
2975                         break;
2976                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
2977                         atomic_type = ATOMIC_TYPE_UCHAR;
2978                         break;
2979                 case SPECIFIER_SHORT:
2980                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
2981                 case SPECIFIER_SHORT | SPECIFIER_INT:
2982                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
2983                         atomic_type = ATOMIC_TYPE_SHORT;
2984                         break;
2985                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
2986                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
2987                         atomic_type = ATOMIC_TYPE_USHORT;
2988                         break;
2989                 case SPECIFIER_INT:
2990                 case SPECIFIER_SIGNED:
2991                 case SPECIFIER_SIGNED | SPECIFIER_INT:
2992                         atomic_type = ATOMIC_TYPE_INT;
2993                         break;
2994                 case SPECIFIER_UNSIGNED:
2995                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
2996                         atomic_type = ATOMIC_TYPE_UINT;
2997                         break;
2998                 case SPECIFIER_LONG:
2999                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3000                 case SPECIFIER_LONG | SPECIFIER_INT:
3001                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3002                         atomic_type = ATOMIC_TYPE_LONG;
3003                         break;
3004                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3005                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3006                         atomic_type = ATOMIC_TYPE_ULONG;
3007                         break;
3008
3009                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3010                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3011                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3012                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3013                         | SPECIFIER_INT:
3014                         atomic_type = ATOMIC_TYPE_LONGLONG;
3015                         goto warn_about_long_long;
3016
3017                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3018                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3019                         | SPECIFIER_INT:
3020                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3021 warn_about_long_long:
3022                         warningf(WARN_LONG_LONG, &specifiers->source_position, "ISO C90 does not support 'long long'");
3023                         break;
3024
3025                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3026                         atomic_type = unsigned_int8_type_kind;
3027                         break;
3028
3029                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3030                         atomic_type = unsigned_int16_type_kind;
3031                         break;
3032
3033                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3034                         atomic_type = unsigned_int32_type_kind;
3035                         break;
3036
3037                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3038                         atomic_type = unsigned_int64_type_kind;
3039                         break;
3040
3041                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3042                         atomic_type = unsigned_int128_type_kind;
3043                         break;
3044
3045                 case SPECIFIER_INT8:
3046                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3047                         atomic_type = int8_type_kind;
3048                         break;
3049
3050                 case SPECIFIER_INT16:
3051                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3052                         atomic_type = int16_type_kind;
3053                         break;
3054
3055                 case SPECIFIER_INT32:
3056                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3057                         atomic_type = int32_type_kind;
3058                         break;
3059
3060                 case SPECIFIER_INT64:
3061                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3062                         atomic_type = int64_type_kind;
3063                         break;
3064
3065                 case SPECIFIER_INT128:
3066                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3067                         atomic_type = int128_type_kind;
3068                         break;
3069
3070                 case SPECIFIER_FLOAT:
3071                         atomic_type = ATOMIC_TYPE_FLOAT;
3072                         break;
3073                 case SPECIFIER_DOUBLE:
3074                         atomic_type = ATOMIC_TYPE_DOUBLE;
3075                         break;
3076                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3077                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3078                         break;
3079                 case SPECIFIER_BOOL:
3080                         atomic_type = ATOMIC_TYPE_BOOL;
3081                         break;
3082                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3083                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3084                         atomic_type = ATOMIC_TYPE_FLOAT;
3085                         break;
3086                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3087                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3088                         atomic_type = ATOMIC_TYPE_DOUBLE;
3089                         break;
3090                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3091                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3092                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3093                         break;
3094                 default: {
3095                         /* invalid specifier combination, give an error message */
3096                         source_position_t const* const pos = &specifiers->source_position;
3097                         if (type_specifiers == 0) {
3098                                 if (!saw_error) {
3099                                         /* ISO/IEC 14882:1998(E) §C.1.5:4 */
3100                                         if (!(c_mode & _CXX) && !strict_mode) {
3101                                                 warningf(WARN_IMPLICIT_INT, pos, "no type specifiers in declaration, using 'int'");
3102                                                 atomic_type = ATOMIC_TYPE_INT;
3103                                                 break;
3104                                         } else {
3105                                                 errorf(pos, "no type specifiers given in declaration");
3106                                         }
3107                                 }
3108                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3109                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3110                                 errorf(pos, "signed and unsigned specifiers given");
3111                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3112                                 errorf(pos, "only integer types can be signed or unsigned");
3113                         } else {
3114                                 errorf(pos, "multiple datatypes in declaration");
3115                         }
3116                         goto end_error;
3117                 }
3118                 }
3119
3120                 if (type_specifiers & SPECIFIER_COMPLEX) {
3121                         type = allocate_type_zero(TYPE_COMPLEX);
3122                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3123                         type = allocate_type_zero(TYPE_IMAGINARY);
3124                 } else {
3125                         type = allocate_type_zero(TYPE_ATOMIC);
3126                 }
3127                 type->atomic.akind = atomic_type;
3128                 newtype = true;
3129         } else if (type_specifiers != 0) {
3130                 errorf(&specifiers->source_position, "multiple datatypes in declaration");
3131         }
3132
3133         /* FIXME: check type qualifiers here */
3134         type->base.qualifiers = qualifiers;
3135
3136         if (newtype) {
3137                 type = identify_new_type(type);
3138         } else {
3139                 type = typehash_insert(type);
3140         }
3141
3142         if (specifiers->attributes != NULL)
3143                 type = handle_type_attributes(specifiers->attributes, type);
3144         specifiers->type = type;
3145         return;
3146
3147 end_error:
3148         specifiers->type = type_error_type;
3149 }
3150
3151 static type_qualifiers_t parse_type_qualifiers(void)
3152 {
3153         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3154
3155         while (true) {
3156                 switch (token.kind) {
3157                 /* type qualifiers */
3158                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3159                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3160                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3161                 /* microsoft extended type modifiers */
3162                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3163                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3164                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3165                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3166                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3167
3168                 default:
3169                         return qualifiers;
3170                 }
3171         }
3172 }
3173
3174 /**
3175  * Parses an K&R identifier list
3176  */
3177 static void parse_identifier_list(scope_t *scope)
3178 {
3179         assert(token.kind == T_IDENTIFIER);
3180         do {
3181                 entity_t *const entity = allocate_entity_zero(ENTITY_PARAMETER, NAMESPACE_NORMAL, token.identifier.symbol);
3182                 entity->base.source_position = token.base.source_position;
3183                 /* a K&R parameter has no type, yet */
3184                 next_token();
3185
3186                 if (scope != NULL)
3187                         append_entity(scope, entity);
3188         } while (next_if(',') && token.kind == T_IDENTIFIER);
3189 }
3190
3191 static entity_t *parse_parameter(void)
3192 {
3193         declaration_specifiers_t specifiers;
3194         parse_declaration_specifiers(&specifiers);
3195
3196         entity_t *entity = parse_declarator(&specifiers,
3197                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
3198         anonymous_entity = NULL;
3199         return entity;
3200 }
3201
3202 static void semantic_parameter_incomplete(const entity_t *entity)
3203 {
3204         assert(entity->kind == ENTITY_PARAMETER);
3205
3206         /* §6.7.5.3:4  After adjustment, the parameters in a parameter type
3207          *             list in a function declarator that is part of a
3208          *             definition of that function shall not have
3209          *             incomplete type. */
3210         type_t *type = skip_typeref(entity->declaration.type);
3211         if (is_type_incomplete(type)) {
3212                 errorf(&entity->base.source_position, "'%N' has incomplete type", entity);
3213         }
3214 }
3215
3216 static bool has_parameters(void)
3217 {
3218         /* func(void) is not a parameter */
3219         if (token.kind == T_IDENTIFIER) {
3220                 entity_t const *const entity
3221                         = get_entity(token.identifier.symbol, NAMESPACE_NORMAL);
3222                 if (entity == NULL)
3223                         return true;
3224                 if (entity->kind != ENTITY_TYPEDEF)
3225                         return true;
3226                 if (skip_typeref(entity->typedefe.type) != type_void)
3227                         return true;
3228         } else if (token.kind != T_void) {
3229                 return true;
3230         }
3231         if (look_ahead(1)->kind != ')')
3232                 return true;
3233         next_token();
3234         return false;
3235 }
3236
3237 /**
3238  * Parses function type parameters (and optionally creates variable_t entities
3239  * for them in a scope)
3240  */
3241 static void parse_parameters(function_type_t *type, scope_t *scope)
3242 {
3243         eat('(');
3244         add_anchor_token(')');
3245         int saved_comma_state = save_and_reset_anchor_state(',');
3246
3247         if (token.kind == T_IDENTIFIER
3248             && !is_typedef_symbol(token.identifier.symbol)) {
3249                 token_kind_t la1_type = (token_kind_t)look_ahead(1)->kind;
3250                 if (la1_type == ',' || la1_type == ')') {
3251                         type->kr_style_parameters = true;
3252                         parse_identifier_list(scope);
3253                         goto parameters_finished;
3254                 }
3255         }
3256
3257         if (token.kind == ')') {
3258                 /* ISO/IEC 14882:1998(E) §C.1.6:1 */
3259                 if (!(c_mode & _CXX))
3260                         type->unspecified_parameters = true;
3261         } else if (has_parameters()) {
3262                 function_parameter_t **anchor = &type->parameters;
3263                 do {
3264                         switch (token.kind) {
3265                         case T_DOTDOTDOT:
3266                                 next_token();
3267                                 type->variadic = true;
3268                                 goto parameters_finished;
3269
3270                         case T_IDENTIFIER:
3271                         DECLARATION_START
3272                         {
3273                                 entity_t *entity = parse_parameter();
3274                                 if (entity->kind == ENTITY_TYPEDEF) {
3275                                         errorf(&entity->base.source_position,
3276                                                         "typedef not allowed as function parameter");
3277                                         break;
3278                                 }
3279                                 assert(is_declaration(entity));
3280
3281                                 semantic_parameter_incomplete(entity);
3282
3283                                 function_parameter_t *const parameter =
3284                                         allocate_parameter(entity->declaration.type);
3285
3286                                 if (scope != NULL) {
3287                                         append_entity(scope, entity);
3288                                 }
3289
3290                                 *anchor = parameter;
3291                                 anchor  = &parameter->next;
3292                                 break;
3293                         }
3294
3295                         default:
3296                                 goto parameters_finished;
3297                         }
3298                 } while (next_if(','));
3299         }
3300
3301 parameters_finished:
3302         rem_anchor_token(')');
3303         expect(')', end_error);
3304
3305 end_error:
3306         restore_anchor_state(',', saved_comma_state);
3307 }
3308
3309 typedef enum construct_type_kind_t {
3310         CONSTRUCT_POINTER = 1,
3311         CONSTRUCT_REFERENCE,
3312         CONSTRUCT_FUNCTION,
3313         CONSTRUCT_ARRAY
3314 } construct_type_kind_t;
3315
3316 typedef union construct_type_t construct_type_t;
3317
3318 typedef struct construct_type_base_t {
3319         construct_type_kind_t  kind;
3320         source_position_t      pos;
3321         construct_type_t      *next;
3322 } construct_type_base_t;
3323
3324 typedef struct parsed_pointer_t {
3325         construct_type_base_t  base;
3326         type_qualifiers_t      type_qualifiers;
3327         variable_t            *base_variable;  /**< MS __based extension. */
3328 } parsed_pointer_t;
3329
3330 typedef struct parsed_reference_t {
3331         construct_type_base_t base;
3332 } parsed_reference_t;
3333
3334 typedef struct construct_function_type_t {
3335         construct_type_base_t  base;
3336         type_t                *function_type;
3337 } construct_function_type_t;
3338
3339 typedef struct parsed_array_t {
3340         construct_type_base_t  base;
3341         type_qualifiers_t      type_qualifiers;
3342         bool                   is_static;
3343         bool                   is_variable;
3344         expression_t          *size;
3345 } parsed_array_t;
3346
3347 union construct_type_t {
3348         construct_type_kind_t     kind;
3349         construct_type_base_t     base;
3350         parsed_pointer_t          pointer;
3351         parsed_reference_t        reference;
3352         construct_function_type_t function;
3353         parsed_array_t            array;
3354 };
3355
3356 static construct_type_t *allocate_declarator_zero(construct_type_kind_t const kind, size_t const size)
3357 {
3358         construct_type_t *const cons = obstack_alloc(&temp_obst, size);
3359         memset(cons, 0, size);
3360         cons->kind     = kind;
3361         cons->base.pos = *HERE;
3362         return cons;
3363 }
3364
3365 /* §6.7.5.1 */
3366 static construct_type_t *parse_pointer_declarator(void)
3367 {
3368         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_POINTER, sizeof(parsed_pointer_t));
3369         eat('*');
3370         cons->pointer.type_qualifiers = parse_type_qualifiers();
3371         //cons->pointer.base_variable   = base_variable;
3372
3373         return cons;
3374 }
3375
3376 /* ISO/IEC 14882:1998(E) §8.3.2 */
3377 static construct_type_t *parse_reference_declarator(void)
3378 {
3379         if (!(c_mode & _CXX))
3380                 errorf(HERE, "references are only available for C++");
3381
3382         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_REFERENCE, sizeof(parsed_reference_t));
3383         eat('&');
3384
3385         return cons;
3386 }
3387
3388 /* §6.7.5.2 */
3389 static construct_type_t *parse_array_declarator(void)
3390 {
3391         construct_type_t *const cons  = allocate_declarator_zero(CONSTRUCT_ARRAY, sizeof(parsed_array_t));
3392         parsed_array_t   *const array = &cons->array;
3393
3394         eat('[');
3395         add_anchor_token(']');
3396
3397         bool is_static = next_if(T_static);
3398
3399         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3400
3401         if (!is_static)
3402                 is_static = next_if(T_static);
3403
3404         array->type_qualifiers = type_qualifiers;
3405         array->is_static       = is_static;
3406
3407         expression_t *size = NULL;
3408         if (token.kind == '*' && look_ahead(1)->kind == ']') {
3409                 array->is_variable = true;
3410                 next_token();
3411         } else if (token.kind != ']') {
3412                 size = parse_assignment_expression();
3413
3414                 /* §6.7.5.2:1  Array size must have integer type */
3415                 type_t *const orig_type = size->base.type;
3416                 type_t *const type      = skip_typeref(orig_type);
3417                 if (!is_type_integer(type) && is_type_valid(type)) {
3418                         errorf(&size->base.source_position,
3419                                "array size '%E' must have integer type but has type '%T'",
3420                                size, orig_type);
3421                 }
3422
3423                 array->size = size;
3424                 mark_vars_read(size, NULL);
3425         }
3426
3427         if (is_static && size == NULL)
3428                 errorf(&array->base.pos, "static array parameters require a size");
3429
3430         rem_anchor_token(']');
3431         expect(']', end_error);
3432
3433 end_error:
3434         return cons;
3435 }
3436
3437 /* §6.7.5.3 */
3438 static construct_type_t *parse_function_declarator(scope_t *scope)
3439 {
3440         construct_type_t *const cons = allocate_declarator_zero(CONSTRUCT_FUNCTION, sizeof(construct_function_type_t));
3441
3442         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
3443         function_type_t *ftype = &type->function;
3444
3445         ftype->linkage            = current_linkage;
3446         ftype->calling_convention = CC_DEFAULT;
3447
3448         parse_parameters(ftype, scope);
3449
3450         cons->function.function_type = type;
3451
3452         return cons;
3453 }
3454
3455 typedef struct parse_declarator_env_t {
3456         bool               may_be_abstract : 1;
3457         bool               must_be_abstract : 1;
3458         decl_modifiers_t   modifiers;
3459         symbol_t          *symbol;
3460         source_position_t  source_position;
3461         scope_t            parameters;
3462         attribute_t       *attributes;
3463 } parse_declarator_env_t;
3464
3465 /* §6.7.5 */
3466 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env)
3467 {
3468         /* construct a single linked list of construct_type_t's which describe
3469          * how to construct the final declarator type */
3470         construct_type_t  *first      = NULL;
3471         construct_type_t **anchor     = &first;
3472
3473         env->attributes = parse_attributes(env->attributes);
3474
3475         for (;;) {
3476                 construct_type_t *type;
3477                 //variable_t       *based = NULL; /* MS __based extension */
3478                 switch (token.kind) {
3479                         case '&':
3480                                 type = parse_reference_declarator();
3481                                 break;
3482
3483                         case T__based: {
3484                                 panic("based not supported anymore");
3485                                 /* FALLTHROUGH */
3486                         }
3487
3488                         case '*':
3489                                 type = parse_pointer_declarator();
3490                                 break;
3491
3492                         default:
3493                                 goto ptr_operator_end;
3494                 }
3495
3496                 *anchor = type;
3497                 anchor  = &type->base.next;
3498
3499                 /* TODO: find out if this is correct */
3500                 env->attributes = parse_attributes(env->attributes);
3501         }
3502
3503 ptr_operator_end: ;
3504         construct_type_t *inner_types = NULL;
3505
3506         switch (token.kind) {
3507         case T_IDENTIFIER:
3508                 if (env->must_be_abstract) {
3509                         errorf(HERE, "no identifier expected in typename");
3510                 } else {
3511                         env->symbol          = token.identifier.symbol;
3512                         env->source_position = token.base.source_position;
3513                 }
3514                 next_token();
3515                 break;
3516
3517         case '(': {
3518                 /* Parenthesized declarator or function declarator? */
3519                 token_t const *const la1 = look_ahead(1);
3520                 switch (la1->kind) {
3521                         case T_IDENTIFIER:
3522                                 if (is_typedef_symbol(la1->identifier.symbol)) {
3523                         case ')':
3524                                         /* §6.7.6:2 footnote 126:  Empty parentheses in a type name are
3525                                          * interpreted as ``function with no parameter specification'', rather
3526                                          * than redundant parentheses around the omitted identifier. */
3527                         default:
3528                                         /* Function declarator. */
3529                                         if (!env->may_be_abstract) {
3530                                                 errorf(HERE, "function declarator must have a name");
3531                                         }
3532                                 } else {
3533                         case '&':
3534                         case '(':
3535                         case '*':
3536                         case '[':
3537                         case T___attribute__: /* FIXME __attribute__ might also introduce a parameter of a function declarator. */
3538                                         /* Paranthesized declarator. */
3539                                         next_token();
3540                                         add_anchor_token(')');
3541                                         inner_types = parse_inner_declarator(env);
3542                                         if (inner_types != NULL) {
3543                                                 /* All later declarators only modify the return type */
3544                                                 env->must_be_abstract = true;
3545                                         }
3546                                         rem_anchor_token(')');
3547                                         expect(')', end_error);
3548                                 }
3549                                 break;
3550                 }
3551                 break;
3552         }
3553
3554         default:
3555                 if (env->may_be_abstract)
3556                         break;
3557                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3558                 eat_until_anchor();
3559                 return NULL;
3560         }
3561
3562         construct_type_t **const p = anchor;
3563
3564         for (;;) {
3565                 construct_type_t *type;
3566                 switch (token.kind) {
3567                 case '(': {
3568                         scope_t *scope = NULL;
3569                         if (!env->must_be_abstract) {
3570                                 scope = &env->parameters;
3571                         }
3572
3573                         type = parse_function_declarator(scope);
3574                         break;
3575                 }
3576                 case '[':
3577                         type = parse_array_declarator();
3578                         break;
3579                 default:
3580                         goto declarator_finished;
3581                 }
3582
3583                 /* insert in the middle of the list (at p) */
3584                 type->base.next = *p;
3585                 *p              = type;
3586                 if (anchor == p)
3587                         anchor = &type->base.next;
3588         }
3589
3590 declarator_finished:
3591         /* append inner_types at the end of the list, we don't to set anchor anymore
3592          * as it's not needed anymore */
3593         *anchor = inner_types;
3594
3595         return first;
3596 end_error:
3597         return NULL;
3598 }
3599
3600 static type_t *construct_declarator_type(construct_type_t *construct_list,
3601                                          type_t *type)
3602 {
3603         construct_type_t *iter = construct_list;
3604         for (; iter != NULL; iter = iter->base.next) {
3605                 source_position_t const* const pos = &iter->base.pos;
3606                 switch (iter->kind) {
3607                 case CONSTRUCT_FUNCTION: {
3608                         construct_function_type_t *function      = &iter->function;
3609                         type_t                    *function_type = function->function_type;
3610
3611                         function_type->function.return_type = type;
3612
3613                         type_t *skipped_return_type = skip_typeref(type);
3614                         /* §6.7.5.3:1 */
3615                         if (is_type_function(skipped_return_type)) {
3616                                 errorf(pos, "function returning function is not allowed");
3617                         } else if (is_type_array(skipped_return_type)) {
3618                                 errorf(pos, "function returning array is not allowed");
3619                         } else {
3620                                 if (skipped_return_type->base.qualifiers != 0) {
3621                                         warningf(WARN_IGNORED_QUALIFIERS, pos, "type qualifiers in return type of function type are meaningless");
3622                                 }
3623                         }
3624
3625                         /* The function type was constructed earlier.  Freeing it here will
3626                          * destroy other types. */
3627                         type = typehash_insert(function_type);
3628                         continue;
3629                 }
3630
3631                 case CONSTRUCT_POINTER: {
3632                         if (is_type_reference(skip_typeref(type)))
3633                                 errorf(pos, "cannot declare a pointer to reference");
3634
3635                         parsed_pointer_t *pointer = &iter->pointer;
3636                         type = make_based_pointer_type(type, pointer->type_qualifiers, pointer->base_variable);
3637                         continue;
3638                 }
3639
3640                 case CONSTRUCT_REFERENCE:
3641                         if (is_type_reference(skip_typeref(type)))
3642                                 errorf(pos, "cannot declare a reference to reference");
3643
3644                         type = make_reference_type(type);
3645                         continue;
3646
3647                 case CONSTRUCT_ARRAY: {
3648                         if (is_type_reference(skip_typeref(type)))
3649                                 errorf(pos, "cannot declare an array of references");
3650
3651                         parsed_array_t *array      = &iter->array;
3652                         type_t         *array_type = allocate_type_zero(TYPE_ARRAY);
3653
3654                         expression_t *size_expression = array->size;
3655                         if (size_expression != NULL) {
3656                                 size_expression
3657                                         = create_implicit_cast(size_expression, type_size_t);
3658                         }
3659
3660                         array_type->base.qualifiers       = array->type_qualifiers;
3661                         array_type->array.element_type    = type;
3662                         array_type->array.is_static       = array->is_static;
3663                         array_type->array.is_variable     = array->is_variable;
3664                         array_type->array.size_expression = size_expression;
3665
3666                         if (size_expression != NULL) {
3667                                 switch (is_constant_expression(size_expression)) {
3668                                 case EXPR_CLASS_CONSTANT: {
3669                                         long const size = fold_constant_to_int(size_expression);
3670                                         array_type->array.size          = size;
3671                                         array_type->array.size_constant = true;
3672                                         /* §6.7.5.2:1  If the expression is a constant expression,
3673                                          * it shall have a value greater than zero. */
3674                                         if (size < 0) {
3675                                                 errorf(&size_expression->base.source_position,
3676                                                            "size of array must be greater than zero");
3677                                         } else if (size == 0 && !GNU_MODE) {
3678                                                 errorf(&size_expression->base.source_position,
3679                                                            "size of array must be greater than zero (zero length arrays are a GCC extension)");
3680                                         }
3681                                         break;
3682                                 }
3683
3684                                 case EXPR_CLASS_VARIABLE:
3685                                         array_type->array.is_vla = true;
3686                                         break;
3687
3688                                 case EXPR_CLASS_ERROR:
3689                                         break;
3690                                 }
3691                         }
3692
3693                         type_t *skipped_type = skip_typeref(type);
3694                         /* §6.7.5.2:1 */
3695                         if (is_type_incomplete(skipped_type)) {
3696                                 errorf(pos, "array of incomplete type '%T' is not allowed", type);
3697                         } else if (is_type_function(skipped_type)) {
3698                                 errorf(pos, "array of functions is not allowed");
3699                         }
3700                         type = identify_new_type(array_type);
3701                         continue;
3702                 }
3703                 }
3704                 internal_errorf(pos, "invalid type construction found");
3705         }
3706
3707         return type;
3708 }
3709
3710 static type_t *automatic_type_conversion(type_t *orig_type);
3711
3712 static type_t *semantic_parameter(const source_position_t *pos,
3713                                   type_t *type,
3714                                   const declaration_specifiers_t *specifiers,
3715                                   entity_t const *const param)
3716 {
3717         /* §6.7.5.3:7  A declaration of a parameter as ``array of type''
3718          *             shall be adjusted to ``qualified pointer to type'',
3719          *             [...]
3720          * §6.7.5.3:8  A declaration of a parameter as ``function returning
3721          *             type'' shall be adjusted to ``pointer to function
3722          *             returning type'', as in 6.3.2.1. */
3723         type = automatic_type_conversion(type);
3724
3725         if (specifiers->is_inline && is_type_valid(type)) {
3726                 errorf(pos, "'%N' declared 'inline'", param);
3727         }
3728
3729         /* §6.9.1:6  The declarations in the declaration list shall contain
3730          *           no storage-class specifier other than register and no
3731          *           initializations. */
3732         if (specifiers->thread_local || (
3733                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3734                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
3735            ) {
3736                 errorf(pos, "invalid storage class for '%N'", param);
3737         }
3738
3739         /* delay test for incomplete type, because we might have (void)
3740          * which is legal but incomplete... */
3741
3742         return type;
3743 }
3744
3745 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
3746                                   declarator_flags_t flags)
3747 {
3748         parse_declarator_env_t env;
3749         memset(&env, 0, sizeof(env));
3750         env.may_be_abstract = (flags & DECL_MAY_BE_ABSTRACT) != 0;
3751
3752         construct_type_t *construct_type = parse_inner_declarator(&env);
3753         type_t           *orig_type      =
3754                 construct_declarator_type(construct_type, specifiers->type);
3755         type_t           *type           = skip_typeref(orig_type);
3756
3757         if (construct_type != NULL) {
3758                 obstack_free(&temp_obst, construct_type);
3759         }
3760
3761         attribute_t *attributes = parse_attributes(env.attributes);
3762         /* append (shared) specifier attribute behind attributes of this
3763          * declarator */
3764         attribute_t **anchor = &attributes;
3765         while (*anchor != NULL)
3766                 anchor = &(*anchor)->next;
3767         *anchor = specifiers->attributes;
3768
3769         entity_t *entity;
3770         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
3771                 entity = allocate_entity_zero(ENTITY_TYPEDEF, NAMESPACE_NORMAL, env.symbol);
3772                 entity->base.source_position = env.source_position;
3773                 entity->typedefe.type        = orig_type;
3774
3775                 if (anonymous_entity != NULL) {
3776                         if (is_type_compound(type)) {
3777                                 assert(anonymous_entity->compound.alias == NULL);
3778                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
3779                                        anonymous_entity->kind == ENTITY_UNION);
3780                                 anonymous_entity->compound.alias = entity;
3781                                 anonymous_entity = NULL;
3782                         } else if (is_type_enum(type)) {
3783                                 assert(anonymous_entity->enume.alias == NULL);
3784                                 assert(anonymous_entity->kind == ENTITY_ENUM);
3785                                 anonymous_entity->enume.alias = entity;
3786                                 anonymous_entity = NULL;
3787                         }
3788                 }
3789         } else {
3790                 /* create a declaration type entity */
3791                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
3792                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER, NAMESPACE_NORMAL, env.symbol);
3793
3794                         if (env.symbol != NULL) {
3795                                 if (specifiers->is_inline && is_type_valid(type)) {
3796                                         errorf(&env.source_position,
3797                                                         "compound member '%Y' declared 'inline'", env.symbol);
3798                                 }
3799
3800                                 if (specifiers->thread_local ||
3801                                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
3802                                         errorf(&env.source_position,
3803                                                         "compound member '%Y' must have no storage class",
3804                                                         env.symbol);
3805                                 }
3806                         }
3807                 } else if (flags & DECL_IS_PARAMETER) {
3808                         entity    = allocate_entity_zero(ENTITY_PARAMETER, NAMESPACE_NORMAL, env.symbol);
3809                         orig_type = semantic_parameter(&env.source_position, orig_type, specifiers, entity);
3810                 } else if (is_type_function(type)) {
3811                         entity = allocate_entity_zero(ENTITY_FUNCTION, NAMESPACE_NORMAL, env.symbol);
3812                         entity->function.is_inline      = specifiers->is_inline;
3813                         entity->function.elf_visibility = default_visibility;
3814                         entity->function.parameters     = env.parameters;
3815
3816                         if (env.symbol != NULL) {
3817                                 /* this needs fixes for C++ */
3818                                 bool in_function_scope = current_function != NULL;
3819
3820                                 if (specifiers->thread_local || (
3821                                                         specifiers->storage_class != STORAGE_CLASS_EXTERN &&
3822                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3823                                                         (in_function_scope || specifiers->storage_class != STORAGE_CLASS_STATIC)
3824                                                 )) {
3825                                         errorf(&env.source_position, "invalid storage class for '%N'", entity);
3826                                 }
3827                         }
3828                 } else {
3829                         entity = allocate_entity_zero(ENTITY_VARIABLE, NAMESPACE_NORMAL, env.symbol);
3830                         entity->variable.elf_visibility = default_visibility;
3831                         entity->variable.thread_local   = specifiers->thread_local;
3832
3833                         if (env.symbol != NULL) {
3834                                 if (specifiers->is_inline && is_type_valid(type)) {
3835                                         errorf(&env.source_position, "'%N' declared 'inline'", entity);
3836                                 }
3837
3838                                 bool invalid_storage_class = false;
3839                                 if (current_scope == file_scope) {
3840                                         if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
3841                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
3842                                                         specifiers->storage_class != STORAGE_CLASS_STATIC) {
3843                                                 invalid_storage_class = true;
3844                                         }
3845                                 } else {
3846                                         if (specifiers->thread_local &&
3847                                                         specifiers->storage_class == STORAGE_CLASS_NONE) {
3848                                                 invalid_storage_class = true;
3849                                         }
3850                                 }
3851                                 if (invalid_storage_class) {
3852                                         errorf(&env.source_position, "invalid storage class for variable '%N'", entity);
3853                                 }
3854                         }
3855                 }
3856
3857                 entity->base.source_position   = env.symbol != NULL ? env.source_position : specifiers->source_position;
3858                 entity->declaration.type       = orig_type;
3859                 entity->declaration.alignment  = get_type_alignment(orig_type);
3860                 entity->declaration.modifiers  = env.modifiers;
3861                 entity->declaration.attributes = attributes;
3862
3863                 storage_class_t storage_class = specifiers->storage_class;
3864                 entity->declaration.declared_storage_class = storage_class;
3865
3866                 if (storage_class == STORAGE_CLASS_NONE && current_function != NULL)
3867                         storage_class = STORAGE_CLASS_AUTO;
3868                 entity->declaration.storage_class = storage_class;
3869         }
3870
3871         if (attributes != NULL) {
3872                 handle_entity_attributes(attributes, entity);
3873         }
3874
3875         if (entity->kind == ENTITY_FUNCTION && !freestanding) {
3876                 adapt_special_functions(&entity->function);
3877         }
3878
3879         return entity;
3880 }
3881
3882 static type_t *parse_abstract_declarator(type_t *base_type)
3883 {
3884         parse_declarator_env_t env;
3885         memset(&env, 0, sizeof(env));
3886         env.may_be_abstract = true;
3887         env.must_be_abstract = true;
3888
3889         construct_type_t *construct_type = parse_inner_declarator(&env);
3890
3891         type_t *result = construct_declarator_type(construct_type, base_type);
3892         if (construct_type != NULL) {
3893                 obstack_free(&temp_obst, construct_type);
3894         }
3895         result = handle_type_attributes(env.attributes, result);
3896
3897         return result;
3898 }
3899
3900 /**
3901  * Check if the declaration of main is suspicious.  main should be a
3902  * function with external linkage, returning int, taking either zero
3903  * arguments, two, or three arguments of appropriate types, ie.
3904  *
3905  * int main([ int argc, char **argv [, char **env ] ]).
3906  *
3907  * @param decl    the declaration to check
3908  * @param type    the function type of the declaration
3909  */
3910 static void check_main(const entity_t *entity)
3911 {
3912         const source_position_t *pos = &entity->base.source_position;
3913         if (entity->kind != ENTITY_FUNCTION) {
3914                 warningf(WARN_MAIN, pos, "'main' is not a function");
3915                 return;
3916         }
3917
3918         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
3919                 warningf(WARN_MAIN, pos, "'main' is normally a non-static function");
3920         }
3921
3922         type_t *type = skip_typeref(entity->declaration.type);
3923         assert(is_type_function(type));
3924
3925         function_type_t const *const func_type = &type->function;
3926         type_t                *const ret_type  = func_type->return_type;
3927         if (!types_compatible(skip_typeref(ret_type), type_int)) {
3928                 warningf(WARN_MAIN, pos, "return type of 'main' should be 'int', but is '%T'", ret_type);
3929         }
3930         const function_parameter_t *parm = func_type->parameters;
3931         if (parm != NULL) {
3932                 type_t *const first_type        = skip_typeref(parm->type);
3933                 type_t *const first_type_unqual = get_unqualified_type(first_type);
3934                 if (!types_compatible(first_type_unqual, type_int)) {
3935                         warningf(WARN_MAIN, pos, "first argument of 'main' should be 'int', but is '%T'", parm->type);
3936                 }
3937                 parm = parm->next;
3938                 if (parm != NULL) {
3939                         type_t *const second_type = skip_typeref(parm->type);
3940                         type_t *const second_type_unqual
3941                                 = get_unqualified_type(second_type);
3942                         if (!types_compatible(second_type_unqual, type_char_ptr_ptr)) {
3943                                 warningf(WARN_MAIN, pos, "second argument of 'main' should be 'char**', but is '%T'", parm->type);
3944                         }
3945                         parm = parm->next;
3946                         if (parm != NULL) {
3947                                 type_t *const third_type = skip_typeref(parm->type);
3948                                 type_t *const third_type_unqual
3949                                         = get_unqualified_type(third_type);
3950                                 if (!types_compatible(third_type_unqual, type_char_ptr_ptr)) {
3951                                         warningf(WARN_MAIN, pos, "third argument of 'main' should be 'char**', but is '%T'", parm->type);
3952                                 }
3953                                 parm = parm->next;
3954                                 if (parm != NULL)
3955                                         goto warn_arg_count;
3956                         }
3957                 } else {
3958 warn_arg_count:
3959                         warningf(WARN_MAIN, pos, "'main' takes only zero, two or three arguments");
3960                 }
3961         }
3962 }
3963
3964 /**
3965  * Check if a symbol is the equal to "main".
3966  */
3967 static bool is_sym_main(const symbol_t *const sym)
3968 {
3969         return streq(sym->string, "main");
3970 }
3971
3972 static void error_redefined_as_different_kind(const source_position_t *pos,
3973                 const entity_t *old, entity_kind_t new_kind)
3974 {
3975         char              const *const what = get_entity_kind_name(new_kind);
3976         source_position_t const *const ppos = &old->base.source_position;
3977         errorf(pos, "redeclaration of '%N' as %s (declared %P)", old, what, ppos);
3978 }
3979
3980 static bool is_entity_valid(entity_t *const ent)
3981 {
3982         if (is_declaration(ent)) {
3983                 return is_type_valid(skip_typeref(ent->declaration.type));
3984         } else if (ent->kind == ENTITY_TYPEDEF) {
3985                 return is_type_valid(skip_typeref(ent->typedefe.type));
3986         }
3987         return true;
3988 }
3989
3990 static bool contains_attribute(const attribute_t *list, const attribute_t *attr)
3991 {
3992         for (const attribute_t *tattr = list; tattr != NULL; tattr = tattr->next) {
3993                 if (attributes_equal(tattr, attr))
3994                         return true;
3995         }
3996         return false;
3997 }
3998
3999 /**
4000  * test wether new_list contains any attributes not included in old_list
4001  */
4002 static bool has_new_attributes(const attribute_t *old_list,
4003                                const attribute_t *new_list)
4004 {
4005         for (const attribute_t *attr = new_list; attr != NULL; attr = attr->next) {
4006                 if (!contains_attribute(old_list, attr))
4007                         return true;
4008         }
4009         return false;
4010 }
4011
4012 /**
4013  * Merge in attributes from an attribute list (probably from a previous
4014  * declaration with the same name). Warning: destroys the old structure
4015  * of the attribute list - don't reuse attributes after this call.
4016  */
4017 static void merge_in_attributes(declaration_t *decl, attribute_t *attributes)
4018 {
4019         attribute_t *next;
4020         for (attribute_t *attr = attributes; attr != NULL; attr = next) {
4021                 next = attr->next;
4022                 if (contains_attribute(decl->attributes, attr))
4023                         continue;
4024
4025                 /* move attribute to new declarations attributes list */
4026                 attr->next       = decl->attributes;
4027                 decl->attributes = attr;
4028         }
4029 }
4030
4031 /**
4032  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4033  * for various problems that occur for multiple definitions
4034  */
4035 entity_t *record_entity(entity_t *entity, const bool is_definition)
4036 {
4037         const symbol_t *const    symbol  = entity->base.symbol;
4038         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
4039         const source_position_t *pos     = &entity->base.source_position;
4040
4041         /* can happen in error cases */
4042         if (symbol == NULL)
4043                 return entity;
4044
4045         entity_t *const previous_entity = get_entity(symbol, namespc);
4046         /* pushing the same entity twice will break the stack structure */
4047         assert(previous_entity != entity);
4048
4049         if (entity->kind == ENTITY_FUNCTION) {
4050                 type_t *const orig_type = entity->declaration.type;
4051                 type_t *const type      = skip_typeref(orig_type);
4052
4053                 assert(is_type_function(type));
4054                 if (type->function.unspecified_parameters &&
4055                     previous_entity == NULL               &&
4056                     !entity->declaration.implicit) {
4057                         warningf(WARN_STRICT_PROTOTYPES, pos, "function declaration '%#N' is not a prototype", entity);
4058                 }
4059
4060                 if (current_scope == file_scope && is_sym_main(symbol)) {
4061                         check_main(entity);
4062                 }
4063         }
4064
4065         if (is_declaration(entity)                                    &&
4066             entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
4067             current_scope != file_scope                               &&
4068             !entity->declaration.implicit) {
4069                 warningf(WARN_NESTED_EXTERNS, pos, "nested extern declaration of '%#N'", entity);
4070         }
4071
4072         if (previous_entity != NULL) {
4073                 source_position_t const *const ppos = &previous_entity->base.source_position;
4074
4075                 if (previous_entity->base.parent_scope == &current_function->parameters &&
4076                                 previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
4077                         assert(previous_entity->kind == ENTITY_PARAMETER);
4078                         errorf(pos, "declaration of '%N' redeclares the '%N' (declared %P)", entity, previous_entity, ppos);
4079                         goto finish;
4080                 }
4081
4082                 if (previous_entity->base.parent_scope == current_scope) {
4083                         if (previous_entity->kind != entity->kind) {
4084                                 if (is_entity_valid(previous_entity) && is_entity_valid(entity)) {
4085                                         error_redefined_as_different_kind(pos, previous_entity,
4086                                                         entity->kind);
4087                                 }
4088                                 goto finish;
4089                         }
4090                         if (previous_entity->kind == ENTITY_ENUM_VALUE) {
4091                                 errorf(pos, "redeclaration of '%N' (declared %P)", entity, ppos);
4092                                 goto finish;
4093                         }
4094                         if (previous_entity->kind == ENTITY_TYPEDEF) {
4095                                 type_t *const type      = skip_typeref(entity->typedefe.type);
4096                                 type_t *const prev_type
4097                                         = skip_typeref(previous_entity->typedefe.type);
4098                                 if (c_mode & _CXX) {
4099                                         /* C++ allows double typedef if they are identical
4100                                          * (after skipping typedefs) */
4101                                         if (type == prev_type)
4102                                                 goto finish;
4103                                 } else {
4104                                         /* GCC extension: redef in system headers is allowed */
4105                                         if ((pos->is_system_header || ppos->is_system_header) &&
4106                                             types_compatible(type, prev_type))
4107                                                 goto finish;
4108                                 }
4109                                 errorf(pos, "redefinition of '%N' (declared %P)",
4110                                        entity, ppos);
4111                                 goto finish;
4112                         }
4113
4114                         /* at this point we should have only VARIABLES or FUNCTIONS */
4115                         assert(is_declaration(previous_entity) && is_declaration(entity));
4116
4117                         declaration_t *const prev_decl = &previous_entity->declaration;
4118                         declaration_t *const decl      = &entity->declaration;
4119
4120                         /* can happen for K&R style declarations */
4121                         if (prev_decl->type       == NULL             &&
4122                                         previous_entity->kind == ENTITY_PARAMETER &&
4123                                         entity->kind          == ENTITY_PARAMETER) {
4124                                 prev_decl->type                   = decl->type;
4125                                 prev_decl->storage_class          = decl->storage_class;
4126                                 prev_decl->declared_storage_class = decl->declared_storage_class;
4127                                 prev_decl->modifiers              = decl->modifiers;
4128                                 return previous_entity;
4129                         }
4130
4131                         type_t *const type      = skip_typeref(decl->type);
4132                         type_t *const prev_type = skip_typeref(prev_decl->type);
4133
4134                         if (!types_compatible(type, prev_type)) {
4135                                 errorf(pos, "declaration '%#N' is incompatible with '%#N' (declared %P)", entity, previous_entity, ppos);
4136                         } else {
4137                                 unsigned old_storage_class = prev_decl->storage_class;
4138
4139                                 if (is_definition                     &&
4140                                                 !prev_decl->used                  &&
4141                                                 !(prev_decl->modifiers & DM_USED) &&
4142                                                 prev_decl->storage_class == STORAGE_CLASS_STATIC) {
4143                                         warningf(WARN_REDUNDANT_DECLS, ppos, "unnecessary static forward declaration for '%#N'", previous_entity);
4144                                 }
4145
4146                                 storage_class_t new_storage_class = decl->storage_class;
4147
4148                                 /* pretend no storage class means extern for function
4149                                  * declarations (except if the previous declaration is neither
4150                                  * none nor extern) */
4151                                 if (entity->kind == ENTITY_FUNCTION) {
4152                                         /* the previous declaration could have unspecified parameters or
4153                                          * be a typedef, so use the new type */
4154                                         if (prev_type->function.unspecified_parameters || is_definition)
4155                                                 prev_decl->type = type;
4156
4157                                         switch (old_storage_class) {
4158                                                 case STORAGE_CLASS_NONE:
4159                                                         old_storage_class = STORAGE_CLASS_EXTERN;
4160                                                         /* FALLTHROUGH */
4161
4162                                                 case STORAGE_CLASS_EXTERN:
4163                                                         if (is_definition) {
4164                                                                 if (prev_type->function.unspecified_parameters && !is_sym_main(symbol)) {
4165                                                                         warningf(WARN_MISSING_PROTOTYPES, pos, "no previous prototype for '%#N'", entity);
4166                                                                 }
4167                                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4168                                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4169                                                         }
4170                                                         break;
4171
4172                                                 default:
4173                                                         break;
4174                                         }
4175                                 } else if (is_type_incomplete(prev_type)) {
4176                                         prev_decl->type = type;
4177                                 }
4178
4179                                 if (old_storage_class == STORAGE_CLASS_EXTERN &&
4180                                                 new_storage_class == STORAGE_CLASS_EXTERN) {
4181
4182 warn_redundant_declaration: ;
4183                                         bool has_new_attrs
4184                                                 = has_new_attributes(prev_decl->attributes,
4185                                                                      decl->attributes);
4186                                         if (has_new_attrs) {
4187                                                 merge_in_attributes(decl, prev_decl->attributes);
4188                                         } else if (!is_definition        &&
4189                                                         is_type_valid(prev_type) &&
4190                                                         !pos->is_system_header) {
4191                                                 warningf(WARN_REDUNDANT_DECLS, pos, "redundant declaration for '%Y' (declared %P)", symbol, ppos);
4192                                         }
4193                                 } else if (current_function == NULL) {
4194                                         if (old_storage_class != STORAGE_CLASS_STATIC &&
4195                                                         new_storage_class == STORAGE_CLASS_STATIC) {
4196                                                 errorf(pos, "static declaration of '%Y' follows non-static declaration (declared %P)", symbol, ppos);
4197                                         } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4198                                                 prev_decl->storage_class          = STORAGE_CLASS_NONE;
4199                                                 prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
4200                                         } else {
4201                                                 /* ISO/IEC 14882:1998(E) §C.1.2:1 */
4202                                                 if (c_mode & _CXX)
4203                                                         goto error_redeclaration;
4204                                                 goto warn_redundant_declaration;
4205                                         }
4206                                 } else if (is_type_valid(prev_type)) {
4207                                         if (old_storage_class == new_storage_class) {
4208 error_redeclaration:
4209                                                 errorf(pos, "redeclaration of '%Y' (declared %P)", symbol, ppos);
4210                                         } else {
4211                                                 errorf(pos, "redeclaration of '%Y' with different linkage (declared %P)", symbol, ppos);
4212                                         }
4213                                 }
4214                         }
4215
4216                         prev_decl->modifiers |= decl->modifiers;
4217                         if (entity->kind == ENTITY_FUNCTION) {
4218                                 previous_entity->function.is_inline |= entity->function.is_inline;
4219                         }
4220                         return previous_entity;
4221                 }
4222
4223                 warning_t why;
4224                 if (is_warn_on(why = WARN_SHADOW) ||
4225                     (is_warn_on(why = WARN_SHADOW_LOCAL) && previous_entity->base.parent_scope != file_scope)) {
4226                         char const *const what = get_entity_kind_name(previous_entity->kind);
4227                         warningf(why, pos, "'%N' shadows %s (declared %P)", entity, what, ppos);
4228                 }
4229         }
4230
4231         if (entity->kind == ENTITY_FUNCTION) {
4232                 if (is_definition &&
4233                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC &&
4234                                 !is_sym_main(symbol)) {
4235                         if (is_warn_on(WARN_MISSING_PROTOTYPES)) {
4236                                 warningf(WARN_MISSING_PROTOTYPES, pos, "no previous prototype for '%#N'", entity);
4237                         } else {
4238                                 goto warn_missing_declaration;
4239                         }
4240                 }
4241         } else if (entity->kind == ENTITY_VARIABLE) {
4242                 if (current_scope                     == file_scope &&
4243                                 entity->declaration.storage_class == STORAGE_CLASS_NONE &&
4244                                 !entity->declaration.implicit) {
4245 warn_missing_declaration:
4246                         warningf(WARN_MISSING_DECLARATIONS, pos, "no previous declaration for '%#N'", entity);
4247                 }
4248         }
4249
4250 finish:
4251         assert(entity->base.parent_scope == NULL);
4252         assert(current_scope != NULL);
4253
4254         entity->base.parent_scope = current_scope;
4255         environment_push(entity);
4256         append_entity(current_scope, entity);
4257
4258         return entity;
4259 }
4260
4261 static void parser_error_multiple_definition(entity_t *entity,
4262                 const source_position_t *source_position)
4263 {
4264         errorf(source_position, "multiple definition of '%Y' (declared %P)",
4265                entity->base.symbol, &entity->base.source_position);
4266 }
4267
4268 static bool is_declaration_specifier(const token_t *token)
4269 {
4270         switch (token->kind) {
4271                 DECLARATION_START
4272                         return true;
4273                 case T_IDENTIFIER:
4274                         return is_typedef_symbol(token->identifier.symbol);
4275
4276                 default:
4277                         return false;
4278         }
4279 }
4280
4281 static void parse_init_declarator_rest(entity_t *entity)
4282 {
4283         type_t *orig_type = type_error_type;
4284
4285         if (entity->base.kind == ENTITY_TYPEDEF) {
4286                 source_position_t const *const pos = &entity->base.source_position;
4287                 errorf(pos, "'%N' is initialized (use __typeof__ instead)", entity);
4288         } else {
4289                 assert(is_declaration(entity));
4290                 orig_type = entity->declaration.type;
4291         }
4292
4293         type_t *type = skip_typeref(orig_type);
4294
4295         if (entity->kind == ENTITY_VARIABLE
4296                         && entity->variable.initializer != NULL) {
4297                 parser_error_multiple_definition(entity, HERE);
4298         }
4299         eat('=');
4300
4301         declaration_t *const declaration = &entity->declaration;
4302         bool must_be_constant = false;
4303         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
4304             entity->base.parent_scope  == file_scope) {
4305                 must_be_constant = true;
4306         }
4307
4308         if (is_type_function(type)) {
4309                 source_position_t const *const pos = &entity->base.source_position;
4310                 errorf(pos, "'%N' is initialized like a variable", entity);
4311                 orig_type = type_error_type;
4312         }
4313
4314         parse_initializer_env_t env;
4315         env.type             = orig_type;
4316         env.must_be_constant = must_be_constant;
4317         env.entity           = entity;
4318
4319         initializer_t *initializer = parse_initializer(&env);
4320
4321         if (entity->kind == ENTITY_VARIABLE) {
4322                 /* §6.7.5:22  array initializers for arrays with unknown size
4323                  * determine the array type size */
4324                 declaration->type            = env.type;
4325                 entity->variable.initializer = initializer;
4326         }
4327 }
4328
4329 /* parse rest of a declaration without any declarator */
4330 static void parse_anonymous_declaration_rest(
4331                 const declaration_specifiers_t *specifiers)
4332 {
4333         eat(';');
4334         anonymous_entity = NULL;
4335
4336         source_position_t const *const pos = &specifiers->source_position;
4337         if (specifiers->storage_class != STORAGE_CLASS_NONE ||
4338                         specifiers->thread_local) {
4339                 warningf(WARN_OTHER, pos, "useless storage class in empty declaration");
4340         }
4341
4342         type_t *type = specifiers->type;
4343         switch (type->kind) {
4344                 case TYPE_COMPOUND_STRUCT:
4345                 case TYPE_COMPOUND_UNION: {
4346                         if (type->compound.compound->base.symbol == NULL) {
4347                                 warningf(WARN_OTHER, pos, "unnamed struct/union that defines no instances");
4348                         }
4349                         break;
4350                 }
4351
4352                 case TYPE_ENUM:
4353                         break;
4354
4355                 default:
4356                         warningf(WARN_OTHER, pos, "empty declaration");
4357                         break;
4358         }
4359 }
4360
4361 static void check_variable_type_complete(entity_t *ent)
4362 {
4363         if (ent->kind != ENTITY_VARIABLE)
4364                 return;
4365
4366         /* §6.7:7  If an identifier for an object is declared with no linkage, the
4367          *         type for the object shall be complete [...] */
4368         declaration_t *decl = &ent->declaration;
4369         if (decl->storage_class == STORAGE_CLASS_EXTERN ||
4370                         decl->storage_class == STORAGE_CLASS_STATIC)
4371                 return;
4372
4373         type_t *const type = skip_typeref(decl->type);
4374         if (!is_type_incomplete(type))
4375                 return;
4376
4377         /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
4378          * are given length one. */
4379         if (is_type_array(type) && ent->base.parent_scope == file_scope) {
4380                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
4381                 return;
4382         }
4383
4384         errorf(&ent->base.source_position, "variable '%#N' has incomplete type", ent);
4385 }
4386
4387
4388 static void parse_declaration_rest(entity_t *ndeclaration,
4389                 const declaration_specifiers_t *specifiers,
4390                 parsed_declaration_func         finished_declaration,
4391                 declarator_flags_t              flags)
4392 {
4393         add_anchor_token(';');
4394         add_anchor_token(',');
4395         while (true) {
4396                 entity_t *entity = finished_declaration(ndeclaration, token.kind == '=');
4397
4398                 if (token.kind == '=') {
4399                         parse_init_declarator_rest(entity);
4400                 } else if (entity->kind == ENTITY_VARIABLE) {
4401                         /* ISO/IEC 14882:1998(E) §8.5.3:3  The initializer can be omitted
4402                          * [...] where the extern specifier is explicitly used. */
4403                         declaration_t *decl = &entity->declaration;
4404                         if (decl->storage_class != STORAGE_CLASS_EXTERN) {
4405                                 type_t *type = decl->type;
4406                                 if (is_type_reference(skip_typeref(type))) {
4407                                         source_position_t const *const pos = &entity->base.source_position;
4408                                         errorf(pos, "reference '%#N' must be initialized", entity);
4409                                 }
4410                         }
4411                 }
4412
4413                 check_variable_type_complete(entity);
4414
4415                 if (!next_if(','))
4416                         break;
4417
4418                 add_anchor_token('=');
4419                 ndeclaration = parse_declarator(specifiers, flags);
4420                 rem_anchor_token('=');
4421         }
4422         expect(';', end_error);
4423
4424 end_error:
4425         anonymous_entity = NULL;
4426         rem_anchor_token(';');
4427         rem_anchor_token(',');
4428 }
4429
4430 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
4431 {
4432         symbol_t *symbol = entity->base.symbol;
4433         if (symbol == NULL)
4434                 return entity;
4435
4436         assert(entity->base.namespc == NAMESPACE_NORMAL);
4437         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
4438         if (previous_entity == NULL
4439                         || previous_entity->base.parent_scope != current_scope) {
4440                 errorf(&entity->base.source_position, "expected declaration of a function parameter, found '%Y'",
4441                        symbol);
4442                 return entity;
4443         }
4444
4445         if (is_definition) {
4446                 errorf(HERE, "'%N' is initialised", entity);
4447         }
4448
4449         return record_entity(entity, false);
4450 }
4451
4452 static void parse_declaration(parsed_declaration_func finished_declaration,
4453                               declarator_flags_t      flags)
4454 {
4455         add_anchor_token(';');
4456         declaration_specifiers_t specifiers;
4457         parse_declaration_specifiers(&specifiers);
4458         rem_anchor_token(';');
4459
4460         if (token.kind == ';') {
4461                 parse_anonymous_declaration_rest(&specifiers);
4462         } else {
4463                 entity_t *entity = parse_declarator(&specifiers, flags);
4464                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
4465         }
4466 }
4467
4468 /* §6.5.2.2:6 */
4469 static type_t *get_default_promoted_type(type_t *orig_type)
4470 {
4471         type_t *result = orig_type;
4472
4473         type_t *type = skip_typeref(orig_type);
4474         if (is_type_integer(type)) {
4475                 result = promote_integer(type);
4476         } else if (is_type_atomic(type, ATOMIC_TYPE_FLOAT)) {
4477                 result = type_double;
4478         }
4479
4480         return result;
4481 }
4482
4483 static void parse_kr_declaration_list(entity_t *entity)
4484 {
4485         if (entity->kind != ENTITY_FUNCTION)
4486                 return;
4487
4488         type_t *type = skip_typeref(entity->declaration.type);
4489         assert(is_type_function(type));
4490         if (!type->function.kr_style_parameters)
4491                 return;
4492
4493         add_anchor_token('{');
4494
4495         PUSH_SCOPE(&entity->function.parameters);
4496
4497         entity_t *parameter = entity->function.parameters.entities;
4498         for ( ; parameter != NULL; parameter = parameter->base.next) {
4499                 assert(parameter->base.parent_scope == NULL);
4500                 parameter->base.parent_scope = current_scope;
4501                 environment_push(parameter);
4502         }
4503
4504         /* parse declaration list */
4505         for (;;) {
4506                 switch (token.kind) {
4507                         DECLARATION_START
4508                         /* This covers symbols, which are no type, too, and results in
4509                          * better error messages.  The typical cases are misspelled type
4510                          * names and missing includes. */
4511                         case T_IDENTIFIER:
4512                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
4513                                 break;
4514                         default:
4515                                 goto decl_list_end;
4516                 }
4517         }
4518 decl_list_end:
4519
4520         POP_SCOPE();
4521
4522         /* update function type */
4523         type_t *new_type = duplicate_type(type);
4524
4525         function_parameter_t  *parameters = NULL;
4526         function_parameter_t **anchor     = &parameters;
4527
4528         /* did we have an earlier prototype? */
4529         entity_t *proto_type = get_entity(entity->base.symbol, NAMESPACE_NORMAL);
4530         if (proto_type != NULL && proto_type->kind != ENTITY_FUNCTION)
4531                 proto_type = NULL;
4532
4533         function_parameter_t *proto_parameter = NULL;
4534         if (proto_type != NULL) {
4535                 type_t *proto_type_type = proto_type->declaration.type;
4536                 proto_parameter         = proto_type_type->function.parameters;
4537                 /* If a K&R function definition has a variadic prototype earlier, then
4538                  * make the function definition variadic, too. This should conform to
4539                  * §6.7.5.3:15 and §6.9.1:8. */
4540                 new_type->function.variadic = proto_type_type->function.variadic;
4541         } else {
4542                 /* §6.9.1.7: A K&R style parameter list does NOT act as a function
4543                  * prototype */
4544                 new_type->function.unspecified_parameters = true;
4545         }
4546
4547         bool need_incompatible_warning = false;
4548         parameter = entity->function.parameters.entities;
4549         for (; parameter != NULL; parameter = parameter->base.next,
4550                         proto_parameter =
4551                                 proto_parameter == NULL ? NULL : proto_parameter->next) {
4552                 if (parameter->kind != ENTITY_PARAMETER)
4553                         continue;
4554
4555                 type_t *parameter_type = parameter->declaration.type;
4556                 if (parameter_type == NULL) {
4557                         source_position_t const* const pos = &parameter->base.source_position;
4558                         if (strict_mode) {
4559                                 errorf(pos, "no type specified for function '%N'", parameter);
4560                                 parameter_type = type_error_type;
4561                         } else {
4562                                 warningf(WARN_IMPLICIT_INT, pos, "no type specified for function parameter '%N', using 'int'", parameter);
4563                                 parameter_type = type_int;
4564                         }
4565                         parameter->declaration.type = parameter_type;
4566                 }
4567
4568                 semantic_parameter_incomplete(parameter);
4569
4570                 /* we need the default promoted types for the function type */
4571                 type_t *not_promoted = parameter_type;
4572                 parameter_type       = get_default_promoted_type(parameter_type);
4573
4574                 /* gcc special: if the type of the prototype matches the unpromoted
4575                  * type don't promote */
4576                 if (!strict_mode && proto_parameter != NULL) {
4577                         type_t *proto_p_type = skip_typeref(proto_parameter->type);
4578                         type_t *promo_skip   = skip_typeref(parameter_type);
4579                         type_t *param_skip   = skip_typeref(not_promoted);
4580                         if (!types_compatible(proto_p_type, promo_skip)
4581                                 && types_compatible(proto_p_type, param_skip)) {
4582                                 /* don't promote */
4583                                 need_incompatible_warning = true;
4584                                 parameter_type = not_promoted;
4585                         }
4586                 }
4587                 function_parameter_t *const function_parameter
4588                         = allocate_parameter(parameter_type);
4589
4590                 *anchor = function_parameter;
4591                 anchor  = &function_parameter->next;
4592         }
4593
4594         new_type->function.parameters = parameters;
4595         new_type = identify_new_type(new_type);
4596
4597         if (need_incompatible_warning) {
4598                 symbol_t          const *const sym  = entity->base.symbol;
4599                 source_position_t const *const pos  = &entity->base.source_position;
4600                 source_position_t const *const ppos = &proto_type->base.source_position;
4601                 warningf(WARN_OTHER, pos, "declaration '%#N' is incompatible with '%#T' (declared %P)", proto_type, new_type, sym, ppos);
4602         }
4603         entity->declaration.type = new_type;
4604
4605         rem_anchor_token('{');
4606 }
4607
4608 static bool first_err = true;
4609
4610 /**
4611  * When called with first_err set, prints the name of the current function,
4612  * else does noting.
4613  */
4614 static void print_in_function(void)
4615 {
4616         if (first_err) {
4617                 first_err = false;
4618                 char const *const file = current_function->base.base.source_position.input_name;
4619                 diagnosticf("%s: In '%N':\n", file, (entity_t const*)current_function);
4620         }
4621 }
4622
4623 /**
4624  * Check if all labels are defined in the current function.
4625  * Check if all labels are used in the current function.
4626  */
4627 static void check_labels(void)
4628 {
4629         for (const goto_statement_t *goto_statement = goto_first;
4630             goto_statement != NULL;
4631             goto_statement = goto_statement->next) {
4632                 /* skip computed gotos */
4633                 if (goto_statement->expression != NULL)
4634                         continue;
4635
4636                 label_t *label = goto_statement->label;
4637                 if (label->base.source_position.input_name == NULL) {
4638                         print_in_function();
4639                         source_position_t const *const pos = &goto_statement->base.source_position;
4640                         errorf(pos, "'%N' used but not defined", (entity_t const*)label);
4641                  }
4642         }
4643
4644         if (is_warn_on(WARN_UNUSED_LABEL)) {
4645                 for (const label_statement_t *label_statement = label_first;
4646                          label_statement != NULL;
4647                          label_statement = label_statement->next) {
4648                         label_t *label = label_statement->label;
4649
4650                         if (! label->used) {
4651                                 print_in_function();
4652                                 source_position_t const *const pos = &label_statement->base.source_position;
4653                                 warningf(WARN_UNUSED_LABEL, pos, "'%N' defined but not used", (entity_t const*)label);
4654                         }
4655                 }
4656         }
4657 }
4658
4659 static void warn_unused_entity(warning_t const why, entity_t *entity, entity_t *const last)
4660 {
4661         entity_t const *const end = last != NULL ? last->base.next : NULL;
4662         for (; entity != end; entity = entity->base.next) {
4663                 if (!is_declaration(entity))
4664                         continue;
4665
4666                 declaration_t *declaration = &entity->declaration;
4667                 if (declaration->implicit)
4668                         continue;
4669
4670                 if (!declaration->used) {
4671                         print_in_function();
4672                         warningf(why, &entity->base.source_position, "'%N' is unused", entity);
4673                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
4674                         print_in_function();
4675                         warningf(why, &entity->base.source_position, "'%N' is never read", entity);
4676                 }
4677         }
4678 }
4679
4680 static void check_unused_variables(statement_t *const stmt, void *const env)
4681 {
4682         (void)env;
4683
4684         switch (stmt->kind) {
4685                 case STATEMENT_DECLARATION: {
4686                         declaration_statement_t const *const decls = &stmt->declaration;
4687                         warn_unused_entity(WARN_UNUSED_VARIABLE, decls->declarations_begin, decls->declarations_end);
4688                         return;
4689                 }
4690
4691                 case STATEMENT_FOR:
4692                         warn_unused_entity(WARN_UNUSED_VARIABLE, stmt->fors.scope.entities, NULL);
4693                         return;
4694
4695                 default:
4696                         return;
4697         }
4698 }
4699
4700 /**
4701  * Check declarations of current_function for unused entities.
4702  */
4703 static void check_declarations(void)
4704 {
4705         if (is_warn_on(WARN_UNUSED_PARAMETER)) {
4706                 const scope_t *scope = &current_function->parameters;
4707
4708                 /* do not issue unused warnings for main */
4709                 if (!is_sym_main(current_function->base.base.symbol)) {
4710                         warn_unused_entity(WARN_UNUSED_PARAMETER, scope->entities, NULL);
4711                 }
4712         }
4713         if (is_warn_on(WARN_UNUSED_VARIABLE)) {
4714                 walk_statements(current_function->statement, check_unused_variables,
4715                                 NULL);
4716         }
4717 }
4718
4719 static int determine_truth(expression_t const* const cond)
4720 {
4721         return
4722                 is_constant_expression(cond) != EXPR_CLASS_CONSTANT ? 0 :
4723                 fold_constant_to_bool(cond)                         ? 1 :
4724                 -1;
4725 }
4726
4727 static void check_reachable(statement_t *);
4728 static bool reaches_end;
4729
4730 static bool expression_returns(expression_t const *const expr)
4731 {
4732         switch (expr->kind) {
4733                 case EXPR_CALL: {
4734                         expression_t const *const func = expr->call.function;
4735                         if (func->kind == EXPR_REFERENCE) {
4736                                 entity_t *entity = func->reference.entity;
4737                                 if (entity->kind == ENTITY_FUNCTION
4738                                                 && entity->declaration.modifiers & DM_NORETURN)
4739                                         return false;
4740                         }
4741
4742                         if (!expression_returns(func))
4743                                 return false;
4744
4745                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
4746                                 if (!expression_returns(arg->expression))
4747                                         return false;
4748                         }
4749
4750                         return true;
4751                 }
4752
4753                 case EXPR_REFERENCE:
4754                 case EXPR_REFERENCE_ENUM_VALUE:
4755                 EXPR_LITERAL_CASES
4756                 case EXPR_STRING_LITERAL:
4757                 case EXPR_WIDE_STRING_LITERAL:
4758                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
4759                 case EXPR_LABEL_ADDRESS:
4760                 case EXPR_CLASSIFY_TYPE:
4761                 case EXPR_SIZEOF: // TODO handle obscure VLA case
4762                 case EXPR_ALIGNOF:
4763                 case EXPR_FUNCNAME:
4764                 case EXPR_BUILTIN_CONSTANT_P:
4765                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
4766                 case EXPR_OFFSETOF:
4767                 case EXPR_ERROR:
4768                         return true;
4769
4770                 case EXPR_STATEMENT: {
4771                         bool old_reaches_end = reaches_end;
4772                         reaches_end = false;
4773                         check_reachable(expr->statement.statement);
4774                         bool returns = reaches_end;
4775                         reaches_end = old_reaches_end;
4776                         return returns;
4777                 }
4778
4779                 case EXPR_CONDITIONAL:
4780                         // TODO handle constant expression
4781
4782                         if (!expression_returns(expr->conditional.condition))
4783                                 return false;
4784
4785                         if (expr->conditional.true_expression != NULL
4786                                         && expression_returns(expr->conditional.true_expression))
4787                                 return true;
4788
4789                         return expression_returns(expr->conditional.false_expression);
4790
4791                 case EXPR_SELECT:
4792                         return expression_returns(expr->select.compound);
4793
4794                 case EXPR_ARRAY_ACCESS:
4795                         return
4796                                 expression_returns(expr->array_access.array_ref) &&
4797                                 expression_returns(expr->array_access.index);
4798
4799                 case EXPR_VA_START:
4800                         return expression_returns(expr->va_starte.ap);
4801
4802                 case EXPR_VA_ARG:
4803                         return expression_returns(expr->va_arge.ap);
4804
4805                 case EXPR_VA_COPY:
4806                         return expression_returns(expr->va_copye.src);
4807
4808                 EXPR_UNARY_CASES_MANDATORY
4809                         return expression_returns(expr->unary.value);
4810
4811                 case EXPR_UNARY_THROW:
4812                         return false;
4813
4814                 EXPR_BINARY_CASES
4815                         // TODO handle constant lhs of && and ||
4816                         return
4817                                 expression_returns(expr->binary.left) &&
4818                                 expression_returns(expr->binary.right);
4819         }
4820
4821         panic("unhandled expression");
4822 }
4823
4824 static bool initializer_returns(initializer_t const *const init)
4825 {
4826         switch (init->kind) {
4827                 case INITIALIZER_VALUE:
4828                         return expression_returns(init->value.value);
4829
4830                 case INITIALIZER_LIST: {
4831                         initializer_t * const*       i       = init->list.initializers;
4832                         initializer_t * const* const end     = i + init->list.len;
4833                         bool                         returns = true;
4834                         for (; i != end; ++i) {
4835                                 if (!initializer_returns(*i))
4836                                         returns = false;
4837                         }
4838                         return returns;
4839                 }
4840
4841                 case INITIALIZER_STRING:
4842                 case INITIALIZER_WIDE_STRING:
4843                 case INITIALIZER_DESIGNATOR: // designators have no payload
4844                         return true;
4845         }
4846         panic("unhandled initializer");
4847 }
4848
4849 static bool noreturn_candidate;
4850
4851 static void check_reachable(statement_t *const stmt)
4852 {
4853         if (stmt->base.reachable)
4854                 return;
4855         if (stmt->kind != STATEMENT_DO_WHILE)
4856                 stmt->base.reachable = true;
4857
4858         statement_t *last = stmt;
4859         statement_t *next;
4860         switch (stmt->kind) {
4861                 case STATEMENT_ERROR:
4862                 case STATEMENT_EMPTY:
4863                 case STATEMENT_ASM:
4864                         next = stmt->base.next;
4865                         break;
4866
4867                 case STATEMENT_DECLARATION: {
4868                         declaration_statement_t const *const decl = &stmt->declaration;
4869                         entity_t                const *      ent  = decl->declarations_begin;
4870                         entity_t                const *const last_decl = decl->declarations_end;
4871                         if (ent != NULL) {
4872                                 for (;; ent = ent->base.next) {
4873                                         if (ent->kind                 == ENTITY_VARIABLE &&
4874                                             ent->variable.initializer != NULL            &&
4875                                             !initializer_returns(ent->variable.initializer)) {
4876                                                 return;
4877                                         }
4878                                         if (ent == last_decl)
4879                                                 break;
4880                                 }
4881                         }
4882                         next = stmt->base.next;
4883                         break;
4884                 }
4885
4886                 case STATEMENT_COMPOUND:
4887                         next = stmt->compound.statements;
4888                         if (next == NULL)
4889                                 next = stmt->base.next;
4890                         break;
4891
4892                 case STATEMENT_RETURN: {
4893                         expression_t const *const val = stmt->returns.value;
4894                         if (val == NULL || expression_returns(val))
4895                                 noreturn_candidate = false;
4896                         return;
4897                 }
4898
4899                 case STATEMENT_IF: {
4900                         if_statement_t const *const ifs  = &stmt->ifs;
4901                         expression_t   const *const cond = ifs->condition;
4902
4903                         if (!expression_returns(cond))
4904                                 return;
4905
4906                         int const val = determine_truth(cond);
4907
4908                         if (val >= 0)
4909                                 check_reachable(ifs->true_statement);
4910
4911                         if (val > 0)
4912                                 return;
4913
4914                         if (ifs->false_statement != NULL) {
4915                                 check_reachable(ifs->false_statement);
4916                                 return;
4917                         }
4918
4919                         next = stmt->base.next;
4920                         break;
4921                 }
4922
4923                 case STATEMENT_SWITCH: {
4924                         switch_statement_t const *const switchs = &stmt->switchs;
4925                         expression_t       const *const expr    = switchs->expression;
4926
4927                         if (!expression_returns(expr))
4928                                 return;
4929
4930                         if (is_constant_expression(expr) == EXPR_CLASS_CONSTANT) {
4931                                 long                    const val      = fold_constant_to_int(expr);
4932                                 case_label_statement_t *      defaults = NULL;
4933                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4934                                         if (i->expression == NULL) {
4935                                                 defaults = i;
4936                                                 continue;
4937                                         }
4938
4939                                         if (i->first_case <= val && val <= i->last_case) {
4940                                                 check_reachable((statement_t*)i);
4941                                                 return;
4942                                         }
4943                                 }
4944
4945                                 if (defaults != NULL) {
4946                                         check_reachable((statement_t*)defaults);
4947                                         return;
4948                                 }
4949                         } else {
4950                                 bool has_default = false;
4951                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4952                                         if (i->expression == NULL)
4953                                                 has_default = true;
4954
4955                                         check_reachable((statement_t*)i);
4956                                 }
4957
4958                                 if (has_default)
4959                                         return;
4960                         }
4961
4962                         next = stmt->base.next;
4963                         break;
4964                 }
4965
4966                 case STATEMENT_EXPRESSION: {
4967                         /* Check for noreturn function call */
4968                         expression_t const *const expr = stmt->expression.expression;
4969                         if (!expression_returns(expr))
4970                                 return;
4971
4972                         next = stmt->base.next;
4973                         break;
4974                 }
4975
4976                 case STATEMENT_CONTINUE:
4977                         for (statement_t *parent = stmt;;) {
4978                                 parent = parent->base.parent;
4979                                 if (parent == NULL) /* continue not within loop */
4980                                         return;
4981
4982                                 next = parent;
4983                                 switch (parent->kind) {
4984                                         case STATEMENT_WHILE:    goto continue_while;
4985                                         case STATEMENT_DO_WHILE: goto continue_do_while;
4986                                         case STATEMENT_FOR:      goto continue_for;
4987
4988                                         default: break;
4989                                 }
4990                         }
4991
4992                 case STATEMENT_BREAK:
4993                         for (statement_t *parent = stmt;;) {
4994                                 parent = parent->base.parent;
4995                                 if (parent == NULL) /* break not within loop/switch */
4996                                         return;
4997
4998                                 switch (parent->kind) {
4999                                         case STATEMENT_SWITCH:
5000                                         case STATEMENT_WHILE:
5001                                         case STATEMENT_DO_WHILE:
5002                                         case STATEMENT_FOR:
5003                                                 last = parent;
5004                                                 next = parent->base.next;
5005                                                 goto found_break_parent;
5006
5007                                         default: break;
5008                                 }
5009                         }
5010 found_break_parent:
5011                         break;
5012
5013                 case STATEMENT_GOTO:
5014                         if (stmt->gotos.expression) {
5015                                 if (!expression_returns(stmt->gotos.expression))
5016                                         return;
5017
5018                                 statement_t *parent = stmt->base.parent;
5019                                 if (parent == NULL) /* top level goto */
5020                                         return;
5021                                 next = parent;
5022                         } else {
5023                                 next = stmt->gotos.label->statement;
5024                                 if (next == NULL) /* missing label */
5025                                         return;
5026                         }
5027                         break;
5028
5029                 case STATEMENT_LABEL:
5030                         next = stmt->label.statement;
5031                         break;
5032
5033                 case STATEMENT_CASE_LABEL:
5034                         next = stmt->case_label.statement;
5035                         break;
5036
5037                 case STATEMENT_WHILE: {
5038                         while_statement_t const *const whiles = &stmt->whiles;
5039                         expression_t      const *const cond   = whiles->condition;
5040
5041                         if (!expression_returns(cond))
5042                                 return;
5043
5044                         int const val = determine_truth(cond);
5045
5046                         if (val >= 0)
5047                                 check_reachable(whiles->body);
5048
5049                         if (val > 0)
5050                                 return;
5051
5052                         next = stmt->base.next;
5053                         break;
5054                 }
5055
5056                 case STATEMENT_DO_WHILE:
5057                         next = stmt->do_while.body;
5058                         break;
5059
5060                 case STATEMENT_FOR: {
5061                         for_statement_t *const fors = &stmt->fors;
5062
5063                         if (fors->condition_reachable)
5064                                 return;
5065                         fors->condition_reachable = true;
5066
5067                         expression_t const *const cond = fors->condition;
5068
5069                         int val;
5070                         if (cond == NULL) {
5071                                 val = 1;
5072                         } else if (expression_returns(cond)) {
5073                                 val = determine_truth(cond);
5074                         } else {
5075                                 return;
5076                         }
5077
5078                         if (val >= 0)
5079                                 check_reachable(fors->body);
5080
5081                         if (val > 0)
5082                                 return;
5083
5084                         next = stmt->base.next;
5085                         break;
5086                 }
5087
5088                 case STATEMENT_MS_TRY: {
5089                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5090                         check_reachable(ms_try->try_statement);
5091                         next = ms_try->final_statement;
5092                         break;
5093                 }
5094
5095                 case STATEMENT_LEAVE: {
5096                         statement_t *parent = stmt;
5097                         for (;;) {
5098                                 parent = parent->base.parent;
5099                                 if (parent == NULL) /* __leave not within __try */
5100                                         return;
5101
5102                                 if (parent->kind == STATEMENT_MS_TRY) {
5103                                         last = parent;
5104                                         next = parent->ms_try.final_statement;
5105                                         break;
5106                                 }
5107                         }
5108                         break;
5109                 }
5110
5111                 default:
5112                         panic("invalid statement kind");
5113         }
5114
5115         while (next == NULL) {
5116                 next = last->base.parent;
5117                 if (next == NULL) {
5118                         noreturn_candidate = false;
5119
5120                         type_t *const type = skip_typeref(current_function->base.type);
5121                         assert(is_type_function(type));
5122                         type_t *const ret  = skip_typeref(type->function.return_type);
5123                         if (!is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5124                             is_type_valid(ret)                     &&
5125                             !is_sym_main(current_function->base.base.symbol)) {
5126                                 source_position_t const *const pos = &stmt->base.source_position;
5127                                 warningf(WARN_RETURN_TYPE, pos, "control reaches end of non-void function");
5128                         }
5129                         return;
5130                 }
5131
5132                 switch (next->kind) {
5133                         case STATEMENT_ERROR:
5134                         case STATEMENT_EMPTY:
5135                         case STATEMENT_DECLARATION:
5136                         case STATEMENT_EXPRESSION:
5137                         case STATEMENT_ASM:
5138                         case STATEMENT_RETURN:
5139                         case STATEMENT_CONTINUE:
5140                         case STATEMENT_BREAK:
5141                         case STATEMENT_GOTO:
5142                         case STATEMENT_LEAVE:
5143                                 panic("invalid control flow in function");
5144
5145                         case STATEMENT_COMPOUND:
5146                                 if (next->compound.stmt_expr) {
5147                                         reaches_end = true;
5148                                         return;
5149                                 }
5150                                 /* FALLTHROUGH */
5151                         case STATEMENT_IF:
5152                         case STATEMENT_SWITCH:
5153                         case STATEMENT_LABEL:
5154                         case STATEMENT_CASE_LABEL:
5155                                 last = next;
5156                                 next = next->base.next;
5157                                 break;
5158
5159                         case STATEMENT_WHILE: {
5160 continue_while:
5161                                 if (next->base.reachable)
5162                                         return;
5163                                 next->base.reachable = true;
5164
5165                                 while_statement_t const *const whiles = &next->whiles;
5166                                 expression_t      const *const cond   = whiles->condition;
5167
5168                                 if (!expression_returns(cond))
5169                                         return;
5170
5171                                 int const val = determine_truth(cond);
5172
5173                                 if (val >= 0)
5174                                         check_reachable(whiles->body);
5175
5176                                 if (val > 0)
5177                                         return;
5178
5179                                 last = next;
5180                                 next = next->base.next;
5181                                 break;
5182                         }
5183
5184                         case STATEMENT_DO_WHILE: {
5185 continue_do_while:
5186                                 if (next->base.reachable)
5187                                         return;
5188                                 next->base.reachable = true;
5189
5190                                 do_while_statement_t const *const dw   = &next->do_while;
5191                                 expression_t         const *const cond = dw->condition;
5192
5193                                 if (!expression_returns(cond))
5194                                         return;
5195
5196                                 int const val = determine_truth(cond);
5197
5198                                 if (val >= 0)
5199                                         check_reachable(dw->body);
5200
5201                                 if (val > 0)
5202                                         return;
5203
5204                                 last = next;
5205                                 next = next->base.next;
5206                                 break;
5207                         }
5208
5209                         case STATEMENT_FOR: {
5210 continue_for:;
5211                                 for_statement_t *const fors = &next->fors;
5212
5213                                 fors->step_reachable = true;
5214
5215                                 if (fors->condition_reachable)
5216                                         return;
5217                                 fors->condition_reachable = true;
5218
5219                                 expression_t const *const cond = fors->condition;
5220
5221                                 int val;
5222                                 if (cond == NULL) {
5223                                         val = 1;
5224                                 } else if (expression_returns(cond)) {
5225                                         val = determine_truth(cond);
5226                                 } else {
5227                                         return;
5228                                 }
5229
5230                                 if (val >= 0)
5231                                         check_reachable(fors->body);
5232
5233                                 if (val > 0)
5234                                         return;
5235
5236                                 last = next;
5237                                 next = next->base.next;
5238                                 break;
5239                         }
5240
5241                         case STATEMENT_MS_TRY:
5242                                 last = next;
5243                                 next = next->ms_try.final_statement;
5244                                 break;
5245                 }
5246         }
5247
5248         check_reachable(next);
5249 }
5250
5251 static void check_unreachable(statement_t* const stmt, void *const env)
5252 {
5253         (void)env;
5254
5255         switch (stmt->kind) {
5256                 case STATEMENT_DO_WHILE:
5257                         if (!stmt->base.reachable) {
5258                                 expression_t const *const cond = stmt->do_while.condition;
5259                                 if (determine_truth(cond) >= 0) {
5260                                         source_position_t const *const pos = &cond->base.source_position;
5261                                         warningf(WARN_UNREACHABLE_CODE, pos, "condition of do-while-loop is unreachable");
5262                                 }
5263                         }
5264                         return;
5265
5266                 case STATEMENT_FOR: {
5267                         for_statement_t const* const fors = &stmt->fors;
5268
5269                         // if init and step are unreachable, cond is unreachable, too
5270                         if (!stmt->base.reachable && !fors->step_reachable) {
5271                                 goto warn_unreachable;
5272                         } else {
5273                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5274                                         source_position_t const *const pos = &fors->initialisation->base.source_position;
5275                                         warningf(WARN_UNREACHABLE_CODE, pos, "initialisation of for-statement is unreachable");
5276                                 }
5277
5278                                 if (!fors->condition_reachable && fors->condition != NULL) {
5279                                         source_position_t const *const pos = &fors->condition->base.source_position;
5280                                         warningf(WARN_UNREACHABLE_CODE, pos, "condition of for-statement is unreachable");
5281                                 }
5282
5283                                 if (!fors->step_reachable && fors->step != NULL) {
5284                                         source_position_t const *const pos = &fors->step->base.source_position;
5285                                         warningf(WARN_UNREACHABLE_CODE, pos, "step of for-statement is unreachable");
5286                                 }
5287                         }
5288                         return;
5289                 }
5290
5291                 case STATEMENT_COMPOUND:
5292                         if (stmt->compound.statements != NULL)
5293                                 return;
5294                         goto warn_unreachable;
5295
5296                 case STATEMENT_DECLARATION: {
5297                         /* Only warn if there is at least one declarator with an initializer.
5298                          * This typically occurs in switch statements. */
5299                         declaration_statement_t const *const decl = &stmt->declaration;
5300                         entity_t                const *      ent  = decl->declarations_begin;
5301                         entity_t                const *const last = decl->declarations_end;
5302                         if (ent != NULL) {
5303                                 for (;; ent = ent->base.next) {
5304                                         if (ent->kind                 == ENTITY_VARIABLE &&
5305                                                         ent->variable.initializer != NULL) {
5306                                                 goto warn_unreachable;
5307                                         }
5308                                         if (ent == last)
5309                                                 return;
5310                                 }
5311                         }
5312                 }
5313
5314                 default:
5315 warn_unreachable:
5316                         if (!stmt->base.reachable) {
5317                                 source_position_t const *const pos = &stmt->base.source_position;
5318                                 warningf(WARN_UNREACHABLE_CODE, pos, "statement is unreachable");
5319                         }
5320                         return;
5321         }
5322 }
5323
5324 static void parse_external_declaration(void)
5325 {
5326         /* function-definitions and declarations both start with declaration
5327          * specifiers */
5328         add_anchor_token(';');
5329         declaration_specifiers_t specifiers;
5330         parse_declaration_specifiers(&specifiers);
5331         rem_anchor_token(';');
5332
5333         /* must be a declaration */
5334         if (token.kind == ';') {
5335                 parse_anonymous_declaration_rest(&specifiers);
5336                 return;
5337         }
5338
5339         add_anchor_token(',');
5340         add_anchor_token('=');
5341         add_anchor_token(';');
5342         add_anchor_token('{');
5343
5344         /* declarator is common to both function-definitions and declarations */
5345         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
5346
5347         rem_anchor_token('{');
5348         rem_anchor_token(';');
5349         rem_anchor_token('=');
5350         rem_anchor_token(',');
5351
5352         /* must be a declaration */
5353         switch (token.kind) {
5354                 case ',':
5355                 case ';':
5356                 case '=':
5357                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
5358                                         DECL_FLAGS_NONE);
5359                         return;
5360         }
5361
5362         /* must be a function definition */
5363         parse_kr_declaration_list(ndeclaration);
5364
5365         if (token.kind != '{') {
5366                 parse_error_expected("while parsing function definition", '{', NULL);
5367                 eat_until_matching_token(';');
5368                 return;
5369         }
5370
5371         assert(is_declaration(ndeclaration));
5372         type_t *const orig_type = ndeclaration->declaration.type;
5373         type_t *      type      = skip_typeref(orig_type);
5374
5375         if (!is_type_function(type)) {
5376                 if (is_type_valid(type)) {
5377                         errorf(HERE, "declarator '%#N' has a body but is not a function type", ndeclaration);
5378                 }
5379                 eat_block();
5380                 return;
5381         }
5382
5383         source_position_t const *const pos = &ndeclaration->base.source_position;
5384         if (is_typeref(orig_type)) {
5385                 /* §6.9.1:2 */
5386                 errorf(pos, "type of function definition '%#N' is a typedef", ndeclaration);
5387         }
5388
5389         if (is_type_compound(skip_typeref(type->function.return_type))) {
5390                 warningf(WARN_AGGREGATE_RETURN, pos, "'%N' returns an aggregate", ndeclaration);
5391         }
5392         if (type->function.unspecified_parameters) {
5393                 warningf(WARN_OLD_STYLE_DEFINITION, pos, "old-style definition of '%N'", ndeclaration);
5394         } else {
5395                 warningf(WARN_TRADITIONAL, pos, "traditional C rejects ISO C style definition of '%N'", ndeclaration);
5396         }
5397
5398         /* §6.7.5.3:14 a function definition with () means no
5399          * parameters (and not unspecified parameters) */
5400         if (type->function.unspecified_parameters &&
5401                         type->function.parameters == NULL) {
5402                 type_t *copy                          = duplicate_type(type);
5403                 copy->function.unspecified_parameters = false;
5404                 type                                  = identify_new_type(copy);
5405
5406                 ndeclaration->declaration.type = type;
5407         }
5408
5409         entity_t *const entity = record_entity(ndeclaration, true);
5410         assert(entity->kind == ENTITY_FUNCTION);
5411         assert(ndeclaration->kind == ENTITY_FUNCTION);
5412
5413         function_t *const function = &entity->function;
5414         if (ndeclaration != entity) {
5415                 function->parameters = ndeclaration->function.parameters;
5416         }
5417         assert(is_declaration(entity));
5418         type = skip_typeref(entity->declaration.type);
5419
5420         PUSH_SCOPE(&function->parameters);
5421
5422         entity_t *parameter = function->parameters.entities;
5423         for (; parameter != NULL; parameter = parameter->base.next) {
5424                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
5425                         parameter->base.parent_scope = current_scope;
5426                 }
5427                 assert(parameter->base.parent_scope == NULL
5428                                 || parameter->base.parent_scope == current_scope);
5429                 parameter->base.parent_scope = current_scope;
5430                 if (parameter->base.symbol == NULL) {
5431                         errorf(&parameter->base.source_position, "parameter name omitted");
5432                         continue;
5433                 }
5434                 environment_push(parameter);
5435         }
5436
5437         if (function->statement != NULL) {
5438                 parser_error_multiple_definition(entity, HERE);
5439                 eat_block();
5440         } else {
5441                 /* parse function body */
5442                 int         label_stack_top      = label_top();
5443                 function_t *old_current_function = current_function;
5444                 entity_t   *old_current_entity   = current_entity;
5445                 current_function                 = function;
5446                 current_entity                   = entity;
5447                 PUSH_PARENT(NULL);
5448
5449                 goto_first   = NULL;
5450                 goto_anchor  = &goto_first;
5451                 label_first  = NULL;
5452                 label_anchor = &label_first;
5453
5454                 statement_t *const body = parse_compound_statement(false);
5455                 function->statement = body;
5456                 first_err = true;
5457                 check_labels();
5458                 check_declarations();
5459                 if (is_warn_on(WARN_RETURN_TYPE)      ||
5460                     is_warn_on(WARN_UNREACHABLE_CODE) ||
5461                     (is_warn_on(WARN_MISSING_NORETURN) && !(function->base.modifiers & DM_NORETURN))) {
5462                         noreturn_candidate = true;
5463                         check_reachable(body);
5464                         if (is_warn_on(WARN_UNREACHABLE_CODE))
5465                                 walk_statements(body, check_unreachable, NULL);
5466                         if (noreturn_candidate &&
5467                             !(function->base.modifiers & DM_NORETURN)) {
5468                                 source_position_t const *const pos = &body->base.source_position;
5469                                 warningf(WARN_MISSING_NORETURN, pos, "function '%#N' is candidate for attribute 'noreturn'", entity);
5470                         }
5471                 }
5472
5473                 POP_PARENT();
5474                 assert(current_function == function);
5475                 assert(current_entity   == entity);
5476                 current_entity   = old_current_entity;
5477                 current_function = old_current_function;
5478                 label_pop_to(label_stack_top);
5479         }
5480
5481         POP_SCOPE();
5482 }
5483
5484 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
5485 {
5486         entity_t *iter = compound->members.entities;
5487         for (; iter != NULL; iter = iter->base.next) {
5488                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5489                         continue;
5490
5491                 if (iter->base.symbol == symbol) {
5492                         return iter;
5493                 } else if (iter->base.symbol == NULL) {
5494                         /* search in anonymous structs and unions */
5495                         type_t *type = skip_typeref(iter->declaration.type);
5496                         if (is_type_compound(type)) {
5497                                 if (find_compound_entry(type->compound.compound, symbol)
5498                                                 != NULL)
5499                                         return iter;
5500                         }
5501                         continue;
5502                 }
5503         }
5504
5505         return NULL;
5506 }
5507
5508 static void check_deprecated(const source_position_t *source_position,
5509                              const entity_t *entity)
5510 {
5511         if (!is_declaration(entity))
5512                 return;
5513         if ((entity->declaration.modifiers & DM_DEPRECATED) == 0)
5514                 return;
5515
5516         source_position_t const *const epos = &entity->base.source_position;
5517         char              const *const msg  = get_deprecated_string(entity->declaration.attributes);
5518         if (msg != NULL) {
5519                 warningf(WARN_DEPRECATED_DECLARATIONS, source_position, "'%N' is deprecated (declared %P): \"%s\"", entity, epos, msg);
5520         } else {
5521                 warningf(WARN_DEPRECATED_DECLARATIONS, source_position, "'%N' is deprecated (declared %P)", entity, epos);
5522         }
5523 }
5524
5525
5526 static expression_t *create_select(const source_position_t *pos,
5527                                    expression_t *addr,
5528                                    type_qualifiers_t qualifiers,
5529                                                                    entity_t *entry)
5530 {
5531         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
5532
5533         check_deprecated(pos, entry);
5534
5535         expression_t *select          = allocate_expression_zero(EXPR_SELECT);
5536         select->select.compound       = addr;
5537         select->select.compound_entry = entry;
5538
5539         type_t *entry_type = entry->declaration.type;
5540         type_t *res_type   = get_qualified_type(entry_type, qualifiers);
5541
5542         /* bitfields need special treatment */
5543         if (entry->compound_member.bitfield) {
5544                 unsigned bit_size = entry->compound_member.bit_size;
5545                 /* if fewer bits than an int, convert to int (see §6.3.1.1) */
5546                 if (bit_size < get_atomic_type_size(ATOMIC_TYPE_INT) * BITS_PER_BYTE) {
5547                         res_type = type_int;
5548                 }
5549         }
5550
5551         /* we always do the auto-type conversions; the & and sizeof parser contains
5552          * code to revert this! */
5553         select->base.type = automatic_type_conversion(res_type);
5554
5555
5556         return select;
5557 }
5558
5559 /**
5560  * Find entry with symbol in compound. Search anonymous structs and unions and
5561  * creates implicit select expressions for them.
5562  * Returns the adress for the innermost compound.
5563  */
5564 static expression_t *find_create_select(const source_position_t *pos,
5565                                         expression_t *addr,
5566                                         type_qualifiers_t qualifiers,
5567                                         compound_t *compound, symbol_t *symbol)
5568 {
5569         entity_t *iter = compound->members.entities;
5570         for (; iter != NULL; iter = iter->base.next) {
5571                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5572                         continue;
5573
5574                 symbol_t *iter_symbol = iter->base.symbol;
5575                 if (iter_symbol == NULL) {
5576                         type_t *type = iter->declaration.type;
5577                         if (type->kind != TYPE_COMPOUND_STRUCT
5578                                         && type->kind != TYPE_COMPOUND_UNION)
5579                                 continue;
5580
5581                         compound_t *sub_compound = type->compound.compound;
5582
5583                         if (find_compound_entry(sub_compound, symbol) == NULL)
5584                                 continue;
5585
5586                         expression_t *sub_addr = create_select(pos, addr, qualifiers, iter);
5587                         sub_addr->base.source_position = *pos;
5588                         sub_addr->base.implicit        = true;
5589                         return find_create_select(pos, sub_addr, qualifiers, sub_compound,
5590                                                   symbol);
5591                 }
5592
5593                 if (iter_symbol == symbol) {
5594                         return create_select(pos, addr, qualifiers, iter);
5595                 }
5596         }
5597
5598         return NULL;
5599 }
5600
5601 static void parse_bitfield_member(entity_t *entity)
5602 {
5603         eat(':');
5604
5605         expression_t *size = parse_constant_expression();
5606         long          size_long;
5607
5608         assert(entity->kind == ENTITY_COMPOUND_MEMBER);
5609         type_t *type = entity->declaration.type;
5610         if (!is_type_integer(skip_typeref(type))) {
5611                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5612                            type);
5613         }
5614
5615         if (is_constant_expression(size) != EXPR_CLASS_CONSTANT) {
5616                 /* error already reported by parse_constant_expression */
5617                 size_long = get_type_size(type) * 8;
5618         } else {
5619                 size_long = fold_constant_to_int(size);
5620
5621                 const symbol_t *symbol = entity->base.symbol;
5622                 const symbol_t *user_symbol
5623                         = symbol == NULL ? sym_anonymous : symbol;
5624                 unsigned bit_size = get_type_size(type) * 8;
5625                 if (size_long < 0) {
5626                         errorf(HERE, "negative width in bit-field '%Y'", user_symbol);
5627                 } else if (size_long == 0 && symbol != NULL) {
5628                         errorf(HERE, "zero width for bit-field '%Y'", user_symbol);
5629                 } else if (bit_size > 0 && (unsigned)size_long > bit_size) {
5630                         errorf(HERE, "width of bitfield '%Y' exceeds its type",
5631                                    user_symbol);
5632                 } else {
5633                         /* hope that people don't invent crazy types with more bits
5634                          * than our struct can hold */
5635                         assert(size_long <
5636                                    (1 << sizeof(entity->compound_member.bit_size)*8));
5637                 }
5638         }
5639
5640         entity->compound_member.bitfield = true;
5641         entity->compound_member.bit_size = (unsigned char)size_long;
5642 }
5643
5644 static void parse_compound_declarators(compound_t *compound,
5645                 const declaration_specifiers_t *specifiers)
5646 {
5647         do {
5648                 entity_t *entity;
5649
5650                 if (token.kind == ':') {
5651                         /* anonymous bitfield */
5652                         type_t *type = specifiers->type;
5653                         entity_t *entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER,
5654                                                                 NAMESPACE_NORMAL, NULL);
5655                         entity->base.source_position               = *HERE;
5656                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
5657                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
5658                         entity->declaration.type                   = type;
5659
5660                         parse_bitfield_member(entity);
5661
5662                         attribute_t  *attributes = parse_attributes(NULL);
5663                         attribute_t **anchor     = &attributes;
5664                         while (*anchor != NULL)
5665                                 anchor = &(*anchor)->next;
5666                         *anchor = specifiers->attributes;
5667                         if (attributes != NULL) {
5668                                 handle_entity_attributes(attributes, entity);
5669                         }
5670                         entity->declaration.attributes = attributes;
5671
5672                         append_entity(&compound->members, entity);
5673                 } else {
5674                         entity = parse_declarator(specifiers,
5675                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
5676                         source_position_t const *const pos = &entity->base.source_position;
5677                         if (entity->kind == ENTITY_TYPEDEF) {
5678                                 errorf(pos, "typedef not allowed as compound member");
5679                         } else {
5680                                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
5681
5682                                 /* make sure we don't define a symbol multiple times */
5683                                 symbol_t *symbol = entity->base.symbol;
5684                                 if (symbol != NULL) {
5685                                         entity_t *prev = find_compound_entry(compound, symbol);
5686                                         if (prev != NULL) {
5687                                                 source_position_t const *const ppos = &prev->base.source_position;
5688                                                 errorf(pos, "multiple declarations of symbol '%Y' (declared %P)", symbol, ppos);
5689                                         }
5690                                 }
5691
5692                                 if (token.kind == ':') {
5693                                         parse_bitfield_member(entity);
5694
5695                                         attribute_t *attributes = parse_attributes(NULL);
5696                                         handle_entity_attributes(attributes, entity);
5697                                 } else {
5698                                         type_t *orig_type = entity->declaration.type;
5699                                         type_t *type      = skip_typeref(orig_type);
5700                                         if (is_type_function(type)) {
5701                                                 errorf(pos, "'%N' must not have function type '%T'", entity, orig_type);
5702                                         } else if (is_type_incomplete(type)) {
5703                                                 /* §6.7.2.1:16 flexible array member */
5704                                                 if (!is_type_array(type)       ||
5705                                                                 token.kind          != ';' ||
5706                                                                 look_ahead(1)->kind != '}') {
5707                                                         errorf(pos, "'%N' has incomplete type '%T'", entity, orig_type);
5708                                                 } else if (compound->members.entities == NULL) {
5709                                                         errorf(pos, "flexible array member in otherwise empty struct");
5710                                                 }
5711                                         }
5712                                 }
5713
5714                                 append_entity(&compound->members, entity);
5715                         }
5716                 }
5717         } while (next_if(','));
5718         expect(';', end_error);
5719
5720 end_error:
5721         anonymous_entity = NULL;
5722 }
5723
5724 static void parse_compound_type_entries(compound_t *compound)
5725 {
5726         eat('{');
5727         add_anchor_token('}');
5728
5729         for (;;) {
5730                 switch (token.kind) {
5731                         DECLARATION_START
5732                         case T___extension__:
5733                         case T_IDENTIFIER: {
5734                                 PUSH_EXTENSION();
5735                                 declaration_specifiers_t specifiers;
5736                                 parse_declaration_specifiers(&specifiers);
5737                                 parse_compound_declarators(compound, &specifiers);
5738                                 POP_EXTENSION();
5739                                 break;
5740                         }
5741
5742                         default:
5743                                 rem_anchor_token('}');
5744                                 expect('}', end_error);
5745 end_error:
5746                                 /* §6.7.2.1:7 */
5747                                 compound->complete = true;
5748                                 return;
5749                 }
5750         }
5751 }
5752
5753 static type_t *parse_typename(void)
5754 {
5755         declaration_specifiers_t specifiers;
5756         parse_declaration_specifiers(&specifiers);
5757         if (specifiers.storage_class != STORAGE_CLASS_NONE
5758                         || specifiers.thread_local) {
5759                 /* TODO: improve error message, user does probably not know what a
5760                  * storage class is...
5761                  */
5762                 errorf(&specifiers.source_position, "typename must not have a storage class");
5763         }
5764
5765         type_t *result = parse_abstract_declarator(specifiers.type);
5766
5767         return result;
5768 }
5769
5770
5771
5772
5773 typedef expression_t* (*parse_expression_function)(void);
5774 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
5775
5776 typedef struct expression_parser_function_t expression_parser_function_t;
5777 struct expression_parser_function_t {
5778         parse_expression_function        parser;
5779         precedence_t                     infix_precedence;
5780         parse_expression_infix_function  infix_parser;
5781 };
5782
5783 static expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5784
5785 /**
5786  * Prints an error message if an expression was expected but not read
5787  */
5788 static expression_t *expected_expression_error(void)
5789 {
5790         /* skip the error message if the error token was read */
5791         if (token.kind != T_ERROR) {
5792                 errorf(HERE, "expected expression, got token %K", &token);
5793         }
5794         next_token();
5795
5796         return create_error_expression();
5797 }
5798
5799 static type_t *get_string_type(void)
5800 {
5801         return is_warn_on(WARN_WRITE_STRINGS) ? type_const_char_ptr : type_char_ptr;
5802 }
5803
5804 static type_t *get_wide_string_type(void)
5805 {
5806         return is_warn_on(WARN_WRITE_STRINGS) ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5807 }
5808
5809 /**
5810  * Parse a string constant.
5811  */
5812 static expression_t *parse_string_literal(void)
5813 {
5814         source_position_t begin   = token.base.source_position;
5815         string_t          res     = token.string.string;
5816         bool              is_wide = (token.kind == T_WIDE_STRING_LITERAL);
5817
5818         next_token();
5819         while (token.kind == T_STRING_LITERAL
5820                         || token.kind == T_WIDE_STRING_LITERAL) {
5821                 warn_string_concat(&token.base.source_position);
5822                 res = concat_strings(&res, &token.string.string);
5823                 next_token();
5824                 is_wide |= token.kind == T_WIDE_STRING_LITERAL;
5825         }
5826
5827         expression_t *literal;
5828         if (is_wide) {
5829                 literal = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5830                 literal->base.type = get_wide_string_type();
5831         } else {
5832                 literal = allocate_expression_zero(EXPR_STRING_LITERAL);
5833                 literal->base.type = get_string_type();
5834         }
5835         literal->base.source_position = begin;
5836         literal->literal.value        = res;
5837
5838         return literal;
5839 }
5840
5841 /**
5842  * Parse a boolean constant.
5843  */
5844 static expression_t *parse_boolean_literal(bool value)
5845 {
5846         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_BOOLEAN);
5847         literal->base.type           = type_bool;
5848         literal->literal.value.begin = value ? "true" : "false";
5849         literal->literal.value.size  = value ? 4 : 5;
5850
5851         next_token();
5852         return literal;
5853 }
5854
5855 static void warn_traditional_suffix(void)
5856 {
5857         warningf(WARN_TRADITIONAL, HERE, "traditional C rejects the '%S' suffix",
5858                  &token.number.suffix);
5859 }
5860
5861 static void check_integer_suffix(void)
5862 {
5863         const string_t *suffix = &token.number.suffix;
5864         if (suffix->size == 0)
5865                 return;
5866
5867         bool not_traditional = false;
5868         const char *c = suffix->begin;
5869         if (*c == 'l' || *c == 'L') {
5870                 ++c;
5871                 if (*c == *(c-1)) {
5872                         not_traditional = true;
5873                         ++c;
5874                         if (*c == 'u' || *c == 'U') {
5875                                 ++c;
5876                         }
5877                 } else if (*c == 'u' || *c == 'U') {
5878                         not_traditional = true;
5879                         ++c;
5880                 }
5881         } else if (*c == 'u' || *c == 'U') {
5882                 not_traditional = true;
5883                 ++c;
5884                 if (*c == 'l' || *c == 'L') {
5885                         ++c;
5886                         if (*c == *(c-1)) {
5887                                 ++c;
5888                         }
5889                 }
5890         }
5891         if (*c != '\0') {
5892                 errorf(&token.base.source_position,
5893                        "invalid suffix '%S' on integer constant", suffix);
5894         } else if (not_traditional) {
5895                 warn_traditional_suffix();
5896         }
5897 }
5898
5899 static type_t *check_floatingpoint_suffix(void)
5900 {
5901         const string_t *suffix = &token.number.suffix;
5902         type_t         *type   = type_double;
5903         if (suffix->size == 0)
5904                 return type;
5905
5906         bool not_traditional = false;
5907         const char *c = suffix->begin;
5908         if (*c == 'f' || *c == 'F') {
5909                 ++c;
5910                 type = type_float;
5911         } else if (*c == 'l' || *c == 'L') {
5912                 ++c;
5913                 type = type_long_double;
5914         }
5915         if (*c != '\0') {
5916                 errorf(&token.base.source_position,
5917                        "invalid suffix '%S' on floatingpoint constant", suffix);
5918         } else if (not_traditional) {
5919                 warn_traditional_suffix();
5920         }
5921
5922         return type;
5923 }
5924
5925 /**
5926  * Parse an integer constant.
5927  */
5928 static expression_t *parse_number_literal(void)
5929 {
5930         expression_kind_t  kind;
5931         type_t            *type;
5932
5933         switch (token.kind) {
5934         case T_INTEGER:
5935                 kind = EXPR_LITERAL_INTEGER;
5936                 check_integer_suffix();
5937                 type = type_int;
5938                 break;
5939         case T_INTEGER_OCTAL:
5940                 kind = EXPR_LITERAL_INTEGER_OCTAL;
5941                 check_integer_suffix();
5942                 type = type_int;
5943                 break;
5944         case T_INTEGER_HEXADECIMAL:
5945                 kind = EXPR_LITERAL_INTEGER_HEXADECIMAL;
5946                 check_integer_suffix();
5947                 type = type_int;
5948                 break;
5949         case T_FLOATINGPOINT:
5950                 kind = EXPR_LITERAL_FLOATINGPOINT;
5951                 type = check_floatingpoint_suffix();
5952                 break;
5953         case T_FLOATINGPOINT_HEXADECIMAL:
5954                 kind = EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL;
5955                 type = check_floatingpoint_suffix();
5956                 break;
5957         default:
5958                 panic("unexpected token type in parse_number_literal");
5959         }
5960
5961         expression_t *literal = allocate_expression_zero(kind);
5962         literal->base.type      = type;
5963         literal->literal.value  = token.number.number;
5964         literal->literal.suffix = token.number.suffix;
5965         next_token();
5966
5967         /* integer type depends on the size of the number and the size
5968          * representable by the types. The backend/codegeneration has to determine
5969          * that
5970          */
5971         determine_literal_type(&literal->literal);
5972         return literal;
5973 }
5974
5975 /**
5976  * Parse a character constant.
5977  */
5978 static expression_t *parse_character_constant(void)
5979 {
5980         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_CHARACTER);
5981         literal->base.type     = c_mode & _CXX ? type_char : type_int;
5982         literal->literal.value = token.string.string;
5983
5984         size_t len = literal->literal.value.size;
5985         if (len > 1) {
5986                 if (!GNU_MODE && !(c_mode & _C99)) {
5987                         errorf(HERE, "more than 1 character in character constant");
5988                 } else {
5989                         literal->base.type = type_int;
5990                         warningf(WARN_MULTICHAR, HERE, "multi-character character constant");
5991                 }
5992         }
5993
5994         next_token();
5995         return literal;
5996 }
5997
5998 /**
5999  * Parse a wide character constant.
6000  */
6001 static expression_t *parse_wide_character_constant(void)
6002 {
6003         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_WIDE_CHARACTER);
6004         literal->base.type     = type_int;
6005         literal->literal.value = token.string.string;
6006
6007         size_t len = wstrlen(&literal->literal.value);
6008         if (len > 1) {
6009                 warningf(WARN_MULTICHAR, HERE, "multi-character character constant");
6010         }
6011
6012         next_token();
6013         return literal;
6014 }
6015
6016 static entity_t *create_implicit_function(symbol_t *symbol,
6017                 const source_position_t *source_position)
6018 {
6019         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6020         ntype->function.return_type            = type_int;
6021         ntype->function.unspecified_parameters = true;
6022         ntype->function.linkage                = LINKAGE_C;
6023         type_t *type                           = identify_new_type(ntype);
6024
6025         entity_t *const entity = allocate_entity_zero(ENTITY_FUNCTION, NAMESPACE_NORMAL, symbol);
6026         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6027         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6028         entity->declaration.type                   = type;
6029         entity->declaration.implicit               = true;
6030         entity->base.source_position               = *source_position;
6031
6032         if (current_scope != NULL)
6033                 record_entity(entity, false);
6034
6035         return entity;
6036 }
6037
6038 /**
6039  * Performs automatic type cast as described in §6.3.2.1.
6040  *
6041  * @param orig_type  the original type
6042  */
6043 static type_t *automatic_type_conversion(type_t *orig_type)
6044 {
6045         type_t *type = skip_typeref(orig_type);
6046         if (is_type_array(type)) {
6047                 array_type_t *array_type   = &type->array;
6048                 type_t       *element_type = array_type->element_type;
6049                 unsigned      qualifiers   = array_type->base.qualifiers;
6050
6051                 return make_pointer_type(element_type, qualifiers);
6052         }
6053
6054         if (is_type_function(type)) {
6055                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6056         }
6057
6058         return orig_type;
6059 }
6060
6061 /**
6062  * reverts the automatic casts of array to pointer types and function
6063  * to function-pointer types as defined §6.3.2.1
6064  */
6065 type_t *revert_automatic_type_conversion(const expression_t *expression)
6066 {
6067         switch (expression->kind) {
6068         case EXPR_REFERENCE: {
6069                 entity_t *entity = expression->reference.entity;
6070                 if (is_declaration(entity)) {
6071                         return entity->declaration.type;
6072                 } else if (entity->kind == ENTITY_ENUM_VALUE) {
6073                         return entity->enum_value.enum_type;
6074                 } else {
6075                         panic("no declaration or enum in reference");
6076                 }
6077         }
6078
6079         case EXPR_SELECT: {
6080                 entity_t *entity = expression->select.compound_entry;
6081                 assert(is_declaration(entity));
6082                 type_t   *type   = entity->declaration.type;
6083                 return get_qualified_type(type, expression->base.type->base.qualifiers);
6084         }
6085
6086         case EXPR_UNARY_DEREFERENCE: {
6087                 const expression_t *const value = expression->unary.value;
6088                 type_t             *const type  = skip_typeref(value->base.type);
6089                 if (!is_type_pointer(type))
6090                         return type_error_type;
6091                 return type->pointer.points_to;
6092         }
6093
6094         case EXPR_ARRAY_ACCESS: {
6095                 const expression_t *array_ref = expression->array_access.array_ref;
6096                 type_t             *type_left = skip_typeref(array_ref->base.type);
6097                 if (!is_type_pointer(type_left))
6098                         return type_error_type;
6099                 return type_left->pointer.points_to;
6100         }
6101
6102         case EXPR_STRING_LITERAL: {
6103                 size_t size = expression->string_literal.value.size;
6104                 return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6105         }
6106
6107         case EXPR_WIDE_STRING_LITERAL: {
6108                 size_t size = wstrlen(&expression->string_literal.value);
6109                 return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6110         }
6111
6112         case EXPR_COMPOUND_LITERAL:
6113                 return expression->compound_literal.type;
6114
6115         default:
6116                 break;
6117         }
6118         return expression->base.type;
6119 }
6120
6121 /**
6122  * Find an entity matching a symbol in a scope.
6123  * Uses current scope if scope is NULL
6124  */
6125 static entity_t *lookup_entity(const scope_t *scope, symbol_t *symbol,
6126                                namespace_tag_t namespc)
6127 {
6128         if (scope == NULL) {
6129                 return get_entity(symbol, namespc);
6130         }
6131
6132         /* we should optimize here, if scope grows above a certain size we should
6133            construct a hashmap here... */
6134         entity_t *entity = scope->entities;
6135         for ( ; entity != NULL; entity = entity->base.next) {
6136                 if (entity->base.symbol == symbol
6137                     && (namespace_tag_t)entity->base.namespc == namespc)
6138                         break;
6139         }
6140
6141         return entity;
6142 }
6143
6144 static entity_t *parse_qualified_identifier(void)
6145 {
6146         /* namespace containing the symbol */
6147         symbol_t          *symbol;
6148         source_position_t  pos;
6149         const scope_t     *lookup_scope = NULL;
6150
6151         if (next_if(T_COLONCOLON))
6152                 lookup_scope = &unit->scope;
6153
6154         entity_t *entity;
6155         while (true) {
6156                 if (token.kind != T_IDENTIFIER) {
6157                         parse_error_expected("while parsing identifier", T_IDENTIFIER, NULL);
6158                         return create_error_entity(sym_anonymous, ENTITY_VARIABLE);
6159                 }
6160                 symbol = token.identifier.symbol;
6161                 pos    = *HERE;
6162                 next_token();
6163
6164                 /* lookup entity */
6165                 entity = lookup_entity(lookup_scope, symbol, NAMESPACE_NORMAL);
6166
6167                 if (!next_if(T_COLONCOLON))
6168                         break;
6169
6170                 switch (entity->kind) {
6171                 case ENTITY_NAMESPACE:
6172                         lookup_scope = &entity->namespacee.members;
6173                         break;
6174                 case ENTITY_STRUCT:
6175                 case ENTITY_UNION:
6176                 case ENTITY_CLASS:
6177                         lookup_scope = &entity->compound.members;
6178                         break;
6179                 default:
6180                         errorf(&pos, "'%Y' must be a namespace, class, struct or union (but is a %s)",
6181                                symbol, get_entity_kind_name(entity->kind));
6182
6183                         /* skip further qualifications */
6184                         while (next_if(T_IDENTIFIER) && next_if(T_COLONCOLON)) {}
6185
6186                         return create_error_entity(sym_anonymous, ENTITY_VARIABLE);
6187                 }
6188         }
6189
6190         if (entity == NULL) {
6191                 if (!strict_mode && token.kind == '(') {
6192                         /* an implicitly declared function */
6193                         warningf(WARN_IMPLICIT_FUNCTION_DECLARATION, &pos,
6194                                  "implicit declaration of function '%Y'", symbol);
6195                         entity = create_implicit_function(symbol, &pos);
6196                 } else {
6197                         errorf(&pos, "unknown identifier '%Y' found.", symbol);
6198                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6199                 }
6200         }
6201
6202         return entity;
6203 }
6204
6205 static expression_t *parse_reference(void)
6206 {
6207         source_position_t const pos    = token.base.source_position;
6208         entity_t         *const entity = parse_qualified_identifier();
6209
6210         type_t *orig_type;
6211         if (is_declaration(entity)) {
6212                 orig_type = entity->declaration.type;
6213         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6214                 orig_type = entity->enum_value.enum_type;
6215         } else {
6216                 panic("expected declaration or enum value in reference");
6217         }
6218
6219         /* we always do the auto-type conversions; the & and sizeof parser contains
6220          * code to revert this! */
6221         type_t *type = automatic_type_conversion(orig_type);
6222
6223         expression_kind_t kind = EXPR_REFERENCE;
6224         if (entity->kind == ENTITY_ENUM_VALUE)
6225                 kind = EXPR_REFERENCE_ENUM_VALUE;
6226
6227         expression_t *expression         = allocate_expression_zero(kind);
6228         expression->base.source_position = pos;
6229         expression->base.type            = type;
6230         expression->reference.entity     = entity;
6231
6232         /* this declaration is used */
6233         if (is_declaration(entity)) {
6234                 entity->declaration.used = true;
6235         }
6236
6237         if (entity->base.parent_scope != file_scope
6238                 && (current_function != NULL
6239                         && entity->base.parent_scope->depth < current_function->parameters.depth)
6240                 && (entity->kind == ENTITY_VARIABLE || entity->kind == ENTITY_PARAMETER)) {
6241                 if (entity->kind == ENTITY_VARIABLE) {
6242                         /* access of a variable from an outer function */
6243                         entity->variable.address_taken = true;
6244                 } else if (entity->kind == ENTITY_PARAMETER) {
6245                         entity->parameter.address_taken = true;
6246                 }
6247                 current_function->need_closure = true;
6248         }
6249
6250         check_deprecated(&pos, entity);
6251
6252         return expression;
6253 }
6254
6255 static bool semantic_cast(expression_t *cast)
6256 {
6257         expression_t            *expression      = cast->unary.value;
6258         type_t                  *orig_dest_type  = cast->base.type;
6259         type_t                  *orig_type_right = expression->base.type;
6260         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6261         type_t            const *src_type        = skip_typeref(orig_type_right);
6262         source_position_t const *pos             = &cast->base.source_position;
6263
6264         /* §6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6265         if (dst_type == type_void)
6266                 return true;
6267
6268         /* only integer and pointer can be casted to pointer */
6269         if (is_type_pointer(dst_type)  &&
6270             !is_type_pointer(src_type) &&
6271             !is_type_integer(src_type) &&
6272             is_type_valid(src_type)) {
6273                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6274                 return false;
6275         }
6276
6277         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6278                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6279                 return false;
6280         }
6281
6282         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6283                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6284                 return false;
6285         }
6286
6287         if (is_type_pointer(src_type) && is_type_pointer(dst_type)) {
6288                 type_t *src = skip_typeref(src_type->pointer.points_to);
6289                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6290                 unsigned missing_qualifiers =
6291                         src->base.qualifiers & ~dst->base.qualifiers;
6292                 if (missing_qualifiers != 0) {
6293                         warningf(WARN_CAST_QUAL, pos, "cast discards qualifiers '%Q' in pointer target type of '%T'", missing_qualifiers, orig_type_right);
6294                 }
6295         }
6296         return true;
6297 }
6298
6299 static expression_t *parse_compound_literal(source_position_t const *const pos, type_t *type)
6300 {
6301         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6302         expression->base.source_position = *pos;
6303
6304         parse_initializer_env_t env;
6305         env.type             = type;
6306         env.entity           = NULL;
6307         env.must_be_constant = false;
6308         initializer_t *initializer = parse_initializer(&env);
6309         type = env.type;
6310
6311         expression->compound_literal.initializer = initializer;
6312         expression->compound_literal.type        = type;
6313         expression->base.type                    = automatic_type_conversion(type);
6314
6315         return expression;
6316 }
6317
6318 /**
6319  * Parse a cast expression.
6320  */
6321 static expression_t *parse_cast(void)
6322 {
6323         source_position_t const pos = *HERE;
6324
6325         eat('(');
6326         add_anchor_token(')');
6327
6328         type_t *type = parse_typename();
6329
6330         rem_anchor_token(')');
6331         expect(')', end_error);
6332
6333         if (token.kind == '{') {
6334                 return parse_compound_literal(&pos, type);
6335         }
6336
6337         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6338         cast->base.source_position = pos;
6339
6340         expression_t *value = parse_subexpression(PREC_CAST);
6341         cast->base.type   = type;
6342         cast->unary.value = value;
6343
6344         if (! semantic_cast(cast)) {
6345                 /* TODO: record the error in the AST. else it is impossible to detect it */
6346         }
6347
6348         return cast;
6349 end_error:
6350         return create_error_expression();
6351 }
6352
6353 /**
6354  * Parse a statement expression.
6355  */
6356 static expression_t *parse_statement_expression(void)
6357 {
6358         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6359
6360         eat('(');
6361         add_anchor_token(')');
6362
6363         statement_t *statement          = parse_compound_statement(true);
6364         statement->compound.stmt_expr   = true;
6365         expression->statement.statement = statement;
6366
6367         /* find last statement and use its type */
6368         type_t *type = type_void;
6369         const statement_t *stmt = statement->compound.statements;
6370         if (stmt != NULL) {
6371                 while (stmt->base.next != NULL)
6372                         stmt = stmt->base.next;
6373
6374                 if (stmt->kind == STATEMENT_EXPRESSION) {
6375                         type = stmt->expression.expression->base.type;
6376                 }
6377         } else {
6378                 source_position_t const *const pos = &expression->base.source_position;
6379                 warningf(WARN_OTHER, pos, "empty statement expression ({})");
6380         }
6381         expression->base.type = type;
6382
6383         rem_anchor_token(')');
6384         expect(')', end_error);
6385
6386 end_error:
6387         return expression;
6388 }
6389
6390 /**
6391  * Parse a parenthesized expression.
6392  */
6393 static expression_t *parse_parenthesized_expression(void)
6394 {
6395         token_t const* const la1 = look_ahead(1);
6396         switch (la1->kind) {
6397         case '{':
6398                 /* gcc extension: a statement expression */
6399                 return parse_statement_expression();
6400
6401         case T_IDENTIFIER:
6402                 if (is_typedef_symbol(la1->identifier.symbol)) {
6403         DECLARATION_START
6404                         return parse_cast();
6405                 }
6406         }
6407
6408         eat('(');
6409         add_anchor_token(')');
6410         expression_t *result = parse_expression();
6411         result->base.parenthesized = true;
6412         rem_anchor_token(')');
6413         expect(')', end_error);
6414
6415 end_error:
6416         return result;
6417 }
6418
6419 static expression_t *parse_function_keyword(void)
6420 {
6421         /* TODO */
6422
6423         if (current_function == NULL) {
6424                 errorf(HERE, "'__func__' used outside of a function");
6425         }
6426
6427         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6428         expression->base.type     = type_char_ptr;
6429         expression->funcname.kind = FUNCNAME_FUNCTION;
6430
6431         next_token();
6432
6433         return expression;
6434 }
6435
6436 static expression_t *parse_pretty_function_keyword(void)
6437 {
6438         if (current_function == NULL) {
6439                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6440         }
6441
6442         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6443         expression->base.type     = type_char_ptr;
6444         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6445
6446         eat(T___PRETTY_FUNCTION__);
6447
6448         return expression;
6449 }
6450
6451 static expression_t *parse_funcsig_keyword(void)
6452 {
6453         if (current_function == NULL) {
6454                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6455         }
6456
6457         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6458         expression->base.type     = type_char_ptr;
6459         expression->funcname.kind = FUNCNAME_FUNCSIG;
6460
6461         eat(T___FUNCSIG__);
6462
6463         return expression;
6464 }
6465
6466 static expression_t *parse_funcdname_keyword(void)
6467 {
6468         if (current_function == NULL) {
6469                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6470         }
6471
6472         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6473         expression->base.type     = type_char_ptr;
6474         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6475
6476         eat(T___FUNCDNAME__);
6477
6478         return expression;
6479 }
6480
6481 static designator_t *parse_designator(void)
6482 {
6483         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6484         result->source_position = *HERE;
6485
6486         if (token.kind != T_IDENTIFIER) {
6487                 parse_error_expected("while parsing member designator",
6488                                      T_IDENTIFIER, NULL);
6489                 return NULL;
6490         }
6491         result->symbol = token.identifier.symbol;
6492         next_token();
6493
6494         designator_t *last_designator = result;
6495         while (true) {
6496                 if (next_if('.')) {
6497                         if (token.kind != T_IDENTIFIER) {
6498                                 parse_error_expected("while parsing member designator",
6499                                                      T_IDENTIFIER, NULL);
6500                                 return NULL;
6501                         }
6502                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6503                         designator->source_position = *HERE;
6504                         designator->symbol          = token.identifier.symbol;
6505                         next_token();
6506
6507                         last_designator->next = designator;
6508                         last_designator       = designator;
6509                         continue;
6510                 }
6511                 if (next_if('[')) {
6512                         add_anchor_token(']');
6513                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6514                         designator->source_position = *HERE;
6515                         designator->array_index     = parse_expression();
6516                         rem_anchor_token(']');
6517                         expect(']', end_error);
6518                         if (designator->array_index == NULL) {
6519                                 return NULL;
6520                         }
6521
6522                         last_designator->next = designator;
6523                         last_designator       = designator;
6524                         continue;
6525                 }
6526                 break;
6527         }
6528
6529         return result;
6530 end_error:
6531         return NULL;
6532 }
6533
6534 /**
6535  * Parse the __builtin_offsetof() expression.
6536  */
6537 static expression_t *parse_offsetof(void)
6538 {
6539         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6540         expression->base.type    = type_size_t;
6541
6542         eat(T___builtin_offsetof);
6543
6544         expect('(', end_error);
6545         add_anchor_token(',');
6546         type_t *type = parse_typename();
6547         rem_anchor_token(',');
6548         expect(',', end_error);
6549         add_anchor_token(')');
6550         designator_t *designator = parse_designator();
6551         rem_anchor_token(')');
6552         expect(')', end_error);
6553
6554         expression->offsetofe.type       = type;
6555         expression->offsetofe.designator = designator;
6556
6557         type_path_t path;
6558         memset(&path, 0, sizeof(path));
6559         path.top_type = type;
6560         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6561
6562         descend_into_subtype(&path);
6563
6564         if (!walk_designator(&path, designator, true)) {
6565                 return create_error_expression();
6566         }
6567
6568         DEL_ARR_F(path.path);
6569
6570         return expression;
6571 end_error:
6572         return create_error_expression();
6573 }
6574
6575 /**
6576  * Parses a _builtin_va_start() expression.
6577  */
6578 static expression_t *parse_va_start(void)
6579 {
6580         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6581
6582         eat(T___builtin_va_start);
6583
6584         expect('(', end_error);
6585         add_anchor_token(',');
6586         expression->va_starte.ap = parse_assignment_expression();
6587         rem_anchor_token(',');
6588         expect(',', end_error);
6589         expression_t *const expr = parse_assignment_expression();
6590         if (expr->kind == EXPR_REFERENCE) {
6591                 entity_t *const entity = expr->reference.entity;
6592                 if (!current_function->base.type->function.variadic) {
6593                         errorf(&expr->base.source_position,
6594                                         "'va_start' used in non-variadic function");
6595                 } else if (entity->base.parent_scope != &current_function->parameters ||
6596                                 entity->base.next != NULL ||
6597                                 entity->kind != ENTITY_PARAMETER) {
6598                         errorf(&expr->base.source_position,
6599                                "second argument of 'va_start' must be last parameter of the current function");
6600                 } else {
6601                         expression->va_starte.parameter = &entity->variable;
6602                 }
6603                 expect(')', end_error);
6604                 return expression;
6605         }
6606         expect(')', end_error);
6607 end_error:
6608         return create_error_expression();
6609 }
6610
6611 /**
6612  * Parses a __builtin_va_arg() expression.
6613  */
6614 static expression_t *parse_va_arg(void)
6615 {
6616         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6617
6618         eat(T___builtin_va_arg);
6619
6620         expect('(', end_error);
6621         call_argument_t ap;
6622         ap.expression = parse_assignment_expression();
6623         expression->va_arge.ap = ap.expression;
6624         check_call_argument(type_valist, &ap, 1);
6625
6626         expect(',', end_error);
6627         expression->base.type = parse_typename();
6628         expect(')', end_error);
6629
6630         return expression;
6631 end_error:
6632         return create_error_expression();
6633 }
6634
6635 /**
6636  * Parses a __builtin_va_copy() expression.
6637  */
6638 static expression_t *parse_va_copy(void)
6639 {
6640         expression_t *expression = allocate_expression_zero(EXPR_VA_COPY);
6641
6642         eat(T___builtin_va_copy);
6643
6644         expect('(', end_error);
6645         expression_t *dst = parse_assignment_expression();
6646         assign_error_t error = semantic_assign(type_valist, dst);
6647         report_assign_error(error, type_valist, dst, "call argument 1",
6648                             &dst->base.source_position);
6649         expression->va_copye.dst = dst;
6650
6651         expect(',', end_error);
6652
6653         call_argument_t src;
6654         src.expression = parse_assignment_expression();
6655         check_call_argument(type_valist, &src, 2);
6656         expression->va_copye.src = src.expression;
6657         expect(')', end_error);
6658
6659         return expression;
6660 end_error:
6661         return create_error_expression();
6662 }
6663
6664 /**
6665  * Parses a __builtin_constant_p() expression.
6666  */
6667 static expression_t *parse_builtin_constant(void)
6668 {
6669         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6670
6671         eat(T___builtin_constant_p);
6672
6673         expect('(', end_error);
6674         add_anchor_token(')');
6675         expression->builtin_constant.value = parse_assignment_expression();
6676         rem_anchor_token(')');
6677         expect(')', end_error);
6678         expression->base.type = type_int;
6679
6680         return expression;
6681 end_error:
6682         return create_error_expression();
6683 }
6684
6685 /**
6686  * Parses a __builtin_types_compatible_p() expression.
6687  */
6688 static expression_t *parse_builtin_types_compatible(void)
6689 {
6690         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_TYPES_COMPATIBLE_P);
6691
6692         eat(T___builtin_types_compatible_p);
6693
6694         expect('(', end_error);
6695         add_anchor_token(')');
6696         add_anchor_token(',');
6697         expression->builtin_types_compatible.left = parse_typename();
6698         rem_anchor_token(',');
6699         expect(',', end_error);
6700         expression->builtin_types_compatible.right = parse_typename();
6701         rem_anchor_token(')');
6702         expect(')', end_error);
6703         expression->base.type = type_int;
6704
6705         return expression;
6706 end_error:
6707         return create_error_expression();
6708 }
6709
6710 /**
6711  * Parses a __builtin_is_*() compare expression.
6712  */
6713 static expression_t *parse_compare_builtin(void)
6714 {
6715         expression_t *expression;
6716
6717         switch (token.kind) {
6718         case T___builtin_isgreater:
6719                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6720                 break;
6721         case T___builtin_isgreaterequal:
6722                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6723                 break;
6724         case T___builtin_isless:
6725                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6726                 break;
6727         case T___builtin_islessequal:
6728                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6729                 break;
6730         case T___builtin_islessgreater:
6731                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6732                 break;
6733         case T___builtin_isunordered:
6734                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6735                 break;
6736         default:
6737                 internal_errorf(HERE, "invalid compare builtin found");
6738         }
6739         expression->base.source_position = *HERE;
6740         next_token();
6741
6742         expect('(', end_error);
6743         expression->binary.left = parse_assignment_expression();
6744         expect(',', end_error);
6745         expression->binary.right = parse_assignment_expression();
6746         expect(')', end_error);
6747
6748         type_t *const orig_type_left  = expression->binary.left->base.type;
6749         type_t *const orig_type_right = expression->binary.right->base.type;
6750
6751         type_t *const type_left  = skip_typeref(orig_type_left);
6752         type_t *const type_right = skip_typeref(orig_type_right);
6753         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6754                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6755                         type_error_incompatible("invalid operands in comparison",
6756                                 &expression->base.source_position, orig_type_left, orig_type_right);
6757                 }
6758         } else {
6759                 semantic_comparison(&expression->binary);
6760         }
6761
6762         return expression;
6763 end_error:
6764         return create_error_expression();
6765 }
6766
6767 /**
6768  * Parses a MS assume() expression.
6769  */
6770 static expression_t *parse_assume(void)
6771 {
6772         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
6773
6774         eat(T__assume);
6775
6776         expect('(', end_error);
6777         add_anchor_token(')');
6778         expression->unary.value = parse_assignment_expression();
6779         rem_anchor_token(')');
6780         expect(')', end_error);
6781
6782         expression->base.type = type_void;
6783         return expression;
6784 end_error:
6785         return create_error_expression();
6786 }
6787
6788 /**
6789  * Return the label for the current symbol or create a new one.
6790  */
6791 static label_t *get_label(void)
6792 {
6793         assert(token.kind == T_IDENTIFIER);
6794         assert(current_function != NULL);
6795
6796         entity_t *label = get_entity(token.identifier.symbol, NAMESPACE_LABEL);
6797         /* If we find a local label, we already created the declaration. */
6798         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
6799                 if (label->base.parent_scope != current_scope) {
6800                         assert(label->base.parent_scope->depth < current_scope->depth);
6801                         current_function->goto_to_outer = true;
6802                 }
6803         } else if (label == NULL || label->base.parent_scope != &current_function->parameters) {
6804                 /* There is no matching label in the same function, so create a new one. */
6805                 label = allocate_entity_zero(ENTITY_LABEL, NAMESPACE_LABEL, token.identifier.symbol);
6806                 label_push(label);
6807         }
6808
6809         eat(T_IDENTIFIER);
6810         return &label->label;
6811 }
6812
6813 /**
6814  * Parses a GNU && label address expression.
6815  */
6816 static expression_t *parse_label_address(void)
6817 {
6818         source_position_t source_position = token.base.source_position;
6819         eat(T_ANDAND);
6820         if (token.kind != T_IDENTIFIER) {
6821                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6822                 return create_error_expression();
6823         }
6824
6825         label_t *const label = get_label();
6826         label->used          = true;
6827         label->address_taken = true;
6828
6829         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6830         expression->base.source_position = source_position;
6831
6832         /* label address is treated as a void pointer */
6833         expression->base.type           = type_void_ptr;
6834         expression->label_address.label = label;
6835         return expression;
6836 }
6837
6838 /**
6839  * Parse a microsoft __noop expression.
6840  */
6841 static expression_t *parse_noop_expression(void)
6842 {
6843         /* the result is a (int)0 */
6844         expression_t *literal = allocate_expression_zero(EXPR_LITERAL_MS_NOOP);
6845         literal->base.type           = type_int;
6846         literal->literal.value.begin = "__noop";
6847         literal->literal.value.size  = 6;
6848
6849         eat(T___noop);
6850
6851         if (token.kind == '(') {
6852                 /* parse arguments */
6853                 eat('(');
6854                 add_anchor_token(')');
6855                 add_anchor_token(',');
6856
6857                 if (token.kind != ')') do {
6858                         (void)parse_assignment_expression();
6859                 } while (next_if(','));
6860         }
6861         rem_anchor_token(',');
6862         rem_anchor_token(')');
6863         expect(')', end_error);
6864
6865 end_error:
6866         return literal;
6867 }
6868
6869 /**
6870  * Parses a primary expression.
6871  */
6872 static expression_t *parse_primary_expression(void)
6873 {
6874         switch (token.kind) {
6875         case T_false:                        return parse_boolean_literal(false);
6876         case T_true:                         return parse_boolean_literal(true);
6877         case T_INTEGER:
6878         case T_INTEGER_OCTAL:
6879         case T_INTEGER_HEXADECIMAL:
6880         case T_FLOATINGPOINT:
6881         case T_FLOATINGPOINT_HEXADECIMAL:    return parse_number_literal();
6882         case T_CHARACTER_CONSTANT:           return parse_character_constant();
6883         case T_WIDE_CHARACTER_CONSTANT:      return parse_wide_character_constant();
6884         case T_STRING_LITERAL:
6885         case T_WIDE_STRING_LITERAL:          return parse_string_literal();
6886         case T___FUNCTION__:
6887         case T___func__:                     return parse_function_keyword();
6888         case T___PRETTY_FUNCTION__:          return parse_pretty_function_keyword();
6889         case T___FUNCSIG__:                  return parse_funcsig_keyword();
6890         case T___FUNCDNAME__:                return parse_funcdname_keyword();
6891         case T___builtin_offsetof:           return parse_offsetof();
6892         case T___builtin_va_start:           return parse_va_start();
6893         case T___builtin_va_arg:             return parse_va_arg();
6894         case T___builtin_va_copy:            return parse_va_copy();
6895         case T___builtin_isgreater:
6896         case T___builtin_isgreaterequal:
6897         case T___builtin_isless:
6898         case T___builtin_islessequal:
6899         case T___builtin_islessgreater:
6900         case T___builtin_isunordered:        return parse_compare_builtin();
6901         case T___builtin_constant_p:         return parse_builtin_constant();
6902         case T___builtin_types_compatible_p: return parse_builtin_types_compatible();
6903         case T__assume:                      return parse_assume();
6904         case T_ANDAND:
6905                 if (GNU_MODE)
6906                         return parse_label_address();
6907                 break;
6908
6909         case '(':                            return parse_parenthesized_expression();
6910         case T___noop:                       return parse_noop_expression();
6911
6912         /* Gracefully handle type names while parsing expressions. */
6913         case T_COLONCOLON:
6914                 return parse_reference();
6915         case T_IDENTIFIER:
6916                 if (!is_typedef_symbol(token.identifier.symbol)) {
6917                         return parse_reference();
6918                 }
6919                 /* FALLTHROUGH */
6920         DECLARATION_START {
6921                 source_position_t const  pos = *HERE;
6922                 declaration_specifiers_t specifiers;
6923                 parse_declaration_specifiers(&specifiers);
6924                 type_t const *const type = parse_abstract_declarator(specifiers.type);
6925                 errorf(&pos, "encountered type '%T' while parsing expression", type);
6926                 return create_error_expression();
6927         }
6928         }
6929
6930         errorf(HERE, "unexpected token %K, expected an expression", &token);
6931         eat_until_anchor();
6932         return create_error_expression();
6933 }
6934
6935 static expression_t *parse_array_expression(expression_t *left)
6936 {
6937         expression_t              *const expr = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6938         array_access_expression_t *const arr  = &expr->array_access;
6939
6940         eat('[');
6941         add_anchor_token(']');
6942
6943         expression_t *const inside = parse_expression();
6944
6945         type_t *const orig_type_left   = left->base.type;
6946         type_t *const orig_type_inside = inside->base.type;
6947
6948         type_t *const type_left   = skip_typeref(orig_type_left);
6949         type_t *const type_inside = skip_typeref(orig_type_inside);
6950
6951         expression_t *ref;
6952         expression_t *idx;
6953         type_t       *idx_type;
6954         type_t       *res_type;
6955         if (is_type_pointer(type_left)) {
6956                 ref      = left;
6957                 idx      = inside;
6958                 idx_type = type_inside;
6959                 res_type = type_left->pointer.points_to;
6960                 goto check_idx;
6961         } else if (is_type_pointer(type_inside)) {
6962                 arr->flipped = true;
6963                 ref      = inside;
6964                 idx      = left;
6965                 idx_type = type_left;
6966                 res_type = type_inside->pointer.points_to;
6967 check_idx:
6968                 res_type = automatic_type_conversion(res_type);
6969                 if (!is_type_integer(idx_type)) {
6970                         errorf(&idx->base.source_position, "array subscript must have integer type");
6971                 } else if (is_type_atomic(idx_type, ATOMIC_TYPE_CHAR)) {
6972                         source_position_t const *const pos = &idx->base.source_position;
6973                         warningf(WARN_CHAR_SUBSCRIPTS, pos, "array subscript has char type");
6974                 }
6975         } else {
6976                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6977                         errorf(&expr->base.source_position, "invalid types '%T[%T]' for array access", orig_type_left, orig_type_inside);
6978                 }
6979                 res_type = type_error_type;
6980                 ref      = left;
6981                 idx      = inside;
6982         }
6983
6984         arr->array_ref = ref;
6985         arr->index     = idx;
6986         arr->base.type = res_type;
6987
6988         rem_anchor_token(']');
6989         expect(']', end_error);
6990 end_error:
6991         return expr;
6992 }
6993
6994 static bool is_bitfield(const expression_t *expression)
6995 {
6996         return expression->kind == EXPR_SELECT
6997                 && expression->select.compound_entry->compound_member.bitfield;
6998 }
6999
7000 static expression_t *parse_typeprop(expression_kind_t const kind)
7001 {
7002         expression_t  *tp_expression = allocate_expression_zero(kind);
7003         tp_expression->base.type     = type_size_t;
7004
7005         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7006
7007         type_t       *orig_type;
7008         expression_t *expression;
7009         if (token.kind == '(' && is_declaration_specifier(look_ahead(1))) {
7010                 source_position_t const pos = *HERE;
7011                 next_token();
7012                 add_anchor_token(')');
7013                 orig_type = parse_typename();
7014                 rem_anchor_token(')');
7015                 expect(')', end_error);
7016
7017                 if (token.kind == '{') {
7018                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7019                          * starting with a compound literal */
7020                         expression = parse_compound_literal(&pos, orig_type);
7021                         goto typeprop_expression;
7022                 }
7023         } else {
7024                 expression = parse_subexpression(PREC_UNARY);
7025
7026 typeprop_expression:
7027                 if (is_bitfield(expression)) {
7028                         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7029                         errorf(&tp_expression->base.source_position,
7030                                    "operand of %s expression must not be a bitfield", what);
7031                 }
7032
7033                 tp_expression->typeprop.tp_expression = expression;
7034
7035                 orig_type = revert_automatic_type_conversion(expression);
7036                 expression->base.type = orig_type;
7037         }
7038
7039         tp_expression->typeprop.type   = orig_type;
7040         type_t const* const type       = skip_typeref(orig_type);
7041         char   const*       wrong_type = NULL;
7042         if (is_type_incomplete(type)) {
7043                 if (!is_type_atomic(type, ATOMIC_TYPE_VOID) || !GNU_MODE)
7044                         wrong_type = "incomplete";
7045         } else if (type->kind == TYPE_FUNCTION) {
7046                 if (GNU_MODE) {
7047                         /* function types are allowed (and return 1) */
7048                         source_position_t const *const pos  = &tp_expression->base.source_position;
7049                         char              const *const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7050                         warningf(WARN_OTHER, pos, "%s expression with function argument returns invalid result", what);
7051                 } else {
7052                         wrong_type = "function";
7053                 }
7054         }
7055
7056         if (wrong_type != NULL) {
7057                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7058                 errorf(&tp_expression->base.source_position,
7059                                 "operand of %s expression must not be of %s type '%T'",
7060                                 what, wrong_type, orig_type);
7061         }
7062
7063 end_error:
7064         return tp_expression;
7065 }
7066
7067 static expression_t *parse_sizeof(void)
7068 {
7069         return parse_typeprop(EXPR_SIZEOF);
7070 }
7071
7072 static expression_t *parse_alignof(void)
7073 {
7074         return parse_typeprop(EXPR_ALIGNOF);
7075 }
7076
7077 static expression_t *parse_select_expression(expression_t *addr)
7078 {
7079         assert(token.kind == '.' || token.kind == T_MINUSGREATER);
7080         bool select_left_arrow = (token.kind == T_MINUSGREATER);
7081         source_position_t const pos = *HERE;
7082         next_token();
7083
7084         if (token.kind != T_IDENTIFIER) {
7085                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7086                 return create_error_expression();
7087         }
7088         symbol_t *symbol = token.identifier.symbol;
7089         next_token();
7090
7091         type_t *const orig_type = addr->base.type;
7092         type_t *const type      = skip_typeref(orig_type);
7093
7094         type_t *type_left;
7095         bool    saw_error = false;
7096         if (is_type_pointer(type)) {
7097                 if (!select_left_arrow) {
7098                         errorf(&pos,
7099                                "request for member '%Y' in something not a struct or union, but '%T'",
7100                                symbol, orig_type);
7101                         saw_error = true;
7102                 }
7103                 type_left = skip_typeref(type->pointer.points_to);
7104         } else {
7105                 if (select_left_arrow && is_type_valid(type)) {
7106                         errorf(&pos, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7107                         saw_error = true;
7108                 }
7109                 type_left = type;
7110         }
7111
7112         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
7113             type_left->kind != TYPE_COMPOUND_UNION) {
7114
7115                 if (is_type_valid(type_left) && !saw_error) {
7116                         errorf(&pos,
7117                                "request for member '%Y' in something not a struct or union, but '%T'",
7118                                symbol, type_left);
7119                 }
7120                 return create_error_expression();
7121         }
7122
7123         compound_t *compound = type_left->compound.compound;
7124         if (!compound->complete) {
7125                 errorf(&pos, "request for member '%Y' in incomplete type '%T'",
7126                        symbol, type_left);
7127                 return create_error_expression();
7128         }
7129
7130         type_qualifiers_t  qualifiers = type_left->base.qualifiers;
7131         expression_t      *result     =
7132                 find_create_select(&pos, addr, qualifiers, compound, symbol);
7133
7134         if (result == NULL) {
7135                 errorf(&pos, "'%T' has no member named '%Y'", orig_type, symbol);
7136                 return create_error_expression();
7137         }
7138
7139         return result;
7140 }
7141
7142 static void check_call_argument(type_t          *expected_type,
7143                                 call_argument_t *argument, unsigned pos)
7144 {
7145         type_t         *expected_type_skip = skip_typeref(expected_type);
7146         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7147         expression_t   *arg_expr           = argument->expression;
7148         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7149
7150         /* handle transparent union gnu extension */
7151         if (is_type_union(expected_type_skip)
7152                         && (get_type_modifiers(expected_type) & DM_TRANSPARENT_UNION)) {
7153                 compound_t *union_decl  = expected_type_skip->compound.compound;
7154                 type_t     *best_type   = NULL;
7155                 entity_t   *entry       = union_decl->members.entities;
7156                 for ( ; entry != NULL; entry = entry->base.next) {
7157                         assert(is_declaration(entry));
7158                         type_t *decl_type = entry->declaration.type;
7159                         error = semantic_assign(decl_type, arg_expr);
7160                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7161                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7162                                 continue;
7163
7164                         if (error == ASSIGN_SUCCESS) {
7165                                 best_type = decl_type;
7166                         } else if (best_type == NULL) {
7167                                 best_type = decl_type;
7168                         }
7169                 }
7170
7171                 if (best_type != NULL) {
7172                         expected_type = best_type;
7173                 }
7174         }
7175
7176         error                = semantic_assign(expected_type, arg_expr);
7177         argument->expression = create_implicit_cast(arg_expr, expected_type);
7178
7179         if (error != ASSIGN_SUCCESS) {
7180                 /* report exact scope in error messages (like "in argument 3") */
7181                 char buf[64];
7182                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7183                 report_assign_error(error, expected_type, arg_expr, buf,
7184                                     &arg_expr->base.source_position);
7185         } else {
7186                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7187                 if (!types_compatible(expected_type_skip, promoted_type) &&
7188                     !types_compatible(expected_type_skip, type_void_ptr) &&
7189                     !types_compatible(type_void_ptr,      promoted_type)) {
7190                         /* Deliberately show the skipped types in this warning */
7191                         source_position_t const *const apos = &arg_expr->base.source_position;
7192                         warningf(WARN_TRADITIONAL, apos, "passing call argument %u as '%T' rather than '%T' due to prototype", pos, expected_type_skip, promoted_type);
7193                 }
7194         }
7195 }
7196
7197 /**
7198  * Handle the semantic restrictions of builtin calls
7199  */
7200 static void handle_builtin_argument_restrictions(call_expression_t *call)
7201 {
7202         entity_t *entity = call->function->reference.entity;
7203         switch (entity->function.btk) {
7204         case BUILTIN_FIRM:
7205                 switch (entity->function.b.firm_builtin_kind) {
7206                 case ir_bk_return_address:
7207                 case ir_bk_frame_address: {
7208                         /* argument must be constant */
7209                         call_argument_t *argument = call->arguments;
7210
7211                         if (is_constant_expression(argument->expression) == EXPR_CLASS_VARIABLE) {
7212                                 errorf(&call->base.source_position,
7213                                            "argument of '%Y' must be a constant expression",
7214                                            call->function->reference.entity->base.symbol);
7215                         }
7216                         break;
7217                 }
7218                 case ir_bk_prefetch:
7219                         /* second and third argument must be constant if existent */
7220                         if (call->arguments == NULL)
7221                                 break;
7222                         call_argument_t *rw = call->arguments->next;
7223                         call_argument_t *locality = NULL;
7224
7225                         if (rw != NULL) {
7226                                 if (is_constant_expression(rw->expression) == EXPR_CLASS_VARIABLE) {
7227                                         errorf(&call->base.source_position,
7228                                                    "second argument of '%Y' must be a constant expression",
7229                                                    call->function->reference.entity->base.symbol);
7230                                 }
7231                                 locality = rw->next;
7232                         }
7233                         if (locality != NULL) {
7234                                 if (is_constant_expression(locality->expression) == EXPR_CLASS_VARIABLE) {
7235                                         errorf(&call->base.source_position,
7236                                                    "third argument of '%Y' must be a constant expression",
7237                                                    call->function->reference.entity->base.symbol);
7238                                 }
7239                                 locality = rw->next;
7240                         }
7241                         break;
7242                 default:
7243                         break;
7244                 }
7245
7246         case BUILTIN_OBJECT_SIZE:
7247                 if (call->arguments == NULL)
7248                         break;
7249
7250                 call_argument_t *arg = call->arguments->next;
7251                 if (arg != NULL && is_constant_expression(arg->expression) == EXPR_CLASS_VARIABLE) {
7252                         errorf(&call->base.source_position,
7253                                    "second argument of '%Y' must be a constant expression",
7254                                    call->function->reference.entity->base.symbol);
7255                 }
7256                 break;
7257         default:
7258                 break;
7259         }
7260 }
7261
7262 /**
7263  * Parse a call expression, ie. expression '( ... )'.
7264  *
7265  * @param expression  the function address
7266  */
7267 static expression_t *parse_call_expression(expression_t *expression)
7268 {
7269         expression_t      *result = allocate_expression_zero(EXPR_CALL);
7270         call_expression_t *call   = &result->call;
7271         call->function            = expression;
7272
7273         type_t *const orig_type = expression->base.type;
7274         type_t *const type      = skip_typeref(orig_type);
7275
7276         function_type_t *function_type = NULL;
7277         if (is_type_pointer(type)) {
7278                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7279
7280                 if (is_type_function(to_type)) {
7281                         function_type   = &to_type->function;
7282                         call->base.type = function_type->return_type;
7283                 }
7284         }
7285
7286         if (function_type == NULL && is_type_valid(type)) {
7287                 errorf(HERE,
7288                        "called object '%E' (type '%T') is not a pointer to a function",
7289                        expression, orig_type);
7290         }
7291
7292         /* parse arguments */
7293         eat('(');
7294         add_anchor_token(')');
7295         add_anchor_token(',');
7296
7297         if (token.kind != ')') {
7298                 call_argument_t **anchor = &call->arguments;
7299                 do {
7300                         call_argument_t *argument = allocate_ast_zero(sizeof(*argument));
7301                         argument->expression = parse_assignment_expression();
7302
7303                         *anchor = argument;
7304                         anchor  = &argument->next;
7305                 } while (next_if(','));
7306         }
7307         rem_anchor_token(',');
7308         rem_anchor_token(')');
7309         expect(')', end_error);
7310
7311         if (function_type == NULL)
7312                 return result;
7313
7314         /* check type and count of call arguments */
7315         function_parameter_t *parameter = function_type->parameters;
7316         call_argument_t      *argument  = call->arguments;
7317         if (!function_type->unspecified_parameters) {
7318                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7319                                 parameter = parameter->next, argument = argument->next) {
7320                         check_call_argument(parameter->type, argument, ++pos);
7321                 }
7322
7323                 if (parameter != NULL) {
7324                         errorf(&expression->base.source_position, "too few arguments to function '%E'", expression);
7325                 } else if (argument != NULL && !function_type->variadic) {
7326                         errorf(&argument->expression->base.source_position, "too many arguments to function '%E'", expression);
7327                 }
7328         }
7329
7330         /* do default promotion for other arguments */
7331         for (; argument != NULL; argument = argument->next) {
7332                 type_t *argument_type = argument->expression->base.type;
7333                 if (!is_type_object(skip_typeref(argument_type))) {
7334                         errorf(&argument->expression->base.source_position,
7335                                "call argument '%E' must not be void", argument->expression);
7336                 }
7337
7338                 argument_type = get_default_promoted_type(argument_type);
7339
7340                 argument->expression
7341                         = create_implicit_cast(argument->expression, argument_type);
7342         }
7343
7344         check_format(call);
7345
7346         if (is_type_compound(skip_typeref(function_type->return_type))) {
7347                 source_position_t const *const pos = &expression->base.source_position;
7348                 warningf(WARN_AGGREGATE_RETURN, pos, "function call has aggregate value");
7349         }
7350
7351         if (expression->kind == EXPR_REFERENCE) {
7352                 reference_expression_t *reference = &expression->reference;
7353                 if (reference->entity->kind == ENTITY_FUNCTION &&
7354                     reference->entity->function.btk != BUILTIN_NONE)
7355                         handle_builtin_argument_restrictions(call);
7356         }
7357
7358 end_error:
7359         return result;
7360 }
7361
7362 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7363
7364 static bool same_compound_type(const type_t *type1, const type_t *type2)
7365 {
7366         return
7367                 is_type_compound(type1) &&
7368                 type1->kind == type2->kind &&
7369                 type1->compound.compound == type2->compound.compound;
7370 }
7371
7372 static expression_t const *get_reference_address(expression_t const *expr)
7373 {
7374         bool regular_take_address = true;
7375         for (;;) {
7376                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7377                         expr = expr->unary.value;
7378                 } else {
7379                         regular_take_address = false;
7380                 }
7381
7382                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7383                         break;
7384
7385                 expr = expr->unary.value;
7386         }
7387
7388         if (expr->kind != EXPR_REFERENCE)
7389                 return NULL;
7390
7391         /* special case for functions which are automatically converted to a
7392          * pointer to function without an extra TAKE_ADDRESS operation */
7393         if (!regular_take_address &&
7394                         expr->reference.entity->kind != ENTITY_FUNCTION) {
7395                 return NULL;
7396         }
7397
7398         return expr;
7399 }
7400
7401 static void warn_reference_address_as_bool(expression_t const* expr)
7402 {
7403         expr = get_reference_address(expr);
7404         if (expr != NULL) {
7405                 source_position_t const *const pos = &expr->base.source_position;
7406                 entity_t          const *const ent = expr->reference.entity;
7407                 warningf(WARN_ADDRESS, pos, "the address of '%N' will always evaluate as 'true'", ent);
7408         }
7409 }
7410
7411 static void warn_assignment_in_condition(const expression_t *const expr)
7412 {
7413         if (expr->base.kind != EXPR_BINARY_ASSIGN)
7414                 return;
7415         if (expr->base.parenthesized)
7416                 return;
7417         source_position_t const *const pos = &expr->base.source_position;
7418         warningf(WARN_PARENTHESES, pos, "suggest parentheses around assignment used as truth value");
7419 }
7420
7421 static void semantic_condition(expression_t const *const expr,
7422                                char const *const context)
7423 {
7424         type_t *const type = skip_typeref(expr->base.type);
7425         if (is_type_scalar(type)) {
7426                 warn_reference_address_as_bool(expr);
7427                 warn_assignment_in_condition(expr);
7428         } else if (is_type_valid(type)) {
7429                 errorf(&expr->base.source_position,
7430                                 "%s must have scalar type", context);
7431         }
7432 }
7433
7434 /**
7435  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7436  *
7437  * @param expression  the conditional expression
7438  */
7439 static expression_t *parse_conditional_expression(expression_t *expression)
7440 {
7441         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7442
7443         conditional_expression_t *conditional = &result->conditional;
7444         conditional->condition                = expression;
7445
7446         eat('?');
7447         add_anchor_token(':');
7448
7449         /* §6.5.15:2  The first operand shall have scalar type. */
7450         semantic_condition(expression, "condition of conditional operator");
7451
7452         expression_t *true_expression = expression;
7453         bool          gnu_cond = false;
7454         if (GNU_MODE && token.kind == ':') {
7455                 gnu_cond = true;
7456         } else {
7457                 true_expression = parse_expression();
7458         }
7459         rem_anchor_token(':');
7460         expect(':', end_error);
7461 end_error:;
7462         expression_t *false_expression =
7463                 parse_subexpression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
7464
7465         type_t *const orig_true_type  = true_expression->base.type;
7466         type_t *const orig_false_type = false_expression->base.type;
7467         type_t *const true_type       = skip_typeref(orig_true_type);
7468         type_t *const false_type      = skip_typeref(orig_false_type);
7469
7470         /* 6.5.15.3 */
7471         source_position_t const *const pos = &conditional->base.source_position;
7472         type_t                        *result_type;
7473         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7474                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7475                 /* ISO/IEC 14882:1998(E) §5.16:2 */
7476                 if (true_expression->kind == EXPR_UNARY_THROW) {
7477                         result_type = false_type;
7478                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
7479                         result_type = true_type;
7480                 } else {
7481                         if (!is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7482                             !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7483                                 warningf(WARN_OTHER, pos, "ISO C forbids conditional expression with only one void side");
7484                         }
7485                         result_type = type_void;
7486                 }
7487         } else if (is_type_arithmetic(true_type)
7488                    && is_type_arithmetic(false_type)) {
7489                 result_type = semantic_arithmetic(true_type, false_type);
7490         } else if (same_compound_type(true_type, false_type)) {
7491                 /* just take 1 of the 2 types */
7492                 result_type = true_type;
7493         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7494                 type_t *pointer_type;
7495                 type_t *other_type;
7496                 expression_t *other_expression;
7497                 if (is_type_pointer(true_type) &&
7498                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7499                         pointer_type     = true_type;
7500                         other_type       = false_type;
7501                         other_expression = false_expression;
7502                 } else {
7503                         pointer_type     = false_type;
7504                         other_type       = true_type;
7505                         other_expression = true_expression;
7506                 }
7507
7508                 if (is_null_pointer_constant(other_expression)) {
7509                         result_type = pointer_type;
7510                 } else if (is_type_pointer(other_type)) {
7511                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7512                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7513
7514                         type_t *to;
7515                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7516                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7517                                 to = type_void;
7518                         } else if (types_compatible(get_unqualified_type(to1),
7519                                                     get_unqualified_type(to2))) {
7520                                 to = to1;
7521                         } else {
7522                                 warningf(WARN_OTHER, pos, "pointer types '%T' and '%T' in conditional expression are incompatible", true_type, false_type);
7523                                 to = type_void;
7524                         }
7525
7526                         type_t *const type =
7527                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7528                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7529                 } else if (is_type_integer(other_type)) {
7530                         warningf(WARN_OTHER, pos, "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7531                         result_type = pointer_type;
7532                 } else {
7533                         goto types_incompatible;
7534                 }
7535         } else {
7536 types_incompatible:
7537                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7538                         type_error_incompatible("while parsing conditional", pos, true_type, false_type);
7539                 }
7540                 result_type = type_error_type;
7541         }
7542
7543         conditional->true_expression
7544                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7545         conditional->false_expression
7546                 = create_implicit_cast(false_expression, result_type);
7547         conditional->base.type = result_type;
7548         return result;
7549 }
7550
7551 /**
7552  * Parse an extension expression.
7553  */
7554 static expression_t *parse_extension(void)
7555 {
7556         PUSH_EXTENSION();
7557         expression_t *expression = parse_subexpression(PREC_UNARY);
7558         POP_EXTENSION();
7559         return expression;
7560 }
7561
7562 /**
7563  * Parse a __builtin_classify_type() expression.
7564  */
7565 static expression_t *parse_builtin_classify_type(void)
7566 {
7567         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7568         result->base.type    = type_int;
7569
7570         eat(T___builtin_classify_type);
7571
7572         expect('(', end_error);
7573         add_anchor_token(')');
7574         expression_t *expression = parse_expression();
7575         rem_anchor_token(')');
7576         expect(')', end_error);
7577         result->classify_type.type_expression = expression;
7578
7579         return result;
7580 end_error:
7581         return create_error_expression();
7582 }
7583
7584 /**
7585  * Parse a delete expression
7586  * ISO/IEC 14882:1998(E) §5.3.5
7587  */
7588 static expression_t *parse_delete(void)
7589 {
7590         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
7591         result->base.type          = type_void;
7592
7593         eat(T_delete);
7594
7595         if (next_if('[')) {
7596                 result->kind = EXPR_UNARY_DELETE_ARRAY;
7597                 expect(']', end_error);
7598 end_error:;
7599         }
7600
7601         expression_t *const value = parse_subexpression(PREC_CAST);
7602         result->unary.value = value;
7603
7604         type_t *const type = skip_typeref(value->base.type);
7605         if (!is_type_pointer(type)) {
7606                 if (is_type_valid(type)) {
7607                         errorf(&value->base.source_position,
7608                                         "operand of delete must have pointer type");
7609                 }
7610         } else if (is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
7611                 source_position_t const *const pos = &value->base.source_position;
7612                 warningf(WARN_OTHER, pos, "deleting 'void*' is undefined");
7613         }
7614
7615         return result;
7616 }
7617
7618 /**
7619  * Parse a throw expression
7620  * ISO/IEC 14882:1998(E) §15:1
7621  */
7622 static expression_t *parse_throw(void)
7623 {
7624         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
7625         result->base.type          = type_void;
7626
7627         eat(T_throw);
7628
7629         expression_t *value = NULL;
7630         switch (token.kind) {
7631                 EXPRESSION_START {
7632                         value = parse_assignment_expression();
7633                         /* ISO/IEC 14882:1998(E) §15.1:3 */
7634                         type_t *const orig_type = value->base.type;
7635                         type_t *const type      = skip_typeref(orig_type);
7636                         if (is_type_incomplete(type)) {
7637                                 errorf(&value->base.source_position,
7638                                                 "cannot throw object of incomplete type '%T'", orig_type);
7639                         } else if (is_type_pointer(type)) {
7640                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
7641                                 if (is_type_incomplete(points_to) &&
7642                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7643                                         errorf(&value->base.source_position,
7644                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
7645                                 }
7646                         }
7647                 }
7648
7649                 default:
7650                         break;
7651         }
7652         result->unary.value = value;
7653
7654         return result;
7655 }
7656
7657 static bool check_pointer_arithmetic(const source_position_t *source_position,
7658                                      type_t *pointer_type,
7659                                      type_t *orig_pointer_type)
7660 {
7661         type_t *points_to = pointer_type->pointer.points_to;
7662         points_to = skip_typeref(points_to);
7663
7664         if (is_type_incomplete(points_to)) {
7665                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7666                         errorf(source_position,
7667                                "arithmetic with pointer to incomplete type '%T' not allowed",
7668                                orig_pointer_type);
7669                         return false;
7670                 } else {
7671                         warningf(WARN_POINTER_ARITH, source_position, "pointer of type '%T' used in arithmetic", orig_pointer_type);
7672                 }
7673         } else if (is_type_function(points_to)) {
7674                 if (!GNU_MODE) {
7675                         errorf(source_position,
7676                                "arithmetic with pointer to function type '%T' not allowed",
7677                                orig_pointer_type);
7678                         return false;
7679                 } else {
7680                         warningf(WARN_POINTER_ARITH, source_position, "pointer to a function '%T' used in arithmetic", orig_pointer_type);
7681                 }
7682         }
7683         return true;
7684 }
7685
7686 static bool is_lvalue(const expression_t *expression)
7687 {
7688         /* TODO: doesn't seem to be consistent with §6.3.2.1:1 */
7689         switch (expression->kind) {
7690         case EXPR_ARRAY_ACCESS:
7691         case EXPR_COMPOUND_LITERAL:
7692         case EXPR_REFERENCE:
7693         case EXPR_SELECT:
7694         case EXPR_UNARY_DEREFERENCE:
7695                 return true;
7696
7697         default: {
7698                 type_t *type = skip_typeref(expression->base.type);
7699                 return
7700                         /* ISO/IEC 14882:1998(E) §3.10:3 */
7701                         is_type_reference(type) ||
7702                         /* Claim it is an lvalue, if the type is invalid.  There was a parse
7703                          * error before, which maybe prevented properly recognizing it as
7704                          * lvalue. */
7705                         !is_type_valid(type);
7706         }
7707         }
7708 }
7709
7710 static void semantic_incdec(unary_expression_t *expression)
7711 {
7712         type_t *const orig_type = expression->value->base.type;
7713         type_t *const type      = skip_typeref(orig_type);
7714         if (is_type_pointer(type)) {
7715                 if (!check_pointer_arithmetic(&expression->base.source_position,
7716                                               type, orig_type)) {
7717                         return;
7718                 }
7719         } else if (!is_type_real(type) && is_type_valid(type)) {
7720                 /* TODO: improve error message */
7721                 errorf(&expression->base.source_position,
7722                        "operation needs an arithmetic or pointer type");
7723                 return;
7724         }
7725         if (!is_lvalue(expression->value)) {
7726                 /* TODO: improve error message */
7727                 errorf(&expression->base.source_position, "lvalue required as operand");
7728         }
7729         expression->base.type = orig_type;
7730 }
7731
7732 static void promote_unary_int_expr(unary_expression_t *const expr, type_t *const type)
7733 {
7734         type_t *const res_type = promote_integer(type);
7735         expr->base.type = res_type;
7736         expr->value     = create_implicit_cast(expr->value, res_type);
7737 }
7738
7739 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7740 {
7741         type_t *const orig_type = expression->value->base.type;
7742         type_t *const type      = skip_typeref(orig_type);
7743         if (!is_type_arithmetic(type)) {
7744                 if (is_type_valid(type)) {
7745                         /* TODO: improve error message */
7746                         errorf(&expression->base.source_position,
7747                                 "operation needs an arithmetic type");
7748                 }
7749                 return;
7750         } else if (is_type_integer(type)) {
7751                 promote_unary_int_expr(expression, type);
7752         } else {
7753                 expression->base.type = orig_type;
7754         }
7755 }
7756
7757 static void semantic_unexpr_plus(unary_expression_t *expression)
7758 {
7759         semantic_unexpr_arithmetic(expression);
7760         source_position_t const *const pos = &expression->base.source_position;
7761         warningf(WARN_TRADITIONAL, pos, "traditional C rejects the unary plus operator");
7762 }
7763
7764 static void semantic_not(unary_expression_t *expression)
7765 {
7766         /* §6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
7767         semantic_condition(expression->value, "operand of !");
7768         expression->base.type = c_mode & _CXX ? type_bool : type_int;
7769 }
7770
7771 static void semantic_unexpr_integer(unary_expression_t *expression)
7772 {
7773         type_t *const orig_type = expression->value->base.type;
7774         type_t *const type      = skip_typeref(orig_type);
7775         if (!is_type_integer(type)) {
7776                 if (is_type_valid(type)) {
7777                         errorf(&expression->base.source_position,
7778                                "operand of ~ must be of integer type");
7779                 }
7780                 return;
7781         }
7782
7783         promote_unary_int_expr(expression, type);
7784 }
7785
7786 static void semantic_dereference(unary_expression_t *expression)
7787 {
7788         type_t *const orig_type = expression->value->base.type;
7789         type_t *const type      = skip_typeref(orig_type);
7790         if (!is_type_pointer(type)) {
7791                 if (is_type_valid(type)) {
7792                         errorf(&expression->base.source_position,
7793                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7794                 }
7795                 return;
7796         }
7797
7798         type_t *result_type   = type->pointer.points_to;
7799         result_type           = automatic_type_conversion(result_type);
7800         expression->base.type = result_type;
7801 }
7802
7803 /**
7804  * Record that an address is taken (expression represents an lvalue).
7805  *
7806  * @param expression       the expression
7807  * @param may_be_register  if true, the expression might be an register
7808  */
7809 static void set_address_taken(expression_t *expression, bool may_be_register)
7810 {
7811         if (expression->kind != EXPR_REFERENCE)
7812                 return;
7813
7814         entity_t *const entity = expression->reference.entity;
7815
7816         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
7817                 return;
7818
7819         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
7820                         && !may_be_register) {
7821                 source_position_t const *const pos = &expression->base.source_position;
7822                 errorf(pos, "address of register '%N' requested", entity);
7823         }
7824
7825         if (entity->kind == ENTITY_VARIABLE) {
7826                 entity->variable.address_taken = true;
7827         } else {
7828                 assert(entity->kind == ENTITY_PARAMETER);
7829                 entity->parameter.address_taken = true;
7830         }
7831 }
7832
7833 /**
7834  * Check the semantic of the address taken expression.
7835  */
7836 static void semantic_take_addr(unary_expression_t *expression)
7837 {
7838         expression_t *value = expression->value;
7839         value->base.type    = revert_automatic_type_conversion(value);
7840
7841         type_t *orig_type = value->base.type;
7842         type_t *type      = skip_typeref(orig_type);
7843         if (!is_type_valid(type))
7844                 return;
7845
7846         /* §6.5.3.2 */
7847         if (!is_lvalue(value)) {
7848                 errorf(&expression->base.source_position, "'&' requires an lvalue");
7849         }
7850         if (is_bitfield(value)) {
7851                 errorf(&expression->base.source_position,
7852                        "'&' not allowed on bitfield");
7853         }
7854
7855         set_address_taken(value, false);
7856
7857         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7858 }
7859
7860 #define CREATE_UNARY_EXPRESSION_PARSER(token_kind, unexpression_type, sfunc) \
7861 static expression_t *parse_##unexpression_type(void)                         \
7862 {                                                                            \
7863         expression_t *unary_expression                                           \
7864                 = allocate_expression_zero(unexpression_type);                       \
7865         eat(token_kind);                                                         \
7866         unary_expression->unary.value = parse_subexpression(PREC_UNARY);         \
7867                                                                                  \
7868         sfunc(&unary_expression->unary);                                         \
7869                                                                                  \
7870         return unary_expression;                                                 \
7871 }
7872
7873 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7874                                semantic_unexpr_arithmetic)
7875 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7876                                semantic_unexpr_plus)
7877 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7878                                semantic_not)
7879 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7880                                semantic_dereference)
7881 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7882                                semantic_take_addr)
7883 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7884                                semantic_unexpr_integer)
7885 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7886                                semantic_incdec)
7887 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7888                                semantic_incdec)
7889
7890 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_kind, unexpression_type, \
7891                                                sfunc)                         \
7892 static expression_t *parse_##unexpression_type(expression_t *left)            \
7893 {                                                                             \
7894         expression_t *unary_expression                                            \
7895                 = allocate_expression_zero(unexpression_type);                        \
7896         eat(token_kind);                                                          \
7897         unary_expression->unary.value = left;                                     \
7898                                                                                   \
7899         sfunc(&unary_expression->unary);                                          \
7900                                                                               \
7901         return unary_expression;                                                  \
7902 }
7903
7904 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7905                                        EXPR_UNARY_POSTFIX_INCREMENT,
7906                                        semantic_incdec)
7907 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7908                                        EXPR_UNARY_POSTFIX_DECREMENT,
7909                                        semantic_incdec)
7910
7911 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7912 {
7913         /* TODO: handle complex + imaginary types */
7914
7915         type_left  = get_unqualified_type(type_left);
7916         type_right = get_unqualified_type(type_right);
7917
7918         /* §6.3.1.8 Usual arithmetic conversions */
7919         if (type_left == type_long_double || type_right == type_long_double) {
7920                 return type_long_double;
7921         } else if (type_left == type_double || type_right == type_double) {
7922                 return type_double;
7923         } else if (type_left == type_float || type_right == type_float) {
7924                 return type_float;
7925         }
7926
7927         type_left  = promote_integer(type_left);
7928         type_right = promote_integer(type_right);
7929
7930         if (type_left == type_right)
7931                 return type_left;
7932
7933         bool     const signed_left  = is_type_signed(type_left);
7934         bool     const signed_right = is_type_signed(type_right);
7935         unsigned const rank_left    = get_akind_rank(get_akind(type_left));
7936         unsigned const rank_right   = get_akind_rank(get_akind(type_right));
7937
7938         if (signed_left == signed_right)
7939                 return rank_left >= rank_right ? type_left : type_right;
7940
7941         unsigned           s_rank;
7942         unsigned           u_rank;
7943         atomic_type_kind_t s_akind;
7944         atomic_type_kind_t u_akind;
7945         type_t *s_type;
7946         type_t *u_type;
7947         if (signed_left) {
7948                 s_type = type_left;
7949                 u_type = type_right;
7950         } else {
7951                 s_type = type_right;
7952                 u_type = type_left;
7953         }
7954         s_akind = get_akind(s_type);
7955         u_akind = get_akind(u_type);
7956         s_rank  = get_akind_rank(s_akind);
7957         u_rank  = get_akind_rank(u_akind);
7958
7959         if (u_rank >= s_rank)
7960                 return u_type;
7961
7962         if (get_atomic_type_size(s_akind) > get_atomic_type_size(u_akind))
7963                 return s_type;
7964
7965         switch (s_akind) {
7966         case ATOMIC_TYPE_INT:      return type_unsigned_int;
7967         case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7968         case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7969
7970         default: panic("invalid atomic type");
7971         }
7972 }
7973
7974 /**
7975  * Check the semantic restrictions for a binary expression.
7976  */
7977 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7978 {
7979         expression_t *const left            = expression->left;
7980         expression_t *const right           = expression->right;
7981         type_t       *const orig_type_left  = left->base.type;
7982         type_t       *const orig_type_right = right->base.type;
7983         type_t       *const type_left       = skip_typeref(orig_type_left);
7984         type_t       *const type_right      = skip_typeref(orig_type_right);
7985
7986         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7987                 /* TODO: improve error message */
7988                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7989                         errorf(&expression->base.source_position,
7990                                "operation needs arithmetic types");
7991                 }
7992                 return;
7993         }
7994
7995         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7996         expression->left      = create_implicit_cast(left, arithmetic_type);
7997         expression->right     = create_implicit_cast(right, arithmetic_type);
7998         expression->base.type = arithmetic_type;
7999 }
8000
8001 static void semantic_binexpr_integer(binary_expression_t *const expression)
8002 {
8003         expression_t *const left            = expression->left;
8004         expression_t *const right           = expression->right;
8005         type_t       *const orig_type_left  = left->base.type;
8006         type_t       *const orig_type_right = right->base.type;
8007         type_t       *const type_left       = skip_typeref(orig_type_left);
8008         type_t       *const type_right      = skip_typeref(orig_type_right);
8009
8010         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8011                 /* TODO: improve error message */
8012                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8013                         errorf(&expression->base.source_position,
8014                                "operation needs integer types");
8015                 }
8016                 return;
8017         }
8018
8019         type_t *const result_type = semantic_arithmetic(type_left, type_right);
8020         expression->left      = create_implicit_cast(left, result_type);
8021         expression->right     = create_implicit_cast(right, result_type);
8022         expression->base.type = result_type;
8023 }
8024
8025 static void warn_div_by_zero(binary_expression_t const *const expression)
8026 {
8027         if (!is_type_integer(expression->base.type))
8028                 return;
8029
8030         expression_t const *const right = expression->right;
8031         /* The type of the right operand can be different for /= */
8032         if (is_type_integer(right->base.type)                    &&
8033             is_constant_expression(right) == EXPR_CLASS_CONSTANT &&
8034             !fold_constant_to_bool(right)) {
8035                 source_position_t const *const pos = &expression->base.source_position;
8036                 warningf(WARN_DIV_BY_ZERO, pos, "division by zero");
8037         }
8038 }
8039
8040 /**
8041  * Check the semantic restrictions for a div/mod expression.
8042  */
8043 static void semantic_divmod_arithmetic(binary_expression_t *expression)
8044 {
8045         semantic_binexpr_arithmetic(expression);
8046         warn_div_by_zero(expression);
8047 }
8048
8049 static void warn_addsub_in_shift(const expression_t *const expr)
8050 {
8051         if (expr->base.parenthesized)
8052                 return;
8053
8054         char op;
8055         switch (expr->kind) {
8056                 case EXPR_BINARY_ADD: op = '+'; break;
8057                 case EXPR_BINARY_SUB: op = '-'; break;
8058                 default:              return;
8059         }
8060
8061         source_position_t const *const pos = &expr->base.source_position;
8062         warningf(WARN_PARENTHESES, pos, "suggest parentheses around '%c' inside shift", op);
8063 }
8064
8065 static bool semantic_shift(binary_expression_t *expression)
8066 {
8067         expression_t *const left            = expression->left;
8068         expression_t *const right           = expression->right;
8069         type_t       *const orig_type_left  = left->base.type;
8070         type_t       *const orig_type_right = right->base.type;
8071         type_t       *      type_left       = skip_typeref(orig_type_left);
8072         type_t       *      type_right      = skip_typeref(orig_type_right);
8073
8074         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8075                 /* TODO: improve error message */
8076                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8077                         errorf(&expression->base.source_position,
8078                                "operands of shift operation must have integer types");
8079                 }
8080                 return false;
8081         }
8082
8083         type_left = promote_integer(type_left);
8084
8085         if (is_constant_expression(right) == EXPR_CLASS_CONSTANT) {
8086                 source_position_t const *const pos   = &right->base.source_position;
8087                 long                     const count = fold_constant_to_int(right);
8088                 if (count < 0) {
8089                         warningf(WARN_OTHER, pos, "shift count must be non-negative");
8090                 } else if ((unsigned long)count >=
8091                                 get_atomic_type_size(type_left->atomic.akind) * 8) {
8092                         warningf(WARN_OTHER, pos, "shift count must be less than type width");
8093                 }
8094         }
8095
8096         type_right        = promote_integer(type_right);
8097         expression->right = create_implicit_cast(right, type_right);
8098
8099         return true;
8100 }
8101
8102 static void semantic_shift_op(binary_expression_t *expression)
8103 {
8104         expression_t *const left  = expression->left;
8105         expression_t *const right = expression->right;
8106
8107         if (!semantic_shift(expression))
8108                 return;
8109
8110         warn_addsub_in_shift(left);
8111         warn_addsub_in_shift(right);
8112
8113         type_t *const orig_type_left = left->base.type;
8114         type_t *      type_left      = skip_typeref(orig_type_left);
8115
8116         type_left             = promote_integer(type_left);
8117         expression->left      = create_implicit_cast(left, type_left);
8118         expression->base.type = type_left;
8119 }
8120
8121 static void semantic_add(binary_expression_t *expression)
8122 {
8123         expression_t *const left            = expression->left;
8124         expression_t *const right           = expression->right;
8125         type_t       *const orig_type_left  = left->base.type;
8126         type_t       *const orig_type_right = right->base.type;
8127         type_t       *const type_left       = skip_typeref(orig_type_left);
8128         type_t       *const type_right      = skip_typeref(orig_type_right);
8129
8130         /* §6.5.6 */
8131         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8132                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8133                 expression->left  = create_implicit_cast(left, arithmetic_type);
8134                 expression->right = create_implicit_cast(right, arithmetic_type);
8135                 expression->base.type = arithmetic_type;
8136         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8137                 check_pointer_arithmetic(&expression->base.source_position,
8138                                          type_left, orig_type_left);
8139                 expression->base.type = type_left;
8140         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8141                 check_pointer_arithmetic(&expression->base.source_position,
8142                                          type_right, orig_type_right);
8143                 expression->base.type = type_right;
8144         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8145                 errorf(&expression->base.source_position,
8146                        "invalid operands to binary + ('%T', '%T')",
8147                        orig_type_left, orig_type_right);
8148         }
8149 }
8150
8151 static void semantic_sub(binary_expression_t *expression)
8152 {
8153         expression_t            *const left            = expression->left;
8154         expression_t            *const right           = expression->right;
8155         type_t                  *const orig_type_left  = left->base.type;
8156         type_t                  *const orig_type_right = right->base.type;
8157         type_t                  *const type_left       = skip_typeref(orig_type_left);
8158         type_t                  *const type_right      = skip_typeref(orig_type_right);
8159         source_position_t const *const pos             = &expression->base.source_position;
8160
8161         /* §5.6.5 */
8162         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8163                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8164                 expression->left        = create_implicit_cast(left, arithmetic_type);
8165                 expression->right       = create_implicit_cast(right, arithmetic_type);
8166                 expression->base.type =  arithmetic_type;
8167         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8168                 check_pointer_arithmetic(&expression->base.source_position,
8169                                          type_left, orig_type_left);
8170                 expression->base.type = type_left;
8171         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8172                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8173                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8174                 if (!types_compatible(unqual_left, unqual_right)) {
8175                         errorf(pos,
8176                                "subtracting pointers to incompatible types '%T' and '%T'",
8177                                orig_type_left, orig_type_right);
8178                 } else if (!is_type_object(unqual_left)) {
8179                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8180                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8181                                        orig_type_left);
8182                         } else {
8183                                 warningf(WARN_OTHER, pos, "subtracting pointers to void");
8184                         }
8185                 }
8186                 expression->base.type = type_ptrdiff_t;
8187         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8188                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8189                        orig_type_left, orig_type_right);
8190         }
8191 }
8192
8193 static void warn_string_literal_address(expression_t const* expr)
8194 {
8195         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8196                 expr = expr->unary.value;
8197                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8198                         return;
8199                 expr = expr->unary.value;
8200         }
8201
8202         if (expr->kind == EXPR_STRING_LITERAL
8203                         || expr->kind == EXPR_WIDE_STRING_LITERAL) {
8204                 source_position_t const *const pos = &expr->base.source_position;
8205                 warningf(WARN_ADDRESS, pos, "comparison with string literal results in unspecified behaviour");
8206         }
8207 }
8208
8209 static bool maybe_negative(expression_t const *const expr)
8210 {
8211         switch (is_constant_expression(expr)) {
8212                 case EXPR_CLASS_ERROR:    return false;
8213                 case EXPR_CLASS_CONSTANT: return constant_is_negative(expr);
8214                 default:                  return true;
8215         }
8216 }
8217
8218 static void warn_comparison(source_position_t const *const pos, expression_t const *const expr, expression_t const *const other)
8219 {
8220         warn_string_literal_address(expr);
8221
8222         expression_t const* const ref = get_reference_address(expr);
8223         if (ref != NULL && is_null_pointer_constant(other)) {
8224                 entity_t const *const ent = ref->reference.entity;
8225                 warningf(WARN_ADDRESS, pos, "the address of '%N' will never be NULL", ent);
8226         }
8227
8228         if (!expr->base.parenthesized) {
8229                 switch (expr->base.kind) {
8230                         case EXPR_BINARY_LESS:
8231                         case EXPR_BINARY_GREATER:
8232                         case EXPR_BINARY_LESSEQUAL:
8233                         case EXPR_BINARY_GREATEREQUAL:
8234                         case EXPR_BINARY_NOTEQUAL:
8235                         case EXPR_BINARY_EQUAL:
8236                                 warningf(WARN_PARENTHESES, pos, "comparisons like 'x <= y < z' do not have their mathematical meaning");
8237                                 break;
8238                         default:
8239                                 break;
8240                 }
8241         }
8242 }
8243
8244 /**
8245  * Check the semantics of comparison expressions.
8246  *
8247  * @param expression   The expression to check.
8248  */
8249 static void semantic_comparison(binary_expression_t *expression)
8250 {
8251         source_position_t const *const pos   = &expression->base.source_position;
8252         expression_t            *const left  = expression->left;
8253         expression_t            *const right = expression->right;
8254
8255         warn_comparison(pos, left, right);
8256         warn_comparison(pos, right, left);
8257
8258         type_t *orig_type_left  = left->base.type;
8259         type_t *orig_type_right = right->base.type;
8260         type_t *type_left       = skip_typeref(orig_type_left);
8261         type_t *type_right      = skip_typeref(orig_type_right);
8262
8263         /* TODO non-arithmetic types */
8264         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8265                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8266
8267                 /* test for signed vs unsigned compares */
8268                 if (is_type_integer(arithmetic_type)) {
8269                         bool const signed_left  = is_type_signed(type_left);
8270                         bool const signed_right = is_type_signed(type_right);
8271                         if (signed_left != signed_right) {
8272                                 /* FIXME long long needs better const folding magic */
8273                                 /* TODO check whether constant value can be represented by other type */
8274                                 if ((signed_left  && maybe_negative(left)) ||
8275                                                 (signed_right && maybe_negative(right))) {
8276                                         warningf(WARN_SIGN_COMPARE, pos, "comparison between signed and unsigned");
8277                                 }
8278                         }
8279                 }
8280
8281                 expression->left        = create_implicit_cast(left, arithmetic_type);
8282                 expression->right       = create_implicit_cast(right, arithmetic_type);
8283                 expression->base.type   = arithmetic_type;
8284                 if ((expression->base.kind == EXPR_BINARY_EQUAL ||
8285                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8286                     is_type_float(arithmetic_type)) {
8287                         warningf(WARN_FLOAT_EQUAL, pos, "comparing floating point with == or != is unsafe");
8288                 }
8289         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8290                 /* TODO check compatibility */
8291         } else if (is_type_pointer(type_left)) {
8292                 expression->right = create_implicit_cast(right, type_left);
8293         } else if (is_type_pointer(type_right)) {
8294                 expression->left = create_implicit_cast(left, type_right);
8295         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8296                 type_error_incompatible("invalid operands in comparison", pos, type_left, type_right);
8297         }
8298         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8299 }
8300
8301 /**
8302  * Checks if a compound type has constant fields.
8303  */
8304 static bool has_const_fields(const compound_type_t *type)
8305 {
8306         compound_t *compound = type->compound;
8307         entity_t   *entry    = compound->members.entities;
8308
8309         for (; entry != NULL; entry = entry->base.next) {
8310                 if (!is_declaration(entry))
8311                         continue;
8312
8313                 const type_t *decl_type = skip_typeref(entry->declaration.type);
8314                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8315                         return true;
8316         }
8317
8318         return false;
8319 }
8320
8321 static bool is_valid_assignment_lhs(expression_t const* const left)
8322 {
8323         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8324         type_t *const type_left      = skip_typeref(orig_type_left);
8325
8326         if (!is_lvalue(left)) {
8327                 errorf(&left->base.source_position, "left hand side '%E' of assignment is not an lvalue",
8328                        left);
8329                 return false;
8330         }
8331
8332         if (left->kind == EXPR_REFERENCE
8333                         && left->reference.entity->kind == ENTITY_FUNCTION) {
8334                 errorf(&left->base.source_position, "cannot assign to function '%E'", left);
8335                 return false;
8336         }
8337
8338         if (is_type_array(type_left)) {
8339                 errorf(&left->base.source_position, "cannot assign to array '%E'", left);
8340                 return false;
8341         }
8342         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8343                 errorf(&left->base.source_position, "assignment to read-only location '%E' (type '%T')", left,
8344                        orig_type_left);
8345                 return false;
8346         }
8347         if (is_type_incomplete(type_left)) {
8348                 errorf(&left->base.source_position, "left-hand side '%E' of assignment has incomplete type '%T'",
8349                        left, orig_type_left);
8350                 return false;
8351         }
8352         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8353                 errorf(&left->base.source_position, "cannot assign to '%E' because compound type '%T' has read-only fields",
8354                        left, orig_type_left);
8355                 return false;
8356         }
8357
8358         return true;
8359 }
8360
8361 static void semantic_arithmetic_assign(binary_expression_t *expression)
8362 {
8363         expression_t *left            = expression->left;
8364         expression_t *right           = expression->right;
8365         type_t       *orig_type_left  = left->base.type;
8366         type_t       *orig_type_right = right->base.type;
8367
8368         if (!is_valid_assignment_lhs(left))
8369                 return;
8370
8371         type_t *type_left  = skip_typeref(orig_type_left);
8372         type_t *type_right = skip_typeref(orig_type_right);
8373
8374         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8375                 /* TODO: improve error message */
8376                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8377                         errorf(&expression->base.source_position,
8378                                "operation needs arithmetic types");
8379                 }
8380                 return;
8381         }
8382
8383         /* combined instructions are tricky. We can't create an implicit cast on
8384          * the left side, because we need the uncasted form for the store.
8385          * The ast2firm pass has to know that left_type must be right_type
8386          * for the arithmetic operation and create a cast by itself */
8387         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8388         expression->right       = create_implicit_cast(right, arithmetic_type);
8389         expression->base.type   = type_left;
8390 }
8391
8392 static void semantic_divmod_assign(binary_expression_t *expression)
8393 {
8394         semantic_arithmetic_assign(expression);
8395         warn_div_by_zero(expression);
8396 }
8397
8398 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8399 {
8400         expression_t *const left            = expression->left;
8401         expression_t *const right           = expression->right;
8402         type_t       *const orig_type_left  = left->base.type;
8403         type_t       *const orig_type_right = right->base.type;
8404         type_t       *const type_left       = skip_typeref(orig_type_left);
8405         type_t       *const type_right      = skip_typeref(orig_type_right);
8406
8407         if (!is_valid_assignment_lhs(left))
8408                 return;
8409
8410         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8411                 /* combined instructions are tricky. We can't create an implicit cast on
8412                  * the left side, because we need the uncasted form for the store.
8413                  * The ast2firm pass has to know that left_type must be right_type
8414                  * for the arithmetic operation and create a cast by itself */
8415                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8416                 expression->right     = create_implicit_cast(right, arithmetic_type);
8417                 expression->base.type = type_left;
8418         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8419                 check_pointer_arithmetic(&expression->base.source_position,
8420                                          type_left, orig_type_left);
8421                 expression->base.type = type_left;
8422         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8423                 errorf(&expression->base.source_position,
8424                        "incompatible types '%T' and '%T' in assignment",
8425                        orig_type_left, orig_type_right);
8426         }
8427 }
8428
8429 static void semantic_integer_assign(binary_expression_t *expression)
8430 {
8431         expression_t *left            = expression->left;
8432         expression_t *right           = expression->right;
8433         type_t       *orig_type_left  = left->base.type;
8434         type_t       *orig_type_right = right->base.type;
8435
8436         if (!is_valid_assignment_lhs(left))
8437                 return;
8438
8439         type_t *type_left  = skip_typeref(orig_type_left);
8440         type_t *type_right = skip_typeref(orig_type_right);
8441
8442         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8443                 /* TODO: improve error message */
8444                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8445                         errorf(&expression->base.source_position,
8446                                "operation needs integer types");
8447                 }
8448                 return;
8449         }
8450
8451         /* combined instructions are tricky. We can't create an implicit cast on
8452          * the left side, because we need the uncasted form for the store.
8453          * The ast2firm pass has to know that left_type must be right_type
8454          * for the arithmetic operation and create a cast by itself */
8455         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8456         expression->right       = create_implicit_cast(right, arithmetic_type);
8457         expression->base.type   = type_left;
8458 }
8459
8460 static void semantic_shift_assign(binary_expression_t *expression)
8461 {
8462         expression_t *left           = expression->left;
8463
8464         if (!is_valid_assignment_lhs(left))
8465                 return;
8466
8467         if (!semantic_shift(expression))
8468                 return;
8469
8470         expression->base.type = skip_typeref(left->base.type);
8471 }
8472
8473 static void warn_logical_and_within_or(const expression_t *const expr)
8474 {
8475         if (expr->base.kind != EXPR_BINARY_LOGICAL_AND)
8476                 return;
8477         if (expr->base.parenthesized)
8478                 return;
8479         source_position_t const *const pos = &expr->base.source_position;
8480         warningf(WARN_PARENTHESES, pos, "suggest parentheses around && within ||");
8481 }
8482
8483 /**
8484  * Check the semantic restrictions of a logical expression.
8485  */
8486 static void semantic_logical_op(binary_expression_t *expression)
8487 {
8488         /* §6.5.13:2  Each of the operands shall have scalar type.
8489          * §6.5.14:2  Each of the operands shall have scalar type. */
8490         semantic_condition(expression->left,   "left operand of logical operator");
8491         semantic_condition(expression->right, "right operand of logical operator");
8492         if (expression->base.kind == EXPR_BINARY_LOGICAL_OR) {
8493                 warn_logical_and_within_or(expression->left);
8494                 warn_logical_and_within_or(expression->right);
8495         }
8496         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8497 }
8498
8499 /**
8500  * Check the semantic restrictions of a binary assign expression.
8501  */
8502 static void semantic_binexpr_assign(binary_expression_t *expression)
8503 {
8504         expression_t *left           = expression->left;
8505         type_t       *orig_type_left = left->base.type;
8506
8507         if (!is_valid_assignment_lhs(left))
8508                 return;
8509
8510         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8511         report_assign_error(error, orig_type_left, expression->right,
8512                         "assignment", &left->base.source_position);
8513         expression->right = create_implicit_cast(expression->right, orig_type_left);
8514         expression->base.type = orig_type_left;
8515 }
8516
8517 /**
8518  * Determine if the outermost operation (or parts thereof) of the given
8519  * expression has no effect in order to generate a warning about this fact.
8520  * Therefore in some cases this only examines some of the operands of the
8521  * expression (see comments in the function and examples below).
8522  * Examples:
8523  *   f() + 23;    // warning, because + has no effect
8524  *   x || f();    // no warning, because x controls execution of f()
8525  *   x ? y : f(); // warning, because y has no effect
8526  *   (void)x;     // no warning to be able to suppress the warning
8527  * This function can NOT be used for an "expression has definitely no effect"-
8528  * analysis. */
8529 static bool expression_has_effect(const expression_t *const expr)
8530 {
8531         switch (expr->kind) {
8532                 case EXPR_ERROR:                      return true; /* do NOT warn */
8533                 case EXPR_REFERENCE:                  return false;
8534                 case EXPR_REFERENCE_ENUM_VALUE:       return false;
8535                 case EXPR_LABEL_ADDRESS:              return false;
8536
8537                 /* suppress the warning for microsoft __noop operations */
8538                 case EXPR_LITERAL_MS_NOOP:            return true;
8539                 case EXPR_LITERAL_BOOLEAN:
8540                 case EXPR_LITERAL_CHARACTER:
8541                 case EXPR_LITERAL_WIDE_CHARACTER:
8542                 case EXPR_LITERAL_INTEGER:
8543                 case EXPR_LITERAL_INTEGER_OCTAL:
8544                 case EXPR_LITERAL_INTEGER_HEXADECIMAL:
8545                 case EXPR_LITERAL_FLOATINGPOINT:
8546                 case EXPR_LITERAL_FLOATINGPOINT_HEXADECIMAL: return false;
8547                 case EXPR_STRING_LITERAL:             return false;
8548                 case EXPR_WIDE_STRING_LITERAL:        return false;
8549
8550                 case EXPR_CALL: {
8551                         const call_expression_t *const call = &expr->call;
8552                         if (call->function->kind != EXPR_REFERENCE)
8553                                 return true;
8554
8555                         switch (call->function->reference.entity->function.btk) {
8556                                 /* FIXME: which builtins have no effect? */
8557                                 default:                      return true;
8558                         }
8559                 }
8560
8561                 /* Generate the warning if either the left or right hand side of a
8562                  * conditional expression has no effect */
8563                 case EXPR_CONDITIONAL: {
8564                         conditional_expression_t const *const cond = &expr->conditional;
8565                         expression_t             const *const t    = cond->true_expression;
8566                         return
8567                                 (t == NULL || expression_has_effect(t)) &&
8568                                 expression_has_effect(cond->false_expression);
8569                 }
8570
8571                 case EXPR_SELECT:                     return false;
8572                 case EXPR_ARRAY_ACCESS:               return false;
8573                 case EXPR_SIZEOF:                     return false;
8574                 case EXPR_CLASSIFY_TYPE:              return false;
8575                 case EXPR_ALIGNOF:                    return false;
8576
8577                 case EXPR_FUNCNAME:                   return false;
8578                 case EXPR_BUILTIN_CONSTANT_P:         return false;
8579                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P: return false;
8580                 case EXPR_OFFSETOF:                   return false;
8581                 case EXPR_VA_START:                   return true;
8582                 case EXPR_VA_ARG:                     return true;
8583                 case EXPR_VA_COPY:                    return true;
8584                 case EXPR_STATEMENT:                  return true; // TODO
8585                 case EXPR_COMPOUND_LITERAL:           return false;
8586
8587                 case EXPR_UNARY_NEGATE:               return false;
8588                 case EXPR_UNARY_PLUS:                 return false;
8589                 case EXPR_UNARY_BITWISE_NEGATE:       return false;
8590                 case EXPR_UNARY_NOT:                  return false;
8591                 case EXPR_UNARY_DEREFERENCE:          return false;
8592                 case EXPR_UNARY_TAKE_ADDRESS:         return false;
8593                 case EXPR_UNARY_POSTFIX_INCREMENT:    return true;
8594                 case EXPR_UNARY_POSTFIX_DECREMENT:    return true;
8595                 case EXPR_UNARY_PREFIX_INCREMENT:     return true;
8596                 case EXPR_UNARY_PREFIX_DECREMENT:     return true;
8597
8598                 /* Treat void casts as if they have an effect in order to being able to
8599                  * suppress the warning */
8600                 case EXPR_UNARY_CAST: {
8601                         type_t *const type = skip_typeref(expr->base.type);
8602                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8603                 }
8604
8605                 case EXPR_UNARY_ASSUME:               return true;
8606                 case EXPR_UNARY_DELETE:               return true;
8607                 case EXPR_UNARY_DELETE_ARRAY:         return true;
8608                 case EXPR_UNARY_THROW:                return true;
8609
8610                 case EXPR_BINARY_ADD:                 return false;
8611                 case EXPR_BINARY_SUB:                 return false;
8612                 case EXPR_BINARY_MUL:                 return false;
8613                 case EXPR_BINARY_DIV:                 return false;
8614                 case EXPR_BINARY_MOD:                 return false;
8615                 case EXPR_BINARY_EQUAL:               return false;
8616                 case EXPR_BINARY_NOTEQUAL:            return false;
8617                 case EXPR_BINARY_LESS:                return false;
8618                 case EXPR_BINARY_LESSEQUAL:           return false;
8619                 case EXPR_BINARY_GREATER:             return false;
8620                 case EXPR_BINARY_GREATEREQUAL:        return false;
8621                 case EXPR_BINARY_BITWISE_AND:         return false;
8622                 case EXPR_BINARY_BITWISE_OR:          return false;
8623                 case EXPR_BINARY_BITWISE_XOR:         return false;
8624                 case EXPR_BINARY_SHIFTLEFT:           return false;
8625                 case EXPR_BINARY_SHIFTRIGHT:          return false;
8626                 case EXPR_BINARY_ASSIGN:              return true;
8627                 case EXPR_BINARY_MUL_ASSIGN:          return true;
8628                 case EXPR_BINARY_DIV_ASSIGN:          return true;
8629                 case EXPR_BINARY_MOD_ASSIGN:          return true;
8630                 case EXPR_BINARY_ADD_ASSIGN:          return true;
8631                 case EXPR_BINARY_SUB_ASSIGN:          return true;
8632                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:    return true;
8633                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:   return true;
8634                 case EXPR_BINARY_BITWISE_AND_ASSIGN:  return true;
8635                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:  return true;
8636                 case EXPR_BINARY_BITWISE_OR_ASSIGN:   return true;
8637
8638                 /* Only examine the right hand side of && and ||, because the left hand
8639                  * side already has the effect of controlling the execution of the right
8640                  * hand side */
8641                 case EXPR_BINARY_LOGICAL_AND:
8642                 case EXPR_BINARY_LOGICAL_OR:
8643                 /* Only examine the right hand side of a comma expression, because the left
8644                  * hand side has a separate warning */
8645                 case EXPR_BINARY_COMMA:
8646                         return expression_has_effect(expr->binary.right);
8647
8648                 case EXPR_BINARY_ISGREATER:           return false;
8649                 case EXPR_BINARY_ISGREATEREQUAL:      return false;
8650                 case EXPR_BINARY_ISLESS:              return false;
8651                 case EXPR_BINARY_ISLESSEQUAL:         return false;
8652                 case EXPR_BINARY_ISLESSGREATER:       return false;
8653                 case EXPR_BINARY_ISUNORDERED:         return false;
8654         }
8655
8656         internal_errorf(HERE, "unexpected expression");
8657 }
8658
8659 static void semantic_comma(binary_expression_t *expression)
8660 {
8661         const expression_t *const left = expression->left;
8662         if (!expression_has_effect(left)) {
8663                 source_position_t const *const pos = &left->base.source_position;
8664                 warningf(WARN_UNUSED_VALUE, pos, "left-hand operand of comma expression has no effect");
8665         }
8666         expression->base.type = expression->right->base.type;
8667 }
8668
8669 /**
8670  * @param prec_r precedence of the right operand
8671  */
8672 #define CREATE_BINEXPR_PARSER(token_kind, binexpression_type, prec_r, sfunc) \
8673 static expression_t *parse_##binexpression_type(expression_t *left)          \
8674 {                                                                            \
8675         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
8676         binexpr->binary.left  = left;                                            \
8677         eat(token_kind);                                                         \
8678                                                                              \
8679         expression_t *right = parse_subexpression(prec_r);                       \
8680                                                                              \
8681         binexpr->binary.right = right;                                           \
8682         sfunc(&binexpr->binary);                                                 \
8683                                                                              \
8684         return binexpr;                                                          \
8685 }
8686
8687 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
8688 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
8689 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
8690 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
8691 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
8692 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
8693 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
8694 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
8695 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
8696 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
8697 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
8698 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
8699 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
8700 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_integer)
8701 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_integer)
8702 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_integer)
8703 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
8704 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
8705 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
8706 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8707 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8708 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8709 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8710 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8711 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_shift_assign)
8712 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_shift_assign)
8713 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8714 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_integer_assign)
8715 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8716 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
8717
8718
8719 static expression_t *parse_subexpression(precedence_t precedence)
8720 {
8721         if (token.kind < 0) {
8722                 return expected_expression_error();
8723         }
8724
8725         expression_parser_function_t *parser
8726                 = &expression_parsers[token.kind];
8727         expression_t                 *left;
8728
8729         if (parser->parser != NULL) {
8730                 left = parser->parser();
8731         } else {
8732                 left = parse_primary_expression();
8733         }
8734         assert(left != NULL);
8735
8736         while (true) {
8737                 if (token.kind < 0) {
8738                         return expected_expression_error();
8739                 }
8740
8741                 parser = &expression_parsers[token.kind];
8742                 if (parser->infix_parser == NULL)
8743                         break;
8744                 if (parser->infix_precedence < precedence)
8745                         break;
8746
8747                 left = parser->infix_parser(left);
8748
8749                 assert(left != NULL);
8750         }
8751
8752         return left;
8753 }
8754
8755 /**
8756  * Parse an expression.
8757  */
8758 static expression_t *parse_expression(void)
8759 {
8760         return parse_subexpression(PREC_EXPRESSION);
8761 }
8762
8763 /**
8764  * Register a parser for a prefix-like operator.
8765  *
8766  * @param parser      the parser function
8767  * @param token_kind  the token type of the prefix token
8768  */
8769 static void register_expression_parser(parse_expression_function parser,
8770                                        int token_kind)
8771 {
8772         expression_parser_function_t *entry = &expression_parsers[token_kind];
8773
8774         if (entry->parser != NULL) {
8775                 diagnosticf("for token '%k'\n", (token_kind_t)token_kind);
8776                 panic("trying to register multiple expression parsers for a token");
8777         }
8778         entry->parser = parser;
8779 }
8780
8781 /**
8782  * Register a parser for an infix operator with given precedence.
8783  *
8784  * @param parser      the parser function
8785  * @param token_kind  the token type of the infix operator
8786  * @param precedence  the precedence of the operator
8787  */
8788 static void register_infix_parser(parse_expression_infix_function parser,
8789                                   int token_kind, precedence_t precedence)
8790 {
8791         expression_parser_function_t *entry = &expression_parsers[token_kind];
8792
8793         if (entry->infix_parser != NULL) {
8794                 diagnosticf("for token '%k'\n", (token_kind_t)token_kind);
8795                 panic("trying to register multiple infix expression parsers for a "
8796                       "token");
8797         }
8798         entry->infix_parser     = parser;
8799         entry->infix_precedence = precedence;
8800 }
8801
8802 /**
8803  * Initialize the expression parsers.
8804  */
8805 static void init_expression_parsers(void)
8806 {
8807         memset(&expression_parsers, 0, sizeof(expression_parsers));
8808
8809         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
8810         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
8811         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
8812         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
8813         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
8814         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
8815         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
8816         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
8817         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
8818         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
8819         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
8820         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
8821         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
8822         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
8823         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
8824         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
8825         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
8826         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
8827         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
8828         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
8829         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
8830         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
8831         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
8832         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
8833         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
8834         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
8835         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
8836         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
8837         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
8838         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
8839         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
8840         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
8841         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
8842         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
8843         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
8844         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
8845         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
8846
8847         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
8848         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
8849         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
8850         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
8851         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
8852         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
8853         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
8854         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
8855         register_expression_parser(parse_sizeof,                      T_sizeof);
8856         register_expression_parser(parse_alignof,                     T___alignof__);
8857         register_expression_parser(parse_extension,                   T___extension__);
8858         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
8859         register_expression_parser(parse_delete,                      T_delete);
8860         register_expression_parser(parse_throw,                       T_throw);
8861 }
8862
8863 /**
8864  * Parse a asm statement arguments specification.
8865  */
8866 static asm_argument_t *parse_asm_arguments(bool is_out)
8867 {
8868         asm_argument_t  *result = NULL;
8869         asm_argument_t **anchor = &result;
8870
8871         while (token.kind == T_STRING_LITERAL || token.kind == '[') {
8872                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8873                 memset(argument, 0, sizeof(argument[0]));
8874
8875                 if (next_if('[')) {
8876                         if (token.kind != T_IDENTIFIER) {
8877                                 parse_error_expected("while parsing asm argument",
8878                                                      T_IDENTIFIER, NULL);
8879                                 return NULL;
8880                         }
8881                         argument->symbol = token.identifier.symbol;
8882
8883                         expect(']', end_error);
8884                 }
8885
8886                 argument->constraints = parse_string_literals();
8887                 expect('(', end_error);
8888                 add_anchor_token(')');
8889                 expression_t *expression = parse_expression();
8890                 rem_anchor_token(')');
8891                 if (is_out) {
8892                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8893                          * change size or type representation (e.g. int -> long is ok, but
8894                          * int -> float is not) */
8895                         if (expression->kind == EXPR_UNARY_CAST) {
8896                                 type_t      *const type = expression->base.type;
8897                                 type_kind_t  const kind = type->kind;
8898                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8899                                         unsigned flags;
8900                                         unsigned size;
8901                                         if (kind == TYPE_ATOMIC) {
8902                                                 atomic_type_kind_t const akind = type->atomic.akind;
8903                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8904                                                 size  = get_atomic_type_size(akind);
8905                                         } else {
8906                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8907                                                 size  = get_type_size(type_void_ptr);
8908                                         }
8909
8910                                         do {
8911                                                 expression_t *const value      = expression->unary.value;
8912                                                 type_t       *const value_type = value->base.type;
8913                                                 type_kind_t   const value_kind = value_type->kind;
8914
8915                                                 unsigned value_flags;
8916                                                 unsigned value_size;
8917                                                 if (value_kind == TYPE_ATOMIC) {
8918                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8919                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8920                                                         value_size  = get_atomic_type_size(value_akind);
8921                                                 } else if (value_kind == TYPE_POINTER) {
8922                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8923                                                         value_size  = get_type_size(type_void_ptr);
8924                                                 } else {
8925                                                         break;
8926                                                 }
8927
8928                                                 if (value_flags != flags || value_size != size)
8929                                                         break;
8930
8931                                                 expression = value;
8932                                         } while (expression->kind == EXPR_UNARY_CAST);
8933                                 }
8934                         }
8935
8936                         if (!is_lvalue(expression)) {
8937                                 errorf(&expression->base.source_position,
8938                                        "asm output argument is not an lvalue");
8939                         }
8940
8941                         if (argument->constraints.begin[0] == '=')
8942                                 determine_lhs_ent(expression, NULL);
8943                         else
8944                                 mark_vars_read(expression, NULL);
8945                 } else {
8946                         mark_vars_read(expression, NULL);
8947                 }
8948                 argument->expression = expression;
8949                 expect(')', end_error);
8950
8951                 set_address_taken(expression, true);
8952
8953                 *anchor = argument;
8954                 anchor  = &argument->next;
8955
8956                 if (!next_if(','))
8957                         break;
8958         }
8959
8960         return result;
8961 end_error:
8962         return NULL;
8963 }
8964
8965 /**
8966  * Parse a asm statement clobber specification.
8967  */
8968 static asm_clobber_t *parse_asm_clobbers(void)
8969 {
8970         asm_clobber_t *result  = NULL;
8971         asm_clobber_t **anchor = &result;
8972
8973         while (token.kind == T_STRING_LITERAL) {
8974                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8975                 clobber->clobber       = parse_string_literals();
8976
8977                 *anchor = clobber;
8978                 anchor  = &clobber->next;
8979
8980                 if (!next_if(','))
8981                         break;
8982         }
8983
8984         return result;
8985 }
8986
8987 /**
8988  * Parse an asm statement.
8989  */
8990 static statement_t *parse_asm_statement(void)
8991 {
8992         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
8993         asm_statement_t *asm_statement = &statement->asms;
8994
8995         eat(T_asm);
8996
8997         if (next_if(T_volatile))
8998                 asm_statement->is_volatile = true;
8999
9000         expect('(', end_error);
9001         add_anchor_token(')');
9002         if (token.kind != T_STRING_LITERAL) {
9003                 parse_error_expected("after asm(", T_STRING_LITERAL, NULL);
9004                 goto end_of_asm;
9005         }
9006         asm_statement->asm_text = parse_string_literals();
9007
9008         add_anchor_token(':');
9009         if (!next_if(':')) {
9010                 rem_anchor_token(':');
9011                 goto end_of_asm;
9012         }
9013
9014         asm_statement->outputs = parse_asm_arguments(true);
9015         if (!next_if(':')) {
9016                 rem_anchor_token(':');
9017                 goto end_of_asm;
9018         }
9019
9020         asm_statement->inputs = parse_asm_arguments(false);
9021         if (!next_if(':')) {
9022                 rem_anchor_token(':');
9023                 goto end_of_asm;
9024         }
9025         rem_anchor_token(':');
9026
9027         asm_statement->clobbers = parse_asm_clobbers();
9028
9029 end_of_asm:
9030         rem_anchor_token(')');
9031         expect(')', end_error);
9032         expect(';', end_error);
9033
9034         if (asm_statement->outputs == NULL) {
9035                 /* GCC: An 'asm' instruction without any output operands will be treated
9036                  * identically to a volatile 'asm' instruction. */
9037                 asm_statement->is_volatile = true;
9038         }
9039
9040         return statement;
9041 end_error:
9042         return create_error_statement();
9043 }
9044
9045 static statement_t *parse_label_inner_statement(statement_t const *const label, char const *const label_kind)
9046 {
9047         statement_t *inner_stmt;
9048         switch (token.kind) {
9049                 case '}':
9050                         errorf(&label->base.source_position, "%s at end of compound statement", label_kind);
9051                         inner_stmt = create_error_statement();
9052                         break;
9053
9054                 case ';':
9055                         if (label->kind == STATEMENT_LABEL) {
9056                                 /* Eat an empty statement here, to avoid the warning about an empty
9057                                  * statement after a label.  label:; is commonly used to have a label
9058                                  * before a closing brace. */
9059                                 inner_stmt = create_empty_statement();
9060                                 next_token();
9061                                 break;
9062                         }
9063                         /* FALLTHROUGH */
9064
9065                 default:
9066                         inner_stmt = parse_statement();
9067                         /* ISO/IEC  9899:1999(E) §6.8:1/6.8.2:1  Declarations are no statements */
9068                         /* ISO/IEC 14882:1998(E) §6:1/§6.7       Declarations are statements */
9069                         if (inner_stmt->kind == STATEMENT_DECLARATION && !(c_mode & _CXX)) {
9070                                 errorf(&inner_stmt->base.source_position, "declaration after %s", label_kind);
9071                         }
9072                         break;
9073         }
9074         return inner_stmt;
9075 }
9076
9077 /**
9078  * Parse a case statement.
9079  */
9080 static statement_t *parse_case_statement(void)
9081 {
9082         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9083         source_position_t *const pos       = &statement->base.source_position;
9084
9085         eat(T_case);
9086
9087         expression_t *const expression   = parse_expression();
9088         statement->case_label.expression = expression;
9089         expression_classification_t const expr_class = is_constant_expression(expression);
9090         if (expr_class != EXPR_CLASS_CONSTANT) {
9091                 if (expr_class != EXPR_CLASS_ERROR) {
9092                         errorf(pos, "case label does not reduce to an integer constant");
9093                 }
9094                 statement->case_label.is_bad = true;
9095         } else {
9096                 long const val = fold_constant_to_int(expression);
9097                 statement->case_label.first_case = val;
9098                 statement->case_label.last_case  = val;
9099         }
9100
9101         if (GNU_MODE) {
9102                 if (next_if(T_DOTDOTDOT)) {
9103                         expression_t *const end_range   = parse_expression();
9104                         statement->case_label.end_range = end_range;
9105                         expression_classification_t const end_class = is_constant_expression(end_range);
9106                         if (end_class != EXPR_CLASS_CONSTANT) {
9107                                 if (end_class != EXPR_CLASS_ERROR) {
9108                                         errorf(pos, "case range does not reduce to an integer constant");
9109                                 }
9110                                 statement->case_label.is_bad = true;
9111                         } else {
9112                                 long const val = fold_constant_to_int(end_range);
9113                                 statement->case_label.last_case = val;
9114
9115                                 if (val < statement->case_label.first_case) {
9116                                         statement->case_label.is_empty_range = true;
9117                                         warningf(WARN_OTHER, pos, "empty range specified");
9118                                 }
9119                         }
9120                 }
9121         }
9122
9123         PUSH_PARENT(statement);
9124
9125         expect(':', end_error);
9126 end_error:
9127
9128         if (current_switch != NULL) {
9129                 if (! statement->case_label.is_bad) {
9130                         /* Check for duplicate case values */
9131                         case_label_statement_t *c = &statement->case_label;
9132                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9133                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9134                                         continue;
9135
9136                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9137                                         continue;
9138
9139                                 errorf(pos, "duplicate case value (previously used %P)",
9140                                        &l->base.source_position);
9141                                 break;
9142                         }
9143                 }
9144                 /* link all cases into the switch statement */
9145                 if (current_switch->last_case == NULL) {
9146                         current_switch->first_case      = &statement->case_label;
9147                 } else {
9148                         current_switch->last_case->next = &statement->case_label;
9149                 }
9150                 current_switch->last_case = &statement->case_label;
9151         } else {
9152                 errorf(pos, "case label not within a switch statement");
9153         }
9154
9155         statement->case_label.statement = parse_label_inner_statement(statement, "case label");
9156
9157         POP_PARENT();
9158         return statement;
9159 }
9160
9161 /**
9162  * Parse a default statement.
9163  */
9164 static statement_t *parse_default_statement(void)
9165 {
9166         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9167
9168         eat(T_default);
9169
9170         PUSH_PARENT(statement);
9171
9172         expect(':', end_error);
9173 end_error:
9174
9175         if (current_switch != NULL) {
9176                 const case_label_statement_t *def_label = current_switch->default_label;
9177                 if (def_label != NULL) {
9178                         errorf(&statement->base.source_position, "multiple default labels in one switch (previous declared %P)", &def_label->base.source_position);
9179                 } else {
9180                         current_switch->default_label = &statement->case_label;
9181
9182                         /* link all cases into the switch statement */
9183                         if (current_switch->last_case == NULL) {
9184                                 current_switch->first_case      = &statement->case_label;
9185                         } else {
9186                                 current_switch->last_case->next = &statement->case_label;
9187                         }
9188                         current_switch->last_case = &statement->case_label;
9189                 }
9190         } else {
9191                 errorf(&statement->base.source_position,
9192                         "'default' label not within a switch statement");
9193         }
9194
9195         statement->case_label.statement = parse_label_inner_statement(statement, "default label");
9196
9197         POP_PARENT();
9198         return statement;
9199 }
9200
9201 /**
9202  * Parse a label statement.
9203  */
9204 static statement_t *parse_label_statement(void)
9205 {
9206         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9207         label_t     *const label     = get_label();
9208         statement->label.label = label;
9209
9210         PUSH_PARENT(statement);
9211
9212         /* if statement is already set then the label is defined twice,
9213          * otherwise it was just mentioned in a goto/local label declaration so far
9214          */
9215         source_position_t const* const pos = &statement->base.source_position;
9216         if (label->statement != NULL) {
9217                 errorf(pos, "duplicate '%N' (declared %P)", (entity_t const*)label, &label->base.source_position);
9218         } else {
9219                 label->base.source_position = *pos;
9220                 label->statement            = statement;
9221         }
9222
9223         eat(':');
9224
9225         if (token.kind == T___attribute__ && !(c_mode & _CXX)) {
9226                 parse_attributes(NULL); // TODO process attributes
9227         }
9228
9229         statement->label.statement = parse_label_inner_statement(statement, "label");
9230
9231         /* remember the labels in a list for later checking */
9232         *label_anchor = &statement->label;
9233         label_anchor  = &statement->label.next;
9234
9235         POP_PARENT();
9236         return statement;
9237 }
9238
9239 static statement_t *parse_inner_statement(void)
9240 {
9241         statement_t *const stmt = parse_statement();
9242         /* ISO/IEC  9899:1999(E) §6.8:1/6.8.2:1  Declarations are no statements */
9243         /* ISO/IEC 14882:1998(E) §6:1/§6.7       Declarations are statements */
9244         if (stmt->kind == STATEMENT_DECLARATION && !(c_mode & _CXX)) {
9245                 errorf(&stmt->base.source_position, "declaration as inner statement, use {}");
9246         }
9247         return stmt;
9248 }
9249
9250 /**
9251  * Parse an if statement.
9252  */
9253 static statement_t *parse_if(void)
9254 {
9255         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9256
9257         eat(T_if);
9258
9259         PUSH_PARENT(statement);
9260
9261         add_anchor_token('{');
9262
9263         expect('(', end_error);
9264         add_anchor_token(')');
9265         expression_t *const expr = parse_expression();
9266         statement->ifs.condition = expr;
9267         /* §6.8.4.1:1  The controlling expression of an if statement shall have
9268          *             scalar type. */
9269         semantic_condition(expr, "condition of 'if'-statment");
9270         mark_vars_read(expr, NULL);
9271         rem_anchor_token(')');
9272         expect(')', end_error);
9273
9274 end_error:
9275         rem_anchor_token('{');
9276
9277         add_anchor_token(T_else);
9278         statement_t *const true_stmt = parse_inner_statement();
9279         statement->ifs.true_statement = true_stmt;
9280         rem_anchor_token(T_else);
9281
9282         if (true_stmt->kind == STATEMENT_EMPTY) {
9283                 warningf(WARN_EMPTY_BODY, HERE,
9284                         "suggest braces around empty body in an ‘if’ statement");
9285         }
9286
9287         if (next_if(T_else)) {
9288                 statement->ifs.false_statement = parse_inner_statement();
9289
9290                 if (statement->ifs.false_statement->kind == STATEMENT_EMPTY) {
9291                         warningf(WARN_EMPTY_BODY, HERE,
9292                                         "suggest braces around empty body in an ‘if’ statement");
9293                 }
9294         } else if (true_stmt->kind == STATEMENT_IF &&
9295                         true_stmt->ifs.false_statement != NULL) {
9296                 source_position_t const *const pos = &true_stmt->base.source_position;
9297                 warningf(WARN_PARENTHESES, pos, "suggest explicit braces to avoid ambiguous 'else'");
9298         }
9299
9300         POP_PARENT();
9301         return statement;
9302 }
9303
9304 /**
9305  * Check that all enums are handled in a switch.
9306  *
9307  * @param statement  the switch statement to check
9308  */
9309 static void check_enum_cases(const switch_statement_t *statement)
9310 {
9311         if (!is_warn_on(WARN_SWITCH_ENUM))
9312                 return;
9313         const type_t *type = skip_typeref(statement->expression->base.type);
9314         if (! is_type_enum(type))
9315                 return;
9316         const enum_type_t *enumt = &type->enumt;
9317
9318         /* if we have a default, no warnings */
9319         if (statement->default_label != NULL)
9320                 return;
9321
9322         /* FIXME: calculation of value should be done while parsing */
9323         /* TODO: quadratic algorithm here. Change to an n log n one */
9324         long            last_value = -1;
9325         const entity_t *entry      = enumt->enume->base.next;
9326         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9327              entry = entry->base.next) {
9328                 const expression_t *expression = entry->enum_value.value;
9329                 long                value      = expression != NULL ? fold_constant_to_int(expression) : last_value + 1;
9330                 bool                found      = false;
9331                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9332                         if (l->expression == NULL)
9333                                 continue;
9334                         if (l->first_case <= value && value <= l->last_case) {
9335                                 found = true;
9336                                 break;
9337                         }
9338                 }
9339                 if (!found) {
9340                         source_position_t const *const pos = &statement->base.source_position;
9341                         warningf(WARN_SWITCH_ENUM, pos, "'%N' not handled in switch", entry);
9342                 }
9343                 last_value = value;
9344         }
9345 }
9346
9347 /**
9348  * Parse a switch statement.
9349  */
9350 static statement_t *parse_switch(void)
9351 {
9352         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9353
9354         eat(T_switch);
9355
9356         PUSH_PARENT(statement);
9357
9358         expect('(', end_error);
9359         add_anchor_token(')');
9360         expression_t *const expr = parse_expression();
9361         mark_vars_read(expr, NULL);
9362         type_t       *      type = skip_typeref(expr->base.type);
9363         if (is_type_integer(type)) {
9364                 type = promote_integer(type);
9365                 if (get_akind_rank(get_akind(type)) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9366                         warningf(WARN_TRADITIONAL, &expr->base.source_position, "'%T' switch expression not converted to '%T' in ISO C", type, type_int);
9367                 }
9368         } else if (is_type_valid(type)) {
9369                 errorf(&expr->base.source_position,
9370                        "switch quantity is not an integer, but '%T'", type);
9371                 type = type_error_type;
9372         }
9373         statement->switchs.expression = create_implicit_cast(expr, type);
9374         expect(')', end_error);
9375         rem_anchor_token(')');
9376
9377         switch_statement_t *rem = current_switch;
9378         current_switch          = &statement->switchs;
9379         statement->switchs.body = parse_inner_statement();
9380         current_switch          = rem;
9381
9382         if (statement->switchs.default_label == NULL) {
9383                 warningf(WARN_SWITCH_DEFAULT, &statement->base.source_position, "switch has no default case");
9384         }
9385         check_enum_cases(&statement->switchs);
9386
9387         POP_PARENT();
9388         return statement;
9389 end_error:
9390         POP_PARENT();
9391         return create_error_statement();
9392 }
9393
9394 static statement_t *parse_loop_body(statement_t *const loop)
9395 {
9396         statement_t *const rem = current_loop;
9397         current_loop = loop;
9398
9399         statement_t *const body = parse_inner_statement();
9400
9401         current_loop = rem;
9402         return body;
9403 }
9404
9405 /**
9406  * Parse a while statement.
9407  */
9408 static statement_t *parse_while(void)
9409 {
9410         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9411
9412         eat(T_while);
9413
9414         PUSH_PARENT(statement);
9415
9416         expect('(', end_error);
9417         add_anchor_token(')');
9418         expression_t *const cond = parse_expression();
9419         statement->whiles.condition = cond;
9420         /* §6.8.5:2    The controlling expression of an iteration statement shall
9421          *             have scalar type. */
9422         semantic_condition(cond, "condition of 'while'-statement");
9423         mark_vars_read(cond, NULL);
9424         rem_anchor_token(')');
9425         expect(')', end_error);
9426
9427         statement->whiles.body = parse_loop_body(statement);
9428
9429         POP_PARENT();
9430         return statement;
9431 end_error:
9432         POP_PARENT();
9433         return create_error_statement();
9434 }
9435
9436 /**
9437  * Parse a do statement.
9438  */
9439 static statement_t *parse_do(void)
9440 {
9441         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9442
9443         eat(T_do);
9444
9445         PUSH_PARENT(statement);
9446
9447         add_anchor_token(T_while);
9448         statement->do_while.body = parse_loop_body(statement);
9449         rem_anchor_token(T_while);
9450
9451         expect(T_while, end_error);
9452         expect('(', end_error);
9453         add_anchor_token(')');
9454         expression_t *const cond = parse_expression();
9455         statement->do_while.condition = cond;
9456         /* §6.8.5:2    The controlling expression of an iteration statement shall
9457          *             have scalar type. */
9458         semantic_condition(cond, "condition of 'do-while'-statement");
9459         mark_vars_read(cond, NULL);
9460         rem_anchor_token(')');
9461         expect(')', end_error);
9462         expect(';', end_error);
9463
9464         POP_PARENT();
9465         return statement;
9466 end_error:
9467         POP_PARENT();
9468         return create_error_statement();
9469 }
9470
9471 /**
9472  * Parse a for statement.
9473  */
9474 static statement_t *parse_for(void)
9475 {
9476         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9477
9478         eat(T_for);
9479
9480         expect('(', end_error1);
9481         add_anchor_token(')');
9482
9483         PUSH_PARENT(statement);
9484         PUSH_SCOPE(&statement->fors.scope);
9485
9486         PUSH_EXTENSION();
9487
9488         if (next_if(';')) {
9489         } else if (is_declaration_specifier(&token)) {
9490                 parse_declaration(record_entity, DECL_FLAGS_NONE);
9491         } else {
9492                 add_anchor_token(';');
9493                 expression_t *const init = parse_expression();
9494                 statement->fors.initialisation = init;
9495                 mark_vars_read(init, ENT_ANY);
9496                 if (!expression_has_effect(init)) {
9497                         warningf(WARN_UNUSED_VALUE, &init->base.source_position, "initialisation of 'for'-statement has no effect");
9498                 }
9499                 rem_anchor_token(';');
9500                 expect(';', end_error2);
9501         }
9502
9503         POP_EXTENSION();
9504
9505         if (token.kind != ';') {
9506                 add_anchor_token(';');
9507                 expression_t *const cond = parse_expression();
9508                 statement->fors.condition = cond;
9509                 /* §6.8.5:2    The controlling expression of an iteration statement
9510                  *             shall have scalar type. */
9511                 semantic_condition(cond, "condition of 'for'-statement");
9512                 mark_vars_read(cond, NULL);
9513                 rem_anchor_token(';');
9514         }
9515         expect(';', end_error2);
9516         if (token.kind != ')') {
9517                 expression_t *const step = parse_expression();
9518                 statement->fors.step = step;
9519                 mark_vars_read(step, ENT_ANY);
9520                 if (!expression_has_effect(step)) {
9521                         warningf(WARN_UNUSED_VALUE, &step->base.source_position, "step of 'for'-statement has no effect");
9522                 }
9523         }
9524         expect(')', end_error2);
9525         rem_anchor_token(')');
9526         statement->fors.body = parse_loop_body(statement);
9527
9528         POP_SCOPE();
9529         POP_PARENT();
9530         return statement;
9531
9532 end_error2:
9533         POP_PARENT();
9534         rem_anchor_token(')');
9535         POP_SCOPE();
9536         /* fallthrough */
9537
9538 end_error1:
9539         return create_error_statement();
9540 }
9541
9542 /**
9543  * Parse a goto statement.
9544  */
9545 static statement_t *parse_goto(void)
9546 {
9547         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
9548         eat(T_goto);
9549
9550         if (GNU_MODE && next_if('*')) {
9551                 expression_t *expression = parse_expression();
9552                 mark_vars_read(expression, NULL);
9553
9554                 /* Argh: although documentation says the expression must be of type void*,
9555                  * gcc accepts anything that can be casted into void* without error */
9556                 type_t *type = expression->base.type;
9557
9558                 if (type != type_error_type) {
9559                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9560                                 errorf(&expression->base.source_position,
9561                                         "cannot convert to a pointer type");
9562                         } else if (type != type_void_ptr) {
9563                                 warningf(WARN_OTHER, &expression->base.source_position, "type of computed goto expression should be 'void*' not '%T'", type);
9564                         }
9565                         expression = create_implicit_cast(expression, type_void_ptr);
9566                 }
9567
9568                 statement->gotos.expression = expression;
9569         } else if (token.kind == T_IDENTIFIER) {
9570                 label_t *const label = get_label();
9571                 label->used            = true;
9572                 statement->gotos.label = label;
9573         } else {
9574                 if (GNU_MODE)
9575                         parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9576                 else
9577                         parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9578                 eat_until_anchor();
9579                 return create_error_statement();
9580         }
9581
9582         /* remember the goto's in a list for later checking */
9583         *goto_anchor = &statement->gotos;
9584         goto_anchor  = &statement->gotos.next;
9585
9586         expect(';', end_error);
9587
9588 end_error:
9589         return statement;
9590 }
9591
9592 /**
9593  * Parse a continue statement.
9594  */
9595 static statement_t *parse_continue(void)
9596 {
9597         if (current_loop == NULL) {
9598                 errorf(HERE, "continue statement not within loop");
9599         }
9600
9601         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9602
9603         eat(T_continue);
9604         expect(';', end_error);
9605
9606 end_error:
9607         return statement;
9608 }
9609
9610 /**
9611  * Parse a break statement.
9612  */
9613 static statement_t *parse_break(void)
9614 {
9615         if (current_switch == NULL && current_loop == NULL) {
9616                 errorf(HERE, "break statement not within loop or switch");
9617         }
9618
9619         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9620
9621         eat(T_break);
9622         expect(';', end_error);
9623
9624 end_error:
9625         return statement;
9626 }
9627
9628 /**
9629  * Parse a __leave statement.
9630  */
9631 static statement_t *parse_leave_statement(void)
9632 {
9633         if (current_try == NULL) {
9634                 errorf(HERE, "__leave statement not within __try");
9635         }
9636
9637         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9638
9639         eat(T___leave);
9640         expect(';', end_error);
9641
9642 end_error:
9643         return statement;
9644 }
9645
9646 /**
9647  * Check if a given entity represents a local variable.
9648  */
9649 static bool is_local_variable(const entity_t *entity)
9650 {
9651         if (entity->kind != ENTITY_VARIABLE)
9652                 return false;
9653
9654         switch ((storage_class_tag_t) entity->declaration.storage_class) {
9655         case STORAGE_CLASS_AUTO:
9656         case STORAGE_CLASS_REGISTER: {
9657                 const type_t *type = skip_typeref(entity->declaration.type);
9658                 if (is_type_function(type)) {
9659                         return false;
9660                 } else {
9661                         return true;
9662                 }
9663         }
9664         default:
9665                 return false;
9666         }
9667 }
9668
9669 /**
9670  * Check if a given expression represents a local variable.
9671  */
9672 static bool expression_is_local_variable(const expression_t *expression)
9673 {
9674         if (expression->base.kind != EXPR_REFERENCE) {
9675                 return false;
9676         }
9677         const entity_t *entity = expression->reference.entity;
9678         return is_local_variable(entity);
9679 }
9680
9681 /**
9682  * Check if a given expression represents a local variable and
9683  * return its declaration then, else return NULL.
9684  */
9685 entity_t *expression_is_variable(const expression_t *expression)
9686 {
9687         if (expression->base.kind != EXPR_REFERENCE) {
9688                 return NULL;
9689         }
9690         entity_t *entity = expression->reference.entity;
9691         if (entity->kind != ENTITY_VARIABLE)
9692                 return NULL;
9693
9694         return entity;
9695 }
9696
9697 /**
9698  * Parse a return statement.
9699  */
9700 static statement_t *parse_return(void)
9701 {
9702         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9703         eat(T_return);
9704
9705         expression_t *return_value = NULL;
9706         if (token.kind != ';') {
9707                 return_value = parse_expression();
9708                 mark_vars_read(return_value, NULL);
9709         }
9710
9711         const type_t *const func_type = skip_typeref(current_function->base.type);
9712         assert(is_type_function(func_type));
9713         type_t *const return_type = skip_typeref(func_type->function.return_type);
9714
9715         source_position_t const *const pos = &statement->base.source_position;
9716         if (return_value != NULL) {
9717                 type_t *return_value_type = skip_typeref(return_value->base.type);
9718
9719                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9720                         if (is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9721                                 /* ISO/IEC 14882:1998(E) §6.6.3:2 */
9722                                 /* Only warn in C mode, because GCC does the same */
9723                                 if (c_mode & _CXX || strict_mode) {
9724                                         errorf(pos,
9725                                                         "'return' with a value, in function returning 'void'");
9726                                 } else {
9727                                         warningf(WARN_OTHER, pos, "'return' with a value, in function returning 'void'");
9728                                 }
9729                         } else if (!(c_mode & _CXX)) { /* ISO/IEC 14882:1998(E) §6.6.3:3 */
9730                                 /* Only warn in C mode, because GCC does the same */
9731                                 if (strict_mode) {
9732                                         errorf(pos,
9733                                                         "'return' with expression in function returning 'void'");
9734                                 } else {
9735                                         warningf(WARN_OTHER, pos, "'return' with expression in function returning 'void'");
9736                                 }
9737                         }
9738                 } else {
9739                         assign_error_t error = semantic_assign(return_type, return_value);
9740                         report_assign_error(error, return_type, return_value, "'return'",
9741                                             pos);
9742                 }
9743                 return_value = create_implicit_cast(return_value, return_type);
9744                 /* check for returning address of a local var */
9745                 if (return_value != NULL && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9746                         const expression_t *expression = return_value->unary.value;
9747                         if (expression_is_local_variable(expression)) {
9748                                 warningf(WARN_OTHER, pos, "function returns address of local variable");
9749                         }
9750                 }
9751         } else if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9752                 /* ISO/IEC 14882:1998(E) §6.6.3:3 */
9753                 if (c_mode & _CXX || strict_mode) {
9754                         errorf(pos,
9755                                "'return' without value, in function returning non-void");
9756                 } else {
9757                         warningf(WARN_OTHER, pos, "'return' without value, in function returning non-void");
9758                 }
9759         }
9760         statement->returns.value = return_value;
9761
9762         expect(';', end_error);
9763
9764 end_error:
9765         return statement;
9766 }
9767
9768 /**
9769  * Parse a declaration statement.
9770  */
9771 static statement_t *parse_declaration_statement(void)
9772 {
9773         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9774
9775         entity_t *before = current_scope->last_entity;
9776         if (GNU_MODE) {
9777                 parse_external_declaration();
9778         } else {
9779                 parse_declaration(record_entity, DECL_FLAGS_NONE);
9780         }
9781
9782         declaration_statement_t *const decl  = &statement->declaration;
9783         entity_t                *const begin =
9784                 before != NULL ? before->base.next : current_scope->entities;
9785         decl->declarations_begin = begin;
9786         decl->declarations_end   = begin != NULL ? current_scope->last_entity : NULL;
9787
9788         return statement;
9789 }
9790
9791 /**
9792  * Parse an expression statement, ie. expr ';'.
9793  */
9794 static statement_t *parse_expression_statement(void)
9795 {
9796         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9797
9798         expression_t *const expr         = parse_expression();
9799         statement->expression.expression = expr;
9800         mark_vars_read(expr, ENT_ANY);
9801
9802         expect(';', end_error);
9803
9804 end_error:
9805         return statement;
9806 }
9807
9808 /**
9809  * Parse a microsoft __try { } __finally { } or
9810  * __try{ } __except() { }
9811  */
9812 static statement_t *parse_ms_try_statment(void)
9813 {
9814         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9815         eat(T___try);
9816
9817         PUSH_PARENT(statement);
9818
9819         ms_try_statement_t *rem = current_try;
9820         current_try = &statement->ms_try;
9821         statement->ms_try.try_statement = parse_compound_statement(false);
9822         current_try = rem;
9823
9824         POP_PARENT();
9825
9826         if (next_if(T___except)) {
9827                 expect('(', end_error);
9828                 add_anchor_token(')');
9829                 expression_t *const expr = parse_expression();
9830                 mark_vars_read(expr, NULL);
9831                 type_t       *      type = skip_typeref(expr->base.type);
9832                 if (is_type_integer(type)) {
9833                         type = promote_integer(type);
9834                 } else if (is_type_valid(type)) {
9835                         errorf(&expr->base.source_position,
9836                                "__expect expression is not an integer, but '%T'", type);
9837                         type = type_error_type;
9838                 }
9839                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9840                 rem_anchor_token(')');
9841                 expect(')', end_error);
9842                 statement->ms_try.final_statement = parse_compound_statement(false);
9843         } else if (next_if(T__finally)) {
9844                 statement->ms_try.final_statement = parse_compound_statement(false);
9845         } else {
9846                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9847                 return create_error_statement();
9848         }
9849         return statement;
9850 end_error:
9851         return create_error_statement();
9852 }
9853
9854 static statement_t *parse_empty_statement(void)
9855 {
9856         warningf(WARN_EMPTY_STATEMENT, HERE, "statement is empty");
9857         statement_t *const statement = create_empty_statement();
9858         eat(';');
9859         return statement;
9860 }
9861
9862 static statement_t *parse_local_label_declaration(void)
9863 {
9864         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9865
9866         eat(T___label__);
9867
9868         entity_t *begin   = NULL;
9869         entity_t *end     = NULL;
9870         entity_t **anchor = &begin;
9871         do {
9872                 if (token.kind != T_IDENTIFIER) {
9873                         parse_error_expected("while parsing local label declaration",
9874                                 T_IDENTIFIER, NULL);
9875                         goto end_error;
9876                 }
9877                 symbol_t *symbol = token.identifier.symbol;
9878                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
9879                 if (entity != NULL && entity->base.parent_scope == current_scope) {
9880                         source_position_t const *const ppos = &entity->base.source_position;
9881                         errorf(HERE, "multiple definitions of '%N' (previous definition %P)", entity, ppos);
9882                 } else {
9883                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL, NAMESPACE_LABEL, symbol);
9884                         entity->base.parent_scope    = current_scope;
9885                         entity->base.source_position = token.base.source_position;
9886
9887                         *anchor = entity;
9888                         anchor  = &entity->base.next;
9889                         end     = entity;
9890
9891                         environment_push(entity);
9892                 }
9893                 next_token();
9894         } while (next_if(','));
9895         expect(';', end_error);
9896 end_error:
9897         statement->declaration.declarations_begin = begin;
9898         statement->declaration.declarations_end   = end;
9899         return statement;
9900 }
9901
9902 static void parse_namespace_definition(void)
9903 {
9904         eat(T_namespace);
9905
9906         entity_t *entity = NULL;
9907         symbol_t *symbol = NULL;
9908
9909         if (token.kind == T_IDENTIFIER) {
9910                 symbol = token.identifier.symbol;
9911                 next_token();
9912
9913                 entity = get_entity(symbol, NAMESPACE_NORMAL);
9914                 if (entity != NULL
9915                                 && entity->kind != ENTITY_NAMESPACE
9916                                 && entity->base.parent_scope == current_scope) {
9917                         if (is_entity_valid(entity)) {
9918                                 error_redefined_as_different_kind(&token.base.source_position,
9919                                                 entity, ENTITY_NAMESPACE);
9920                         }
9921                         entity = NULL;
9922                 }
9923         }
9924
9925         if (entity == NULL) {
9926                 entity = allocate_entity_zero(ENTITY_NAMESPACE, NAMESPACE_NORMAL, symbol);
9927                 entity->base.source_position = token.base.source_position;
9928                 entity->base.parent_scope    = current_scope;
9929         }
9930
9931         if (token.kind == '=') {
9932                 /* TODO: parse namespace alias */
9933                 panic("namespace alias definition not supported yet");
9934         }
9935
9936         environment_push(entity);
9937         append_entity(current_scope, entity);
9938
9939         PUSH_SCOPE(&entity->namespacee.members);
9940
9941         entity_t     *old_current_entity = current_entity;
9942         current_entity = entity;
9943
9944         expect('{', end_error);
9945         parse_externals();
9946         expect('}', end_error);
9947
9948 end_error:
9949         assert(current_entity == entity);
9950         current_entity = old_current_entity;
9951         POP_SCOPE();
9952 }
9953
9954 /**
9955  * Parse a statement.
9956  * There's also parse_statement() which additionally checks for
9957  * "statement has no effect" warnings
9958  */
9959 static statement_t *intern_parse_statement(void)
9960 {
9961         statement_t *statement = NULL;
9962
9963         /* declaration or statement */
9964         add_anchor_token(';');
9965         switch (token.kind) {
9966         case T_IDENTIFIER: {
9967                 token_kind_t la1_type = (token_kind_t)look_ahead(1)->kind;
9968                 if (la1_type == ':') {
9969                         statement = parse_label_statement();
9970                 } else if (is_typedef_symbol(token.identifier.symbol)) {
9971                         statement = parse_declaration_statement();
9972                 } else {
9973                         /* it's an identifier, the grammar says this must be an
9974                          * expression statement. However it is common that users mistype
9975                          * declaration types, so we guess a bit here to improve robustness
9976                          * for incorrect programs */
9977                         switch (la1_type) {
9978                         case '&':
9979                         case '*':
9980                                 if (get_entity(token.identifier.symbol, NAMESPACE_NORMAL) != NULL) {
9981                         default:
9982                                         statement = parse_expression_statement();
9983                                 } else {
9984                         DECLARATION_START
9985                         case T_IDENTIFIER:
9986                                         statement = parse_declaration_statement();
9987                                 }
9988                                 break;
9989                         }
9990                 }
9991                 break;
9992         }
9993
9994         case T___extension__: {
9995                 /* This can be a prefix to a declaration or an expression statement.
9996                  * We simply eat it now and parse the rest with tail recursion. */
9997                 PUSH_EXTENSION();
9998                 statement = intern_parse_statement();
9999                 POP_EXTENSION();
10000                 break;
10001         }
10002
10003         DECLARATION_START
10004                 statement = parse_declaration_statement();
10005                 break;
10006
10007         case T___label__:
10008                 statement = parse_local_label_declaration();
10009                 break;
10010
10011         case ';':         statement = parse_empty_statement();         break;
10012         case '{':         statement = parse_compound_statement(false); break;
10013         case T___leave:   statement = parse_leave_statement();         break;
10014         case T___try:     statement = parse_ms_try_statment();         break;
10015         case T_asm:       statement = parse_asm_statement();           break;
10016         case T_break:     statement = parse_break();                   break;
10017         case T_case:      statement = parse_case_statement();          break;
10018         case T_continue:  statement = parse_continue();                break;
10019         case T_default:   statement = parse_default_statement();       break;
10020         case T_do:        statement = parse_do();                      break;
10021         case T_for:       statement = parse_for();                     break;
10022         case T_goto:      statement = parse_goto();                    break;
10023         case T_if:        statement = parse_if();                      break;
10024         case T_return:    statement = parse_return();                  break;
10025         case T_switch:    statement = parse_switch();                  break;
10026         case T_while:     statement = parse_while();                   break;
10027
10028         EXPRESSION_START
10029                 statement = parse_expression_statement();
10030                 break;
10031
10032         default:
10033                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10034                 statement = create_error_statement();
10035                 if (!at_anchor())
10036                         next_token();
10037                 break;
10038         }
10039         rem_anchor_token(';');
10040
10041         assert(statement != NULL
10042                         && statement->base.source_position.input_name != NULL);
10043
10044         return statement;
10045 }
10046
10047 /**
10048  * parse a statement and emits "statement has no effect" warning if needed
10049  * (This is really a wrapper around intern_parse_statement with check for 1
10050  *  single warning. It is needed, because for statement expressions we have
10051  *  to avoid the warning on the last statement)
10052  */
10053 static statement_t *parse_statement(void)
10054 {
10055         statement_t *statement = intern_parse_statement();
10056
10057         if (statement->kind == STATEMENT_EXPRESSION) {
10058                 expression_t *expression = statement->expression.expression;
10059                 if (!expression_has_effect(expression)) {
10060                         warningf(WARN_UNUSED_VALUE, &expression->base.source_position, "statement has no effect");
10061                 }
10062         }
10063
10064         return statement;
10065 }
10066
10067 /**
10068  * Parse a compound statement.
10069  */
10070 static statement_t *parse_compound_statement(bool inside_expression_statement)
10071 {
10072         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10073
10074         PUSH_PARENT(statement);
10075         PUSH_SCOPE(&statement->compound.scope);
10076
10077         eat('{');
10078         add_anchor_token('}');
10079         /* tokens, which can start a statement */
10080         /* TODO MS, __builtin_FOO */
10081         add_anchor_token('!');
10082         add_anchor_token('&');
10083         add_anchor_token('(');
10084         add_anchor_token('*');
10085         add_anchor_token('+');
10086         add_anchor_token('-');
10087         add_anchor_token('{');
10088         add_anchor_token('~');
10089         add_anchor_token(T_CHARACTER_CONSTANT);
10090         add_anchor_token(T_COLONCOLON);
10091         add_anchor_token(T_FLOATINGPOINT);
10092         add_anchor_token(T_IDENTIFIER);
10093         add_anchor_token(T_INTEGER);
10094         add_anchor_token(T_MINUSMINUS);
10095         add_anchor_token(T_PLUSPLUS);
10096         add_anchor_token(T_STRING_LITERAL);
10097         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10098         add_anchor_token(T_WIDE_STRING_LITERAL);
10099         add_anchor_token(T__Bool);
10100         add_anchor_token(T__Complex);
10101         add_anchor_token(T__Imaginary);
10102         add_anchor_token(T___FUNCTION__);
10103         add_anchor_token(T___PRETTY_FUNCTION__);
10104         add_anchor_token(T___alignof__);
10105         add_anchor_token(T___attribute__);
10106         add_anchor_token(T___builtin_va_start);
10107         add_anchor_token(T___extension__);
10108         add_anchor_token(T___func__);
10109         add_anchor_token(T___imag__);
10110         add_anchor_token(T___label__);
10111         add_anchor_token(T___real__);
10112         add_anchor_token(T___thread);
10113         add_anchor_token(T_asm);
10114         add_anchor_token(T_auto);
10115         add_anchor_token(T_bool);
10116         add_anchor_token(T_break);
10117         add_anchor_token(T_case);
10118         add_anchor_token(T_char);
10119         add_anchor_token(T_class);
10120         add_anchor_token(T_const);
10121         add_anchor_token(T_const_cast);
10122         add_anchor_token(T_continue);
10123         add_anchor_token(T_default);
10124         add_anchor_token(T_delete);
10125         add_anchor_token(T_double);
10126         add_anchor_token(T_do);
10127         add_anchor_token(T_dynamic_cast);
10128         add_anchor_token(T_enum);
10129         add_anchor_token(T_extern);
10130         add_anchor_token(T_false);
10131         add_anchor_token(T_float);
10132         add_anchor_token(T_for);
10133         add_anchor_token(T_goto);
10134         add_anchor_token(T_if);
10135         add_anchor_token(T_inline);
10136         add_anchor_token(T_int);
10137         add_anchor_token(T_long);
10138         add_anchor_token(T_new);
10139         add_anchor_token(T_operator);
10140         add_anchor_token(T_register);
10141         add_anchor_token(T_reinterpret_cast);
10142         add_anchor_token(T_restrict);
10143         add_anchor_token(T_return);
10144         add_anchor_token(T_short);
10145         add_anchor_token(T_signed);
10146         add_anchor_token(T_sizeof);
10147         add_anchor_token(T_static);
10148         add_anchor_token(T_static_cast);
10149         add_anchor_token(T_struct);
10150         add_anchor_token(T_switch);
10151         add_anchor_token(T_template);
10152         add_anchor_token(T_this);
10153         add_anchor_token(T_throw);
10154         add_anchor_token(T_true);
10155         add_anchor_token(T_try);
10156         add_anchor_token(T_typedef);
10157         add_anchor_token(T_typeid);
10158         add_anchor_token(T_typename);
10159         add_anchor_token(T_typeof);
10160         add_anchor_token(T_union);
10161         add_anchor_token(T_unsigned);
10162         add_anchor_token(T_using);
10163         add_anchor_token(T_void);
10164         add_anchor_token(T_volatile);
10165         add_anchor_token(T_wchar_t);
10166         add_anchor_token(T_while);
10167
10168         statement_t **anchor            = &statement->compound.statements;
10169         bool          only_decls_so_far = true;
10170         while (token.kind != '}') {
10171                 if (token.kind == T_EOF) {
10172                         errorf(&statement->base.source_position,
10173                                "EOF while parsing compound statement");
10174                         break;
10175                 }
10176                 statement_t *sub_statement = intern_parse_statement();
10177                 if (sub_statement->kind == STATEMENT_ERROR) {
10178                         /* an error occurred. if we are at an anchor, return */
10179                         if (at_anchor())
10180                                 goto end_error;
10181                         continue;
10182                 }
10183
10184                 if (sub_statement->kind != STATEMENT_DECLARATION) {
10185                         only_decls_so_far = false;
10186                 } else if (!only_decls_so_far) {
10187                         source_position_t const *const pos = &sub_statement->base.source_position;
10188                         warningf(WARN_DECLARATION_AFTER_STATEMENT, pos, "ISO C90 forbids mixed declarations and code");
10189                 }
10190
10191                 *anchor = sub_statement;
10192
10193                 while (sub_statement->base.next != NULL)
10194                         sub_statement = sub_statement->base.next;
10195
10196                 anchor = &sub_statement->base.next;
10197         }
10198         next_token();
10199
10200         /* look over all statements again to produce no effect warnings */
10201         if (is_warn_on(WARN_UNUSED_VALUE)) {
10202                 statement_t *sub_statement = statement->compound.statements;
10203                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10204                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10205                                 continue;
10206                         /* don't emit a warning for the last expression in an expression
10207                          * statement as it has always an effect */
10208                         if (inside_expression_statement && sub_statement->base.next == NULL)
10209                                 continue;
10210
10211                         expression_t *expression = sub_statement->expression.expression;
10212                         if (!expression_has_effect(expression)) {
10213                                 warningf(WARN_UNUSED_VALUE, &expression->base.source_position, "statement has no effect");
10214                         }
10215                 }
10216         }
10217
10218 end_error:
10219         rem_anchor_token(T_while);
10220         rem_anchor_token(T_wchar_t);
10221         rem_anchor_token(T_volatile);
10222         rem_anchor_token(T_void);
10223         rem_anchor_token(T_using);
10224         rem_anchor_token(T_unsigned);
10225         rem_anchor_token(T_union);
10226         rem_anchor_token(T_typeof);
10227         rem_anchor_token(T_typename);
10228         rem_anchor_token(T_typeid);
10229         rem_anchor_token(T_typedef);
10230         rem_anchor_token(T_try);
10231         rem_anchor_token(T_true);
10232         rem_anchor_token(T_throw);
10233         rem_anchor_token(T_this);
10234         rem_anchor_token(T_template);
10235         rem_anchor_token(T_switch);
10236         rem_anchor_token(T_struct);
10237         rem_anchor_token(T_static_cast);
10238         rem_anchor_token(T_static);
10239         rem_anchor_token(T_sizeof);
10240         rem_anchor_token(T_signed);
10241         rem_anchor_token(T_short);
10242         rem_anchor_token(T_return);
10243         rem_anchor_token(T_restrict);
10244         rem_anchor_token(T_reinterpret_cast);
10245         rem_anchor_token(T_register);
10246         rem_anchor_token(T_operator);
10247         rem_anchor_token(T_new);
10248         rem_anchor_token(T_long);
10249         rem_anchor_token(T_int);
10250         rem_anchor_token(T_inline);
10251         rem_anchor_token(T_if);
10252         rem_anchor_token(T_goto);
10253         rem_anchor_token(T_for);
10254         rem_anchor_token(T_float);
10255         rem_anchor_token(T_false);
10256         rem_anchor_token(T_extern);
10257         rem_anchor_token(T_enum);
10258         rem_anchor_token(T_dynamic_cast);
10259         rem_anchor_token(T_do);
10260         rem_anchor_token(T_double);
10261         rem_anchor_token(T_delete);
10262         rem_anchor_token(T_default);
10263         rem_anchor_token(T_continue);
10264         rem_anchor_token(T_const_cast);
10265         rem_anchor_token(T_const);
10266         rem_anchor_token(T_class);
10267         rem_anchor_token(T_char);
10268         rem_anchor_token(T_case);
10269         rem_anchor_token(T_break);
10270         rem_anchor_token(T_bool);
10271         rem_anchor_token(T_auto);
10272         rem_anchor_token(T_asm);
10273         rem_anchor_token(T___thread);
10274         rem_anchor_token(T___real__);
10275         rem_anchor_token(T___label__);
10276         rem_anchor_token(T___imag__);
10277         rem_anchor_token(T___func__);
10278         rem_anchor_token(T___extension__);
10279         rem_anchor_token(T___builtin_va_start);
10280         rem_anchor_token(T___attribute__);
10281         rem_anchor_token(T___alignof__);
10282         rem_anchor_token(T___PRETTY_FUNCTION__);
10283         rem_anchor_token(T___FUNCTION__);
10284         rem_anchor_token(T__Imaginary);
10285         rem_anchor_token(T__Complex);
10286         rem_anchor_token(T__Bool);
10287         rem_anchor_token(T_WIDE_STRING_LITERAL);
10288         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10289         rem_anchor_token(T_STRING_LITERAL);
10290         rem_anchor_token(T_PLUSPLUS);
10291         rem_anchor_token(T_MINUSMINUS);
10292         rem_anchor_token(T_INTEGER);
10293         rem_anchor_token(T_IDENTIFIER);
10294         rem_anchor_token(T_FLOATINGPOINT);
10295         rem_anchor_token(T_COLONCOLON);
10296         rem_anchor_token(T_CHARACTER_CONSTANT);
10297         rem_anchor_token('~');
10298         rem_anchor_token('{');
10299         rem_anchor_token('-');
10300         rem_anchor_token('+');
10301         rem_anchor_token('*');
10302         rem_anchor_token('(');
10303         rem_anchor_token('&');
10304         rem_anchor_token('!');
10305         rem_anchor_token('}');
10306
10307         POP_SCOPE();
10308         POP_PARENT();
10309         return statement;
10310 }
10311
10312 /**
10313  * Check for unused global static functions and variables
10314  */
10315 static void check_unused_globals(void)
10316 {
10317         if (!is_warn_on(WARN_UNUSED_FUNCTION) && !is_warn_on(WARN_UNUSED_VARIABLE))
10318                 return;
10319
10320         for (const entity_t *entity = file_scope->entities; entity != NULL;
10321              entity = entity->base.next) {
10322                 if (!is_declaration(entity))
10323                         continue;
10324
10325                 const declaration_t *declaration = &entity->declaration;
10326                 if (declaration->used                  ||
10327                     declaration->modifiers & DM_UNUSED ||
10328                     declaration->modifiers & DM_USED   ||
10329                     declaration->storage_class != STORAGE_CLASS_STATIC)
10330                         continue;
10331
10332                 warning_t   why;
10333                 char const *s;
10334                 if (entity->kind == ENTITY_FUNCTION) {
10335                         /* inhibit warning for static inline functions */
10336                         if (entity->function.is_inline)
10337                                 continue;
10338
10339                         why = WARN_UNUSED_FUNCTION;
10340                         s   = entity->function.statement != NULL ? "defined" : "declared";
10341                 } else {
10342                         why = WARN_UNUSED_VARIABLE;
10343                         s   = "defined";
10344                 }
10345
10346                 warningf(why, &declaration->base.source_position, "'%#N' %s but not used", entity, s);
10347         }
10348 }
10349
10350 static void parse_global_asm(void)
10351 {
10352         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
10353
10354         eat(T_asm);
10355         expect('(', end_error);
10356
10357         statement->asms.asm_text = parse_string_literals();
10358         statement->base.next     = unit->global_asm;
10359         unit->global_asm         = statement;
10360
10361         expect(')', end_error);
10362         expect(';', end_error);
10363
10364 end_error:;
10365 }
10366
10367 static void parse_linkage_specification(void)
10368 {
10369         eat(T_extern);
10370
10371         source_position_t const pos     = *HERE;
10372         char const       *const linkage = parse_string_literals().begin;
10373
10374         linkage_kind_t old_linkage = current_linkage;
10375         linkage_kind_t new_linkage;
10376         if (streq(linkage, "C")) {
10377                 new_linkage = LINKAGE_C;
10378         } else if (streq(linkage, "C++")) {
10379                 new_linkage = LINKAGE_CXX;
10380         } else {
10381                 errorf(&pos, "linkage string \"%s\" not recognized", linkage);
10382                 new_linkage = LINKAGE_C;
10383         }
10384         current_linkage = new_linkage;
10385
10386         if (next_if('{')) {
10387                 parse_externals();
10388                 expect('}', end_error);
10389         } else {
10390                 parse_external();
10391         }
10392
10393 end_error:
10394         assert(current_linkage == new_linkage);
10395         current_linkage = old_linkage;
10396 }
10397
10398 static void parse_external(void)
10399 {
10400         switch (token.kind) {
10401                 case T_extern:
10402                         if (look_ahead(1)->kind == T_STRING_LITERAL) {
10403                                 parse_linkage_specification();
10404                         } else {
10405                 DECLARATION_START_NO_EXTERN
10406                 case T_IDENTIFIER:
10407                 case T___extension__:
10408                 /* tokens below are for implicit int */
10409                 case '&':  /* & x; -> int& x; (and error later, because C++ has no
10410                               implicit int) */
10411                 case '*':  /* * x; -> int* x; */
10412                 case '(':  /* (x); -> int (x); */
10413                                 PUSH_EXTENSION();
10414                                 parse_external_declaration();
10415                                 POP_EXTENSION();
10416                         }
10417                         return;
10418
10419                 case T_asm:
10420                         parse_global_asm();
10421                         return;
10422
10423                 case T_namespace:
10424                         parse_namespace_definition();
10425                         return;
10426
10427                 case ';':
10428                         if (!strict_mode) {
10429                                 warningf(WARN_STRAY_SEMICOLON, HERE, "stray ';' outside of function");
10430                                 next_token();
10431                                 return;
10432                         }
10433                         /* FALLTHROUGH */
10434
10435                 default:
10436                         errorf(HERE, "stray %K outside of function", &token);
10437                         if (token.kind == '(' || token.kind == '{' || token.kind == '[')
10438                                 eat_until_matching_token(token.kind);
10439                         next_token();
10440                         return;
10441         }
10442 }
10443
10444 static void parse_externals(void)
10445 {
10446         add_anchor_token('}');
10447         add_anchor_token(T_EOF);
10448
10449 #ifndef NDEBUG
10450         /* make a copy of the anchor set, so we can check if it is restored after parsing */
10451         unsigned short token_anchor_copy[T_LAST_TOKEN];
10452         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
10453 #endif
10454
10455         while (token.kind != T_EOF && token.kind != '}') {
10456 #ifndef NDEBUG
10457                 for (int i = 0; i < T_LAST_TOKEN; ++i) {
10458                         unsigned short count = token_anchor_set[i] - token_anchor_copy[i];
10459                         if (count != 0) {
10460                                 /* the anchor set and its copy differs */
10461                                 internal_errorf(HERE, "Leaked anchor token %k %d times", i, count);
10462                         }
10463                 }
10464                 if (in_gcc_extension) {
10465                         /* an gcc extension scope was not closed */
10466                         internal_errorf(HERE, "Leaked __extension__");
10467                 }
10468 #endif
10469
10470                 parse_external();
10471         }
10472
10473         rem_anchor_token(T_EOF);
10474         rem_anchor_token('}');
10475 }
10476
10477 /**
10478  * Parse a translation unit.
10479  */
10480 static void parse_translation_unit(void)
10481 {
10482         add_anchor_token(T_EOF);
10483
10484         while (true) {
10485                 parse_externals();
10486
10487                 if (token.kind == T_EOF)
10488                         break;
10489
10490                 errorf(HERE, "stray %K outside of function", &token);
10491                 if (token.kind == '(' || token.kind == '{' || token.kind == '[')
10492                         eat_until_matching_token(token.kind);
10493                 next_token();
10494         }
10495 }
10496
10497 void set_default_visibility(elf_visibility_tag_t visibility)
10498 {
10499         default_visibility = visibility;
10500 }
10501
10502 /**
10503  * Parse the input.
10504  *
10505  * @return  the translation unit or NULL if errors occurred.
10506  */
10507 void start_parsing(void)
10508 {
10509         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10510         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10511         diagnostic_count  = 0;
10512         error_count       = 0;
10513         warning_count     = 0;
10514
10515         print_to_file(stderr);
10516
10517         assert(unit == NULL);
10518         unit = allocate_ast_zero(sizeof(unit[0]));
10519
10520         assert(file_scope == NULL);
10521         file_scope = &unit->scope;
10522
10523         assert(current_scope == NULL);
10524         scope_push(&unit->scope);
10525
10526         create_gnu_builtins();
10527         if (c_mode & _MS)
10528                 create_microsoft_intrinsics();
10529 }
10530
10531 translation_unit_t *finish_parsing(void)
10532 {
10533         assert(current_scope == &unit->scope);
10534         scope_pop(NULL);
10535
10536         assert(file_scope == &unit->scope);
10537         check_unused_globals();
10538         file_scope = NULL;
10539
10540         DEL_ARR_F(environment_stack);
10541         DEL_ARR_F(label_stack);
10542
10543         translation_unit_t *result = unit;
10544         unit = NULL;
10545         return result;
10546 }
10547
10548 /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
10549  * are given length one. */
10550 static void complete_incomplete_arrays(void)
10551 {
10552         size_t n = ARR_LEN(incomplete_arrays);
10553         for (size_t i = 0; i != n; ++i) {
10554                 declaration_t *const decl = incomplete_arrays[i];
10555                 type_t        *const type = skip_typeref(decl->type);
10556
10557                 if (!is_type_incomplete(type))
10558                         continue;
10559
10560                 source_position_t const *const pos = &decl->base.source_position;
10561                 warningf(WARN_OTHER, pos, "array '%#N' assumed to have one element", (entity_t const*)decl);
10562
10563                 type_t *const new_type = duplicate_type(type);
10564                 new_type->array.size_constant     = true;
10565                 new_type->array.has_implicit_size = true;
10566                 new_type->array.size              = 1;
10567
10568                 type_t *const result = identify_new_type(new_type);
10569
10570                 decl->type = result;
10571         }
10572 }
10573
10574 void prepare_main_collect2(entity_t *entity)
10575 {
10576         // create call to __main
10577         symbol_t *symbol         = symbol_table_insert("__main");
10578         entity_t *subsubmain_ent
10579                 = create_implicit_function(symbol, &builtin_source_position);
10580
10581         expression_t *ref         = allocate_expression_zero(EXPR_REFERENCE);
10582         type_t       *ftype       = subsubmain_ent->declaration.type;
10583         ref->base.source_position = builtin_source_position;
10584         ref->base.type            = make_pointer_type(ftype, TYPE_QUALIFIER_NONE);
10585         ref->reference.entity     = subsubmain_ent;
10586
10587         expression_t *call = allocate_expression_zero(EXPR_CALL);
10588         call->base.source_position = builtin_source_position;
10589         call->base.type            = type_void;
10590         call->call.function        = ref;
10591
10592         statement_t *expr_statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10593         expr_statement->base.source_position  = builtin_source_position;
10594         expr_statement->expression.expression = call;
10595
10596         statement_t *statement = entity->function.statement;
10597         assert(statement->kind == STATEMENT_COMPOUND);
10598         compound_statement_t *compounds = &statement->compound;
10599
10600         expr_statement->base.next = compounds->statements;
10601         compounds->statements     = expr_statement;
10602 }
10603
10604 void parse(void)
10605 {
10606         lookahead_bufpos = 0;
10607         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10608                 next_token();
10609         }
10610         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
10611         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
10612         parse_translation_unit();
10613         complete_incomplete_arrays();
10614         DEL_ARR_F(incomplete_arrays);
10615         incomplete_arrays = NULL;
10616 }
10617
10618 /**
10619  * Initialize the parser.
10620  */
10621 void init_parser(void)
10622 {
10623         sym_anonymous = symbol_table_insert("<anonymous>");
10624
10625         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10626
10627         init_expression_parsers();
10628         obstack_init(&temp_obst);
10629 }
10630
10631 /**
10632  * Terminate the parser.
10633  */
10634 void exit_parser(void)
10635 {
10636         obstack_free(&temp_obst, NULL);
10637 }