904fc636854e9e2771f85cc35213f5e21101b3b6
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "lang_features.h"
38 #include "walk_statements.h"
39 #include "warning.h"
40 #include "adt/bitfiddle.h"
41 #include "adt/error.h"
42 #include "adt/array.h"
43
44 /** if wchar_t is equal to unsigned short. */
45 bool opt_short_wchar_t =
46 #ifdef _WIN32
47         true;
48 #else
49         false;
50 #endif
51
52 //#define PRINT_TOKENS
53 #define MAX_LOOKAHEAD 2
54
55 typedef struct {
56         entity_t    *old_entity;
57         symbol_t    *symbol;
58         namespace_t  namespc;
59 } stack_entry_t;
60
61 typedef struct argument_list_t argument_list_t;
62 struct argument_list_t {
63         long              argument;
64         argument_list_t  *next;
65 };
66
67 typedef struct gnu_attribute_t gnu_attribute_t;
68 struct gnu_attribute_t {
69         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
70         gnu_attribute_t     *next;
71         bool                 invalid;        /**< Set if this attribute had argument errors, */
72         bool                 have_arguments; /**< True, if this attribute has arguments. */
73         union {
74                 size_t              value;
75                 string_t            string;
76                 atomic_type_kind_t  akind;
77                 long                argument;  /**< Single argument. */
78                 argument_list_t    *arguments; /**< List of argument expressions. */
79         } u;
80 };
81
82 typedef struct declaration_specifiers_t  declaration_specifiers_t;
83 struct declaration_specifiers_t {
84         source_position_t  source_position;
85         storage_class_t    storage_class;
86         unsigned char      alignment;         /**< Alignment, 0 if not set. */
87         bool               is_inline : 1;
88         bool               deprecated : 1;
89         decl_modifiers_t   modifiers;         /**< declaration modifiers */
90         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
91         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
92         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
93         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
94         type_t            *type;
95 };
96
97 /**
98  * An environment for parsing initializers (and compound literals).
99  */
100 typedef struct parse_initializer_env_t {
101         type_t     *type;   /**< the type of the initializer. In case of an
102                                  array type with unspecified size this gets
103                                  adjusted to the actual size. */
104         entity_t   *entity; /**< the variable that is initialized if any */
105         bool        must_be_constant;
106 } parse_initializer_env_t;
107
108 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
109
110 /** The current token. */
111 static token_t             token;
112 /** The lookahead ring-buffer. */
113 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
114 /** Position of the next token in the lookahead buffer. */
115 static int                 lookahead_bufpos;
116 static stack_entry_t      *environment_stack = NULL;
117 static stack_entry_t      *label_stack       = NULL;
118 static stack_entry_t      *local_label_stack = NULL;
119 /** The global file scope. */
120 static scope_t            *file_scope        = NULL;
121 /** The current scope. */
122 static scope_t            *scope             = NULL;
123 /** Point to the current function declaration if inside a function. */
124 static function_t         *current_function  = NULL;
125 static entity_t           *current_init_decl = NULL;
126 static switch_statement_t *current_switch    = NULL;
127 static statement_t        *current_loop      = NULL;
128 static statement_t        *current_parent    = NULL;
129 static ms_try_statement_t *current_try       = NULL;
130 static goto_statement_t   *goto_first        = NULL;
131 static goto_statement_t   *goto_last         = NULL;
132 static label_statement_t  *label_first       = NULL;
133 static label_statement_t  *label_last        = NULL;
134 /** current translation unit. */
135 static translation_unit_t *unit              = NULL;
136 /** true if we are in a type property context (evaluation only for type. */
137 static bool                in_type_prop      = false;
138 /** true in we are in a __extension__ context. */
139 static bool                in_gcc_extension  = false;
140 static struct obstack      temp_obst;
141
142
143 #define PUSH_PARENT(stmt)                          \
144         statement_t *const prev_parent = current_parent; \
145         ((void)(current_parent = (stmt)))
146 #define POP_PARENT ((void)(current_parent = prev_parent))
147
148 /** special symbol used for anonymous entities. */
149 static const symbol_t *sym_anonymous = NULL;
150
151 /* symbols for Microsoft extended-decl-modifier */
152 static const symbol_t *sym_align      = NULL;
153 static const symbol_t *sym_allocate   = NULL;
154 static const symbol_t *sym_dllimport  = NULL;
155 static const symbol_t *sym_dllexport  = NULL;
156 static const symbol_t *sym_naked      = NULL;
157 static const symbol_t *sym_noinline   = NULL;
158 static const symbol_t *sym_noreturn   = NULL;
159 static const symbol_t *sym_nothrow    = NULL;
160 static const symbol_t *sym_novtable   = NULL;
161 static const symbol_t *sym_property   = NULL;
162 static const symbol_t *sym_get        = NULL;
163 static const symbol_t *sym_put        = NULL;
164 static const symbol_t *sym_selectany  = NULL;
165 static const symbol_t *sym_thread     = NULL;
166 static const symbol_t *sym_uuid       = NULL;
167 static const symbol_t *sym_deprecated = NULL;
168 static const symbol_t *sym_restrict   = NULL;
169 static const symbol_t *sym_noalias    = NULL;
170
171 /** The token anchor set */
172 static unsigned char token_anchor_set[T_LAST_TOKEN];
173
174 /** The current source position. */
175 #define HERE (&token.source_position)
176
177 /** true if we are in GCC mode. */
178 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
179
180 static type_t *type_valist;
181
182 static statement_t *parse_compound_statement(bool inside_expression_statement);
183 static statement_t *parse_statement(void);
184
185 static expression_t *parse_sub_expression(precedence_t);
186 static expression_t *parse_expression(void);
187 static type_t       *parse_typename(void);
188
189 static void parse_compound_type_entries(compound_t *compound_declaration);
190 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
191                                   bool may_be_abstract,
192                                   bool create_compound_member);
193 static entity_t *record_entity(entity_t *entity, bool is_definition);
194
195 static void semantic_comparison(binary_expression_t *expression);
196
197 #define STORAGE_CLASSES     \
198         case T_typedef:         \
199         case T_extern:          \
200         case T_static:          \
201         case T_auto:            \
202         case T_register:        \
203         case T___thread:
204
205 #define TYPE_QUALIFIERS     \
206         case T_const:           \
207         case T_restrict:        \
208         case T_volatile:        \
209         case T_inline:          \
210         case T__forceinline:    \
211         case T___attribute__:
212
213 #ifdef PROVIDE_COMPLEX
214 #define COMPLEX_SPECIFIERS  \
215         case T__Complex:
216 #define IMAGINARY_SPECIFIERS \
217         case T__Imaginary:
218 #else
219 #define COMPLEX_SPECIFIERS
220 #define IMAGINARY_SPECIFIERS
221 #endif
222
223 #define TYPE_SPECIFIERS       \
224         case T_void:              \
225         case T_char:              \
226         case T_short:             \
227         case T_int:               \
228         case T_long:              \
229         case T_float:             \
230         case T_double:            \
231         case T_signed:            \
232         case T_unsigned:          \
233         case T__Bool:             \
234         case T_struct:            \
235         case T_union:             \
236         case T_enum:              \
237         case T___typeof__:        \
238         case T___builtin_va_list: \
239         case T__declspec:         \
240         COMPLEX_SPECIFIERS        \
241         IMAGINARY_SPECIFIERS
242
243 #define DECLARATION_START   \
244         STORAGE_CLASSES         \
245         TYPE_QUALIFIERS         \
246         TYPE_SPECIFIERS
247
248 #define TYPENAME_START      \
249         TYPE_QUALIFIERS         \
250         TYPE_SPECIFIERS
251
252 #define EXPRESSION_START           \
253         case '!':                        \
254         case '&':                        \
255         case '(':                        \
256         case '*':                        \
257         case '+':                        \
258         case '-':                        \
259         case '~':                        \
260         case T_ANDAND:                   \
261         case T_CHARACTER_CONSTANT:       \
262         case T_FLOATINGPOINT:            \
263         case T_INTEGER:                  \
264         case T_MINUSMINUS:               \
265         case T_PLUSPLUS:                 \
266         case T_STRING_LITERAL:           \
267         case T_WIDE_CHARACTER_CONSTANT:  \
268         case T_WIDE_STRING_LITERAL:      \
269         case T___FUNCDNAME__:            \
270         case T___FUNCSIG__:              \
271         case T___FUNCTION__:             \
272         case T___PRETTY_FUNCTION__:      \
273         case T___alignof__:              \
274         case T___builtin_alloca:         \
275         case T___builtin_classify_type:  \
276         case T___builtin_constant_p:     \
277         case T___builtin_expect:         \
278         case T___builtin_huge_val:       \
279         case T___builtin_inf:            \
280         case T___builtin_inff:           \
281         case T___builtin_infl:           \
282         case T___builtin_isgreater:      \
283         case T___builtin_isgreaterequal: \
284         case T___builtin_isless:         \
285         case T___builtin_islessequal:    \
286         case T___builtin_islessgreater:  \
287         case T___builtin_isunordered:    \
288         case T___builtin_nan:            \
289         case T___builtin_nanf:           \
290         case T___builtin_nanl:           \
291         case T___builtin_offsetof:       \
292         case T___builtin_prefetch:       \
293         case T___builtin_va_arg:         \
294         case T___builtin_va_end:         \
295         case T___builtin_va_start:       \
296         case T___func__:                 \
297         case T___noop:                   \
298         case T__assume:                  \
299         case T_sizeof:                   \
300         case T_delete:                   \
301         case T_throw:
302
303 /**
304  * Allocate an AST node with given size and
305  * initialize all fields with zero.
306  */
307 static void *allocate_ast_zero(size_t size)
308 {
309         void *res = allocate_ast(size);
310         memset(res, 0, size);
311         return res;
312 }
313
314 static size_t get_entity_struct_size(entity_kind_t kind)
315 {
316         static const size_t sizes[] = {
317                 [ENTITY_VARIABLE]        = sizeof(variable_t),
318                 [ENTITY_COMPOUND_MEMBER] = sizeof(variable_t),
319                 [ENTITY_FUNCTION]        = sizeof(function_t),
320                 [ENTITY_TYPEDEF]         = sizeof(typedef_t),
321                 [ENTITY_STRUCT]          = sizeof(compound_t),
322                 [ENTITY_UNION]           = sizeof(compound_t),
323                 [ENTITY_ENUM]            = sizeof(enum_t),
324                 [ENTITY_ENUM_VALUE]      = sizeof(enum_value_t),
325                 [ENTITY_LABEL]           = sizeof(label_t),
326                 [ENTITY_LOCAL_LABEL]     = sizeof(label_t)
327         };
328         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
329         assert(sizes[kind] != 0);
330         return sizes[kind];
331 }
332
333 static entity_t *allocate_entity_zero(entity_kind_t kind)
334 {
335         size_t    size   = get_entity_struct_size(kind);
336         entity_t *entity = allocate_ast_zero(size);
337         entity->kind     = kind;
338         return entity;
339 }
340
341 /**
342  * Returns the size of a statement node.
343  *
344  * @param kind  the statement kind
345  */
346 static size_t get_statement_struct_size(statement_kind_t kind)
347 {
348         static const size_t sizes[] = {
349                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
350                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
351                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
352                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
353                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
354                 [STATEMENT_LOCAL_LABEL] = sizeof(local_label_statement_t),
355                 [STATEMENT_IF]          = sizeof(if_statement_t),
356                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
357                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
358                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
359                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
360                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
361                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
362                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
363                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
364                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
365                 [STATEMENT_FOR]         = sizeof(for_statement_t),
366                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
367                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
368                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
369         };
370         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
371         assert(sizes[kind] != 0);
372         return sizes[kind];
373 }
374
375 /**
376  * Returns the size of an expression node.
377  *
378  * @param kind  the expression kind
379  */
380 static size_t get_expression_struct_size(expression_kind_t kind)
381 {
382         static const size_t sizes[] = {
383                 [EXPR_INVALID]                 = sizeof(expression_base_t),
384                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
385                 [EXPR_REFERENCE_ENUM_VALUE]    = sizeof(reference_expression_t),
386                 [EXPR_CONST]                   = sizeof(const_expression_t),
387                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
388                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
389                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
390                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
391                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
392                 [EXPR_CALL]                    = sizeof(call_expression_t),
393                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
394                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
395                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
396                 [EXPR_SELECT]                  = sizeof(select_expression_t),
397                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
398                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
399                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
400                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
401                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
402                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
403                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
404                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
405                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
406                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
407                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
408                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
409                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
410         };
411         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
412                 return sizes[EXPR_UNARY_FIRST];
413         }
414         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
415                 return sizes[EXPR_BINARY_FIRST];
416         }
417         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
418         assert(sizes[kind] != 0);
419         return sizes[kind];
420 }
421
422 /**
423  * Allocate a statement node of given kind and initialize all
424  * fields with zero.
425  */
426 static statement_t *allocate_statement_zero(statement_kind_t kind)
427 {
428         size_t       size = get_statement_struct_size(kind);
429         statement_t *res  = allocate_ast_zero(size);
430
431         res->base.kind            = kind;
432         res->base.parent          = current_parent;
433         res->base.source_position = token.source_position;
434         return res;
435 }
436
437 /**
438  * Allocate an expression node of given kind and initialize all
439  * fields with zero.
440  */
441 static expression_t *allocate_expression_zero(expression_kind_t kind)
442 {
443         size_t        size = get_expression_struct_size(kind);
444         expression_t *res  = allocate_ast_zero(size);
445
446         res->base.kind = kind;
447         res->base.type = type_error_type;
448         return res;
449 }
450
451 /**
452  * Creates a new invalid expression.
453  */
454 static expression_t *create_invalid_expression(void)
455 {
456         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
457         expression->base.source_position = token.source_position;
458         return expression;
459 }
460
461 /**
462  * Creates a new invalid statement.
463  */
464 static statement_t *create_invalid_statement(void)
465 {
466         return allocate_statement_zero(STATEMENT_INVALID);
467 }
468
469 /**
470  * Allocate a new empty statement.
471  */
472 static statement_t *create_empty_statement(void)
473 {
474         return allocate_statement_zero(STATEMENT_EMPTY);
475 }
476
477 /**
478  * Returns the size of a type node.
479  *
480  * @param kind  the type kind
481  */
482 static size_t get_type_struct_size(type_kind_t kind)
483 {
484         static const size_t sizes[] = {
485                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
486                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
487                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
488                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
489                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
490                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
491                 [TYPE_ENUM]            = sizeof(enum_type_t),
492                 [TYPE_FUNCTION]        = sizeof(function_type_t),
493                 [TYPE_POINTER]         = sizeof(pointer_type_t),
494                 [TYPE_ARRAY]           = sizeof(array_type_t),
495                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
496                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
497                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
498         };
499         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
500         assert(kind <= TYPE_TYPEOF);
501         assert(sizes[kind] != 0);
502         return sizes[kind];
503 }
504
505 /**
506  * Allocate a type node of given kind and initialize all
507  * fields with zero.
508  *
509  * @param kind             type kind to allocate
510  */
511 static type_t *allocate_type_zero(type_kind_t kind)
512 {
513         size_t  size = get_type_struct_size(kind);
514         type_t *res  = obstack_alloc(type_obst, size);
515         memset(res, 0, size);
516         res->base.kind = kind;
517
518         return res;
519 }
520
521 /**
522  * Returns the size of an initializer node.
523  *
524  * @param kind  the initializer kind
525  */
526 static size_t get_initializer_size(initializer_kind_t kind)
527 {
528         static const size_t sizes[] = {
529                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
530                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
531                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
532                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
533                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
534         };
535         assert(kind < sizeof(sizes) / sizeof(*sizes));
536         assert(sizes[kind] != 0);
537         return sizes[kind];
538 }
539
540 /**
541  * Allocate an initializer node of given kind and initialize all
542  * fields with zero.
543  */
544 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
545 {
546         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
547         result->kind          = kind;
548
549         return result;
550 }
551
552 /**
553  * Free a type from the type obstack.
554  */
555 static void free_type(void *type)
556 {
557         obstack_free(type_obst, type);
558 }
559
560 /**
561  * Returns the index of the top element of the environment stack.
562  */
563 static size_t environment_top(void)
564 {
565         return ARR_LEN(environment_stack);
566 }
567
568 /**
569  * Returns the index of the top element of the global label stack.
570  */
571 static size_t label_top(void)
572 {
573         return ARR_LEN(label_stack);
574 }
575
576 /**
577  * Returns the index of the top element of the local label stack.
578  */
579 static size_t local_label_top(void)
580 {
581         return ARR_LEN(local_label_stack);
582 }
583
584 /**
585  * Return the next token.
586  */
587 static inline void next_token(void)
588 {
589         token                              = lookahead_buffer[lookahead_bufpos];
590         lookahead_buffer[lookahead_bufpos] = lexer_token;
591         lexer_next_token();
592
593         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
594
595 #ifdef PRINT_TOKENS
596         print_token(stderr, &token);
597         fprintf(stderr, "\n");
598 #endif
599 }
600
601 /**
602  * Return the next token with a given lookahead.
603  */
604 static inline const token_t *look_ahead(int num)
605 {
606         assert(num > 0 && num <= MAX_LOOKAHEAD);
607         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
608         return &lookahead_buffer[pos];
609 }
610
611 /**
612  * Adds a token to the token anchor set (a multi-set).
613  */
614 static void add_anchor_token(int token_type)
615 {
616         assert(0 <= token_type && token_type < T_LAST_TOKEN);
617         ++token_anchor_set[token_type];
618 }
619
620 static int save_and_reset_anchor_state(int token_type)
621 {
622         assert(0 <= token_type && token_type < T_LAST_TOKEN);
623         int count = token_anchor_set[token_type];
624         token_anchor_set[token_type] = 0;
625         return count;
626 }
627
628 static void restore_anchor_state(int token_type, int count)
629 {
630         assert(0 <= token_type && token_type < T_LAST_TOKEN);
631         token_anchor_set[token_type] = count;
632 }
633
634 /**
635  * Remove a token from the token anchor set (a multi-set).
636  */
637 static void rem_anchor_token(int token_type)
638 {
639         assert(0 <= token_type && token_type < T_LAST_TOKEN);
640         assert(token_anchor_set[token_type] != 0);
641         --token_anchor_set[token_type];
642 }
643
644 static bool at_anchor(void)
645 {
646         if (token.type < 0)
647                 return false;
648         return token_anchor_set[token.type];
649 }
650
651 /**
652  * Eat tokens until a matching token is found.
653  */
654 static void eat_until_matching_token(int type)
655 {
656         int end_token;
657         switch (type) {
658                 case '(': end_token = ')';  break;
659                 case '{': end_token = '}';  break;
660                 case '[': end_token = ']';  break;
661                 default:  end_token = type; break;
662         }
663
664         unsigned parenthesis_count = 0;
665         unsigned brace_count       = 0;
666         unsigned bracket_count     = 0;
667         while (token.type        != end_token ||
668                parenthesis_count != 0         ||
669                brace_count       != 0         ||
670                bracket_count     != 0) {
671                 switch (token.type) {
672                 case T_EOF: return;
673                 case '(': ++parenthesis_count; break;
674                 case '{': ++brace_count;       break;
675                 case '[': ++bracket_count;     break;
676
677                 case ')':
678                         if (parenthesis_count > 0)
679                                 --parenthesis_count;
680                         goto check_stop;
681
682                 case '}':
683                         if (brace_count > 0)
684                                 --brace_count;
685                         goto check_stop;
686
687                 case ']':
688                         if (bracket_count > 0)
689                                 --bracket_count;
690 check_stop:
691                         if (token.type        == end_token &&
692                             parenthesis_count == 0         &&
693                             brace_count       == 0         &&
694                             bracket_count     == 0)
695                                 return;
696                         break;
697
698                 default:
699                         break;
700                 }
701                 next_token();
702         }
703 }
704
705 /**
706  * Eat input tokens until an anchor is found.
707  */
708 static void eat_until_anchor(void)
709 {
710         while (token_anchor_set[token.type] == 0) {
711                 if (token.type == '(' || token.type == '{' || token.type == '[')
712                         eat_until_matching_token(token.type);
713                 next_token();
714         }
715 }
716
717 static void eat_block(void)
718 {
719         eat_until_matching_token('{');
720         if (token.type == '}')
721                 next_token();
722 }
723
724 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
725
726 /**
727  * Report a parse error because an expected token was not found.
728  */
729 static
730 #if defined __GNUC__ && __GNUC__ >= 4
731 __attribute__((sentinel))
732 #endif
733 void parse_error_expected(const char *message, ...)
734 {
735         if (message != NULL) {
736                 errorf(HERE, "%s", message);
737         }
738         va_list ap;
739         va_start(ap, message);
740         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
741         va_end(ap);
742 }
743
744 /**
745  * Report a type error.
746  */
747 static void type_error(const char *msg, const source_position_t *source_position,
748                        type_t *type)
749 {
750         errorf(source_position, "%s, but found type '%T'", msg, type);
751 }
752
753 /**
754  * Report an incompatible type.
755  */
756 static void type_error_incompatible(const char *msg,
757                 const source_position_t *source_position, type_t *type1, type_t *type2)
758 {
759         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
760                msg, type1, type2);
761 }
762
763 /**
764  * Expect the the current token is the expected token.
765  * If not, generate an error, eat the current statement,
766  * and goto the end_error label.
767  */
768 #define expect(expected)                                  \
769         do {                                                  \
770                 if (UNLIKELY(token.type != (expected))) {         \
771                         parse_error_expected(NULL, (expected), NULL); \
772                         add_anchor_token(expected);                   \
773                         eat_until_anchor();                           \
774                         if (token.type == expected)                   \
775                                 next_token();                             \
776                         rem_anchor_token(expected);                   \
777                         goto end_error;                               \
778                 }                                                 \
779                 next_token();                                     \
780         } while (0)
781
782 static void scope_push(scope_t *new_scope)
783 {
784         if (scope != NULL) {
785                 new_scope->depth = scope->depth + 1;
786         }
787         new_scope->parent = scope;
788         scope             = new_scope;
789 }
790
791 static void scope_pop(void)
792 {
793         scope = scope->parent;
794 }
795
796 /**
797  * Search an entity by its symbol in a given namespace.
798  */
799 static entity_t *get_entity(const symbol_t *const symbol, namespace_t namespc)
800 {
801         entity_t *entity = symbol->entity;
802         for( ; entity != NULL; entity = entity->base.symbol_next) {
803                 if (entity->base.namespc == namespc)
804                         return entity;
805         }
806
807         return NULL;
808 }
809
810 /**
811  * pushs an entity on the environment stack and links the corresponding symbol
812  * it.
813  */
814 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
815 {
816         symbol_t    *symbol  = entity->base.symbol;
817         namespace_t  namespc = entity->base.namespc;
818         assert(namespc != NAMESPACE_INVALID);
819
820         /* replace/add entity into entity list of the symbol */
821         entity_t **anchor;
822         entity_t  *iter;
823         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
824                 iter = *anchor;
825                 if (iter == NULL)
826                         break;
827
828                 /* replace an entry? */
829                 if (iter->base.namespc == namespc) {
830                         entity->base.symbol_next = iter->base.symbol_next;
831                         break;
832                 }
833         }
834         *anchor = entity;
835
836         /* remember old declaration */
837         stack_entry_t entry;
838         entry.symbol     = symbol;
839         entry.old_entity = iter;
840         entry.namespc    = namespc;
841         ARR_APP1(stack_entry_t, *stack_ptr, entry);
842 }
843
844 /**
845  * Push an entity on the environment stack.
846  */
847 static void environment_push(entity_t *entity)
848 {
849         assert(entity->base.source_position.input_name != NULL);
850         assert(entity->base.parent_scope != NULL);
851         stack_push(&environment_stack, entity);
852 }
853
854 /**
855  * Push a declaration on the global label stack.
856  *
857  * @param declaration  the declaration
858  */
859 static void label_push(entity_t *label)
860 {
861         /* we abuse the parameters scope as parent for the labels */
862         label->base.parent_scope = &current_function->parameters;
863         stack_push(&label_stack, label);
864 }
865
866 /**
867  * Push a declaration of the local label stack.
868  *
869  * @param declaration  the declaration
870  */
871 static void local_label_push(entity_t *label)
872 {
873         assert(label->base.parent_scope != NULL);
874         label->base.parent_scope = scope;
875         stack_push(&local_label_stack, label);
876 }
877
878 /**
879  * pops symbols from the environment stack until @p new_top is the top element
880  */
881 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
882 {
883         stack_entry_t *stack = *stack_ptr;
884         size_t         top   = ARR_LEN(stack);
885         size_t         i;
886
887         assert(new_top <= top);
888         if (new_top == top)
889                 return;
890
891         for(i = top; i > new_top; --i) {
892                 stack_entry_t *entry = &stack[i - 1];
893
894                 entity_t    *old_entity = entry->old_entity;
895                 symbol_t    *symbol     = entry->symbol;
896                 namespace_t  namespc    = entry->namespc;
897
898                 /* replace with old_entity/remove */
899                 entity_t **anchor;
900                 entity_t  *iter;
901                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
902                         iter = *anchor;
903                         assert(iter != NULL);
904                         /* replace an entry? */
905                         if (iter->base.namespc == namespc)
906                                 break;
907                 }
908
909                 /* restore definition from outer scopes (if there was one) */
910                 if (old_entity != NULL) {
911                         old_entity->base.symbol_next = iter->base.symbol_next;
912                         *anchor                      = old_entity;
913                 } else {
914                         /* remove entry from list */
915                         *anchor = iter->base.symbol_next;
916                 }
917         }
918
919         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
920 }
921
922 /**
923  * Pop all entries from the environment stack until the new_top
924  * is reached.
925  *
926  * @param new_top  the new stack top
927  */
928 static void environment_pop_to(size_t new_top)
929 {
930         stack_pop_to(&environment_stack, new_top);
931 }
932
933 /**
934  * Pop all entries from the global label stack until the new_top
935  * is reached.
936  *
937  * @param new_top  the new stack top
938  */
939 static void label_pop_to(size_t new_top)
940 {
941         stack_pop_to(&label_stack, new_top);
942 }
943
944 /**
945  * Pop all entries from the local label stack until the new_top
946  * is reached.
947  *
948  * @param new_top  the new stack top
949  */
950 static void local_label_pop_to(size_t new_top)
951 {
952         stack_pop_to(&local_label_stack, new_top);
953 }
954
955
956 static int get_akind_rank(atomic_type_kind_t akind)
957 {
958         return (int) akind;
959 }
960
961 static int get_rank(const type_t *type)
962 {
963         assert(!is_typeref(type));
964         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
965          * and esp. footnote 108). However we can't fold constants (yet), so we
966          * can't decide whether unsigned int is possible, while int always works.
967          * (unsigned int would be preferable when possible... for stuff like
968          *  struct { enum { ... } bla : 4; } ) */
969         if (type->kind == TYPE_ENUM)
970                 return get_akind_rank(ATOMIC_TYPE_INT);
971
972         assert(type->kind == TYPE_ATOMIC);
973         return get_akind_rank(type->atomic.akind);
974 }
975
976 static type_t *promote_integer(type_t *type)
977 {
978         if (type->kind == TYPE_BITFIELD)
979                 type = type->bitfield.base_type;
980
981         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
982                 type = type_int;
983
984         return type;
985 }
986
987 /**
988  * Create a cast expression.
989  *
990  * @param expression  the expression to cast
991  * @param dest_type   the destination type
992  */
993 static expression_t *create_cast_expression(expression_t *expression,
994                                             type_t *dest_type)
995 {
996         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
997
998         cast->unary.value = expression;
999         cast->base.type   = dest_type;
1000
1001         return cast;
1002 }
1003
1004 /**
1005  * Check if a given expression represents the 0 pointer constant.
1006  */
1007 static bool is_null_pointer_constant(const expression_t *expression)
1008 {
1009         /* skip void* cast */
1010         if (expression->kind == EXPR_UNARY_CAST
1011                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
1012                 expression = expression->unary.value;
1013         }
1014
1015         /* TODO: not correct yet, should be any constant integer expression
1016          * which evaluates to 0 */
1017         if (expression->kind != EXPR_CONST)
1018                 return false;
1019
1020         type_t *const type = skip_typeref(expression->base.type);
1021         if (!is_type_integer(type))
1022                 return false;
1023
1024         return expression->conste.v.int_value == 0;
1025 }
1026
1027 /**
1028  * Create an implicit cast expression.
1029  *
1030  * @param expression  the expression to cast
1031  * @param dest_type   the destination type
1032  */
1033 static expression_t *create_implicit_cast(expression_t *expression,
1034                                           type_t *dest_type)
1035 {
1036         type_t *const source_type = expression->base.type;
1037
1038         if (source_type == dest_type)
1039                 return expression;
1040
1041         return create_cast_expression(expression, dest_type);
1042 }
1043
1044 typedef enum assign_error_t {
1045         ASSIGN_SUCCESS,
1046         ASSIGN_ERROR_INCOMPATIBLE,
1047         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
1048         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
1049         ASSIGN_WARNING_POINTER_FROM_INT,
1050         ASSIGN_WARNING_INT_FROM_POINTER
1051 } assign_error_t;
1052
1053 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
1054                                 const expression_t *const right,
1055                                 const char *context,
1056                                 const source_position_t *source_position)
1057 {
1058         type_t *const orig_type_right = right->base.type;
1059         type_t *const type_left       = skip_typeref(orig_type_left);
1060         type_t *const type_right      = skip_typeref(orig_type_right);
1061
1062         switch (error) {
1063         case ASSIGN_SUCCESS:
1064                 return;
1065         case ASSIGN_ERROR_INCOMPATIBLE:
1066                 errorf(source_position,
1067                        "destination type '%T' in %s is incompatible with type '%T'",
1068                        orig_type_left, context, orig_type_right);
1069                 return;
1070
1071         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1072                 if (warning.other) {
1073                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
1074                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
1075
1076                         /* the left type has all qualifiers from the right type */
1077                         unsigned missing_qualifiers
1078                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1079                         warningf(source_position,
1080                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1081                                         orig_type_left, context, orig_type_right, missing_qualifiers);
1082                 }
1083                 return;
1084         }
1085
1086         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1087                 if (warning.other) {
1088                         warningf(source_position,
1089                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1090                                         orig_type_left, context, right, orig_type_right);
1091                 }
1092                 return;
1093
1094         case ASSIGN_WARNING_POINTER_FROM_INT:
1095                 if (warning.other) {
1096                         warningf(source_position,
1097                                         "%s makes pointer '%T' from integer '%T' without a cast",
1098                                         context, orig_type_left, orig_type_right);
1099                 }
1100                 return;
1101
1102         case ASSIGN_WARNING_INT_FROM_POINTER:
1103                 if (warning.other) {
1104                         warningf(source_position,
1105                                         "%s makes integer '%T' from pointer '%T' without a cast",
1106                                         context, orig_type_left, orig_type_right);
1107                 }
1108                 return;
1109
1110         default:
1111                 panic("invalid error value");
1112         }
1113 }
1114
1115 /** Implements the rules from Â§ 6.5.16.1 */
1116 static assign_error_t semantic_assign(type_t *orig_type_left,
1117                                       const expression_t *const right)
1118 {
1119         type_t *const orig_type_right = right->base.type;
1120         type_t *const type_left       = skip_typeref(orig_type_left);
1121         type_t *const type_right      = skip_typeref(orig_type_right);
1122
1123         if (is_type_pointer(type_left)) {
1124                 if (is_null_pointer_constant(right)) {
1125                         return ASSIGN_SUCCESS;
1126                 } else if (is_type_pointer(type_right)) {
1127                         type_t *points_to_left
1128                                 = skip_typeref(type_left->pointer.points_to);
1129                         type_t *points_to_right
1130                                 = skip_typeref(type_right->pointer.points_to);
1131                         assign_error_t res = ASSIGN_SUCCESS;
1132
1133                         /* the left type has all qualifiers from the right type */
1134                         unsigned missing_qualifiers
1135                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1136                         if (missing_qualifiers != 0) {
1137                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1138                         }
1139
1140                         points_to_left  = get_unqualified_type(points_to_left);
1141                         points_to_right = get_unqualified_type(points_to_right);
1142
1143                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1144                                 return res;
1145
1146                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1147                                 /* ISO/IEC 14882:1998(E) Â§C.1.2:6 */
1148                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1149                         }
1150
1151                         if (!types_compatible(points_to_left, points_to_right)) {
1152                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1153                         }
1154
1155                         return res;
1156                 } else if (is_type_integer(type_right)) {
1157                         return ASSIGN_WARNING_POINTER_FROM_INT;
1158                 }
1159         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1160             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1161                 && is_type_pointer(type_right))) {
1162                 return ASSIGN_SUCCESS;
1163         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1164                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1165                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1166                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1167                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1168                         return ASSIGN_SUCCESS;
1169                 }
1170         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1171                 return ASSIGN_WARNING_INT_FROM_POINTER;
1172         }
1173
1174         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1175                 return ASSIGN_SUCCESS;
1176
1177         return ASSIGN_ERROR_INCOMPATIBLE;
1178 }
1179
1180 static expression_t *parse_constant_expression(void)
1181 {
1182         expression_t *result = parse_sub_expression(PREC_CONDITIONAL);
1183
1184         if (!is_constant_expression(result)) {
1185                 errorf(&result->base.source_position,
1186                        "expression '%E' is not constant\n", result);
1187         }
1188
1189         return result;
1190 }
1191
1192 static expression_t *parse_assignment_expression(void)
1193 {
1194         return parse_sub_expression(PREC_ASSIGNMENT);
1195 }
1196
1197 static type_t *make_global_typedef(const char *name, type_t *type)
1198 {
1199         symbol_t *const symbol = symbol_table_insert(name);
1200
1201         entity_t *const entity       = allocate_entity_zero(ENTITY_TYPEDEF);
1202         entity->base.symbol          = symbol;
1203         entity->base.source_position = builtin_source_position;
1204         entity->base.namespc         = NAMESPACE_NORMAL;
1205         entity->typedefe.type        = type;
1206         entity->typedefe.builtin     = true;
1207
1208         record_entity(entity, false);
1209
1210         type_t *typedef_type            = allocate_type_zero(TYPE_TYPEDEF);
1211         typedef_type->typedeft.typedefe = &entity->typedefe;
1212
1213         return typedef_type;
1214 }
1215
1216 static string_t parse_string_literals(void)
1217 {
1218         assert(token.type == T_STRING_LITERAL);
1219         string_t result = token.v.string;
1220
1221         next_token();
1222
1223         while (token.type == T_STRING_LITERAL) {
1224                 result = concat_strings(&result, &token.v.string);
1225                 next_token();
1226         }
1227
1228         return result;
1229 }
1230
1231 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1232         [GNU_AK_CONST]                  = "const",
1233         [GNU_AK_VOLATILE]               = "volatile",
1234         [GNU_AK_CDECL]                  = "cdecl",
1235         [GNU_AK_STDCALL]                = "stdcall",
1236         [GNU_AK_FASTCALL]               = "fastcall",
1237         [GNU_AK_DEPRECATED]             = "deprecated",
1238         [GNU_AK_NOINLINE]               = "noinline",
1239         [GNU_AK_NORETURN]               = "noreturn",
1240         [GNU_AK_NAKED]                  = "naked",
1241         [GNU_AK_PURE]                   = "pure",
1242         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1243         [GNU_AK_MALLOC]                 = "malloc",
1244         [GNU_AK_WEAK]                   = "weak",
1245         [GNU_AK_CONSTRUCTOR]            = "constructor",
1246         [GNU_AK_DESTRUCTOR]             = "destructor",
1247         [GNU_AK_NOTHROW]                = "nothrow",
1248         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1249         [GNU_AK_COMMON]                 = "common",
1250         [GNU_AK_NOCOMMON]               = "nocommon",
1251         [GNU_AK_PACKED]                 = "packed",
1252         [GNU_AK_SHARED]                 = "shared",
1253         [GNU_AK_NOTSHARED]              = "notshared",
1254         [GNU_AK_USED]                   = "used",
1255         [GNU_AK_UNUSED]                 = "unused",
1256         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1257         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1258         [GNU_AK_LONGCALL]               = "longcall",
1259         [GNU_AK_SHORTCALL]              = "shortcall",
1260         [GNU_AK_LONG_CALL]              = "long_call",
1261         [GNU_AK_SHORT_CALL]             = "short_call",
1262         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1263         [GNU_AK_INTERRUPT]              = "interrupt",
1264         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1265         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1266         [GNU_AK_NESTING]                = "nesting",
1267         [GNU_AK_NEAR]                   = "near",
1268         [GNU_AK_FAR]                    = "far",
1269         [GNU_AK_SIGNAL]                 = "signal",
1270         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1271         [GNU_AK_TINY_DATA]              = "tiny_data",
1272         [GNU_AK_SAVEALL]                = "saveall",
1273         [GNU_AK_FLATTEN]                = "flatten",
1274         [GNU_AK_SSEREGPARM]             = "sseregparm",
1275         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1276         [GNU_AK_RETURN_TWICE]           = "return_twice",
1277         [GNU_AK_MAY_ALIAS]              = "may_alias",
1278         [GNU_AK_MS_STRUCT]              = "ms_struct",
1279         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1280         [GNU_AK_DLLIMPORT]              = "dllimport",
1281         [GNU_AK_DLLEXPORT]              = "dllexport",
1282         [GNU_AK_ALIGNED]                = "aligned",
1283         [GNU_AK_ALIAS]                  = "alias",
1284         [GNU_AK_SECTION]                = "section",
1285         [GNU_AK_FORMAT]                 = "format",
1286         [GNU_AK_FORMAT_ARG]             = "format_arg",
1287         [GNU_AK_WEAKREF]                = "weakref",
1288         [GNU_AK_NONNULL]                = "nonnull",
1289         [GNU_AK_TLS_MODEL]              = "tls_model",
1290         [GNU_AK_VISIBILITY]             = "visibility",
1291         [GNU_AK_REGPARM]                = "regparm",
1292         [GNU_AK_MODE]                   = "mode",
1293         [GNU_AK_MODEL]                  = "model",
1294         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1295         [GNU_AK_SP_SWITCH]              = "sp_switch",
1296         [GNU_AK_SENTINEL]               = "sentinel"
1297 };
1298
1299 /**
1300  * compare two string, ignoring double underscores on the second.
1301  */
1302 static int strcmp_underscore(const char *s1, const char *s2)
1303 {
1304         if (s2[0] == '_' && s2[1] == '_') {
1305                 size_t len2 = strlen(s2);
1306                 size_t len1 = strlen(s1);
1307                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1308                         return strncmp(s1, s2+2, len2-4);
1309                 }
1310         }
1311
1312         return strcmp(s1, s2);
1313 }
1314
1315 /**
1316  * Allocate a new gnu temporal attribute.
1317  */
1318 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1319 {
1320         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1321         attribute->kind            = kind;
1322         attribute->next            = NULL;
1323         attribute->invalid         = false;
1324         attribute->have_arguments  = false;
1325
1326         return attribute;
1327 }
1328
1329 /**
1330  * parse one constant expression argument.
1331  */
1332 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1333 {
1334         expression_t *expression;
1335         add_anchor_token(')');
1336         expression = parse_constant_expression();
1337         rem_anchor_token(')');
1338         expect(')');
1339         attribute->u.argument = fold_constant(expression);
1340         return;
1341 end_error:
1342         attribute->invalid = true;
1343 }
1344
1345 /**
1346  * parse a list of constant expressions arguments.
1347  */
1348 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1349 {
1350         argument_list_t **list = &attribute->u.arguments;
1351         argument_list_t  *entry;
1352         expression_t     *expression;
1353         add_anchor_token(')');
1354         add_anchor_token(',');
1355         while (true) {
1356                 expression = parse_constant_expression();
1357                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1358                 entry->argument = fold_constant(expression);
1359                 entry->next     = NULL;
1360                 *list = entry;
1361                 list = &entry->next;
1362                 if (token.type != ',')
1363                         break;
1364                 next_token();
1365         }
1366         rem_anchor_token(',');
1367         rem_anchor_token(')');
1368         expect(')');
1369         return;
1370 end_error:
1371         attribute->invalid = true;
1372 }
1373
1374 /**
1375  * parse one string literal argument.
1376  */
1377 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1378                                            string_t *string)
1379 {
1380         add_anchor_token('(');
1381         if (token.type != T_STRING_LITERAL) {
1382                 parse_error_expected("while parsing attribute directive",
1383                                      T_STRING_LITERAL, NULL);
1384                 goto end_error;
1385         }
1386         *string = parse_string_literals();
1387         rem_anchor_token('(');
1388         expect(')');
1389         return;
1390 end_error:
1391         attribute->invalid = true;
1392 }
1393
1394 /**
1395  * parse one tls model.
1396  */
1397 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1398 {
1399         static const char *const tls_models[] = {
1400                 "global-dynamic",
1401                 "local-dynamic",
1402                 "initial-exec",
1403                 "local-exec"
1404         };
1405         string_t string = { NULL, 0 };
1406         parse_gnu_attribute_string_arg(attribute, &string);
1407         if (string.begin != NULL) {
1408                 for(size_t i = 0; i < 4; ++i) {
1409                         if (strcmp(tls_models[i], string.begin) == 0) {
1410                                 attribute->u.value = i;
1411                                 return;
1412                         }
1413                 }
1414                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1415         }
1416         attribute->invalid = true;
1417 }
1418
1419 /**
1420  * parse one tls model.
1421  */
1422 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1423 {
1424         static const char *const visibilities[] = {
1425                 "default",
1426                 "protected",
1427                 "hidden",
1428                 "internal"
1429         };
1430         string_t string = { NULL, 0 };
1431         parse_gnu_attribute_string_arg(attribute, &string);
1432         if (string.begin != NULL) {
1433                 for(size_t i = 0; i < 4; ++i) {
1434                         if (strcmp(visibilities[i], string.begin) == 0) {
1435                                 attribute->u.value = i;
1436                                 return;
1437                         }
1438                 }
1439                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1440         }
1441         attribute->invalid = true;
1442 }
1443
1444 /**
1445  * parse one (code) model.
1446  */
1447 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1448 {
1449         static const char *const visibilities[] = {
1450                 "small",
1451                 "medium",
1452                 "large"
1453         };
1454         string_t string = { NULL, 0 };
1455         parse_gnu_attribute_string_arg(attribute, &string);
1456         if (string.begin != NULL) {
1457                 for(int i = 0; i < 3; ++i) {
1458                         if (strcmp(visibilities[i], string.begin) == 0) {
1459                                 attribute->u.value = i;
1460                                 return;
1461                         }
1462                 }
1463                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1464         }
1465         attribute->invalid = true;
1466 }
1467
1468 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1469 {
1470         /* TODO: find out what is allowed here... */
1471
1472         /* at least: byte, word, pointer, list of machine modes
1473          * __XXX___ is interpreted as XXX */
1474         add_anchor_token(')');
1475
1476         if (token.type != T_IDENTIFIER) {
1477                 expect(T_IDENTIFIER);
1478         }
1479
1480         /* This isn't really correct, the backend should provide a list of machine
1481          * specific modes (according to gcc philosophy that is...) */
1482         const char *symbol_str = token.v.symbol->string;
1483         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1484             strcmp_underscore("byte", symbol_str) == 0) {
1485                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1486         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1487                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1488         } else if (strcmp_underscore("SI",      symbol_str) == 0
1489                 || strcmp_underscore("word",    symbol_str) == 0
1490                 || strcmp_underscore("pointer", symbol_str) == 0) {
1491                 attribute->u.akind = ATOMIC_TYPE_INT;
1492         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1493                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1494         } else {
1495                 if (warning.other)
1496                         warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1497                 attribute->invalid = true;
1498         }
1499         next_token();
1500
1501         rem_anchor_token(')');
1502         expect(')');
1503         return;
1504 end_error:
1505         attribute->invalid = true;
1506 }
1507
1508 /**
1509  * parse one interrupt argument.
1510  */
1511 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1512 {
1513         static const char *const interrupts[] = {
1514                 "IRQ",
1515                 "FIQ",
1516                 "SWI",
1517                 "ABORT",
1518                 "UNDEF"
1519         };
1520         string_t string = { NULL, 0 };
1521         parse_gnu_attribute_string_arg(attribute, &string);
1522         if (string.begin != NULL) {
1523                 for(size_t i = 0; i < 5; ++i) {
1524                         if (strcmp(interrupts[i], string.begin) == 0) {
1525                                 attribute->u.value = i;
1526                                 return;
1527                         }
1528                 }
1529                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1530         }
1531         attribute->invalid = true;
1532 }
1533
1534 /**
1535  * parse ( identifier, const expression, const expression )
1536  */
1537 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1538 {
1539         static const char *const format_names[] = {
1540                 "printf",
1541                 "scanf",
1542                 "strftime",
1543                 "strfmon"
1544         };
1545         int i;
1546
1547         if (token.type != T_IDENTIFIER) {
1548                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1549                 goto end_error;
1550         }
1551         const char *name = token.v.symbol->string;
1552         for(i = 0; i < 4; ++i) {
1553                 if (strcmp_underscore(format_names[i], name) == 0)
1554                         break;
1555         }
1556         if (i >= 4) {
1557                 if (warning.attribute)
1558                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1559         }
1560         next_token();
1561
1562         expect(',');
1563         add_anchor_token(')');
1564         add_anchor_token(',');
1565         parse_constant_expression();
1566         rem_anchor_token(',');
1567         rem_anchor_token(')');
1568
1569         expect(',');
1570         add_anchor_token(')');
1571         parse_constant_expression();
1572         rem_anchor_token(')');
1573         expect(')');
1574         return;
1575 end_error:
1576         attribute->u.value = true;
1577 }
1578
1579 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1580 {
1581         if (!attribute->have_arguments)
1582                 return;
1583
1584         /* should have no arguments */
1585         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1586         eat_until_matching_token('(');
1587         /* we have already consumed '(', so we stop before ')', eat it */
1588         eat(')');
1589         attribute->invalid = true;
1590 }
1591
1592 /**
1593  * Parse one GNU attribute.
1594  *
1595  * Note that attribute names can be specified WITH or WITHOUT
1596  * double underscores, ie const or __const__.
1597  *
1598  * The following attributes are parsed without arguments
1599  *  const
1600  *  volatile
1601  *  cdecl
1602  *  stdcall
1603  *  fastcall
1604  *  deprecated
1605  *  noinline
1606  *  noreturn
1607  *  naked
1608  *  pure
1609  *  always_inline
1610  *  malloc
1611  *  weak
1612  *  constructor
1613  *  destructor
1614  *  nothrow
1615  *  transparent_union
1616  *  common
1617  *  nocommon
1618  *  packed
1619  *  shared
1620  *  notshared
1621  *  used
1622  *  unused
1623  *  no_instrument_function
1624  *  warn_unused_result
1625  *  longcall
1626  *  shortcall
1627  *  long_call
1628  *  short_call
1629  *  function_vector
1630  *  interrupt_handler
1631  *  nmi_handler
1632  *  nesting
1633  *  near
1634  *  far
1635  *  signal
1636  *  eightbit_data
1637  *  tiny_data
1638  *  saveall
1639  *  flatten
1640  *  sseregparm
1641  *  externally_visible
1642  *  return_twice
1643  *  may_alias
1644  *  ms_struct
1645  *  gcc_struct
1646  *  dllimport
1647  *  dllexport
1648  *
1649  * The following attributes are parsed with arguments
1650  *  aligned( const expression )
1651  *  alias( string literal )
1652  *  section( string literal )
1653  *  format( identifier, const expression, const expression )
1654  *  format_arg( const expression )
1655  *  tls_model( string literal )
1656  *  visibility( string literal )
1657  *  regparm( const expression )
1658  *  model( string leteral )
1659  *  trap_exit( const expression )
1660  *  sp_switch( string literal )
1661  *
1662  * The following attributes might have arguments
1663  *  weak_ref( string literal )
1664  *  non_null( const expression // ',' )
1665  *  interrupt( string literal )
1666  *  sentinel( constant expression )
1667  */
1668 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1669 {
1670         gnu_attribute_t *head      = *attributes;
1671         gnu_attribute_t *last      = *attributes;
1672         decl_modifiers_t modifiers = 0;
1673         gnu_attribute_t *attribute;
1674
1675         eat(T___attribute__);
1676         expect('(');
1677         expect('(');
1678
1679         if (token.type != ')') {
1680                 /* find the end of the list */
1681                 if (last != NULL) {
1682                         while (last->next != NULL)
1683                                 last = last->next;
1684                 }
1685
1686                 /* non-empty attribute list */
1687                 while (true) {
1688                         const char *name;
1689                         if (token.type == T_const) {
1690                                 name = "const";
1691                         } else if (token.type == T_volatile) {
1692                                 name = "volatile";
1693                         } else if (token.type == T_cdecl) {
1694                                 /* __attribute__((cdecl)), WITH ms mode */
1695                                 name = "cdecl";
1696                         } else if (token.type == T_IDENTIFIER) {
1697                                 const symbol_t *sym = token.v.symbol;
1698                                 name = sym->string;
1699                         } else {
1700                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1701                                 break;
1702                         }
1703
1704                         next_token();
1705
1706                         int i;
1707                         for(i = 0; i < GNU_AK_LAST; ++i) {
1708                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1709                                         break;
1710                         }
1711                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1712
1713                         attribute = NULL;
1714                         if (kind == GNU_AK_LAST) {
1715                                 if (warning.attribute)
1716                                         warningf(HERE, "'%s' attribute directive ignored", name);
1717
1718                                 /* skip possible arguments */
1719                                 if (token.type == '(') {
1720                                         eat_until_matching_token(')');
1721                                 }
1722                         } else {
1723                                 /* check for arguments */
1724                                 attribute = allocate_gnu_attribute(kind);
1725                                 if (token.type == '(') {
1726                                         next_token();
1727                                         if (token.type == ')') {
1728                                                 /* empty args are allowed */
1729                                                 next_token();
1730                                         } else
1731                                                 attribute->have_arguments = true;
1732                                 }
1733
1734                                 switch (kind) {
1735                                 case GNU_AK_VOLATILE:
1736                                 case GNU_AK_NAKED:
1737                                 case GNU_AK_MALLOC:
1738                                 case GNU_AK_WEAK:
1739                                 case GNU_AK_COMMON:
1740                                 case GNU_AK_NOCOMMON:
1741                                 case GNU_AK_SHARED:
1742                                 case GNU_AK_NOTSHARED:
1743                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1744                                 case GNU_AK_WARN_UNUSED_RESULT:
1745                                 case GNU_AK_LONGCALL:
1746                                 case GNU_AK_SHORTCALL:
1747                                 case GNU_AK_LONG_CALL:
1748                                 case GNU_AK_SHORT_CALL:
1749                                 case GNU_AK_FUNCTION_VECTOR:
1750                                 case GNU_AK_INTERRUPT_HANDLER:
1751                                 case GNU_AK_NMI_HANDLER:
1752                                 case GNU_AK_NESTING:
1753                                 case GNU_AK_NEAR:
1754                                 case GNU_AK_FAR:
1755                                 case GNU_AK_SIGNAL:
1756                                 case GNU_AK_EIGTHBIT_DATA:
1757                                 case GNU_AK_TINY_DATA:
1758                                 case GNU_AK_SAVEALL:
1759                                 case GNU_AK_FLATTEN:
1760                                 case GNU_AK_SSEREGPARM:
1761                                 case GNU_AK_EXTERNALLY_VISIBLE:
1762                                 case GNU_AK_RETURN_TWICE:
1763                                 case GNU_AK_MAY_ALIAS:
1764                                 case GNU_AK_MS_STRUCT:
1765                                 case GNU_AK_GCC_STRUCT:
1766                                         goto no_arg;
1767
1768                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1769                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1770                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1771                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1772                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1773                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1774                                 case GNU_AK_CONST:             modifiers |= DM_CONST;             goto no_arg;
1775                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1776                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1777                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1778                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1779                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1780                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1781                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1782                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1783                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1784                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1785                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1786
1787                                 case GNU_AK_ALIGNED:
1788                                         /* __align__ may be used without an argument */
1789                                         if (attribute->have_arguments) {
1790                                                 parse_gnu_attribute_const_arg(attribute);
1791                                         }
1792                                         break;
1793
1794                                 case GNU_AK_FORMAT_ARG:
1795                                 case GNU_AK_REGPARM:
1796                                 case GNU_AK_TRAP_EXIT:
1797                                         if (!attribute->have_arguments) {
1798                                                 /* should have arguments */
1799                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1800                                                 attribute->invalid = true;
1801                                         } else
1802                                                 parse_gnu_attribute_const_arg(attribute);
1803                                         break;
1804                                 case GNU_AK_ALIAS:
1805                                 case GNU_AK_SECTION:
1806                                 case GNU_AK_SP_SWITCH:
1807                                         if (!attribute->have_arguments) {
1808                                                 /* should have arguments */
1809                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1810                                                 attribute->invalid = true;
1811                                         } else
1812                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1813                                         break;
1814                                 case GNU_AK_FORMAT:
1815                                         if (!attribute->have_arguments) {
1816                                                 /* should have arguments */
1817                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1818                                                 attribute->invalid = true;
1819                                         } else
1820                                                 parse_gnu_attribute_format_args(attribute);
1821                                         break;
1822                                 case GNU_AK_WEAKREF:
1823                                         /* may have one string argument */
1824                                         if (attribute->have_arguments)
1825                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1826                                         break;
1827                                 case GNU_AK_NONNULL:
1828                                         if (attribute->have_arguments)
1829                                                 parse_gnu_attribute_const_arg_list(attribute);
1830                                         break;
1831                                 case GNU_AK_TLS_MODEL:
1832                                         if (!attribute->have_arguments) {
1833                                                 /* should have arguments */
1834                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1835                                         } else
1836                                                 parse_gnu_attribute_tls_model_arg(attribute);
1837                                         break;
1838                                 case GNU_AK_VISIBILITY:
1839                                         if (!attribute->have_arguments) {
1840                                                 /* should have arguments */
1841                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1842                                         } else
1843                                                 parse_gnu_attribute_visibility_arg(attribute);
1844                                         break;
1845                                 case GNU_AK_MODEL:
1846                                         if (!attribute->have_arguments) {
1847                                                 /* should have arguments */
1848                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1849                                         } else {
1850                                                 parse_gnu_attribute_model_arg(attribute);
1851                                         }
1852                                         break;
1853                                 case GNU_AK_MODE:
1854                                         if (!attribute->have_arguments) {
1855                                                 /* should have arguments */
1856                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1857                                         } else {
1858                                                 parse_gnu_attribute_mode_arg(attribute);
1859                                         }
1860                                         break;
1861                                 case GNU_AK_INTERRUPT:
1862                                         /* may have one string argument */
1863                                         if (attribute->have_arguments)
1864                                                 parse_gnu_attribute_interrupt_arg(attribute);
1865                                         break;
1866                                 case GNU_AK_SENTINEL:
1867                                         /* may have one string argument */
1868                                         if (attribute->have_arguments)
1869                                                 parse_gnu_attribute_const_arg(attribute);
1870                                         break;
1871                                 case GNU_AK_LAST:
1872                                         /* already handled */
1873                                         break;
1874
1875 no_arg:
1876                                         check_no_argument(attribute, name);
1877                                 }
1878                         }
1879                         if (attribute != NULL) {
1880                                 if (last != NULL) {
1881                                         last->next = attribute;
1882                                         last       = attribute;
1883                                 } else {
1884                                         head = last = attribute;
1885                                 }
1886                         }
1887
1888                         if (token.type != ',')
1889                                 break;
1890                         next_token();
1891                 }
1892         }
1893         expect(')');
1894         expect(')');
1895 end_error:
1896         *attributes = head;
1897
1898         return modifiers;
1899 }
1900
1901 /**
1902  * Parse GNU attributes.
1903  */
1904 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1905 {
1906         decl_modifiers_t modifiers = 0;
1907
1908         while (true) {
1909                 switch (token.type) {
1910                 case T___attribute__:
1911                         modifiers |= parse_gnu_attribute(attributes);
1912                         continue;
1913
1914                 case T_asm:
1915                         next_token();
1916                         expect('(');
1917                         if (token.type != T_STRING_LITERAL) {
1918                                 parse_error_expected("while parsing assembler attribute",
1919                                                      T_STRING_LITERAL, NULL);
1920                                 eat_until_matching_token('(');
1921                                 break;
1922                         } else {
1923                                 parse_string_literals();
1924                         }
1925                         expect(')');
1926                         continue;
1927
1928                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1929                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1930                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1931
1932                 case T___thiscall:
1933                         /* TODO record modifier */
1934                         if (warning.other)
1935                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1936                         break;
1937
1938 end_error:
1939                 default: return modifiers;
1940                 }
1941
1942                 next_token();
1943         }
1944 }
1945
1946 static void mark_vars_read(expression_t *expr, variable_t *lhs_var);
1947
1948 static variable_t *determine_lhs_var(expression_t *const expr,
1949                                      variable_t *lhs_var)
1950 {
1951         switch (expr->kind) {
1952                 case EXPR_REFERENCE: {
1953                         entity_t *const entity = expr->reference.entity;
1954                         /* we should only find variables as lavlues... */
1955                         if (entity->base.kind != ENTITY_VARIABLE)
1956                                 return NULL;
1957
1958                         return &entity->variable;
1959                 }
1960
1961                 case EXPR_ARRAY_ACCESS: {
1962                         expression_t  *const ref = expr->array_access.array_ref;
1963                         variable_t    *      var = NULL;
1964                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1965                                 var     = determine_lhs_var(ref, lhs_var);
1966                                 lhs_var = var;
1967                         } else {
1968                                 mark_vars_read(expr->select.compound, lhs_var);
1969                         }
1970                         mark_vars_read(expr->array_access.index, lhs_var);
1971                         return var;
1972                 }
1973
1974                 case EXPR_SELECT: {
1975                         if (is_type_compound(skip_typeref(expr->base.type))) {
1976                                 return determine_lhs_var(expr->select.compound, lhs_var);
1977                         } else {
1978                                 mark_vars_read(expr->select.compound, lhs_var);
1979                                 return NULL;
1980                         }
1981                 }
1982
1983                 case EXPR_UNARY_DEREFERENCE: {
1984                         expression_t *const val = expr->unary.value;
1985                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1986                                 /* *&x is a NOP */
1987                                 return determine_lhs_var(val->unary.value, lhs_var);
1988                         } else {
1989                                 mark_vars_read(val, NULL);
1990                                 return NULL;
1991                         }
1992                 }
1993
1994                 default:
1995                         mark_vars_read(expr, NULL);
1996                         return NULL;
1997         }
1998 }
1999
2000 #define VAR_ANY ((variable_t*)-1)
2001
2002 /**
2003  * Mark declarations, which are read.  This is used to deted variables, which
2004  * are never read.
2005  * Example:
2006  * x = x + 1;
2007  *   x is not marked as "read", because it is only read to calculate its own new
2008  *   value.
2009  *
2010  * x += y; y += x;
2011  *   x and y are not detected as "not read", because multiple variables are
2012  *   involved.
2013  */
2014 static void mark_vars_read(expression_t *const expr, variable_t *lhs_var)
2015 {
2016         switch (expr->kind) {
2017                 case EXPR_REFERENCE: {
2018                         entity_t *const entity = expr->reference.entity;
2019                         if (entity->kind != ENTITY_VARIABLE)
2020                                 return;
2021
2022                         variable_t *variable = &entity->variable;
2023                         if (lhs_var != variable && lhs_var != VAR_ANY) {
2024                                 variable->read = true;
2025                         }
2026                         return;
2027                 }
2028
2029                 case EXPR_CALL:
2030                         // TODO respect pure/const
2031                         mark_vars_read(expr->call.function, NULL);
2032                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
2033                                 mark_vars_read(arg->expression, NULL);
2034                         }
2035                         return;
2036
2037                 case EXPR_CONDITIONAL:
2038                         // TODO lhs_decl should depend on whether true/false have an effect
2039                         mark_vars_read(expr->conditional.condition, NULL);
2040                         if (expr->conditional.true_expression != NULL)
2041                                 mark_vars_read(expr->conditional.true_expression, lhs_var);
2042                         mark_vars_read(expr->conditional.false_expression, lhs_var);
2043                         return;
2044
2045                 case EXPR_SELECT:
2046                         if (lhs_var == VAR_ANY && !is_type_compound(skip_typeref(expr->base.type)))
2047                                 lhs_var = NULL;
2048                         mark_vars_read(expr->select.compound, lhs_var);
2049                         return;
2050
2051                 case EXPR_ARRAY_ACCESS: {
2052                         expression_t *const ref = expr->array_access.array_ref;
2053                         mark_vars_read(ref, lhs_var);
2054                         lhs_var = determine_lhs_var(ref, lhs_var);
2055                         mark_vars_read(expr->array_access.index, lhs_var);
2056                         return;
2057                 }
2058
2059                 case EXPR_VA_ARG:
2060                         mark_vars_read(expr->va_arge.ap, lhs_var);
2061                         return;
2062
2063                 case EXPR_UNARY_CAST:
2064                         /* Special case: Use void cast to mark a variable as "read" */
2065                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
2066                                 lhs_var = NULL;
2067                         goto unary;
2068
2069
2070                 case EXPR_UNARY_THROW:
2071                         if (expr->unary.value == NULL)
2072                                 return;
2073                         /* FALLTHROUGH */
2074                 case EXPR_UNARY_DEREFERENCE:
2075                 case EXPR_UNARY_DELETE:
2076                 case EXPR_UNARY_DELETE_ARRAY:
2077                         if (lhs_var == VAR_ANY)
2078                                 lhs_var = NULL;
2079                         goto unary;
2080
2081                 case EXPR_UNARY_NEGATE:
2082                 case EXPR_UNARY_PLUS:
2083                 case EXPR_UNARY_BITWISE_NEGATE:
2084                 case EXPR_UNARY_NOT:
2085                 case EXPR_UNARY_TAKE_ADDRESS:
2086                 case EXPR_UNARY_POSTFIX_INCREMENT:
2087                 case EXPR_UNARY_POSTFIX_DECREMENT:
2088                 case EXPR_UNARY_PREFIX_INCREMENT:
2089                 case EXPR_UNARY_PREFIX_DECREMENT:
2090                 case EXPR_UNARY_CAST_IMPLICIT:
2091                 case EXPR_UNARY_ASSUME:
2092 unary:
2093                         mark_vars_read(expr->unary.value, lhs_var);
2094                         return;
2095
2096                 case EXPR_BINARY_ADD:
2097                 case EXPR_BINARY_SUB:
2098                 case EXPR_BINARY_MUL:
2099                 case EXPR_BINARY_DIV:
2100                 case EXPR_BINARY_MOD:
2101                 case EXPR_BINARY_EQUAL:
2102                 case EXPR_BINARY_NOTEQUAL:
2103                 case EXPR_BINARY_LESS:
2104                 case EXPR_BINARY_LESSEQUAL:
2105                 case EXPR_BINARY_GREATER:
2106                 case EXPR_BINARY_GREATEREQUAL:
2107                 case EXPR_BINARY_BITWISE_AND:
2108                 case EXPR_BINARY_BITWISE_OR:
2109                 case EXPR_BINARY_BITWISE_XOR:
2110                 case EXPR_BINARY_LOGICAL_AND:
2111                 case EXPR_BINARY_LOGICAL_OR:
2112                 case EXPR_BINARY_SHIFTLEFT:
2113                 case EXPR_BINARY_SHIFTRIGHT:
2114                 case EXPR_BINARY_COMMA:
2115                 case EXPR_BINARY_ISGREATER:
2116                 case EXPR_BINARY_ISGREATEREQUAL:
2117                 case EXPR_BINARY_ISLESS:
2118                 case EXPR_BINARY_ISLESSEQUAL:
2119                 case EXPR_BINARY_ISLESSGREATER:
2120                 case EXPR_BINARY_ISUNORDERED:
2121                         mark_vars_read(expr->binary.left,  lhs_var);
2122                         mark_vars_read(expr->binary.right, lhs_var);
2123                         return;
2124
2125                 case EXPR_BINARY_ASSIGN:
2126                 case EXPR_BINARY_MUL_ASSIGN:
2127                 case EXPR_BINARY_DIV_ASSIGN:
2128                 case EXPR_BINARY_MOD_ASSIGN:
2129                 case EXPR_BINARY_ADD_ASSIGN:
2130                 case EXPR_BINARY_SUB_ASSIGN:
2131                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2132                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2133                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
2134                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2135                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
2136                         if (lhs_var == VAR_ANY)
2137                                 lhs_var = NULL;
2138                         lhs_var = determine_lhs_var(expr->binary.left, lhs_var);
2139                         mark_vars_read(expr->binary.right, lhs_var);
2140                         return;
2141                 }
2142
2143                 case EXPR_VA_START:
2144                         determine_lhs_var(expr->va_starte.ap, lhs_var);
2145                         return;
2146
2147                 case EXPR_UNKNOWN:
2148                 case EXPR_INVALID:
2149                 case EXPR_CONST:
2150                 case EXPR_CHARACTER_CONSTANT:
2151                 case EXPR_WIDE_CHARACTER_CONSTANT:
2152                 case EXPR_STRING_LITERAL:
2153                 case EXPR_WIDE_STRING_LITERAL:
2154                 case EXPR_COMPOUND_LITERAL: // TODO init?
2155                 case EXPR_SIZEOF:
2156                 case EXPR_CLASSIFY_TYPE:
2157                 case EXPR_ALIGNOF:
2158                 case EXPR_FUNCNAME:
2159                 case EXPR_BUILTIN_SYMBOL:
2160                 case EXPR_BUILTIN_CONSTANT_P:
2161                 case EXPR_BUILTIN_PREFETCH:
2162                 case EXPR_OFFSETOF:
2163                 case EXPR_STATEMENT: // TODO
2164                 case EXPR_LABEL_ADDRESS:
2165                 case EXPR_BINARY_BUILTIN_EXPECT:
2166                 case EXPR_REFERENCE_ENUM_VALUE:
2167                         return;
2168         }
2169
2170         panic("unhandled expression");
2171 }
2172
2173 static designator_t *parse_designation(void)
2174 {
2175         designator_t *result = NULL;
2176         designator_t *last   = NULL;
2177
2178         while (true) {
2179                 designator_t *designator;
2180                 switch (token.type) {
2181                 case '[':
2182                         designator = allocate_ast_zero(sizeof(designator[0]));
2183                         designator->source_position = token.source_position;
2184                         next_token();
2185                         add_anchor_token(']');
2186                         designator->array_index = parse_constant_expression();
2187                         rem_anchor_token(']');
2188                         expect(']');
2189                         break;
2190                 case '.':
2191                         designator = allocate_ast_zero(sizeof(designator[0]));
2192                         designator->source_position = token.source_position;
2193                         next_token();
2194                         if (token.type != T_IDENTIFIER) {
2195                                 parse_error_expected("while parsing designator",
2196                                                      T_IDENTIFIER, NULL);
2197                                 return NULL;
2198                         }
2199                         designator->symbol = token.v.symbol;
2200                         next_token();
2201                         break;
2202                 default:
2203                         expect('=');
2204                         return result;
2205                 }
2206
2207                 assert(designator != NULL);
2208                 if (last != NULL) {
2209                         last->next = designator;
2210                 } else {
2211                         result = designator;
2212                 }
2213                 last = designator;
2214         }
2215 end_error:
2216         return NULL;
2217 }
2218
2219 static initializer_t *initializer_from_string(array_type_t *type,
2220                                               const string_t *const string)
2221 {
2222         /* TODO: check len vs. size of array type */
2223         (void) type;
2224
2225         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
2226         initializer->string.string = *string;
2227
2228         return initializer;
2229 }
2230
2231 static initializer_t *initializer_from_wide_string(array_type_t *const type,
2232                                                    wide_string_t *const string)
2233 {
2234         /* TODO: check len vs. size of array type */
2235         (void) type;
2236
2237         initializer_t *const initializer =
2238                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
2239         initializer->wide_string.string = *string;
2240
2241         return initializer;
2242 }
2243
2244 /**
2245  * Build an initializer from a given expression.
2246  */
2247 static initializer_t *initializer_from_expression(type_t *orig_type,
2248                                                   expression_t *expression)
2249 {
2250         /* TODO check that expression is a constant expression */
2251
2252         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
2253         type_t *type           = skip_typeref(orig_type);
2254         type_t *expr_type_orig = expression->base.type;
2255         type_t *expr_type      = skip_typeref(expr_type_orig);
2256         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
2257                 array_type_t *const array_type   = &type->array;
2258                 type_t       *const element_type = skip_typeref(array_type->element_type);
2259
2260                 if (element_type->kind == TYPE_ATOMIC) {
2261                         atomic_type_kind_t akind = element_type->atomic.akind;
2262                         switch (expression->kind) {
2263                                 case EXPR_STRING_LITERAL:
2264                                         if (akind == ATOMIC_TYPE_CHAR
2265                                                         || akind == ATOMIC_TYPE_SCHAR
2266                                                         || akind == ATOMIC_TYPE_UCHAR) {
2267                                                 return initializer_from_string(array_type,
2268                                                         &expression->string.value);
2269                                         }
2270
2271                                 case EXPR_WIDE_STRING_LITERAL: {
2272                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
2273                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
2274                                                 return initializer_from_wide_string(array_type,
2275                                                         &expression->wide_string.value);
2276                                         }
2277                                 }
2278
2279                                 default:
2280                                         break;
2281                         }
2282                 }
2283         }
2284
2285         assign_error_t error = semantic_assign(type, expression);
2286         if (error == ASSIGN_ERROR_INCOMPATIBLE)
2287                 return NULL;
2288         report_assign_error(error, type, expression, "initializer",
2289                             &expression->base.source_position);
2290
2291         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2292 #if 0
2293         if (type->kind == TYPE_BITFIELD) {
2294                 type = type->bitfield.base_type;
2295         }
2296 #endif
2297         result->value.value = create_implicit_cast(expression, type);
2298
2299         return result;
2300 }
2301
2302 /**
2303  * Checks if a given expression can be used as an constant initializer.
2304  */
2305 static bool is_initializer_constant(const expression_t *expression)
2306 {
2307         return is_constant_expression(expression)
2308                 || is_address_constant(expression);
2309 }
2310
2311 /**
2312  * Parses an scalar initializer.
2313  *
2314  * Â§ 6.7.8.11; eat {} without warning
2315  */
2316 static initializer_t *parse_scalar_initializer(type_t *type,
2317                                                bool must_be_constant)
2318 {
2319         /* there might be extra {} hierarchies */
2320         int braces = 0;
2321         if (token.type == '{') {
2322                 if (warning.other)
2323                         warningf(HERE, "extra curly braces around scalar initializer");
2324                 do {
2325                         ++braces;
2326                         next_token();
2327                 } while (token.type == '{');
2328         }
2329
2330         expression_t *expression = parse_assignment_expression();
2331         mark_vars_read(expression, NULL);
2332         if (must_be_constant && !is_initializer_constant(expression)) {
2333                 errorf(&expression->base.source_position,
2334                        "Initialisation expression '%E' is not constant\n",
2335                        expression);
2336         }
2337
2338         initializer_t *initializer = initializer_from_expression(type, expression);
2339
2340         if (initializer == NULL) {
2341                 errorf(&expression->base.source_position,
2342                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2343                        expression, expression->base.type, type);
2344                 /* TODO */
2345                 return NULL;
2346         }
2347
2348         bool additional_warning_displayed = false;
2349         while (braces > 0) {
2350                 if (token.type == ',') {
2351                         next_token();
2352                 }
2353                 if (token.type != '}') {
2354                         if (!additional_warning_displayed && warning.other) {
2355                                 warningf(HERE, "additional elements in scalar initializer");
2356                                 additional_warning_displayed = true;
2357                         }
2358                 }
2359                 eat_block();
2360                 braces--;
2361         }
2362
2363         return initializer;
2364 }
2365
2366 /**
2367  * An entry in the type path.
2368  */
2369 typedef struct type_path_entry_t type_path_entry_t;
2370 struct type_path_entry_t {
2371         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2372         union {
2373                 size_t         index;          /**< For array types: the current index. */
2374                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2375         } v;
2376 };
2377
2378 /**
2379  * A type path expression a position inside compound or array types.
2380  */
2381 typedef struct type_path_t type_path_t;
2382 struct type_path_t {
2383         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2384         type_t            *top_type;     /**< type of the element the path points */
2385         size_t             max_index;    /**< largest index in outermost array */
2386 };
2387
2388 /**
2389  * Prints a type path for debugging.
2390  */
2391 static __attribute__((unused)) void debug_print_type_path(
2392                 const type_path_t *path)
2393 {
2394         size_t len = ARR_LEN(path->path);
2395
2396         for(size_t i = 0; i < len; ++i) {
2397                 const type_path_entry_t *entry = & path->path[i];
2398
2399                 type_t *type = skip_typeref(entry->type);
2400                 if (is_type_compound(type)) {
2401                         /* in gcc mode structs can have no members */
2402                         if (entry->v.compound_entry == NULL) {
2403                                 assert(i == len-1);
2404                                 continue;
2405                         }
2406                         fprintf(stderr, ".%s",
2407                                 entry->v.compound_entry->base.symbol->string);
2408                 } else if (is_type_array(type)) {
2409                         fprintf(stderr, "[%zu]", entry->v.index);
2410                 } else {
2411                         fprintf(stderr, "-INVALID-");
2412                 }
2413         }
2414         if (path->top_type != NULL) {
2415                 fprintf(stderr, "  (");
2416                 print_type(path->top_type);
2417                 fprintf(stderr, ")");
2418         }
2419 }
2420
2421 /**
2422  * Return the top type path entry, ie. in a path
2423  * (type).a.b returns the b.
2424  */
2425 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2426 {
2427         size_t len = ARR_LEN(path->path);
2428         assert(len > 0);
2429         return &path->path[len-1];
2430 }
2431
2432 /**
2433  * Enlarge the type path by an (empty) element.
2434  */
2435 static type_path_entry_t *append_to_type_path(type_path_t *path)
2436 {
2437         size_t len = ARR_LEN(path->path);
2438         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2439
2440         type_path_entry_t *result = & path->path[len];
2441         memset(result, 0, sizeof(result[0]));
2442         return result;
2443 }
2444
2445 /**
2446  * Descending into a sub-type. Enter the scope of the current top_type.
2447  */
2448 static void descend_into_subtype(type_path_t *path)
2449 {
2450         type_t *orig_top_type = path->top_type;
2451         type_t *top_type      = skip_typeref(orig_top_type);
2452
2453         type_path_entry_t *top = append_to_type_path(path);
2454         top->type              = top_type;
2455
2456         if (is_type_compound(top_type)) {
2457                 compound_t *compound  = top_type->compound.compound;
2458                 entity_t   *entry     = compound->members.entities;
2459
2460                 if (entry != NULL) {
2461                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2462                         top->v.compound_entry = &entry->declaration;
2463                         path->top_type = entry->declaration.type;
2464                 } else {
2465                         path->top_type = NULL;
2466                 }
2467         } else if (is_type_array(top_type)) {
2468                 top->v.index   = 0;
2469                 path->top_type = top_type->array.element_type;
2470         } else {
2471                 assert(!is_type_valid(top_type));
2472         }
2473 }
2474
2475 /**
2476  * Pop an entry from the given type path, ie. returning from
2477  * (type).a.b to (type).a
2478  */
2479 static void ascend_from_subtype(type_path_t *path)
2480 {
2481         type_path_entry_t *top = get_type_path_top(path);
2482
2483         path->top_type = top->type;
2484
2485         size_t len = ARR_LEN(path->path);
2486         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2487 }
2488
2489 /**
2490  * Pop entries from the given type path until the given
2491  * path level is reached.
2492  */
2493 static void ascend_to(type_path_t *path, size_t top_path_level)
2494 {
2495         size_t len = ARR_LEN(path->path);
2496
2497         while (len > top_path_level) {
2498                 ascend_from_subtype(path);
2499                 len = ARR_LEN(path->path);
2500         }
2501 }
2502
2503 static bool walk_designator(type_path_t *path, const designator_t *designator,
2504                             bool used_in_offsetof)
2505 {
2506         for( ; designator != NULL; designator = designator->next) {
2507                 type_path_entry_t *top       = get_type_path_top(path);
2508                 type_t            *orig_type = top->type;
2509
2510                 type_t *type = skip_typeref(orig_type);
2511
2512                 if (designator->symbol != NULL) {
2513                         symbol_t *symbol = designator->symbol;
2514                         if (!is_type_compound(type)) {
2515                                 if (is_type_valid(type)) {
2516                                         errorf(&designator->source_position,
2517                                                "'.%Y' designator used for non-compound type '%T'",
2518                                                symbol, orig_type);
2519                                 }
2520
2521                                 top->type             = type_error_type;
2522                                 top->v.compound_entry = NULL;
2523                                 orig_type             = type_error_type;
2524                         } else {
2525                                 compound_t *compound = type->compound.compound;
2526                                 entity_t   *iter     = compound->members.entities;
2527                                 for( ; iter != NULL; iter = iter->base.next) {
2528                                         if (iter->base.symbol == symbol) {
2529                                                 break;
2530                                         }
2531                                 }
2532                                 if (iter == NULL) {
2533                                         errorf(&designator->source_position,
2534                                                "'%T' has no member named '%Y'", orig_type, symbol);
2535                                         goto failed;
2536                                 }
2537                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2538                                 if (used_in_offsetof) {
2539                                         type_t *real_type = skip_typeref(iter->declaration.type);
2540                                         if (real_type->kind == TYPE_BITFIELD) {
2541                                                 errorf(&designator->source_position,
2542                                                        "offsetof designator '%Y' may not specify bitfield",
2543                                                        symbol);
2544                                                 goto failed;
2545                                         }
2546                                 }
2547
2548                                 top->type             = orig_type;
2549                                 top->v.compound_entry = &iter->declaration;
2550                                 orig_type             = iter->declaration.type;
2551                         }
2552                 } else {
2553                         expression_t *array_index = designator->array_index;
2554                         assert(designator->array_index != NULL);
2555
2556                         if (!is_type_array(type)) {
2557                                 if (is_type_valid(type)) {
2558                                         errorf(&designator->source_position,
2559                                                "[%E] designator used for non-array type '%T'",
2560                                                array_index, orig_type);
2561                                 }
2562                                 goto failed;
2563                         }
2564
2565                         long index = fold_constant(array_index);
2566                         if (!used_in_offsetof) {
2567                                 if (index < 0) {
2568                                         errorf(&designator->source_position,
2569                                                "array index [%E] must be positive", array_index);
2570                                 } else if (type->array.size_constant) {
2571                                         long array_size = type->array.size;
2572                                         if (index >= array_size) {
2573                                                 errorf(&designator->source_position,
2574                                                        "designator [%E] (%d) exceeds array size %d",
2575                                                        array_index, index, array_size);
2576                                         }
2577                                 }
2578                         }
2579
2580                         top->type    = orig_type;
2581                         top->v.index = (size_t) index;
2582                         orig_type    = type->array.element_type;
2583                 }
2584                 path->top_type = orig_type;
2585
2586                 if (designator->next != NULL) {
2587                         descend_into_subtype(path);
2588                 }
2589         }
2590         return true;
2591
2592 failed:
2593         return false;
2594 }
2595
2596 static void advance_current_object(type_path_t *path, size_t top_path_level)
2597 {
2598         type_path_entry_t *top = get_type_path_top(path);
2599
2600         type_t *type = skip_typeref(top->type);
2601         if (is_type_union(type)) {
2602                 /* in unions only the first element is initialized */
2603                 top->v.compound_entry = NULL;
2604         } else if (is_type_struct(type)) {
2605                 declaration_t *entry = top->v.compound_entry;
2606
2607                 entity_t *next_entity = entry->base.next;
2608                 if (next_entity != NULL) {
2609                         assert(is_declaration(next_entity));
2610                         entry = &next_entity->declaration;
2611                 } else {
2612                         entry = NULL;
2613                 }
2614
2615                 top->v.compound_entry = entry;
2616                 if (entry != NULL) {
2617                         path->top_type = entry->type;
2618                         return;
2619                 }
2620         } else if (is_type_array(type)) {
2621                 assert(is_type_array(type));
2622
2623                 top->v.index++;
2624
2625                 if (!type->array.size_constant || top->v.index < type->array.size) {
2626                         return;
2627                 }
2628         } else {
2629                 assert(!is_type_valid(type));
2630                 return;
2631         }
2632
2633         /* we're past the last member of the current sub-aggregate, try if we
2634          * can ascend in the type hierarchy and continue with another subobject */
2635         size_t len = ARR_LEN(path->path);
2636
2637         if (len > top_path_level) {
2638                 ascend_from_subtype(path);
2639                 advance_current_object(path, top_path_level);
2640         } else {
2641                 path->top_type = NULL;
2642         }
2643 }
2644
2645 /**
2646  * skip until token is found.
2647  */
2648 static void skip_until(int type)
2649 {
2650         while (token.type != type) {
2651                 if (token.type == T_EOF)
2652                         return;
2653                 next_token();
2654         }
2655 }
2656
2657 /**
2658  * skip any {...} blocks until a closing bracket is reached.
2659  */
2660 static void skip_initializers(void)
2661 {
2662         if (token.type == '{')
2663                 next_token();
2664
2665         while (token.type != '}') {
2666                 if (token.type == T_EOF)
2667                         return;
2668                 if (token.type == '{') {
2669                         eat_block();
2670                         continue;
2671                 }
2672                 next_token();
2673         }
2674 }
2675
2676 static initializer_t *create_empty_initializer(void)
2677 {
2678         static initializer_t empty_initializer
2679                 = { .list = { { INITIALIZER_LIST }, 0 } };
2680         return &empty_initializer;
2681 }
2682
2683 /**
2684  * Parse a part of an initialiser for a struct or union,
2685  */
2686 static initializer_t *parse_sub_initializer(type_path_t *path,
2687                 type_t *outer_type, size_t top_path_level,
2688                 parse_initializer_env_t *env)
2689 {
2690         if (token.type == '}') {
2691                 /* empty initializer */
2692                 return create_empty_initializer();
2693         }
2694
2695         type_t *orig_type = path->top_type;
2696         type_t *type      = NULL;
2697
2698         if (orig_type == NULL) {
2699                 /* We are initializing an empty compound. */
2700         } else {
2701                 type = skip_typeref(orig_type);
2702         }
2703
2704         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2705
2706         while (true) {
2707                 designator_t *designator = NULL;
2708                 if (token.type == '.' || token.type == '[') {
2709                         designator = parse_designation();
2710                         goto finish_designator;
2711                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2712                         /* GNU-style designator ("identifier: value") */
2713                         designator = allocate_ast_zero(sizeof(designator[0]));
2714                         designator->source_position = token.source_position;
2715                         designator->symbol          = token.v.symbol;
2716                         eat(T_IDENTIFIER);
2717                         eat(':');
2718
2719 finish_designator:
2720                         /* reset path to toplevel, evaluate designator from there */
2721                         ascend_to(path, top_path_level);
2722                         if (!walk_designator(path, designator, false)) {
2723                                 /* can't continue after designation error */
2724                                 goto end_error;
2725                         }
2726
2727                         initializer_t *designator_initializer
2728                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2729                         designator_initializer->designator.designator = designator;
2730                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2731
2732                         orig_type = path->top_type;
2733                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2734                 }
2735
2736                 initializer_t *sub;
2737
2738                 if (token.type == '{') {
2739                         if (type != NULL && is_type_scalar(type)) {
2740                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2741                         } else {
2742                                 eat('{');
2743                                 if (type == NULL) {
2744                                         if (env->entity != NULL) {
2745                                                 errorf(HERE,
2746                                                      "extra brace group at end of initializer for '%Y'",
2747                                                      env->entity->base.symbol);
2748                                         } else {
2749                                                 errorf(HERE, "extra brace group at end of initializer");
2750                                         }
2751                                 } else
2752                                         descend_into_subtype(path);
2753
2754                                 add_anchor_token('}');
2755                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2756                                                             env);
2757                                 rem_anchor_token('}');
2758
2759                                 if (type != NULL) {
2760                                         ascend_from_subtype(path);
2761                                         expect('}');
2762                                 } else {
2763                                         expect('}');
2764                                         goto error_parse_next;
2765                                 }
2766                         }
2767                 } else {
2768                         /* must be an expression */
2769                         expression_t *expression = parse_assignment_expression();
2770
2771                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2772                                 errorf(&expression->base.source_position,
2773                                        "Initialisation expression '%E' is not constant\n",
2774                                        expression);
2775                         }
2776
2777                         if (type == NULL) {
2778                                 /* we are already outside, ... */
2779                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2780                                 if (is_type_compound(outer_type_skip) &&
2781                                     !outer_type_skip->compound.compound->complete) {
2782                                         goto error_parse_next;
2783                                 }
2784                                 goto error_excess;
2785                         }
2786
2787                         /* handle { "string" } special case */
2788                         if ((expression->kind == EXPR_STRING_LITERAL
2789                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2790                                         && outer_type != NULL) {
2791                                 sub = initializer_from_expression(outer_type, expression);
2792                                 if (sub != NULL) {
2793                                         if (token.type == ',') {
2794                                                 next_token();
2795                                         }
2796                                         if (token.type != '}' && warning.other) {
2797                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2798                                                                  orig_type);
2799                                         }
2800                                         /* TODO: eat , ... */
2801                                         return sub;
2802                                 }
2803                         }
2804
2805                         /* descend into subtypes until expression matches type */
2806                         while (true) {
2807                                 orig_type = path->top_type;
2808                                 type      = skip_typeref(orig_type);
2809
2810                                 sub = initializer_from_expression(orig_type, expression);
2811                                 if (sub != NULL) {
2812                                         break;
2813                                 }
2814                                 if (!is_type_valid(type)) {
2815                                         goto end_error;
2816                                 }
2817                                 if (is_type_scalar(type)) {
2818                                         errorf(&expression->base.source_position,
2819                                                         "expression '%E' doesn't match expected type '%T'",
2820                                                         expression, orig_type);
2821                                         goto end_error;
2822                                 }
2823
2824                                 descend_into_subtype(path);
2825                         }
2826                 }
2827
2828                 /* update largest index of top array */
2829                 const type_path_entry_t *first      = &path->path[0];
2830                 type_t                  *first_type = first->type;
2831                 first_type                          = skip_typeref(first_type);
2832                 if (is_type_array(first_type)) {
2833                         size_t index = first->v.index;
2834                         if (index > path->max_index)
2835                                 path->max_index = index;
2836                 }
2837
2838                 if (type != NULL) {
2839                         /* append to initializers list */
2840                         ARR_APP1(initializer_t*, initializers, sub);
2841                 } else {
2842 error_excess:
2843                         if (warning.other) {
2844                                 if (env->entity != NULL) {
2845                                         warningf(HERE, "excess elements in struct initializer for '%Y'",
2846                                            env->entity->base.symbol);
2847                                 } else {
2848                                         warningf(HERE, "excess elements in struct initializer");
2849                                 }
2850                         }
2851                 }
2852
2853 error_parse_next:
2854                 if (token.type == '}') {
2855                         break;
2856                 }
2857                 expect(',');
2858                 if (token.type == '}') {
2859                         break;
2860                 }
2861
2862                 if (type != NULL) {
2863                         /* advance to the next declaration if we are not at the end */
2864                         advance_current_object(path, top_path_level);
2865                         orig_type = path->top_type;
2866                         if (orig_type != NULL)
2867                                 type = skip_typeref(orig_type);
2868                         else
2869                                 type = NULL;
2870                 }
2871         }
2872
2873         size_t len  = ARR_LEN(initializers);
2874         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2875         initializer_t *result = allocate_ast_zero(size);
2876         result->kind          = INITIALIZER_LIST;
2877         result->list.len      = len;
2878         memcpy(&result->list.initializers, initializers,
2879                len * sizeof(initializers[0]));
2880
2881         DEL_ARR_F(initializers);
2882         ascend_to(path, top_path_level+1);
2883
2884         return result;
2885
2886 end_error:
2887         skip_initializers();
2888         DEL_ARR_F(initializers);
2889         ascend_to(path, top_path_level+1);
2890         return NULL;
2891 }
2892
2893 /**
2894  * Parses an initializer. Parsers either a compound literal
2895  * (env->declaration == NULL) or an initializer of a declaration.
2896  */
2897 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2898 {
2899         type_t        *type   = skip_typeref(env->type);
2900         initializer_t *result = NULL;
2901         size_t         max_index;
2902
2903         if (is_type_scalar(type)) {
2904                 result = parse_scalar_initializer(type, env->must_be_constant);
2905         } else if (token.type == '{') {
2906                 eat('{');
2907
2908                 type_path_t path;
2909                 memset(&path, 0, sizeof(path));
2910                 path.top_type = env->type;
2911                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2912
2913                 descend_into_subtype(&path);
2914
2915                 add_anchor_token('}');
2916                 result = parse_sub_initializer(&path, env->type, 1, env);
2917                 rem_anchor_token('}');
2918
2919                 max_index = path.max_index;
2920                 DEL_ARR_F(path.path);
2921
2922                 expect('}');
2923         } else {
2924                 /* parse_scalar_initializer() also works in this case: we simply
2925                  * have an expression without {} around it */
2926                 result = parse_scalar_initializer(type, env->must_be_constant);
2927         }
2928
2929         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2930          * the array type size */
2931         if (is_type_array(type) && type->array.size_expression == NULL
2932                         && result != NULL) {
2933                 size_t size;
2934                 switch (result->kind) {
2935                 case INITIALIZER_LIST:
2936                         size = max_index + 1;
2937                         break;
2938
2939                 case INITIALIZER_STRING:
2940                         size = result->string.string.size;
2941                         break;
2942
2943                 case INITIALIZER_WIDE_STRING:
2944                         size = result->wide_string.string.size;
2945                         break;
2946
2947                 case INITIALIZER_DESIGNATOR:
2948                 case INITIALIZER_VALUE:
2949                         /* can happen for parse errors */
2950                         size = 0;
2951                         break;
2952
2953                 default:
2954                         internal_errorf(HERE, "invalid initializer type");
2955                 }
2956
2957                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2958                 cnst->base.type          = type_size_t;
2959                 cnst->conste.v.int_value = size;
2960
2961                 type_t *new_type = duplicate_type(type);
2962
2963                 new_type->array.size_expression   = cnst;
2964                 new_type->array.size_constant     = true;
2965                 new_type->array.has_implicit_size = true;
2966                 new_type->array.size              = size;
2967                 env->type = new_type;
2968         }
2969
2970         return result;
2971 end_error:
2972         return NULL;
2973 }
2974
2975 static void append_entity(scope_t *scope, entity_t *entity)
2976 {
2977         if (scope->last_entity != NULL) {
2978                 scope->last_entity->base.next = entity;
2979         } else {
2980                 scope->entities = entity;
2981         }
2982         scope->last_entity = entity;
2983 }
2984
2985
2986 static compound_t *parse_compound_type_specifier(bool is_struct)
2987 {
2988         gnu_attribute_t  *attributes = NULL;
2989         decl_modifiers_t  modifiers  = 0;
2990         if (is_struct) {
2991                 eat(T_struct);
2992         } else {
2993                 eat(T_union);
2994         }
2995
2996         symbol_t   *symbol      = NULL;
2997         compound_t *compound = NULL;
2998
2999         if (token.type == T___attribute__) {
3000                 modifiers |= parse_attributes(&attributes);
3001         }
3002
3003         if (token.type == T_IDENTIFIER) {
3004                 symbol = token.v.symbol;
3005                 next_token();
3006
3007                 namespace_t const namespc =
3008                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
3009                 entity_t *entity = get_entity(symbol, namespc);
3010                 if (entity != NULL) {
3011                         assert(entity->kind == (is_struct ? ENTITY_STRUCT : ENTITY_UNION));
3012                         compound = &entity->compound;
3013                         if (compound->base.parent_scope != scope &&
3014                             (token.type == '{' || token.type == ';')) {
3015                                 /* we're in an inner scope and have a definition. Override
3016                                    existing definition in outer scope */
3017                                 compound = NULL;
3018                         } else if (compound->complete && token.type == '{') {
3019                                 assert(symbol != NULL);
3020                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
3021                                        is_struct ? "struct" : "union", symbol,
3022                                        &compound->base.source_position);
3023                                 /* clear members in the hope to avoid further errors */
3024                                 compound->members.entities = NULL;
3025                         }
3026                 }
3027         } else if (token.type != '{') {
3028                 if (is_struct) {
3029                         parse_error_expected("while parsing struct type specifier",
3030                                              T_IDENTIFIER, '{', NULL);
3031                 } else {
3032                         parse_error_expected("while parsing union type specifier",
3033                                              T_IDENTIFIER, '{', NULL);
3034                 }
3035
3036                 return NULL;
3037         }
3038
3039         if (compound == NULL) {
3040                 entity_kind_t  kind   = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
3041                 entity_t      *entity = allocate_entity_zero(kind);
3042                 compound              = &entity->compound;
3043
3044                 compound->base.namespc =
3045                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
3046                 compound->base.source_position = token.source_position;
3047                 compound->base.symbol          = symbol;
3048                 compound->base.parent_scope    = scope;
3049                 if (symbol != NULL) {
3050                         environment_push(entity);
3051                 }
3052                 append_entity(scope, entity);
3053         }
3054
3055         if (token.type == '{') {
3056                 compound->complete = true;
3057
3058                 parse_compound_type_entries(compound);
3059                 modifiers |= parse_attributes(&attributes);
3060         }
3061
3062         compound->modifiers |= modifiers;
3063         return compound;
3064 }
3065
3066 static void parse_enum_entries(type_t *const enum_type)
3067 {
3068         eat('{');
3069
3070         if (token.type == '}') {
3071                 next_token();
3072                 errorf(HERE, "empty enum not allowed");
3073                 return;
3074         }
3075
3076         add_anchor_token('}');
3077         do {
3078                 if (token.type != T_IDENTIFIER) {
3079                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
3080                         eat_block();
3081                         rem_anchor_token('}');
3082                         return;
3083                 }
3084
3085                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
3086                 entity->enum_value.enum_type = enum_type;
3087                 entity->base.symbol          = token.v.symbol;
3088                 entity->base.source_position = token.source_position;
3089                 next_token();
3090
3091                 if (token.type == '=') {
3092                         next_token();
3093                         expression_t *value = parse_constant_expression();
3094
3095                         value = create_implicit_cast(value, enum_type);
3096                         entity->enum_value.value = value;
3097
3098                         /* TODO semantic */
3099                 }
3100
3101                 record_entity(entity, false);
3102
3103                 if (token.type != ',')
3104                         break;
3105                 next_token();
3106         } while (token.type != '}');
3107         rem_anchor_token('}');
3108
3109         expect('}');
3110
3111 end_error:
3112         ;
3113 }
3114
3115 static type_t *parse_enum_specifier(void)
3116 {
3117         gnu_attribute_t *attributes = NULL;
3118         entity_t        *entity;
3119         symbol_t        *symbol;
3120
3121         eat(T_enum);
3122         if (token.type == T_IDENTIFIER) {
3123                 symbol = token.v.symbol;
3124                 next_token();
3125
3126                 entity = get_entity(symbol, NAMESPACE_ENUM);
3127                 assert(entity == NULL || entity->kind == ENTITY_ENUM);
3128         } else if (token.type != '{') {
3129                 parse_error_expected("while parsing enum type specifier",
3130                                      T_IDENTIFIER, '{', NULL);
3131                 return NULL;
3132         } else {
3133                 entity  = NULL;
3134                 symbol  = NULL;
3135         }
3136
3137         if (entity == NULL) {
3138                 entity                       = allocate_entity_zero(ENTITY_ENUM);
3139                 entity->base.namespc         = NAMESPACE_ENUM;
3140                 entity->base.source_position = token.source_position;
3141                 entity->base.symbol          = symbol;
3142                 entity->base.parent_scope    = scope;
3143         }
3144
3145         type_t *const type = allocate_type_zero(TYPE_ENUM);
3146         type->enumt.enume  = &entity->enume;
3147
3148         if (token.type == '{') {
3149                 if (entity->enume.complete) {
3150                         errorf(HERE, "multiple definitions of enum %Y (previous definition %P)",
3151                                symbol, &entity->base.source_position);
3152                 }
3153                 if (symbol != NULL) {
3154                         environment_push(entity);
3155                 }
3156                 append_entity(scope, entity);
3157                 entity->enume.complete = true;
3158
3159                 parse_enum_entries(type);
3160                 parse_attributes(&attributes);
3161         } else if(!entity->enume.complete && !(c_mode & _GNUC)) {
3162                 errorf(HERE, "enum %Y used before definition (incomplete enumes are a GNU extension)",
3163                        symbol);
3164         }
3165
3166         return type;
3167 }
3168
3169 /**
3170  * if a symbol is a typedef to another type, return true
3171  */
3172 static bool is_typedef_symbol(symbol_t *symbol)
3173 {
3174         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
3175         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
3176 }
3177
3178 static type_t *parse_typeof(void)
3179 {
3180         eat(T___typeof__);
3181
3182         type_t *type;
3183
3184         expect('(');
3185         add_anchor_token(')');
3186
3187         expression_t *expression  = NULL;
3188
3189         bool old_type_prop     = in_type_prop;
3190         bool old_gcc_extension = in_gcc_extension;
3191         in_type_prop           = true;
3192
3193         while (token.type == T___extension__) {
3194                 /* This can be a prefix to a typename or an expression. */
3195                 next_token();
3196                 in_gcc_extension = true;
3197         }
3198         switch (token.type) {
3199         case T_IDENTIFIER:
3200                 if (is_typedef_symbol(token.v.symbol)) {
3201                         type = parse_typename();
3202                 } else {
3203                         expression = parse_expression();
3204                         type       = expression->base.type;
3205                 }
3206                 break;
3207
3208         TYPENAME_START
3209                 type = parse_typename();
3210                 break;
3211
3212         default:
3213                 expression = parse_expression();
3214                 type       = expression->base.type;
3215                 break;
3216         }
3217         in_type_prop     = old_type_prop;
3218         in_gcc_extension = old_gcc_extension;
3219
3220         rem_anchor_token(')');
3221         expect(')');
3222
3223         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
3224         typeof_type->typeoft.expression  = expression;
3225         typeof_type->typeoft.typeof_type = type;
3226
3227         return typeof_type;
3228 end_error:
3229         return NULL;
3230 }
3231
3232 typedef enum specifiers_t {
3233         SPECIFIER_SIGNED    = 1 << 0,
3234         SPECIFIER_UNSIGNED  = 1 << 1,
3235         SPECIFIER_LONG      = 1 << 2,
3236         SPECIFIER_INT       = 1 << 3,
3237         SPECIFIER_DOUBLE    = 1 << 4,
3238         SPECIFIER_CHAR      = 1 << 5,
3239         SPECIFIER_SHORT     = 1 << 6,
3240         SPECIFIER_LONG_LONG = 1 << 7,
3241         SPECIFIER_FLOAT     = 1 << 8,
3242         SPECIFIER_BOOL      = 1 << 9,
3243         SPECIFIER_VOID      = 1 << 10,
3244         SPECIFIER_INT8      = 1 << 11,
3245         SPECIFIER_INT16     = 1 << 12,
3246         SPECIFIER_INT32     = 1 << 13,
3247         SPECIFIER_INT64     = 1 << 14,
3248         SPECIFIER_INT128    = 1 << 15,
3249         SPECIFIER_COMPLEX   = 1 << 16,
3250         SPECIFIER_IMAGINARY = 1 << 17,
3251 } specifiers_t;
3252
3253 static type_t *create_builtin_type(symbol_t *const symbol,
3254                                    type_t *const real_type)
3255 {
3256         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
3257         type->builtin.symbol    = symbol;
3258         type->builtin.real_type = real_type;
3259
3260         type_t *result = typehash_insert(type);
3261         if (type != result) {
3262                 free_type(type);
3263         }
3264
3265         return result;
3266 }
3267
3268 static type_t *get_typedef_type(symbol_t *symbol)
3269 {
3270         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3271         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
3272                 return NULL;
3273
3274         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
3275         type->typedeft.typedefe = &entity->typedefe;
3276
3277         return type;
3278 }
3279
3280 /**
3281  * check for the allowed MS alignment values.
3282  */
3283 static bool check_alignment_value(long long intvalue)
3284 {
3285         if (intvalue < 1 || intvalue > 8192) {
3286                 errorf(HERE, "illegal alignment value");
3287                 return false;
3288         }
3289         unsigned v = (unsigned)intvalue;
3290         for (unsigned i = 1; i <= 8192; i += i) {
3291                 if (i == v)
3292                         return true;
3293         }
3294         errorf(HERE, "alignment must be power of two");
3295         return false;
3296 }
3297
3298 #define DET_MOD(name, tag) do { \
3299         if (*modifiers & tag && warning.other) warningf(HERE, #name " used more than once"); \
3300         *modifiers |= tag; \
3301 } while (0)
3302
3303 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
3304 {
3305         decl_modifiers_t *modifiers = &specifiers->modifiers;
3306
3307         while (true) {
3308                 if (token.type == T_restrict) {
3309                         next_token();
3310                         DET_MOD(restrict, DM_RESTRICT);
3311                         goto end_loop;
3312                 } else if (token.type != T_IDENTIFIER)
3313                         break;
3314                 symbol_t *symbol = token.v.symbol;
3315                 if (symbol == sym_align) {
3316                         next_token();
3317                         expect('(');
3318                         if (token.type != T_INTEGER)
3319                                 goto end_error;
3320                         if (check_alignment_value(token.v.intvalue)) {
3321                                 if (specifiers->alignment != 0 && warning.other)
3322                                         warningf(HERE, "align used more than once");
3323                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3324                         }
3325                         next_token();
3326                         expect(')');
3327                 } else if (symbol == sym_allocate) {
3328                         next_token();
3329                         expect('(');
3330                         if (token.type != T_IDENTIFIER)
3331                                 goto end_error;
3332                         (void)token.v.symbol;
3333                         expect(')');
3334                 } else if (symbol == sym_dllimport) {
3335                         next_token();
3336                         DET_MOD(dllimport, DM_DLLIMPORT);
3337                 } else if (symbol == sym_dllexport) {
3338                         next_token();
3339                         DET_MOD(dllexport, DM_DLLEXPORT);
3340                 } else if (symbol == sym_thread) {
3341                         next_token();
3342                         DET_MOD(thread, DM_THREAD);
3343                 } else if (symbol == sym_naked) {
3344                         next_token();
3345                         DET_MOD(naked, DM_NAKED);
3346                 } else if (symbol == sym_noinline) {
3347                         next_token();
3348                         DET_MOD(noinline, DM_NOINLINE);
3349                 } else if (symbol == sym_noreturn) {
3350                         next_token();
3351                         DET_MOD(noreturn, DM_NORETURN);
3352                 } else if (symbol == sym_nothrow) {
3353                         next_token();
3354                         DET_MOD(nothrow, DM_NOTHROW);
3355                 } else if (symbol == sym_novtable) {
3356                         next_token();
3357                         DET_MOD(novtable, DM_NOVTABLE);
3358                 } else if (symbol == sym_property) {
3359                         next_token();
3360                         expect('(');
3361                         for (;;) {
3362                                 bool is_get = false;
3363                                 if (token.type != T_IDENTIFIER)
3364                                         goto end_error;
3365                                 if (token.v.symbol == sym_get) {
3366                                         is_get = true;
3367                                 } else if (token.v.symbol == sym_put) {
3368                                 } else {
3369                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3370                                         goto end_error;
3371                                 }
3372                                 next_token();
3373                                 expect('=');
3374                                 if (token.type != T_IDENTIFIER)
3375                                         goto end_error;
3376                                 if (is_get) {
3377                                         if (specifiers->get_property_sym != NULL) {
3378                                                 errorf(HERE, "get property name already specified");
3379                                         } else {
3380                                                 specifiers->get_property_sym = token.v.symbol;
3381                                         }
3382                                 } else {
3383                                         if (specifiers->put_property_sym != NULL) {
3384                                                 errorf(HERE, "put property name already specified");
3385                                         } else {
3386                                                 specifiers->put_property_sym = token.v.symbol;
3387                                         }
3388                                 }
3389                                 next_token();
3390                                 if (token.type == ',') {
3391                                         next_token();
3392                                         continue;
3393                                 }
3394                                 break;
3395                         }
3396                         expect(')');
3397                 } else if (symbol == sym_selectany) {
3398                         next_token();
3399                         DET_MOD(selectany, DM_SELECTANY);
3400                 } else if (symbol == sym_uuid) {
3401                         next_token();
3402                         expect('(');
3403                         if (token.type != T_STRING_LITERAL)
3404                                 goto end_error;
3405                         next_token();
3406                         expect(')');
3407                 } else if (symbol == sym_deprecated) {
3408                         next_token();
3409                         if (specifiers->deprecated != 0 && warning.other)
3410                                 warningf(HERE, "deprecated used more than once");
3411                         specifiers->deprecated = true;
3412                         if (token.type == '(') {
3413                                 next_token();
3414                                 if (token.type == T_STRING_LITERAL) {
3415                                         specifiers->deprecated_string = token.v.string.begin;
3416                                         next_token();
3417                                 } else {
3418                                         errorf(HERE, "string literal expected");
3419                                 }
3420                                 expect(')');
3421                         }
3422                 } else if (symbol == sym_noalias) {
3423                         next_token();
3424                         DET_MOD(noalias, DM_NOALIAS);
3425                 } else {
3426                         if (warning.other)
3427                                 warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3428                         next_token();
3429                         if (token.type == '(')
3430                                 skip_until(')');
3431                 }
3432 end_loop:
3433                 if (token.type == ',')
3434                         next_token();
3435         }
3436 end_error:
3437         return;
3438 }
3439
3440 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
3441 {
3442         entity_t *entity             = allocate_entity_zero(kind);
3443         entity->base.source_position = *HERE;
3444         entity->base.symbol          = symbol;
3445         if (is_declaration(entity)) {
3446                 entity->declaration.implicit = true;
3447         }
3448         record_entity(entity, false);
3449         return entity;
3450 }
3451
3452 /**
3453  * Finish the construction of a struct type by calculating
3454  * its size, offsets, alignment.
3455  */
3456 static void finish_struct_type(compound_type_t *type)
3457 {
3458         assert(type->compound != NULL);
3459
3460         compound_t *compound = type->compound;
3461         if (!compound->complete)
3462                 return;
3463
3464         il_size_t      size           = 0;
3465         il_size_t      offset;
3466         il_alignment_t alignment      = 1;
3467         bool           need_pad       = false;
3468
3469         entity_t *entry = compound->members.entities;
3470         for (; entry != NULL; entry = entry->base.next) {
3471                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3472                         continue;
3473
3474                 type_t *m_type = skip_typeref(entry->declaration.type);
3475                 if (! is_type_valid(m_type)) {
3476                         /* simply ignore errors here */
3477                         continue;
3478                 }
3479                 il_alignment_t m_alignment = m_type->base.alignment;
3480                 if (m_alignment > alignment)
3481                         alignment = m_alignment;
3482
3483                 offset = (size + m_alignment - 1) & -m_alignment;
3484
3485                 if (offset > size)
3486                         need_pad = true;
3487                 entry->compound_member.offset = offset;
3488                 size = offset + m_type->base.size;
3489         }
3490         if (type->base.alignment != 0) {
3491                 alignment = type->base.alignment;
3492         }
3493
3494         offset = (size + alignment - 1) & -alignment;
3495         if (offset > size)
3496                 need_pad = true;
3497
3498         if (warning.padded && need_pad) {
3499                 warningf(&compound->base.source_position,
3500                         "'%#T' needs padding", type, compound->base.symbol);
3501         }
3502         if (warning.packed && !need_pad) {
3503                 warningf(&compound->base.source_position,
3504                         "superfluous packed attribute on '%#T'",
3505                         type, compound->base.symbol);
3506         }
3507
3508         type->base.size      = offset;
3509         type->base.alignment = alignment;
3510 }
3511
3512 /**
3513  * Finish the construction of an union type by calculating
3514  * its size and alignment.
3515  */
3516 static void finish_union_type(compound_type_t *type)
3517 {
3518         assert(type->compound != NULL);
3519
3520         compound_t *compound = type->compound;
3521         if (! compound->complete)
3522                 return;
3523
3524         il_size_t      size      = 0;
3525         il_alignment_t alignment = 1;
3526
3527         entity_t *entry = compound->members.entities;
3528         for (; entry != NULL; entry = entry->base.next) {
3529                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3530                         continue;
3531
3532                 type_t *m_type = skip_typeref(entry->declaration.type);
3533                 if (! is_type_valid(m_type))
3534                         continue;
3535
3536                 entry->compound_member.offset = 0;
3537                 if (m_type->base.size > size)
3538                         size = m_type->base.size;
3539                 if (m_type->base.alignment > alignment)
3540                         alignment = m_type->base.alignment;
3541         }
3542         if (type->base.alignment != 0) {
3543                 alignment = type->base.alignment;
3544         }
3545         size = (size + alignment - 1) & -alignment;
3546         type->base.size      = size;
3547         type->base.alignment = alignment;
3548 }
3549
3550 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3551 {
3552         type_t            *type              = NULL;
3553         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3554         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3555         unsigned           type_specifiers   = 0;
3556         bool               newtype           = false;
3557         bool               saw_error         = false;
3558         bool               old_gcc_extension = in_gcc_extension;
3559
3560         specifiers->source_position = token.source_position;
3561
3562         while (true) {
3563                 specifiers->modifiers
3564                         |= parse_attributes(&specifiers->gnu_attributes);
3565                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3566                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3567
3568                 switch (token.type) {
3569
3570                 /* storage class */
3571 #define MATCH_STORAGE_CLASS(token, class)                                  \
3572                 case token:                                                        \
3573                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
3574                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3575                         }                                                              \
3576                         specifiers->storage_class = class;                             \
3577                         next_token();                                                  \
3578                         break;
3579
3580                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3581                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3582                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3583                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3584                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3585
3586                 case T__declspec:
3587                         next_token();
3588                         expect('(');
3589                         add_anchor_token(')');
3590                         parse_microsoft_extended_decl_modifier(specifiers);
3591                         rem_anchor_token(')');
3592                         expect(')');
3593                         break;
3594
3595                 case T___thread:
3596                         switch (specifiers->storage_class) {
3597                         case STORAGE_CLASS_NONE:
3598                                 specifiers->storage_class = STORAGE_CLASS_THREAD;
3599                                 break;
3600
3601                         case STORAGE_CLASS_EXTERN:
3602                                 specifiers->storage_class = STORAGE_CLASS_THREAD_EXTERN;
3603                                 break;
3604
3605                         case STORAGE_CLASS_STATIC:
3606                                 specifiers->storage_class = STORAGE_CLASS_THREAD_STATIC;
3607                                 break;
3608
3609                         default:
3610                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3611                                 break;
3612                         }
3613                         next_token();
3614                         break;
3615
3616                 /* type qualifiers */
3617 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3618                 case token:                                                     \
3619                         qualifiers |= qualifier;                                    \
3620                         next_token();                                               \
3621                         break
3622
3623                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3624                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3625                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3626                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3627                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3628                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3629                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3630                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3631
3632                 case T___extension__:
3633                         next_token();
3634                         in_gcc_extension = true;
3635                         break;
3636
3637                 /* type specifiers */
3638 #define MATCH_SPECIFIER(token, specifier, name)                         \
3639                 case token:                                                     \
3640                         next_token();                                               \
3641                         if (type_specifiers & specifier) {                           \
3642                                 errorf(HERE, "multiple " name " type specifiers given"); \
3643                         } else {                                                    \
3644                                 type_specifiers |= specifier;                           \
3645                         }                                                           \
3646                         break
3647
3648                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3649                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3650                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3651                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3652                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3653                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3654                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3655                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3656                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3657                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3658                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3659                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3660                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3661                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3662                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3663                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3664
3665                 case T__forceinline:
3666                         /* only in microsoft mode */
3667                         specifiers->modifiers |= DM_FORCEINLINE;
3668                         /* FALLTHROUGH */
3669
3670                 case T_inline:
3671                         next_token();
3672                         specifiers->is_inline = true;
3673                         break;
3674
3675                 case T_long:
3676                         next_token();
3677                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3678                                 errorf(HERE, "multiple type specifiers given");
3679                         } else if (type_specifiers & SPECIFIER_LONG) {
3680                                 type_specifiers |= SPECIFIER_LONG_LONG;
3681                         } else {
3682                                 type_specifiers |= SPECIFIER_LONG;
3683                         }
3684                         break;
3685
3686                 case T_struct: {
3687                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
3688
3689                         type->compound.compound = parse_compound_type_specifier(true);
3690                         finish_struct_type(&type->compound);
3691                         break;
3692                 }
3693                 case T_union: {
3694                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
3695                         type->compound.compound = parse_compound_type_specifier(false);
3696                         if (type->compound.compound->modifiers & DM_TRANSPARENT_UNION)
3697                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3698                         finish_union_type(&type->compound);
3699                         break;
3700                 }
3701                 case T_enum:
3702                         type = parse_enum_specifier();
3703                         break;
3704                 case T___typeof__:
3705                         type = parse_typeof();
3706                         break;
3707                 case T___builtin_va_list:
3708                         type = duplicate_type(type_valist);
3709                         next_token();
3710                         break;
3711
3712                 case T_IDENTIFIER: {
3713                         /* only parse identifier if we haven't found a type yet */
3714                         if (type != NULL || type_specifiers != 0) {
3715                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3716                                  * declaration, so it doesn't generate errors about expecting '(' or
3717                                  * '{' later on. */
3718                                 switch (look_ahead(1)->type) {
3719                                         STORAGE_CLASSES
3720                                         TYPE_SPECIFIERS
3721                                         case T_const:
3722                                         case T_restrict:
3723                                         case T_volatile:
3724                                         case T_inline:
3725                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3726                                         case T_IDENTIFIER:
3727                                         case '*':
3728                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3729                                                 next_token();
3730                                                 continue;
3731
3732                                         default:
3733                                                 goto finish_specifiers;
3734                                 }
3735                         }
3736
3737                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3738                         if (typedef_type == NULL) {
3739                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3740                                  * declaration, so it doesn't generate 'implicit int' followed by more
3741                                  * errors later on. */
3742                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3743                                 switch (la1_type) {
3744                                         DECLARATION_START
3745                                         case T_IDENTIFIER:
3746                                         case '*': {
3747                                                 errorf(HERE, "%K does not name a type", &token);
3748
3749                                                 entity_t *entity =
3750                                                         create_error_entity(token.v.symbol, ENTITY_TYPEDEF);
3751
3752                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3753                                                 type->typedeft.typedefe = &entity->typedefe;
3754
3755                                                 next_token();
3756                                                 saw_error = true;
3757                                                 if (la1_type == '*')
3758                                                         goto finish_specifiers;
3759                                                 continue;
3760                                         }
3761
3762                                         default:
3763                                                 goto finish_specifiers;
3764                                 }
3765                         }
3766
3767                         next_token();
3768                         type = typedef_type;
3769                         break;
3770                 }
3771
3772                 /* function specifier */
3773                 default:
3774                         goto finish_specifiers;
3775                 }
3776         }
3777
3778 finish_specifiers:
3779         in_gcc_extension = old_gcc_extension;
3780
3781         if (type == NULL || (saw_error && type_specifiers != 0)) {
3782                 atomic_type_kind_t atomic_type;
3783
3784                 /* match valid basic types */
3785                 switch (type_specifiers) {
3786                 case SPECIFIER_VOID:
3787                         atomic_type = ATOMIC_TYPE_VOID;
3788                         break;
3789                 case SPECIFIER_CHAR:
3790                         atomic_type = ATOMIC_TYPE_CHAR;
3791                         break;
3792                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3793                         atomic_type = ATOMIC_TYPE_SCHAR;
3794                         break;
3795                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3796                         atomic_type = ATOMIC_TYPE_UCHAR;
3797                         break;
3798                 case SPECIFIER_SHORT:
3799                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3800                 case SPECIFIER_SHORT | SPECIFIER_INT:
3801                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3802                         atomic_type = ATOMIC_TYPE_SHORT;
3803                         break;
3804                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3805                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3806                         atomic_type = ATOMIC_TYPE_USHORT;
3807                         break;
3808                 case SPECIFIER_INT:
3809                 case SPECIFIER_SIGNED:
3810                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3811                         atomic_type = ATOMIC_TYPE_INT;
3812                         break;
3813                 case SPECIFIER_UNSIGNED:
3814                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3815                         atomic_type = ATOMIC_TYPE_UINT;
3816                         break;
3817                 case SPECIFIER_LONG:
3818                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3819                 case SPECIFIER_LONG | SPECIFIER_INT:
3820                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3821                         atomic_type = ATOMIC_TYPE_LONG;
3822                         break;
3823                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3824                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3825                         atomic_type = ATOMIC_TYPE_ULONG;
3826                         break;
3827
3828                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3829                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3830                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3831                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3832                         | SPECIFIER_INT:
3833                         atomic_type = ATOMIC_TYPE_LONGLONG;
3834                         goto warn_about_long_long;
3835
3836                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3837                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3838                         | SPECIFIER_INT:
3839                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3840 warn_about_long_long:
3841                         if (warning.long_long) {
3842                                 warningf(&specifiers->source_position,
3843                                          "ISO C90 does not support 'long long'");
3844                         }
3845                         break;
3846
3847                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3848                         atomic_type = unsigned_int8_type_kind;
3849                         break;
3850
3851                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3852                         atomic_type = unsigned_int16_type_kind;
3853                         break;
3854
3855                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3856                         atomic_type = unsigned_int32_type_kind;
3857                         break;
3858
3859                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3860                         atomic_type = unsigned_int64_type_kind;
3861                         break;
3862
3863                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3864                         atomic_type = unsigned_int128_type_kind;
3865                         break;
3866
3867                 case SPECIFIER_INT8:
3868                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3869                         atomic_type = int8_type_kind;
3870                         break;
3871
3872                 case SPECIFIER_INT16:
3873                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3874                         atomic_type = int16_type_kind;
3875                         break;
3876
3877                 case SPECIFIER_INT32:
3878                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3879                         atomic_type = int32_type_kind;
3880                         break;
3881
3882                 case SPECIFIER_INT64:
3883                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3884                         atomic_type = int64_type_kind;
3885                         break;
3886
3887                 case SPECIFIER_INT128:
3888                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3889                         atomic_type = int128_type_kind;
3890                         break;
3891
3892                 case SPECIFIER_FLOAT:
3893                         atomic_type = ATOMIC_TYPE_FLOAT;
3894                         break;
3895                 case SPECIFIER_DOUBLE:
3896                         atomic_type = ATOMIC_TYPE_DOUBLE;
3897                         break;
3898                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3899                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3900                         break;
3901                 case SPECIFIER_BOOL:
3902                         atomic_type = ATOMIC_TYPE_BOOL;
3903                         break;
3904                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3905                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3906                         atomic_type = ATOMIC_TYPE_FLOAT;
3907                         break;
3908                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3909                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3910                         atomic_type = ATOMIC_TYPE_DOUBLE;
3911                         break;
3912                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3913                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3914                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3915                         break;
3916                 default:
3917                         /* invalid specifier combination, give an error message */
3918                         if (type_specifiers == 0) {
3919                                 if (saw_error)
3920                                         goto end_error;
3921
3922                                 /* ISO/IEC 14882:1998(E) Â§C.1.5:4 */
3923                                 if (!(c_mode & _CXX) && !strict_mode) {
3924                                         if (warning.implicit_int) {
3925                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3926                                         }
3927                                         atomic_type = ATOMIC_TYPE_INT;
3928                                         break;
3929                                 } else {
3930                                         errorf(HERE, "no type specifiers given in declaration");
3931                                 }
3932                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3933                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3934                                 errorf(HERE, "signed and unsigned specifiers given");
3935                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3936                                 errorf(HERE, "only integer types can be signed or unsigned");
3937                         } else {
3938                                 errorf(HERE, "multiple datatypes in declaration");
3939                         }
3940                         goto end_error;
3941                 }
3942
3943                 if (type_specifiers & SPECIFIER_COMPLEX) {
3944                         type                = allocate_type_zero(TYPE_COMPLEX);
3945                         type->complex.akind = atomic_type;
3946                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3947                         type                  = allocate_type_zero(TYPE_IMAGINARY);
3948                         type->imaginary.akind = atomic_type;
3949                 } else {
3950                         type               = allocate_type_zero(TYPE_ATOMIC);
3951                         type->atomic.akind = atomic_type;
3952                 }
3953                 newtype = true;
3954         } else if (type_specifiers != 0) {
3955                 errorf(HERE, "multiple datatypes in declaration");
3956         }
3957
3958         /* FIXME: check type qualifiers here */
3959
3960         type->base.qualifiers = qualifiers;
3961         type->base.modifiers  = modifiers;
3962
3963         type_t *result = typehash_insert(type);
3964         if (newtype && result != type) {
3965                 free_type(type);
3966         }
3967
3968         specifiers->type = result;
3969         return;
3970
3971 end_error:
3972         specifiers->type = type_error_type;
3973         return;
3974 }
3975
3976 static type_qualifiers_t parse_type_qualifiers(void)
3977 {
3978         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3979
3980         while (true) {
3981                 switch (token.type) {
3982                 /* type qualifiers */
3983                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3984                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3985                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3986                 /* microsoft extended type modifiers */
3987                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3988                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3989                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3990                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3991                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3992
3993                 default:
3994                         return qualifiers;
3995                 }
3996         }
3997 }
3998
3999 /**
4000  * Parses an K&R identifier list
4001  */
4002 static void parse_identifier_list(scope_t *scope)
4003 {
4004         do {
4005                 entity_t *entity = allocate_entity_zero(ENTITY_VARIABLE);
4006                 entity->base.source_position = token.source_position;
4007                 entity->base.namespc         = NAMESPACE_NORMAL;
4008                 entity->base.symbol          = token.v.symbol;
4009                 /* a K&R parameter has no type, yet */
4010                 next_token();
4011
4012                 append_entity(scope, entity);
4013
4014                 if (token.type != ',') {
4015                         break;
4016                 }
4017                 next_token();
4018         } while (token.type == T_IDENTIFIER);
4019 }
4020
4021 static type_t *automatic_type_conversion(type_t *orig_type);
4022
4023 static void semantic_parameter(declaration_t *declaration)
4024 {
4025         /* TODO: improve error messages */
4026         source_position_t const* const pos = &declaration->base.source_position;
4027
4028         /* Â§6.9.1:6 */
4029         switch (declaration->declared_storage_class) {
4030                 /* Allowed storage classes */
4031                 case STORAGE_CLASS_NONE:
4032                 case STORAGE_CLASS_REGISTER:
4033                         break;
4034
4035                 default:
4036                         errorf(pos, "parameter may only have none or register storage class");
4037                         break;
4038         }
4039
4040         type_t *const orig_type = declaration->type;
4041         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
4042          * sugar.  Turn it into a pointer.
4043          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
4044          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
4045          */
4046         type_t *const type = automatic_type_conversion(orig_type);
4047         declaration->type = type;
4048
4049         if (is_type_incomplete(skip_typeref(type))) {
4050                 errorf(pos, "parameter '%#T' is of incomplete type",
4051                        orig_type, declaration->base.symbol);
4052         }
4053 }
4054
4055 static entity_t *parse_parameter(void)
4056 {
4057         declaration_specifiers_t specifiers;
4058         memset(&specifiers, 0, sizeof(specifiers));
4059
4060         parse_declaration_specifiers(&specifiers);
4061
4062         entity_t *entity = parse_declarator(&specifiers, true, false);
4063         return entity;
4064 }
4065
4066 /**
4067  * Parses function type parameters (and optionally creates variable_t entities
4068  * for them in a scope)
4069  */
4070 static void parse_parameters(function_type_t *type, scope_t *scope)
4071 {
4072         eat('(');
4073         add_anchor_token(')');
4074         int saved_comma_state = save_and_reset_anchor_state(',');
4075
4076         if (token.type == T_IDENTIFIER &&
4077             !is_typedef_symbol(token.v.symbol)) {
4078                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
4079                 if (la1_type == ',' || la1_type == ')') {
4080                         type->kr_style_parameters = true;
4081                         parse_identifier_list(scope);
4082                         goto parameters_finished;
4083                 }
4084         }
4085
4086         if (token.type == ')') {
4087                 /* ISO/IEC 14882:1998(E) Â§C.1.6:1 */
4088                 if (!(c_mode & _CXX))
4089                         type->unspecified_parameters = true;
4090                 goto parameters_finished;
4091         }
4092
4093         function_parameter_t *parameter;
4094         function_parameter_t *last_parameter = NULL;
4095
4096         while (true) {
4097                 switch (token.type) {
4098                 case T_DOTDOTDOT:
4099                         next_token();
4100                         type->variadic = true;
4101                         goto parameters_finished;
4102
4103                 case T_IDENTIFIER:
4104                 case T___extension__:
4105                 DECLARATION_START
4106                 {
4107                         entity_t *entity = parse_parameter();
4108                         if (entity->kind == ENTITY_TYPEDEF) {
4109                                 errorf(&entity->base.source_position,
4110                                        "typedef not allowed as function parameter");
4111                                 break;
4112                         }
4113                         assert(is_declaration(entity));
4114
4115                         /* func(void) is not a parameter */
4116                         if (last_parameter == NULL
4117                                         && token.type == ')'
4118                                         && entity->base.symbol == NULL
4119                                         && skip_typeref(entity->declaration.type) == type_void) {
4120                                 goto parameters_finished;
4121                         }
4122                         semantic_parameter(&entity->declaration);
4123
4124                         parameter = obstack_alloc(type_obst, sizeof(parameter[0]));
4125                         memset(parameter, 0, sizeof(parameter[0]));
4126                         parameter->type = entity->declaration.type;
4127
4128                         if (scope != NULL) {
4129                                 append_entity(scope, entity);
4130                         }
4131
4132                         if (last_parameter != NULL) {
4133                                 last_parameter->next = parameter;
4134                         } else {
4135                                 type->parameters = parameter;
4136                         }
4137                         last_parameter   = parameter;
4138                         break;
4139                 }
4140
4141                 default:
4142                         goto parameters_finished;
4143                 }
4144                 if (token.type != ',') {
4145                         goto parameters_finished;
4146                 }
4147                 next_token();
4148         }
4149
4150
4151 parameters_finished:
4152         rem_anchor_token(')');
4153         expect(')');
4154
4155 end_error:
4156         restore_anchor_state(',', saved_comma_state);
4157 }
4158
4159 typedef enum construct_type_kind_t {
4160         CONSTRUCT_INVALID,
4161         CONSTRUCT_POINTER,
4162         CONSTRUCT_FUNCTION,
4163         CONSTRUCT_ARRAY
4164 } construct_type_kind_t;
4165
4166 typedef struct construct_type_t construct_type_t;
4167 struct construct_type_t {
4168         construct_type_kind_t  kind;
4169         construct_type_t      *next;
4170 };
4171
4172 typedef struct parsed_pointer_t parsed_pointer_t;
4173 struct parsed_pointer_t {
4174         construct_type_t  construct_type;
4175         type_qualifiers_t type_qualifiers;
4176 };
4177
4178 typedef struct construct_function_type_t construct_function_type_t;
4179 struct construct_function_type_t {
4180         construct_type_t  construct_type;
4181         type_t           *function_type;
4182 };
4183
4184 typedef struct parsed_array_t parsed_array_t;
4185 struct parsed_array_t {
4186         construct_type_t  construct_type;
4187         type_qualifiers_t type_qualifiers;
4188         bool              is_static;
4189         bool              is_variable;
4190         expression_t     *size;
4191 };
4192
4193 typedef struct construct_base_type_t construct_base_type_t;
4194 struct construct_base_type_t {
4195         construct_type_t  construct_type;
4196         type_t           *type;
4197 };
4198
4199 static construct_type_t *parse_pointer_declarator(void)
4200 {
4201         eat('*');
4202
4203         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
4204         memset(pointer, 0, sizeof(pointer[0]));
4205         pointer->construct_type.kind = CONSTRUCT_POINTER;
4206         pointer->type_qualifiers     = parse_type_qualifiers();
4207
4208         return (construct_type_t*) pointer;
4209 }
4210
4211 static construct_type_t *parse_array_declarator(void)
4212 {
4213         eat('[');
4214         add_anchor_token(']');
4215
4216         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
4217         memset(array, 0, sizeof(array[0]));
4218         array->construct_type.kind = CONSTRUCT_ARRAY;
4219
4220         if (token.type == T_static) {
4221                 array->is_static = true;
4222                 next_token();
4223         }
4224
4225         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
4226         if (type_qualifiers != 0) {
4227                 if (token.type == T_static) {
4228                         array->is_static = true;
4229                         next_token();
4230                 }
4231         }
4232         array->type_qualifiers = type_qualifiers;
4233
4234         if (token.type == '*' && look_ahead(1)->type == ']') {
4235                 array->is_variable = true;
4236                 next_token();
4237         } else if (token.type != ']') {
4238                 array->size = parse_assignment_expression();
4239         }
4240
4241         rem_anchor_token(']');
4242         expect(']');
4243
4244 end_error:
4245         return (construct_type_t*) array;
4246 }
4247
4248 static construct_type_t *parse_function_declarator(scope_t *scope)
4249 {
4250         type_t *type = allocate_type_zero(TYPE_FUNCTION);
4251
4252         /* TODO: revive this... once we know exactly how to do it */
4253 #if 0
4254         decl_modifiers_t  modifiers = entity->declaration.modifiers;
4255
4256         unsigned mask = modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
4257
4258         if (mask & (mask-1)) {
4259                 const char *first = NULL, *second = NULL;
4260
4261                 /* more than one calling convention set */
4262                 if (modifiers & DM_CDECL) {
4263                         if (first == NULL)       first = "cdecl";
4264                         else if (second == NULL) second = "cdecl";
4265                 }
4266                 if (modifiers & DM_STDCALL) {
4267                         if (first == NULL)       first = "stdcall";
4268                         else if (second == NULL) second = "stdcall";
4269                 }
4270                 if (modifiers & DM_FASTCALL) {
4271                         if (first == NULL)       first = "fastcall";
4272                         else if (second == NULL) second = "fastcall";
4273                 }
4274                 if (modifiers & DM_THISCALL) {
4275                         if (first == NULL)       first = "thiscall";
4276                         else if (second == NULL) second = "thiscall";
4277                 }
4278                 errorf(&entity->base.source_position,
4279                            "%s and %s attributes are not compatible", first, second);
4280         }
4281
4282         if (modifiers & DM_CDECL)
4283                 type->function.calling_convention = CC_CDECL;
4284         else if (modifiers & DM_STDCALL)
4285                 type->function.calling_convention = CC_STDCALL;
4286         else if (modifiers & DM_FASTCALL)
4287                 type->function.calling_convention = CC_FASTCALL;
4288         else if (modifiers & DM_THISCALL)
4289                 type->function.calling_convention = CC_THISCALL;
4290 #endif
4291
4292         parse_parameters(&type->function, scope);
4293
4294         construct_function_type_t *construct_function_type =
4295                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
4296         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
4297         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
4298         construct_function_type->function_type       = type;
4299
4300         return &construct_function_type->construct_type;
4301 }
4302
4303 typedef struct parse_declarator_env_t {
4304         decl_modifiers_t   modifiers;
4305         symbol_t          *symbol;
4306         source_position_t  source_position;
4307         scope_t            parameters;
4308 } parse_declarator_env_t;
4309
4310 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env,
4311                 bool may_be_abstract)
4312 {
4313         /* construct a single linked list of construct_type_t's which describe
4314          * how to construct the final declarator type */
4315         construct_type_t *first      = NULL;
4316         construct_type_t *last       = NULL;
4317         gnu_attribute_t  *attributes = NULL;
4318
4319         decl_modifiers_t modifiers = parse_attributes(&attributes);
4320
4321         /* pointers */
4322         while (token.type == '*') {
4323                 construct_type_t *type = parse_pointer_declarator();
4324
4325                 if (last == NULL) {
4326                         first = type;
4327                         last  = type;
4328                 } else {
4329                         last->next = type;
4330                         last       = type;
4331                 }
4332
4333                 /* TODO: find out if this is correct */
4334                 modifiers |= parse_attributes(&attributes);
4335         }
4336
4337         if (env != NULL)
4338                 env->modifiers |= modifiers;
4339
4340         construct_type_t *inner_types = NULL;
4341
4342         switch (token.type) {
4343         case T_IDENTIFIER:
4344                 if (env == NULL) {
4345                         errorf(HERE, "no identifier expected in typename");
4346                 } else {
4347                         env->symbol          = token.v.symbol;
4348                         env->source_position = token.source_position;
4349                 }
4350                 next_token();
4351                 break;
4352         case '(':
4353                 next_token();
4354                 add_anchor_token(')');
4355                 inner_types = parse_inner_declarator(env, may_be_abstract);
4356                 if (inner_types != NULL) {
4357                         /* All later declarators only modify the return type */
4358                         env = NULL;
4359                 }
4360                 rem_anchor_token(')');
4361                 expect(')');
4362                 break;
4363         default:
4364                 if (may_be_abstract)
4365                         break;
4366                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4367                 eat_until_anchor();
4368                 return NULL;
4369         }
4370
4371         construct_type_t *p = last;
4372
4373         while(true) {
4374                 construct_type_t *type;
4375                 switch (token.type) {
4376                 case '(': {
4377                         scope_t *scope = NULL;
4378                         if (env != NULL)
4379                                 scope = &env->parameters;
4380
4381                         type = parse_function_declarator(scope);
4382                         break;
4383                 }
4384                 case '[':
4385                         type = parse_array_declarator();
4386                         break;
4387                 default:
4388                         goto declarator_finished;
4389                 }
4390
4391                 /* insert in the middle of the list (behind p) */
4392                 if (p != NULL) {
4393                         type->next = p->next;
4394                         p->next    = type;
4395                 } else {
4396                         type->next = first;
4397                         first      = type;
4398                 }
4399                 if (last == p) {
4400                         last = type;
4401                 }
4402         }
4403
4404 declarator_finished:
4405         /* append inner_types at the end of the list, we don't to set last anymore
4406          * as it's not needed anymore */
4407         if (last == NULL) {
4408                 assert(first == NULL);
4409                 first = inner_types;
4410         } else {
4411                 last->next = inner_types;
4412         }
4413
4414         return first;
4415 end_error:
4416         return NULL;
4417 }
4418
4419 static void parse_declaration_attributes(entity_t *entity)
4420 {
4421         gnu_attribute_t  *attributes = NULL;
4422         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4423
4424         if (entity == NULL)
4425                 return;
4426
4427         type_t *type;
4428         if (entity->kind == ENTITY_TYPEDEF) {
4429                 modifiers |= entity->typedefe.modifiers;
4430                 type       = entity->typedefe.type;
4431         } else {
4432                 assert(is_declaration(entity));
4433                 modifiers |= entity->declaration.modifiers;
4434                 type       = entity->declaration.type;
4435         }
4436         if (type == NULL)
4437                 return;
4438
4439         /* handle these strange/stupid mode attributes */
4440         gnu_attribute_t *attribute = attributes;
4441         for ( ; attribute != NULL; attribute = attribute->next) {
4442                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4443                         continue;
4444
4445                 atomic_type_kind_t  akind = attribute->u.akind;
4446                 if (!is_type_signed(type)) {
4447                         switch (akind) {
4448                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4449                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4450                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4451                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4452                         default:
4453                                 panic("invalid akind in mode attribute");
4454                         }
4455                 } else {
4456                         switch (akind) {
4457                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_SCHAR; break;
4458                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_SHORT; break;
4459                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_INT; break;
4460                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_LONGLONG; break;
4461                         default:
4462                                 panic("invalid akind in mode attribute");
4463                         }
4464                 }
4465
4466                 type = make_atomic_type(akind, type->base.qualifiers);
4467         }
4468
4469         type_modifiers_t type_modifiers = type->base.modifiers;
4470         if (modifiers & DM_TRANSPARENT_UNION)
4471                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4472
4473         if (type->base.modifiers != type_modifiers) {
4474                 type_t *copy = duplicate_type(type);
4475                 copy->base.modifiers = type_modifiers;
4476
4477                 type = typehash_insert(copy);
4478                 if (type != copy) {
4479                         obstack_free(type_obst, copy);
4480                 }
4481         }
4482
4483         if (entity->kind == ENTITY_TYPEDEF) {
4484                 entity->typedefe.type      = type;
4485                 entity->typedefe.modifiers = modifiers;
4486         } else {
4487                 entity->declaration.type      = type;
4488                 entity->declaration.modifiers = modifiers;
4489         }
4490 }
4491
4492 static type_t *construct_declarator_type(construct_type_t *construct_list,
4493                                          type_t *type)
4494 {
4495         construct_type_t *iter = construct_list;
4496         for( ; iter != NULL; iter = iter->next) {
4497                 switch (iter->kind) {
4498                 case CONSTRUCT_INVALID:
4499                         internal_errorf(HERE, "invalid type construction found");
4500                 case CONSTRUCT_FUNCTION: {
4501                         construct_function_type_t *construct_function_type
4502                                 = (construct_function_type_t*) iter;
4503
4504                         type_t *function_type = construct_function_type->function_type;
4505
4506                         function_type->function.return_type = type;
4507
4508                         type_t *skipped_return_type = skip_typeref(type);
4509                         /* Â§6.7.5.3(1) */
4510                         if (is_type_function(skipped_return_type)) {
4511                                 errorf(HERE, "function returning function is not allowed");
4512                         } else if (is_type_array(skipped_return_type)) {
4513                                 errorf(HERE, "function returning array is not allowed");
4514                         } else {
4515                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
4516                                         warningf(HERE,
4517                                                 "type qualifiers in return type of function type are meaningless");
4518                                 }
4519                         }
4520
4521                         type = function_type;
4522                         break;
4523                 }
4524
4525                 case CONSTRUCT_POINTER: {
4526                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4527                         type = make_pointer_type(type, parsed_pointer->type_qualifiers);
4528                         continue;
4529                 }
4530
4531                 case CONSTRUCT_ARRAY: {
4532                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4533                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY);
4534
4535                         expression_t *size_expression = parsed_array->size;
4536                         if (size_expression != NULL) {
4537                                 size_expression
4538                                         = create_implicit_cast(size_expression, type_size_t);
4539                         }
4540
4541                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4542                         array_type->array.element_type    = type;
4543                         array_type->array.is_static       = parsed_array->is_static;
4544                         array_type->array.is_variable     = parsed_array->is_variable;
4545                         array_type->array.size_expression = size_expression;
4546
4547                         if (size_expression != NULL) {
4548                                 if (is_constant_expression(size_expression)) {
4549                                         array_type->array.size_constant = true;
4550                                         array_type->array.size
4551                                                 = fold_constant(size_expression);
4552                                 } else {
4553                                         array_type->array.is_vla = true;
4554                                 }
4555                         }
4556
4557                         type_t *skipped_type = skip_typeref(type);
4558                         /* Â§6.7.5.2(1) */
4559                         if (is_type_incomplete(skipped_type)) {
4560                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4561                         } else if (is_type_function(skipped_type)) {
4562                                 errorf(HERE, "array of functions is not allowed");
4563                         }
4564                         type = array_type;
4565                         break;
4566                 }
4567                 }
4568
4569                 type_t *hashed_type = typehash_insert(type);
4570                 if (hashed_type != type) {
4571                         /* the function type was constructed earlier freeing it here will
4572                          * destroy other types... */
4573                         if (iter->kind != CONSTRUCT_FUNCTION) {
4574                                 free_type(type);
4575                         }
4576                         type = hashed_type;
4577                 }
4578         }
4579
4580         return type;
4581 }
4582
4583 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
4584                                   bool may_be_abstract,
4585                                   bool create_compound_member)
4586 {
4587         parse_declarator_env_t env;
4588         memset(&env, 0, sizeof(env));
4589
4590         construct_type_t *construct_type
4591                 = parse_inner_declarator(&env, may_be_abstract);
4592         type_t *type = construct_declarator_type(construct_type, specifiers->type);
4593
4594         if (construct_type != NULL) {
4595                 obstack_free(&temp_obst, construct_type);
4596         }
4597
4598         entity_t *entity;
4599         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
4600                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
4601                 entity->base.symbol          = env.symbol;
4602                 entity->base.source_position = env.source_position;
4603                 entity->typedefe.type        = type;
4604         } else {
4605                 if (create_compound_member) {
4606                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
4607                 } else if (is_type_function(skip_typeref(type))) {
4608                         entity = allocate_entity_zero(ENTITY_FUNCTION);
4609
4610                         entity->function.is_inline  = specifiers->is_inline;
4611                         entity->function.parameters = env.parameters;
4612                 } else {
4613                         entity = allocate_entity_zero(ENTITY_VARIABLE);
4614
4615                         entity->variable.get_property_sym = specifiers->get_property_sym;
4616                         entity->variable.put_property_sym = specifiers->put_property_sym;
4617                         if (specifiers->alignment != 0) {
4618                                 /* TODO: add checks here */
4619                                 entity->variable.alignment = specifiers->alignment;
4620                         }
4621
4622                         if (warning.other && specifiers->is_inline && is_type_valid(type)) {
4623                                 warningf(&env.source_position,
4624                                                  "variable '%Y' declared 'inline'\n", env.symbol);
4625                         }
4626                 }
4627
4628                 entity->base.source_position  = env.source_position;
4629                 entity->base.symbol           = env.symbol;
4630                 entity->base.namespc          = NAMESPACE_NORMAL;
4631                 entity->declaration.type      = type;
4632                 entity->declaration.modifiers = env.modifiers | specifiers->modifiers;
4633                 entity->declaration.deprecated_string = specifiers->deprecated_string;
4634
4635                 storage_class_t storage_class = specifiers->storage_class;
4636                 entity->declaration.declared_storage_class = storage_class;
4637
4638                 if (storage_class == STORAGE_CLASS_NONE && scope != file_scope) {
4639                         storage_class = STORAGE_CLASS_AUTO;
4640                 }
4641                 entity->declaration.storage_class = storage_class;
4642         }
4643
4644         parse_declaration_attributes(entity);
4645
4646         return entity;
4647 }
4648
4649 static type_t *parse_abstract_declarator(type_t *base_type)
4650 {
4651         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4652
4653         type_t *result = construct_declarator_type(construct_type, base_type);
4654         if (construct_type != NULL) {
4655                 obstack_free(&temp_obst, construct_type);
4656         }
4657
4658         return result;
4659 }
4660
4661 /**
4662  * Check if the declaration of main is suspicious.  main should be a
4663  * function with external linkage, returning int, taking either zero
4664  * arguments, two, or three arguments of appropriate types, ie.
4665  *
4666  * int main([ int argc, char **argv [, char **env ] ]).
4667  *
4668  * @param decl    the declaration to check
4669  * @param type    the function type of the declaration
4670  */
4671 static void check_type_of_main(const entity_t *entity)
4672 {
4673         const source_position_t *pos = &entity->base.source_position;
4674         if (entity->kind != ENTITY_FUNCTION) {
4675                 warningf(pos, "'main' is not a function");
4676                 return;
4677         }
4678
4679         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4680                 warningf(pos, "'main' is normally a non-static function");
4681         }
4682
4683         type_t *type = skip_typeref(entity->declaration.type);
4684         assert(is_type_function(type));
4685
4686         function_type_t *func_type = &type->function;
4687         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4688                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4689                          func_type->return_type);
4690         }
4691         const function_parameter_t *parm = func_type->parameters;
4692         if (parm != NULL) {
4693                 type_t *const first_type = parm->type;
4694                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4695                         warningf(pos,
4696                                  "first argument of 'main' should be 'int', but is '%T'",
4697                                  first_type);
4698                 }
4699                 parm = parm->next;
4700                 if (parm != NULL) {
4701                         type_t *const second_type = parm->type;
4702                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4703                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4704                         }
4705                         parm = parm->next;
4706                         if (parm != NULL) {
4707                                 type_t *const third_type = parm->type;
4708                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4709                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4710                                 }
4711                                 parm = parm->next;
4712                                 if (parm != NULL)
4713                                         goto warn_arg_count;
4714                         }
4715                 } else {
4716 warn_arg_count:
4717                         warningf(pos, "'main' takes only zero, two or three arguments");
4718                 }
4719         }
4720 }
4721
4722 /**
4723  * Check if a symbol is the equal to "main".
4724  */
4725 static bool is_sym_main(const symbol_t *const sym)
4726 {
4727         return strcmp(sym->string, "main") == 0;
4728 }
4729
4730 /**
4731  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4732  * for various problems that occur for multiple definitions
4733  */
4734 static entity_t *record_entity(entity_t *entity, const bool is_definition)
4735 {
4736         const symbol_t *const    symbol  = entity->base.symbol;
4737         const namespace_t        namespc = entity->base.namespc;
4738         const source_position_t *pos     = &entity->base.source_position;
4739
4740         assert(symbol != NULL);
4741         entity_t *previous_entity = get_entity(symbol, namespc);
4742         /* pushing the same entity twice will break the stack structure */
4743         assert(previous_entity != entity);
4744
4745         if (entity->kind == ENTITY_FUNCTION) {
4746                 type_t *const orig_type = entity->declaration.type;
4747                 type_t *const type      = skip_typeref(orig_type);
4748
4749                 assert(is_type_function(type));
4750                 if (type->function.unspecified_parameters &&
4751                                 warning.strict_prototypes &&
4752                                 previous_entity == NULL) {
4753                         warningf(pos, "function declaration '%#T' is not a prototype",
4754                                          orig_type, symbol);
4755                 }
4756
4757                 if (warning.main && scope == file_scope && is_sym_main(symbol)) {
4758                         check_type_of_main(entity);
4759                 }
4760         }
4761
4762         if (is_declaration(entity)) {
4763                 if (warning.nested_externs
4764                                 && entity->declaration.storage_class == STORAGE_CLASS_EXTERN
4765                                 && scope != file_scope) {
4766                         warningf(pos, "nested extern declaration of '%#T'",
4767                                  entity->declaration.type, symbol);
4768                 }
4769         }
4770
4771         if (previous_entity != NULL
4772             && previous_entity->base.parent_scope == &current_function->parameters
4773                 && scope->depth == previous_entity->base.parent_scope->depth + 1) {
4774
4775                 assert(previous_entity->kind == ENTITY_VARIABLE);
4776                 errorf(pos,
4777                        "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4778                        entity->declaration.type, symbol,
4779                            previous_entity->declaration.type, symbol,
4780                            &previous_entity->base.source_position);
4781                 goto finish;
4782         }
4783
4784         if (previous_entity != NULL
4785                         && previous_entity->base.parent_scope == scope) {
4786
4787                 if (previous_entity->kind != entity->kind) {
4788                         errorf(pos,
4789                                "redeclaration of '%Y' as different kind of symbol (declared %P)",
4790                                symbol, &previous_entity->base.source_position);
4791                         goto finish;
4792                 }
4793                 if (previous_entity->kind == ENTITY_ENUM_VALUE) {
4794                         errorf(pos,
4795                                    "redeclaration of enum entry '%Y' (declared %P)",
4796                                    symbol, &previous_entity->base.source_position);
4797                         goto finish;
4798                 }
4799                 if (previous_entity->kind == ENTITY_TYPEDEF) {
4800                         /* TODO: C++ allows this for exactly the same type */
4801                         errorf(pos,
4802                                "redefinition of typedef '%Y' (declared %P)",
4803                                symbol, &previous_entity->base.source_position);
4804                         goto finish;
4805                 }
4806
4807                 /* at this point we should have only VARIABLES or FUNCTIONS */
4808                 assert(is_declaration(previous_entity) && is_declaration(entity));
4809
4810                 /* can happen for K&R style declarations */
4811                 if (previous_entity->kind == ENTITY_VARIABLE
4812                                 && previous_entity->declaration.type == NULL
4813                                 && entity->kind == ENTITY_VARIABLE) {
4814                         previous_entity->declaration.type = entity->declaration.type;
4815                         previous_entity->declaration.storage_class
4816                                 = entity->declaration.storage_class;
4817                         previous_entity->declaration.declared_storage_class
4818                                 = entity->declaration.declared_storage_class;
4819                         previous_entity->declaration.modifiers
4820                                 = entity->declaration.modifiers;
4821                         previous_entity->declaration.deprecated_string
4822                                 = entity->declaration.deprecated_string;
4823                 }
4824                 assert(entity->declaration.type != NULL);
4825
4826                 declaration_t *const previous_declaration
4827                         = &previous_entity->declaration;
4828                 declaration_t *const declaration = &entity->declaration;
4829                 type_t *const orig_type = entity->declaration.type;
4830                 type_t *const type      = skip_typeref(orig_type);
4831
4832                 type_t *prev_type       = skip_typeref(previous_declaration->type);
4833
4834                 if (!types_compatible(type, prev_type)) {
4835                         errorf(pos,
4836                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4837                                    orig_type, symbol, previous_declaration->type, symbol,
4838                                    &previous_entity->base.source_position);
4839                 } else {
4840                         unsigned old_storage_class = previous_declaration->storage_class;
4841                         if (warning.redundant_decls     && is_definition
4842                                 && previous_declaration->storage_class == STORAGE_CLASS_STATIC
4843                                 && !(previous_declaration->modifiers & DM_USED)
4844                                 && !previous_declaration->used) {
4845                                 warningf(&previous_entity->base.source_position,
4846                                          "unnecessary static forward declaration for '%#T'",
4847                                          previous_declaration->type, symbol);
4848                         }
4849
4850                         unsigned new_storage_class = declaration->storage_class;
4851                         if (is_type_incomplete(prev_type)) {
4852                                 previous_declaration->type = type;
4853                                 prev_type                  = type;
4854                         }
4855
4856                         /* pretend no storage class means extern for function
4857                          * declarations (except if the previous declaration is neither
4858                          * none nor extern) */
4859                         if (entity->kind == ENTITY_FUNCTION) {
4860                                 if (prev_type->function.unspecified_parameters) {
4861                                         previous_declaration->type = type;
4862                                         prev_type                  = type;
4863                                 }
4864
4865                                 switch (old_storage_class) {
4866                                 case STORAGE_CLASS_NONE:
4867                                         old_storage_class = STORAGE_CLASS_EXTERN;
4868                                         /* FALLTHROUGH */
4869
4870                                 case STORAGE_CLASS_EXTERN:
4871                                         if (is_definition) {
4872                                                 if (warning.missing_prototypes &&
4873                                                     prev_type->function.unspecified_parameters &&
4874                                                     !is_sym_main(symbol)) {
4875                                                         warningf(pos, "no previous prototype for '%#T'",
4876                                                                          orig_type, symbol);
4877                                                 }
4878                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4879                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4880                                         }
4881                                         break;
4882
4883                                 default:
4884                                         break;
4885                                 }
4886                         }
4887
4888                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4889                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4890 warn_redundant_declaration:
4891                                 if (!is_definition           &&
4892                                     warning.redundant_decls  &&
4893                                     is_type_valid(prev_type) &&
4894                                     strcmp(previous_entity->base.source_position.input_name, "<builtin>") != 0) {
4895                                         warningf(pos,
4896                                                  "redundant declaration for '%Y' (declared %P)",
4897                                                  symbol, &previous_entity->base.source_position);
4898                                 }
4899                         } else if (current_function == NULL) {
4900                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4901                                     new_storage_class == STORAGE_CLASS_STATIC) {
4902                                         errorf(pos,
4903                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4904                                                symbol, &previous_entity->base.source_position);
4905                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4906                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4907                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4908                                 } else {
4909                                         /* ISO/IEC 14882:1998(E) Â§C.1.2:1 */
4910                                         if (c_mode & _CXX)
4911                                                 goto error_redeclaration;
4912                                         goto warn_redundant_declaration;
4913                                 }
4914                         } else if (is_type_valid(prev_type)) {
4915                                 if (old_storage_class == new_storage_class) {
4916 error_redeclaration:
4917                                         errorf(pos, "redeclaration of '%Y' (declared %P)",
4918                                                symbol, &previous_entity->base.source_position);
4919                                 } else {
4920                                         errorf(pos,
4921                                                "redeclaration of '%Y' with different linkage (declared %P)",
4922                                                symbol, &previous_entity->base.source_position);
4923                                 }
4924                         }
4925                 }
4926
4927                 previous_declaration->modifiers |= declaration->modifiers;
4928                 if (entity->kind == ENTITY_FUNCTION) {
4929                         previous_entity->function.is_inline |= entity->function.is_inline;
4930                 }
4931                 return previous_entity;
4932         }
4933
4934         if (entity->kind == ENTITY_FUNCTION) {
4935                 if (is_definition &&
4936                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
4937                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4938                                 warningf(pos, "no previous prototype for '%#T'",
4939                                          entity->declaration.type, symbol);
4940                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4941                                 warningf(pos, "no previous declaration for '%#T'",
4942                                          entity->declaration.type, symbol);
4943                         }
4944                 }
4945         } else if (warning.missing_declarations
4946                         && entity->kind == ENTITY_VARIABLE
4947                         && scope == file_scope) {
4948                 declaration_t *declaration = &entity->declaration;
4949                 if (declaration->storage_class == STORAGE_CLASS_NONE ||
4950                                 declaration->storage_class == STORAGE_CLASS_THREAD) {
4951                         warningf(pos, "no previous declaration for '%#T'",
4952                                  declaration->type, symbol);
4953                 }
4954         }
4955
4956 finish:
4957         assert(entity->base.parent_scope == NULL);
4958         assert(scope != NULL);
4959
4960         entity->base.parent_scope = scope;
4961         entity->base.namespc      = NAMESPACE_NORMAL;
4962         environment_push(entity);
4963         append_entity(scope, entity);
4964
4965         return entity;
4966 }
4967
4968 static void parser_error_multiple_definition(entity_t *entity,
4969                 const source_position_t *source_position)
4970 {
4971         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4972                entity->base.symbol, &entity->base.source_position);
4973 }
4974
4975 static bool is_declaration_specifier(const token_t *token,
4976                                      bool only_specifiers_qualifiers)
4977 {
4978         switch (token->type) {
4979                 TYPE_SPECIFIERS
4980                 TYPE_QUALIFIERS
4981                         return true;
4982                 case T_IDENTIFIER:
4983                         return is_typedef_symbol(token->v.symbol);
4984
4985                 case T___extension__:
4986                 STORAGE_CLASSES
4987                         return !only_specifiers_qualifiers;
4988
4989                 default:
4990                         return false;
4991         }
4992 }
4993
4994 static void parse_init_declarator_rest(entity_t *entity)
4995 {
4996         assert(is_declaration(entity));
4997         declaration_t *const declaration = &entity->declaration;
4998
4999         eat('=');
5000
5001         type_t *orig_type = declaration->type;
5002         type_t *type      = skip_typeref(orig_type);
5003
5004         if (entity->kind == ENTITY_VARIABLE
5005                         && entity->variable.initializer != NULL) {
5006                 parser_error_multiple_definition(entity, HERE);
5007         }
5008
5009         bool must_be_constant = false;
5010         if (declaration->storage_class == STORAGE_CLASS_STATIC        ||
5011             declaration->storage_class == STORAGE_CLASS_THREAD_STATIC ||
5012             entity->base.parent_scope  == file_scope) {
5013                 must_be_constant = true;
5014         }
5015
5016         if (is_type_function(type)) {
5017                 errorf(&entity->base.source_position,
5018                        "function '%#T' is initialized like a variable",
5019                        orig_type, entity->base.symbol);
5020                 orig_type = type_error_type;
5021         }
5022
5023         parse_initializer_env_t env;
5024         env.type             = orig_type;
5025         env.must_be_constant = must_be_constant;
5026         env.entity           = entity;
5027         current_init_decl    = entity;
5028
5029         initializer_t *initializer = parse_initializer(&env);
5030         current_init_decl = NULL;
5031
5032         if (entity->kind == ENTITY_VARIABLE) {
5033                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size
5034                  * determine the array type size */
5035                 declaration->type            = env.type;
5036                 entity->variable.initializer = initializer;
5037         }
5038 }
5039
5040 /* parse rest of a declaration without any declarator */
5041 static void parse_anonymous_declaration_rest(
5042                 const declaration_specifiers_t *specifiers)
5043 {
5044         eat(';');
5045
5046         if (warning.other) {
5047                 if (specifiers->storage_class != STORAGE_CLASS_NONE) {
5048                         warningf(&specifiers->source_position,
5049                                  "useless storage class in empty declaration");
5050                 }
5051
5052                 type_t *type = specifiers->type;
5053                 switch (type->kind) {
5054                         case TYPE_COMPOUND_STRUCT:
5055                         case TYPE_COMPOUND_UNION: {
5056                                 if (type->compound.compound->base.symbol == NULL) {
5057                                         warningf(&specifiers->source_position,
5058                                                  "unnamed struct/union that defines no instances");
5059                                 }
5060                                 break;
5061                         }
5062
5063                         case TYPE_ENUM:
5064                                 break;
5065
5066                         default:
5067                                 warningf(&specifiers->source_position, "empty declaration");
5068                                 break;
5069                 }
5070         }
5071 }
5072
5073 static void parse_declaration_rest(entity_t *ndeclaration,
5074                 const declaration_specifiers_t *specifiers,
5075                 parsed_declaration_func finished_declaration)
5076 {
5077         add_anchor_token(';');
5078         add_anchor_token(',');
5079         while(true) {
5080                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
5081
5082                 if (token.type == '=') {
5083                         parse_init_declarator_rest(entity);
5084                 }
5085
5086                 if (token.type != ',')
5087                         break;
5088                 eat(',');
5089
5090                 add_anchor_token('=');
5091                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false, false);
5092                 rem_anchor_token('=');
5093         }
5094         expect(';');
5095
5096 end_error:
5097         rem_anchor_token(';');
5098         rem_anchor_token(',');
5099 }
5100
5101 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
5102 {
5103         symbol_t *symbol = entity->base.symbol;
5104         if (symbol == NULL) {
5105                 errorf(HERE, "anonymous declaration not valid as function parameter");
5106                 return entity;
5107         }
5108
5109         assert(entity->base.namespc == NAMESPACE_NORMAL);
5110         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
5111         if (previous_entity == NULL
5112                         || previous_entity->base.parent_scope != scope) {
5113                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
5114                        symbol);
5115                 return entity;
5116         }
5117
5118         if (is_definition) {
5119                 errorf(HERE, "parameter %Y is initialised", entity->base.symbol);
5120         }
5121
5122         return record_entity(entity, false);
5123 }
5124
5125 static void parse_declaration(parsed_declaration_func finished_declaration)
5126 {
5127         declaration_specifiers_t specifiers;
5128         memset(&specifiers, 0, sizeof(specifiers));
5129
5130         add_anchor_token(';');
5131         parse_declaration_specifiers(&specifiers);
5132         rem_anchor_token(';');
5133
5134         if (token.type == ';') {
5135                 parse_anonymous_declaration_rest(&specifiers);
5136         } else {
5137                 entity_t *entity = parse_declarator(&specifiers, /*may_be_abstract=*/false, false);
5138                 parse_declaration_rest(entity, &specifiers, finished_declaration);
5139         }
5140 }
5141
5142 static type_t *get_default_promoted_type(type_t *orig_type)
5143 {
5144         type_t *result = orig_type;
5145
5146         type_t *type = skip_typeref(orig_type);
5147         if (is_type_integer(type)) {
5148                 result = promote_integer(type);
5149         } else if (type == type_float) {
5150                 result = type_double;
5151         }
5152
5153         return result;
5154 }
5155
5156 static void parse_kr_declaration_list(entity_t *entity)
5157 {
5158         if (entity->kind != ENTITY_FUNCTION)
5159                 return;
5160
5161         type_t *type = skip_typeref(entity->declaration.type);
5162         assert(is_type_function(type));
5163         if (!type->function.kr_style_parameters)
5164                 return;
5165
5166
5167         add_anchor_token('{');
5168
5169         /* push function parameters */
5170         size_t const top = environment_top();
5171         scope_push(&entity->function.parameters);
5172
5173         entity_t *parameter = entity->function.parameters.entities;
5174         for ( ; parameter != NULL; parameter = parameter->base.next) {
5175                 assert(parameter->base.parent_scope == NULL);
5176                 parameter->base.parent_scope = scope;
5177                 environment_push(parameter);
5178         }
5179
5180         /* parse declaration list */
5181         while (is_declaration_specifier(&token, false)) {
5182                 parse_declaration(finished_kr_declaration);
5183         }
5184
5185         /* pop function parameters */
5186         assert(scope == &entity->function.parameters);
5187         scope_pop();
5188         environment_pop_to(top);
5189
5190         /* update function type */
5191         type_t *new_type = duplicate_type(type);
5192
5193         function_parameter_t *parameters     = NULL;
5194         function_parameter_t *last_parameter = NULL;
5195
5196         entity_t *parameter_declaration = entity->function.parameters.entities;
5197         for( ; parameter_declaration != NULL;
5198                         parameter_declaration = parameter_declaration->base.next) {
5199                 type_t *parameter_type = parameter_declaration->declaration.type;
5200                 if (parameter_type == NULL) {
5201                         if (strict_mode) {
5202                                 errorf(HERE, "no type specified for function parameter '%Y'",
5203                                        parameter_declaration->base.symbol);
5204                         } else {
5205                                 if (warning.implicit_int) {
5206                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
5207                                                  parameter_declaration->base.symbol);
5208                                 }
5209                                 parameter_type                          = type_int;
5210                                 parameter_declaration->declaration.type = parameter_type;
5211                         }
5212                 }
5213
5214                 semantic_parameter(&parameter_declaration->declaration);
5215                 parameter_type = parameter_declaration->declaration.type;
5216
5217                 /*
5218                  * we need the default promoted types for the function type
5219                  */
5220                 parameter_type = get_default_promoted_type(parameter_type);
5221
5222                 function_parameter_t *function_parameter
5223                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
5224                 memset(function_parameter, 0, sizeof(function_parameter[0]));
5225
5226                 function_parameter->type = parameter_type;
5227                 if (last_parameter != NULL) {
5228                         last_parameter->next = function_parameter;
5229                 } else {
5230                         parameters = function_parameter;
5231                 }
5232                 last_parameter = function_parameter;
5233         }
5234
5235         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
5236          * prototype */
5237         new_type->function.parameters             = parameters;
5238         new_type->function.unspecified_parameters = true;
5239
5240         type = typehash_insert(new_type);
5241         if (type != new_type) {
5242                 obstack_free(type_obst, new_type);
5243         }
5244
5245         entity->declaration.type = type;
5246
5247         rem_anchor_token('{');
5248 }
5249
5250 static bool first_err = true;
5251
5252 /**
5253  * When called with first_err set, prints the name of the current function,
5254  * else does noting.
5255  */
5256 static void print_in_function(void)
5257 {
5258         if (first_err) {
5259                 first_err = false;
5260                 diagnosticf("%s: In function '%Y':\n",
5261                             current_function->base.base.source_position.input_name,
5262                             current_function->base.base.symbol);
5263         }
5264 }
5265
5266 /**
5267  * Check if all labels are defined in the current function.
5268  * Check if all labels are used in the current function.
5269  */
5270 static void check_labels(void)
5271 {
5272         for (const goto_statement_t *goto_statement = goto_first;
5273             goto_statement != NULL;
5274             goto_statement = goto_statement->next) {
5275                 /* skip computed gotos */
5276                 if (goto_statement->expression != NULL)
5277                         continue;
5278
5279                 label_t *label = goto_statement->label;
5280
5281                 label->used = true;
5282                 if (label->base.source_position.input_name == NULL) {
5283                         print_in_function();
5284                         errorf(&goto_statement->base.source_position,
5285                                "label '%Y' used but not defined", label->base.symbol);
5286                  }
5287         }
5288         goto_first = NULL;
5289         goto_last  = NULL;
5290
5291         if (warning.unused_label) {
5292                 for (const label_statement_t *label_statement = label_first;
5293                          label_statement != NULL;
5294                          label_statement = label_statement->next) {
5295                         label_t *label = label_statement->label;
5296
5297                         if (! label->used) {
5298                                 print_in_function();
5299                                 warningf(&label_statement->base.source_position,
5300                                          "label '%Y' defined but not used", label->base.symbol);
5301                         }
5302                 }
5303         }
5304         label_first = label_last = NULL;
5305 }
5306
5307 static void warn_unused_decl(entity_t *entity, entity_t *end,
5308                              char const *const what)
5309 {
5310         for (; entity != NULL; entity = entity->base.next) {
5311                 if (!is_declaration(entity))
5312                         continue;
5313
5314                 declaration_t *declaration = &entity->declaration;
5315                 if (declaration->implicit)
5316                         continue;
5317
5318                 if (!declaration->used) {
5319                         print_in_function();
5320                         warningf(&entity->base.source_position, "%s '%Y' is unused",
5321                                  what, entity->base.symbol);
5322                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
5323                         print_in_function();
5324                         warningf(&entity->base.source_position, "%s '%Y' is never read",
5325                                  what, entity->base.symbol);
5326                 }
5327
5328                 if (entity == end)
5329                         break;
5330         }
5331 }
5332
5333 static void check_unused_variables(statement_t *const stmt, void *const env)
5334 {
5335         (void)env;
5336
5337         switch (stmt->kind) {
5338                 case STATEMENT_DECLARATION: {
5339                         declaration_statement_t const *const decls = &stmt->declaration;
5340                         warn_unused_decl(decls->declarations_begin, decls->declarations_end,
5341                                          "variable");
5342                         return;
5343                 }
5344
5345                 case STATEMENT_FOR:
5346                         warn_unused_decl(stmt->fors.scope.entities, NULL, "variable");
5347                         return;
5348
5349                 default:
5350                         return;
5351         }
5352 }
5353
5354 /**
5355  * Check declarations of current_function for unused entities.
5356  */
5357 static void check_declarations(void)
5358 {
5359         if (warning.unused_parameter) {
5360                 const scope_t *scope = &current_function->parameters;
5361
5362                 /* do not issue unused warnings for main */
5363                 if (!is_sym_main(current_function->base.base.symbol)) {
5364                         warn_unused_decl(scope->entities, NULL, "parameter");
5365                 }
5366         }
5367         if (warning.unused_variable) {
5368                 walk_statements(current_function->statement, check_unused_variables,
5369                                 NULL);
5370         }
5371 }
5372
5373 static int determine_truth(expression_t const* const cond)
5374 {
5375         return
5376                 !is_constant_expression(cond) ? 0 :
5377                 fold_constant(cond) != 0      ? 1 :
5378                 -1;
5379 }
5380
5381 static bool expression_returns(expression_t const *const expr)
5382 {
5383         switch (expr->kind) {
5384                 case EXPR_CALL: {
5385                         expression_t const *const func = expr->call.function;
5386                         if (func->kind == EXPR_REFERENCE) {
5387                                 entity_t *entity = func->reference.entity;
5388                                 if (entity->kind == ENTITY_FUNCTION
5389                                                 && entity->declaration.modifiers & DM_NORETURN)
5390                                         return false;
5391                         }
5392
5393                         if (!expression_returns(func))
5394                                 return false;
5395
5396                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
5397                                 if (!expression_returns(arg->expression))
5398                                         return false;
5399                         }
5400
5401                         return true;
5402                 }
5403
5404                 case EXPR_REFERENCE:
5405                 case EXPR_REFERENCE_ENUM_VALUE:
5406                 case EXPR_CONST:
5407                 case EXPR_CHARACTER_CONSTANT:
5408                 case EXPR_WIDE_CHARACTER_CONSTANT:
5409                 case EXPR_STRING_LITERAL:
5410                 case EXPR_WIDE_STRING_LITERAL:
5411                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
5412                 case EXPR_LABEL_ADDRESS:
5413                 case EXPR_CLASSIFY_TYPE:
5414                 case EXPR_SIZEOF: // TODO handle obscure VLA case
5415                 case EXPR_ALIGNOF:
5416                 case EXPR_FUNCNAME:
5417                 case EXPR_BUILTIN_SYMBOL:
5418                 case EXPR_BUILTIN_CONSTANT_P:
5419                 case EXPR_BUILTIN_PREFETCH:
5420                 case EXPR_OFFSETOF:
5421                 case EXPR_STATEMENT: // TODO implement
5422                         return true;
5423
5424                 case EXPR_CONDITIONAL:
5425                         // TODO handle constant expression
5426                         return
5427                                 expression_returns(expr->conditional.condition) && (
5428                                         expression_returns(expr->conditional.true_expression) ||
5429                                         expression_returns(expr->conditional.false_expression)
5430                                 );
5431
5432                 case EXPR_SELECT:
5433                         return expression_returns(expr->select.compound);
5434
5435                 case EXPR_ARRAY_ACCESS:
5436                         return
5437                                 expression_returns(expr->array_access.array_ref) &&
5438                                 expression_returns(expr->array_access.index);
5439
5440                 case EXPR_VA_START:
5441                         return expression_returns(expr->va_starte.ap);
5442
5443                 case EXPR_VA_ARG:
5444                         return expression_returns(expr->va_arge.ap);
5445
5446                 EXPR_UNARY_CASES_MANDATORY
5447                         return expression_returns(expr->unary.value);
5448
5449                 case EXPR_UNARY_THROW:
5450                         return false;
5451
5452                 EXPR_BINARY_CASES
5453                         // TODO handle constant lhs of && and ||
5454                         return
5455                                 expression_returns(expr->binary.left) &&
5456                                 expression_returns(expr->binary.right);
5457
5458                 case EXPR_UNKNOWN:
5459                 case EXPR_INVALID:
5460                         break;
5461         }
5462
5463         panic("unhandled expression");
5464 }
5465
5466 static bool noreturn_candidate;
5467
5468 static void check_reachable(statement_t *const stmt)
5469 {
5470         if (stmt->base.reachable)
5471                 return;
5472         if (stmt->kind != STATEMENT_DO_WHILE)
5473                 stmt->base.reachable = true;
5474
5475         statement_t *last = stmt;
5476         statement_t *next;
5477         switch (stmt->kind) {
5478                 case STATEMENT_INVALID:
5479                 case STATEMENT_EMPTY:
5480                 case STATEMENT_DECLARATION:
5481                 case STATEMENT_LOCAL_LABEL:
5482                 case STATEMENT_ASM:
5483                         next = stmt->base.next;
5484                         break;
5485
5486                 case STATEMENT_COMPOUND:
5487                         next = stmt->compound.statements;
5488                         break;
5489
5490                 case STATEMENT_RETURN:
5491                         noreturn_candidate = false;
5492                         return;
5493
5494                 case STATEMENT_IF: {
5495                         if_statement_t const* const ifs = &stmt->ifs;
5496                         int            const        val = determine_truth(ifs->condition);
5497
5498                         if (val >= 0)
5499                                 check_reachable(ifs->true_statement);
5500
5501                         if (val > 0)
5502                                 return;
5503
5504                         if (ifs->false_statement != NULL) {
5505                                 check_reachable(ifs->false_statement);
5506                                 return;
5507                         }
5508
5509                         next = stmt->base.next;
5510                         break;
5511                 }
5512
5513                 case STATEMENT_SWITCH: {
5514                         switch_statement_t const *const switchs = &stmt->switchs;
5515                         expression_t       const *const expr    = switchs->expression;
5516
5517                         if (is_constant_expression(expr)) {
5518                                 long                    const val      = fold_constant(expr);
5519                                 case_label_statement_t *      defaults = NULL;
5520                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5521                                         if (i->expression == NULL) {
5522                                                 defaults = i;
5523                                                 continue;
5524                                         }
5525
5526                                         if (i->first_case <= val && val <= i->last_case) {
5527                                                 check_reachable((statement_t*)i);
5528                                                 return;
5529                                         }
5530                                 }
5531
5532                                 if (defaults != NULL) {
5533                                         check_reachable((statement_t*)defaults);
5534                                         return;
5535                                 }
5536                         } else {
5537                                 bool has_default = false;
5538                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5539                                         if (i->expression == NULL)
5540                                                 has_default = true;
5541
5542                                         check_reachable((statement_t*)i);
5543                                 }
5544
5545                                 if (has_default)
5546                                         return;
5547                         }
5548
5549                         next = stmt->base.next;
5550                         break;
5551                 }
5552
5553                 case STATEMENT_EXPRESSION: {
5554                         /* Check for noreturn function call */
5555                         expression_t const *const expr = stmt->expression.expression;
5556                         if (!expression_returns(expr))
5557                                 return;
5558
5559                         next = stmt->base.next;
5560                         break;
5561                 }
5562
5563                 case STATEMENT_CONTINUE: {
5564                         statement_t *parent = stmt;
5565                         for (;;) {
5566                                 parent = parent->base.parent;
5567                                 if (parent == NULL) /* continue not within loop */
5568                                         return;
5569
5570                                 next = parent;
5571                                 switch (parent->kind) {
5572                                         case STATEMENT_WHILE:    goto continue_while;
5573                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5574                                         case STATEMENT_FOR:      goto continue_for;
5575
5576                                         default: break;
5577                                 }
5578                         }
5579                 }
5580
5581                 case STATEMENT_BREAK: {
5582                         statement_t *parent = stmt;
5583                         for (;;) {
5584                                 parent = parent->base.parent;
5585                                 if (parent == NULL) /* break not within loop/switch */
5586                                         return;
5587
5588                                 switch (parent->kind) {
5589                                         case STATEMENT_SWITCH:
5590                                         case STATEMENT_WHILE:
5591                                         case STATEMENT_DO_WHILE:
5592                                         case STATEMENT_FOR:
5593                                                 last = parent;
5594                                                 next = parent->base.next;
5595                                                 goto found_break_parent;
5596
5597                                         default: break;
5598                                 }
5599                         }
5600 found_break_parent:
5601                         break;
5602                 }
5603
5604                 case STATEMENT_GOTO:
5605                         if (stmt->gotos.expression) {
5606                                 statement_t *parent = stmt->base.parent;
5607                                 if (parent == NULL) /* top level goto */
5608                                         return;
5609                                 next = parent;
5610                         } else {
5611                                 next = stmt->gotos.label->statement;
5612                                 if (next == NULL) /* missing label */
5613                                         return;
5614                         }
5615                         break;
5616
5617                 case STATEMENT_LABEL:
5618                         next = stmt->label.statement;
5619                         break;
5620
5621                 case STATEMENT_CASE_LABEL:
5622                         next = stmt->case_label.statement;
5623                         break;
5624
5625                 case STATEMENT_WHILE: {
5626                         while_statement_t const *const whiles = &stmt->whiles;
5627                         int                      const val    = determine_truth(whiles->condition);
5628
5629                         if (val >= 0)
5630                                 check_reachable(whiles->body);
5631
5632                         if (val > 0)
5633                                 return;
5634
5635                         next = stmt->base.next;
5636                         break;
5637                 }
5638
5639                 case STATEMENT_DO_WHILE:
5640                         next = stmt->do_while.body;
5641                         break;
5642
5643                 case STATEMENT_FOR: {
5644                         for_statement_t *const fors = &stmt->fors;
5645
5646                         if (fors->condition_reachable)
5647                                 return;
5648                         fors->condition_reachable = true;
5649
5650                         expression_t const *const cond = fors->condition;
5651                         int          const        val  =
5652                                 cond == NULL ? 1 : determine_truth(cond);
5653
5654                         if (val >= 0)
5655                                 check_reachable(fors->body);
5656
5657                         if (val > 0)
5658                                 return;
5659
5660                         next = stmt->base.next;
5661                         break;
5662                 }
5663
5664                 case STATEMENT_MS_TRY: {
5665                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5666                         check_reachable(ms_try->try_statement);
5667                         next = ms_try->final_statement;
5668                         break;
5669                 }
5670
5671                 case STATEMENT_LEAVE: {
5672                         statement_t *parent = stmt;
5673                         for (;;) {
5674                                 parent = parent->base.parent;
5675                                 if (parent == NULL) /* __leave not within __try */
5676                                         return;
5677
5678                                 if (parent->kind == STATEMENT_MS_TRY) {
5679                                         last = parent;
5680                                         next = parent->ms_try.final_statement;
5681                                         break;
5682                                 }
5683                         }
5684                         break;
5685                 }
5686         }
5687
5688         while (next == NULL) {
5689                 next = last->base.parent;
5690                 if (next == NULL) {
5691                         noreturn_candidate = false;
5692
5693                         type_t *const type = current_function->base.type;
5694                         assert(is_type_function(type));
5695                         type_t *const ret  = skip_typeref(type->function.return_type);
5696                         if (warning.return_type                    &&
5697                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5698                             is_type_valid(ret)                     &&
5699                             !is_sym_main(current_function->base.base.symbol)) {
5700                                 warningf(&stmt->base.source_position,
5701                                          "control reaches end of non-void function");
5702                         }
5703                         return;
5704                 }
5705
5706                 switch (next->kind) {
5707                         case STATEMENT_INVALID:
5708                         case STATEMENT_EMPTY:
5709                         case STATEMENT_DECLARATION:
5710                         case STATEMENT_LOCAL_LABEL:
5711                         case STATEMENT_EXPRESSION:
5712                         case STATEMENT_ASM:
5713                         case STATEMENT_RETURN:
5714                         case STATEMENT_CONTINUE:
5715                         case STATEMENT_BREAK:
5716                         case STATEMENT_GOTO:
5717                         case STATEMENT_LEAVE:
5718                                 panic("invalid control flow in function");
5719
5720                         case STATEMENT_COMPOUND:
5721                         case STATEMENT_IF:
5722                         case STATEMENT_SWITCH:
5723                         case STATEMENT_LABEL:
5724                         case STATEMENT_CASE_LABEL:
5725                                 last = next;
5726                                 next = next->base.next;
5727                                 break;
5728
5729                         case STATEMENT_WHILE: {
5730 continue_while:
5731                                 if (next->base.reachable)
5732                                         return;
5733                                 next->base.reachable = true;
5734
5735                                 while_statement_t const *const whiles = &next->whiles;
5736                                 int                      const val    = determine_truth(whiles->condition);
5737
5738                                 if (val >= 0)
5739                                         check_reachable(whiles->body);
5740
5741                                 if (val > 0)
5742                                         return;
5743
5744                                 last = next;
5745                                 next = next->base.next;
5746                                 break;
5747                         }
5748
5749                         case STATEMENT_DO_WHILE: {
5750 continue_do_while:
5751                                 if (next->base.reachable)
5752                                         return;
5753                                 next->base.reachable = true;
5754
5755                                 do_while_statement_t const *const dw  = &next->do_while;
5756                                 int                  const        val = determine_truth(dw->condition);
5757
5758                                 if (val >= 0)
5759                                         check_reachable(dw->body);
5760
5761                                 if (val > 0)
5762                                         return;
5763
5764                                 last = next;
5765                                 next = next->base.next;
5766                                 break;
5767                         }
5768
5769                         case STATEMENT_FOR: {
5770 continue_for:;
5771                                 for_statement_t *const fors = &next->fors;
5772
5773                                 fors->step_reachable = true;
5774
5775                                 if (fors->condition_reachable)
5776                                         return;
5777                                 fors->condition_reachable = true;
5778
5779                                 expression_t const *const cond = fors->condition;
5780                                 int          const        val  =
5781                                         cond == NULL ? 1 : determine_truth(cond);
5782
5783                                 if (val >= 0)
5784                                         check_reachable(fors->body);
5785
5786                                 if (val > 0)
5787                                         return;
5788
5789                                 last = next;
5790                                 next = next->base.next;
5791                                 break;
5792                         }
5793
5794                         case STATEMENT_MS_TRY:
5795                                 last = next;
5796                                 next = next->ms_try.final_statement;
5797                                 break;
5798                 }
5799         }
5800
5801         check_reachable(next);
5802 }
5803
5804 static void check_unreachable(statement_t* const stmt, void *const env)
5805 {
5806         (void)env;
5807
5808         switch (stmt->kind) {
5809                 case STATEMENT_DO_WHILE:
5810                         if (!stmt->base.reachable) {
5811                                 expression_t const *const cond = stmt->do_while.condition;
5812                                 if (determine_truth(cond) >= 0) {
5813                                         warningf(&cond->base.source_position,
5814                                                  "condition of do-while-loop is unreachable");
5815                                 }
5816                         }
5817                         return;
5818
5819                 case STATEMENT_FOR: {
5820                         for_statement_t const* const fors = &stmt->fors;
5821
5822                         // if init and step are unreachable, cond is unreachable, too
5823                         if (!stmt->base.reachable && !fors->step_reachable) {
5824                                 warningf(&stmt->base.source_position, "statement is unreachable");
5825                         } else {
5826                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5827                                         warningf(&fors->initialisation->base.source_position,
5828                                                  "initialisation of for-statement is unreachable");
5829                                 }
5830
5831                                 if (!fors->condition_reachable && fors->condition != NULL) {
5832                                         warningf(&fors->condition->base.source_position,
5833                                                  "condition of for-statement is unreachable");
5834                                 }
5835
5836                                 if (!fors->step_reachable && fors->step != NULL) {
5837                                         warningf(&fors->step->base.source_position,
5838                                                  "step of for-statement is unreachable");
5839                                 }
5840                         }
5841                         return;
5842                 }
5843
5844                 case STATEMENT_COMPOUND:
5845                         if (stmt->compound.statements != NULL)
5846                                 return;
5847                         /* FALLTHROUGH*/
5848
5849                 default:
5850                         if (!stmt->base.reachable)
5851                                 warningf(&stmt->base.source_position, "statement is unreachable");
5852                         return;
5853         }
5854 }
5855
5856 static void parse_external_declaration(void)
5857 {
5858         /* function-definitions and declarations both start with declaration
5859          * specifiers */
5860         declaration_specifiers_t specifiers;
5861         memset(&specifiers, 0, sizeof(specifiers));
5862
5863         add_anchor_token(';');
5864         parse_declaration_specifiers(&specifiers);
5865         rem_anchor_token(';');
5866
5867         /* must be a declaration */
5868         if (token.type == ';') {
5869                 parse_anonymous_declaration_rest(&specifiers);
5870                 return;
5871         }
5872
5873         add_anchor_token(',');
5874         add_anchor_token('=');
5875         add_anchor_token(';');
5876         add_anchor_token('{');
5877
5878         /* declarator is common to both function-definitions and declarations */
5879         entity_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false, false);
5880
5881         rem_anchor_token('{');
5882         rem_anchor_token(';');
5883         rem_anchor_token('=');
5884         rem_anchor_token(',');
5885
5886         /* must be a declaration */
5887         switch (token.type) {
5888                 case ',':
5889                 case ';':
5890                 case '=':
5891                         parse_declaration_rest(ndeclaration, &specifiers, record_entity);
5892                         return;
5893         }
5894
5895         /* must be a function definition */
5896         parse_kr_declaration_list(ndeclaration);
5897
5898         if (token.type != '{') {
5899                 parse_error_expected("while parsing function definition", '{', NULL);
5900                 eat_until_matching_token(';');
5901                 return;
5902         }
5903
5904         assert(is_declaration(ndeclaration));
5905         type_t *type = ndeclaration->declaration.type;
5906
5907         /* note that we don't skip typerefs: the standard doesn't allow them here
5908          * (so we can't use is_type_function here) */
5909         if (type->kind != TYPE_FUNCTION) {
5910                 if (is_type_valid(type)) {
5911                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5912                                type, ndeclaration->base.symbol);
5913                 }
5914                 eat_block();
5915                 return;
5916         }
5917
5918         if (warning.aggregate_return &&
5919             is_type_compound(skip_typeref(type->function.return_type))) {
5920                 warningf(HERE, "function '%Y' returns an aggregate",
5921                          ndeclaration->base.symbol);
5922         }
5923         if (warning.traditional && !type->function.unspecified_parameters) {
5924                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5925                         ndeclaration->base.symbol);
5926         }
5927         if (warning.old_style_definition && type->function.unspecified_parameters) {
5928                 warningf(HERE, "old-style function definition '%Y'",
5929                         ndeclaration->base.symbol);
5930         }
5931
5932         /* Â§ 6.7.5.3 (14) a function definition with () means no
5933          * parameters (and not unspecified parameters) */
5934         if (type->function.unspecified_parameters
5935                         && type->function.parameters == NULL
5936                         && !type->function.kr_style_parameters) {
5937                 type_t *duplicate = duplicate_type(type);
5938                 duplicate->function.unspecified_parameters = false;
5939
5940                 type = typehash_insert(duplicate);
5941                 if (type != duplicate) {
5942                         obstack_free(type_obst, duplicate);
5943                 }
5944                 ndeclaration->declaration.type = type;
5945         }
5946
5947         entity_t *const entity = record_entity(ndeclaration, true);
5948         assert(entity->kind == ENTITY_FUNCTION);
5949         assert(ndeclaration->kind == ENTITY_FUNCTION);
5950
5951         function_t *function = &entity->function;
5952         if (ndeclaration != entity) {
5953                 function->parameters = ndeclaration->function.parameters;
5954         }
5955         assert(is_declaration(entity));
5956         type = skip_typeref(entity->declaration.type);
5957
5958         /* push function parameters and switch scope */
5959         size_t const top = environment_top();
5960         scope_push(&function->parameters);
5961
5962         entity_t *parameter = function->parameters.entities;
5963         for( ; parameter != NULL; parameter = parameter->base.next) {
5964                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
5965                         parameter->base.parent_scope = scope;
5966                 }
5967                 assert(parameter->base.parent_scope == NULL
5968                                 || parameter->base.parent_scope == scope);
5969                 parameter->base.parent_scope = scope;
5970                 if (parameter->base.symbol == NULL) {
5971                         errorf(&parameter->base.source_position, "parameter name omitted");
5972                         continue;
5973                 }
5974                 environment_push(parameter);
5975         }
5976
5977         if (function->statement != NULL) {
5978                 parser_error_multiple_definition(entity, HERE);
5979                 eat_block();
5980         } else {
5981                 /* parse function body */
5982                 int         label_stack_top      = label_top();
5983                 function_t *old_current_function = current_function;
5984                 current_function                 = function;
5985                 current_parent                   = NULL;
5986
5987                 statement_t *const body     = parse_compound_statement(false);
5988                 function->statement = body;
5989                 first_err = true;
5990                 check_labels();
5991                 check_declarations();
5992                 if (warning.return_type      ||
5993                     warning.unreachable_code ||
5994                     (warning.missing_noreturn
5995                      && !(function->base.modifiers & DM_NORETURN))) {
5996                         noreturn_candidate = true;
5997                         check_reachable(body);
5998                         if (warning.unreachable_code)
5999                                 walk_statements(body, check_unreachable, NULL);
6000                         if (warning.missing_noreturn &&
6001                             noreturn_candidate       &&
6002                             !(function->base.modifiers & DM_NORETURN)) {
6003                                 warningf(&body->base.source_position,
6004                                          "function '%#T' is candidate for attribute 'noreturn'",
6005                                          type, entity->base.symbol);
6006                         }
6007                 }
6008
6009                 assert(current_parent   == NULL);
6010                 assert(current_function == function);
6011                 current_function = old_current_function;
6012                 label_pop_to(label_stack_top);
6013         }
6014
6015         assert(scope == &function->parameters);
6016         scope_pop();
6017         environment_pop_to(top);
6018 }
6019
6020 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
6021                                   source_position_t *source_position,
6022                                   const symbol_t *symbol)
6023 {
6024         type_t *type = allocate_type_zero(TYPE_BITFIELD);
6025
6026         type->bitfield.base_type       = base_type;
6027         type->bitfield.size_expression = size;
6028
6029         il_size_t bit_size;
6030         type_t *skipped_type = skip_typeref(base_type);
6031         if (!is_type_integer(skipped_type)) {
6032                 errorf(HERE, "bitfield base type '%T' is not an integer type",
6033                         base_type);
6034                 bit_size = 0;
6035         } else {
6036                 bit_size = skipped_type->base.size * 8;
6037         }
6038
6039         if (is_constant_expression(size)) {
6040                 long v = fold_constant(size);
6041
6042                 if (v < 0) {
6043                         errorf(source_position, "negative width in bit-field '%Y'",
6044                                 symbol);
6045                 } else if (v == 0) {
6046                         errorf(source_position, "zero width for bit-field '%Y'",
6047                                 symbol);
6048                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
6049                         errorf(source_position, "width of '%Y' exceeds its type",
6050                                 symbol);
6051                 } else {
6052                         type->bitfield.bit_size = v;
6053                 }
6054         }
6055
6056         return type;
6057 }
6058
6059 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
6060 {
6061         entity_t *iter = compound->members.entities;
6062         for( ; iter != NULL; iter = iter->base.next) {
6063                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
6064                         continue;
6065
6066                 if (iter->base.symbol == NULL) {
6067                         type_t *type = skip_typeref(iter->declaration.type);
6068                         if (is_type_compound(type)) {
6069                                 entity_t *result
6070                                         = find_compound_entry(type->compound.compound, symbol);
6071                                 if (result != NULL)
6072                                         return result;
6073                         }
6074                         continue;
6075                 }
6076
6077                 if (iter->base.symbol == symbol) {
6078                         return iter;
6079                 }
6080         }
6081
6082         return NULL;
6083 }
6084
6085 static void parse_compound_declarators(compound_t *compound,
6086                 const declaration_specifiers_t *specifiers)
6087 {
6088         while (true) {
6089                 entity_t *entity;
6090
6091                 if (token.type == ':') {
6092                         source_position_t source_position = *HERE;
6093                         next_token();
6094
6095                         type_t *base_type = specifiers->type;
6096                         expression_t *size = parse_constant_expression();
6097
6098                         type_t *type = make_bitfield_type(base_type, size,
6099                                         &source_position, sym_anonymous);
6100
6101                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
6102                         entity->base.namespc                       = NAMESPACE_NORMAL;
6103                         entity->base.source_position               = source_position;
6104                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
6105                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
6106                         entity->declaration.modifiers              = specifiers->modifiers;
6107                         entity->declaration.type                   = type;
6108                 } else {
6109                         entity = parse_declarator(specifiers,/*may_be_abstract=*/true, true);
6110
6111                         assert(is_declaration(entity));
6112                         type_t *orig_type = entity->declaration.type;
6113                         type_t *type      = skip_typeref(orig_type);
6114
6115                         if (token.type == ':') {
6116                                 source_position_t source_position = *HERE;
6117                                 next_token();
6118                                 expression_t *size = parse_constant_expression();
6119
6120                                 type_t *bitfield_type = make_bitfield_type(orig_type, size,
6121                                                 &source_position, entity->base.symbol);
6122                                 entity->declaration.type = bitfield_type;
6123                         } else {
6124                                 /* TODO we ignore arrays for now... what is missing is a check
6125                                  * that they're at the end of the struct */
6126                                 if (is_type_incomplete(type) && !is_type_array(type)) {
6127                                         errorf(HERE,
6128                                                "compound member '%Y' has incomplete type '%T'",
6129                                                entity->base.symbol, orig_type);
6130                                 } else if (is_type_function(type)) {
6131                                         errorf(HERE, "compound member '%Y' must not have function type '%T'",
6132                                                entity->base.symbol, orig_type);
6133                                 }
6134                         }
6135                 }
6136
6137                 /* make sure we don't define a symbol multiple times */
6138                 symbol_t *symbol = entity->base.symbol;
6139                 if (symbol != NULL) {
6140                         entity_t *prev = find_compound_entry(compound, symbol);
6141
6142                         if (prev != NULL) {
6143                                 assert(prev->base.symbol == symbol);
6144                                 errorf(&entity->base.source_position,
6145                                        "multiple declarations of symbol '%Y' (declared %P)",
6146                                        symbol, &prev->base.source_position);
6147                         }
6148                 }
6149
6150                 append_entity(&compound->members, entity);
6151
6152                 if (token.type != ',')
6153                         break;
6154                 next_token();
6155         }
6156         expect(';');
6157
6158 end_error:
6159         ;
6160 }
6161
6162 static void parse_compound_type_entries(compound_t *compound)
6163 {
6164         eat('{');
6165         add_anchor_token('}');
6166
6167         while (token.type != '}') {
6168                 if (token.type == T_EOF) {
6169                         errorf(HERE, "EOF while parsing struct");
6170                         break;
6171                 }
6172                 declaration_specifiers_t specifiers;
6173                 memset(&specifiers, 0, sizeof(specifiers));
6174                 parse_declaration_specifiers(&specifiers);
6175
6176                 parse_compound_declarators(compound, &specifiers);
6177         }
6178         rem_anchor_token('}');
6179         next_token();
6180 }
6181
6182 static type_t *parse_typename(void)
6183 {
6184         declaration_specifiers_t specifiers;
6185         memset(&specifiers, 0, sizeof(specifiers));
6186         parse_declaration_specifiers(&specifiers);
6187         if (specifiers.storage_class != STORAGE_CLASS_NONE) {
6188                 /* TODO: improve error message, user does probably not know what a
6189                  * storage class is...
6190                  */
6191                 errorf(HERE, "typename may not have a storage class");
6192         }
6193
6194         type_t *result = parse_abstract_declarator(specifiers.type);
6195
6196         return result;
6197 }
6198
6199
6200
6201
6202 typedef expression_t* (*parse_expression_function)(void);
6203 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
6204
6205 typedef struct expression_parser_function_t expression_parser_function_t;
6206 struct expression_parser_function_t {
6207         parse_expression_function        parser;
6208         unsigned                         infix_precedence;
6209         parse_expression_infix_function  infix_parser;
6210 };
6211
6212 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
6213
6214 /**
6215  * Prints an error message if an expression was expected but not read
6216  */
6217 static expression_t *expected_expression_error(void)
6218 {
6219         /* skip the error message if the error token was read */
6220         if (token.type != T_ERROR) {
6221                 errorf(HERE, "expected expression, got token '%K'", &token);
6222         }
6223         next_token();
6224
6225         return create_invalid_expression();
6226 }
6227
6228 /**
6229  * Parse a string constant.
6230  */
6231 static expression_t *parse_string_const(void)
6232 {
6233         wide_string_t wres;
6234         if (token.type == T_STRING_LITERAL) {
6235                 string_t res = token.v.string;
6236                 next_token();
6237                 while (token.type == T_STRING_LITERAL) {
6238                         res = concat_strings(&res, &token.v.string);
6239                         next_token();
6240                 }
6241                 if (token.type != T_WIDE_STRING_LITERAL) {
6242                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
6243                         /* note: that we use type_char_ptr here, which is already the
6244                          * automatic converted type. revert_automatic_type_conversion
6245                          * will construct the array type */
6246                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
6247                         cnst->string.value = res;
6248                         return cnst;
6249                 }
6250
6251                 wres = concat_string_wide_string(&res, &token.v.wide_string);
6252         } else {
6253                 wres = token.v.wide_string;
6254         }
6255         next_token();
6256
6257         for (;;) {
6258                 switch (token.type) {
6259                         case T_WIDE_STRING_LITERAL:
6260                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
6261                                 break;
6262
6263                         case T_STRING_LITERAL:
6264                                 wres = concat_wide_string_string(&wres, &token.v.string);
6265                                 break;
6266
6267                         default: {
6268                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6269                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
6270                                 cnst->wide_string.value = wres;
6271                                 return cnst;
6272                         }
6273                 }
6274                 next_token();
6275         }
6276 }
6277
6278 /**
6279  * Parse an integer constant.
6280  */
6281 static expression_t *parse_int_const(void)
6282 {
6283         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6284         cnst->base.source_position = *HERE;
6285         cnst->base.type            = token.datatype;
6286         cnst->conste.v.int_value   = token.v.intvalue;
6287
6288         next_token();
6289
6290         return cnst;
6291 }
6292
6293 /**
6294  * Parse a character constant.
6295  */
6296 static expression_t *parse_character_constant(void)
6297 {
6298         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
6299
6300         cnst->base.source_position = *HERE;
6301         cnst->base.type            = token.datatype;
6302         cnst->conste.v.character   = token.v.string;
6303
6304         if (cnst->conste.v.character.size != 1) {
6305                 if (warning.multichar && GNU_MODE) {
6306                         warningf(HERE, "multi-character character constant");
6307                 } else {
6308                         errorf(HERE, "more than 1 characters in character constant");
6309                 }
6310         }
6311         next_token();
6312
6313         return cnst;
6314 }
6315
6316 /**
6317  * Parse a wide character constant.
6318  */
6319 static expression_t *parse_wide_character_constant(void)
6320 {
6321         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
6322
6323         cnst->base.source_position    = *HERE;
6324         cnst->base.type               = token.datatype;
6325         cnst->conste.v.wide_character = token.v.wide_string;
6326
6327         if (cnst->conste.v.wide_character.size != 1) {
6328                 if (warning.multichar && GNU_MODE) {
6329                         warningf(HERE, "multi-character character constant");
6330                 } else {
6331                         errorf(HERE, "more than 1 characters in character constant");
6332                 }
6333         }
6334         next_token();
6335
6336         return cnst;
6337 }
6338
6339 /**
6340  * Parse a float constant.
6341  */
6342 static expression_t *parse_float_const(void)
6343 {
6344         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6345         cnst->base.type            = token.datatype;
6346         cnst->conste.v.float_value = token.v.floatvalue;
6347
6348         next_token();
6349
6350         return cnst;
6351 }
6352
6353 static entity_t *create_implicit_function(symbol_t *symbol,
6354                 const source_position_t *source_position)
6355 {
6356         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6357         ntype->function.return_type            = type_int;
6358         ntype->function.unspecified_parameters = true;
6359
6360         type_t *type = typehash_insert(ntype);
6361         if (type != ntype) {
6362                 free_type(ntype);
6363         }
6364
6365         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6366         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6367         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6368         entity->declaration.type                   = type;
6369         entity->declaration.implicit               = true;
6370         entity->base.symbol                        = symbol;
6371         entity->base.source_position               = *source_position;
6372
6373         bool strict_prototypes_old = warning.strict_prototypes;
6374         warning.strict_prototypes  = false;
6375         record_entity(entity, false);
6376         warning.strict_prototypes = strict_prototypes_old;
6377
6378         return entity;
6379 }
6380
6381 /**
6382  * Creates a return_type (func)(argument_type) function type if not
6383  * already exists.
6384  */
6385 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
6386                                     type_t *argument_type2)
6387 {
6388         function_parameter_t *parameter2
6389                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
6390         memset(parameter2, 0, sizeof(parameter2[0]));
6391         parameter2->type = argument_type2;
6392
6393         function_parameter_t *parameter1
6394                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
6395         memset(parameter1, 0, sizeof(parameter1[0]));
6396         parameter1->type = argument_type1;
6397         parameter1->next = parameter2;
6398
6399         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6400         type->function.return_type = return_type;
6401         type->function.parameters  = parameter1;
6402
6403         type_t *result = typehash_insert(type);
6404         if (result != type) {
6405                 free_type(type);
6406         }
6407
6408         return result;
6409 }
6410
6411 /**
6412  * Creates a return_type (func)(argument_type) function type if not
6413  * already exists.
6414  *
6415  * @param return_type    the return type
6416  * @param argument_type  the argument type
6417  */
6418 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
6419 {
6420         function_parameter_t *parameter
6421                 = obstack_alloc(type_obst, sizeof(parameter[0]));
6422         memset(parameter, 0, sizeof(parameter[0]));
6423         parameter->type = argument_type;
6424
6425         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6426         type->function.return_type = return_type;
6427         type->function.parameters  = parameter;
6428
6429         type_t *result = typehash_insert(type);
6430         if (result != type) {
6431                 free_type(type);
6432         }
6433
6434         return result;
6435 }
6436
6437 static type_t *make_function_0_type(type_t *return_type)
6438 {
6439         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6440         type->function.return_type = return_type;
6441         type->function.parameters  = NULL;
6442
6443         type_t *result = typehash_insert(type);
6444         if (result != type) {
6445                 free_type(type);
6446         }
6447
6448         return result;
6449 }
6450
6451 /**
6452  * Creates a function type for some function like builtins.
6453  *
6454  * @param symbol   the symbol describing the builtin
6455  */
6456 static type_t *get_builtin_symbol_type(symbol_t *symbol)
6457 {
6458         switch (symbol->ID) {
6459         case T___builtin_alloca:
6460                 return make_function_1_type(type_void_ptr, type_size_t);
6461         case T___builtin_huge_val:
6462                 return make_function_0_type(type_double);
6463         case T___builtin_inf:
6464                 return make_function_0_type(type_double);
6465         case T___builtin_inff:
6466                 return make_function_0_type(type_float);
6467         case T___builtin_infl:
6468                 return make_function_0_type(type_long_double);
6469         case T___builtin_nan:
6470                 return make_function_1_type(type_double, type_char_ptr);
6471         case T___builtin_nanf:
6472                 return make_function_1_type(type_float, type_char_ptr);
6473         case T___builtin_nanl:
6474                 return make_function_1_type(type_long_double, type_char_ptr);
6475         case T___builtin_va_end:
6476                 return make_function_1_type(type_void, type_valist);
6477         case T___builtin_expect:
6478                 return make_function_2_type(type_long, type_long, type_long);
6479         default:
6480                 internal_errorf(HERE, "not implemented builtin symbol found");
6481         }
6482 }
6483
6484 /**
6485  * Performs automatic type cast as described in Â§ 6.3.2.1.
6486  *
6487  * @param orig_type  the original type
6488  */
6489 static type_t *automatic_type_conversion(type_t *orig_type)
6490 {
6491         type_t *type = skip_typeref(orig_type);
6492         if (is_type_array(type)) {
6493                 array_type_t *array_type   = &type->array;
6494                 type_t       *element_type = array_type->element_type;
6495                 unsigned      qualifiers   = array_type->base.qualifiers;
6496
6497                 return make_pointer_type(element_type, qualifiers);
6498         }
6499
6500         if (is_type_function(type)) {
6501                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6502         }
6503
6504         return orig_type;
6505 }
6506
6507 /**
6508  * reverts the automatic casts of array to pointer types and function
6509  * to function-pointer types as defined Â§ 6.3.2.1
6510  */
6511 type_t *revert_automatic_type_conversion(const expression_t *expression)
6512 {
6513         switch (expression->kind) {
6514                 case EXPR_REFERENCE: {
6515                         entity_t *entity = expression->reference.entity;
6516                         if (is_declaration(entity)) {
6517                                 return entity->declaration.type;
6518                         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6519                                 return entity->enum_value.enum_type;
6520                         } else {
6521                                 panic("no declaration or enum in reference");
6522                         }
6523                 }
6524
6525                 case EXPR_SELECT: {
6526                         entity_t *entity = expression->select.compound_entry;
6527                         assert(is_declaration(entity));
6528                         type_t   *type   = entity->declaration.type;
6529                         return get_qualified_type(type,
6530                                                   expression->base.type->base.qualifiers);
6531                 }
6532
6533                 case EXPR_UNARY_DEREFERENCE: {
6534                         const expression_t *const value = expression->unary.value;
6535                         type_t             *const type  = skip_typeref(value->base.type);
6536                         assert(is_type_pointer(type));
6537                         return type->pointer.points_to;
6538                 }
6539
6540                 case EXPR_BUILTIN_SYMBOL:
6541                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6542
6543                 case EXPR_ARRAY_ACCESS: {
6544                         const expression_t *array_ref = expression->array_access.array_ref;
6545                         type_t             *type_left = skip_typeref(array_ref->base.type);
6546                         if (!is_type_valid(type_left))
6547                                 return type_left;
6548                         assert(is_type_pointer(type_left));
6549                         return type_left->pointer.points_to;
6550                 }
6551
6552                 case EXPR_STRING_LITERAL: {
6553                         size_t size = expression->string.value.size;
6554                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6555                 }
6556
6557                 case EXPR_WIDE_STRING_LITERAL: {
6558                         size_t size = expression->wide_string.value.size;
6559                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6560                 }
6561
6562                 case EXPR_COMPOUND_LITERAL:
6563                         return expression->compound_literal.type;
6564
6565                 default: break;
6566         }
6567
6568         return expression->base.type;
6569 }
6570
6571 static expression_t *parse_reference(void)
6572 {
6573         symbol_t *const symbol = token.v.symbol;
6574
6575         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
6576
6577         if (entity == NULL) {
6578                 if (!strict_mode && look_ahead(1)->type == '(') {
6579                         /* an implicitly declared function */
6580                         if (warning.implicit_function_declaration) {
6581                                 warningf(HERE, "implicit declaration of function '%Y'",
6582                                         symbol);
6583                         }
6584
6585                         entity = create_implicit_function(symbol, HERE);
6586                 } else {
6587                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6588                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6589                 }
6590         }
6591
6592         type_t *orig_type;
6593
6594         if (is_declaration(entity)) {
6595                 orig_type = entity->declaration.type;
6596         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6597                 orig_type = entity->enum_value.enum_type;
6598         } else {
6599                 panic("expected declaration or enum value in reference");
6600         }
6601
6602         /* we always do the auto-type conversions; the & and sizeof parser contains
6603          * code to revert this! */
6604         type_t *type = automatic_type_conversion(orig_type);
6605
6606         expression_kind_t kind = EXPR_REFERENCE;
6607         if (entity->kind == ENTITY_ENUM_VALUE)
6608                 kind = EXPR_REFERENCE_ENUM_VALUE;
6609
6610         expression_t *expression     = allocate_expression_zero(kind);
6611         expression->reference.entity = entity;
6612         expression->base.type        = type;
6613
6614         /* this declaration is used */
6615         if (is_declaration(entity)) {
6616                 entity->declaration.used = true;
6617         }
6618
6619         if (entity->base.parent_scope != file_scope
6620                 && entity->base.parent_scope->depth < current_function->parameters.depth
6621                 && is_type_valid(orig_type) && !is_type_function(orig_type)) {
6622                 if (entity->kind == ENTITY_VARIABLE) {
6623                         /* access of a variable from an outer function */
6624                         entity->variable.address_taken = true;
6625                 }
6626                 current_function->need_closure = true;
6627         }
6628
6629         /* check for deprecated functions */
6630         if (warning.deprecated_declarations
6631                 && is_declaration(entity)
6632                 && entity->declaration.modifiers & DM_DEPRECATED) {
6633                 declaration_t *declaration = &entity->declaration;
6634
6635                 char const *const prefix = entity->kind == ENTITY_FUNCTION ?
6636                         "function" : "variable";
6637
6638                 if (declaration->deprecated_string != NULL) {
6639                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6640                                  prefix, entity->base.symbol, &entity->base.source_position,
6641                                  declaration->deprecated_string);
6642                 } else {
6643                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6644                                  entity->base.symbol, &entity->base.source_position);
6645                 }
6646         }
6647
6648         if (warning.init_self && entity == current_init_decl && !in_type_prop
6649             && entity->kind == ENTITY_VARIABLE) {
6650                 current_init_decl = NULL;
6651                 warningf(HERE, "variable '%#T' is initialized by itself",
6652                          entity->declaration.type, entity->base.symbol);
6653         }
6654
6655         next_token();
6656         return expression;
6657 }
6658
6659 static bool semantic_cast(expression_t *cast)
6660 {
6661         expression_t            *expression      = cast->unary.value;
6662         type_t                  *orig_dest_type  = cast->base.type;
6663         type_t                  *orig_type_right = expression->base.type;
6664         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6665         type_t            const *src_type        = skip_typeref(orig_type_right);
6666         source_position_t const *pos             = &cast->base.source_position;
6667
6668         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6669         if (dst_type == type_void)
6670                 return true;
6671
6672         /* only integer and pointer can be casted to pointer */
6673         if (is_type_pointer(dst_type)  &&
6674             !is_type_pointer(src_type) &&
6675             !is_type_integer(src_type) &&
6676             is_type_valid(src_type)) {
6677                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6678                 return false;
6679         }
6680
6681         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6682                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6683                 return false;
6684         }
6685
6686         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6687                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6688                 return false;
6689         }
6690
6691         if (warning.cast_qual &&
6692             is_type_pointer(src_type) &&
6693             is_type_pointer(dst_type)) {
6694                 type_t *src = skip_typeref(src_type->pointer.points_to);
6695                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6696                 unsigned missing_qualifiers =
6697                         src->base.qualifiers & ~dst->base.qualifiers;
6698                 if (missing_qualifiers != 0) {
6699                         warningf(pos,
6700                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6701                                  missing_qualifiers, orig_type_right);
6702                 }
6703         }
6704         return true;
6705 }
6706
6707 static expression_t *parse_compound_literal(type_t *type)
6708 {
6709         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6710
6711         parse_initializer_env_t env;
6712         env.type             = type;
6713         env.entity           = NULL;
6714         env.must_be_constant = false;
6715         initializer_t *initializer = parse_initializer(&env);
6716         type = env.type;
6717
6718         expression->compound_literal.initializer = initializer;
6719         expression->compound_literal.type        = type;
6720         expression->base.type                    = automatic_type_conversion(type);
6721
6722         return expression;
6723 }
6724
6725 /**
6726  * Parse a cast expression.
6727  */
6728 static expression_t *parse_cast(void)
6729 {
6730         add_anchor_token(')');
6731
6732         source_position_t source_position = token.source_position;
6733
6734         type_t *type  = parse_typename();
6735
6736         rem_anchor_token(')');
6737         expect(')');
6738
6739         if (token.type == '{') {
6740                 return parse_compound_literal(type);
6741         }
6742
6743         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6744         cast->base.source_position = source_position;
6745
6746         expression_t *value = parse_sub_expression(PREC_CAST);
6747         cast->base.type   = type;
6748         cast->unary.value = value;
6749
6750         if (! semantic_cast(cast)) {
6751                 /* TODO: record the error in the AST. else it is impossible to detect it */
6752         }
6753
6754         return cast;
6755 end_error:
6756         return create_invalid_expression();
6757 }
6758
6759 /**
6760  * Parse a statement expression.
6761  */
6762 static expression_t *parse_statement_expression(void)
6763 {
6764         add_anchor_token(')');
6765
6766         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6767
6768         statement_t *statement           = parse_compound_statement(true);
6769         expression->statement.statement  = statement;
6770         expression->base.source_position = statement->base.source_position;
6771
6772         /* find last statement and use its type */
6773         type_t *type = type_void;
6774         const statement_t *stmt = statement->compound.statements;
6775         if (stmt != NULL) {
6776                 while (stmt->base.next != NULL)
6777                         stmt = stmt->base.next;
6778
6779                 if (stmt->kind == STATEMENT_EXPRESSION) {
6780                         type = stmt->expression.expression->base.type;
6781                 }
6782         } else if (warning.other) {
6783                 warningf(&expression->base.source_position, "empty statement expression ({})");
6784         }
6785         expression->base.type = type;
6786
6787         rem_anchor_token(')');
6788         expect(')');
6789
6790 end_error:
6791         return expression;
6792 }
6793
6794 /**
6795  * Parse a parenthesized expression.
6796  */
6797 static expression_t *parse_parenthesized_expression(void)
6798 {
6799         eat('(');
6800
6801         switch (token.type) {
6802         case '{':
6803                 /* gcc extension: a statement expression */
6804                 return parse_statement_expression();
6805
6806         TYPE_QUALIFIERS
6807         TYPE_SPECIFIERS
6808                 return parse_cast();
6809         case T_IDENTIFIER:
6810                 if (is_typedef_symbol(token.v.symbol)) {
6811                         return parse_cast();
6812                 }
6813         }
6814
6815         add_anchor_token(')');
6816         expression_t *result = parse_expression();
6817         rem_anchor_token(')');
6818         expect(')');
6819
6820 end_error:
6821         return result;
6822 }
6823
6824 static expression_t *parse_function_keyword(void)
6825 {
6826         next_token();
6827         /* TODO */
6828
6829         if (current_function == NULL) {
6830                 errorf(HERE, "'__func__' used outside of a function");
6831         }
6832
6833         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6834         expression->base.type     = type_char_ptr;
6835         expression->funcname.kind = FUNCNAME_FUNCTION;
6836
6837         return expression;
6838 }
6839
6840 static expression_t *parse_pretty_function_keyword(void)
6841 {
6842         eat(T___PRETTY_FUNCTION__);
6843
6844         if (current_function == NULL) {
6845                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6846         }
6847
6848         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6849         expression->base.type     = type_char_ptr;
6850         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6851
6852         return expression;
6853 }
6854
6855 static expression_t *parse_funcsig_keyword(void)
6856 {
6857         eat(T___FUNCSIG__);
6858
6859         if (current_function == NULL) {
6860                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6861         }
6862
6863         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6864         expression->base.type     = type_char_ptr;
6865         expression->funcname.kind = FUNCNAME_FUNCSIG;
6866
6867         return expression;
6868 }
6869
6870 static expression_t *parse_funcdname_keyword(void)
6871 {
6872         eat(T___FUNCDNAME__);
6873
6874         if (current_function == NULL) {
6875                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6876         }
6877
6878         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6879         expression->base.type     = type_char_ptr;
6880         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6881
6882         return expression;
6883 }
6884
6885 static designator_t *parse_designator(void)
6886 {
6887         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6888         result->source_position = *HERE;
6889
6890         if (token.type != T_IDENTIFIER) {
6891                 parse_error_expected("while parsing member designator",
6892                                      T_IDENTIFIER, NULL);
6893                 return NULL;
6894         }
6895         result->symbol = token.v.symbol;
6896         next_token();
6897
6898         designator_t *last_designator = result;
6899         while(true) {
6900                 if (token.type == '.') {
6901                         next_token();
6902                         if (token.type != T_IDENTIFIER) {
6903                                 parse_error_expected("while parsing member designator",
6904                                                      T_IDENTIFIER, NULL);
6905                                 return NULL;
6906                         }
6907                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6908                         designator->source_position = *HERE;
6909                         designator->symbol          = token.v.symbol;
6910                         next_token();
6911
6912                         last_designator->next = designator;
6913                         last_designator       = designator;
6914                         continue;
6915                 }
6916                 if (token.type == '[') {
6917                         next_token();
6918                         add_anchor_token(']');
6919                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6920                         designator->source_position = *HERE;
6921                         designator->array_index     = parse_expression();
6922                         rem_anchor_token(']');
6923                         expect(']');
6924                         if (designator->array_index == NULL) {
6925                                 return NULL;
6926                         }
6927
6928                         last_designator->next = designator;
6929                         last_designator       = designator;
6930                         continue;
6931                 }
6932                 break;
6933         }
6934
6935         return result;
6936 end_error:
6937         return NULL;
6938 }
6939
6940 /**
6941  * Parse the __builtin_offsetof() expression.
6942  */
6943 static expression_t *parse_offsetof(void)
6944 {
6945         eat(T___builtin_offsetof);
6946
6947         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6948         expression->base.type    = type_size_t;
6949
6950         expect('(');
6951         add_anchor_token(',');
6952         type_t *type = parse_typename();
6953         rem_anchor_token(',');
6954         expect(',');
6955         add_anchor_token(')');
6956         designator_t *designator = parse_designator();
6957         rem_anchor_token(')');
6958         expect(')');
6959
6960         expression->offsetofe.type       = type;
6961         expression->offsetofe.designator = designator;
6962
6963         type_path_t path;
6964         memset(&path, 0, sizeof(path));
6965         path.top_type = type;
6966         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6967
6968         descend_into_subtype(&path);
6969
6970         if (!walk_designator(&path, designator, true)) {
6971                 return create_invalid_expression();
6972         }
6973
6974         DEL_ARR_F(path.path);
6975
6976         return expression;
6977 end_error:
6978         return create_invalid_expression();
6979 }
6980
6981 /**
6982  * Parses a _builtin_va_start() expression.
6983  */
6984 static expression_t *parse_va_start(void)
6985 {
6986         eat(T___builtin_va_start);
6987
6988         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6989
6990         expect('(');
6991         add_anchor_token(',');
6992         expression->va_starte.ap = parse_assignment_expression();
6993         rem_anchor_token(',');
6994         expect(',');
6995         expression_t *const expr = parse_assignment_expression();
6996         if (expr->kind == EXPR_REFERENCE) {
6997                 entity_t *const entity = expr->reference.entity;
6998                 if (entity->base.parent_scope != &current_function->parameters
6999                                 || entity->base.next != NULL
7000                                 || entity->kind != ENTITY_VARIABLE) {
7001                         errorf(&expr->base.source_position,
7002                                "second argument of 'va_start' must be last parameter of the current function");
7003                 } else {
7004                         expression->va_starte.parameter = &entity->variable;
7005                 }
7006                 expect(')');
7007                 return expression;
7008         }
7009         expect(')');
7010 end_error:
7011         return create_invalid_expression();
7012 }
7013
7014 /**
7015  * Parses a _builtin_va_arg() expression.
7016  */
7017 static expression_t *parse_va_arg(void)
7018 {
7019         eat(T___builtin_va_arg);
7020
7021         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
7022
7023         expect('(');
7024         expression->va_arge.ap = parse_assignment_expression();
7025         expect(',');
7026         expression->base.type = parse_typename();
7027         expect(')');
7028
7029         return expression;
7030 end_error:
7031         return create_invalid_expression();
7032 }
7033
7034 static expression_t *parse_builtin_symbol(void)
7035 {
7036         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
7037
7038         symbol_t *symbol = token.v.symbol;
7039
7040         expression->builtin_symbol.symbol = symbol;
7041         next_token();
7042
7043         type_t *type = get_builtin_symbol_type(symbol);
7044         type = automatic_type_conversion(type);
7045
7046         expression->base.type = type;
7047         return expression;
7048 }
7049
7050 /**
7051  * Parses a __builtin_constant() expression.
7052  */
7053 static expression_t *parse_builtin_constant(void)
7054 {
7055         eat(T___builtin_constant_p);
7056
7057         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
7058
7059         expect('(');
7060         add_anchor_token(')');
7061         expression->builtin_constant.value = parse_assignment_expression();
7062         rem_anchor_token(')');
7063         expect(')');
7064         expression->base.type = type_int;
7065
7066         return expression;
7067 end_error:
7068         return create_invalid_expression();
7069 }
7070
7071 /**
7072  * Parses a __builtin_prefetch() expression.
7073  */
7074 static expression_t *parse_builtin_prefetch(void)
7075 {
7076         eat(T___builtin_prefetch);
7077
7078         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
7079
7080         expect('(');
7081         add_anchor_token(')');
7082         expression->builtin_prefetch.adr = parse_assignment_expression();
7083         if (token.type == ',') {
7084                 next_token();
7085                 expression->builtin_prefetch.rw = parse_assignment_expression();
7086         }
7087         if (token.type == ',') {
7088                 next_token();
7089                 expression->builtin_prefetch.locality = parse_assignment_expression();
7090         }
7091         rem_anchor_token(')');
7092         expect(')');
7093         expression->base.type = type_void;
7094
7095         return expression;
7096 end_error:
7097         return create_invalid_expression();
7098 }
7099
7100 /**
7101  * Parses a __builtin_is_*() compare expression.
7102  */
7103 static expression_t *parse_compare_builtin(void)
7104 {
7105         expression_t *expression;
7106
7107         switch (token.type) {
7108         case T___builtin_isgreater:
7109                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
7110                 break;
7111         case T___builtin_isgreaterequal:
7112                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
7113                 break;
7114         case T___builtin_isless:
7115                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
7116                 break;
7117         case T___builtin_islessequal:
7118                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
7119                 break;
7120         case T___builtin_islessgreater:
7121                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
7122                 break;
7123         case T___builtin_isunordered:
7124                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
7125                 break;
7126         default:
7127                 internal_errorf(HERE, "invalid compare builtin found");
7128         }
7129         expression->base.source_position = *HERE;
7130         next_token();
7131
7132         expect('(');
7133         expression->binary.left = parse_assignment_expression();
7134         expect(',');
7135         expression->binary.right = parse_assignment_expression();
7136         expect(')');
7137
7138         type_t *const orig_type_left  = expression->binary.left->base.type;
7139         type_t *const orig_type_right = expression->binary.right->base.type;
7140
7141         type_t *const type_left  = skip_typeref(orig_type_left);
7142         type_t *const type_right = skip_typeref(orig_type_right);
7143         if (!is_type_float(type_left) && !is_type_float(type_right)) {
7144                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7145                         type_error_incompatible("invalid operands in comparison",
7146                                 &expression->base.source_position, orig_type_left, orig_type_right);
7147                 }
7148         } else {
7149                 semantic_comparison(&expression->binary);
7150         }
7151
7152         return expression;
7153 end_error:
7154         return create_invalid_expression();
7155 }
7156
7157 #if 0
7158 /**
7159  * Parses a __builtin_expect() expression.
7160  */
7161 static expression_t *parse_builtin_expect(void)
7162 {
7163         eat(T___builtin_expect);
7164
7165         expression_t *expression
7166                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
7167
7168         expect('(');
7169         expression->binary.left = parse_assignment_expression();
7170         expect(',');
7171         expression->binary.right = parse_constant_expression();
7172         expect(')');
7173
7174         expression->base.type = expression->binary.left->base.type;
7175
7176         return expression;
7177 end_error:
7178         return create_invalid_expression();
7179 }
7180 #endif
7181
7182 /**
7183  * Parses a MS assume() expression.
7184  */
7185 static expression_t *parse_assume(void)
7186 {
7187         eat(T__assume);
7188
7189         expression_t *expression
7190                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
7191
7192         expect('(');
7193         add_anchor_token(')');
7194         expression->unary.value = parse_assignment_expression();
7195         rem_anchor_token(')');
7196         expect(')');
7197
7198         expression->base.type = type_void;
7199         return expression;
7200 end_error:
7201         return create_invalid_expression();
7202 }
7203
7204 /**
7205  * Return the declaration for a given label symbol or create a new one.
7206  *
7207  * @param symbol  the symbol of the label
7208  */
7209 static label_t *get_label(symbol_t *symbol)
7210 {
7211         entity_t *label;
7212         assert(current_function != NULL);
7213
7214         label = get_entity(symbol, NAMESPACE_LOCAL_LABEL);
7215         /* if we found a local label, we already created the declaration */
7216         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7217                 if (label->base.parent_scope != scope) {
7218                         assert(label->base.parent_scope->depth < scope->depth);
7219                         current_function->goto_to_outer = true;
7220                 }
7221                 return &label->label;
7222         }
7223
7224         label = get_entity(symbol, NAMESPACE_LABEL);
7225         /* if we found a label in the same function, then we already created the
7226          * declaration */
7227         if (label != NULL
7228                         && label->base.parent_scope == &current_function->parameters) {
7229                 return &label->label;
7230         }
7231
7232         /* otherwise we need to create a new one */
7233         label               = allocate_entity_zero(ENTITY_LABEL);
7234         label->base.namespc = NAMESPACE_LABEL;
7235         label->base.symbol  = symbol;
7236
7237         label_push(label);
7238
7239         return &label->label;
7240 }
7241
7242 /**
7243  * Parses a GNU && label address expression.
7244  */
7245 static expression_t *parse_label_address(void)
7246 {
7247         source_position_t source_position = token.source_position;
7248         eat(T_ANDAND);
7249         if (token.type != T_IDENTIFIER) {
7250                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7251                 goto end_error;
7252         }
7253         symbol_t *symbol = token.v.symbol;
7254         next_token();
7255
7256         label_t *label       = get_label(symbol);
7257         label->used          = true;
7258         label->address_taken = true;
7259
7260         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7261         expression->base.source_position = source_position;
7262
7263         /* label address is threaten as a void pointer */
7264         expression->base.type           = type_void_ptr;
7265         expression->label_address.label = label;
7266         return expression;
7267 end_error:
7268         return create_invalid_expression();
7269 }
7270
7271 /**
7272  * Parse a microsoft __noop expression.
7273  */
7274 static expression_t *parse_noop_expression(void)
7275 {
7276         source_position_t source_position = *HERE;
7277         eat(T___noop);
7278
7279         if (token.type == '(') {
7280                 /* parse arguments */
7281                 eat('(');
7282                 add_anchor_token(')');
7283                 add_anchor_token(',');
7284
7285                 if (token.type != ')') {
7286                         while(true) {
7287                                 (void)parse_assignment_expression();
7288                                 if (token.type != ',')
7289                                         break;
7290                                 next_token();
7291                         }
7292                 }
7293         }
7294         rem_anchor_token(',');
7295         rem_anchor_token(')');
7296         expect(')');
7297
7298         /* the result is a (int)0 */
7299         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
7300         cnst->base.source_position = source_position;
7301         cnst->base.type            = type_int;
7302         cnst->conste.v.int_value   = 0;
7303         cnst->conste.is_ms_noop    = true;
7304
7305         return cnst;
7306
7307 end_error:
7308         return create_invalid_expression();
7309 }
7310
7311 /**
7312  * Parses a primary expression.
7313  */
7314 static expression_t *parse_primary_expression(void)
7315 {
7316         switch (token.type) {
7317                 case T_INTEGER:                  return parse_int_const();
7318                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
7319                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
7320                 case T_FLOATINGPOINT:            return parse_float_const();
7321                 case T_STRING_LITERAL:
7322                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
7323                 case T_IDENTIFIER:               return parse_reference();
7324                 case T___FUNCTION__:
7325                 case T___func__:                 return parse_function_keyword();
7326                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
7327                 case T___FUNCSIG__:              return parse_funcsig_keyword();
7328                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
7329                 case T___builtin_offsetof:       return parse_offsetof();
7330                 case T___builtin_va_start:       return parse_va_start();
7331                 case T___builtin_va_arg:         return parse_va_arg();
7332                 case T___builtin_expect:
7333                 case T___builtin_alloca:
7334                 case T___builtin_inf:
7335                 case T___builtin_inff:
7336                 case T___builtin_infl:
7337                 case T___builtin_nan:
7338                 case T___builtin_nanf:
7339                 case T___builtin_nanl:
7340                 case T___builtin_huge_val:
7341                 case T___builtin_va_end:         return parse_builtin_symbol();
7342                 case T___builtin_isgreater:
7343                 case T___builtin_isgreaterequal:
7344                 case T___builtin_isless:
7345                 case T___builtin_islessequal:
7346                 case T___builtin_islessgreater:
7347                 case T___builtin_isunordered:    return parse_compare_builtin();
7348                 case T___builtin_constant_p:     return parse_builtin_constant();
7349                 case T___builtin_prefetch:       return parse_builtin_prefetch();
7350                 case T__assume:                  return parse_assume();
7351                 case T_ANDAND:
7352                         if (GNU_MODE)
7353                                 return parse_label_address();
7354                         break;
7355
7356                 case '(':                        return parse_parenthesized_expression();
7357                 case T___noop:                   return parse_noop_expression();
7358         }
7359
7360         errorf(HERE, "unexpected token %K, expected an expression", &token);
7361         return create_invalid_expression();
7362 }
7363
7364 /**
7365  * Check if the expression has the character type and issue a warning then.
7366  */
7367 static void check_for_char_index_type(const expression_t *expression)
7368 {
7369         type_t       *const type      = expression->base.type;
7370         const type_t *const base_type = skip_typeref(type);
7371
7372         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7373                         warning.char_subscripts) {
7374                 warningf(&expression->base.source_position,
7375                          "array subscript has type '%T'", type);
7376         }
7377 }
7378
7379 static expression_t *parse_array_expression(expression_t *left)
7380 {
7381         eat('[');
7382         add_anchor_token(']');
7383
7384         expression_t *inside = parse_expression();
7385
7386         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7387
7388         array_access_expression_t *array_access = &expression->array_access;
7389
7390         type_t *const orig_type_left   = left->base.type;
7391         type_t *const orig_type_inside = inside->base.type;
7392
7393         type_t *const type_left   = skip_typeref(orig_type_left);
7394         type_t *const type_inside = skip_typeref(orig_type_inside);
7395
7396         type_t *return_type;
7397         if (is_type_pointer(type_left)) {
7398                 return_type             = type_left->pointer.points_to;
7399                 array_access->array_ref = left;
7400                 array_access->index     = inside;
7401                 check_for_char_index_type(inside);
7402         } else if (is_type_pointer(type_inside)) {
7403                 return_type             = type_inside->pointer.points_to;
7404                 array_access->array_ref = inside;
7405                 array_access->index     = left;
7406                 array_access->flipped   = true;
7407                 check_for_char_index_type(left);
7408         } else {
7409                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7410                         errorf(HERE,
7411                                 "array access on object with non-pointer types '%T', '%T'",
7412                                 orig_type_left, orig_type_inside);
7413                 }
7414                 return_type             = type_error_type;
7415                 array_access->array_ref = left;
7416                 array_access->index     = inside;
7417         }
7418
7419         expression->base.type = automatic_type_conversion(return_type);
7420
7421         rem_anchor_token(']');
7422         if (token.type == ']') {
7423                 next_token();
7424         } else {
7425                 parse_error_expected("Problem while parsing array access", ']', NULL);
7426         }
7427         return expression;
7428 }
7429
7430 static expression_t *parse_typeprop(expression_kind_t const kind,
7431                                     source_position_t const pos)
7432 {
7433         expression_t  *tp_expression = allocate_expression_zero(kind);
7434         tp_expression->base.type            = type_size_t;
7435         tp_expression->base.source_position = pos;
7436
7437         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7438
7439         /* we only refer to a type property, mark this case */
7440         bool old     = in_type_prop;
7441         in_type_prop = true;
7442
7443         type_t       *orig_type;
7444         expression_t *expression;
7445         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7446                 next_token();
7447                 add_anchor_token(')');
7448                 orig_type = parse_typename();
7449                 rem_anchor_token(')');
7450                 expect(')');
7451
7452                 if (token.type == '{') {
7453                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7454                          * starting with a compound literal */
7455                         expression = parse_compound_literal(orig_type);
7456                         goto typeprop_expression;
7457                 }
7458         } else {
7459                 expression = parse_sub_expression(PREC_UNARY);
7460
7461 typeprop_expression:
7462                 tp_expression->typeprop.tp_expression = expression;
7463
7464                 orig_type = revert_automatic_type_conversion(expression);
7465                 expression->base.type = orig_type;
7466         }
7467
7468         tp_expression->typeprop.type   = orig_type;
7469         type_t const* const type       = skip_typeref(orig_type);
7470         char   const* const wrong_type =
7471                 is_type_incomplete(type)    ? "incomplete"          :
7472                 type->kind == TYPE_FUNCTION ? "function designator" :
7473                 type->kind == TYPE_BITFIELD ? "bitfield"            :
7474                 NULL;
7475         if (wrong_type != NULL) {
7476                 errorf(&pos, "operand of %s expression must not be of %s type '%T'",
7477                                 what, wrong_type, orig_type);
7478         }
7479
7480 end_error:
7481         in_type_prop = old;
7482         return tp_expression;
7483 }
7484
7485 static expression_t *parse_sizeof(void)
7486 {
7487         source_position_t pos = *HERE;
7488         eat(T_sizeof);
7489         return parse_typeprop(EXPR_SIZEOF, pos);
7490 }
7491
7492 static expression_t *parse_alignof(void)
7493 {
7494         source_position_t pos = *HERE;
7495         eat(T___alignof__);
7496         return parse_typeprop(EXPR_ALIGNOF, pos);
7497 }
7498
7499 static expression_t *parse_select_expression(expression_t *compound)
7500 {
7501         assert(token.type == '.' || token.type == T_MINUSGREATER);
7502
7503         bool is_pointer = (token.type == T_MINUSGREATER);
7504         next_token();
7505
7506         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
7507         select->select.compound = compound;
7508
7509         if (token.type != T_IDENTIFIER) {
7510                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7511                 return select;
7512         }
7513         symbol_t *symbol = token.v.symbol;
7514         next_token();
7515
7516         type_t *const orig_type = compound->base.type;
7517         type_t *const type      = skip_typeref(orig_type);
7518
7519         type_t *type_left;
7520         bool    saw_error = false;
7521         if (is_type_pointer(type)) {
7522                 if (!is_pointer) {
7523                         errorf(HERE,
7524                                "request for member '%Y' in something not a struct or union, but '%T'",
7525                                symbol, orig_type);
7526                         saw_error = true;
7527                 }
7528                 type_left = skip_typeref(type->pointer.points_to);
7529         } else {
7530                 if (is_pointer && is_type_valid(type)) {
7531                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7532                         saw_error = true;
7533                 }
7534                 type_left = type;
7535         }
7536
7537         entity_t *entry;
7538         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7539             type_left->kind == TYPE_COMPOUND_UNION) {
7540                 compound_t *compound = type_left->compound.compound;
7541
7542                 if (!compound->complete) {
7543                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7544                                symbol, type_left);
7545                         goto create_error_entry;
7546                 }
7547
7548                 entry = find_compound_entry(compound, symbol);
7549                 if (entry == NULL) {
7550                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7551                         goto create_error_entry;
7552                 }
7553         } else {
7554                 if (is_type_valid(type_left) && !saw_error) {
7555                         errorf(HERE,
7556                                "request for member '%Y' in something not a struct or union, but '%T'",
7557                                symbol, type_left);
7558                 }
7559 create_error_entry:
7560                 return create_invalid_expression();
7561         }
7562
7563         assert(is_declaration(entry));
7564         select->select.compound_entry = entry;
7565
7566         type_t *entry_type = entry->declaration.type;
7567         type_t *res_type
7568                 = get_qualified_type(entry_type, type_left->base.qualifiers);
7569
7570         /* we always do the auto-type conversions; the & and sizeof parser contains
7571          * code to revert this! */
7572         select->base.type = automatic_type_conversion(res_type);
7573
7574         type_t *skipped = skip_typeref(res_type);
7575         if (skipped->kind == TYPE_BITFIELD) {
7576                 select->base.type = skipped->bitfield.base_type;
7577         }
7578
7579         return select;
7580 }
7581
7582 static void check_call_argument(const function_parameter_t *parameter,
7583                                 call_argument_t *argument, unsigned pos)
7584 {
7585         type_t         *expected_type      = parameter->type;
7586         type_t         *expected_type_skip = skip_typeref(expected_type);
7587         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7588         expression_t   *arg_expr           = argument->expression;
7589         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7590
7591         /* handle transparent union gnu extension */
7592         if (is_type_union(expected_type_skip)
7593                         && (expected_type_skip->base.modifiers
7594                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7595                 compound_t *union_decl  = expected_type_skip->compound.compound;
7596                 type_t     *best_type   = NULL;
7597                 entity_t   *entry       = union_decl->members.entities;
7598                 for ( ; entry != NULL; entry = entry->base.next) {
7599                         assert(is_declaration(entry));
7600                         type_t *decl_type = entry->declaration.type;
7601                         error = semantic_assign(decl_type, arg_expr);
7602                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7603                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7604                                 continue;
7605
7606                         if (error == ASSIGN_SUCCESS) {
7607                                 best_type = decl_type;
7608                         } else if (best_type == NULL) {
7609                                 best_type = decl_type;
7610                         }
7611                 }
7612
7613                 if (best_type != NULL) {
7614                         expected_type = best_type;
7615                 }
7616         }
7617
7618         error                = semantic_assign(expected_type, arg_expr);
7619         argument->expression = create_implicit_cast(argument->expression,
7620                                                     expected_type);
7621
7622         if (error != ASSIGN_SUCCESS) {
7623                 /* report exact scope in error messages (like "in argument 3") */
7624                 char buf[64];
7625                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7626                 report_assign_error(error, expected_type, arg_expr,     buf,
7627                                                         &arg_expr->base.source_position);
7628         } else if (warning.traditional || warning.conversion) {
7629                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7630                 if (!types_compatible(expected_type_skip, promoted_type) &&
7631                     !types_compatible(expected_type_skip, type_void_ptr) &&
7632                     !types_compatible(type_void_ptr,      promoted_type)) {
7633                         /* Deliberately show the skipped types in this warning */
7634                         warningf(&arg_expr->base.source_position,
7635                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7636                                 pos, expected_type_skip, promoted_type);
7637                 }
7638         }
7639 }
7640
7641 /**
7642  * Parse a call expression, ie. expression '( ... )'.
7643  *
7644  * @param expression  the function address
7645  */
7646 static expression_t *parse_call_expression(expression_t *expression)
7647 {
7648         expression_t *result = allocate_expression_zero(EXPR_CALL);
7649         result->base.source_position = expression->base.source_position;
7650
7651         call_expression_t *call = &result->call;
7652         call->function          = expression;
7653
7654         type_t *const orig_type = expression->base.type;
7655         type_t *const type      = skip_typeref(orig_type);
7656
7657         function_type_t *function_type = NULL;
7658         if (is_type_pointer(type)) {
7659                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7660
7661                 if (is_type_function(to_type)) {
7662                         function_type   = &to_type->function;
7663                         call->base.type = function_type->return_type;
7664                 }
7665         }
7666
7667         if (function_type == NULL && is_type_valid(type)) {
7668                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7669         }
7670
7671         /* parse arguments */
7672         eat('(');
7673         add_anchor_token(')');
7674         add_anchor_token(',');
7675
7676         if (token.type != ')') {
7677                 call_argument_t *last_argument = NULL;
7678
7679                 while (true) {
7680                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7681
7682                         argument->expression = parse_assignment_expression();
7683                         if (last_argument == NULL) {
7684                                 call->arguments = argument;
7685                         } else {
7686                                 last_argument->next = argument;
7687                         }
7688                         last_argument = argument;
7689
7690                         if (token.type != ',')
7691                                 break;
7692                         next_token();
7693                 }
7694         }
7695         rem_anchor_token(',');
7696         rem_anchor_token(')');
7697         expect(')');
7698
7699         if (function_type == NULL)
7700                 return result;
7701
7702         function_parameter_t *parameter = function_type->parameters;
7703         call_argument_t      *argument  = call->arguments;
7704         if (!function_type->unspecified_parameters) {
7705                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7706                                 parameter = parameter->next, argument = argument->next) {
7707                         check_call_argument(parameter, argument, ++pos);
7708                 }
7709
7710                 if (parameter != NULL) {
7711                         errorf(HERE, "too few arguments to function '%E'", expression);
7712                 } else if (argument != NULL && !function_type->variadic) {
7713                         errorf(HERE, "too many arguments to function '%E'", expression);
7714                 }
7715         }
7716
7717         /* do default promotion */
7718         for( ; argument != NULL; argument = argument->next) {
7719                 type_t *type = argument->expression->base.type;
7720
7721                 type = get_default_promoted_type(type);
7722
7723                 argument->expression
7724                         = create_implicit_cast(argument->expression, type);
7725         }
7726
7727         check_format(&result->call);
7728
7729         if (warning.aggregate_return &&
7730             is_type_compound(skip_typeref(function_type->return_type))) {
7731                 warningf(&result->base.source_position,
7732                          "function call has aggregate value");
7733         }
7734
7735 end_error:
7736         return result;
7737 }
7738
7739 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7740
7741 static bool same_compound_type(const type_t *type1, const type_t *type2)
7742 {
7743         return
7744                 is_type_compound(type1) &&
7745                 type1->kind == type2->kind &&
7746                 type1->compound.compound == type2->compound.compound;
7747 }
7748
7749 /**
7750  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7751  *
7752  * @param expression  the conditional expression
7753  */
7754 static expression_t *parse_conditional_expression(expression_t *expression)
7755 {
7756         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7757
7758         conditional_expression_t *conditional = &result->conditional;
7759         conditional->base.source_position = *HERE;
7760         conditional->condition            = expression;
7761
7762         eat('?');
7763         add_anchor_token(':');
7764
7765         /* 6.5.15.2 */
7766         type_t *const condition_type_orig = expression->base.type;
7767         type_t *const condition_type      = skip_typeref(condition_type_orig);
7768         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7769                 type_error("expected a scalar type in conditional condition",
7770                            &expression->base.source_position, condition_type_orig);
7771         }
7772
7773         expression_t *true_expression = expression;
7774         bool          gnu_cond = false;
7775         if (GNU_MODE && token.type == ':') {
7776                 gnu_cond = true;
7777         } else {
7778                 true_expression = parse_expression();
7779         }
7780         rem_anchor_token(':');
7781         expect(':');
7782         expression_t *false_expression =
7783                 parse_sub_expression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
7784
7785         type_t *const orig_true_type  = true_expression->base.type;
7786         type_t *const orig_false_type = false_expression->base.type;
7787         type_t *const true_type       = skip_typeref(orig_true_type);
7788         type_t *const false_type      = skip_typeref(orig_false_type);
7789
7790         /* 6.5.15.3 */
7791         type_t *result_type;
7792         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7793                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7794                 /* ISO/IEC 14882:1998(E) Â§5.16:2 */
7795                 if (true_expression->kind == EXPR_UNARY_THROW) {
7796                         result_type = false_type;
7797                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
7798                         result_type = true_type;
7799                 } else {
7800                         if (warning.other && (
7801                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7802                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
7803                                         )) {
7804                                 warningf(&conditional->base.source_position,
7805                                                 "ISO C forbids conditional expression with only one void side");
7806                         }
7807                         result_type = type_void;
7808                 }
7809         } else if (is_type_arithmetic(true_type)
7810                    && is_type_arithmetic(false_type)) {
7811                 result_type = semantic_arithmetic(true_type, false_type);
7812
7813                 true_expression  = create_implicit_cast(true_expression, result_type);
7814                 false_expression = create_implicit_cast(false_expression, result_type);
7815
7816                 conditional->true_expression  = true_expression;
7817                 conditional->false_expression = false_expression;
7818                 conditional->base.type        = result_type;
7819         } else if (same_compound_type(true_type, false_type)) {
7820                 /* just take 1 of the 2 types */
7821                 result_type = true_type;
7822         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7823                 type_t *pointer_type;
7824                 type_t *other_type;
7825                 expression_t *other_expression;
7826                 if (is_type_pointer(true_type) &&
7827                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7828                         pointer_type     = true_type;
7829                         other_type       = false_type;
7830                         other_expression = false_expression;
7831                 } else {
7832                         pointer_type     = false_type;
7833                         other_type       = true_type;
7834                         other_expression = true_expression;
7835                 }
7836
7837                 if (is_null_pointer_constant(other_expression)) {
7838                         result_type = pointer_type;
7839                 } else if (is_type_pointer(other_type)) {
7840                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7841                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7842
7843                         type_t *to;
7844                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7845                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7846                                 to = type_void;
7847                         } else if (types_compatible(get_unqualified_type(to1),
7848                                                     get_unqualified_type(to2))) {
7849                                 to = to1;
7850                         } else {
7851                                 if (warning.other) {
7852                                         warningf(&conditional->base.source_position,
7853                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7854                                                         true_type, false_type);
7855                                 }
7856                                 to = type_void;
7857                         }
7858
7859                         type_t *const type =
7860                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7861                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7862                 } else if (is_type_integer(other_type)) {
7863                         if (warning.other) {
7864                                 warningf(&conditional->base.source_position,
7865                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7866                         }
7867                         result_type = pointer_type;
7868                 } else {
7869                         if (is_type_valid(other_type)) {
7870                                 type_error_incompatible("while parsing conditional",
7871                                                 &expression->base.source_position, true_type, false_type);
7872                         }
7873                         result_type = type_error_type;
7874                 }
7875         } else {
7876                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7877                         type_error_incompatible("while parsing conditional",
7878                                                 &conditional->base.source_position, true_type,
7879                                                 false_type);
7880                 }
7881                 result_type = type_error_type;
7882         }
7883
7884         conditional->true_expression
7885                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7886         conditional->false_expression
7887                 = create_implicit_cast(false_expression, result_type);
7888         conditional->base.type = result_type;
7889         return result;
7890 end_error:
7891         return create_invalid_expression();
7892 }
7893
7894 /**
7895  * Parse an extension expression.
7896  */
7897 static expression_t *parse_extension(void)
7898 {
7899         eat(T___extension__);
7900
7901         bool old_gcc_extension   = in_gcc_extension;
7902         in_gcc_extension         = true;
7903         expression_t *expression = parse_sub_expression(PREC_UNARY);
7904         in_gcc_extension         = old_gcc_extension;
7905         return expression;
7906 }
7907
7908 /**
7909  * Parse a __builtin_classify_type() expression.
7910  */
7911 static expression_t *parse_builtin_classify_type(void)
7912 {
7913         eat(T___builtin_classify_type);
7914
7915         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7916         result->base.type    = type_int;
7917
7918         expect('(');
7919         add_anchor_token(')');
7920         expression_t *expression = parse_expression();
7921         rem_anchor_token(')');
7922         expect(')');
7923         result->classify_type.type_expression = expression;
7924
7925         return result;
7926 end_error:
7927         return create_invalid_expression();
7928 }
7929
7930 /**
7931  * Parse a delete expression
7932  * ISO/IEC 14882:1998(E) Â§5.3.5
7933  */
7934 static expression_t *parse_delete(void)
7935 {
7936         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
7937         result->base.source_position = *HERE;
7938         result->base.type            = type_void;
7939
7940         eat(T_delete);
7941
7942         if (token.type == '[') {
7943                 next_token();
7944                 result->kind = EXPR_UNARY_DELETE_ARRAY;
7945                 expect(']');
7946 end_error:;
7947         }
7948
7949         expression_t *const value = parse_sub_expression(PREC_CAST);
7950         result->unary.value = value;
7951
7952         type_t *const type = skip_typeref(value->base.type);
7953         if (!is_type_pointer(type)) {
7954                 errorf(&value->base.source_position,
7955                                 "operand of delete must have pointer type");
7956         } else if (warning.other &&
7957                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
7958                 warningf(&value->base.source_position,
7959                                 "deleting 'void*' is undefined");
7960         }
7961
7962         return result;
7963 }
7964
7965 /**
7966  * Parse a throw expression
7967  * ISO/IEC 14882:1998(E) Â§15:1
7968  */
7969 static expression_t *parse_throw(void)
7970 {
7971         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
7972         result->base.source_position = *HERE;
7973         result->base.type            = type_void;
7974
7975         eat(T_throw);
7976
7977         expression_t *value = NULL;
7978         switch (token.type) {
7979                 EXPRESSION_START {
7980                         value = parse_assignment_expression();
7981                         /* ISO/IEC 14882:1998(E) Â§15.1:3 */
7982                         type_t *const orig_type = value->base.type;
7983                         type_t *const type      = skip_typeref(orig_type);
7984                         if (is_type_incomplete(type)) {
7985                                 errorf(&value->base.source_position,
7986                                                 "cannot throw object of incomplete type '%T'", orig_type);
7987                         } else if (is_type_pointer(type)) {
7988                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
7989                                 if (is_type_incomplete(points_to) &&
7990                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7991                                         errorf(&value->base.source_position,
7992                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
7993                                 }
7994                         }
7995                 }
7996
7997                 default:
7998                         break;
7999         }
8000         result->unary.value = value;
8001
8002         return result;
8003 }
8004
8005 static bool check_pointer_arithmetic(const source_position_t *source_position,
8006                                      type_t *pointer_type,
8007                                      type_t *orig_pointer_type)
8008 {
8009         type_t *points_to = pointer_type->pointer.points_to;
8010         points_to = skip_typeref(points_to);
8011
8012         if (is_type_incomplete(points_to)) {
8013                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8014                         errorf(source_position,
8015                                "arithmetic with pointer to incomplete type '%T' not allowed",
8016                                orig_pointer_type);
8017                         return false;
8018                 } else if (warning.pointer_arith) {
8019                         warningf(source_position,
8020                                  "pointer of type '%T' used in arithmetic",
8021                                  orig_pointer_type);
8022                 }
8023         } else if (is_type_function(points_to)) {
8024                 if (!GNU_MODE) {
8025                         errorf(source_position,
8026                                "arithmetic with pointer to function type '%T' not allowed",
8027                                orig_pointer_type);
8028                         return false;
8029                 } else if (warning.pointer_arith) {
8030                         warningf(source_position,
8031                                  "pointer to a function '%T' used in arithmetic",
8032                                  orig_pointer_type);
8033                 }
8034         }
8035         return true;
8036 }
8037
8038 static bool is_lvalue(const expression_t *expression)
8039 {
8040         /* TODO: doesn't seem to be consistent with Â§6.3.2.1 (1) */
8041         switch (expression->kind) {
8042         case EXPR_REFERENCE:
8043         case EXPR_ARRAY_ACCESS:
8044         case EXPR_SELECT:
8045         case EXPR_UNARY_DEREFERENCE:
8046                 return true;
8047
8048         default:
8049                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
8050                  * error before, which maybe prevented properly recognizing it as
8051                  * lvalue. */
8052                 return !is_type_valid(skip_typeref(expression->base.type));
8053         }
8054 }
8055
8056 static void semantic_incdec(unary_expression_t *expression)
8057 {
8058         type_t *const orig_type = expression->value->base.type;
8059         type_t *const type      = skip_typeref(orig_type);
8060         if (is_type_pointer(type)) {
8061                 if (!check_pointer_arithmetic(&expression->base.source_position,
8062                                               type, orig_type)) {
8063                         return;
8064                 }
8065         } else if (!is_type_real(type) && is_type_valid(type)) {
8066                 /* TODO: improve error message */
8067                 errorf(&expression->base.source_position,
8068                        "operation needs an arithmetic or pointer type");
8069                 return;
8070         }
8071         if (!is_lvalue(expression->value)) {
8072                 /* TODO: improve error message */
8073                 errorf(&expression->base.source_position, "lvalue required as operand");
8074         }
8075         expression->base.type = orig_type;
8076 }
8077
8078 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
8079 {
8080         type_t *const orig_type = expression->value->base.type;
8081         type_t *const type      = skip_typeref(orig_type);
8082         if (!is_type_arithmetic(type)) {
8083                 if (is_type_valid(type)) {
8084                         /* TODO: improve error message */
8085                         errorf(&expression->base.source_position,
8086                                 "operation needs an arithmetic type");
8087                 }
8088                 return;
8089         }
8090
8091         expression->base.type = orig_type;
8092 }
8093
8094 static void semantic_unexpr_plus(unary_expression_t *expression)
8095 {
8096         semantic_unexpr_arithmetic(expression);
8097         if (warning.traditional)
8098                 warningf(&expression->base.source_position,
8099                         "traditional C rejects the unary plus operator");
8100 }
8101
8102 static expression_t const *get_reference_address(expression_t const *expr)
8103 {
8104         bool regular_take_address = true;
8105         for (;;) {
8106                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8107                         expr = expr->unary.value;
8108                 } else {
8109                         regular_take_address = false;
8110                 }
8111
8112                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8113                         break;
8114
8115                 expr = expr->unary.value;
8116         }
8117
8118         /* special case for functions which are automatically converted to a
8119          * pointer to function without an extra TAKE_ADDRESS operation */
8120         if (!regular_take_address && expr->kind == EXPR_REFERENCE
8121                         && expr->reference.entity->kind == ENTITY_FUNCTION) {
8122                 return expr;
8123         }
8124
8125         return NULL;
8126 }
8127
8128 static void warn_function_address_as_bool(expression_t const* expr)
8129 {
8130         if (!warning.address)
8131                 return;
8132
8133         expr = get_reference_address(expr);
8134         if (expr != NULL) {
8135                 warningf(&expr->base.source_position,
8136                          "the address of '%Y' will always evaluate as 'true'",
8137                          expr->reference.entity->base.symbol);
8138         }
8139 }
8140
8141 static void semantic_not(unary_expression_t *expression)
8142 {
8143         type_t *const orig_type = expression->value->base.type;
8144         type_t *const type      = skip_typeref(orig_type);
8145         if (!is_type_scalar(type) && is_type_valid(type)) {
8146                 errorf(&expression->base.source_position,
8147                        "operand of ! must be of scalar type");
8148         }
8149
8150         warn_function_address_as_bool(expression->value);
8151
8152         expression->base.type = type_int;
8153 }
8154
8155 static void semantic_unexpr_integer(unary_expression_t *expression)
8156 {
8157         type_t *const orig_type = expression->value->base.type;
8158         type_t *const type      = skip_typeref(orig_type);
8159         if (!is_type_integer(type)) {
8160                 if (is_type_valid(type)) {
8161                         errorf(&expression->base.source_position,
8162                                "operand of ~ must be of integer type");
8163                 }
8164                 return;
8165         }
8166
8167         expression->base.type = orig_type;
8168 }
8169
8170 static void semantic_dereference(unary_expression_t *expression)
8171 {
8172         type_t *const orig_type = expression->value->base.type;
8173         type_t *const type      = skip_typeref(orig_type);
8174         if (!is_type_pointer(type)) {
8175                 if (is_type_valid(type)) {
8176                         errorf(&expression->base.source_position,
8177                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8178                 }
8179                 return;
8180         }
8181
8182         type_t *result_type   = type->pointer.points_to;
8183         result_type           = automatic_type_conversion(result_type);
8184         expression->base.type = result_type;
8185 }
8186
8187 /**
8188  * Record that an address is taken (expression represents an lvalue).
8189  *
8190  * @param expression       the expression
8191  * @param may_be_register  if true, the expression might be an register
8192  */
8193 static void set_address_taken(expression_t *expression, bool may_be_register)
8194 {
8195         if (expression->kind != EXPR_REFERENCE)
8196                 return;
8197
8198         entity_t *const entity = expression->reference.entity;
8199
8200         if (entity->kind != ENTITY_VARIABLE)
8201                 return;
8202
8203         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8204                         && !may_be_register) {
8205                 errorf(&expression->base.source_position,
8206                                 "address of register variable '%Y' requested",
8207                                 entity->base.symbol);
8208         }
8209
8210         entity->variable.address_taken = true;
8211 }
8212
8213 /**
8214  * Check the semantic of the address taken expression.
8215  */
8216 static void semantic_take_addr(unary_expression_t *expression)
8217 {
8218         expression_t *value = expression->value;
8219         value->base.type    = revert_automatic_type_conversion(value);
8220
8221         type_t *orig_type = value->base.type;
8222         type_t *type      = skip_typeref(orig_type);
8223         if (!is_type_valid(type))
8224                 return;
8225
8226         /* Â§6.5.3.2 */
8227         if (value->kind != EXPR_ARRAY_ACCESS
8228                         && value->kind != EXPR_UNARY_DEREFERENCE
8229                         && !is_lvalue(value)) {
8230                 errorf(&expression->base.source_position,
8231                        "'&' requires an lvalue");
8232         }
8233         if (type->kind == TYPE_BITFIELD) {
8234                 errorf(&expression->base.source_position,
8235                        "'&' not allowed on object with bitfield type '%T'",
8236                        type);
8237         }
8238
8239         set_address_taken(value, false);
8240
8241         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8242 }
8243
8244 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8245 static expression_t *parse_##unexpression_type(void)                         \
8246 {                                                                            \
8247         expression_t *unary_expression                                           \
8248                 = allocate_expression_zero(unexpression_type);                       \
8249         unary_expression->base.source_position = *HERE;                          \
8250         eat(token_type);                                                         \
8251         unary_expression->unary.value = parse_sub_expression(PREC_UNARY);        \
8252                                                                                  \
8253         sfunc(&unary_expression->unary);                                         \
8254                                                                                  \
8255         return unary_expression;                                                 \
8256 }
8257
8258 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8259                                semantic_unexpr_arithmetic)
8260 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8261                                semantic_unexpr_plus)
8262 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8263                                semantic_not)
8264 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8265                                semantic_dereference)
8266 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8267                                semantic_take_addr)
8268 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8269                                semantic_unexpr_integer)
8270 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8271                                semantic_incdec)
8272 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8273                                semantic_incdec)
8274
8275 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8276                                                sfunc)                         \
8277 static expression_t *parse_##unexpression_type(expression_t *left)            \
8278 {                                                                             \
8279         expression_t *unary_expression                                            \
8280                 = allocate_expression_zero(unexpression_type);                        \
8281         unary_expression->base.source_position = *HERE;                           \
8282         eat(token_type);                                                          \
8283         unary_expression->unary.value          = left;                            \
8284                                                                                   \
8285         sfunc(&unary_expression->unary);                                          \
8286                                                                               \
8287         return unary_expression;                                                  \
8288 }
8289
8290 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8291                                        EXPR_UNARY_POSTFIX_INCREMENT,
8292                                        semantic_incdec)
8293 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8294                                        EXPR_UNARY_POSTFIX_DECREMENT,
8295                                        semantic_incdec)
8296
8297 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8298 {
8299         /* TODO: handle complex + imaginary types */
8300
8301         type_left  = get_unqualified_type(type_left);
8302         type_right = get_unqualified_type(type_right);
8303
8304         /* Â§ 6.3.1.8 Usual arithmetic conversions */
8305         if (type_left == type_long_double || type_right == type_long_double) {
8306                 return type_long_double;
8307         } else if (type_left == type_double || type_right == type_double) {
8308                 return type_double;
8309         } else if (type_left == type_float || type_right == type_float) {
8310                 return type_float;
8311         }
8312
8313         type_left  = promote_integer(type_left);
8314         type_right = promote_integer(type_right);
8315
8316         if (type_left == type_right)
8317                 return type_left;
8318
8319         bool const signed_left  = is_type_signed(type_left);
8320         bool const signed_right = is_type_signed(type_right);
8321         int const  rank_left    = get_rank(type_left);
8322         int const  rank_right   = get_rank(type_right);
8323
8324         if (signed_left == signed_right)
8325                 return rank_left >= rank_right ? type_left : type_right;
8326
8327         int     s_rank;
8328         int     u_rank;
8329         type_t *s_type;
8330         type_t *u_type;
8331         if (signed_left) {
8332                 s_rank = rank_left;
8333                 s_type = type_left;
8334                 u_rank = rank_right;
8335                 u_type = type_right;
8336         } else {
8337                 s_rank = rank_right;
8338                 s_type = type_right;
8339                 u_rank = rank_left;
8340                 u_type = type_left;
8341         }
8342
8343         if (u_rank >= s_rank)
8344                 return u_type;
8345
8346         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8347          * easier here... */
8348         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8349                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8350                 return s_type;
8351
8352         switch (s_rank) {
8353                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8354                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8355                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8356
8357                 default: panic("invalid atomic type");
8358         }
8359 }
8360
8361 /**
8362  * Check the semantic restrictions for a binary expression.
8363  */
8364 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8365 {
8366         expression_t *const left            = expression->left;
8367         expression_t *const right           = expression->right;
8368         type_t       *const orig_type_left  = left->base.type;
8369         type_t       *const orig_type_right = right->base.type;
8370         type_t       *const type_left       = skip_typeref(orig_type_left);
8371         type_t       *const type_right      = skip_typeref(orig_type_right);
8372
8373         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8374                 /* TODO: improve error message */
8375                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8376                         errorf(&expression->base.source_position,
8377                                "operation needs arithmetic types");
8378                 }
8379                 return;
8380         }
8381
8382         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8383         expression->left      = create_implicit_cast(left, arithmetic_type);
8384         expression->right     = create_implicit_cast(right, arithmetic_type);
8385         expression->base.type = arithmetic_type;
8386 }
8387
8388 static void warn_div_by_zero(binary_expression_t const *const expression)
8389 {
8390         if (!warning.div_by_zero ||
8391             !is_type_integer(expression->base.type))
8392                 return;
8393
8394         expression_t const *const right = expression->right;
8395         /* The type of the right operand can be different for /= */
8396         if (is_type_integer(right->base.type) &&
8397             is_constant_expression(right)     &&
8398             fold_constant(right) == 0) {
8399                 warningf(&expression->base.source_position, "division by zero");
8400         }
8401 }
8402
8403 /**
8404  * Check the semantic restrictions for a div/mod expression.
8405  */
8406 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
8407         semantic_binexpr_arithmetic(expression);
8408         warn_div_by_zero(expression);
8409 }
8410
8411 static void semantic_shift_op(binary_expression_t *expression)
8412 {
8413         expression_t *const left            = expression->left;
8414         expression_t *const right           = expression->right;
8415         type_t       *const orig_type_left  = left->base.type;
8416         type_t       *const orig_type_right = right->base.type;
8417         type_t       *      type_left       = skip_typeref(orig_type_left);
8418         type_t       *      type_right      = skip_typeref(orig_type_right);
8419
8420         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8421                 /* TODO: improve error message */
8422                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8423                         errorf(&expression->base.source_position,
8424                                "operands of shift operation must have integer types");
8425                 }
8426                 return;
8427         }
8428
8429         type_left  = promote_integer(type_left);
8430         type_right = promote_integer(type_right);
8431
8432         expression->left      = create_implicit_cast(left, type_left);
8433         expression->right     = create_implicit_cast(right, type_right);
8434         expression->base.type = type_left;
8435 }
8436
8437 static void semantic_add(binary_expression_t *expression)
8438 {
8439         expression_t *const left            = expression->left;
8440         expression_t *const right           = expression->right;
8441         type_t       *const orig_type_left  = left->base.type;
8442         type_t       *const orig_type_right = right->base.type;
8443         type_t       *const type_left       = skip_typeref(orig_type_left);
8444         type_t       *const type_right      = skip_typeref(orig_type_right);
8445
8446         /* Â§ 6.5.6 */
8447         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8448                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8449                 expression->left  = create_implicit_cast(left, arithmetic_type);
8450                 expression->right = create_implicit_cast(right, arithmetic_type);
8451                 expression->base.type = arithmetic_type;
8452                 return;
8453         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8454                 check_pointer_arithmetic(&expression->base.source_position,
8455                                          type_left, orig_type_left);
8456                 expression->base.type = type_left;
8457         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8458                 check_pointer_arithmetic(&expression->base.source_position,
8459                                          type_right, orig_type_right);
8460                 expression->base.type = type_right;
8461         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8462                 errorf(&expression->base.source_position,
8463                        "invalid operands to binary + ('%T', '%T')",
8464                        orig_type_left, orig_type_right);
8465         }
8466 }
8467
8468 static void semantic_sub(binary_expression_t *expression)
8469 {
8470         expression_t            *const left            = expression->left;
8471         expression_t            *const right           = expression->right;
8472         type_t                  *const orig_type_left  = left->base.type;
8473         type_t                  *const orig_type_right = right->base.type;
8474         type_t                  *const type_left       = skip_typeref(orig_type_left);
8475         type_t                  *const type_right      = skip_typeref(orig_type_right);
8476         source_position_t const *const pos             = &expression->base.source_position;
8477
8478         /* Â§ 5.6.5 */
8479         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8480                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8481                 expression->left        = create_implicit_cast(left, arithmetic_type);
8482                 expression->right       = create_implicit_cast(right, arithmetic_type);
8483                 expression->base.type =  arithmetic_type;
8484                 return;
8485         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8486                 check_pointer_arithmetic(&expression->base.source_position,
8487                                          type_left, orig_type_left);
8488                 expression->base.type = type_left;
8489         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8490                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8491                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8492                 if (!types_compatible(unqual_left, unqual_right)) {
8493                         errorf(pos,
8494                                "subtracting pointers to incompatible types '%T' and '%T'",
8495                                orig_type_left, orig_type_right);
8496                 } else if (!is_type_object(unqual_left)) {
8497                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8498                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8499                                        orig_type_left);
8500                         } else if (warning.other) {
8501                                 warningf(pos, "subtracting pointers to void");
8502                         }
8503                 }
8504                 expression->base.type = type_ptrdiff_t;
8505         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8506                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8507                        orig_type_left, orig_type_right);
8508         }
8509 }
8510
8511 static void warn_string_literal_address(expression_t const* expr)
8512 {
8513         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8514                 expr = expr->unary.value;
8515                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8516                         return;
8517                 expr = expr->unary.value;
8518         }
8519
8520         if (expr->kind == EXPR_STRING_LITERAL ||
8521             expr->kind == EXPR_WIDE_STRING_LITERAL) {
8522                 warningf(&expr->base.source_position,
8523                         "comparison with string literal results in unspecified behaviour");
8524         }
8525 }
8526
8527 /**
8528  * Check the semantics of comparison expressions.
8529  *
8530  * @param expression   The expression to check.
8531  */
8532 static void semantic_comparison(binary_expression_t *expression)
8533 {
8534         expression_t *left  = expression->left;
8535         expression_t *right = expression->right;
8536
8537         if (warning.address) {
8538                 warn_string_literal_address(left);
8539                 warn_string_literal_address(right);
8540
8541                 expression_t const* const func_left = get_reference_address(left);
8542                 if (func_left != NULL && is_null_pointer_constant(right)) {
8543                         warningf(&expression->base.source_position,
8544                                  "the address of '%Y' will never be NULL",
8545                                  func_left->reference.entity->base.symbol);
8546                 }
8547
8548                 expression_t const* const func_right = get_reference_address(right);
8549                 if (func_right != NULL && is_null_pointer_constant(right)) {
8550                         warningf(&expression->base.source_position,
8551                                  "the address of '%Y' will never be NULL",
8552                                  func_right->reference.entity->base.symbol);
8553                 }
8554         }
8555
8556         type_t *orig_type_left  = left->base.type;
8557         type_t *orig_type_right = right->base.type;
8558         type_t *type_left       = skip_typeref(orig_type_left);
8559         type_t *type_right      = skip_typeref(orig_type_right);
8560
8561         /* TODO non-arithmetic types */
8562         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8563                 /* test for signed vs unsigned compares */
8564                 if (warning.sign_compare &&
8565                     (expression->base.kind != EXPR_BINARY_EQUAL &&
8566                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
8567                     (is_type_signed(type_left) != is_type_signed(type_right))) {
8568
8569                         /* check if 1 of the operands is a constant, in this case we just
8570                          * check wether we can safely represent the resulting constant in
8571                          * the type of the other operand. */
8572                         expression_t *const_expr = NULL;
8573                         expression_t *other_expr = NULL;
8574
8575                         if (is_constant_expression(left)) {
8576                                 const_expr = left;
8577                                 other_expr = right;
8578                         } else if (is_constant_expression(right)) {
8579                                 const_expr = right;
8580                                 other_expr = left;
8581                         }
8582
8583                         if (const_expr != NULL) {
8584                                 type_t *other_type = skip_typeref(other_expr->base.type);
8585                                 long    val        = fold_constant(const_expr);
8586                                 /* TODO: check if val can be represented by other_type */
8587                                 (void) other_type;
8588                                 (void) val;
8589                         }
8590                         warningf(&expression->base.source_position,
8591                                  "comparison between signed and unsigned");
8592                 }
8593                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8594                 expression->left        = create_implicit_cast(left, arithmetic_type);
8595                 expression->right       = create_implicit_cast(right, arithmetic_type);
8596                 expression->base.type   = arithmetic_type;
8597                 if (warning.float_equal &&
8598                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8599                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8600                     is_type_float(arithmetic_type)) {
8601                         warningf(&expression->base.source_position,
8602                                  "comparing floating point with == or != is unsafe");
8603                 }
8604         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8605                 /* TODO check compatibility */
8606         } else if (is_type_pointer(type_left)) {
8607                 expression->right = create_implicit_cast(right, type_left);
8608         } else if (is_type_pointer(type_right)) {
8609                 expression->left = create_implicit_cast(left, type_right);
8610         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8611                 type_error_incompatible("invalid operands in comparison",
8612                                         &expression->base.source_position,
8613                                         type_left, type_right);
8614         }
8615         expression->base.type = type_int;
8616 }
8617
8618 /**
8619  * Checks if a compound type has constant fields.
8620  */
8621 static bool has_const_fields(const compound_type_t *type)
8622 {
8623         compound_t *compound = type->compound;
8624         entity_t   *entry    = compound->members.entities;
8625
8626         for (; entry != NULL; entry = entry->base.next) {
8627                 if (!is_declaration(entry))
8628                         continue;
8629
8630                 const type_t *decl_type = skip_typeref(entry->declaration.type);
8631                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8632                         return true;
8633         }
8634
8635         return false;
8636 }
8637
8638 static bool is_valid_assignment_lhs(expression_t const* const left)
8639 {
8640         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8641         type_t *const type_left      = skip_typeref(orig_type_left);
8642
8643         if (!is_lvalue(left)) {
8644                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
8645                        left);
8646                 return false;
8647         }
8648
8649         if (is_type_array(type_left)) {
8650                 errorf(HERE, "cannot assign to arrays ('%E')", left);
8651                 return false;
8652         }
8653         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8654                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
8655                        orig_type_left);
8656                 return false;
8657         }
8658         if (is_type_incomplete(type_left)) {
8659                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
8660                        left, orig_type_left);
8661                 return false;
8662         }
8663         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8664                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
8665                        left, orig_type_left);
8666                 return false;
8667         }
8668
8669         return true;
8670 }
8671
8672 static void semantic_arithmetic_assign(binary_expression_t *expression)
8673 {
8674         expression_t *left            = expression->left;
8675         expression_t *right           = expression->right;
8676         type_t       *orig_type_left  = left->base.type;
8677         type_t       *orig_type_right = right->base.type;
8678
8679         if (!is_valid_assignment_lhs(left))
8680                 return;
8681
8682         type_t *type_left  = skip_typeref(orig_type_left);
8683         type_t *type_right = skip_typeref(orig_type_right);
8684
8685         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8686                 /* TODO: improve error message */
8687                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8688                         errorf(&expression->base.source_position,
8689                                "operation needs arithmetic types");
8690                 }
8691                 return;
8692         }
8693
8694         /* combined instructions are tricky. We can't create an implicit cast on
8695          * the left side, because we need the uncasted form for the store.
8696          * The ast2firm pass has to know that left_type must be right_type
8697          * for the arithmetic operation and create a cast by itself */
8698         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8699         expression->right       = create_implicit_cast(right, arithmetic_type);
8700         expression->base.type   = type_left;
8701 }
8702
8703 static void semantic_divmod_assign(binary_expression_t *expression)
8704 {
8705         semantic_arithmetic_assign(expression);
8706         warn_div_by_zero(expression);
8707 }
8708
8709 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8710 {
8711         expression_t *const left            = expression->left;
8712         expression_t *const right           = expression->right;
8713         type_t       *const orig_type_left  = left->base.type;
8714         type_t       *const orig_type_right = right->base.type;
8715         type_t       *const type_left       = skip_typeref(orig_type_left);
8716         type_t       *const type_right      = skip_typeref(orig_type_right);
8717
8718         if (!is_valid_assignment_lhs(left))
8719                 return;
8720
8721         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8722                 /* combined instructions are tricky. We can't create an implicit cast on
8723                  * the left side, because we need the uncasted form for the store.
8724                  * The ast2firm pass has to know that left_type must be right_type
8725                  * for the arithmetic operation and create a cast by itself */
8726                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8727                 expression->right     = create_implicit_cast(right, arithmetic_type);
8728                 expression->base.type = type_left;
8729         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8730                 check_pointer_arithmetic(&expression->base.source_position,
8731                                          type_left, orig_type_left);
8732                 expression->base.type = type_left;
8733         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8734                 errorf(&expression->base.source_position,
8735                        "incompatible types '%T' and '%T' in assignment",
8736                        orig_type_left, orig_type_right);
8737         }
8738 }
8739
8740 /**
8741  * Check the semantic restrictions of a logical expression.
8742  */
8743 static void semantic_logical_op(binary_expression_t *expression)
8744 {
8745         expression_t *const left            = expression->left;
8746         expression_t *const right           = expression->right;
8747         type_t       *const orig_type_left  = left->base.type;
8748         type_t       *const orig_type_right = right->base.type;
8749         type_t       *const type_left       = skip_typeref(orig_type_left);
8750         type_t       *const type_right      = skip_typeref(orig_type_right);
8751
8752         warn_function_address_as_bool(left);
8753         warn_function_address_as_bool(right);
8754
8755         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8756                 /* TODO: improve error message */
8757                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8758                         errorf(&expression->base.source_position,
8759                                "operation needs scalar types");
8760                 }
8761                 return;
8762         }
8763
8764         expression->base.type = type_int;
8765 }
8766
8767 /**
8768  * Check the semantic restrictions of a binary assign expression.
8769  */
8770 static void semantic_binexpr_assign(binary_expression_t *expression)
8771 {
8772         expression_t *left           = expression->left;
8773         type_t       *orig_type_left = left->base.type;
8774
8775         if (!is_valid_assignment_lhs(left))
8776                 return;
8777
8778         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8779         report_assign_error(error, orig_type_left, expression->right,
8780                         "assignment", &left->base.source_position);
8781         expression->right = create_implicit_cast(expression->right, orig_type_left);
8782         expression->base.type = orig_type_left;
8783 }
8784
8785 /**
8786  * Determine if the outermost operation (or parts thereof) of the given
8787  * expression has no effect in order to generate a warning about this fact.
8788  * Therefore in some cases this only examines some of the operands of the
8789  * expression (see comments in the function and examples below).
8790  * Examples:
8791  *   f() + 23;    // warning, because + has no effect
8792  *   x || f();    // no warning, because x controls execution of f()
8793  *   x ? y : f(); // warning, because y has no effect
8794  *   (void)x;     // no warning to be able to suppress the warning
8795  * This function can NOT be used for an "expression has definitely no effect"-
8796  * analysis. */
8797 static bool expression_has_effect(const expression_t *const expr)
8798 {
8799         switch (expr->kind) {
8800                 case EXPR_UNKNOWN:                   break;
8801                 case EXPR_INVALID:                   return true; /* do NOT warn */
8802                 case EXPR_REFERENCE:                 return false;
8803                 case EXPR_REFERENCE_ENUM_VALUE:      return false;
8804                 /* suppress the warning for microsoft __noop operations */
8805                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8806                 case EXPR_CHARACTER_CONSTANT:        return false;
8807                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8808                 case EXPR_STRING_LITERAL:            return false;
8809                 case EXPR_WIDE_STRING_LITERAL:       return false;
8810                 case EXPR_LABEL_ADDRESS:             return false;
8811
8812                 case EXPR_CALL: {
8813                         const call_expression_t *const call = &expr->call;
8814                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8815                                 return true;
8816
8817                         switch (call->function->builtin_symbol.symbol->ID) {
8818                                 case T___builtin_va_end: return true;
8819                                 default:                 return false;
8820                         }
8821                 }
8822
8823                 /* Generate the warning if either the left or right hand side of a
8824                  * conditional expression has no effect */
8825                 case EXPR_CONDITIONAL: {
8826                         const conditional_expression_t *const cond = &expr->conditional;
8827                         return
8828                                 expression_has_effect(cond->true_expression) &&
8829                                 expression_has_effect(cond->false_expression);
8830                 }
8831
8832                 case EXPR_SELECT:                    return false;
8833                 case EXPR_ARRAY_ACCESS:              return false;
8834                 case EXPR_SIZEOF:                    return false;
8835                 case EXPR_CLASSIFY_TYPE:             return false;
8836                 case EXPR_ALIGNOF:                   return false;
8837
8838                 case EXPR_FUNCNAME:                  return false;
8839                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8840                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8841                 case EXPR_BUILTIN_PREFETCH:          return true;
8842                 case EXPR_OFFSETOF:                  return false;
8843                 case EXPR_VA_START:                  return true;
8844                 case EXPR_VA_ARG:                    return true;
8845                 case EXPR_STATEMENT:                 return true; // TODO
8846                 case EXPR_COMPOUND_LITERAL:          return false;
8847
8848                 case EXPR_UNARY_NEGATE:              return false;
8849                 case EXPR_UNARY_PLUS:                return false;
8850                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8851                 case EXPR_UNARY_NOT:                 return false;
8852                 case EXPR_UNARY_DEREFERENCE:         return false;
8853                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8854                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8855                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8856                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8857                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8858
8859                 /* Treat void casts as if they have an effect in order to being able to
8860                  * suppress the warning */
8861                 case EXPR_UNARY_CAST: {
8862                         type_t *const type = skip_typeref(expr->base.type);
8863                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8864                 }
8865
8866                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8867                 case EXPR_UNARY_ASSUME:              return true;
8868                 case EXPR_UNARY_DELETE:              return true;
8869                 case EXPR_UNARY_DELETE_ARRAY:        return true;
8870                 case EXPR_UNARY_THROW:               return true;
8871
8872                 case EXPR_BINARY_ADD:                return false;
8873                 case EXPR_BINARY_SUB:                return false;
8874                 case EXPR_BINARY_MUL:                return false;
8875                 case EXPR_BINARY_DIV:                return false;
8876                 case EXPR_BINARY_MOD:                return false;
8877                 case EXPR_BINARY_EQUAL:              return false;
8878                 case EXPR_BINARY_NOTEQUAL:           return false;
8879                 case EXPR_BINARY_LESS:               return false;
8880                 case EXPR_BINARY_LESSEQUAL:          return false;
8881                 case EXPR_BINARY_GREATER:            return false;
8882                 case EXPR_BINARY_GREATEREQUAL:       return false;
8883                 case EXPR_BINARY_BITWISE_AND:        return false;
8884                 case EXPR_BINARY_BITWISE_OR:         return false;
8885                 case EXPR_BINARY_BITWISE_XOR:        return false;
8886                 case EXPR_BINARY_SHIFTLEFT:          return false;
8887                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8888                 case EXPR_BINARY_ASSIGN:             return true;
8889                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8890                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8891                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8892                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8893                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8894                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8895                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8896                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8897                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8898                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8899
8900                 /* Only examine the right hand side of && and ||, because the left hand
8901                  * side already has the effect of controlling the execution of the right
8902                  * hand side */
8903                 case EXPR_BINARY_LOGICAL_AND:
8904                 case EXPR_BINARY_LOGICAL_OR:
8905                 /* Only examine the right hand side of a comma expression, because the left
8906                  * hand side has a separate warning */
8907                 case EXPR_BINARY_COMMA:
8908                         return expression_has_effect(expr->binary.right);
8909
8910                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8911                 case EXPR_BINARY_ISGREATER:          return false;
8912                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8913                 case EXPR_BINARY_ISLESS:             return false;
8914                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8915                 case EXPR_BINARY_ISLESSGREATER:      return false;
8916                 case EXPR_BINARY_ISUNORDERED:        return false;
8917         }
8918
8919         internal_errorf(HERE, "unexpected expression");
8920 }
8921
8922 static void semantic_comma(binary_expression_t *expression)
8923 {
8924         if (warning.unused_value) {
8925                 const expression_t *const left = expression->left;
8926                 if (!expression_has_effect(left)) {
8927                         warningf(&left->base.source_position,
8928                                  "left-hand operand of comma expression has no effect");
8929                 }
8930         }
8931         expression->base.type = expression->right->base.type;
8932 }
8933
8934 /**
8935  * @param prec_r precedence of the right operand
8936  */
8937 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
8938 static expression_t *parse_##binexpression_type(expression_t *left)          \
8939 {                                                                            \
8940         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
8941         binexpr->base.source_position = *HERE;                                   \
8942         binexpr->binary.left          = left;                                    \
8943         eat(token_type);                                                         \
8944                                                                              \
8945         expression_t *right = parse_sub_expression(prec_r);                      \
8946                                                                              \
8947         binexpr->binary.right = right;                                           \
8948         sfunc(&binexpr->binary);                                                 \
8949                                                                              \
8950         return binexpr;                                                          \
8951 }
8952
8953 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
8954 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
8955 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
8956 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
8957 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
8958 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
8959 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
8960 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
8961 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
8962 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
8963 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
8964 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
8965 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
8966 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
8967 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
8968 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
8969 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
8970 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
8971 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
8972 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8973 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8974 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8975 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8976 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8977 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8978 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8979 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8980 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8981 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8982 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
8983
8984
8985 static expression_t *parse_sub_expression(precedence_t precedence)
8986 {
8987         if (token.type < 0) {
8988                 return expected_expression_error();
8989         }
8990
8991         expression_parser_function_t *parser
8992                 = &expression_parsers[token.type];
8993         source_position_t             source_position = token.source_position;
8994         expression_t                 *left;
8995
8996         if (parser->parser != NULL) {
8997                 left = parser->parser();
8998         } else {
8999                 left = parse_primary_expression();
9000         }
9001         assert(left != NULL);
9002         left->base.source_position = source_position;
9003
9004         while(true) {
9005                 if (token.type < 0) {
9006                         return expected_expression_error();
9007                 }
9008
9009                 parser = &expression_parsers[token.type];
9010                 if (parser->infix_parser == NULL)
9011                         break;
9012                 if (parser->infix_precedence < precedence)
9013                         break;
9014
9015                 left = parser->infix_parser(left);
9016
9017                 assert(left != NULL);
9018                 assert(left->kind != EXPR_UNKNOWN);
9019                 left->base.source_position = source_position;
9020         }
9021
9022         return left;
9023 }
9024
9025 /**
9026  * Parse an expression.
9027  */
9028 static expression_t *parse_expression(void)
9029 {
9030         return parse_sub_expression(PREC_EXPRESSION);
9031 }
9032
9033 /**
9034  * Register a parser for a prefix-like operator.
9035  *
9036  * @param parser      the parser function
9037  * @param token_type  the token type of the prefix token
9038  */
9039 static void register_expression_parser(parse_expression_function parser,
9040                                        int token_type)
9041 {
9042         expression_parser_function_t *entry = &expression_parsers[token_type];
9043
9044         if (entry->parser != NULL) {
9045                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9046                 panic("trying to register multiple expression parsers for a token");
9047         }
9048         entry->parser = parser;
9049 }
9050
9051 /**
9052  * Register a parser for an infix operator with given precedence.
9053  *
9054  * @param parser      the parser function
9055  * @param token_type  the token type of the infix operator
9056  * @param precedence  the precedence of the operator
9057  */
9058 static void register_infix_parser(parse_expression_infix_function parser,
9059                 int token_type, unsigned precedence)
9060 {
9061         expression_parser_function_t *entry = &expression_parsers[token_type];
9062
9063         if (entry->infix_parser != NULL) {
9064                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9065                 panic("trying to register multiple infix expression parsers for a "
9066                       "token");
9067         }
9068         entry->infix_parser     = parser;
9069         entry->infix_precedence = precedence;
9070 }
9071
9072 /**
9073  * Initialize the expression parsers.
9074  */
9075 static void init_expression_parsers(void)
9076 {
9077         memset(&expression_parsers, 0, sizeof(expression_parsers));
9078
9079         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9080         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9081         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9082         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9083         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9084         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9085         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9086         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9087         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9088         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9089         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9090         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9091         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9092         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9093         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9094         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9095         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9096         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9097         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9098         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9099         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9100         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9101         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9102         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9103         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9104         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9105         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9106         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9107         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9108         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9109         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9110         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9111         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9112         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9113         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9114         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9115         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9116
9117         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9118         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9119         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9120         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9121         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9122         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9123         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9124         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9125         register_expression_parser(parse_sizeof,                      T_sizeof);
9126         register_expression_parser(parse_alignof,                     T___alignof__);
9127         register_expression_parser(parse_extension,                   T___extension__);
9128         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9129         register_expression_parser(parse_delete,                      T_delete);
9130         register_expression_parser(parse_throw,                       T_throw);
9131 }
9132
9133 /**
9134  * Parse a asm statement arguments specification.
9135  */
9136 static asm_argument_t *parse_asm_arguments(bool is_out)
9137 {
9138         asm_argument_t *result = NULL;
9139         asm_argument_t *last   = NULL;
9140
9141         while (token.type == T_STRING_LITERAL || token.type == '[') {
9142                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9143                 memset(argument, 0, sizeof(argument[0]));
9144
9145                 if (token.type == '[') {
9146                         eat('[');
9147                         if (token.type != T_IDENTIFIER) {
9148                                 parse_error_expected("while parsing asm argument",
9149                                                      T_IDENTIFIER, NULL);
9150                                 return NULL;
9151                         }
9152                         argument->symbol = token.v.symbol;
9153
9154                         expect(']');
9155                 }
9156
9157                 argument->constraints = parse_string_literals();
9158                 expect('(');
9159                 add_anchor_token(')');
9160                 expression_t *expression = parse_expression();
9161                 rem_anchor_token(')');
9162                 if (is_out) {
9163                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9164                          * change size or type representation (e.g. int -> long is ok, but
9165                          * int -> float is not) */
9166                         if (expression->kind == EXPR_UNARY_CAST) {
9167                                 type_t      *const type = expression->base.type;
9168                                 type_kind_t  const kind = type->kind;
9169                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9170                                         unsigned flags;
9171                                         unsigned size;
9172                                         if (kind == TYPE_ATOMIC) {
9173                                                 atomic_type_kind_t const akind = type->atomic.akind;
9174                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9175                                                 size  = get_atomic_type_size(akind);
9176                                         } else {
9177                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9178                                                 size  = get_atomic_type_size(get_intptr_kind());
9179                                         }
9180
9181                                         do {
9182                                                 expression_t *const value      = expression->unary.value;
9183                                                 type_t       *const value_type = value->base.type;
9184                                                 type_kind_t   const value_kind = value_type->kind;
9185
9186                                                 unsigned value_flags;
9187                                                 unsigned value_size;
9188                                                 if (value_kind == TYPE_ATOMIC) {
9189                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9190                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9191                                                         value_size  = get_atomic_type_size(value_akind);
9192                                                 } else if (value_kind == TYPE_POINTER) {
9193                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9194                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9195                                                 } else {
9196                                                         break;
9197                                                 }
9198
9199                                                 if (value_flags != flags || value_size != size)
9200                                                         break;
9201
9202                                                 expression = value;
9203                                         } while (expression->kind == EXPR_UNARY_CAST);
9204                                 }
9205                         }
9206
9207                         if (!is_lvalue(expression)) {
9208                                 errorf(&expression->base.source_position,
9209                                        "asm output argument is not an lvalue");
9210                         }
9211
9212                         if (argument->constraints.begin[0] == '+')
9213                                 mark_vars_read(expression, NULL);
9214                 } else {
9215                         mark_vars_read(expression, NULL);
9216                 }
9217                 argument->expression = expression;
9218                 expect(')');
9219
9220                 set_address_taken(expression, true);
9221
9222                 if (last != NULL) {
9223                         last->next = argument;
9224                 } else {
9225                         result = argument;
9226                 }
9227                 last = argument;
9228
9229                 if (token.type != ',')
9230                         break;
9231                 eat(',');
9232         }
9233
9234         return result;
9235 end_error:
9236         return NULL;
9237 }
9238
9239 /**
9240  * Parse a asm statement clobber specification.
9241  */
9242 static asm_clobber_t *parse_asm_clobbers(void)
9243 {
9244         asm_clobber_t *result = NULL;
9245         asm_clobber_t *last   = NULL;
9246
9247         while(token.type == T_STRING_LITERAL) {
9248                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9249                 clobber->clobber       = parse_string_literals();
9250
9251                 if (last != NULL) {
9252                         last->next = clobber;
9253                 } else {
9254                         result = clobber;
9255                 }
9256                 last = clobber;
9257
9258                 if (token.type != ',')
9259                         break;
9260                 eat(',');
9261         }
9262
9263         return result;
9264 }
9265
9266 /**
9267  * Parse an asm statement.
9268  */
9269 static statement_t *parse_asm_statement(void)
9270 {
9271         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9272         asm_statement_t *asm_statement = &statement->asms;
9273
9274         eat(T_asm);
9275
9276         if (token.type == T_volatile) {
9277                 next_token();
9278                 asm_statement->is_volatile = true;
9279         }
9280
9281         expect('(');
9282         add_anchor_token(')');
9283         add_anchor_token(':');
9284         asm_statement->asm_text = parse_string_literals();
9285
9286         if (token.type != ':') {
9287                 rem_anchor_token(':');
9288                 goto end_of_asm;
9289         }
9290         eat(':');
9291
9292         asm_statement->outputs = parse_asm_arguments(true);
9293         if (token.type != ':') {
9294                 rem_anchor_token(':');
9295                 goto end_of_asm;
9296         }
9297         eat(':');
9298
9299         asm_statement->inputs = parse_asm_arguments(false);
9300         if (token.type != ':') {
9301                 rem_anchor_token(':');
9302                 goto end_of_asm;
9303         }
9304         rem_anchor_token(':');
9305         eat(':');
9306
9307         asm_statement->clobbers = parse_asm_clobbers();
9308
9309 end_of_asm:
9310         rem_anchor_token(')');
9311         expect(')');
9312         expect(';');
9313
9314         if (asm_statement->outputs == NULL) {
9315                 /* GCC: An 'asm' instruction without any output operands will be treated
9316                  * identically to a volatile 'asm' instruction. */
9317                 asm_statement->is_volatile = true;
9318         }
9319
9320         return statement;
9321 end_error:
9322         return create_invalid_statement();
9323 }
9324
9325 /**
9326  * Parse a case statement.
9327  */
9328 static statement_t *parse_case_statement(void)
9329 {
9330         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9331         source_position_t *const pos       = &statement->base.source_position;
9332
9333         eat(T_case);
9334
9335         expression_t *const expression   = parse_expression();
9336         statement->case_label.expression = expression;
9337         if (!is_constant_expression(expression)) {
9338                 /* This check does not prevent the error message in all cases of an
9339                  * prior error while parsing the expression.  At least it catches the
9340                  * common case of a mistyped enum entry. */
9341                 if (is_type_valid(skip_typeref(expression->base.type))) {
9342                         errorf(pos, "case label does not reduce to an integer constant");
9343                 }
9344                 statement->case_label.is_bad = true;
9345         } else {
9346                 long const val = fold_constant(expression);
9347                 statement->case_label.first_case = val;
9348                 statement->case_label.last_case  = val;
9349         }
9350
9351         if (GNU_MODE) {
9352                 if (token.type == T_DOTDOTDOT) {
9353                         next_token();
9354                         expression_t *const end_range   = parse_expression();
9355                         statement->case_label.end_range = end_range;
9356                         if (!is_constant_expression(end_range)) {
9357                                 /* This check does not prevent the error message in all cases of an
9358                                  * prior error while parsing the expression.  At least it catches the
9359                                  * common case of a mistyped enum entry. */
9360                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9361                                         errorf(pos, "case range does not reduce to an integer constant");
9362                                 }
9363                                 statement->case_label.is_bad = true;
9364                         } else {
9365                                 long const val = fold_constant(end_range);
9366                                 statement->case_label.last_case = val;
9367
9368                                 if (warning.other && val < statement->case_label.first_case) {
9369                                         statement->case_label.is_empty_range = true;
9370                                         warningf(pos, "empty range specified");
9371                                 }
9372                         }
9373                 }
9374         }
9375
9376         PUSH_PARENT(statement);
9377
9378         expect(':');
9379
9380         if (current_switch != NULL) {
9381                 if (! statement->case_label.is_bad) {
9382                         /* Check for duplicate case values */
9383                         case_label_statement_t *c = &statement->case_label;
9384                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9385                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9386                                         continue;
9387
9388                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9389                                         continue;
9390
9391                                 errorf(pos, "duplicate case value (previously used %P)",
9392                                        &l->base.source_position);
9393                                 break;
9394                         }
9395                 }
9396                 /* link all cases into the switch statement */
9397                 if (current_switch->last_case == NULL) {
9398                         current_switch->first_case      = &statement->case_label;
9399                 } else {
9400                         current_switch->last_case->next = &statement->case_label;
9401                 }
9402                 current_switch->last_case = &statement->case_label;
9403         } else {
9404                 errorf(pos, "case label not within a switch statement");
9405         }
9406
9407         statement_t *const inner_stmt = parse_statement();
9408         statement->case_label.statement = inner_stmt;
9409         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9410                 errorf(&inner_stmt->base.source_position, "declaration after case label");
9411         }
9412
9413         POP_PARENT;
9414         return statement;
9415 end_error:
9416         POP_PARENT;
9417         return create_invalid_statement();
9418 }
9419
9420 /**
9421  * Parse a default statement.
9422  */
9423 static statement_t *parse_default_statement(void)
9424 {
9425         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9426
9427         eat(T_default);
9428
9429         PUSH_PARENT(statement);
9430
9431         expect(':');
9432         if (current_switch != NULL) {
9433                 const case_label_statement_t *def_label = current_switch->default_label;
9434                 if (def_label != NULL) {
9435                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9436                                &def_label->base.source_position);
9437                 } else {
9438                         current_switch->default_label = &statement->case_label;
9439
9440                         /* link all cases into the switch statement */
9441                         if (current_switch->last_case == NULL) {
9442                                 current_switch->first_case      = &statement->case_label;
9443                         } else {
9444                                 current_switch->last_case->next = &statement->case_label;
9445                         }
9446                         current_switch->last_case = &statement->case_label;
9447                 }
9448         } else {
9449                 errorf(&statement->base.source_position,
9450                         "'default' label not within a switch statement");
9451         }
9452
9453         statement_t *const inner_stmt = parse_statement();
9454         statement->case_label.statement = inner_stmt;
9455         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9456                 errorf(&inner_stmt->base.source_position, "declaration after default label");
9457         }
9458
9459         POP_PARENT;
9460         return statement;
9461 end_error:
9462         POP_PARENT;
9463         return create_invalid_statement();
9464 }
9465
9466 /**
9467  * Parse a label statement.
9468  */
9469 static statement_t *parse_label_statement(void)
9470 {
9471         assert(token.type == T_IDENTIFIER);
9472         symbol_t *symbol = token.v.symbol;
9473         label_t  *label  = get_label(symbol);
9474
9475         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9476         statement->label.label       = label;
9477
9478         next_token();
9479
9480         PUSH_PARENT(statement);
9481
9482         /* if statement is already set then the label is defined twice,
9483          * otherwise it was just mentioned in a goto/local label declaration so far
9484          */
9485         if (label->statement != NULL) {
9486                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9487                        symbol, &label->base.source_position);
9488         } else {
9489                 label->base.source_position = token.source_position;
9490                 label->statement            = statement;
9491         }
9492
9493         eat(':');
9494
9495         if (token.type == '}') {
9496                 /* TODO only warn? */
9497                 if (warning.other && false) {
9498                         warningf(HERE, "label at end of compound statement");
9499                         statement->label.statement = create_empty_statement();
9500                 } else {
9501                         errorf(HERE, "label at end of compound statement");
9502                         statement->label.statement = create_invalid_statement();
9503                 }
9504         } else if (token.type == ';') {
9505                 /* Eat an empty statement here, to avoid the warning about an empty
9506                  * statement after a label.  label:; is commonly used to have a label
9507                  * before a closing brace. */
9508                 statement->label.statement = create_empty_statement();
9509                 next_token();
9510         } else {
9511                 statement_t *const inner_stmt = parse_statement();
9512                 statement->label.statement = inner_stmt;
9513                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
9514                         errorf(&inner_stmt->base.source_position, "declaration after label");
9515                 }
9516         }
9517
9518         /* remember the labels in a list for later checking */
9519         if (label_last == NULL) {
9520                 label_first = &statement->label;
9521         } else {
9522                 label_last->next = &statement->label;
9523         }
9524         label_last = &statement->label;
9525
9526         POP_PARENT;
9527         return statement;
9528 }
9529
9530 /**
9531  * Parse an if statement.
9532  */
9533 static statement_t *parse_if(void)
9534 {
9535         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9536
9537         eat(T_if);
9538
9539         PUSH_PARENT(statement);
9540
9541         add_anchor_token('{');
9542
9543         expect('(');
9544         add_anchor_token(')');
9545         expression_t *const expr = parse_expression();
9546         statement->ifs.condition = expr;
9547         mark_vars_read(expr, NULL);
9548         rem_anchor_token(')');
9549         expect(')');
9550
9551 end_error:
9552         rem_anchor_token('{');
9553
9554         add_anchor_token(T_else);
9555         statement->ifs.true_statement = parse_statement();
9556         rem_anchor_token(T_else);
9557
9558         if (token.type == T_else) {
9559                 next_token();
9560                 statement->ifs.false_statement = parse_statement();
9561         }
9562
9563         POP_PARENT;
9564         return statement;
9565 }
9566
9567 /**
9568  * Check that all enums are handled in a switch.
9569  *
9570  * @param statement  the switch statement to check
9571  */
9572 static void check_enum_cases(const switch_statement_t *statement) {
9573         const type_t *type = skip_typeref(statement->expression->base.type);
9574         if (! is_type_enum(type))
9575                 return;
9576         const enum_type_t *enumt = &type->enumt;
9577
9578         /* if we have a default, no warnings */
9579         if (statement->default_label != NULL)
9580                 return;
9581
9582         /* FIXME: calculation of value should be done while parsing */
9583         /* TODO: quadratic algorithm here. Change to an n log n one */
9584         long            last_value = -1;
9585         const entity_t *entry      = enumt->enume->base.next;
9586         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9587              entry = entry->base.next) {
9588                 const expression_t *expression = entry->enum_value.value;
9589                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
9590                 bool                found      = false;
9591                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9592                         if (l->expression == NULL)
9593                                 continue;
9594                         if (l->first_case <= value && value <= l->last_case) {
9595                                 found = true;
9596                                 break;
9597                         }
9598                 }
9599                 if (! found) {
9600                         warningf(&statement->base.source_position,
9601                                  "enumeration value '%Y' not handled in switch",
9602                                  entry->base.symbol);
9603                 }
9604                 last_value = value;
9605         }
9606 }
9607
9608 /**
9609  * Parse a switch statement.
9610  */
9611 static statement_t *parse_switch(void)
9612 {
9613         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9614
9615         eat(T_switch);
9616
9617         PUSH_PARENT(statement);
9618
9619         expect('(');
9620         add_anchor_token(')');
9621         expression_t *const expr = parse_expression();
9622         mark_vars_read(expr, NULL);
9623         type_t       *      type = skip_typeref(expr->base.type);
9624         if (is_type_integer(type)) {
9625                 type = promote_integer(type);
9626                 if (warning.traditional) {
9627                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9628                                 warningf(&expr->base.source_position,
9629                                         "'%T' switch expression not converted to '%T' in ISO C",
9630                                         type, type_int);
9631                         }
9632                 }
9633         } else if (is_type_valid(type)) {
9634                 errorf(&expr->base.source_position,
9635                        "switch quantity is not an integer, but '%T'", type);
9636                 type = type_error_type;
9637         }
9638         statement->switchs.expression = create_implicit_cast(expr, type);
9639         expect(')');
9640         rem_anchor_token(')');
9641
9642         switch_statement_t *rem = current_switch;
9643         current_switch          = &statement->switchs;
9644         statement->switchs.body = parse_statement();
9645         current_switch          = rem;
9646
9647         if (warning.switch_default &&
9648             statement->switchs.default_label == NULL) {
9649                 warningf(&statement->base.source_position, "switch has no default case");
9650         }
9651         if (warning.switch_enum)
9652                 check_enum_cases(&statement->switchs);
9653
9654         POP_PARENT;
9655         return statement;
9656 end_error:
9657         POP_PARENT;
9658         return create_invalid_statement();
9659 }
9660
9661 static statement_t *parse_loop_body(statement_t *const loop)
9662 {
9663         statement_t *const rem = current_loop;
9664         current_loop = loop;
9665
9666         statement_t *const body = parse_statement();
9667
9668         current_loop = rem;
9669         return body;
9670 }
9671
9672 /**
9673  * Parse a while statement.
9674  */
9675 static statement_t *parse_while(void)
9676 {
9677         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9678
9679         eat(T_while);
9680
9681         PUSH_PARENT(statement);
9682
9683         expect('(');
9684         add_anchor_token(')');
9685         expression_t *const cond = parse_expression();
9686         statement->whiles.condition = cond;
9687         mark_vars_read(cond, NULL);
9688         rem_anchor_token(')');
9689         expect(')');
9690
9691         statement->whiles.body = parse_loop_body(statement);
9692
9693         POP_PARENT;
9694         return statement;
9695 end_error:
9696         POP_PARENT;
9697         return create_invalid_statement();
9698 }
9699
9700 /**
9701  * Parse a do statement.
9702  */
9703 static statement_t *parse_do(void)
9704 {
9705         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9706
9707         eat(T_do);
9708
9709         PUSH_PARENT(statement);
9710
9711         add_anchor_token(T_while);
9712         statement->do_while.body = parse_loop_body(statement);
9713         rem_anchor_token(T_while);
9714
9715         expect(T_while);
9716         expect('(');
9717         add_anchor_token(')');
9718         expression_t *const cond = parse_expression();
9719         statement->do_while.condition = cond;
9720         mark_vars_read(cond, NULL);
9721         rem_anchor_token(')');
9722         expect(')');
9723         expect(';');
9724
9725         POP_PARENT;
9726         return statement;
9727 end_error:
9728         POP_PARENT;
9729         return create_invalid_statement();
9730 }
9731
9732 /**
9733  * Parse a for statement.
9734  */
9735 static statement_t *parse_for(void)
9736 {
9737         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9738
9739         eat(T_for);
9740
9741         PUSH_PARENT(statement);
9742
9743         size_t const top = environment_top();
9744         scope_push(&statement->fors.scope);
9745
9746         expect('(');
9747         add_anchor_token(')');
9748
9749         if (token.type != ';') {
9750                 if (is_declaration_specifier(&token, false)) {
9751                         parse_declaration(record_entity);
9752                 } else {
9753                         add_anchor_token(';');
9754                         expression_t *const init = parse_expression();
9755                         statement->fors.initialisation = init;
9756                         mark_vars_read(init, VAR_ANY);
9757                         if (warning.unused_value && !expression_has_effect(init)) {
9758                                 warningf(&init->base.source_position,
9759                                          "initialisation of 'for'-statement has no effect");
9760                         }
9761                         rem_anchor_token(';');
9762                         expect(';');
9763                 }
9764         } else {
9765                 expect(';');
9766         }
9767
9768         if (token.type != ';') {
9769                 add_anchor_token(';');
9770                 expression_t *const cond = parse_expression();
9771                 statement->fors.condition = cond;
9772                 mark_vars_read(cond, NULL);
9773                 rem_anchor_token(';');
9774         }
9775         expect(';');
9776         if (token.type != ')') {
9777                 expression_t *const step = parse_expression();
9778                 statement->fors.step = step;
9779                 mark_vars_read(step, VAR_ANY);
9780                 if (warning.unused_value && !expression_has_effect(step)) {
9781                         warningf(&step->base.source_position,
9782                                  "step of 'for'-statement has no effect");
9783                 }
9784         }
9785         expect(')');
9786         rem_anchor_token(')');
9787         statement->fors.body = parse_loop_body(statement);
9788
9789         assert(scope == &statement->fors.scope);
9790         scope_pop();
9791         environment_pop_to(top);
9792
9793         POP_PARENT;
9794         return statement;
9795
9796 end_error:
9797         POP_PARENT;
9798         rem_anchor_token(')');
9799         assert(scope == &statement->fors.scope);
9800         scope_pop();
9801         environment_pop_to(top);
9802
9803         return create_invalid_statement();
9804 }
9805
9806 /**
9807  * Parse a goto statement.
9808  */
9809 static statement_t *parse_goto(void)
9810 {
9811         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
9812         eat(T_goto);
9813
9814         if (GNU_MODE && token.type == '*') {
9815                 next_token();
9816                 expression_t *expression = parse_expression();
9817                 mark_vars_read(expression, NULL);
9818
9819                 /* Argh: although documentation say the expression must be of type void *,
9820                  * gcc excepts anything that can be casted into void * without error */
9821                 type_t *type = expression->base.type;
9822
9823                 if (type != type_error_type) {
9824                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9825                                 errorf(&expression->base.source_position,
9826                                         "cannot convert to a pointer type");
9827                         } else if (warning.other && type != type_void_ptr) {
9828                                 warningf(&expression->base.source_position,
9829                                         "type of computed goto expression should be 'void*' not '%T'", type);
9830                         }
9831                         expression = create_implicit_cast(expression, type_void_ptr);
9832                 }
9833
9834                 statement->gotos.expression = expression;
9835         } else {
9836                 if (token.type != T_IDENTIFIER) {
9837                         if (GNU_MODE)
9838                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9839                         else
9840                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9841                         eat_until_anchor();
9842                         goto end_error;
9843                 }
9844                 symbol_t *symbol = token.v.symbol;
9845                 next_token();
9846
9847                 statement->gotos.label = get_label(symbol);
9848         }
9849
9850         /* remember the goto's in a list for later checking */
9851         if (goto_last == NULL) {
9852                 goto_first = &statement->gotos;
9853         } else {
9854                 goto_last->next = &statement->gotos;
9855         }
9856         goto_last = &statement->gotos;
9857
9858         expect(';');
9859
9860         return statement;
9861 end_error:
9862         return create_invalid_statement();
9863 }
9864
9865 /**
9866  * Parse a continue statement.
9867  */
9868 static statement_t *parse_continue(void)
9869 {
9870         if (current_loop == NULL) {
9871                 errorf(HERE, "continue statement not within loop");
9872         }
9873
9874         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9875
9876         eat(T_continue);
9877         expect(';');
9878
9879 end_error:
9880         return statement;
9881 }
9882
9883 /**
9884  * Parse a break statement.
9885  */
9886 static statement_t *parse_break(void)
9887 {
9888         if (current_switch == NULL && current_loop == NULL) {
9889                 errorf(HERE, "break statement not within loop or switch");
9890         }
9891
9892         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9893
9894         eat(T_break);
9895         expect(';');
9896
9897 end_error:
9898         return statement;
9899 }
9900
9901 /**
9902  * Parse a __leave statement.
9903  */
9904 static statement_t *parse_leave_statement(void)
9905 {
9906         if (current_try == NULL) {
9907                 errorf(HERE, "__leave statement not within __try");
9908         }
9909
9910         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9911
9912         eat(T___leave);
9913         expect(';');
9914
9915 end_error:
9916         return statement;
9917 }
9918
9919 /**
9920  * Check if a given entity represents a local variable.
9921  */
9922 static bool is_local_variable(const entity_t *entity)
9923 {
9924         if (entity->kind != ENTITY_VARIABLE)
9925                 return false;
9926
9927         switch ((storage_class_tag_t) entity->declaration.storage_class) {
9928         case STORAGE_CLASS_AUTO:
9929         case STORAGE_CLASS_REGISTER: {
9930                 const type_t *type = skip_typeref(entity->declaration.type);
9931                 if (is_type_function(type)) {
9932                         return false;
9933                 } else {
9934                         return true;
9935                 }
9936         }
9937         default:
9938                 return false;
9939         }
9940 }
9941
9942 /**
9943  * Check if a given expression represents a local variable.
9944  */
9945 static bool expression_is_local_variable(const expression_t *expression)
9946 {
9947         if (expression->base.kind != EXPR_REFERENCE) {
9948                 return false;
9949         }
9950         const entity_t *entity = expression->reference.entity;
9951         return is_local_variable(entity);
9952 }
9953
9954 /**
9955  * Check if a given expression represents a local variable and
9956  * return its declaration then, else return NULL.
9957  */
9958 entity_t *expression_is_variable(const expression_t *expression)
9959 {
9960         if (expression->base.kind != EXPR_REFERENCE) {
9961                 return NULL;
9962         }
9963         entity_t *entity = expression->reference.entity;
9964         if (entity->kind != ENTITY_VARIABLE)
9965                 return NULL;
9966
9967         return entity;
9968 }
9969
9970 /**
9971  * Parse a return statement.
9972  */
9973 static statement_t *parse_return(void)
9974 {
9975         eat(T_return);
9976
9977         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9978
9979         expression_t *return_value = NULL;
9980         if (token.type != ';') {
9981                 return_value = parse_expression();
9982                 mark_vars_read(return_value, NULL);
9983         }
9984
9985         const type_t *const func_type = current_function->base.type;
9986         assert(is_type_function(func_type));
9987         type_t *const return_type = skip_typeref(func_type->function.return_type);
9988
9989         if (return_value != NULL) {
9990                 type_t *return_value_type = skip_typeref(return_value->base.type);
9991
9992                 if (is_type_atomic(return_type,        ATOMIC_TYPE_VOID) &&
9993                                 !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9994                         if (warning.other) {
9995                                 warningf(&statement->base.source_position,
9996                                                 "'return' with a value, in function returning void");
9997                         }
9998                         return_value = NULL;
9999                 } else {
10000                         assign_error_t error = semantic_assign(return_type, return_value);
10001                         report_assign_error(error, return_type, return_value, "'return'",
10002                                             &statement->base.source_position);
10003                         return_value = create_implicit_cast(return_value, return_type);
10004                 }
10005                 /* check for returning address of a local var */
10006                 if (warning.other && return_value != NULL
10007                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
10008                         const expression_t *expression = return_value->unary.value;
10009                         if (expression_is_local_variable(expression)) {
10010                                 warningf(&statement->base.source_position,
10011                                          "function returns address of local variable");
10012                         }
10013                 }
10014         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10015                 warningf(&statement->base.source_position,
10016                                 "'return' without value, in function returning non-void");
10017         }
10018         statement->returns.value = return_value;
10019
10020         expect(';');
10021
10022 end_error:
10023         return statement;
10024 }
10025
10026 /**
10027  * Parse a declaration statement.
10028  */
10029 static statement_t *parse_declaration_statement(void)
10030 {
10031         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10032
10033         entity_t *before = scope->last_entity;
10034         if (GNU_MODE)
10035                 parse_external_declaration();
10036         else
10037                 parse_declaration(record_entity);
10038
10039         if (before == NULL) {
10040                 statement->declaration.declarations_begin = scope->entities;
10041         } else {
10042                 statement->declaration.declarations_begin = before->base.next;
10043         }
10044         statement->declaration.declarations_end = scope->last_entity;
10045
10046         return statement;
10047 }
10048
10049 /**
10050  * Parse an expression statement, ie. expr ';'.
10051  */
10052 static statement_t *parse_expression_statement(void)
10053 {
10054         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10055
10056         expression_t *const expr         = parse_expression();
10057         statement->expression.expression = expr;
10058         mark_vars_read(expr, VAR_ANY);
10059
10060         expect(';');
10061
10062 end_error:
10063         return statement;
10064 }
10065
10066 /**
10067  * Parse a microsoft __try { } __finally { } or
10068  * __try{ } __except() { }
10069  */
10070 static statement_t *parse_ms_try_statment(void)
10071 {
10072         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10073         eat(T___try);
10074
10075         PUSH_PARENT(statement);
10076
10077         ms_try_statement_t *rem = current_try;
10078         current_try = &statement->ms_try;
10079         statement->ms_try.try_statement = parse_compound_statement(false);
10080         current_try = rem;
10081
10082         POP_PARENT;
10083
10084         if (token.type == T___except) {
10085                 eat(T___except);
10086                 expect('(');
10087                 add_anchor_token(')');
10088                 expression_t *const expr = parse_expression();
10089                 mark_vars_read(expr, NULL);
10090                 type_t       *      type = skip_typeref(expr->base.type);
10091                 if (is_type_integer(type)) {
10092                         type = promote_integer(type);
10093                 } else if (is_type_valid(type)) {
10094                         errorf(&expr->base.source_position,
10095                                "__expect expression is not an integer, but '%T'", type);
10096                         type = type_error_type;
10097                 }
10098                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10099                 rem_anchor_token(')');
10100                 expect(')');
10101                 statement->ms_try.final_statement = parse_compound_statement(false);
10102         } else if (token.type == T__finally) {
10103                 eat(T___finally);
10104                 statement->ms_try.final_statement = parse_compound_statement(false);
10105         } else {
10106                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10107                 return create_invalid_statement();
10108         }
10109         return statement;
10110 end_error:
10111         return create_invalid_statement();
10112 }
10113
10114 static statement_t *parse_empty_statement(void)
10115 {
10116         if (warning.empty_statement) {
10117                 warningf(HERE, "statement is empty");
10118         }
10119         statement_t *const statement = create_empty_statement();
10120         eat(';');
10121         return statement;
10122 }
10123
10124 static statement_t *parse_local_label_declaration(void)
10125 {
10126         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10127
10128         eat(T___label__);
10129
10130         entity_t *begin = NULL, *end = NULL;
10131
10132         while (true) {
10133                 if (token.type != T_IDENTIFIER) {
10134                         parse_error_expected("while parsing local label declaration",
10135                                 T_IDENTIFIER, NULL);
10136                         goto end_error;
10137                 }
10138                 symbol_t *symbol = token.v.symbol;
10139                 entity_t *entity = get_entity(symbol, NAMESPACE_LOCAL_LABEL);
10140                 if (entity != NULL && entity->base.parent_scope == scope) {
10141                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10142                                symbol, &entity->base.source_position);
10143                 } else {
10144                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10145
10146                         entity->base.parent_scope    = scope;
10147                         entity->base.namespc         = NAMESPACE_LOCAL_LABEL;
10148                         entity->base.source_position = token.source_position;
10149                         entity->base.symbol          = symbol;
10150
10151                         if (end != NULL)
10152                                 end->base.next = entity;
10153                         end = entity;
10154                         if (begin == NULL)
10155                                 begin = entity;
10156
10157                         local_label_push(entity);
10158                 }
10159                 next_token();
10160
10161                 if (token.type != ',')
10162                         break;
10163                 next_token();
10164         }
10165         eat(';');
10166 end_error:
10167         statement->declaration.declarations_begin = begin;
10168         statement->declaration.declarations_end   = end;
10169         return statement;
10170 }
10171
10172 /**
10173  * Parse a statement.
10174  * There's also parse_statement() which additionally checks for
10175  * "statement has no effect" warnings
10176  */
10177 static statement_t *intern_parse_statement(void)
10178 {
10179         statement_t *statement = NULL;
10180
10181         /* declaration or statement */
10182         add_anchor_token(';');
10183         switch (token.type) {
10184         case T_IDENTIFIER: {
10185                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10186                 if (la1_type == ':') {
10187                         statement = parse_label_statement();
10188                 } else if (is_typedef_symbol(token.v.symbol)) {
10189                         statement = parse_declaration_statement();
10190                 } else {
10191                         /* it's an identifier, the grammar says this must be an
10192                          * expression statement. However it is common that users mistype
10193                          * declaration types, so we guess a bit here to improve robustness
10194                          * for incorrect programs */
10195                         switch (la1_type) {
10196                         case '*':
10197                                 if (get_entity(token.v.symbol, NAMESPACE_NORMAL) != NULL)
10198                                         goto expression_statment;
10199                                 /* FALLTHROUGH */
10200
10201                         DECLARATION_START
10202                         case T_IDENTIFIER:
10203                                 statement = parse_declaration_statement();
10204                                 break;
10205
10206                         default:
10207 expression_statment:
10208                                 statement = parse_expression_statement();
10209                                 break;
10210                         }
10211                 }
10212                 break;
10213         }
10214
10215         case T___extension__:
10216                 /* This can be a prefix to a declaration or an expression statement.
10217                  * We simply eat it now and parse the rest with tail recursion. */
10218                 do {
10219                         next_token();
10220                 } while (token.type == T___extension__);
10221                 bool old_gcc_extension = in_gcc_extension;
10222                 in_gcc_extension       = true;
10223                 statement = parse_statement();
10224                 in_gcc_extension = old_gcc_extension;
10225                 break;
10226
10227         DECLARATION_START
10228                 statement = parse_declaration_statement();
10229                 break;
10230
10231         case T___label__:
10232                 statement = parse_local_label_declaration();
10233                 break;
10234
10235         case ';':        statement = parse_empty_statement();         break;
10236         case '{':        statement = parse_compound_statement(false); break;
10237         case T___leave:  statement = parse_leave_statement();         break;
10238         case T___try:    statement = parse_ms_try_statment();         break;
10239         case T_asm:      statement = parse_asm_statement();           break;
10240         case T_break:    statement = parse_break();                   break;
10241         case T_case:     statement = parse_case_statement();          break;
10242         case T_continue: statement = parse_continue();                break;
10243         case T_default:  statement = parse_default_statement();       break;
10244         case T_do:       statement = parse_do();                      break;
10245         case T_for:      statement = parse_for();                     break;
10246         case T_goto:     statement = parse_goto();                    break;
10247         case T_if:       statement = parse_if();                      break;
10248         case T_return:   statement = parse_return();                  break;
10249         case T_switch:   statement = parse_switch();                  break;
10250         case T_while:    statement = parse_while();                   break;
10251
10252         EXPRESSION_START
10253                 statement = parse_expression_statement();
10254                 break;
10255
10256         default:
10257                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10258                 statement = create_invalid_statement();
10259                 if (!at_anchor())
10260                         next_token();
10261                 break;
10262         }
10263         rem_anchor_token(';');
10264
10265         assert(statement != NULL
10266                         && statement->base.source_position.input_name != NULL);
10267
10268         return statement;
10269 }
10270
10271 /**
10272  * parse a statement and emits "statement has no effect" warning if needed
10273  * (This is really a wrapper around intern_parse_statement with check for 1
10274  *  single warning. It is needed, because for statement expressions we have
10275  *  to avoid the warning on the last statement)
10276  */
10277 static statement_t *parse_statement(void)
10278 {
10279         statement_t *statement = intern_parse_statement();
10280
10281         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10282                 expression_t *expression = statement->expression.expression;
10283                 if (!expression_has_effect(expression)) {
10284                         warningf(&expression->base.source_position,
10285                                         "statement has no effect");
10286                 }
10287         }
10288
10289         return statement;
10290 }
10291
10292 /**
10293  * Parse a compound statement.
10294  */
10295 static statement_t *parse_compound_statement(bool inside_expression_statement)
10296 {
10297         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10298
10299         PUSH_PARENT(statement);
10300
10301         eat('{');
10302         add_anchor_token('}');
10303
10304         size_t const top       = environment_top();
10305         size_t const top_local = local_label_top();
10306         scope_push(&statement->compound.scope);
10307
10308         statement_t **anchor            = &statement->compound.statements;
10309         bool          only_decls_so_far = true;
10310         while (token.type != '}') {
10311                 if (token.type == T_EOF) {
10312                         errorf(&statement->base.source_position,
10313                                "EOF while parsing compound statement");
10314                         break;
10315                 }
10316                 statement_t *sub_statement = intern_parse_statement();
10317                 if (is_invalid_statement(sub_statement)) {
10318                         /* an error occurred. if we are at an anchor, return */
10319                         if (at_anchor())
10320                                 goto end_error;
10321                         continue;
10322                 }
10323
10324                 if (warning.declaration_after_statement) {
10325                         if (sub_statement->kind != STATEMENT_DECLARATION) {
10326                                 only_decls_so_far = false;
10327                         } else if (!only_decls_so_far) {
10328                                 warningf(&sub_statement->base.source_position,
10329                                          "ISO C90 forbids mixed declarations and code");
10330                         }
10331                 }
10332
10333                 *anchor = sub_statement;
10334
10335                 while (sub_statement->base.next != NULL)
10336                         sub_statement = sub_statement->base.next;
10337
10338                 anchor = &sub_statement->base.next;
10339         }
10340         next_token();
10341
10342         /* look over all statements again to produce no effect warnings */
10343         if (warning.unused_value) {
10344                 statement_t *sub_statement = statement->compound.statements;
10345                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10346                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10347                                 continue;
10348                         /* don't emit a warning for the last expression in an expression
10349                          * statement as it has always an effect */
10350                         if (inside_expression_statement && sub_statement->base.next == NULL)
10351                                 continue;
10352
10353                         expression_t *expression = sub_statement->expression.expression;
10354                         if (!expression_has_effect(expression)) {
10355                                 warningf(&expression->base.source_position,
10356                                          "statement has no effect");
10357                         }
10358                 }
10359         }
10360
10361 end_error:
10362         rem_anchor_token('}');
10363         assert(scope == &statement->compound.scope);
10364         scope_pop();
10365         environment_pop_to(top);
10366         local_label_pop_to(top_local);
10367
10368         POP_PARENT;
10369         return statement;
10370 }
10371
10372 /**
10373  * Initialize builtin types.
10374  */
10375 static void initialize_builtin_types(void)
10376 {
10377         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
10378         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
10379         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
10380         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
10381         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
10382         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
10383         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
10384         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
10385
10386         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
10387         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
10388         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
10389         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
10390
10391         /* const version of wchar_t */
10392         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF);
10393         type_const_wchar_t->typedeft.typedefe  = type_wchar_t->typedeft.typedefe;
10394         type_const_wchar_t->base.qualifiers   |= TYPE_QUALIFIER_CONST;
10395
10396         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
10397 }
10398
10399 /**
10400  * Check for unused global static functions and variables
10401  */
10402 static void check_unused_globals(void)
10403 {
10404         if (!warning.unused_function && !warning.unused_variable)
10405                 return;
10406
10407         for (const entity_t *entity = file_scope->entities; entity != NULL;
10408              entity = entity->base.next) {
10409                 if (!is_declaration(entity))
10410                         continue;
10411
10412                 const declaration_t *declaration = &entity->declaration;
10413                 if (declaration->used                  ||
10414                     declaration->modifiers & DM_UNUSED ||
10415                     declaration->modifiers & DM_USED   ||
10416                     declaration->storage_class != STORAGE_CLASS_STATIC)
10417                         continue;
10418
10419                 type_t *const type = declaration->type;
10420                 const char *s;
10421                 if (entity->kind == ENTITY_FUNCTION) {
10422                         /* inhibit warning for static inline functions */
10423                         if (entity->function.is_inline)
10424                                 continue;
10425
10426                         s = entity->function.statement != NULL ? "defined" : "declared";
10427                 } else {
10428                         s = "defined";
10429                 }
10430
10431                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
10432                         type, declaration->base.symbol, s);
10433         }
10434 }
10435
10436 static void parse_global_asm(void)
10437 {
10438         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
10439
10440         eat(T_asm);
10441         expect('(');
10442
10443         statement->asms.asm_text = parse_string_literals();
10444         statement->base.next     = unit->global_asm;
10445         unit->global_asm         = statement;
10446
10447         expect(')');
10448         expect(';');
10449
10450 end_error:;
10451 }
10452
10453 /**
10454  * Parse a translation unit.
10455  */
10456 static void parse_translation_unit(void)
10457 {
10458         add_anchor_token(T_EOF);
10459
10460 #ifndef NDEBUG
10461         unsigned char token_anchor_copy[T_LAST_TOKEN];
10462         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
10463 #endif
10464         for (;;) {
10465 #ifndef NDEBUG
10466                 bool anchor_leak = false;
10467                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
10468                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
10469                         if (count != 0) {
10470                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
10471                                 anchor_leak = true;
10472                         }
10473                 }
10474                 if (in_gcc_extension) {
10475                         errorf(HERE, "Leaked __extension__");
10476                         anchor_leak = true;
10477                 }
10478
10479                 if (anchor_leak)
10480                         abort();
10481 #endif
10482
10483                 switch (token.type) {
10484                         DECLARATION_START
10485                         case T_IDENTIFIER:
10486                         case T___extension__:
10487                                 parse_external_declaration();
10488                                 break;
10489
10490                         case T_asm:
10491                                 parse_global_asm();
10492                                 break;
10493
10494                         case T_EOF:
10495                                 rem_anchor_token(T_EOF);
10496                                 return;
10497
10498                         case ';':
10499                                 if (!strict_mode) {
10500                                         if (warning.other)
10501                                                 warningf(HERE, "stray ';' outside of function");
10502                                         next_token();
10503                                         break;
10504                                 }
10505                                 /* FALLTHROUGH */
10506
10507                         default:
10508                                 errorf(HERE, "stray %K outside of function", &token);
10509                                 if (token.type == '(' || token.type == '{' || token.type == '[')
10510                                         eat_until_matching_token(token.type);
10511                                 next_token();
10512                                 break;
10513                 }
10514         }
10515 }
10516
10517 /**
10518  * Parse the input.
10519  *
10520  * @return  the translation unit or NULL if errors occurred.
10521  */
10522 void start_parsing(void)
10523 {
10524         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10525         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10526         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
10527         diagnostic_count  = 0;
10528         error_count       = 0;
10529         warning_count     = 0;
10530
10531         type_set_output(stderr);
10532         ast_set_output(stderr);
10533
10534         assert(unit == NULL);
10535         unit = allocate_ast_zero(sizeof(unit[0]));
10536
10537         assert(file_scope == NULL);
10538         file_scope = &unit->scope;
10539
10540         assert(scope == NULL);
10541         scope_push(&unit->scope);
10542
10543         initialize_builtin_types();
10544 }
10545
10546 translation_unit_t *finish_parsing(void)
10547 {
10548         /* do NOT use scope_pop() here, this will crash, will it by hand */
10549         assert(scope == &unit->scope);
10550         scope            = NULL;
10551
10552         assert(file_scope == &unit->scope);
10553         check_unused_globals();
10554         file_scope = NULL;
10555
10556         DEL_ARR_F(environment_stack);
10557         DEL_ARR_F(label_stack);
10558         DEL_ARR_F(local_label_stack);
10559
10560         translation_unit_t *result = unit;
10561         unit = NULL;
10562         return result;
10563 }
10564
10565 void parse(void)
10566 {
10567         lookahead_bufpos = 0;
10568         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10569                 next_token();
10570         }
10571         parse_translation_unit();
10572 }
10573
10574 /**
10575  * Initialize the parser.
10576  */
10577 void init_parser(void)
10578 {
10579         sym_anonymous = symbol_table_insert("<anonymous>");
10580
10581         if (c_mode & _MS) {
10582                 /* add predefined symbols for extended-decl-modifier */
10583                 sym_align      = symbol_table_insert("align");
10584                 sym_allocate   = symbol_table_insert("allocate");
10585                 sym_dllimport  = symbol_table_insert("dllimport");
10586                 sym_dllexport  = symbol_table_insert("dllexport");
10587                 sym_naked      = symbol_table_insert("naked");
10588                 sym_noinline   = symbol_table_insert("noinline");
10589                 sym_noreturn   = symbol_table_insert("noreturn");
10590                 sym_nothrow    = symbol_table_insert("nothrow");
10591                 sym_novtable   = symbol_table_insert("novtable");
10592                 sym_property   = symbol_table_insert("property");
10593                 sym_get        = symbol_table_insert("get");
10594                 sym_put        = symbol_table_insert("put");
10595                 sym_selectany  = symbol_table_insert("selectany");
10596                 sym_thread     = symbol_table_insert("thread");
10597                 sym_uuid       = symbol_table_insert("uuid");
10598                 sym_deprecated = symbol_table_insert("deprecated");
10599                 sym_restrict   = symbol_table_insert("restrict");
10600                 sym_noalias    = symbol_table_insert("noalias");
10601         }
10602         memset(token_anchor_set, 0, sizeof(token_anchor_set));
10603
10604         init_expression_parsers();
10605         obstack_init(&temp_obst);
10606
10607         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
10608         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
10609 }
10610
10611 /**
10612  * Terminate the parser.
10613  */
10614 void exit_parser(void)
10615 {
10616         obstack_free(&temp_obst, NULL);
10617 }