7e77c60099f3fcb279adba1eb5b26c5d3963e050
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "lang_features.h"
38 #include "walk_statements.h"
39 #include "warning.h"
40 #include "adt/bitfiddle.h"
41 #include "adt/error.h"
42 #include "adt/array.h"
43
44 //#define PRINT_TOKENS
45 #define MAX_LOOKAHEAD 2
46
47 typedef struct {
48         entity_t           *old_entity;
49         symbol_t           *symbol;
50         entity_namespace_t  namespc;
51 } stack_entry_t;
52
53 typedef struct argument_list_t argument_list_t;
54 struct argument_list_t {
55         long              argument;
56         argument_list_t  *next;
57 };
58
59 typedef struct gnu_attribute_t gnu_attribute_t;
60 struct gnu_attribute_t {
61         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
62         gnu_attribute_t     *next;
63         bool                 invalid;        /**< Set if this attribute had argument errors, */
64         bool                 have_arguments; /**< True, if this attribute has arguments. */
65         union {
66                 size_t              value;
67                 string_t            string;
68                 atomic_type_kind_t  akind;
69                 long                argument;  /**< Single argument. */
70                 argument_list_t    *arguments; /**< List of argument expressions. */
71         } u;
72 };
73
74 typedef struct declaration_specifiers_t  declaration_specifiers_t;
75 struct declaration_specifiers_t {
76         source_position_t  source_position;
77         storage_class_t    storage_class;
78         unsigned char      alignment;         /**< Alignment, 0 if not set. */
79         bool               is_inline    : 1;
80         bool               thread_local : 1;  /**< GCC __thread */
81         bool               deprecated   : 1;
82         decl_modifiers_t   modifiers;         /**< declaration modifiers */
83         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
84         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
85         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
86         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
87         type_t            *type;
88 };
89
90 /**
91  * An environment for parsing initializers (and compound literals).
92  */
93 typedef struct parse_initializer_env_t {
94         type_t     *type;   /**< the type of the initializer. In case of an
95                                  array type with unspecified size this gets
96                                  adjusted to the actual size. */
97         entity_t   *entity; /**< the variable that is initialized if any */
98         bool        must_be_constant;
99 } parse_initializer_env_t;
100
101 /**
102  * Capture a MS __base extension.
103  */
104 typedef struct based_spec_t {
105         source_position_t  source_position;
106         variable_t        *base_variable;
107 } based_spec_t;
108
109 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
110
111 /** The current token. */
112 static token_t              token;
113 /** The lookahead ring-buffer. */
114 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
115 /** Position of the next token in the lookahead buffer. */
116 static int                  lookahead_bufpos;
117 static stack_entry_t       *environment_stack = NULL;
118 static stack_entry_t       *label_stack       = NULL;
119 static scope_t             *file_scope        = NULL;
120 static scope_t             *current_scope     = NULL;
121 /** Point to the current function declaration if inside a function. */
122 static function_t          *current_function  = NULL;
123 static entity_t            *current_init_decl = NULL;
124 static switch_statement_t  *current_switch    = NULL;
125 static statement_t         *current_loop      = NULL;
126 static statement_t         *current_parent    = NULL;
127 static ms_try_statement_t  *current_try       = NULL;
128 static linkage_kind_t       current_linkage   = LINKAGE_INVALID;
129 static goto_statement_t    *goto_first        = NULL;
130 static goto_statement_t   **goto_anchor       = NULL;
131 static label_statement_t   *label_first       = NULL;
132 static label_statement_t  **label_anchor      = NULL;
133 /** current translation unit. */
134 static translation_unit_t  *unit              = NULL;
135 /** true if we are in a type property context (evaluation only for type. */
136 static bool                 in_type_prop      = false;
137 /** true in we are in a __extension__ context. */
138 static bool                 in_gcc_extension  = false;
139 static struct obstack       temp_obst;
140 static entity_t            *anonymous_entity;
141 static declaration_t      **incomplete_arrays;
142
143
144 #define PUSH_PARENT(stmt)                          \
145         statement_t *const prev_parent = current_parent; \
146         ((void)(current_parent = (stmt)))
147 #define POP_PARENT ((void)(current_parent = prev_parent))
148
149 /** special symbol used for anonymous entities. */
150 static const symbol_t *sym_anonymous = NULL;
151
152 /* symbols for Microsoft extended-decl-modifier */
153 static const symbol_t *sym_align      = NULL;
154 static const symbol_t *sym_allocate   = NULL;
155 static const symbol_t *sym_dllimport  = NULL;
156 static const symbol_t *sym_dllexport  = NULL;
157 static const symbol_t *sym_naked      = NULL;
158 static const symbol_t *sym_noinline   = NULL;
159 static const symbol_t *sym_noreturn   = NULL;
160 static const symbol_t *sym_nothrow    = NULL;
161 static const symbol_t *sym_novtable   = NULL;
162 static const symbol_t *sym_property   = NULL;
163 static const symbol_t *sym_get        = NULL;
164 static const symbol_t *sym_put        = NULL;
165 static const symbol_t *sym_selectany  = NULL;
166 static const symbol_t *sym_thread     = NULL;
167 static const symbol_t *sym_uuid       = NULL;
168 static const symbol_t *sym_deprecated = NULL;
169 static const symbol_t *sym_restrict   = NULL;
170 static const symbol_t *sym_noalias    = NULL;
171
172 /** The token anchor set */
173 static unsigned char token_anchor_set[T_LAST_TOKEN];
174
175 /** The current source position. */
176 #define HERE (&token.source_position)
177
178 /** true if we are in GCC mode. */
179 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
180
181 static type_t *type_valist;
182
183 static statement_t *parse_compound_statement(bool inside_expression_statement);
184 static statement_t *parse_statement(void);
185
186 static expression_t *parse_sub_expression(precedence_t);
187 static expression_t *parse_expression(void);
188 static type_t       *parse_typename(void);
189 static void          parse_externals(void);
190 static void          parse_external(void);
191
192 static void parse_compound_type_entries(compound_t *compound_declaration);
193
194 typedef enum declarator_flags_t {
195         DECL_FLAGS_NONE             = 0,
196         DECL_MAY_BE_ABSTRACT        = 1U << 0,
197         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
198         DECL_IS_PARAMETER           = 1U << 2
199 } declarator_flags_t;
200
201 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
202                                   declarator_flags_t flags);
203
204 static entity_t *record_entity(entity_t *entity, bool is_definition);
205
206 static void semantic_comparison(binary_expression_t *expression);
207
208 #define STORAGE_CLASSES       \
209         STORAGE_CLASSES_NO_EXTERN \
210         case T_extern:
211
212 #define STORAGE_CLASSES_NO_EXTERN \
213         case T_typedef:         \
214         case T_static:          \
215         case T_auto:            \
216         case T_register:        \
217         case T___thread:
218
219 #define TYPE_QUALIFIERS     \
220         case T_const:           \
221         case T_restrict:        \
222         case T_volatile:        \
223         case T_inline:          \
224         case T__forceinline:    \
225         case T___attribute__:
226
227 #define COMPLEX_SPECIFIERS  \
228         case T__Complex:
229 #define IMAGINARY_SPECIFIERS \
230         case T__Imaginary:
231
232 #define TYPE_SPECIFIERS       \
233         case T__Bool:             \
234         case T___builtin_va_list: \
235         case T___typeof__:        \
236         case T__declspec:         \
237         case T_bool:              \
238         case T_char:              \
239         case T_double:            \
240         case T_enum:              \
241         case T_float:             \
242         case T_int:               \
243         case T_long:              \
244         case T_short:             \
245         case T_signed:            \
246         case T_struct:            \
247         case T_union:             \
248         case T_unsigned:          \
249         case T_void:              \
250         COMPLEX_SPECIFIERS        \
251         IMAGINARY_SPECIFIERS
252
253 #define DECLARATION_START   \
254         STORAGE_CLASSES         \
255         TYPE_QUALIFIERS         \
256         TYPE_SPECIFIERS
257
258 #define DECLARATION_START_NO_EXTERN \
259         STORAGE_CLASSES_NO_EXTERN       \
260         TYPE_QUALIFIERS                 \
261         TYPE_SPECIFIERS
262
263 #define TYPENAME_START      \
264         TYPE_QUALIFIERS         \
265         TYPE_SPECIFIERS
266
267 #define EXPRESSION_START           \
268         case '!':                        \
269         case '&':                        \
270         case '(':                        \
271         case '*':                        \
272         case '+':                        \
273         case '-':                        \
274         case '~':                        \
275         case T_ANDAND:                   \
276         case T_CHARACTER_CONSTANT:       \
277         case T_FLOATINGPOINT:            \
278         case T_INTEGER:                  \
279         case T_MINUSMINUS:               \
280         case T_PLUSPLUS:                 \
281         case T_STRING_LITERAL:           \
282         case T_WIDE_CHARACTER_CONSTANT:  \
283         case T_WIDE_STRING_LITERAL:      \
284         case T___FUNCDNAME__:            \
285         case T___FUNCSIG__:              \
286         case T___FUNCTION__:             \
287         case T___PRETTY_FUNCTION__:      \
288         case T___alignof__:              \
289         case T___builtin_alloca:         \
290         case T___builtin_classify_type:  \
291         case T___builtin_constant_p:     \
292         case T___builtin_expect:         \
293         case T___builtin_huge_val:       \
294         case T___builtin_inf:            \
295         case T___builtin_inff:           \
296         case T___builtin_infl:           \
297         case T___builtin_isgreater:      \
298         case T___builtin_isgreaterequal: \
299         case T___builtin_isless:         \
300         case T___builtin_islessequal:    \
301         case T___builtin_islessgreater:  \
302         case T___builtin_isunordered:    \
303         case T___builtin_nan:            \
304         case T___builtin_nanf:           \
305         case T___builtin_nanl:           \
306         case T___builtin_offsetof:       \
307         case T___builtin_prefetch:       \
308         case T___builtin_va_arg:         \
309         case T___builtin_va_end:         \
310         case T___builtin_va_start:       \
311         case T___func__:                 \
312         case T___noop:                   \
313         case T__assume:                  \
314         case T_delete:                   \
315         case T_false:                    \
316         case T_sizeof:                   \
317         case T_throw:                    \
318         case T_true:
319
320 /**
321  * Allocate an AST node with given size and
322  * initialize all fields with zero.
323  */
324 static void *allocate_ast_zero(size_t size)
325 {
326         void *res = allocate_ast(size);
327         memset(res, 0, size);
328         return res;
329 }
330
331 /**
332  * Returns the size of an entity node.
333  *
334  * @param kind  the entity kind
335  */
336 static size_t get_entity_struct_size(entity_kind_t kind)
337 {
338         static const size_t sizes[] = {
339                 [ENTITY_VARIABLE]        = sizeof(variable_t),
340                 [ENTITY_PARAMETER]       = sizeof(parameter_t),
341                 [ENTITY_COMPOUND_MEMBER] = sizeof(compound_member_t),
342                 [ENTITY_FUNCTION]        = sizeof(function_t),
343                 [ENTITY_TYPEDEF]         = sizeof(typedef_t),
344                 [ENTITY_STRUCT]          = sizeof(compound_t),
345                 [ENTITY_UNION]           = sizeof(compound_t),
346                 [ENTITY_ENUM]            = sizeof(enum_t),
347                 [ENTITY_ENUM_VALUE]      = sizeof(enum_value_t),
348                 [ENTITY_LABEL]           = sizeof(label_t),
349                 [ENTITY_LOCAL_LABEL]     = sizeof(label_t),
350                 [ENTITY_NAMESPACE]       = sizeof(namespace_t)
351         };
352         assert(kind < sizeof(sizes) / sizeof(sizes[0]));
353         assert(sizes[kind] != 0);
354         return sizes[kind];
355 }
356
357 /**
358  * Allocate an entity of given kind and initialize all
359  * fields with zero.
360  */
361 static entity_t *allocate_entity_zero(entity_kind_t kind)
362 {
363         size_t    size   = get_entity_struct_size(kind);
364         entity_t *entity = allocate_ast_zero(size);
365         entity->kind     = kind;
366         return entity;
367 }
368
369 /**
370  * Returns the size of a statement node.
371  *
372  * @param kind  the statement kind
373  */
374 static size_t get_statement_struct_size(statement_kind_t kind)
375 {
376         static const size_t sizes[] = {
377                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
378                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
379                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
380                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
381                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
382                 [STATEMENT_LOCAL_LABEL] = sizeof(local_label_statement_t),
383                 [STATEMENT_IF]          = sizeof(if_statement_t),
384                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
385                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
386                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
387                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
388                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
389                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
390                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
391                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
392                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
393                 [STATEMENT_FOR]         = sizeof(for_statement_t),
394                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
395                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
396                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
397         };
398         assert(kind < sizeof(sizes) / sizeof(sizes[0]));
399         assert(sizes[kind] != 0);
400         return sizes[kind];
401 }
402
403 /**
404  * Returns the size of an expression node.
405  *
406  * @param kind  the expression kind
407  */
408 static size_t get_expression_struct_size(expression_kind_t kind)
409 {
410         static const size_t sizes[] = {
411                 [EXPR_INVALID]                 = sizeof(expression_base_t),
412                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
413                 [EXPR_REFERENCE_ENUM_VALUE]    = sizeof(reference_expression_t),
414                 [EXPR_CONST]                   = sizeof(const_expression_t),
415                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
416                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
417                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
418                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
419                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
420                 [EXPR_CALL]                    = sizeof(call_expression_t),
421                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
422                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
423                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
424                 [EXPR_SELECT]                  = sizeof(select_expression_t),
425                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
426                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
427                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
428                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
429                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
430                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
431                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
432                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
433                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
434                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
435                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
436                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
437                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
438         };
439         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
440                 return sizes[EXPR_UNARY_FIRST];
441         }
442         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
443                 return sizes[EXPR_BINARY_FIRST];
444         }
445         assert(kind < sizeof(sizes) / sizeof(sizes[0]));
446         assert(sizes[kind] != 0);
447         return sizes[kind];
448 }
449
450 /**
451  * Allocate a statement node of given kind and initialize all
452  * fields with zero. Sets its source position to the position
453  * of the current token.
454  */
455 static statement_t *allocate_statement_zero(statement_kind_t kind)
456 {
457         size_t       size = get_statement_struct_size(kind);
458         statement_t *res  = allocate_ast_zero(size);
459
460         res->base.kind            = kind;
461         res->base.parent          = current_parent;
462         res->base.source_position = token.source_position;
463         return res;
464 }
465
466 /**
467  * Allocate an expression node of given kind and initialize all
468  * fields with zero.
469  */
470 static expression_t *allocate_expression_zero(expression_kind_t kind)
471 {
472         size_t        size = get_expression_struct_size(kind);
473         expression_t *res  = allocate_ast_zero(size);
474
475         res->base.kind            = kind;
476         res->base.type            = type_error_type;
477         res->base.source_position = token.source_position;
478         return res;
479 }
480
481 /**
482  * Creates a new invalid expression at the source position
483  * of the current token.
484  */
485 static expression_t *create_invalid_expression(void)
486 {
487         return allocate_expression_zero(EXPR_INVALID);
488 }
489
490 /**
491  * Creates a new invalid statement.
492  */
493 static statement_t *create_invalid_statement(void)
494 {
495         return allocate_statement_zero(STATEMENT_INVALID);
496 }
497
498 /**
499  * Allocate a new empty statement.
500  */
501 static statement_t *create_empty_statement(void)
502 {
503         return allocate_statement_zero(STATEMENT_EMPTY);
504 }
505
506 /**
507  * Returns the size of a type node.
508  *
509  * @param kind  the type kind
510  */
511 static size_t get_type_struct_size(type_kind_t kind)
512 {
513         static const size_t sizes[] = {
514                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
515                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
516                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
517                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
518                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
519                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
520                 [TYPE_ENUM]            = sizeof(enum_type_t),
521                 [TYPE_FUNCTION]        = sizeof(function_type_t),
522                 [TYPE_POINTER]         = sizeof(pointer_type_t),
523                 [TYPE_ARRAY]           = sizeof(array_type_t),
524                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
525                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
526                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
527         };
528         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
529         assert(kind <= TYPE_TYPEOF);
530         assert(sizes[kind] != 0);
531         return sizes[kind];
532 }
533
534 /**
535  * Allocate a type node of given kind and initialize all
536  * fields with zero.
537  *
538  * @param kind             type kind to allocate
539  */
540 static type_t *allocate_type_zero(type_kind_t kind)
541 {
542         size_t  size = get_type_struct_size(kind);
543         type_t *res  = obstack_alloc(type_obst, size);
544         memset(res, 0, size);
545         res->base.kind = kind;
546
547         return res;
548 }
549
550 /**
551  * Returns the size of an initializer node.
552  *
553  * @param kind  the initializer kind
554  */
555 static size_t get_initializer_size(initializer_kind_t kind)
556 {
557         static const size_t sizes[] = {
558                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
559                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
560                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
561                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
562                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
563         };
564         assert(kind < sizeof(sizes) / sizeof(*sizes));
565         assert(sizes[kind] != 0);
566         return sizes[kind];
567 }
568
569 /**
570  * Allocate an initializer node of given kind and initialize all
571  * fields with zero.
572  */
573 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
574 {
575         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
576         result->kind          = kind;
577
578         return result;
579 }
580
581 /**
582  * Free a type from the type obstack.
583  */
584 static void free_type(void *type)
585 {
586         obstack_free(type_obst, type);
587 }
588
589 /**
590  * Returns the index of the top element of the environment stack.
591  */
592 static size_t environment_top(void)
593 {
594         return ARR_LEN(environment_stack);
595 }
596
597 /**
598  * Returns the index of the top element of the global label stack.
599  */
600 static size_t label_top(void)
601 {
602         return ARR_LEN(label_stack);
603 }
604
605 /**
606  * Return the next token.
607  */
608 static inline void next_token(void)
609 {
610         token                              = lookahead_buffer[lookahead_bufpos];
611         lookahead_buffer[lookahead_bufpos] = lexer_token;
612         lexer_next_token();
613
614         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
615
616 #ifdef PRINT_TOKENS
617         print_token(stderr, &token);
618         fprintf(stderr, "\n");
619 #endif
620 }
621
622 /**
623  * Return the next token with a given lookahead.
624  */
625 static inline const token_t *look_ahead(int num)
626 {
627         assert(num > 0 && num <= MAX_LOOKAHEAD);
628         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
629         return &lookahead_buffer[pos];
630 }
631
632 /**
633  * Adds a token type to the token type anchor set (a multi-set).
634  */
635 static void add_anchor_token(int token_type)
636 {
637         assert(0 <= token_type && token_type < T_LAST_TOKEN);
638         ++token_anchor_set[token_type];
639 }
640
641 /**
642  * Set the number of tokens types of the given type
643  * to zero and return the old count.
644  */
645 static int save_and_reset_anchor_state(int token_type)
646 {
647         assert(0 <= token_type && token_type < T_LAST_TOKEN);
648         int count = token_anchor_set[token_type];
649         token_anchor_set[token_type] = 0;
650         return count;
651 }
652
653 /**
654  * Restore the number of token types to the given count.
655  */
656 static void restore_anchor_state(int token_type, int count)
657 {
658         assert(0 <= token_type && token_type < T_LAST_TOKEN);
659         token_anchor_set[token_type] = count;
660 }
661
662 /**
663  * Remove a token type from the token type anchor set (a multi-set).
664  */
665 static void rem_anchor_token(int token_type)
666 {
667         assert(0 <= token_type && token_type < T_LAST_TOKEN);
668         assert(token_anchor_set[token_type] != 0);
669         --token_anchor_set[token_type];
670 }
671
672 /**
673  * Return true if the token type of the current token is
674  * in the anchor set.
675  */
676 static bool at_anchor(void)
677 {
678         if (token.type < 0)
679                 return false;
680         return token_anchor_set[token.type];
681 }
682
683 /**
684  * Eat tokens until a matching token type is found.
685  */
686 static void eat_until_matching_token(int type)
687 {
688         int end_token;
689         switch (type) {
690                 case '(': end_token = ')';  break;
691                 case '{': end_token = '}';  break;
692                 case '[': end_token = ']';  break;
693                 default:  end_token = type; break;
694         }
695
696         unsigned parenthesis_count = 0;
697         unsigned brace_count       = 0;
698         unsigned bracket_count     = 0;
699         while (token.type        != end_token ||
700                parenthesis_count != 0         ||
701                brace_count       != 0         ||
702                bracket_count     != 0) {
703                 switch (token.type) {
704                 case T_EOF: return;
705                 case '(': ++parenthesis_count; break;
706                 case '{': ++brace_count;       break;
707                 case '[': ++bracket_count;     break;
708
709                 case ')':
710                         if (parenthesis_count > 0)
711                                 --parenthesis_count;
712                         goto check_stop;
713
714                 case '}':
715                         if (brace_count > 0)
716                                 --brace_count;
717                         goto check_stop;
718
719                 case ']':
720                         if (bracket_count > 0)
721                                 --bracket_count;
722 check_stop:
723                         if (token.type        == end_token &&
724                             parenthesis_count == 0         &&
725                             brace_count       == 0         &&
726                             bracket_count     == 0)
727                                 return;
728                         break;
729
730                 default:
731                         break;
732                 }
733                 next_token();
734         }
735 }
736
737 /**
738  * Eat input tokens until an anchor is found.
739  */
740 static void eat_until_anchor(void)
741 {
742         while (token_anchor_set[token.type] == 0) {
743                 if (token.type == '(' || token.type == '{' || token.type == '[')
744                         eat_until_matching_token(token.type);
745                 next_token();
746         }
747 }
748
749 /**
750  * Eat a whole block from input tokens.
751  */
752 static void eat_block(void)
753 {
754         eat_until_matching_token('{');
755         if (token.type == '}')
756                 next_token();
757 }
758
759 #define eat(token_type)  do { assert(token.type == (token_type)); next_token(); } while (0)
760
761 /**
762  * Report a parse error because an expected token was not found.
763  */
764 static
765 #if defined __GNUC__ && __GNUC__ >= 4
766 __attribute__((sentinel))
767 #endif
768 void parse_error_expected(const char *message, ...)
769 {
770         if (message != NULL) {
771                 errorf(HERE, "%s", message);
772         }
773         va_list ap;
774         va_start(ap, message);
775         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
776         va_end(ap);
777 }
778
779 /**
780  * Report an incompatible type.
781  */
782 static void type_error_incompatible(const char *msg,
783                 const source_position_t *source_position, type_t *type1, type_t *type2)
784 {
785         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
786                msg, type1, type2);
787 }
788
789 /**
790  * Expect the current token is the expected token.
791  * If not, generate an error, eat the current statement,
792  * and goto the end_error label.
793  */
794 #define expect(expected, error_label)                     \
795         do {                                                  \
796                 if (UNLIKELY(token.type != (expected))) {         \
797                         parse_error_expected(NULL, (expected), NULL); \
798                         add_anchor_token(expected);                   \
799                         eat_until_anchor();                           \
800                         if (token.type == expected)                   \
801                                 next_token();                             \
802                         rem_anchor_token(expected);                   \
803                         goto error_label;                             \
804                 }                                                 \
805                 next_token();                                     \
806         } while (0)
807
808 /**
809  * Push a given scope on the scope stack and make it the
810  * current scope
811  */
812 static scope_t *scope_push(scope_t *new_scope)
813 {
814         if (current_scope != NULL) {
815                 new_scope->depth = current_scope->depth + 1;
816         }
817
818         scope_t *old_scope = current_scope;
819         current_scope      = new_scope;
820         return old_scope;
821 }
822
823 /**
824  * Pop the current scope from the scope stack.
825  */
826 static void scope_pop(scope_t *old_scope)
827 {
828         current_scope = old_scope;
829 }
830
831 /**
832  * Search an entity by its symbol in a given namespace.
833  */
834 static entity_t *get_entity(const symbol_t *const symbol,
835                             namespace_tag_t namespc)
836 {
837         entity_t *entity = symbol->entity;
838         for (; entity != NULL; entity = entity->base.symbol_next) {
839                 if (entity->base.namespc == namespc)
840                         return entity;
841         }
842
843         return NULL;
844 }
845
846 /**
847  * pushs an entity on the environment stack and links the corresponding symbol
848  * it.
849  */
850 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
851 {
852         symbol_t           *symbol  = entity->base.symbol;
853         entity_namespace_t  namespc = entity->base.namespc;
854         assert(namespc != NAMESPACE_INVALID);
855
856         /* replace/add entity into entity list of the symbol */
857         entity_t **anchor;
858         entity_t  *iter;
859         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
860                 iter = *anchor;
861                 if (iter == NULL)
862                         break;
863
864                 /* replace an entry? */
865                 if (iter->base.namespc == namespc) {
866                         entity->base.symbol_next = iter->base.symbol_next;
867                         break;
868                 }
869         }
870         *anchor = entity;
871
872         /* remember old declaration */
873         stack_entry_t entry;
874         entry.symbol     = symbol;
875         entry.old_entity = iter;
876         entry.namespc    = namespc;
877         ARR_APP1(stack_entry_t, *stack_ptr, entry);
878 }
879
880 /**
881  * Push an entity on the environment stack.
882  */
883 static void environment_push(entity_t *entity)
884 {
885         assert(entity->base.source_position.input_name != NULL);
886         assert(entity->base.parent_scope != NULL);
887         stack_push(&environment_stack, entity);
888 }
889
890 /**
891  * Push a declaration on the global label stack.
892  *
893  * @param declaration  the declaration
894  */
895 static void label_push(entity_t *label)
896 {
897         /* we abuse the parameters scope as parent for the labels */
898         label->base.parent_scope = &current_function->parameters;
899         stack_push(&label_stack, label);
900 }
901
902 /**
903  * pops symbols from the environment stack until @p new_top is the top element
904  */
905 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
906 {
907         stack_entry_t *stack = *stack_ptr;
908         size_t         top   = ARR_LEN(stack);
909         size_t         i;
910
911         assert(new_top <= top);
912         if (new_top == top)
913                 return;
914
915         for (i = top; i > new_top; --i) {
916                 stack_entry_t *entry = &stack[i - 1];
917
918                 entity_t           *old_entity = entry->old_entity;
919                 symbol_t           *symbol     = entry->symbol;
920                 entity_namespace_t  namespc    = entry->namespc;
921
922                 /* replace with old_entity/remove */
923                 entity_t **anchor;
924                 entity_t  *iter;
925                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
926                         iter = *anchor;
927                         assert(iter != NULL);
928                         /* replace an entry? */
929                         if (iter->base.namespc == namespc)
930                                 break;
931                 }
932
933                 /* restore definition from outer scopes (if there was one) */
934                 if (old_entity != NULL) {
935                         old_entity->base.symbol_next = iter->base.symbol_next;
936                         *anchor                      = old_entity;
937                 } else {
938                         /* remove entry from list */
939                         *anchor = iter->base.symbol_next;
940                 }
941         }
942
943         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
944 }
945
946 /**
947  * Pop all entries from the environment stack until the new_top
948  * is reached.
949  *
950  * @param new_top  the new stack top
951  */
952 static void environment_pop_to(size_t new_top)
953 {
954         stack_pop_to(&environment_stack, new_top);
955 }
956
957 /**
958  * Pop all entries from the global label stack until the new_top
959  * is reached.
960  *
961  * @param new_top  the new stack top
962  */
963 static void label_pop_to(size_t new_top)
964 {
965         stack_pop_to(&label_stack, new_top);
966 }
967
968 static int get_akind_rank(atomic_type_kind_t akind)
969 {
970         return (int) akind;
971 }
972
973 /**
974  * Return the type rank for an atomic type.
975  */
976 static int get_rank(const type_t *type)
977 {
978         assert(!is_typeref(type));
979         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
980          * and esp. footnote 108). However we can't fold constants (yet), so we
981          * can't decide whether unsigned int is possible, while int always works.
982          * (unsigned int would be preferable when possible... for stuff like
983          *  struct { enum { ... } bla : 4; } ) */
984         if (type->kind == TYPE_ENUM)
985                 return get_akind_rank(ATOMIC_TYPE_INT);
986
987         assert(type->kind == TYPE_ATOMIC);
988         return get_akind_rank(type->atomic.akind);
989 }
990
991 /**
992  * Do integer promotion for a given type.
993  *
994  * @param type  the type to promote
995  * @return the promoted type
996  */
997 static type_t *promote_integer(type_t *type)
998 {
999         if (type->kind == TYPE_BITFIELD)
1000                 type = type->bitfield.base_type;
1001
1002         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
1003                 type = type_int;
1004
1005         return type;
1006 }
1007
1008 /**
1009  * Create a cast expression.
1010  *
1011  * @param expression  the expression to cast
1012  * @param dest_type   the destination type
1013  */
1014 static expression_t *create_cast_expression(expression_t *expression,
1015                                             type_t *dest_type)
1016 {
1017         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
1018
1019         cast->unary.value = expression;
1020         cast->base.type   = dest_type;
1021
1022         return cast;
1023 }
1024
1025 /**
1026  * Check if a given expression represents a null pointer constant.
1027  *
1028  * @param expression  the expression to check
1029  */
1030 static bool is_null_pointer_constant(const expression_t *expression)
1031 {
1032         /* skip void* cast */
1033         if (expression->kind == EXPR_UNARY_CAST
1034                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
1035                 expression = expression->unary.value;
1036         }
1037
1038         /* TODO: not correct yet, should be any constant integer expression
1039          * which evaluates to 0 */
1040         if (expression->kind != EXPR_CONST)
1041                 return false;
1042
1043         type_t *const type = skip_typeref(expression->base.type);
1044         if (!is_type_integer(type))
1045                 return false;
1046
1047         return expression->conste.v.int_value == 0;
1048 }
1049
1050 /**
1051  * Create an implicit cast expression.
1052  *
1053  * @param expression  the expression to cast
1054  * @param dest_type   the destination type
1055  */
1056 static expression_t *create_implicit_cast(expression_t *expression,
1057                                           type_t *dest_type)
1058 {
1059         type_t *const source_type = expression->base.type;
1060
1061         if (source_type == dest_type)
1062                 return expression;
1063
1064         return create_cast_expression(expression, dest_type);
1065 }
1066
1067 typedef enum assign_error_t {
1068         ASSIGN_SUCCESS,
1069         ASSIGN_ERROR_INCOMPATIBLE,
1070         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
1071         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
1072         ASSIGN_WARNING_POINTER_FROM_INT,
1073         ASSIGN_WARNING_INT_FROM_POINTER
1074 } assign_error_t;
1075
1076 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
1077                                 const expression_t *const right,
1078                                 const char *context,
1079                                 const source_position_t *source_position)
1080 {
1081         type_t *const orig_type_right = right->base.type;
1082         type_t *const type_left       = skip_typeref(orig_type_left);
1083         type_t *const type_right      = skip_typeref(orig_type_right);
1084
1085         switch (error) {
1086         case ASSIGN_SUCCESS:
1087                 return;
1088         case ASSIGN_ERROR_INCOMPATIBLE:
1089                 errorf(source_position,
1090                        "destination type '%T' in %s is incompatible with type '%T'",
1091                        orig_type_left, context, orig_type_right);
1092                 return;
1093
1094         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1095                 if (warning.other) {
1096                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
1097                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
1098
1099                         /* the left type has all qualifiers from the right type */
1100                         unsigned missing_qualifiers
1101                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1102                         warningf(source_position,
1103                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1104                                         orig_type_left, context, orig_type_right, missing_qualifiers);
1105                 }
1106                 return;
1107         }
1108
1109         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1110                 if (warning.other) {
1111                         warningf(source_position,
1112                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1113                                         orig_type_left, context, right, orig_type_right);
1114                 }
1115                 return;
1116
1117         case ASSIGN_WARNING_POINTER_FROM_INT:
1118                 if (warning.other) {
1119                         warningf(source_position,
1120                                         "%s makes pointer '%T' from integer '%T' without a cast",
1121                                         context, orig_type_left, orig_type_right);
1122                 }
1123                 return;
1124
1125         case ASSIGN_WARNING_INT_FROM_POINTER:
1126                 if (warning.other) {
1127                         warningf(source_position,
1128                                         "%s makes integer '%T' from pointer '%T' without a cast",
1129                                         context, orig_type_left, orig_type_right);
1130                 }
1131                 return;
1132
1133         default:
1134                 panic("invalid error value");
1135         }
1136 }
1137
1138 /** Implements the rules from Â§ 6.5.16.1 */
1139 static assign_error_t semantic_assign(type_t *orig_type_left,
1140                                       const expression_t *const right)
1141 {
1142         type_t *const orig_type_right = right->base.type;
1143         type_t *const type_left       = skip_typeref(orig_type_left);
1144         type_t *const type_right      = skip_typeref(orig_type_right);
1145
1146         if (is_type_pointer(type_left)) {
1147                 if (is_null_pointer_constant(right)) {
1148                         return ASSIGN_SUCCESS;
1149                 } else if (is_type_pointer(type_right)) {
1150                         type_t *points_to_left
1151                                 = skip_typeref(type_left->pointer.points_to);
1152                         type_t *points_to_right
1153                                 = skip_typeref(type_right->pointer.points_to);
1154                         assign_error_t res = ASSIGN_SUCCESS;
1155
1156                         /* the left type has all qualifiers from the right type */
1157                         unsigned missing_qualifiers
1158                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1159                         if (missing_qualifiers != 0) {
1160                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1161                         }
1162
1163                         points_to_left  = get_unqualified_type(points_to_left);
1164                         points_to_right = get_unqualified_type(points_to_right);
1165
1166                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1167                                 return res;
1168
1169                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1170                                 /* ISO/IEC 14882:1998(E) Â§C.1.2:6 */
1171                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1172                         }
1173
1174                         if (!types_compatible(points_to_left, points_to_right)) {
1175                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1176                         }
1177
1178                         return res;
1179                 } else if (is_type_integer(type_right)) {
1180                         return ASSIGN_WARNING_POINTER_FROM_INT;
1181                 }
1182         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1183             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1184                 && is_type_pointer(type_right))) {
1185                 return ASSIGN_SUCCESS;
1186         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1187                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1188                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1189                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1190                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1191                         return ASSIGN_SUCCESS;
1192                 }
1193         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1194                 return ASSIGN_WARNING_INT_FROM_POINTER;
1195         }
1196
1197         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1198                 return ASSIGN_SUCCESS;
1199
1200         return ASSIGN_ERROR_INCOMPATIBLE;
1201 }
1202
1203 static expression_t *parse_constant_expression(void)
1204 {
1205         expression_t *result = parse_sub_expression(PREC_CONDITIONAL);
1206
1207         if (!is_constant_expression(result)) {
1208                 errorf(&result->base.source_position,
1209                        "expression '%E' is not constant", result);
1210         }
1211
1212         return result;
1213 }
1214
1215 static expression_t *parse_assignment_expression(void)
1216 {
1217         return parse_sub_expression(PREC_ASSIGNMENT);
1218 }
1219
1220 static string_t parse_string_literals(void)
1221 {
1222         assert(token.type == T_STRING_LITERAL);
1223         string_t result = token.v.string;
1224
1225         next_token();
1226
1227         while (token.type == T_STRING_LITERAL) {
1228                 result = concat_strings(&result, &token.v.string);
1229                 next_token();
1230         }
1231
1232         return result;
1233 }
1234
1235 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1236         [GNU_AK_CONST]                  = "const",
1237         [GNU_AK_VOLATILE]               = "volatile",
1238         [GNU_AK_CDECL]                  = "cdecl",
1239         [GNU_AK_STDCALL]                = "stdcall",
1240         [GNU_AK_FASTCALL]               = "fastcall",
1241         [GNU_AK_DEPRECATED]             = "deprecated",
1242         [GNU_AK_NOINLINE]               = "noinline",
1243         [GNU_AK_NORETURN]               = "noreturn",
1244         [GNU_AK_NAKED]                  = "naked",
1245         [GNU_AK_PURE]                   = "pure",
1246         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1247         [GNU_AK_MALLOC]                 = "malloc",
1248         [GNU_AK_WEAK]                   = "weak",
1249         [GNU_AK_CONSTRUCTOR]            = "constructor",
1250         [GNU_AK_DESTRUCTOR]             = "destructor",
1251         [GNU_AK_NOTHROW]                = "nothrow",
1252         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1253         [GNU_AK_COMMON]                 = "common",
1254         [GNU_AK_NOCOMMON]               = "nocommon",
1255         [GNU_AK_PACKED]                 = "packed",
1256         [GNU_AK_SHARED]                 = "shared",
1257         [GNU_AK_NOTSHARED]              = "notshared",
1258         [GNU_AK_USED]                   = "used",
1259         [GNU_AK_UNUSED]                 = "unused",
1260         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1261         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1262         [GNU_AK_LONGCALL]               = "longcall",
1263         [GNU_AK_SHORTCALL]              = "shortcall",
1264         [GNU_AK_LONG_CALL]              = "long_call",
1265         [GNU_AK_SHORT_CALL]             = "short_call",
1266         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1267         [GNU_AK_INTERRUPT]              = "interrupt",
1268         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1269         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1270         [GNU_AK_NESTING]                = "nesting",
1271         [GNU_AK_NEAR]                   = "near",
1272         [GNU_AK_FAR]                    = "far",
1273         [GNU_AK_SIGNAL]                 = "signal",
1274         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1275         [GNU_AK_TINY_DATA]              = "tiny_data",
1276         [GNU_AK_SAVEALL]                = "saveall",
1277         [GNU_AK_FLATTEN]                = "flatten",
1278         [GNU_AK_SSEREGPARM]             = "sseregparm",
1279         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1280         [GNU_AK_RETURN_TWICE]           = "return_twice",
1281         [GNU_AK_MAY_ALIAS]              = "may_alias",
1282         [GNU_AK_MS_STRUCT]              = "ms_struct",
1283         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1284         [GNU_AK_DLLIMPORT]              = "dllimport",
1285         [GNU_AK_DLLEXPORT]              = "dllexport",
1286         [GNU_AK_ALIGNED]                = "aligned",
1287         [GNU_AK_ALIAS]                  = "alias",
1288         [GNU_AK_SECTION]                = "section",
1289         [GNU_AK_FORMAT]                 = "format",
1290         [GNU_AK_FORMAT_ARG]             = "format_arg",
1291         [GNU_AK_WEAKREF]                = "weakref",
1292         [GNU_AK_NONNULL]                = "nonnull",
1293         [GNU_AK_TLS_MODEL]              = "tls_model",
1294         [GNU_AK_VISIBILITY]             = "visibility",
1295         [GNU_AK_REGPARM]                = "regparm",
1296         [GNU_AK_MODE]                   = "mode",
1297         [GNU_AK_MODEL]                  = "model",
1298         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1299         [GNU_AK_SP_SWITCH]              = "sp_switch",
1300         [GNU_AK_SENTINEL]               = "sentinel"
1301 };
1302
1303 /**
1304  * compare two string, ignoring double underscores on the second.
1305  */
1306 static int strcmp_underscore(const char *s1, const char *s2)
1307 {
1308         if (s2[0] == '_' && s2[1] == '_') {
1309                 size_t len2 = strlen(s2);
1310                 size_t len1 = strlen(s1);
1311                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1312                         return strncmp(s1, s2+2, len2-4);
1313                 }
1314         }
1315
1316         return strcmp(s1, s2);
1317 }
1318
1319 /**
1320  * Allocate a new gnu temporal attribute of given kind.
1321  */
1322 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1323 {
1324         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1325         attribute->kind            = kind;
1326         attribute->next            = NULL;
1327         attribute->invalid         = false;
1328         attribute->have_arguments  = false;
1329
1330         return attribute;
1331 }
1332
1333 /**
1334  * Parse one constant expression argument of the given attribute.
1335  */
1336 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1337 {
1338         expression_t *expression;
1339         add_anchor_token(')');
1340         expression = parse_constant_expression();
1341         rem_anchor_token(')');
1342         expect(')', end_error);
1343         attribute->u.argument = fold_constant(expression);
1344         return;
1345 end_error:
1346         attribute->invalid = true;
1347 }
1348
1349 /**
1350  * Parse a list of constant expressions arguments of the given attribute.
1351  */
1352 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1353 {
1354         argument_list_t **list = &attribute->u.arguments;
1355         argument_list_t  *entry;
1356         expression_t     *expression;
1357         add_anchor_token(')');
1358         add_anchor_token(',');
1359         while (true) {
1360                 expression = parse_constant_expression();
1361                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1362                 entry->argument = fold_constant(expression);
1363                 entry->next     = NULL;
1364                 *list = entry;
1365                 list = &entry->next;
1366                 if (token.type != ',')
1367                         break;
1368                 next_token();
1369         }
1370         rem_anchor_token(',');
1371         rem_anchor_token(')');
1372         expect(')', end_error);
1373         return;
1374 end_error:
1375         attribute->invalid = true;
1376 }
1377
1378 /**
1379  * Parse one string literal argument of the given attribute.
1380  */
1381 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1382                                            string_t *string)
1383 {
1384         add_anchor_token('(');
1385         if (token.type != T_STRING_LITERAL) {
1386                 parse_error_expected("while parsing attribute directive",
1387                                      T_STRING_LITERAL, NULL);
1388                 goto end_error;
1389         }
1390         *string = parse_string_literals();
1391         rem_anchor_token('(');
1392         expect(')', end_error);
1393         return;
1394 end_error:
1395         attribute->invalid = true;
1396 }
1397
1398 /**
1399  * Parse one tls model of the given attribute.
1400  */
1401 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1402 {
1403         static const char *const tls_models[] = {
1404                 "global-dynamic",
1405                 "local-dynamic",
1406                 "initial-exec",
1407                 "local-exec"
1408         };
1409         string_t string = { NULL, 0 };
1410         parse_gnu_attribute_string_arg(attribute, &string);
1411         if (string.begin != NULL) {
1412                 for (size_t i = 0; i < 4; ++i) {
1413                         if (strcmp(tls_models[i], string.begin) == 0) {
1414                                 attribute->u.value = i;
1415                                 return;
1416                         }
1417                 }
1418                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1419         }
1420         attribute->invalid = true;
1421 }
1422
1423 /**
1424  * Parse one tls model of the given attribute.
1425  */
1426 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1427 {
1428         static const char *const visibilities[] = {
1429                 "default",
1430                 "protected",
1431                 "hidden",
1432                 "internal"
1433         };
1434         string_t string = { NULL, 0 };
1435         parse_gnu_attribute_string_arg(attribute, &string);
1436         if (string.begin != NULL) {
1437                 for (size_t i = 0; i < 4; ++i) {
1438                         if (strcmp(visibilities[i], string.begin) == 0) {
1439                                 attribute->u.value = i;
1440                                 return;
1441                         }
1442                 }
1443                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1444         }
1445         attribute->invalid = true;
1446 }
1447
1448 /**
1449  * Parse one (code) model of the given attribute.
1450  */
1451 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1452 {
1453         static const char *const visibilities[] = {
1454                 "small",
1455                 "medium",
1456                 "large"
1457         };
1458         string_t string = { NULL, 0 };
1459         parse_gnu_attribute_string_arg(attribute, &string);
1460         if (string.begin != NULL) {
1461                 for (int i = 0; i < 3; ++i) {
1462                         if (strcmp(visibilities[i], string.begin) == 0) {
1463                                 attribute->u.value = i;
1464                                 return;
1465                         }
1466                 }
1467                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1468         }
1469         attribute->invalid = true;
1470 }
1471
1472 /**
1473  * Parse one mode of the given attribute.
1474  */
1475 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1476 {
1477         /* TODO: find out what is allowed here... */
1478
1479         /* at least: byte, word, pointer, list of machine modes
1480          * __XXX___ is interpreted as XXX */
1481         add_anchor_token(')');
1482
1483         if (token.type != T_IDENTIFIER) {
1484                 expect(T_IDENTIFIER, end_error);
1485         }
1486
1487         /* This isn't really correct, the backend should provide a list of machine
1488          * specific modes (according to gcc philosophy that is...) */
1489         const char *symbol_str = token.v.symbol->string;
1490         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1491             strcmp_underscore("byte", symbol_str) == 0) {
1492                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1493         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1494                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1495         } else if (strcmp_underscore("SI",      symbol_str) == 0
1496                 || strcmp_underscore("word",    symbol_str) == 0
1497                 || strcmp_underscore("pointer", symbol_str) == 0) {
1498                 attribute->u.akind = ATOMIC_TYPE_INT;
1499         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1500                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1501         } else {
1502                 if (warning.other)
1503                         warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1504                 attribute->invalid = true;
1505         }
1506         next_token();
1507
1508         rem_anchor_token(')');
1509         expect(')', end_error);
1510         return;
1511 end_error:
1512         attribute->invalid = true;
1513 }
1514
1515 /**
1516  * Parse one interrupt argument of the given attribute.
1517  */
1518 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1519 {
1520         static const char *const interrupts[] = {
1521                 "IRQ",
1522                 "FIQ",
1523                 "SWI",
1524                 "ABORT",
1525                 "UNDEF"
1526         };
1527         string_t string = { NULL, 0 };
1528         parse_gnu_attribute_string_arg(attribute, &string);
1529         if (string.begin != NULL) {
1530                 for (size_t i = 0; i < 5; ++i) {
1531                         if (strcmp(interrupts[i], string.begin) == 0) {
1532                                 attribute->u.value = i;
1533                                 return;
1534                         }
1535                 }
1536                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1537         }
1538         attribute->invalid = true;
1539 }
1540
1541 /**
1542  * Parse ( identifier, const expression, const expression )
1543  */
1544 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1545 {
1546         static const char *const format_names[] = {
1547                 "printf",
1548                 "scanf",
1549                 "strftime",
1550                 "strfmon"
1551         };
1552         int i;
1553
1554         if (token.type != T_IDENTIFIER) {
1555                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1556                 goto end_error;
1557         }
1558         const char *name = token.v.symbol->string;
1559         for (i = 0; i < 4; ++i) {
1560                 if (strcmp_underscore(format_names[i], name) == 0)
1561                         break;
1562         }
1563         if (i >= 4) {
1564                 if (warning.attribute)
1565                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1566         }
1567         next_token();
1568
1569         expect(',', end_error);
1570         add_anchor_token(')');
1571         add_anchor_token(',');
1572         parse_constant_expression();
1573         rem_anchor_token(',');
1574         rem_anchor_token(')');
1575
1576         expect(',', end_error);
1577         add_anchor_token(')');
1578         parse_constant_expression();
1579         rem_anchor_token(')');
1580         expect(')', end_error);
1581         return;
1582 end_error:
1583         attribute->u.value = true;
1584 }
1585
1586 /**
1587  * Check that a given GNU attribute has no arguments.
1588  */
1589 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1590 {
1591         if (!attribute->have_arguments)
1592                 return;
1593
1594         /* should have no arguments */
1595         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1596         eat_until_matching_token('(');
1597         /* we have already consumed '(', so we stop before ')', eat it */
1598         eat(')');
1599         attribute->invalid = true;
1600 }
1601
1602 /**
1603  * Parse one GNU attribute.
1604  *
1605  * Note that attribute names can be specified WITH or WITHOUT
1606  * double underscores, ie const or __const__.
1607  *
1608  * The following attributes are parsed without arguments
1609  *  const
1610  *  volatile
1611  *  cdecl
1612  *  stdcall
1613  *  fastcall
1614  *  deprecated
1615  *  noinline
1616  *  noreturn
1617  *  naked
1618  *  pure
1619  *  always_inline
1620  *  malloc
1621  *  weak
1622  *  constructor
1623  *  destructor
1624  *  nothrow
1625  *  transparent_union
1626  *  common
1627  *  nocommon
1628  *  packed
1629  *  shared
1630  *  notshared
1631  *  used
1632  *  unused
1633  *  no_instrument_function
1634  *  warn_unused_result
1635  *  longcall
1636  *  shortcall
1637  *  long_call
1638  *  short_call
1639  *  function_vector
1640  *  interrupt_handler
1641  *  nmi_handler
1642  *  nesting
1643  *  near
1644  *  far
1645  *  signal
1646  *  eightbit_data
1647  *  tiny_data
1648  *  saveall
1649  *  flatten
1650  *  sseregparm
1651  *  externally_visible
1652  *  return_twice
1653  *  may_alias
1654  *  ms_struct
1655  *  gcc_struct
1656  *  dllimport
1657  *  dllexport
1658  *
1659  * The following attributes are parsed with arguments
1660  *  aligned( const expression )
1661  *  alias( string literal )
1662  *  section( string literal )
1663  *  format( identifier, const expression, const expression )
1664  *  format_arg( const expression )
1665  *  tls_model( string literal )
1666  *  visibility( string literal )
1667  *  regparm( const expression )
1668  *  model( string leteral )
1669  *  trap_exit( const expression )
1670  *  sp_switch( string literal )
1671  *
1672  * The following attributes might have arguments
1673  *  weak_ref( string literal )
1674  *  non_null( const expression // ',' )
1675  *  interrupt( string literal )
1676  *  sentinel( constant expression )
1677  */
1678 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1679 {
1680         gnu_attribute_t *head      = *attributes;
1681         gnu_attribute_t *last      = *attributes;
1682         decl_modifiers_t modifiers = 0;
1683         gnu_attribute_t *attribute;
1684
1685         eat(T___attribute__);
1686         expect('(', end_error);
1687         expect('(', end_error);
1688
1689         if (token.type != ')') {
1690                 /* find the end of the list */
1691                 if (last != NULL) {
1692                         while (last->next != NULL)
1693                                 last = last->next;
1694                 }
1695
1696                 /* non-empty attribute list */
1697                 while (true) {
1698                         const char *name;
1699                         if (token.type == T_const) {
1700                                 name = "const";
1701                         } else if (token.type == T_volatile) {
1702                                 name = "volatile";
1703                         } else if (token.type == T_cdecl) {
1704                                 /* __attribute__((cdecl)), WITH ms mode */
1705                                 name = "cdecl";
1706                         } else if (token.type == T_IDENTIFIER) {
1707                                 const symbol_t *sym = token.v.symbol;
1708                                 name = sym->string;
1709                         } else {
1710                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1711                                 break;
1712                         }
1713
1714                         next_token();
1715
1716                         int i;
1717                         for (i = 0; i < GNU_AK_LAST; ++i) {
1718                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1719                                         break;
1720                         }
1721                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1722
1723                         attribute = NULL;
1724                         if (kind == GNU_AK_LAST) {
1725                                 if (warning.attribute)
1726                                         warningf(HERE, "'%s' attribute directive ignored", name);
1727
1728                                 /* skip possible arguments */
1729                                 if (token.type == '(') {
1730                                         eat_until_matching_token(')');
1731                                 }
1732                         } else {
1733                                 /* check for arguments */
1734                                 attribute = allocate_gnu_attribute(kind);
1735                                 if (token.type == '(') {
1736                                         next_token();
1737                                         if (token.type == ')') {
1738                                                 /* empty args are allowed */
1739                                                 next_token();
1740                                         } else
1741                                                 attribute->have_arguments = true;
1742                                 }
1743
1744                                 switch (kind) {
1745                                 case GNU_AK_VOLATILE:
1746                                 case GNU_AK_NAKED:
1747                                 case GNU_AK_MALLOC:
1748                                 case GNU_AK_WEAK:
1749                                 case GNU_AK_COMMON:
1750                                 case GNU_AK_NOCOMMON:
1751                                 case GNU_AK_SHARED:
1752                                 case GNU_AK_NOTSHARED:
1753                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1754                                 case GNU_AK_WARN_UNUSED_RESULT:
1755                                 case GNU_AK_LONGCALL:
1756                                 case GNU_AK_SHORTCALL:
1757                                 case GNU_AK_LONG_CALL:
1758                                 case GNU_AK_SHORT_CALL:
1759                                 case GNU_AK_FUNCTION_VECTOR:
1760                                 case GNU_AK_INTERRUPT_HANDLER:
1761                                 case GNU_AK_NMI_HANDLER:
1762                                 case GNU_AK_NESTING:
1763                                 case GNU_AK_NEAR:
1764                                 case GNU_AK_FAR:
1765                                 case GNU_AK_SIGNAL:
1766                                 case GNU_AK_EIGTHBIT_DATA:
1767                                 case GNU_AK_TINY_DATA:
1768                                 case GNU_AK_SAVEALL:
1769                                 case GNU_AK_FLATTEN:
1770                                 case GNU_AK_SSEREGPARM:
1771                                 case GNU_AK_EXTERNALLY_VISIBLE:
1772                                 case GNU_AK_RETURN_TWICE:
1773                                 case GNU_AK_MAY_ALIAS:
1774                                 case GNU_AK_MS_STRUCT:
1775                                 case GNU_AK_GCC_STRUCT:
1776                                         goto no_arg;
1777
1778                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1779                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1780                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1781                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1782                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1783                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1784                                 case GNU_AK_CONST:             modifiers |= DM_CONST;             goto no_arg;
1785                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1786                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1787                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1788                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1789                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1790                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1791                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1792                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1793                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1794                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1795                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1796
1797                                 case GNU_AK_ALIGNED:
1798                                         /* __align__ may be used without an argument */
1799                                         if (attribute->have_arguments) {
1800                                                 parse_gnu_attribute_const_arg(attribute);
1801                                         }
1802                                         break;
1803
1804                                 case GNU_AK_FORMAT_ARG:
1805                                 case GNU_AK_REGPARM:
1806                                 case GNU_AK_TRAP_EXIT:
1807                                         if (!attribute->have_arguments) {
1808                                                 /* should have arguments */
1809                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1810                                                 attribute->invalid = true;
1811                                         } else
1812                                                 parse_gnu_attribute_const_arg(attribute);
1813                                         break;
1814                                 case GNU_AK_ALIAS:
1815                                 case GNU_AK_SECTION:
1816                                 case GNU_AK_SP_SWITCH:
1817                                         if (!attribute->have_arguments) {
1818                                                 /* should have arguments */
1819                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1820                                                 attribute->invalid = true;
1821                                         } else
1822                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1823                                         break;
1824                                 case GNU_AK_FORMAT:
1825                                         if (!attribute->have_arguments) {
1826                                                 /* should have arguments */
1827                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1828                                                 attribute->invalid = true;
1829                                         } else
1830                                                 parse_gnu_attribute_format_args(attribute);
1831                                         break;
1832                                 case GNU_AK_WEAKREF:
1833                                         /* may have one string argument */
1834                                         if (attribute->have_arguments)
1835                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1836                                         break;
1837                                 case GNU_AK_NONNULL:
1838                                         if (attribute->have_arguments)
1839                                                 parse_gnu_attribute_const_arg_list(attribute);
1840                                         break;
1841                                 case GNU_AK_TLS_MODEL:
1842                                         if (!attribute->have_arguments) {
1843                                                 /* should have arguments */
1844                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1845                                         } else
1846                                                 parse_gnu_attribute_tls_model_arg(attribute);
1847                                         break;
1848                                 case GNU_AK_VISIBILITY:
1849                                         if (!attribute->have_arguments) {
1850                                                 /* should have arguments */
1851                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1852                                         } else
1853                                                 parse_gnu_attribute_visibility_arg(attribute);
1854                                         break;
1855                                 case GNU_AK_MODEL:
1856                                         if (!attribute->have_arguments) {
1857                                                 /* should have arguments */
1858                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1859                                         } else {
1860                                                 parse_gnu_attribute_model_arg(attribute);
1861                                         }
1862                                         break;
1863                                 case GNU_AK_MODE:
1864                                         if (!attribute->have_arguments) {
1865                                                 /* should have arguments */
1866                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1867                                         } else {
1868                                                 parse_gnu_attribute_mode_arg(attribute);
1869                                         }
1870                                         break;
1871                                 case GNU_AK_INTERRUPT:
1872                                         /* may have one string argument */
1873                                         if (attribute->have_arguments)
1874                                                 parse_gnu_attribute_interrupt_arg(attribute);
1875                                         break;
1876                                 case GNU_AK_SENTINEL:
1877                                         /* may have one string argument */
1878                                         if (attribute->have_arguments)
1879                                                 parse_gnu_attribute_const_arg(attribute);
1880                                         break;
1881                                 case GNU_AK_LAST:
1882                                         /* already handled */
1883                                         break;
1884
1885 no_arg:
1886                                         check_no_argument(attribute, name);
1887                                 }
1888                         }
1889                         if (attribute != NULL) {
1890                                 if (last != NULL) {
1891                                         last->next = attribute;
1892                                         last       = attribute;
1893                                 } else {
1894                                         head = last = attribute;
1895                                 }
1896                         }
1897
1898                         if (token.type != ',')
1899                                 break;
1900                         next_token();
1901                 }
1902         }
1903         expect(')', end_error);
1904         expect(')', end_error);
1905 end_error:
1906         *attributes = head;
1907
1908         return modifiers;
1909 }
1910
1911 /**
1912  * Parse GNU attributes.
1913  */
1914 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1915 {
1916         decl_modifiers_t modifiers = 0;
1917
1918         while (true) {
1919                 switch (token.type) {
1920                 case T___attribute__:
1921                         modifiers |= parse_gnu_attribute(attributes);
1922                         continue;
1923
1924                 case T_asm:
1925                         next_token();
1926                         expect('(', end_error);
1927                         if (token.type != T_STRING_LITERAL) {
1928                                 parse_error_expected("while parsing assembler attribute",
1929                                                      T_STRING_LITERAL, NULL);
1930                                 eat_until_matching_token('(');
1931                                 break;
1932                         } else {
1933                                 parse_string_literals();
1934                         }
1935                         expect(')', end_error);
1936                         continue;
1937
1938                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1939                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1940                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1941
1942                 case T___thiscall:
1943                         /* TODO record modifier */
1944                         if (warning.other)
1945                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1946                         break;
1947
1948 end_error:
1949                 default: return modifiers;
1950                 }
1951
1952                 next_token();
1953         }
1954 }
1955
1956 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1957
1958 static entity_t *determine_lhs_ent(expression_t *const expr,
1959                                    entity_t *lhs_ent)
1960 {
1961         switch (expr->kind) {
1962                 case EXPR_REFERENCE: {
1963                         entity_t *const entity = expr->reference.entity;
1964                         /* we should only find variables as lvalues... */
1965                         if (entity->base.kind != ENTITY_VARIABLE
1966                                         && entity->base.kind != ENTITY_PARAMETER)
1967                                 return NULL;
1968
1969                         return entity;
1970                 }
1971
1972                 case EXPR_ARRAY_ACCESS: {
1973                         expression_t *const ref = expr->array_access.array_ref;
1974                         entity_t     *      ent = NULL;
1975                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1976                                 ent     = determine_lhs_ent(ref, lhs_ent);
1977                                 lhs_ent = ent;
1978                         } else {
1979                                 mark_vars_read(expr->select.compound, lhs_ent);
1980                         }
1981                         mark_vars_read(expr->array_access.index, lhs_ent);
1982                         return ent;
1983                 }
1984
1985                 case EXPR_SELECT: {
1986                         if (is_type_compound(skip_typeref(expr->base.type))) {
1987                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1988                         } else {
1989                                 mark_vars_read(expr->select.compound, lhs_ent);
1990                                 return NULL;
1991                         }
1992                 }
1993
1994                 case EXPR_UNARY_DEREFERENCE: {
1995                         expression_t *const val = expr->unary.value;
1996                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1997                                 /* *&x is a NOP */
1998                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1999                         } else {
2000                                 mark_vars_read(val, NULL);
2001                                 return NULL;
2002                         }
2003                 }
2004
2005                 default:
2006                         mark_vars_read(expr, NULL);
2007                         return NULL;
2008         }
2009 }
2010
2011 #define ENT_ANY ((entity_t*)-1)
2012
2013 /**
2014  * Mark declarations, which are read.  This is used to detect variables, which
2015  * are never read.
2016  * Example:
2017  * x = x + 1;
2018  *   x is not marked as "read", because it is only read to calculate its own new
2019  *   value.
2020  *
2021  * x += y; y += x;
2022  *   x and y are not detected as "not read", because multiple variables are
2023  *   involved.
2024  */
2025 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
2026 {
2027         switch (expr->kind) {
2028                 case EXPR_REFERENCE: {
2029                         entity_t *const entity = expr->reference.entity;
2030                         if (entity->kind != ENTITY_VARIABLE
2031                                         && entity->kind != ENTITY_PARAMETER)
2032                                 return;
2033
2034                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
2035                                 if (entity->kind == ENTITY_VARIABLE) {
2036                                         entity->variable.read = true;
2037                                 } else {
2038                                         entity->parameter.read = true;
2039                                 }
2040                         }
2041                         return;
2042                 }
2043
2044                 case EXPR_CALL:
2045                         // TODO respect pure/const
2046                         mark_vars_read(expr->call.function, NULL);
2047                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
2048                                 mark_vars_read(arg->expression, NULL);
2049                         }
2050                         return;
2051
2052                 case EXPR_CONDITIONAL:
2053                         // TODO lhs_decl should depend on whether true/false have an effect
2054                         mark_vars_read(expr->conditional.condition, NULL);
2055                         if (expr->conditional.true_expression != NULL)
2056                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
2057                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
2058                         return;
2059
2060                 case EXPR_SELECT:
2061                         if (lhs_ent == ENT_ANY
2062                                         && !is_type_compound(skip_typeref(expr->base.type)))
2063                                 lhs_ent = NULL;
2064                         mark_vars_read(expr->select.compound, lhs_ent);
2065                         return;
2066
2067                 case EXPR_ARRAY_ACCESS: {
2068                         expression_t *const ref = expr->array_access.array_ref;
2069                         mark_vars_read(ref, lhs_ent);
2070                         lhs_ent = determine_lhs_ent(ref, lhs_ent);
2071                         mark_vars_read(expr->array_access.index, lhs_ent);
2072                         return;
2073                 }
2074
2075                 case EXPR_VA_ARG:
2076                         mark_vars_read(expr->va_arge.ap, lhs_ent);
2077                         return;
2078
2079                 case EXPR_UNARY_CAST:
2080                         /* Special case: Use void cast to mark a variable as "read" */
2081                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
2082                                 lhs_ent = NULL;
2083                         goto unary;
2084
2085
2086                 case EXPR_UNARY_THROW:
2087                         if (expr->unary.value == NULL)
2088                                 return;
2089                         /* FALLTHROUGH */
2090                 case EXPR_UNARY_DEREFERENCE:
2091                 case EXPR_UNARY_DELETE:
2092                 case EXPR_UNARY_DELETE_ARRAY:
2093                         if (lhs_ent == ENT_ANY)
2094                                 lhs_ent = NULL;
2095                         goto unary;
2096
2097                 case EXPR_UNARY_NEGATE:
2098                 case EXPR_UNARY_PLUS:
2099                 case EXPR_UNARY_BITWISE_NEGATE:
2100                 case EXPR_UNARY_NOT:
2101                 case EXPR_UNARY_TAKE_ADDRESS:
2102                 case EXPR_UNARY_POSTFIX_INCREMENT:
2103                 case EXPR_UNARY_POSTFIX_DECREMENT:
2104                 case EXPR_UNARY_PREFIX_INCREMENT:
2105                 case EXPR_UNARY_PREFIX_DECREMENT:
2106                 case EXPR_UNARY_CAST_IMPLICIT:
2107                 case EXPR_UNARY_ASSUME:
2108 unary:
2109                         mark_vars_read(expr->unary.value, lhs_ent);
2110                         return;
2111
2112                 case EXPR_BINARY_ADD:
2113                 case EXPR_BINARY_SUB:
2114                 case EXPR_BINARY_MUL:
2115                 case EXPR_BINARY_DIV:
2116                 case EXPR_BINARY_MOD:
2117                 case EXPR_BINARY_EQUAL:
2118                 case EXPR_BINARY_NOTEQUAL:
2119                 case EXPR_BINARY_LESS:
2120                 case EXPR_BINARY_LESSEQUAL:
2121                 case EXPR_BINARY_GREATER:
2122                 case EXPR_BINARY_GREATEREQUAL:
2123                 case EXPR_BINARY_BITWISE_AND:
2124                 case EXPR_BINARY_BITWISE_OR:
2125                 case EXPR_BINARY_BITWISE_XOR:
2126                 case EXPR_BINARY_LOGICAL_AND:
2127                 case EXPR_BINARY_LOGICAL_OR:
2128                 case EXPR_BINARY_SHIFTLEFT:
2129                 case EXPR_BINARY_SHIFTRIGHT:
2130                 case EXPR_BINARY_COMMA:
2131                 case EXPR_BINARY_ISGREATER:
2132                 case EXPR_BINARY_ISGREATEREQUAL:
2133                 case EXPR_BINARY_ISLESS:
2134                 case EXPR_BINARY_ISLESSEQUAL:
2135                 case EXPR_BINARY_ISLESSGREATER:
2136                 case EXPR_BINARY_ISUNORDERED:
2137                         mark_vars_read(expr->binary.left,  lhs_ent);
2138                         mark_vars_read(expr->binary.right, lhs_ent);
2139                         return;
2140
2141                 case EXPR_BINARY_ASSIGN:
2142                 case EXPR_BINARY_MUL_ASSIGN:
2143                 case EXPR_BINARY_DIV_ASSIGN:
2144                 case EXPR_BINARY_MOD_ASSIGN:
2145                 case EXPR_BINARY_ADD_ASSIGN:
2146                 case EXPR_BINARY_SUB_ASSIGN:
2147                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2148                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2149                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
2150                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2151                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
2152                         if (lhs_ent == ENT_ANY)
2153                                 lhs_ent = NULL;
2154                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
2155                         mark_vars_read(expr->binary.right, lhs_ent);
2156                         return;
2157                 }
2158
2159                 case EXPR_VA_START:
2160                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
2161                         return;
2162
2163                 case EXPR_UNKNOWN:
2164                 case EXPR_INVALID:
2165                 case EXPR_CONST:
2166                 case EXPR_CHARACTER_CONSTANT:
2167                 case EXPR_WIDE_CHARACTER_CONSTANT:
2168                 case EXPR_STRING_LITERAL:
2169                 case EXPR_WIDE_STRING_LITERAL:
2170                 case EXPR_COMPOUND_LITERAL: // TODO init?
2171                 case EXPR_SIZEOF:
2172                 case EXPR_CLASSIFY_TYPE:
2173                 case EXPR_ALIGNOF:
2174                 case EXPR_FUNCNAME:
2175                 case EXPR_BUILTIN_SYMBOL:
2176                 case EXPR_BUILTIN_CONSTANT_P:
2177                 case EXPR_BUILTIN_PREFETCH:
2178                 case EXPR_OFFSETOF:
2179                 case EXPR_STATEMENT: // TODO
2180                 case EXPR_LABEL_ADDRESS:
2181                 case EXPR_REFERENCE_ENUM_VALUE:
2182                         return;
2183         }
2184
2185         panic("unhandled expression");
2186 }
2187
2188 static designator_t *parse_designation(void)
2189 {
2190         designator_t *result = NULL;
2191         designator_t *last   = NULL;
2192
2193         while (true) {
2194                 designator_t *designator;
2195                 switch (token.type) {
2196                 case '[':
2197                         designator = allocate_ast_zero(sizeof(designator[0]));
2198                         designator->source_position = token.source_position;
2199                         next_token();
2200                         add_anchor_token(']');
2201                         designator->array_index = parse_constant_expression();
2202                         rem_anchor_token(']');
2203                         expect(']', end_error);
2204                         break;
2205                 case '.':
2206                         designator = allocate_ast_zero(sizeof(designator[0]));
2207                         designator->source_position = token.source_position;
2208                         next_token();
2209                         if (token.type != T_IDENTIFIER) {
2210                                 parse_error_expected("while parsing designator",
2211                                                      T_IDENTIFIER, NULL);
2212                                 return NULL;
2213                         }
2214                         designator->symbol = token.v.symbol;
2215                         next_token();
2216                         break;
2217                 default:
2218                         expect('=', end_error);
2219                         return result;
2220                 }
2221
2222                 assert(designator != NULL);
2223                 if (last != NULL) {
2224                         last->next = designator;
2225                 } else {
2226                         result = designator;
2227                 }
2228                 last = designator;
2229         }
2230 end_error:
2231         return NULL;
2232 }
2233
2234 static initializer_t *initializer_from_string(array_type_t *type,
2235                                               const string_t *const string)
2236 {
2237         /* TODO: check len vs. size of array type */
2238         (void) type;
2239
2240         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
2241         initializer->string.string = *string;
2242
2243         return initializer;
2244 }
2245
2246 static initializer_t *initializer_from_wide_string(array_type_t *const type,
2247                                                    wide_string_t *const string)
2248 {
2249         /* TODO: check len vs. size of array type */
2250         (void) type;
2251
2252         initializer_t *const initializer =
2253                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
2254         initializer->wide_string.string = *string;
2255
2256         return initializer;
2257 }
2258
2259 /**
2260  * Build an initializer from a given expression.
2261  */
2262 static initializer_t *initializer_from_expression(type_t *orig_type,
2263                                                   expression_t *expression)
2264 {
2265         /* TODO check that expression is a constant expression */
2266
2267         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
2268         type_t *type           = skip_typeref(orig_type);
2269         type_t *expr_type_orig = expression->base.type;
2270         type_t *expr_type      = skip_typeref(expr_type_orig);
2271         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
2272                 array_type_t *const array_type   = &type->array;
2273                 type_t       *const element_type = skip_typeref(array_type->element_type);
2274
2275                 if (element_type->kind == TYPE_ATOMIC) {
2276                         atomic_type_kind_t akind = element_type->atomic.akind;
2277                         switch (expression->kind) {
2278                                 case EXPR_STRING_LITERAL:
2279                                         if (akind == ATOMIC_TYPE_CHAR
2280                                                         || akind == ATOMIC_TYPE_SCHAR
2281                                                         || akind == ATOMIC_TYPE_UCHAR) {
2282                                                 return initializer_from_string(array_type,
2283                                                         &expression->string.value);
2284                                         }
2285
2286                                 case EXPR_WIDE_STRING_LITERAL: {
2287                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
2288                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
2289                                                 return initializer_from_wide_string(array_type,
2290                                                         &expression->wide_string.value);
2291                                         }
2292                                 }
2293
2294                                 default:
2295                                         break;
2296                         }
2297                 }
2298         }
2299
2300         assign_error_t error = semantic_assign(type, expression);
2301         if (error == ASSIGN_ERROR_INCOMPATIBLE)
2302                 return NULL;
2303         report_assign_error(error, type, expression, "initializer",
2304                             &expression->base.source_position);
2305
2306         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2307 #if 0
2308         if (type->kind == TYPE_BITFIELD) {
2309                 type = type->bitfield.base_type;
2310         }
2311 #endif
2312         result->value.value = create_implicit_cast(expression, type);
2313
2314         return result;
2315 }
2316
2317 /**
2318  * Checks if a given expression can be used as an constant initializer.
2319  */
2320 static bool is_initializer_constant(const expression_t *expression)
2321 {
2322         return is_constant_expression(expression)
2323                 || is_address_constant(expression);
2324 }
2325
2326 /**
2327  * Parses an scalar initializer.
2328  *
2329  * Â§ 6.7.8.11; eat {} without warning
2330  */
2331 static initializer_t *parse_scalar_initializer(type_t *type,
2332                                                bool must_be_constant)
2333 {
2334         /* there might be extra {} hierarchies */
2335         int braces = 0;
2336         if (token.type == '{') {
2337                 if (warning.other)
2338                         warningf(HERE, "extra curly braces around scalar initializer");
2339                 do {
2340                         ++braces;
2341                         next_token();
2342                 } while (token.type == '{');
2343         }
2344
2345         expression_t *expression = parse_assignment_expression();
2346         mark_vars_read(expression, NULL);
2347         if (must_be_constant && !is_initializer_constant(expression)) {
2348                 errorf(&expression->base.source_position,
2349                        "Initialisation expression '%E' is not constant",
2350                        expression);
2351         }
2352
2353         initializer_t *initializer = initializer_from_expression(type, expression);
2354
2355         if (initializer == NULL) {
2356                 errorf(&expression->base.source_position,
2357                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2358                        expression, expression->base.type, type);
2359                 /* TODO */
2360                 return NULL;
2361         }
2362
2363         bool additional_warning_displayed = false;
2364         while (braces > 0) {
2365                 if (token.type == ',') {
2366                         next_token();
2367                 }
2368                 if (token.type != '}') {
2369                         if (!additional_warning_displayed && warning.other) {
2370                                 warningf(HERE, "additional elements in scalar initializer");
2371                                 additional_warning_displayed = true;
2372                         }
2373                 }
2374                 eat_block();
2375                 braces--;
2376         }
2377
2378         return initializer;
2379 }
2380
2381 /**
2382  * An entry in the type path.
2383  */
2384 typedef struct type_path_entry_t type_path_entry_t;
2385 struct type_path_entry_t {
2386         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2387         union {
2388                 size_t         index;          /**< For array types: the current index. */
2389                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2390         } v;
2391 };
2392
2393 /**
2394  * A type path expression a position inside compound or array types.
2395  */
2396 typedef struct type_path_t type_path_t;
2397 struct type_path_t {
2398         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2399         type_t            *top_type;     /**< type of the element the path points */
2400         size_t             max_index;    /**< largest index in outermost array */
2401 };
2402
2403 /**
2404  * Prints a type path for debugging.
2405  */
2406 static __attribute__((unused)) void debug_print_type_path(
2407                 const type_path_t *path)
2408 {
2409         size_t len = ARR_LEN(path->path);
2410
2411         for (size_t i = 0; i < len; ++i) {
2412                 const type_path_entry_t *entry = & path->path[i];
2413
2414                 type_t *type = skip_typeref(entry->type);
2415                 if (is_type_compound(type)) {
2416                         /* in gcc mode structs can have no members */
2417                         if (entry->v.compound_entry == NULL) {
2418                                 assert(i == len-1);
2419                                 continue;
2420                         }
2421                         fprintf(stderr, ".%s",
2422                                 entry->v.compound_entry->base.symbol->string);
2423                 } else if (is_type_array(type)) {
2424                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
2425                 } else {
2426                         fprintf(stderr, "-INVALID-");
2427                 }
2428         }
2429         if (path->top_type != NULL) {
2430                 fprintf(stderr, "  (");
2431                 print_type(path->top_type);
2432                 fprintf(stderr, ")");
2433         }
2434 }
2435
2436 /**
2437  * Return the top type path entry, ie. in a path
2438  * (type).a.b returns the b.
2439  */
2440 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2441 {
2442         size_t len = ARR_LEN(path->path);
2443         assert(len > 0);
2444         return &path->path[len-1];
2445 }
2446
2447 /**
2448  * Enlarge the type path by an (empty) element.
2449  */
2450 static type_path_entry_t *append_to_type_path(type_path_t *path)
2451 {
2452         size_t len = ARR_LEN(path->path);
2453         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2454
2455         type_path_entry_t *result = & path->path[len];
2456         memset(result, 0, sizeof(result[0]));
2457         return result;
2458 }
2459
2460 /**
2461  * Descending into a sub-type. Enter the scope of the current top_type.
2462  */
2463 static void descend_into_subtype(type_path_t *path)
2464 {
2465         type_t *orig_top_type = path->top_type;
2466         type_t *top_type      = skip_typeref(orig_top_type);
2467
2468         type_path_entry_t *top = append_to_type_path(path);
2469         top->type              = top_type;
2470
2471         if (is_type_compound(top_type)) {
2472                 compound_t *compound  = top_type->compound.compound;
2473                 entity_t   *entry     = compound->members.entities;
2474
2475                 if (entry != NULL) {
2476                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2477                         top->v.compound_entry = &entry->declaration;
2478                         path->top_type = entry->declaration.type;
2479                 } else {
2480                         path->top_type = NULL;
2481                 }
2482         } else if (is_type_array(top_type)) {
2483                 top->v.index   = 0;
2484                 path->top_type = top_type->array.element_type;
2485         } else {
2486                 assert(!is_type_valid(top_type));
2487         }
2488 }
2489
2490 /**
2491  * Pop an entry from the given type path, ie. returning from
2492  * (type).a.b to (type).a
2493  */
2494 static void ascend_from_subtype(type_path_t *path)
2495 {
2496         type_path_entry_t *top = get_type_path_top(path);
2497
2498         path->top_type = top->type;
2499
2500         size_t len = ARR_LEN(path->path);
2501         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2502 }
2503
2504 /**
2505  * Pop entries from the given type path until the given
2506  * path level is reached.
2507  */
2508 static void ascend_to(type_path_t *path, size_t top_path_level)
2509 {
2510         size_t len = ARR_LEN(path->path);
2511
2512         while (len > top_path_level) {
2513                 ascend_from_subtype(path);
2514                 len = ARR_LEN(path->path);
2515         }
2516 }
2517
2518 static bool walk_designator(type_path_t *path, const designator_t *designator,
2519                             bool used_in_offsetof)
2520 {
2521         for (; designator != NULL; designator = designator->next) {
2522                 type_path_entry_t *top       = get_type_path_top(path);
2523                 type_t            *orig_type = top->type;
2524
2525                 type_t *type = skip_typeref(orig_type);
2526
2527                 if (designator->symbol != NULL) {
2528                         symbol_t *symbol = designator->symbol;
2529                         if (!is_type_compound(type)) {
2530                                 if (is_type_valid(type)) {
2531                                         errorf(&designator->source_position,
2532                                                "'.%Y' designator used for non-compound type '%T'",
2533                                                symbol, orig_type);
2534                                 }
2535
2536                                 top->type             = type_error_type;
2537                                 top->v.compound_entry = NULL;
2538                                 orig_type             = type_error_type;
2539                         } else {
2540                                 compound_t *compound = type->compound.compound;
2541                                 entity_t   *iter     = compound->members.entities;
2542                                 for (; iter != NULL; iter = iter->base.next) {
2543                                         if (iter->base.symbol == symbol) {
2544                                                 break;
2545                                         }
2546                                 }
2547                                 if (iter == NULL) {
2548                                         errorf(&designator->source_position,
2549                                                "'%T' has no member named '%Y'", orig_type, symbol);
2550                                         goto failed;
2551                                 }
2552                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2553                                 if (used_in_offsetof) {
2554                                         type_t *real_type = skip_typeref(iter->declaration.type);
2555                                         if (real_type->kind == TYPE_BITFIELD) {
2556                                                 errorf(&designator->source_position,
2557                                                        "offsetof designator '%Y' may not specify bitfield",
2558                                                        symbol);
2559                                                 goto failed;
2560                                         }
2561                                 }
2562
2563                                 top->type             = orig_type;
2564                                 top->v.compound_entry = &iter->declaration;
2565                                 orig_type             = iter->declaration.type;
2566                         }
2567                 } else {
2568                         expression_t *array_index = designator->array_index;
2569                         assert(designator->array_index != NULL);
2570
2571                         if (!is_type_array(type)) {
2572                                 if (is_type_valid(type)) {
2573                                         errorf(&designator->source_position,
2574                                                "[%E] designator used for non-array type '%T'",
2575                                                array_index, orig_type);
2576                                 }
2577                                 goto failed;
2578                         }
2579
2580                         long index = fold_constant(array_index);
2581                         if (!used_in_offsetof) {
2582                                 if (index < 0) {
2583                                         errorf(&designator->source_position,
2584                                                "array index [%E] must be positive", array_index);
2585                                 } else if (type->array.size_constant) {
2586                                         long array_size = type->array.size;
2587                                         if (index >= array_size) {
2588                                                 errorf(&designator->source_position,
2589                                                        "designator [%E] (%d) exceeds array size %d",
2590                                                        array_index, index, array_size);
2591                                         }
2592                                 }
2593                         }
2594
2595                         top->type    = orig_type;
2596                         top->v.index = (size_t) index;
2597                         orig_type    = type->array.element_type;
2598                 }
2599                 path->top_type = orig_type;
2600
2601                 if (designator->next != NULL) {
2602                         descend_into_subtype(path);
2603                 }
2604         }
2605         return true;
2606
2607 failed:
2608         return false;
2609 }
2610
2611 static void advance_current_object(type_path_t *path, size_t top_path_level)
2612 {
2613         type_path_entry_t *top = get_type_path_top(path);
2614
2615         type_t *type = skip_typeref(top->type);
2616         if (is_type_union(type)) {
2617                 /* in unions only the first element is initialized */
2618                 top->v.compound_entry = NULL;
2619         } else if (is_type_struct(type)) {
2620                 declaration_t *entry = top->v.compound_entry;
2621
2622                 entity_t *next_entity = entry->base.next;
2623                 if (next_entity != NULL) {
2624                         assert(is_declaration(next_entity));
2625                         entry = &next_entity->declaration;
2626                 } else {
2627                         entry = NULL;
2628                 }
2629
2630                 top->v.compound_entry = entry;
2631                 if (entry != NULL) {
2632                         path->top_type = entry->type;
2633                         return;
2634                 }
2635         } else if (is_type_array(type)) {
2636                 assert(is_type_array(type));
2637
2638                 top->v.index++;
2639
2640                 if (!type->array.size_constant || top->v.index < type->array.size) {
2641                         return;
2642                 }
2643         } else {
2644                 assert(!is_type_valid(type));
2645                 return;
2646         }
2647
2648         /* we're past the last member of the current sub-aggregate, try if we
2649          * can ascend in the type hierarchy and continue with another subobject */
2650         size_t len = ARR_LEN(path->path);
2651
2652         if (len > top_path_level) {
2653                 ascend_from_subtype(path);
2654                 advance_current_object(path, top_path_level);
2655         } else {
2656                 path->top_type = NULL;
2657         }
2658 }
2659
2660 /**
2661  * skip until token is found.
2662  */
2663 static void skip_until(int type)
2664 {
2665         while (token.type != type) {
2666                 if (token.type == T_EOF)
2667                         return;
2668                 next_token();
2669         }
2670 }
2671
2672 /**
2673  * skip any {...} blocks until a closing bracket is reached.
2674  */
2675 static void skip_initializers(void)
2676 {
2677         if (token.type == '{')
2678                 next_token();
2679
2680         while (token.type != '}') {
2681                 if (token.type == T_EOF)
2682                         return;
2683                 if (token.type == '{') {
2684                         eat_block();
2685                         continue;
2686                 }
2687                 next_token();
2688         }
2689 }
2690
2691 static initializer_t *create_empty_initializer(void)
2692 {
2693         static initializer_t empty_initializer
2694                 = { .list = { { INITIALIZER_LIST }, 0 } };
2695         return &empty_initializer;
2696 }
2697
2698 /**
2699  * Parse a part of an initialiser for a struct or union,
2700  */
2701 static initializer_t *parse_sub_initializer(type_path_t *path,
2702                 type_t *outer_type, size_t top_path_level,
2703                 parse_initializer_env_t *env)
2704 {
2705         if (token.type == '}') {
2706                 /* empty initializer */
2707                 return create_empty_initializer();
2708         }
2709
2710         type_t *orig_type = path->top_type;
2711         type_t *type      = NULL;
2712
2713         if (orig_type == NULL) {
2714                 /* We are initializing an empty compound. */
2715         } else {
2716                 type = skip_typeref(orig_type);
2717         }
2718
2719         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2720
2721         while (true) {
2722                 designator_t *designator = NULL;
2723                 if (token.type == '.' || token.type == '[') {
2724                         designator = parse_designation();
2725                         goto finish_designator;
2726                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2727                         /* GNU-style designator ("identifier: value") */
2728                         designator = allocate_ast_zero(sizeof(designator[0]));
2729                         designator->source_position = token.source_position;
2730                         designator->symbol          = token.v.symbol;
2731                         eat(T_IDENTIFIER);
2732                         eat(':');
2733
2734 finish_designator:
2735                         /* reset path to toplevel, evaluate designator from there */
2736                         ascend_to(path, top_path_level);
2737                         if (!walk_designator(path, designator, false)) {
2738                                 /* can't continue after designation error */
2739                                 goto end_error;
2740                         }
2741
2742                         initializer_t *designator_initializer
2743                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2744                         designator_initializer->designator.designator = designator;
2745                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2746
2747                         orig_type = path->top_type;
2748                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2749                 }
2750
2751                 initializer_t *sub;
2752
2753                 if (token.type == '{') {
2754                         if (type != NULL && is_type_scalar(type)) {
2755                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2756                         } else {
2757                                 eat('{');
2758                                 if (type == NULL) {
2759                                         if (env->entity != NULL) {
2760                                                 errorf(HERE,
2761                                                      "extra brace group at end of initializer for '%Y'",
2762                                                      env->entity->base.symbol);
2763                                         } else {
2764                                                 errorf(HERE, "extra brace group at end of initializer");
2765                                         }
2766                                 } else
2767                                         descend_into_subtype(path);
2768
2769                                 add_anchor_token('}');
2770                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2771                                                             env);
2772                                 rem_anchor_token('}');
2773
2774                                 if (type != NULL) {
2775                                         ascend_from_subtype(path);
2776                                         expect('}', end_error);
2777                                 } else {
2778                                         expect('}', end_error);
2779                                         goto error_parse_next;
2780                                 }
2781                         }
2782                 } else {
2783                         /* must be an expression */
2784                         expression_t *expression = parse_assignment_expression();
2785
2786                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2787                                 errorf(&expression->base.source_position,
2788                                        "Initialisation expression '%E' is not constant",
2789                                        expression);
2790                         }
2791
2792                         if (type == NULL) {
2793                                 /* we are already outside, ... */
2794                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2795                                 if (is_type_compound(outer_type_skip) &&
2796                                     !outer_type_skip->compound.compound->complete) {
2797                                         goto error_parse_next;
2798                                 }
2799                                 goto error_excess;
2800                         }
2801
2802                         /* handle { "string" } special case */
2803                         if ((expression->kind == EXPR_STRING_LITERAL
2804                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2805                                         && outer_type != NULL) {
2806                                 sub = initializer_from_expression(outer_type, expression);
2807                                 if (sub != NULL) {
2808                                         if (token.type == ',') {
2809                                                 next_token();
2810                                         }
2811                                         if (token.type != '}' && warning.other) {
2812                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2813                                                                  orig_type);
2814                                         }
2815                                         /* TODO: eat , ... */
2816                                         return sub;
2817                                 }
2818                         }
2819
2820                         /* descend into subtypes until expression matches type */
2821                         while (true) {
2822                                 orig_type = path->top_type;
2823                                 type      = skip_typeref(orig_type);
2824
2825                                 sub = initializer_from_expression(orig_type, expression);
2826                                 if (sub != NULL) {
2827                                         break;
2828                                 }
2829                                 if (!is_type_valid(type)) {
2830                                         goto end_error;
2831                                 }
2832                                 if (is_type_scalar(type)) {
2833                                         errorf(&expression->base.source_position,
2834                                                         "expression '%E' doesn't match expected type '%T'",
2835                                                         expression, orig_type);
2836                                         goto end_error;
2837                                 }
2838
2839                                 descend_into_subtype(path);
2840                         }
2841                 }
2842
2843                 /* update largest index of top array */
2844                 const type_path_entry_t *first      = &path->path[0];
2845                 type_t                  *first_type = first->type;
2846                 first_type                          = skip_typeref(first_type);
2847                 if (is_type_array(first_type)) {
2848                         size_t index = first->v.index;
2849                         if (index > path->max_index)
2850                                 path->max_index = index;
2851                 }
2852
2853                 if (type != NULL) {
2854                         /* append to initializers list */
2855                         ARR_APP1(initializer_t*, initializers, sub);
2856                 } else {
2857 error_excess:
2858                         if (warning.other) {
2859                                 if (env->entity != NULL) {
2860                                         warningf(HERE, "excess elements in struct initializer for '%Y'",
2861                                            env->entity->base.symbol);
2862                                 } else {
2863                                         warningf(HERE, "excess elements in struct initializer");
2864                                 }
2865                         }
2866                 }
2867
2868 error_parse_next:
2869                 if (token.type == '}') {
2870                         break;
2871                 }
2872                 expect(',', end_error);
2873                 if (token.type == '}') {
2874                         break;
2875                 }
2876
2877                 if (type != NULL) {
2878                         /* advance to the next declaration if we are not at the end */
2879                         advance_current_object(path, top_path_level);
2880                         orig_type = path->top_type;
2881                         if (orig_type != NULL)
2882                                 type = skip_typeref(orig_type);
2883                         else
2884                                 type = NULL;
2885                 }
2886         }
2887
2888         size_t len  = ARR_LEN(initializers);
2889         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2890         initializer_t *result = allocate_ast_zero(size);
2891         result->kind          = INITIALIZER_LIST;
2892         result->list.len      = len;
2893         memcpy(&result->list.initializers, initializers,
2894                len * sizeof(initializers[0]));
2895
2896         DEL_ARR_F(initializers);
2897         ascend_to(path, top_path_level+1);
2898
2899         return result;
2900
2901 end_error:
2902         skip_initializers();
2903         DEL_ARR_F(initializers);
2904         ascend_to(path, top_path_level+1);
2905         return NULL;
2906 }
2907
2908 /**
2909  * Parses an initializer. Parsers either a compound literal
2910  * (env->declaration == NULL) or an initializer of a declaration.
2911  */
2912 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2913 {
2914         type_t        *type   = skip_typeref(env->type);
2915         initializer_t *result = NULL;
2916         size_t         max_index;
2917
2918         if (is_type_scalar(type)) {
2919                 result = parse_scalar_initializer(type, env->must_be_constant);
2920         } else if (token.type == '{') {
2921                 eat('{');
2922
2923                 type_path_t path;
2924                 memset(&path, 0, sizeof(path));
2925                 path.top_type = env->type;
2926                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2927
2928                 descend_into_subtype(&path);
2929
2930                 add_anchor_token('}');
2931                 result = parse_sub_initializer(&path, env->type, 1, env);
2932                 rem_anchor_token('}');
2933
2934                 max_index = path.max_index;
2935                 DEL_ARR_F(path.path);
2936
2937                 expect('}', end_error);
2938         } else {
2939                 /* parse_scalar_initializer() also works in this case: we simply
2940                  * have an expression without {} around it */
2941                 result = parse_scalar_initializer(type, env->must_be_constant);
2942         }
2943
2944         /* Â§ 6.7.8 (22) array initializers for arrays with unknown size determine
2945          * the array type size */
2946         if (is_type_array(type) && type->array.size_expression == NULL
2947                         && result != NULL) {
2948                 size_t size;
2949                 switch (result->kind) {
2950                 case INITIALIZER_LIST:
2951                         size = max_index + 1;
2952                         break;
2953
2954                 case INITIALIZER_STRING:
2955                         size = result->string.string.size;
2956                         break;
2957
2958                 case INITIALIZER_WIDE_STRING:
2959                         size = result->wide_string.string.size;
2960                         break;
2961
2962                 case INITIALIZER_DESIGNATOR:
2963                 case INITIALIZER_VALUE:
2964                         /* can happen for parse errors */
2965                         size = 0;
2966                         break;
2967
2968                 default:
2969                         internal_errorf(HERE, "invalid initializer type");
2970                 }
2971
2972                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2973                 cnst->base.type          = type_size_t;
2974                 cnst->conste.v.int_value = size;
2975
2976                 type_t *new_type = duplicate_type(type);
2977
2978                 new_type->array.size_expression   = cnst;
2979                 new_type->array.size_constant     = true;
2980                 new_type->array.has_implicit_size = true;
2981                 new_type->array.size              = size;
2982                 env->type = new_type;
2983         }
2984
2985         return result;
2986 end_error:
2987         return NULL;
2988 }
2989
2990 static void append_entity(scope_t *scope, entity_t *entity)
2991 {
2992         if (scope->last_entity != NULL) {
2993                 scope->last_entity->base.next = entity;
2994         } else {
2995                 scope->entities = entity;
2996         }
2997         scope->last_entity = entity;
2998 }
2999
3000
3001 static compound_t *parse_compound_type_specifier(bool is_struct)
3002 {
3003         gnu_attribute_t  *attributes = NULL;
3004         decl_modifiers_t  modifiers  = 0;
3005         if (is_struct) {
3006                 eat(T_struct);
3007         } else {
3008                 eat(T_union);
3009         }
3010
3011         symbol_t   *symbol   = NULL;
3012         compound_t *compound = NULL;
3013
3014         if (token.type == T___attribute__) {
3015                 modifiers |= parse_attributes(&attributes);
3016         }
3017
3018         if (token.type == T_IDENTIFIER) {
3019                 symbol = token.v.symbol;
3020                 next_token();
3021
3022                 namespace_tag_t const namespc =
3023                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
3024                 entity_t *entity = get_entity(symbol, namespc);
3025                 if (entity != NULL) {
3026                         assert(entity->kind == (is_struct ? ENTITY_STRUCT : ENTITY_UNION));
3027                         compound = &entity->compound;
3028                         if (compound->base.parent_scope != current_scope &&
3029                             (token.type == '{' || token.type == ';')) {
3030                                 /* we're in an inner scope and have a definition. Override
3031                                    existing definition in outer scope */
3032                                 compound = NULL;
3033                         } else if (compound->complete && token.type == '{') {
3034                                 assert(symbol != NULL);
3035                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
3036                                        is_struct ? "struct" : "union", symbol,
3037                                        &compound->base.source_position);
3038                                 /* clear members in the hope to avoid further errors */
3039                                 compound->members.entities = NULL;
3040                         }
3041                 }
3042         } else if (token.type != '{') {
3043                 if (is_struct) {
3044                         parse_error_expected("while parsing struct type specifier",
3045                                              T_IDENTIFIER, '{', NULL);
3046                 } else {
3047                         parse_error_expected("while parsing union type specifier",
3048                                              T_IDENTIFIER, '{', NULL);
3049                 }
3050
3051                 return NULL;
3052         }
3053
3054         if (compound == NULL) {
3055                 entity_kind_t  kind   = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
3056                 entity_t      *entity = allocate_entity_zero(kind);
3057                 compound              = &entity->compound;
3058
3059                 compound->base.namespc =
3060                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
3061                 compound->base.source_position = token.source_position;
3062                 compound->base.symbol          = symbol;
3063                 compound->base.parent_scope    = current_scope;
3064                 if (symbol != NULL) {
3065                         environment_push(entity);
3066                 }
3067                 append_entity(current_scope, entity);
3068         }
3069
3070         if (token.type == '{') {
3071                 parse_compound_type_entries(compound);
3072                 modifiers |= parse_attributes(&attributes);
3073
3074                 if (symbol == NULL) {
3075                         assert(anonymous_entity == NULL);
3076                         anonymous_entity = (entity_t*)compound;
3077                 }
3078         }
3079
3080         compound->modifiers |= modifiers;
3081         return compound;
3082 }
3083
3084 static void parse_enum_entries(type_t *const enum_type)
3085 {
3086         eat('{');
3087
3088         if (token.type == '}') {
3089                 errorf(HERE, "empty enum not allowed");
3090                 next_token();
3091                 return;
3092         }
3093
3094         add_anchor_token('}');
3095         do {
3096                 if (token.type != T_IDENTIFIER) {
3097                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
3098                         eat_block();
3099                         rem_anchor_token('}');
3100                         return;
3101                 }
3102
3103                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
3104                 entity->enum_value.enum_type = enum_type;
3105                 entity->base.symbol          = token.v.symbol;
3106                 entity->base.source_position = token.source_position;
3107                 next_token();
3108
3109                 if (token.type == '=') {
3110                         next_token();
3111                         expression_t *value = parse_constant_expression();
3112
3113                         value = create_implicit_cast(value, enum_type);
3114                         entity->enum_value.value = value;
3115
3116                         /* TODO semantic */
3117                 }
3118
3119                 record_entity(entity, false);
3120
3121                 if (token.type != ',')
3122                         break;
3123                 next_token();
3124         } while (token.type != '}');
3125         rem_anchor_token('}');
3126
3127         expect('}', end_error);
3128
3129 end_error:
3130         ;
3131 }
3132
3133 static type_t *parse_enum_specifier(void)
3134 {
3135         gnu_attribute_t *attributes = NULL;
3136         entity_t        *entity;
3137         symbol_t        *symbol;
3138
3139         eat(T_enum);
3140         if (token.type == T_IDENTIFIER) {
3141                 symbol = token.v.symbol;
3142                 next_token();
3143
3144                 entity = get_entity(symbol, NAMESPACE_ENUM);
3145                 assert(entity == NULL || entity->kind == ENTITY_ENUM);
3146         } else if (token.type != '{') {
3147                 parse_error_expected("while parsing enum type specifier",
3148                                      T_IDENTIFIER, '{', NULL);
3149                 return NULL;
3150         } else {
3151                 entity  = NULL;
3152                 symbol  = NULL;
3153         }
3154
3155         if (entity == NULL) {
3156                 entity                       = allocate_entity_zero(ENTITY_ENUM);
3157                 entity->base.namespc         = NAMESPACE_ENUM;
3158                 entity->base.source_position = token.source_position;
3159                 entity->base.symbol          = symbol;
3160                 entity->base.parent_scope    = current_scope;
3161         }
3162
3163         type_t *const type = allocate_type_zero(TYPE_ENUM);
3164         type->enumt.enume  = &entity->enume;
3165
3166         if (token.type == '{') {
3167                 if (entity->enume.complete) {
3168                         errorf(HERE, "multiple definitions of 'enum %Y' (previous definition %P)",
3169                                symbol, &entity->base.source_position);
3170                 }
3171                 if (symbol != NULL) {
3172                         environment_push(entity);
3173                 }
3174                 append_entity(current_scope, entity);
3175                 entity->enume.complete = true;
3176
3177                 parse_enum_entries(type);
3178                 parse_attributes(&attributes);
3179
3180                 if (symbol == NULL) {
3181                         assert(anonymous_entity == NULL);
3182                         anonymous_entity = entity;
3183                 }
3184         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
3185                 errorf(HERE, "'enum %Y' used before definition (incomplete enums are a GNU extension)",
3186                        symbol);
3187         }
3188
3189         return type;
3190 }
3191
3192 /**
3193  * if a symbol is a typedef to another type, return true
3194  */
3195 static bool is_typedef_symbol(symbol_t *symbol)
3196 {
3197         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
3198         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
3199 }
3200
3201 static type_t *parse_typeof(void)
3202 {
3203         eat(T___typeof__);
3204
3205         type_t *type;
3206
3207         expect('(', end_error);
3208         add_anchor_token(')');
3209
3210         expression_t *expression  = NULL;
3211
3212         bool old_type_prop     = in_type_prop;
3213         bool old_gcc_extension = in_gcc_extension;
3214         in_type_prop           = true;
3215
3216         while (token.type == T___extension__) {
3217                 /* This can be a prefix to a typename or an expression. */
3218                 next_token();
3219                 in_gcc_extension = true;
3220         }
3221         switch (token.type) {
3222         case T_IDENTIFIER:
3223                 if (is_typedef_symbol(token.v.symbol)) {
3224                         type = parse_typename();
3225                 } else {
3226                         expression = parse_expression();
3227                         type       = expression->base.type;
3228                 }
3229                 break;
3230
3231         TYPENAME_START
3232                 type = parse_typename();
3233                 break;
3234
3235         default:
3236                 expression = parse_expression();
3237                 type       = expression->base.type;
3238                 break;
3239         }
3240         in_type_prop     = old_type_prop;
3241         in_gcc_extension = old_gcc_extension;
3242
3243         rem_anchor_token(')');
3244         expect(')', end_error);
3245
3246         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
3247         typeof_type->typeoft.expression  = expression;
3248         typeof_type->typeoft.typeof_type = type;
3249
3250         return typeof_type;
3251 end_error:
3252         return NULL;
3253 }
3254
3255 typedef enum specifiers_t {
3256         SPECIFIER_SIGNED    = 1 << 0,
3257         SPECIFIER_UNSIGNED  = 1 << 1,
3258         SPECIFIER_LONG      = 1 << 2,
3259         SPECIFIER_INT       = 1 << 3,
3260         SPECIFIER_DOUBLE    = 1 << 4,
3261         SPECIFIER_CHAR      = 1 << 5,
3262         SPECIFIER_SHORT     = 1 << 6,
3263         SPECIFIER_LONG_LONG = 1 << 7,
3264         SPECIFIER_FLOAT     = 1 << 8,
3265         SPECIFIER_BOOL      = 1 << 9,
3266         SPECIFIER_VOID      = 1 << 10,
3267         SPECIFIER_INT8      = 1 << 11,
3268         SPECIFIER_INT16     = 1 << 12,
3269         SPECIFIER_INT32     = 1 << 13,
3270         SPECIFIER_INT64     = 1 << 14,
3271         SPECIFIER_INT128    = 1 << 15,
3272         SPECIFIER_COMPLEX   = 1 << 16,
3273         SPECIFIER_IMAGINARY = 1 << 17,
3274 } specifiers_t;
3275
3276 static type_t *create_builtin_type(symbol_t *const symbol,
3277                                    type_t *const real_type)
3278 {
3279         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
3280         type->builtin.symbol    = symbol;
3281         type->builtin.real_type = real_type;
3282
3283         type_t *result = typehash_insert(type);
3284         if (type != result) {
3285                 free_type(type);
3286         }
3287
3288         return result;
3289 }
3290
3291 static type_t *get_typedef_type(symbol_t *symbol)
3292 {
3293         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3294         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
3295                 return NULL;
3296
3297         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
3298         type->typedeft.typedefe = &entity->typedefe;
3299
3300         return type;
3301 }
3302
3303 /**
3304  * check for the allowed MS alignment values.
3305  */
3306 static bool check_alignment_value(long long intvalue)
3307 {
3308         if (intvalue < 1 || intvalue > 8192) {
3309                 errorf(HERE, "illegal alignment value");
3310                 return false;
3311         }
3312         unsigned v = (unsigned)intvalue;
3313         for (unsigned i = 1; i <= 8192; i += i) {
3314                 if (i == v)
3315                         return true;
3316         }
3317         errorf(HERE, "alignment must be power of two");
3318         return false;
3319 }
3320
3321 #define DET_MOD(name, tag) do { \
3322         if (*modifiers & tag && warning.other) warningf(HERE, #name " used more than once"); \
3323         *modifiers |= tag; \
3324 } while (0)
3325
3326 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
3327 {
3328         decl_modifiers_t *modifiers = &specifiers->modifiers;
3329
3330         while (true) {
3331                 if (token.type == T_restrict) {
3332                         next_token();
3333                         DET_MOD(restrict, DM_RESTRICT);
3334                         goto end_loop;
3335                 } else if (token.type != T_IDENTIFIER)
3336                         break;
3337                 symbol_t *symbol = token.v.symbol;
3338                 if (symbol == sym_align) {
3339                         next_token();
3340                         expect('(', end_error);
3341                         if (token.type != T_INTEGER)
3342                                 goto end_error;
3343                         if (check_alignment_value(token.v.intvalue)) {
3344                                 if (specifiers->alignment != 0 && warning.other)
3345                                         warningf(HERE, "align used more than once");
3346                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3347                         }
3348                         next_token();
3349                         expect(')', end_error);
3350                 } else if (symbol == sym_allocate) {
3351                         next_token();
3352                         expect('(', end_error);
3353                         if (token.type != T_IDENTIFIER)
3354                                 goto end_error;
3355                         (void)token.v.symbol;
3356                         expect(')', end_error);
3357                 } else if (symbol == sym_dllimport) {
3358                         next_token();
3359                         DET_MOD(dllimport, DM_DLLIMPORT);
3360                 } else if (symbol == sym_dllexport) {
3361                         next_token();
3362                         DET_MOD(dllexport, DM_DLLEXPORT);
3363                 } else if (symbol == sym_thread) {
3364                         next_token();
3365                         DET_MOD(thread, DM_THREAD);
3366                 } else if (symbol == sym_naked) {
3367                         next_token();
3368                         DET_MOD(naked, DM_NAKED);
3369                 } else if (symbol == sym_noinline) {
3370                         next_token();
3371                         DET_MOD(noinline, DM_NOINLINE);
3372                 } else if (symbol == sym_noreturn) {
3373                         next_token();
3374                         DET_MOD(noreturn, DM_NORETURN);
3375                 } else if (symbol == sym_nothrow) {
3376                         next_token();
3377                         DET_MOD(nothrow, DM_NOTHROW);
3378                 } else if (symbol == sym_novtable) {
3379                         next_token();
3380                         DET_MOD(novtable, DM_NOVTABLE);
3381                 } else if (symbol == sym_property) {
3382                         next_token();
3383                         expect('(', end_error);
3384                         for (;;) {
3385                                 bool is_get = false;
3386                                 if (token.type != T_IDENTIFIER)
3387                                         goto end_error;
3388                                 if (token.v.symbol == sym_get) {
3389                                         is_get = true;
3390                                 } else if (token.v.symbol == sym_put) {
3391                                 } else {
3392                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3393                                         goto end_error;
3394                                 }
3395                                 next_token();
3396                                 expect('=', end_error);
3397                                 if (token.type != T_IDENTIFIER)
3398                                         goto end_error;
3399                                 if (is_get) {
3400                                         if (specifiers->get_property_sym != NULL) {
3401                                                 errorf(HERE, "get property name already specified");
3402                                         } else {
3403                                                 specifiers->get_property_sym = token.v.symbol;
3404                                         }
3405                                 } else {
3406                                         if (specifiers->put_property_sym != NULL) {
3407                                                 errorf(HERE, "put property name already specified");
3408                                         } else {
3409                                                 specifiers->put_property_sym = token.v.symbol;
3410                                         }
3411                                 }
3412                                 next_token();
3413                                 if (token.type == ',') {
3414                                         next_token();
3415                                         continue;
3416                                 }
3417                                 break;
3418                         }
3419                         expect(')', end_error);
3420                 } else if (symbol == sym_selectany) {
3421                         next_token();
3422                         DET_MOD(selectany, DM_SELECTANY);
3423                 } else if (symbol == sym_uuid) {
3424                         next_token();
3425                         expect('(', end_error);
3426                         if (token.type != T_STRING_LITERAL)
3427                                 goto end_error;
3428                         next_token();
3429                         expect(')', end_error);
3430                 } else if (symbol == sym_deprecated) {
3431                         next_token();
3432                         if (specifiers->deprecated != 0 && warning.other)
3433                                 warningf(HERE, "deprecated used more than once");
3434                         specifiers->deprecated = true;
3435                         if (token.type == '(') {
3436                                 next_token();
3437                                 if (token.type == T_STRING_LITERAL) {
3438                                         specifiers->deprecated_string = token.v.string.begin;
3439                                         next_token();
3440                                 } else {
3441                                         errorf(HERE, "string literal expected");
3442                                 }
3443                                 expect(')', end_error);
3444                         }
3445                 } else if (symbol == sym_noalias) {
3446                         next_token();
3447                         DET_MOD(noalias, DM_NOALIAS);
3448                 } else {
3449                         if (warning.other)
3450                                 warningf(HERE, "Unknown modifier '%Y' ignored", token.v.symbol);
3451                         next_token();
3452                         if (token.type == '(')
3453                                 skip_until(')');
3454                 }
3455 end_loop:
3456                 if (token.type == ',')
3457                         next_token();
3458         }
3459 end_error:
3460         return;
3461 }
3462
3463 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
3464 {
3465         entity_t *entity             = allocate_entity_zero(kind);
3466         entity->base.source_position = *HERE;
3467         entity->base.symbol          = symbol;
3468         if (is_declaration(entity)) {
3469                 entity->declaration.type     = type_error_type;
3470                 entity->declaration.implicit = true;
3471         } else if (kind == ENTITY_TYPEDEF) {
3472                 entity->typedefe.type    = type_error_type;
3473                 entity->typedefe.builtin = true;
3474         }
3475         record_entity(entity, false);
3476         return entity;
3477 }
3478
3479 static void parse_microsoft_based(based_spec_t *based_spec)
3480 {
3481         if (token.type != T_IDENTIFIER) {
3482                 parse_error_expected("while parsing __based", T_IDENTIFIER, NULL);
3483                 return;
3484         }
3485         symbol_t *symbol = token.v.symbol;
3486         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3487
3488         if (entity == NULL || entity->base.kind != ENTITY_VARIABLE) {
3489                 errorf(HERE, "'%Y' is not a variable name.", symbol);
3490                 entity = create_error_entity(symbol, ENTITY_VARIABLE);
3491         } else {
3492                 variable_t *variable = &entity->variable;
3493
3494                 if (based_spec->base_variable != NULL) {
3495                         errorf(HERE, "__based type qualifier specified more than once");
3496                 }
3497                 based_spec->source_position = token.source_position;
3498                 based_spec->base_variable   = variable;
3499
3500                 type_t *const type = variable->base.type;
3501
3502                 if (is_type_valid(type)) {
3503                         if (! is_type_pointer(skip_typeref(type))) {
3504                                 errorf(HERE, "variable in __based modifier must have pointer type instead of '%T'", type);
3505                         }
3506                         if (variable->base.base.parent_scope != file_scope) {
3507                                 errorf(HERE, "a nonstatic local variable may not be used in a __based specification");
3508                         }
3509                 }
3510         }
3511         next_token();
3512 }
3513
3514 /**
3515  * Finish the construction of a struct type by calculating
3516  * its size, offsets, alignment.
3517  */
3518 static void finish_struct_type(compound_type_t *type)
3519 {
3520         assert(type->compound != NULL);
3521
3522         compound_t *compound = type->compound;
3523         if (!compound->complete)
3524                 return;
3525
3526         il_size_t      size           = 0;
3527         il_size_t      offset;
3528         il_alignment_t alignment      = 1;
3529         bool           need_pad       = false;
3530
3531         entity_t *entry = compound->members.entities;
3532         for (; entry != NULL; entry = entry->base.next) {
3533                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3534                         continue;
3535
3536                 type_t *m_type = skip_typeref(entry->declaration.type);
3537                 if (! is_type_valid(m_type)) {
3538                         /* simply ignore errors here */
3539                         continue;
3540                 }
3541                 il_alignment_t m_alignment = m_type->base.alignment;
3542                 if (m_alignment > alignment)
3543                         alignment = m_alignment;
3544
3545                 offset = (size + m_alignment - 1) & -m_alignment;
3546
3547                 if (offset > size)
3548                         need_pad = true;
3549                 entry->compound_member.offset = offset;
3550                 size = offset + m_type->base.size;
3551         }
3552         if (type->base.alignment != 0) {
3553                 alignment = type->base.alignment;
3554         }
3555
3556         offset = (size + alignment - 1) & -alignment;
3557         if (offset > size)
3558                 need_pad = true;
3559
3560         if (need_pad) {
3561                 if (warning.padded) {
3562                         warningf(&compound->base.source_position, "'%T' needs padding", type);
3563                 }
3564         } else {
3565                 if (compound->modifiers & DM_PACKED && warning.packed) {
3566                         warningf(&compound->base.source_position,
3567                                         "superfluous packed attribute on '%T'", type);
3568                 }
3569         }
3570
3571         type->base.size      = offset;
3572         type->base.alignment = alignment;
3573 }
3574
3575 /**
3576  * Finish the construction of an union type by calculating
3577  * its size and alignment.
3578  */
3579 static void finish_union_type(compound_type_t *type)
3580 {
3581         assert(type->compound != NULL);
3582
3583         compound_t *compound = type->compound;
3584         if (! compound->complete)
3585                 return;
3586
3587         il_size_t      size      = 0;
3588         il_alignment_t alignment = 1;
3589
3590         entity_t *entry = compound->members.entities;
3591         for (; entry != NULL; entry = entry->base.next) {
3592                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3593                         continue;
3594
3595                 type_t *m_type = skip_typeref(entry->declaration.type);
3596                 if (! is_type_valid(m_type))
3597                         continue;
3598
3599                 entry->compound_member.offset = 0;
3600                 if (m_type->base.size > size)
3601                         size = m_type->base.size;
3602                 if (m_type->base.alignment > alignment)
3603                         alignment = m_type->base.alignment;
3604         }
3605         if (type->base.alignment != 0) {
3606                 alignment = type->base.alignment;
3607         }
3608         size = (size + alignment - 1) & -alignment;
3609         type->base.size      = size;
3610         type->base.alignment = alignment;
3611 }
3612
3613 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3614 {
3615         type_t            *type              = NULL;
3616         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3617         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3618         unsigned           type_specifiers   = 0;
3619         bool               newtype           = false;
3620         bool               saw_error         = false;
3621         bool               old_gcc_extension = in_gcc_extension;
3622
3623         specifiers->source_position = token.source_position;
3624
3625         while (true) {
3626                 specifiers->modifiers
3627                         |= parse_attributes(&specifiers->gnu_attributes);
3628                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3629                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3630
3631                 switch (token.type) {
3632                 /* storage class */
3633 #define MATCH_STORAGE_CLASS(token, class)                                  \
3634                 case token:                                                        \
3635                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
3636                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3637                         }                                                              \
3638                         specifiers->storage_class = class;                             \
3639                         if (specifiers->thread_local)                                  \
3640                                 goto check_thread_storage_class;                           \
3641                         next_token();                                                  \
3642                         break;
3643
3644                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3645                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3646                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3647                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3648                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3649
3650                 case T__declspec:
3651                         next_token();
3652                         expect('(', end_error);
3653                         add_anchor_token(')');
3654                         parse_microsoft_extended_decl_modifier(specifiers);
3655                         rem_anchor_token(')');
3656                         expect(')', end_error);
3657                         break;
3658
3659                 case T___thread:
3660                         if (specifiers->thread_local) {
3661                                 errorf(HERE, "duplicate '__thread'");
3662                         } else {
3663                                 specifiers->thread_local = true;
3664 check_thread_storage_class:
3665                                 switch (specifiers->storage_class) {
3666                                         case STORAGE_CLASS_EXTERN:
3667                                         case STORAGE_CLASS_NONE:
3668                                         case STORAGE_CLASS_STATIC:
3669                                                 break;
3670
3671                                                 char const* wrong;
3672                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_stoarge_class;
3673                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_stoarge_class;
3674                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_stoarge_class;
3675 wrong_thread_stoarge_class:
3676                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
3677                                                 break;
3678                                 }
3679                         }
3680                         next_token();
3681                         break;
3682
3683                 /* type qualifiers */
3684 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3685                 case token:                                                     \
3686                         qualifiers |= qualifier;                                    \
3687                         next_token();                                               \
3688                         break
3689
3690                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3691                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3692                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3693                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3694                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3695                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3696                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3697                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3698
3699                 case T___extension__:
3700                         next_token();
3701                         in_gcc_extension = true;
3702                         break;
3703
3704                 /* type specifiers */
3705 #define MATCH_SPECIFIER(token, specifier, name)                         \
3706                 case token:                                                     \
3707                         if (type_specifiers & specifier) {                           \
3708                                 errorf(HERE, "multiple " name " type specifiers given"); \
3709                         } else {                                                    \
3710                                 type_specifiers |= specifier;                           \
3711                         }                                                           \
3712                         next_token();                                               \
3713                         break
3714
3715                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3716                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3717                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3718                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3719                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3720                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3721                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3722                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3723                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
3724                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3725                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3726                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3727                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3728                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3729                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3730                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3731                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3732
3733                 case T__forceinline:
3734                         /* only in microsoft mode */
3735                         specifiers->modifiers |= DM_FORCEINLINE;
3736                         /* FALLTHROUGH */
3737
3738                 case T_inline:
3739                         next_token();
3740                         specifiers->is_inline = true;
3741                         break;
3742
3743                 case T_long:
3744                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3745                                 errorf(HERE, "multiple type specifiers given");
3746                         } else if (type_specifiers & SPECIFIER_LONG) {
3747                                 type_specifiers |= SPECIFIER_LONG_LONG;
3748                         } else {
3749                                 type_specifiers |= SPECIFIER_LONG;
3750                         }
3751                         next_token();
3752                         break;
3753
3754                 case T_struct: {
3755                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
3756
3757                         type->compound.compound = parse_compound_type_specifier(true);
3758                         finish_struct_type(&type->compound);
3759                         break;
3760                 }
3761                 case T_union: {
3762                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
3763                         type->compound.compound = parse_compound_type_specifier(false);
3764                         if (type->compound.compound->modifiers & DM_TRANSPARENT_UNION)
3765                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3766                         finish_union_type(&type->compound);
3767                         break;
3768                 }
3769                 case T_enum:
3770                         type = parse_enum_specifier();
3771                         break;
3772                 case T___typeof__:
3773                         type = parse_typeof();
3774                         break;
3775                 case T___builtin_va_list:
3776                         type = duplicate_type(type_valist);
3777                         next_token();
3778                         break;
3779
3780                 case T_IDENTIFIER: {
3781                         /* only parse identifier if we haven't found a type yet */
3782                         if (type != NULL || type_specifiers != 0) {
3783                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3784                                  * declaration, so it doesn't generate errors about expecting '(' or
3785                                  * '{' later on. */
3786                                 switch (look_ahead(1)->type) {
3787                                         STORAGE_CLASSES
3788                                         TYPE_SPECIFIERS
3789                                         case T_const:
3790                                         case T_restrict:
3791                                         case T_volatile:
3792                                         case T_inline:
3793                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3794                                         case T_IDENTIFIER:
3795                                         case '&':
3796                                         case '*':
3797                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3798                                                 next_token();
3799                                                 continue;
3800
3801                                         default:
3802                                                 goto finish_specifiers;
3803                                 }
3804                         }
3805
3806                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3807                         if (typedef_type == NULL) {
3808                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3809                                  * declaration, so it doesn't generate 'implicit int' followed by more
3810                                  * errors later on. */
3811                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3812                                 switch (la1_type) {
3813                                         DECLARATION_START
3814                                         case T_IDENTIFIER:
3815                                         case '&':
3816                                         case '*': {
3817                                                 errorf(HERE, "%K does not name a type", &token);
3818
3819                                                 entity_t *entity =
3820                                                         create_error_entity(token.v.symbol, ENTITY_TYPEDEF);
3821
3822                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3823                                                 type->typedeft.typedefe = &entity->typedefe;
3824
3825                                                 next_token();
3826                                                 saw_error = true;
3827                                                 if (la1_type == '&' || la1_type == '*')
3828                                                         goto finish_specifiers;
3829                                                 continue;
3830                                         }
3831
3832                                         default:
3833                                                 goto finish_specifiers;
3834                                 }
3835                         }
3836
3837                         next_token();
3838                         type = typedef_type;
3839                         break;
3840                 }
3841
3842                 /* function specifier */
3843                 default:
3844                         goto finish_specifiers;
3845                 }
3846         }
3847
3848 finish_specifiers:
3849         in_gcc_extension = old_gcc_extension;
3850
3851         if (type == NULL || (saw_error && type_specifiers != 0)) {
3852                 atomic_type_kind_t atomic_type;
3853
3854                 /* match valid basic types */
3855                 switch (type_specifiers) {
3856                 case SPECIFIER_VOID:
3857                         atomic_type = ATOMIC_TYPE_VOID;
3858                         break;
3859                 case SPECIFIER_CHAR:
3860                         atomic_type = ATOMIC_TYPE_CHAR;
3861                         break;
3862                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3863                         atomic_type = ATOMIC_TYPE_SCHAR;
3864                         break;
3865                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3866                         atomic_type = ATOMIC_TYPE_UCHAR;
3867                         break;
3868                 case SPECIFIER_SHORT:
3869                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3870                 case SPECIFIER_SHORT | SPECIFIER_INT:
3871                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3872                         atomic_type = ATOMIC_TYPE_SHORT;
3873                         break;
3874                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3875                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3876                         atomic_type = ATOMIC_TYPE_USHORT;
3877                         break;
3878                 case SPECIFIER_INT:
3879                 case SPECIFIER_SIGNED:
3880                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3881                         atomic_type = ATOMIC_TYPE_INT;
3882                         break;
3883                 case SPECIFIER_UNSIGNED:
3884                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3885                         atomic_type = ATOMIC_TYPE_UINT;
3886                         break;
3887                 case SPECIFIER_LONG:
3888                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3889                 case SPECIFIER_LONG | SPECIFIER_INT:
3890                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3891                         atomic_type = ATOMIC_TYPE_LONG;
3892                         break;
3893                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3894                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3895                         atomic_type = ATOMIC_TYPE_ULONG;
3896                         break;
3897
3898                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3899                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3900                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3901                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3902                         | SPECIFIER_INT:
3903                         atomic_type = ATOMIC_TYPE_LONGLONG;
3904                         goto warn_about_long_long;
3905
3906                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3907                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3908                         | SPECIFIER_INT:
3909                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3910 warn_about_long_long:
3911                         if (warning.long_long) {
3912                                 warningf(&specifiers->source_position,
3913                                          "ISO C90 does not support 'long long'");
3914                         }
3915                         break;
3916
3917                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3918                         atomic_type = unsigned_int8_type_kind;
3919                         break;
3920
3921                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3922                         atomic_type = unsigned_int16_type_kind;
3923                         break;
3924
3925                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3926                         atomic_type = unsigned_int32_type_kind;
3927                         break;
3928
3929                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3930                         atomic_type = unsigned_int64_type_kind;
3931                         break;
3932
3933                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3934                         atomic_type = unsigned_int128_type_kind;
3935                         break;
3936
3937                 case SPECIFIER_INT8:
3938                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3939                         atomic_type = int8_type_kind;
3940                         break;
3941
3942                 case SPECIFIER_INT16:
3943                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3944                         atomic_type = int16_type_kind;
3945                         break;
3946
3947                 case SPECIFIER_INT32:
3948                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3949                         atomic_type = int32_type_kind;
3950                         break;
3951
3952                 case SPECIFIER_INT64:
3953                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3954                         atomic_type = int64_type_kind;
3955                         break;
3956
3957                 case SPECIFIER_INT128:
3958                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3959                         atomic_type = int128_type_kind;
3960                         break;
3961
3962                 case SPECIFIER_FLOAT:
3963                         atomic_type = ATOMIC_TYPE_FLOAT;
3964                         break;
3965                 case SPECIFIER_DOUBLE:
3966                         atomic_type = ATOMIC_TYPE_DOUBLE;
3967                         break;
3968                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3969                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3970                         break;
3971                 case SPECIFIER_BOOL:
3972                         atomic_type = ATOMIC_TYPE_BOOL;
3973                         break;
3974                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3975                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3976                         atomic_type = ATOMIC_TYPE_FLOAT;
3977                         break;
3978                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3979                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3980                         atomic_type = ATOMIC_TYPE_DOUBLE;
3981                         break;
3982                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3983                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3984                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3985                         break;
3986                 default:
3987                         /* invalid specifier combination, give an error message */
3988                         if (type_specifiers == 0) {
3989                                 if (saw_error)
3990                                         goto end_error;
3991
3992                                 /* ISO/IEC 14882:1998(E) Â§C.1.5:4 */
3993                                 if (!(c_mode & _CXX) && !strict_mode) {
3994                                         if (warning.implicit_int) {
3995                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3996                                         }
3997                                         atomic_type = ATOMIC_TYPE_INT;
3998                                         break;
3999                                 } else {
4000                                         errorf(HERE, "no type specifiers given in declaration");
4001                                 }
4002                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
4003                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
4004                                 errorf(HERE, "signed and unsigned specifiers given");
4005                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
4006                                 errorf(HERE, "only integer types can be signed or unsigned");
4007                         } else {
4008                                 errorf(HERE, "multiple datatypes in declaration");
4009                         }
4010                         goto end_error;
4011                 }
4012
4013                 if (type_specifiers & SPECIFIER_COMPLEX) {
4014                         type                = allocate_type_zero(TYPE_COMPLEX);
4015                         type->complex.akind = atomic_type;
4016                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
4017                         type                  = allocate_type_zero(TYPE_IMAGINARY);
4018                         type->imaginary.akind = atomic_type;
4019                 } else {
4020                         type               = allocate_type_zero(TYPE_ATOMIC);
4021                         type->atomic.akind = atomic_type;
4022                 }
4023                 newtype = true;
4024         } else if (type_specifiers != 0) {
4025                 errorf(HERE, "multiple datatypes in declaration");
4026         }
4027
4028         /* FIXME: check type qualifiers here */
4029
4030         type->base.qualifiers = qualifiers;
4031         type->base.modifiers  = modifiers;
4032
4033         type_t *result = typehash_insert(type);
4034         if (newtype && result != type) {
4035                 free_type(type);
4036         }
4037
4038         specifiers->type = result;
4039         return;
4040
4041 end_error:
4042         specifiers->type = type_error_type;
4043         return;
4044 }
4045
4046 static type_qualifiers_t parse_type_qualifiers(void)
4047 {
4048         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
4049
4050         while (true) {
4051                 switch (token.type) {
4052                 /* type qualifiers */
4053                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
4054                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
4055                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
4056                 /* microsoft extended type modifiers */
4057                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
4058                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
4059                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
4060                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
4061                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
4062
4063                 default:
4064                         return qualifiers;
4065                 }
4066         }
4067 }
4068
4069 /**
4070  * Parses an K&R identifier list
4071  */
4072 static void parse_identifier_list(scope_t *scope)
4073 {
4074         do {
4075                 entity_t *entity = allocate_entity_zero(ENTITY_PARAMETER);
4076                 entity->base.source_position = token.source_position;
4077                 entity->base.namespc         = NAMESPACE_NORMAL;
4078                 entity->base.symbol          = token.v.symbol;
4079                 /* a K&R parameter has no type, yet */
4080                 next_token();
4081
4082                 append_entity(scope, entity);
4083
4084                 if (token.type != ',') {
4085                         break;
4086                 }
4087                 next_token();
4088         } while (token.type == T_IDENTIFIER);
4089 }
4090
4091 static entity_t *parse_parameter(void)
4092 {
4093         declaration_specifiers_t specifiers;
4094         memset(&specifiers, 0, sizeof(specifiers));
4095
4096         parse_declaration_specifiers(&specifiers);
4097
4098         entity_t *entity = parse_declarator(&specifiers,
4099                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
4100         anonymous_entity = NULL;
4101         return entity;
4102 }
4103
4104 static void semantic_parameter_incomplete(const entity_t *entity)
4105 {
4106         assert(entity->kind == ENTITY_PARAMETER);
4107
4108         /* Â§6.7.5.3:4  After adjustment, the parameters in a parameter type
4109          *             list in a function declarator that is part of a
4110          *             definition of that function shall not have
4111          *             incomplete type. */
4112         type_t *type = skip_typeref(entity->declaration.type);
4113         if (is_type_incomplete(type)) {
4114                 errorf(&entity->base.source_position,
4115                        "parameter '%Y' has incomplete type '%T'", entity->base.symbol,
4116                        entity->declaration.type);
4117         }
4118 }
4119
4120 /**
4121  * Parses function type parameters (and optionally creates variable_t entities
4122  * for them in a scope)
4123  */
4124 static void parse_parameters(function_type_t *type, scope_t *scope)
4125 {
4126         eat('(');
4127         add_anchor_token(')');
4128         int saved_comma_state = save_and_reset_anchor_state(',');
4129
4130         if (token.type == T_IDENTIFIER &&
4131             !is_typedef_symbol(token.v.symbol)) {
4132                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
4133                 if (la1_type == ',' || la1_type == ')') {
4134                         type->kr_style_parameters = true;
4135                         parse_identifier_list(scope);
4136                         goto parameters_finished;
4137                 }
4138         }
4139
4140         if (token.type == ')') {
4141                 /* ISO/IEC 14882:1998(E) Â§C.1.6:1 */
4142                 if (!(c_mode & _CXX))
4143                         type->unspecified_parameters = true;
4144                 goto parameters_finished;
4145         }
4146
4147         function_parameter_t *parameter;
4148         function_parameter_t *last_parameter = NULL;
4149
4150         while (true) {
4151                 switch (token.type) {
4152                 case T_DOTDOTDOT:
4153                         next_token();
4154                         type->variadic = true;
4155                         goto parameters_finished;
4156
4157                 case T_IDENTIFIER:
4158                 case T___extension__:
4159                 DECLARATION_START
4160                 {
4161                         entity_t *entity = parse_parameter();
4162                         if (entity->kind == ENTITY_TYPEDEF) {
4163                                 errorf(&entity->base.source_position,
4164                                        "typedef not allowed as function parameter");
4165                                 break;
4166                         }
4167                         assert(is_declaration(entity));
4168
4169                         /* func(void) is not a parameter */
4170                         if (last_parameter == NULL
4171                                         && token.type == ')'
4172                                         && entity->base.symbol == NULL
4173                                         && skip_typeref(entity->declaration.type) == type_void) {
4174                                 goto parameters_finished;
4175                         }
4176                         semantic_parameter_incomplete(entity);
4177
4178                         parameter = obstack_alloc(type_obst, sizeof(parameter[0]));
4179                         memset(parameter, 0, sizeof(parameter[0]));
4180                         parameter->type = entity->declaration.type;
4181
4182                         if (scope != NULL) {
4183                                 append_entity(scope, entity);
4184                         }
4185
4186                         if (last_parameter != NULL) {
4187                                 last_parameter->next = parameter;
4188                         } else {
4189                                 type->parameters = parameter;
4190                         }
4191                         last_parameter   = parameter;
4192                         break;
4193                 }
4194
4195                 default:
4196                         goto parameters_finished;
4197                 }
4198                 if (token.type != ',') {
4199                         goto parameters_finished;
4200                 }
4201                 next_token();
4202         }
4203
4204
4205 parameters_finished:
4206         rem_anchor_token(')');
4207         expect(')', end_error);
4208
4209 end_error:
4210         restore_anchor_state(',', saved_comma_state);
4211 }
4212
4213 typedef enum construct_type_kind_t {
4214         CONSTRUCT_INVALID,
4215         CONSTRUCT_POINTER,
4216         CONSTRUCT_REFERENCE,
4217         CONSTRUCT_FUNCTION,
4218         CONSTRUCT_ARRAY
4219 } construct_type_kind_t;
4220
4221 typedef struct construct_type_t construct_type_t;
4222 struct construct_type_t {
4223         construct_type_kind_t  kind;
4224         construct_type_t      *next;
4225 };
4226
4227 typedef struct parsed_pointer_t parsed_pointer_t;
4228 struct parsed_pointer_t {
4229         construct_type_t  construct_type;
4230         type_qualifiers_t type_qualifiers;
4231         variable_t        *base_variable;  /**< MS __based extension. */
4232 };
4233
4234 typedef struct parsed_reference_t parsed_reference_t;
4235 struct parsed_reference_t {
4236         construct_type_t construct_type;
4237 };
4238
4239 typedef struct construct_function_type_t construct_function_type_t;
4240 struct construct_function_type_t {
4241         construct_type_t  construct_type;
4242         type_t           *function_type;
4243 };
4244
4245 typedef struct parsed_array_t parsed_array_t;
4246 struct parsed_array_t {
4247         construct_type_t  construct_type;
4248         type_qualifiers_t type_qualifiers;
4249         bool              is_static;
4250         bool              is_variable;
4251         expression_t     *size;
4252 };
4253
4254 typedef struct construct_base_type_t construct_base_type_t;
4255 struct construct_base_type_t {
4256         construct_type_t  construct_type;
4257         type_t           *type;
4258 };
4259
4260 static construct_type_t *parse_pointer_declarator(variable_t *base_variable)
4261 {
4262         eat('*');
4263
4264         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
4265         memset(pointer, 0, sizeof(pointer[0]));
4266         pointer->construct_type.kind = CONSTRUCT_POINTER;
4267         pointer->type_qualifiers     = parse_type_qualifiers();
4268         pointer->base_variable       = base_variable;
4269
4270         return &pointer->construct_type;
4271 }
4272
4273 static construct_type_t *parse_reference_declarator(void)
4274 {
4275         eat('&');
4276
4277         parsed_reference_t *reference = obstack_alloc(&temp_obst, sizeof(reference[0]));
4278         memset(reference, 0, sizeof(reference[0]));
4279         reference->construct_type.kind = CONSTRUCT_REFERENCE;
4280
4281         return (construct_type_t*)reference;
4282 }
4283
4284 static construct_type_t *parse_array_declarator(void)
4285 {
4286         eat('[');
4287         add_anchor_token(']');
4288
4289         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
4290         memset(array, 0, sizeof(array[0]));
4291         array->construct_type.kind = CONSTRUCT_ARRAY;
4292
4293         if (token.type == T_static) {
4294                 array->is_static = true;
4295                 next_token();
4296         }
4297
4298         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
4299         if (type_qualifiers != 0) {
4300                 if (token.type == T_static) {
4301                         array->is_static = true;
4302                         next_token();
4303                 }
4304         }
4305         array->type_qualifiers = type_qualifiers;
4306
4307         if (token.type == '*' && look_ahead(1)->type == ']') {
4308                 array->is_variable = true;
4309                 next_token();
4310         } else if (token.type != ']') {
4311                 array->size = parse_assignment_expression();
4312         }
4313
4314         rem_anchor_token(']');
4315         expect(']', end_error);
4316
4317 end_error:
4318         return &array->construct_type;
4319 }
4320
4321 static construct_type_t *parse_function_declarator(scope_t *scope,
4322                                                    decl_modifiers_t modifiers)
4323 {
4324         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
4325         function_type_t *ftype = &type->function;
4326
4327         ftype->linkage = current_linkage;
4328
4329         switch (modifiers & (DM_CDECL | DM_STDCALL | DM_FASTCALL | DM_THISCALL)) {
4330                 case DM_NONE:     break;
4331                 case DM_CDECL:    ftype->calling_convention = CC_CDECL;    break;
4332                 case DM_STDCALL:  ftype->calling_convention = CC_STDCALL;  break;
4333                 case DM_FASTCALL: ftype->calling_convention = CC_FASTCALL; break;
4334                 case DM_THISCALL: ftype->calling_convention = CC_THISCALL; break;
4335
4336                 default:
4337                         errorf(HERE, "multiple calling conventions in declaration");
4338                         break;
4339         }
4340
4341         parse_parameters(ftype, scope);
4342
4343         construct_function_type_t *construct_function_type =
4344                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
4345         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
4346         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
4347         construct_function_type->function_type       = type;
4348
4349         return &construct_function_type->construct_type;
4350 }
4351
4352 typedef struct parse_declarator_env_t {
4353         decl_modifiers_t   modifiers;
4354         symbol_t          *symbol;
4355         source_position_t  source_position;
4356         scope_t            parameters;
4357 } parse_declarator_env_t;
4358
4359 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env,
4360                 bool may_be_abstract)
4361 {
4362         /* construct a single linked list of construct_type_t's which describe
4363          * how to construct the final declarator type */
4364         construct_type_t *first      = NULL;
4365         construct_type_t *last       = NULL;
4366         gnu_attribute_t  *attributes = NULL;
4367
4368         decl_modifiers_t modifiers = parse_attributes(&attributes);
4369
4370         /* MS __based extension */
4371         based_spec_t base_spec;
4372         base_spec.base_variable = NULL;
4373
4374         for (;;) {
4375                 construct_type_t *type;
4376                 switch (token.type) {
4377                         case '&':
4378                                 if (!(c_mode & _CXX))
4379                                         errorf(HERE, "references are only available for C++");
4380                                 if (base_spec.base_variable != NULL && warning.other) {
4381                                         warningf(&base_spec.source_position,
4382                                                  "__based does not precede a pointer operator, ignored");
4383                                 }
4384                                 type = parse_reference_declarator();
4385                                 /* consumed */
4386                                 base_spec.base_variable = NULL;
4387                                 break;
4388
4389                         case '*':
4390                                 type = parse_pointer_declarator(base_spec.base_variable);
4391                                 /* consumed */
4392                                 base_spec.base_variable = NULL;
4393                                 break;
4394
4395                         case T__based:
4396                                 next_token();
4397                                 expect('(', end_error);
4398                                 add_anchor_token(')');
4399                                 parse_microsoft_based(&base_spec);
4400                                 rem_anchor_token(')');
4401                                 expect(')', end_error);
4402                                 continue;
4403
4404                         default:
4405                                 goto ptr_operator_end;
4406                 }
4407
4408                 if (last == NULL) {
4409                         first = type;
4410                         last  = type;
4411                 } else {
4412                         last->next = type;
4413                         last       = type;
4414                 }
4415
4416                 /* TODO: find out if this is correct */
4417                 modifiers |= parse_attributes(&attributes);
4418         }
4419 ptr_operator_end:
4420         if (base_spec.base_variable != NULL && warning.other) {
4421                 warningf(&base_spec.source_position,
4422                          "__based does not precede a pointer operator, ignored");
4423         }
4424
4425         if (env != NULL) {
4426                 modifiers      |= env->modifiers;
4427                 env->modifiers  = modifiers;
4428         }
4429
4430         construct_type_t *inner_types = NULL;
4431
4432         switch (token.type) {
4433         case T_IDENTIFIER:
4434                 if (env == NULL) {
4435                         errorf(HERE, "no identifier expected in typename");
4436                 } else {
4437                         env->symbol          = token.v.symbol;
4438                         env->source_position = token.source_position;
4439                 }
4440                 next_token();
4441                 break;
4442         case '(':
4443                 /* Â§6.7.6:2 footnote 126:  Empty parentheses in a type name are
4444                  * interpreted as ``function with no parameter specification'', rather
4445                  * than redundant parentheses around the omitted identifier. */
4446                 if (look_ahead(1)->type != ')') {
4447                         next_token();
4448                         add_anchor_token(')');
4449                         inner_types = parse_inner_declarator(env, may_be_abstract);
4450                         if (inner_types != NULL) {
4451                                 /* All later declarators only modify the return type */
4452                                 env = NULL;
4453                         }
4454                         rem_anchor_token(')');
4455                         expect(')', end_error);
4456                 }
4457                 break;
4458         default:
4459                 if (may_be_abstract)
4460                         break;
4461                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4462                 eat_until_anchor();
4463                 return NULL;
4464         }
4465
4466         construct_type_t *p = last;
4467
4468         while (true) {
4469                 construct_type_t *type;
4470                 switch (token.type) {
4471                 case '(': {
4472                         scope_t *scope = NULL;
4473                         if (env != NULL)
4474                                 scope = &env->parameters;
4475
4476                         type = parse_function_declarator(scope, modifiers);
4477                         break;
4478                 }
4479                 case '[':
4480                         type = parse_array_declarator();
4481                         break;
4482                 default:
4483                         goto declarator_finished;
4484                 }
4485
4486                 /* insert in the middle of the list (behind p) */
4487                 if (p != NULL) {
4488                         type->next = p->next;
4489                         p->next    = type;
4490                 } else {
4491                         type->next = first;
4492                         first      = type;
4493                 }
4494                 if (last == p) {
4495                         last = type;
4496                 }
4497         }
4498
4499 declarator_finished:
4500         /* append inner_types at the end of the list, we don't to set last anymore
4501          * as it's not needed anymore */
4502         if (last == NULL) {
4503                 assert(first == NULL);
4504                 first = inner_types;
4505         } else {
4506                 last->next = inner_types;
4507         }
4508
4509         return first;
4510 end_error:
4511         return NULL;
4512 }
4513
4514 static void parse_declaration_attributes(entity_t *entity)
4515 {
4516         gnu_attribute_t  *attributes = NULL;
4517         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4518
4519         if (entity == NULL)
4520                 return;
4521
4522         type_t *type;
4523         if (entity->kind == ENTITY_TYPEDEF) {
4524                 modifiers |= entity->typedefe.modifiers;
4525                 type       = entity->typedefe.type;
4526         } else {
4527                 assert(is_declaration(entity));
4528                 modifiers |= entity->declaration.modifiers;
4529                 type       = entity->declaration.type;
4530         }
4531         if (type == NULL)
4532                 return;
4533
4534         /* handle these strange/stupid mode attributes */
4535         gnu_attribute_t *attribute = attributes;
4536         for ( ; attribute != NULL; attribute = attribute->next) {
4537                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4538                         continue;
4539
4540                 atomic_type_kind_t  akind = attribute->u.akind;
4541                 if (!is_type_signed(type)) {
4542                         switch (akind) {
4543                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4544                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4545                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4546                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4547                         default:
4548                                 panic("invalid akind in mode attribute");
4549                         }
4550                 } else {
4551                         switch (akind) {
4552                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_SCHAR; break;
4553                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_SHORT; break;
4554                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_INT; break;
4555                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_LONGLONG; break;
4556                         default:
4557                                 panic("invalid akind in mode attribute");
4558                         }
4559                 }
4560
4561                 type = make_atomic_type(akind, type->base.qualifiers);
4562         }
4563
4564         type_modifiers_t type_modifiers = type->base.modifiers;
4565         if (modifiers & DM_TRANSPARENT_UNION)
4566                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4567
4568         if (type->base.modifiers != type_modifiers) {
4569                 type_t *copy = duplicate_type(type);
4570                 copy->base.modifiers = type_modifiers;
4571
4572                 type = typehash_insert(copy);
4573                 if (type != copy) {
4574                         obstack_free(type_obst, copy);
4575                 }
4576         }
4577
4578         if (entity->kind == ENTITY_TYPEDEF) {
4579                 entity->typedefe.type      = type;
4580                 entity->typedefe.modifiers = modifiers;
4581         } else {
4582                 entity->declaration.type      = type;
4583                 entity->declaration.modifiers = modifiers;
4584         }
4585 }
4586
4587 static type_t *construct_declarator_type(construct_type_t *construct_list, type_t *type)
4588 {
4589         construct_type_t *iter = construct_list;
4590         for (; iter != NULL; iter = iter->next) {
4591                 switch (iter->kind) {
4592                 case CONSTRUCT_INVALID:
4593                         internal_errorf(HERE, "invalid type construction found");
4594                 case CONSTRUCT_FUNCTION: {
4595                         construct_function_type_t *construct_function_type
4596                                 = (construct_function_type_t*) iter;
4597
4598                         type_t *function_type = construct_function_type->function_type;
4599
4600                         function_type->function.return_type = type;
4601
4602                         type_t *skipped_return_type = skip_typeref(type);
4603                         /* Â§6.7.5.3(1) */
4604                         if (is_type_function(skipped_return_type)) {
4605                                 errorf(HERE, "function returning function is not allowed");
4606                         } else if (is_type_array(skipped_return_type)) {
4607                                 errorf(HERE, "function returning array is not allowed");
4608                         } else {
4609                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
4610                                         warningf(HERE,
4611                                                 "type qualifiers in return type of function type are meaningless");
4612                                 }
4613                         }
4614
4615                         type = function_type;
4616                         break;
4617                 }
4618
4619                 case CONSTRUCT_POINTER: {
4620                         if (is_type_reference(skip_typeref(type)))
4621                                 errorf(HERE, "cannot declare a pointer to reference");
4622
4623                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4624                         type = make_based_pointer_type(type, parsed_pointer->type_qualifiers, parsed_pointer->base_variable);
4625                         continue;
4626                 }
4627
4628                 case CONSTRUCT_REFERENCE:
4629                         if (is_type_reference(skip_typeref(type)))
4630                                 errorf(HERE, "cannot declare a reference to reference");
4631
4632                         type = make_reference_type(type);
4633                         continue;
4634
4635                 case CONSTRUCT_ARRAY: {
4636                         if (is_type_reference(skip_typeref(type)))
4637                                 errorf(HERE, "cannot declare an array of references");
4638
4639                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4640                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY);
4641
4642                         expression_t *size_expression = parsed_array->size;
4643                         if (size_expression != NULL) {
4644                                 size_expression
4645                                         = create_implicit_cast(size_expression, type_size_t);
4646                         }
4647
4648                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4649                         array_type->array.element_type    = type;
4650                         array_type->array.is_static       = parsed_array->is_static;
4651                         array_type->array.is_variable     = parsed_array->is_variable;
4652                         array_type->array.size_expression = size_expression;
4653
4654                         if (size_expression != NULL) {
4655                                 if (is_constant_expression(size_expression)) {
4656                                         array_type->array.size_constant = true;
4657                                         array_type->array.size
4658                                                 = fold_constant(size_expression);
4659                                 } else {
4660                                         array_type->array.is_vla = true;
4661                                 }
4662                         }
4663
4664                         type_t *skipped_type = skip_typeref(type);
4665                         /* Â§6.7.5.2(1) */
4666                         if (is_type_incomplete(skipped_type)) {
4667                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4668                         } else if (is_type_function(skipped_type)) {
4669                                 errorf(HERE, "array of functions is not allowed");
4670                         }
4671                         type = array_type;
4672                         break;
4673                 }
4674                 }
4675
4676                 type_t *hashed_type = typehash_insert(type);
4677                 if (hashed_type != type) {
4678                         /* the function type was constructed earlier freeing it here will
4679                          * destroy other types... */
4680                         if (iter->kind != CONSTRUCT_FUNCTION) {
4681                                 free_type(type);
4682                         }
4683                         type = hashed_type;
4684                 }
4685         }
4686
4687         return type;
4688 }
4689
4690 static type_t *automatic_type_conversion(type_t *orig_type);
4691
4692 static type_t *semantic_parameter(const source_position_t *pos,
4693                                   type_t *type,
4694                                   const declaration_specifiers_t *specifiers,
4695                                   symbol_t *symbol)
4696 {
4697         /* Â§6.7.5.3:7  A declaration of a parameter as ``array of type''
4698          *             shall be adjusted to ``qualified pointer to type'',
4699          *             [...]
4700          * Â§6.7.5.3:8  A declaration of a parameter as ``function returning
4701          *             type'' shall be adjusted to ``pointer to function
4702          *             returning type'', as in 6.3.2.1. */
4703         type = automatic_type_conversion(type);
4704
4705         if (specifiers->is_inline && is_type_valid(type)) {
4706                 errorf(pos, "parameter '%Y' declared 'inline'", symbol);
4707         }
4708
4709         /* Â§6.9.1:6  The declarations in the declaration list shall contain
4710          *           no storage-class specifier other than register and no
4711          *           initializations. */
4712         if (specifiers->thread_local || (
4713                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4714                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
4715            ) {
4716                 errorf(pos, "invalid storage class for parameter '%Y'", symbol);
4717         }
4718
4719         /* delay test for incomplete type, because we might have (void)
4720          * which is legal but incomplete... */
4721
4722         return type;
4723 }
4724
4725 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
4726                                   declarator_flags_t flags)
4727 {
4728         parse_declarator_env_t env;
4729         memset(&env, 0, sizeof(env));
4730         env.modifiers = specifiers->modifiers;
4731
4732         construct_type_t *construct_type =
4733                 parse_inner_declarator(&env, (flags & DECL_MAY_BE_ABSTRACT) != 0);
4734         type_t           *orig_type      =
4735                 construct_declarator_type(construct_type, specifiers->type);
4736         type_t           *type           = skip_typeref(orig_type);
4737
4738         if (construct_type != NULL) {
4739                 obstack_free(&temp_obst, construct_type);
4740         }
4741
4742         entity_t *entity;
4743         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
4744                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
4745                 entity->base.symbol          = env.symbol;
4746                 entity->base.source_position = env.source_position;
4747                 entity->typedefe.type        = orig_type;
4748
4749                 if (anonymous_entity != NULL) {
4750                         if (is_type_compound(type)) {
4751                                 assert(anonymous_entity->compound.alias == NULL);
4752                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
4753                                        anonymous_entity->kind == ENTITY_UNION);
4754                                 anonymous_entity->compound.alias = entity;
4755                                 anonymous_entity = NULL;
4756                         } else if (is_type_enum(type)) {
4757                                 assert(anonymous_entity->enume.alias == NULL);
4758                                 assert(anonymous_entity->kind == ENTITY_ENUM);
4759                                 anonymous_entity->enume.alias = entity;
4760                                 anonymous_entity = NULL;
4761                         }
4762                 }
4763         } else {
4764                 /* create a declaration type entity */
4765                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
4766                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
4767
4768                         if (specifiers->is_inline && is_type_valid(type)) {
4769                                 errorf(&env.source_position,
4770                                                 "compound member '%Y' declared 'inline'", env.symbol);
4771                         }
4772
4773                         if (specifiers->thread_local ||
4774                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
4775                                 errorf(&env.source_position,
4776                                            "compound member '%Y' must have no storage class",
4777                                            env.symbol);
4778                         }
4779                 } else if (flags & DECL_IS_PARAMETER) {
4780                         orig_type = semantic_parameter(&env.source_position, orig_type,
4781                                                        specifiers, env.symbol);
4782
4783                         entity = allocate_entity_zero(ENTITY_PARAMETER);
4784                 } else if (is_type_function(type)) {
4785                         entity = allocate_entity_zero(ENTITY_FUNCTION);
4786
4787                         entity->function.is_inline  = specifiers->is_inline;
4788                         entity->function.parameters = env.parameters;
4789
4790                         if (specifiers->thread_local || (
4791                                         specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4792                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4793                                         specifiers->storage_class != STORAGE_CLASS_STATIC)
4794                            ) {
4795                                 errorf(&env.source_position,
4796                                            "invalid storage class for function '%Y'", env.symbol);
4797                         }
4798                 } else {
4799                         entity = allocate_entity_zero(ENTITY_VARIABLE);
4800
4801                         entity->variable.get_property_sym = specifiers->get_property_sym;
4802                         entity->variable.put_property_sym = specifiers->put_property_sym;
4803                         if (specifiers->alignment != 0) {
4804                                 /* TODO: add checks here */
4805                                 entity->variable.alignment = specifiers->alignment;
4806                         }
4807
4808                         if (specifiers->is_inline && is_type_valid(type)) {
4809                                 errorf(&env.source_position,
4810                                            "variable '%Y' declared 'inline'", env.symbol);
4811                         }
4812
4813                         entity->variable.thread_local = specifiers->thread_local;
4814
4815                         bool invalid_storage_class = false;
4816                         if (current_scope == file_scope) {
4817                                 if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4818                                                 specifiers->storage_class != STORAGE_CLASS_NONE   &&
4819                                                 specifiers->storage_class != STORAGE_CLASS_STATIC) {
4820                                         invalid_storage_class = true;
4821                                 }
4822                         } else {
4823                                 if (specifiers->thread_local &&
4824                                                 specifiers->storage_class == STORAGE_CLASS_NONE) {
4825                                         invalid_storage_class = true;
4826                                 }
4827                         }
4828                         if (invalid_storage_class) {
4829                                 errorf(&env.source_position,
4830                                                 "invalid storage class for variable '%Y'", env.symbol);
4831                         }
4832                 }
4833
4834                 entity->base.source_position          = env.source_position;
4835                 entity->base.symbol                   = env.symbol;
4836                 entity->base.namespc                  = NAMESPACE_NORMAL;
4837                 entity->declaration.type              = orig_type;
4838                 entity->declaration.modifiers         = env.modifiers;
4839                 entity->declaration.deprecated_string = specifiers->deprecated_string;
4840
4841                 storage_class_t storage_class = specifiers->storage_class;
4842                 entity->declaration.declared_storage_class = storage_class;
4843
4844                 if (storage_class == STORAGE_CLASS_NONE && current_scope != file_scope)
4845                         storage_class = STORAGE_CLASS_AUTO;
4846                 entity->declaration.storage_class = storage_class;
4847         }
4848
4849         parse_declaration_attributes(entity);
4850
4851         return entity;
4852 }
4853
4854 static type_t *parse_abstract_declarator(type_t *base_type)
4855 {
4856         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4857
4858         type_t *result = construct_declarator_type(construct_type, base_type);
4859         if (construct_type != NULL) {
4860                 obstack_free(&temp_obst, construct_type);
4861         }
4862
4863         return result;
4864 }
4865
4866 /**
4867  * Check if the declaration of main is suspicious.  main should be a
4868  * function with external linkage, returning int, taking either zero
4869  * arguments, two, or three arguments of appropriate types, ie.
4870  *
4871  * int main([ int argc, char **argv [, char **env ] ]).
4872  *
4873  * @param decl    the declaration to check
4874  * @param type    the function type of the declaration
4875  */
4876 static void check_type_of_main(const entity_t *entity)
4877 {
4878         const source_position_t *pos = &entity->base.source_position;
4879         if (entity->kind != ENTITY_FUNCTION) {
4880                 warningf(pos, "'main' is not a function");
4881                 return;
4882         }
4883
4884         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4885                 warningf(pos, "'main' is normally a non-static function");
4886         }
4887
4888         type_t *type = skip_typeref(entity->declaration.type);
4889         assert(is_type_function(type));
4890
4891         function_type_t *func_type = &type->function;
4892         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4893                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4894                          func_type->return_type);
4895         }
4896         const function_parameter_t *parm = func_type->parameters;
4897         if (parm != NULL) {
4898                 type_t *const first_type = parm->type;
4899                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4900                         warningf(pos,
4901                                  "first argument of 'main' should be 'int', but is '%T'",
4902                                  first_type);
4903                 }
4904                 parm = parm->next;
4905                 if (parm != NULL) {
4906                         type_t *const second_type = parm->type;
4907                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4908                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4909                         }
4910                         parm = parm->next;
4911                         if (parm != NULL) {
4912                                 type_t *const third_type = parm->type;
4913                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4914                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4915                                 }
4916                                 parm = parm->next;
4917                                 if (parm != NULL)
4918                                         goto warn_arg_count;
4919                         }
4920                 } else {
4921 warn_arg_count:
4922                         warningf(pos, "'main' takes only zero, two or three arguments");
4923                 }
4924         }
4925 }
4926
4927 /**
4928  * Check if a symbol is the equal to "main".
4929  */
4930 static bool is_sym_main(const symbol_t *const sym)
4931 {
4932         return strcmp(sym->string, "main") == 0;
4933 }
4934
4935 static void error_redefined_as_different_kind(const source_position_t *pos,
4936                 const entity_t *old, entity_kind_t new_kind)
4937 {
4938         errorf(pos, "redeclaration of %s '%Y' as %s (declared %P)",
4939                get_entity_kind_name(old->kind), old->base.symbol,
4940                get_entity_kind_name(new_kind), &old->base.source_position);
4941 }
4942
4943 /**
4944  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4945  * for various problems that occur for multiple definitions
4946  */
4947 static entity_t *record_entity(entity_t *entity, const bool is_definition)
4948 {
4949         const symbol_t *const    symbol  = entity->base.symbol;
4950         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
4951         const source_position_t *pos     = &entity->base.source_position;
4952
4953         /* can happen in error cases */
4954         if (symbol == NULL)
4955                 return entity;
4956
4957         entity_t *previous_entity = get_entity(symbol, namespc);
4958         /* pushing the same entity twice will break the stack structure */
4959         assert(previous_entity != entity);
4960
4961         if (entity->kind == ENTITY_FUNCTION) {
4962                 type_t *const orig_type = entity->declaration.type;
4963                 type_t *const type      = skip_typeref(orig_type);
4964
4965                 assert(is_type_function(type));
4966                 if (type->function.unspecified_parameters &&
4967                                 warning.strict_prototypes &&
4968                                 previous_entity == NULL) {
4969                         warningf(pos, "function declaration '%#T' is not a prototype",
4970                                          orig_type, symbol);
4971                 }
4972
4973                 if (warning.main && current_scope == file_scope
4974                                 && is_sym_main(symbol)) {
4975                         check_type_of_main(entity);
4976                 }
4977         }
4978
4979         if (is_declaration(entity) &&
4980                         warning.nested_externs &&
4981                         entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
4982                         current_scope != file_scope) {
4983                 warningf(pos, "nested extern declaration of '%#T'",
4984                          entity->declaration.type, symbol);
4985         }
4986
4987         if (previous_entity != NULL &&
4988                         previous_entity->base.parent_scope == &current_function->parameters &&
4989                         previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
4990                 assert(previous_entity->kind == ENTITY_PARAMETER);
4991                 errorf(pos,
4992                        "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4993                                          entity->declaration.type, symbol,
4994                                          previous_entity->declaration.type, symbol,
4995                                          &previous_entity->base.source_position);
4996                 goto finish;
4997         }
4998
4999         if (previous_entity != NULL &&
5000                         previous_entity->base.parent_scope == current_scope) {
5001                 if (previous_entity->kind != entity->kind) {
5002                         error_redefined_as_different_kind(pos, previous_entity,
5003                                                           entity->kind);
5004                         goto finish;
5005                 }
5006                 if (previous_entity->kind == ENTITY_ENUM_VALUE) {
5007                         errorf(pos, "redeclaration of enum entry '%Y' (declared %P)",
5008                                    symbol, &previous_entity->base.source_position);
5009                         goto finish;
5010                 }
5011                 if (previous_entity->kind == ENTITY_TYPEDEF) {
5012                         /* TODO: C++ allows this for exactly the same type */
5013                         errorf(pos, "redefinition of typedef '%Y' (declared %P)",
5014                                symbol, &previous_entity->base.source_position);
5015                         goto finish;
5016                 }
5017
5018                 /* at this point we should have only VARIABLES or FUNCTIONS */
5019                 assert(is_declaration(previous_entity) && is_declaration(entity));
5020
5021                 declaration_t *const prev_decl = &previous_entity->declaration;
5022                 declaration_t *const decl      = &entity->declaration;
5023
5024                 /* can happen for K&R style declarations */
5025                 if (prev_decl->type       == NULL             &&
5026                                 previous_entity->kind == ENTITY_PARAMETER &&
5027                                 entity->kind          == ENTITY_PARAMETER) {
5028                         prev_decl->type                   = decl->type;
5029                         prev_decl->storage_class          = decl->storage_class;
5030                         prev_decl->declared_storage_class = decl->declared_storage_class;
5031                         prev_decl->modifiers              = decl->modifiers;
5032                         prev_decl->deprecated_string      = decl->deprecated_string;
5033                         return previous_entity;
5034                 }
5035
5036                 type_t *const orig_type = decl->type;
5037                 assert(orig_type != NULL);
5038                 type_t *const type      = skip_typeref(orig_type);
5039                 type_t *      prev_type = skip_typeref(prev_decl->type);
5040
5041                 if (!types_compatible(type, prev_type)) {
5042                         errorf(pos,
5043                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
5044                                    orig_type, symbol, prev_decl->type, symbol,
5045                                    &previous_entity->base.source_position);
5046                 } else {
5047                         unsigned old_storage_class = prev_decl->storage_class;
5048                         if (warning.redundant_decls               &&
5049                                         is_definition                     &&
5050                                         !prev_decl->used                  &&
5051                                         !(prev_decl->modifiers & DM_USED) &&
5052                                         prev_decl->storage_class == STORAGE_CLASS_STATIC) {
5053                                 warningf(&previous_entity->base.source_position,
5054                                          "unnecessary static forward declaration for '%#T'",
5055                                          prev_decl->type, symbol);
5056                         }
5057
5058                         unsigned new_storage_class = decl->storage_class;
5059                         if (is_type_incomplete(prev_type)) {
5060                                 prev_decl->type = type;
5061                                 prev_type       = type;
5062                         }
5063
5064                         /* pretend no storage class means extern for function
5065                          * declarations (except if the previous declaration is neither
5066                          * none nor extern) */
5067                         if (entity->kind == ENTITY_FUNCTION) {
5068                                 if (prev_type->function.unspecified_parameters) {
5069                                         prev_decl->type = type;
5070                                         prev_type       = type;
5071                                 }
5072
5073                                 switch (old_storage_class) {
5074                                 case STORAGE_CLASS_NONE:
5075                                         old_storage_class = STORAGE_CLASS_EXTERN;
5076                                         /* FALLTHROUGH */
5077
5078                                 case STORAGE_CLASS_EXTERN:
5079                                         if (is_definition) {
5080                                                 if (warning.missing_prototypes &&
5081                                                     prev_type->function.unspecified_parameters &&
5082                                                     !is_sym_main(symbol)) {
5083                                                         warningf(pos, "no previous prototype for '%#T'",
5084                                                                          orig_type, symbol);
5085                                                 }
5086                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
5087                                                 new_storage_class = STORAGE_CLASS_EXTERN;
5088                                         }
5089                                         break;
5090
5091                                 default:
5092                                         break;
5093                                 }
5094                         }
5095
5096                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
5097                                         new_storage_class == STORAGE_CLASS_EXTERN) {
5098 warn_redundant_declaration:
5099                                 if (!is_definition           &&
5100                                     warning.redundant_decls  &&
5101                                     is_type_valid(prev_type) &&
5102                                     strcmp(previous_entity->base.source_position.input_name,
5103                                            "<builtin>") != 0) {
5104                                         warningf(pos,
5105                                                  "redundant declaration for '%Y' (declared %P)",
5106                                                  symbol, &previous_entity->base.source_position);
5107                                 }
5108                         } else if (current_function == NULL) {
5109                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
5110                                     new_storage_class == STORAGE_CLASS_STATIC) {
5111                                         errorf(pos,
5112                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
5113                                                symbol, &previous_entity->base.source_position);
5114                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
5115                                         prev_decl->storage_class          = STORAGE_CLASS_NONE;
5116                                         prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
5117                                 } else {
5118                                         /* ISO/IEC 14882:1998(E) Â§C.1.2:1 */
5119                                         if (c_mode & _CXX)
5120                                                 goto error_redeclaration;
5121                                         goto warn_redundant_declaration;
5122                                 }
5123                         } else if (is_type_valid(prev_type)) {
5124                                 if (old_storage_class == new_storage_class) {
5125 error_redeclaration:
5126                                         errorf(pos, "redeclaration of '%Y' (declared %P)",
5127                                                symbol, &previous_entity->base.source_position);
5128                                 } else {
5129                                         errorf(pos,
5130                                                "redeclaration of '%Y' with different linkage (declared %P)",
5131                                                symbol, &previous_entity->base.source_position);
5132                                 }
5133                         }
5134                 }
5135
5136                 prev_decl->modifiers |= decl->modifiers;
5137                 if (entity->kind == ENTITY_FUNCTION) {
5138                         previous_entity->function.is_inline |= entity->function.is_inline;
5139                 }
5140                 return previous_entity;
5141         }
5142
5143         if (entity->kind == ENTITY_FUNCTION) {
5144                 if (is_definition &&
5145                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
5146                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
5147                                 warningf(pos, "no previous prototype for '%#T'",
5148                                          entity->declaration.type, symbol);
5149                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
5150                                 warningf(pos, "no previous declaration for '%#T'",
5151                                          entity->declaration.type, symbol);
5152                         }
5153                 }
5154         } else if (warning.missing_declarations &&
5155                         entity->kind == ENTITY_VARIABLE &&
5156                         current_scope == file_scope) {
5157                 declaration_t *declaration = &entity->declaration;
5158                 if (declaration->storage_class == STORAGE_CLASS_NONE) {
5159                         warningf(pos, "no previous declaration for '%#T'",
5160                                  declaration->type, symbol);
5161                 }
5162         }
5163
5164 finish:
5165         assert(entity->base.parent_scope == NULL);
5166         assert(current_scope != NULL);
5167
5168         entity->base.parent_scope = current_scope;
5169         entity->base.namespc      = NAMESPACE_NORMAL;
5170         environment_push(entity);
5171         append_entity(current_scope, entity);
5172
5173         return entity;
5174 }
5175
5176 static void parser_error_multiple_definition(entity_t *entity,
5177                 const source_position_t *source_position)
5178 {
5179         errorf(source_position, "multiple definition of '%Y' (declared %P)",
5180                entity->base.symbol, &entity->base.source_position);
5181 }
5182
5183 static bool is_declaration_specifier(const token_t *token,
5184                                      bool only_specifiers_qualifiers)
5185 {
5186         switch (token->type) {
5187                 TYPE_SPECIFIERS
5188                 TYPE_QUALIFIERS
5189                         return true;
5190                 case T_IDENTIFIER:
5191                         return is_typedef_symbol(token->v.symbol);
5192
5193                 case T___extension__:
5194                 STORAGE_CLASSES
5195                         return !only_specifiers_qualifiers;
5196
5197                 default:
5198                         return false;
5199         }
5200 }
5201
5202 static void parse_init_declarator_rest(entity_t *entity)
5203 {
5204         assert(is_declaration(entity));
5205         declaration_t *const declaration = &entity->declaration;
5206
5207         eat('=');
5208
5209         type_t *orig_type = declaration->type;
5210         type_t *type      = skip_typeref(orig_type);
5211
5212         if (entity->kind == ENTITY_VARIABLE
5213                         && entity->variable.initializer != NULL) {
5214                 parser_error_multiple_definition(entity, HERE);
5215         }
5216
5217         bool must_be_constant = false;
5218         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
5219             entity->base.parent_scope  == file_scope) {
5220                 must_be_constant = true;
5221         }
5222
5223         if (is_type_function(type)) {
5224                 errorf(&entity->base.source_position,
5225                        "function '%#T' is initialized like a variable",
5226                        orig_type, entity->base.symbol);
5227                 orig_type = type_error_type;
5228         }
5229
5230         parse_initializer_env_t env;
5231         env.type             = orig_type;
5232         env.must_be_constant = must_be_constant;
5233         env.entity           = entity;
5234         current_init_decl    = entity;
5235
5236         initializer_t *initializer = parse_initializer(&env);
5237         current_init_decl = NULL;
5238
5239         if (entity->kind == ENTITY_VARIABLE) {
5240                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size
5241                  * determine the array type size */
5242                 declaration->type            = env.type;
5243                 entity->variable.initializer = initializer;
5244         }
5245 }
5246
5247 /* parse rest of a declaration without any declarator */
5248 static void parse_anonymous_declaration_rest(
5249                 const declaration_specifiers_t *specifiers)
5250 {
5251         eat(';');
5252         anonymous_entity = NULL;
5253
5254         if (warning.other) {
5255                 if (specifiers->storage_class != STORAGE_CLASS_NONE ||
5256                                 specifiers->thread_local) {
5257                         warningf(&specifiers->source_position,
5258                                  "useless storage class in empty declaration");
5259                 }
5260
5261                 type_t *type = specifiers->type;
5262                 switch (type->kind) {
5263                         case TYPE_COMPOUND_STRUCT:
5264                         case TYPE_COMPOUND_UNION: {
5265                                 if (type->compound.compound->base.symbol == NULL) {
5266                                         warningf(&specifiers->source_position,
5267                                                  "unnamed struct/union that defines no instances");
5268                                 }
5269                                 break;
5270                         }
5271
5272                         case TYPE_ENUM:
5273                                 break;
5274
5275                         default:
5276                                 warningf(&specifiers->source_position, "empty declaration");
5277                                 break;
5278                 }
5279         }
5280 }
5281
5282 static void check_variable_type_complete(entity_t *ent)
5283 {
5284         if (ent->kind != ENTITY_VARIABLE)
5285                 return;
5286
5287         /* Â§6.7:7  If an identifier for an object is declared with no linkage, the
5288          *         type for the object shall be complete [...] */
5289         declaration_t *decl = &ent->declaration;
5290         if (decl->storage_class != STORAGE_CLASS_NONE)
5291                 return;
5292
5293         type_t *const orig_type = decl->type;
5294         type_t *const type      = skip_typeref(orig_type);
5295         if (!is_type_incomplete(type))
5296                 return;
5297
5298         /* GCC allows global arrays without size and assigns them a length of one,
5299          * if no different declaration follows */
5300         if (is_type_array(type) &&
5301                         c_mode & _GNUC      &&
5302                         ent->base.parent_scope == file_scope) {
5303                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
5304                 return;
5305         }
5306
5307         errorf(&ent->base.source_position, "variable '%#T' has incomplete type",
5308                         orig_type, ent->base.symbol);
5309 }
5310
5311
5312 static void parse_declaration_rest(entity_t *ndeclaration,
5313                 const declaration_specifiers_t *specifiers,
5314                 parsed_declaration_func         finished_declaration,
5315                 declarator_flags_t              flags)
5316 {
5317         add_anchor_token(';');
5318         add_anchor_token(',');
5319         while (true) {
5320                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
5321
5322                 if (token.type == '=') {
5323                         parse_init_declarator_rest(entity);
5324                 } else if (entity->kind == ENTITY_VARIABLE) {
5325                         /* ISO/IEC 14882:1998(E) Â§8.5.3:3  The initializer can be omitted
5326                          * [...] where the extern specifier is explicitly used. */
5327                         declaration_t *decl = &entity->declaration;
5328                         if (decl->storage_class != STORAGE_CLASS_EXTERN) {
5329                                 type_t *type = decl->type;
5330                                 if (is_type_reference(skip_typeref(type))) {
5331                                         errorf(&entity->base.source_position,
5332                                                         "reference '%#T' must be initialized",
5333                                                         type, entity->base.symbol);
5334                                 }
5335                         }
5336                 }
5337
5338                 check_variable_type_complete(entity);
5339
5340                 if (token.type != ',')
5341                         break;
5342                 eat(',');
5343
5344                 add_anchor_token('=');
5345                 ndeclaration = parse_declarator(specifiers, flags);
5346                 rem_anchor_token('=');
5347         }
5348         expect(';', end_error);
5349
5350 end_error:
5351         anonymous_entity = NULL;
5352         rem_anchor_token(';');
5353         rem_anchor_token(',');
5354 }
5355
5356 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
5357 {
5358         symbol_t *symbol = entity->base.symbol;
5359         if (symbol == NULL) {
5360                 errorf(HERE, "anonymous declaration not valid as function parameter");
5361                 return entity;
5362         }
5363
5364         assert(entity->base.namespc == NAMESPACE_NORMAL);
5365         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
5366         if (previous_entity == NULL
5367                         || previous_entity->base.parent_scope != current_scope) {
5368                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
5369                        symbol);
5370                 return entity;
5371         }
5372
5373         if (is_definition) {
5374                 errorf(HERE, "parameter '%Y' is initialised", entity->base.symbol);
5375         }
5376
5377         return record_entity(entity, false);
5378 }
5379
5380 static void parse_declaration(parsed_declaration_func finished_declaration,
5381                               declarator_flags_t      flags)
5382 {
5383         declaration_specifiers_t specifiers;
5384         memset(&specifiers, 0, sizeof(specifiers));
5385
5386         add_anchor_token(';');
5387         parse_declaration_specifiers(&specifiers);
5388         rem_anchor_token(';');
5389
5390         if (token.type == ';') {
5391                 parse_anonymous_declaration_rest(&specifiers);
5392         } else {
5393                 entity_t *entity = parse_declarator(&specifiers, flags);
5394                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
5395         }
5396 }
5397
5398 static type_t *get_default_promoted_type(type_t *orig_type)
5399 {
5400         type_t *result = orig_type;
5401
5402         type_t *type = skip_typeref(orig_type);
5403         if (is_type_integer(type)) {
5404                 result = promote_integer(type);
5405         } else if (type == type_float) {
5406                 result = type_double;
5407         }
5408
5409         return result;
5410 }
5411
5412 static void parse_kr_declaration_list(entity_t *entity)
5413 {
5414         if (entity->kind != ENTITY_FUNCTION)
5415                 return;
5416
5417         type_t *type = skip_typeref(entity->declaration.type);
5418         assert(is_type_function(type));
5419         if (!type->function.kr_style_parameters)
5420                 return;
5421
5422
5423         add_anchor_token('{');
5424
5425         /* push function parameters */
5426         size_t const  top       = environment_top();
5427         scope_t      *old_scope = scope_push(&entity->function.parameters);
5428
5429         entity_t *parameter = entity->function.parameters.entities;
5430         for ( ; parameter != NULL; parameter = parameter->base.next) {
5431                 assert(parameter->base.parent_scope == NULL);
5432                 parameter->base.parent_scope = current_scope;
5433                 environment_push(parameter);
5434         }
5435
5436         /* parse declaration list */
5437         for (;;) {
5438                 switch (token.type) {
5439                         DECLARATION_START
5440                         case T___extension__:
5441                         /* This covers symbols, which are no type, too, and results in
5442                          * better error messages.  The typical cases are misspelled type
5443                          * names and missing includes. */
5444                         case T_IDENTIFIER:
5445                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
5446                                 break;
5447                         default:
5448                                 goto decl_list_end;
5449                 }
5450         }
5451 decl_list_end:
5452
5453         /* pop function parameters */
5454         assert(current_scope == &entity->function.parameters);
5455         scope_pop(old_scope);
5456         environment_pop_to(top);
5457
5458         /* update function type */
5459         type_t *new_type = duplicate_type(type);
5460
5461         function_parameter_t *parameters     = NULL;
5462         function_parameter_t *last_parameter = NULL;
5463
5464         parameter = entity->function.parameters.entities;
5465         for (; parameter != NULL; parameter = parameter->base.next) {
5466                 type_t *parameter_type = parameter->declaration.type;
5467                 if (parameter_type == NULL) {
5468                         if (strict_mode) {
5469                                 errorf(HERE, "no type specified for function parameter '%Y'",
5470                                        parameter->base.symbol);
5471                         } else {
5472                                 if (warning.implicit_int) {
5473                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
5474                                                  parameter->base.symbol);
5475                                 }
5476                                 parameter_type              = type_int;
5477                                 parameter->declaration.type = parameter_type;
5478                         }
5479                 }
5480
5481                 semantic_parameter_incomplete(parameter);
5482                 parameter_type = parameter->declaration.type;
5483
5484                 /*
5485                  * we need the default promoted types for the function type
5486                  */
5487                 parameter_type = get_default_promoted_type(parameter_type);
5488
5489                 function_parameter_t *function_parameter
5490                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
5491                 memset(function_parameter, 0, sizeof(function_parameter[0]));
5492
5493                 function_parameter->type = parameter_type;
5494                 if (last_parameter != NULL) {
5495                         last_parameter->next = function_parameter;
5496                 } else {
5497                         parameters = function_parameter;
5498                 }
5499                 last_parameter = function_parameter;
5500         }
5501
5502         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
5503          * prototype */
5504         new_type->function.parameters             = parameters;
5505         new_type->function.unspecified_parameters = true;
5506
5507         type = typehash_insert(new_type);
5508         if (type != new_type) {
5509                 obstack_free(type_obst, new_type);
5510         }
5511
5512         entity->declaration.type = type;
5513
5514         rem_anchor_token('{');
5515 }
5516
5517 static bool first_err = true;
5518
5519 /**
5520  * When called with first_err set, prints the name of the current function,
5521  * else does noting.
5522  */
5523 static void print_in_function(void)
5524 {
5525         if (first_err) {
5526                 first_err = false;
5527                 diagnosticf("%s: In function '%Y':\n",
5528                             current_function->base.base.source_position.input_name,
5529                             current_function->base.base.symbol);
5530         }
5531 }
5532
5533 /**
5534  * Check if all labels are defined in the current function.
5535  * Check if all labels are used in the current function.
5536  */
5537 static void check_labels(void)
5538 {
5539         for (const goto_statement_t *goto_statement = goto_first;
5540             goto_statement != NULL;
5541             goto_statement = goto_statement->next) {
5542                 /* skip computed gotos */
5543                 if (goto_statement->expression != NULL)
5544                         continue;
5545
5546                 label_t *label = goto_statement->label;
5547
5548                 label->used = true;
5549                 if (label->base.source_position.input_name == NULL) {
5550                         print_in_function();
5551                         errorf(&goto_statement->base.source_position,
5552                                "label '%Y' used but not defined", label->base.symbol);
5553                  }
5554         }
5555
5556         if (warning.unused_label) {
5557                 for (const label_statement_t *label_statement = label_first;
5558                          label_statement != NULL;
5559                          label_statement = label_statement->next) {
5560                         label_t *label = label_statement->label;
5561
5562                         if (! label->used) {
5563                                 print_in_function();
5564                                 warningf(&label_statement->base.source_position,
5565                                          "label '%Y' defined but not used", label->base.symbol);
5566                         }
5567                 }
5568         }
5569 }
5570
5571 static void warn_unused_entity(entity_t *entity, entity_t *end)
5572 {
5573         for (; entity != NULL; entity = entity->base.next) {
5574                 if (!is_declaration(entity))
5575                         continue;
5576
5577                 declaration_t *declaration = &entity->declaration;
5578                 if (declaration->implicit)
5579                         continue;
5580
5581                 if (!declaration->used) {
5582                         print_in_function();
5583                         const char *what = get_entity_kind_name(entity->kind);
5584                         warningf(&entity->base.source_position, "%s '%Y' is unused",
5585                                  what, entity->base.symbol);
5586                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
5587                         print_in_function();
5588                         const char *what = get_entity_kind_name(entity->kind);
5589                         warningf(&entity->base.source_position, "%s '%Y' is never read",
5590                                  what, entity->base.symbol);
5591                 }
5592
5593                 if (entity == end)
5594                         break;
5595         }
5596 }
5597
5598 static void check_unused_variables(statement_t *const stmt, void *const env)
5599 {
5600         (void)env;
5601
5602         switch (stmt->kind) {
5603                 case STATEMENT_DECLARATION: {
5604                         declaration_statement_t const *const decls = &stmt->declaration;
5605                         warn_unused_entity(decls->declarations_begin,
5606                                            decls->declarations_end);
5607                         return;
5608                 }
5609
5610                 case STATEMENT_FOR:
5611                         warn_unused_entity(stmt->fors.scope.entities, NULL);
5612                         return;
5613
5614                 default:
5615                         return;
5616         }
5617 }
5618
5619 /**
5620  * Check declarations of current_function for unused entities.
5621  */
5622 static void check_declarations(void)
5623 {
5624         if (warning.unused_parameter) {
5625                 const scope_t *scope = &current_function->parameters;
5626
5627                 /* do not issue unused warnings for main */
5628                 if (!is_sym_main(current_function->base.base.symbol)) {
5629                         warn_unused_entity(scope->entities, NULL);
5630                 }
5631         }
5632         if (warning.unused_variable) {
5633                 walk_statements(current_function->statement, check_unused_variables,
5634                                 NULL);
5635         }
5636 }
5637
5638 static int determine_truth(expression_t const* const cond)
5639 {
5640         return
5641                 !is_constant_expression(cond) ? 0 :
5642                 fold_constant(cond) != 0      ? 1 :
5643                 -1;
5644 }
5645
5646 static void check_reachable(statement_t *);
5647
5648 static bool expression_returns(expression_t const *const expr)
5649 {
5650         switch (expr->kind) {
5651                 case EXPR_CALL: {
5652                         expression_t const *const func = expr->call.function;
5653                         if (func->kind == EXPR_REFERENCE) {
5654                                 entity_t *entity = func->reference.entity;
5655                                 if (entity->kind == ENTITY_FUNCTION
5656                                                 && entity->declaration.modifiers & DM_NORETURN)
5657                                         return false;
5658                         }
5659
5660                         if (!expression_returns(func))
5661                                 return false;
5662
5663                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
5664                                 if (!expression_returns(arg->expression))
5665                                         return false;
5666                         }
5667
5668                         return true;
5669                 }
5670
5671                 case EXPR_REFERENCE:
5672                 case EXPR_REFERENCE_ENUM_VALUE:
5673                 case EXPR_CONST:
5674                 case EXPR_CHARACTER_CONSTANT:
5675                 case EXPR_WIDE_CHARACTER_CONSTANT:
5676                 case EXPR_STRING_LITERAL:
5677                 case EXPR_WIDE_STRING_LITERAL:
5678                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
5679                 case EXPR_LABEL_ADDRESS:
5680                 case EXPR_CLASSIFY_TYPE:
5681                 case EXPR_SIZEOF: // TODO handle obscure VLA case
5682                 case EXPR_ALIGNOF:
5683                 case EXPR_FUNCNAME:
5684                 case EXPR_BUILTIN_SYMBOL:
5685                 case EXPR_BUILTIN_CONSTANT_P:
5686                 case EXPR_BUILTIN_PREFETCH:
5687                 case EXPR_OFFSETOF:
5688                 case EXPR_INVALID:
5689                         return true;
5690
5691                 case EXPR_STATEMENT:
5692                         check_reachable(expr->statement.statement);
5693                         // TODO check if statement can be left
5694                         return true;
5695
5696                 case EXPR_CONDITIONAL:
5697                         // TODO handle constant expression
5698
5699                         if (!expression_returns(expr->conditional.condition))
5700                                 return false;
5701
5702                         if (expr->conditional.true_expression != NULL
5703                                         && expression_returns(expr->conditional.true_expression))
5704                                 return true;
5705
5706                         return expression_returns(expr->conditional.false_expression);
5707
5708                 case EXPR_SELECT:
5709                         return expression_returns(expr->select.compound);
5710
5711                 case EXPR_ARRAY_ACCESS:
5712                         return
5713                                 expression_returns(expr->array_access.array_ref) &&
5714                                 expression_returns(expr->array_access.index);
5715
5716                 case EXPR_VA_START:
5717                         return expression_returns(expr->va_starte.ap);
5718
5719                 case EXPR_VA_ARG:
5720                         return expression_returns(expr->va_arge.ap);
5721
5722                 EXPR_UNARY_CASES_MANDATORY
5723                         return expression_returns(expr->unary.value);
5724
5725                 case EXPR_UNARY_THROW:
5726                         return false;
5727
5728                 EXPR_BINARY_CASES
5729                         // TODO handle constant lhs of && and ||
5730                         return
5731                                 expression_returns(expr->binary.left) &&
5732                                 expression_returns(expr->binary.right);
5733
5734                 case EXPR_UNKNOWN:
5735                         break;
5736         }
5737
5738         panic("unhandled expression");
5739 }
5740
5741 static bool initializer_returns(initializer_t const *const init)
5742 {
5743         switch (init->kind) {
5744                 case INITIALIZER_VALUE:
5745                         return expression_returns(init->value.value);
5746
5747                 case INITIALIZER_LIST: {
5748                         initializer_t * const*       i       = init->list.initializers;
5749                         initializer_t * const* const end     = i + init->list.len;
5750                         bool                         returns = true;
5751                         for (; i != end; ++i) {
5752                                 if (!initializer_returns(*i))
5753                                         returns = false;
5754                         }
5755                         return returns;
5756                 }
5757
5758                 case INITIALIZER_STRING:
5759                 case INITIALIZER_WIDE_STRING:
5760                 case INITIALIZER_DESIGNATOR: // designators have no payload
5761                         return true;
5762         }
5763         panic("unhandled initializer");
5764 }
5765
5766 static bool noreturn_candidate;
5767
5768 static void check_reachable(statement_t *const stmt)
5769 {
5770         if (stmt->base.reachable)
5771                 return;
5772         if (stmt->kind != STATEMENT_DO_WHILE)
5773                 stmt->base.reachable = true;
5774
5775         statement_t *last = stmt;
5776         statement_t *next;
5777         switch (stmt->kind) {
5778                 case STATEMENT_INVALID:
5779                 case STATEMENT_EMPTY:
5780                 case STATEMENT_LOCAL_LABEL:
5781                 case STATEMENT_ASM:
5782                         next = stmt->base.next;
5783                         break;
5784
5785                 case STATEMENT_DECLARATION: {
5786                         declaration_statement_t const *const decl = &stmt->declaration;
5787                         entity_t                const *      ent  = decl->declarations_begin;
5788                         entity_t                const *const last = decl->declarations_end;
5789                         if (ent != NULL) {
5790                                 for (;; ent = ent->base.next) {
5791                                         if (ent->kind                 == ENTITY_VARIABLE &&
5792                                                         ent->variable.initializer != NULL            &&
5793                                                         !initializer_returns(ent->variable.initializer)) {
5794                                                 return;
5795                                         }
5796                                         if (ent == last)
5797                                                 break;
5798                                 }
5799                         }
5800                         next = stmt->base.next;
5801                         break;
5802                 }
5803
5804                 case STATEMENT_COMPOUND:
5805                         next = stmt->compound.statements;
5806                         break;
5807
5808                 case STATEMENT_RETURN: {
5809                         expression_t const *const val = stmt->returns.value;
5810                         if (val == NULL || expression_returns(val))
5811                                 noreturn_candidate = false;
5812                         return;
5813                 }
5814
5815                 case STATEMENT_IF: {
5816                         if_statement_t const *const ifs  = &stmt->ifs;
5817                         expression_t   const *const cond = ifs->condition;
5818
5819                         if (!expression_returns(cond))
5820                                 return;
5821
5822                         int const val = determine_truth(cond);
5823
5824                         if (val >= 0)
5825                                 check_reachable(ifs->true_statement);
5826
5827                         if (val > 0)
5828                                 return;
5829
5830                         if (ifs->false_statement != NULL) {
5831                                 check_reachable(ifs->false_statement);
5832                                 return;
5833                         }
5834
5835                         next = stmt->base.next;
5836                         break;
5837                 }
5838
5839                 case STATEMENT_SWITCH: {
5840                         switch_statement_t const *const switchs = &stmt->switchs;
5841                         expression_t       const *const expr    = switchs->expression;
5842
5843                         if (!expression_returns(expr))
5844                                 return;
5845
5846                         if (is_constant_expression(expr)) {
5847                                 long                    const val      = fold_constant(expr);
5848                                 case_label_statement_t *      defaults = NULL;
5849                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5850                                         if (i->expression == NULL) {
5851                                                 defaults = i;
5852                                                 continue;
5853                                         }
5854
5855                                         if (i->first_case <= val && val <= i->last_case) {
5856                                                 check_reachable((statement_t*)i);
5857                                                 return;
5858                                         }
5859                                 }
5860
5861                                 if (defaults != NULL) {
5862                                         check_reachable((statement_t*)defaults);
5863                                         return;
5864                                 }
5865                         } else {
5866                                 bool has_default = false;
5867                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5868                                         if (i->expression == NULL)
5869                                                 has_default = true;
5870
5871                                         check_reachable((statement_t*)i);
5872                                 }
5873
5874                                 if (has_default)
5875                                         return;
5876                         }
5877
5878                         next = stmt->base.next;
5879                         break;
5880                 }
5881
5882                 case STATEMENT_EXPRESSION: {
5883                         /* Check for noreturn function call */
5884                         expression_t const *const expr = stmt->expression.expression;
5885                         if (!expression_returns(expr))
5886                                 return;
5887
5888                         next = stmt->base.next;
5889                         break;
5890                 }
5891
5892                 case STATEMENT_CONTINUE: {
5893                         statement_t *parent = stmt;
5894                         for (;;) {
5895                                 parent = parent->base.parent;
5896                                 if (parent == NULL) /* continue not within loop */
5897                                         return;
5898
5899                                 next = parent;
5900                                 switch (parent->kind) {
5901                                         case STATEMENT_WHILE:    goto continue_while;
5902                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5903                                         case STATEMENT_FOR:      goto continue_for;
5904
5905                                         default: break;
5906                                 }
5907                         }
5908                 }
5909
5910                 case STATEMENT_BREAK: {
5911                         statement_t *parent = stmt;
5912                         for (;;) {
5913                                 parent = parent->base.parent;
5914                                 if (parent == NULL) /* break not within loop/switch */
5915                                         return;
5916
5917                                 switch (parent->kind) {
5918                                         case STATEMENT_SWITCH:
5919                                         case STATEMENT_WHILE:
5920                                         case STATEMENT_DO_WHILE:
5921                                         case STATEMENT_FOR:
5922                                                 last = parent;
5923                                                 next = parent->base.next;
5924                                                 goto found_break_parent;
5925
5926                                         default: break;
5927                                 }
5928                         }
5929 found_break_parent:
5930                         break;
5931                 }
5932
5933                 case STATEMENT_GOTO:
5934                         if (stmt->gotos.expression) {
5935                                 if (!expression_returns(stmt->gotos.expression))
5936                                         return;
5937
5938                                 statement_t *parent = stmt->base.parent;
5939                                 if (parent == NULL) /* top level goto */
5940                                         return;
5941                                 next = parent;
5942                         } else {
5943                                 next = stmt->gotos.label->statement;
5944                                 if (next == NULL) /* missing label */
5945                                         return;
5946                         }
5947                         break;
5948
5949                 case STATEMENT_LABEL:
5950                         next = stmt->label.statement;
5951                         break;
5952
5953                 case STATEMENT_CASE_LABEL:
5954                         next = stmt->case_label.statement;
5955                         break;
5956
5957                 case STATEMENT_WHILE: {
5958                         while_statement_t const *const whiles = &stmt->whiles;
5959                         expression_t      const *const cond   = whiles->condition;
5960
5961                         if (!expression_returns(cond))
5962                                 return;
5963
5964                         int const val = determine_truth(cond);
5965
5966                         if (val >= 0)
5967                                 check_reachable(whiles->body);
5968
5969                         if (val > 0)
5970                                 return;
5971
5972                         next = stmt->base.next;
5973                         break;
5974                 }
5975
5976                 case STATEMENT_DO_WHILE:
5977                         next = stmt->do_while.body;
5978                         break;
5979
5980                 case STATEMENT_FOR: {
5981                         for_statement_t *const fors = &stmt->fors;
5982
5983                         if (fors->condition_reachable)
5984                                 return;
5985                         fors->condition_reachable = true;
5986
5987                         expression_t const *const cond = fors->condition;
5988
5989                         int val;
5990                         if (cond == NULL) {
5991                                 val = 1;
5992                         } else if (expression_returns(cond)) {
5993                                 val = determine_truth(cond);
5994                         } else {
5995                                 return;
5996                         }
5997
5998                         if (val >= 0)
5999                                 check_reachable(fors->body);
6000
6001                         if (val > 0)
6002                                 return;
6003
6004                         next = stmt->base.next;
6005                         break;
6006                 }
6007
6008                 case STATEMENT_MS_TRY: {
6009                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
6010                         check_reachable(ms_try->try_statement);
6011                         next = ms_try->final_statement;
6012                         break;
6013                 }
6014
6015                 case STATEMENT_LEAVE: {
6016                         statement_t *parent = stmt;
6017                         for (;;) {
6018                                 parent = parent->base.parent;
6019                                 if (parent == NULL) /* __leave not within __try */
6020                                         return;
6021
6022                                 if (parent->kind == STATEMENT_MS_TRY) {
6023                                         last = parent;
6024                                         next = parent->ms_try.final_statement;
6025                                         break;
6026                                 }
6027                         }
6028                         break;
6029                 }
6030         }
6031
6032         while (next == NULL) {
6033                 next = last->base.parent;
6034                 if (next == NULL) {
6035                         noreturn_candidate = false;
6036
6037                         type_t *const type = current_function->base.type;
6038                         assert(is_type_function(type));
6039                         type_t *const ret  = skip_typeref(type->function.return_type);
6040                         if (warning.return_type                    &&
6041                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
6042                             is_type_valid(ret)                     &&
6043                             !is_sym_main(current_function->base.base.symbol)) {
6044                                 warningf(&stmt->base.source_position,
6045                                          "control reaches end of non-void function");
6046                         }
6047                         return;
6048                 }
6049
6050                 switch (next->kind) {
6051                         case STATEMENT_INVALID:
6052                         case STATEMENT_EMPTY:
6053                         case STATEMENT_DECLARATION:
6054                         case STATEMENT_LOCAL_LABEL:
6055                         case STATEMENT_EXPRESSION:
6056                         case STATEMENT_ASM:
6057                         case STATEMENT_RETURN:
6058                         case STATEMENT_CONTINUE:
6059                         case STATEMENT_BREAK:
6060                         case STATEMENT_GOTO:
6061                         case STATEMENT_LEAVE:
6062                                 panic("invalid control flow in function");
6063
6064                         case STATEMENT_COMPOUND:
6065                         case STATEMENT_IF:
6066                         case STATEMENT_SWITCH:
6067                         case STATEMENT_LABEL:
6068                         case STATEMENT_CASE_LABEL:
6069                                 last = next;
6070                                 next = next->base.next;
6071                                 break;
6072
6073                         case STATEMENT_WHILE: {
6074 continue_while:
6075                                 if (next->base.reachable)
6076                                         return;
6077                                 next->base.reachable = true;
6078
6079                                 while_statement_t const *const whiles = &next->whiles;
6080                                 expression_t      const *const cond   = whiles->condition;
6081
6082                                 if (!expression_returns(cond))
6083                                         return;
6084
6085                                 int const val = determine_truth(cond);
6086
6087                                 if (val >= 0)
6088                                         check_reachable(whiles->body);
6089
6090                                 if (val > 0)
6091                                         return;
6092
6093                                 last = next;
6094                                 next = next->base.next;
6095                                 break;
6096                         }
6097
6098                         case STATEMENT_DO_WHILE: {
6099 continue_do_while:
6100                                 if (next->base.reachable)
6101                                         return;
6102                                 next->base.reachable = true;
6103
6104                                 do_while_statement_t const *const dw   = &next->do_while;
6105                                 expression_t         const *const cond = dw->condition;
6106
6107                                 if (!expression_returns(cond))
6108                                         return;
6109
6110                                 int const val = determine_truth(cond);
6111
6112                                 if (val >= 0)
6113                                         check_reachable(dw->body);
6114
6115                                 if (val > 0)
6116                                         return;
6117
6118                                 last = next;
6119                                 next = next->base.next;
6120                                 break;
6121                         }
6122
6123                         case STATEMENT_FOR: {
6124 continue_for:;
6125                                 for_statement_t *const fors = &next->fors;
6126
6127                                 fors->step_reachable = true;
6128
6129                                 if (fors->condition_reachable)
6130                                         return;
6131                                 fors->condition_reachable = true;
6132
6133                                 expression_t const *const cond = fors->condition;
6134
6135                                 int val;
6136                                 if (cond == NULL) {
6137                                         val = 1;
6138                                 } else if (expression_returns(cond)) {
6139                                         val = determine_truth(cond);
6140                                 } else {
6141                                         return;
6142                                 }
6143
6144                                 if (val >= 0)
6145                                         check_reachable(fors->body);
6146
6147                                 if (val > 0)
6148                                         return;
6149
6150                                 last = next;
6151                                 next = next->base.next;
6152                                 break;
6153                         }
6154
6155                         case STATEMENT_MS_TRY:
6156                                 last = next;
6157                                 next = next->ms_try.final_statement;
6158                                 break;
6159                 }
6160         }
6161
6162         check_reachable(next);
6163 }
6164
6165 static void check_unreachable(statement_t* const stmt, void *const env)
6166 {
6167         (void)env;
6168
6169         switch (stmt->kind) {
6170                 case STATEMENT_DO_WHILE:
6171                         if (!stmt->base.reachable) {
6172                                 expression_t const *const cond = stmt->do_while.condition;
6173                                 if (determine_truth(cond) >= 0) {
6174                                         warningf(&cond->base.source_position,
6175                                                  "condition of do-while-loop is unreachable");
6176                                 }
6177                         }
6178                         return;
6179
6180                 case STATEMENT_FOR: {
6181                         for_statement_t const* const fors = &stmt->fors;
6182
6183                         // if init and step are unreachable, cond is unreachable, too
6184                         if (!stmt->base.reachable && !fors->step_reachable) {
6185                                 warningf(&stmt->base.source_position, "statement is unreachable");
6186                         } else {
6187                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
6188                                         warningf(&fors->initialisation->base.source_position,
6189                                                  "initialisation of for-statement is unreachable");
6190                                 }
6191
6192                                 if (!fors->condition_reachable && fors->condition != NULL) {
6193                                         warningf(&fors->condition->base.source_position,
6194                                                  "condition of for-statement is unreachable");
6195                                 }
6196
6197                                 if (!fors->step_reachable && fors->step != NULL) {
6198                                         warningf(&fors->step->base.source_position,
6199                                                  "step of for-statement is unreachable");
6200                                 }
6201                         }
6202                         return;
6203                 }
6204
6205                 case STATEMENT_COMPOUND:
6206                         if (stmt->compound.statements != NULL)
6207                                 return;
6208                         goto warn_unreachable;
6209
6210                 case STATEMENT_DECLARATION: {
6211                         /* Only warn if there is at least one declarator with an initializer.
6212                          * This typically occurs in switch statements. */
6213                         declaration_statement_t const *const decl = &stmt->declaration;
6214                         entity_t                const *      ent  = decl->declarations_begin;
6215                         entity_t                const *const last = decl->declarations_end;
6216                         for (;; ent = ent->base.next) {
6217                                 if (ent->kind                 == ENTITY_VARIABLE &&
6218                                                 ent->variable.initializer != NULL) {
6219                                         goto warn_unreachable;
6220                                 }
6221                                 if (ent == last)
6222                                         return;
6223                         }
6224                 }
6225
6226                 default:
6227 warn_unreachable:
6228                         if (!stmt->base.reachable)
6229                                 warningf(&stmt->base.source_position, "statement is unreachable");
6230                         return;
6231         }
6232 }
6233
6234 static void parse_external_declaration(void)
6235 {
6236         /* function-definitions and declarations both start with declaration
6237          * specifiers */
6238         declaration_specifiers_t specifiers;
6239         memset(&specifiers, 0, sizeof(specifiers));
6240
6241         add_anchor_token(';');
6242         parse_declaration_specifiers(&specifiers);
6243         rem_anchor_token(';');
6244
6245         /* must be a declaration */
6246         if (token.type == ';') {
6247                 parse_anonymous_declaration_rest(&specifiers);
6248                 return;
6249         }
6250
6251         add_anchor_token(',');
6252         add_anchor_token('=');
6253         add_anchor_token(';');
6254         add_anchor_token('{');
6255
6256         /* declarator is common to both function-definitions and declarations */
6257         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
6258
6259         rem_anchor_token('{');
6260         rem_anchor_token(';');
6261         rem_anchor_token('=');
6262         rem_anchor_token(',');
6263
6264         /* must be a declaration */
6265         switch (token.type) {
6266                 case ',':
6267                 case ';':
6268                 case '=':
6269                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
6270                                         DECL_FLAGS_NONE);
6271                         return;
6272         }
6273
6274         /* must be a function definition */
6275         parse_kr_declaration_list(ndeclaration);
6276
6277         if (token.type != '{') {
6278                 parse_error_expected("while parsing function definition", '{', NULL);
6279                 eat_until_matching_token(';');
6280                 return;
6281         }
6282
6283         assert(is_declaration(ndeclaration));
6284         type_t *type = skip_typeref(ndeclaration->declaration.type);
6285
6286         if (!is_type_function(type)) {
6287                 if (is_type_valid(type)) {
6288                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
6289                                type, ndeclaration->base.symbol);
6290                 }
6291                 eat_block();
6292                 return;
6293         }
6294
6295         if (warning.aggregate_return &&
6296             is_type_compound(skip_typeref(type->function.return_type))) {
6297                 warningf(HERE, "function '%Y' returns an aggregate",
6298                          ndeclaration->base.symbol);
6299         }
6300         if (warning.traditional && !type->function.unspecified_parameters) {
6301                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
6302                         ndeclaration->base.symbol);
6303         }
6304         if (warning.old_style_definition && type->function.unspecified_parameters) {
6305                 warningf(HERE, "old-style function definition '%Y'",
6306                         ndeclaration->base.symbol);
6307         }
6308
6309         /* Â§ 6.7.5.3 (14) a function definition with () means no
6310          * parameters (and not unspecified parameters) */
6311         if (type->function.unspecified_parameters
6312                         && type->function.parameters == NULL
6313                         && !type->function.kr_style_parameters) {
6314                 type_t *duplicate = duplicate_type(type);
6315                 duplicate->function.unspecified_parameters = false;
6316
6317                 type = typehash_insert(duplicate);
6318                 if (type != duplicate) {
6319                         obstack_free(type_obst, duplicate);
6320                 }
6321                 ndeclaration->declaration.type = type;
6322         }
6323
6324         entity_t *const entity = record_entity(ndeclaration, true);
6325         assert(entity->kind == ENTITY_FUNCTION);
6326         assert(ndeclaration->kind == ENTITY_FUNCTION);
6327
6328         function_t *function = &entity->function;
6329         if (ndeclaration != entity) {
6330                 function->parameters = ndeclaration->function.parameters;
6331         }
6332         assert(is_declaration(entity));
6333         type = skip_typeref(entity->declaration.type);
6334
6335         /* push function parameters and switch scope */
6336         size_t const  top       = environment_top();
6337         scope_t      *old_scope = scope_push(&function->parameters);
6338
6339         entity_t *parameter = function->parameters.entities;
6340         for (; parameter != NULL; parameter = parameter->base.next) {
6341                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
6342                         parameter->base.parent_scope = current_scope;
6343                 }
6344                 assert(parameter->base.parent_scope == NULL
6345                                 || parameter->base.parent_scope == current_scope);
6346                 parameter->base.parent_scope = current_scope;
6347                 if (parameter->base.symbol == NULL) {
6348                         errorf(&parameter->base.source_position, "parameter name omitted");
6349                         continue;
6350                 }
6351                 environment_push(parameter);
6352         }
6353
6354         if (function->statement != NULL) {
6355                 parser_error_multiple_definition(entity, HERE);
6356                 eat_block();
6357         } else {
6358                 /* parse function body */
6359                 int         label_stack_top      = label_top();
6360                 function_t *old_current_function = current_function;
6361                 current_function                 = function;
6362                 current_parent                   = NULL;
6363
6364                 goto_first   = NULL;
6365                 goto_anchor  = &goto_first;
6366                 label_first  = NULL;
6367                 label_anchor = &label_first;
6368
6369                 statement_t *const body = parse_compound_statement(false);
6370                 function->statement = body;
6371                 first_err = true;
6372                 check_labels();
6373                 check_declarations();
6374                 if (warning.return_type      ||
6375                     warning.unreachable_code ||
6376                     (warning.missing_noreturn
6377                      && !(function->base.modifiers & DM_NORETURN))) {
6378                         noreturn_candidate = true;
6379                         check_reachable(body);
6380                         if (warning.unreachable_code)
6381                                 walk_statements(body, check_unreachable, NULL);
6382                         if (warning.missing_noreturn &&
6383                             noreturn_candidate       &&
6384                             !(function->base.modifiers & DM_NORETURN)) {
6385                                 warningf(&body->base.source_position,
6386                                          "function '%#T' is candidate for attribute 'noreturn'",
6387                                          type, entity->base.symbol);
6388                         }
6389                 }
6390
6391                 assert(current_parent   == NULL);
6392                 assert(current_function == function);
6393                 current_function = old_current_function;
6394                 label_pop_to(label_stack_top);
6395         }
6396
6397         assert(current_scope == &function->parameters);
6398         scope_pop(old_scope);
6399         environment_pop_to(top);
6400 }
6401
6402 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
6403                                   source_position_t *source_position,
6404                                   const symbol_t *symbol)
6405 {
6406         type_t *type = allocate_type_zero(TYPE_BITFIELD);
6407
6408         type->bitfield.base_type       = base_type;
6409         type->bitfield.size_expression = size;
6410
6411         il_size_t bit_size;
6412         type_t *skipped_type = skip_typeref(base_type);
6413         if (!is_type_integer(skipped_type)) {
6414                 errorf(HERE, "bitfield base type '%T' is not an integer type",
6415                         base_type);
6416                 bit_size = 0;
6417         } else {
6418                 bit_size = skipped_type->base.size * 8;
6419         }
6420
6421         if (is_constant_expression(size)) {
6422                 long v = fold_constant(size);
6423
6424                 if (v < 0) {
6425                         errorf(source_position, "negative width in bit-field '%Y'", symbol);
6426                 } else if (v == 0) {
6427                         errorf(source_position, "zero width for bit-field '%Y'", symbol);
6428                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
6429                         errorf(source_position, "width of '%Y' exceeds its type", symbol);
6430                 } else {
6431                         type->bitfield.bit_size = v;
6432                 }
6433         }
6434
6435         return type;
6436 }
6437
6438 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
6439 {
6440         entity_t *iter = compound->members.entities;
6441         for (; iter != NULL; iter = iter->base.next) {
6442                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
6443                         continue;
6444
6445                 if (iter->base.symbol == symbol) {
6446                         return iter;
6447                 } else if (iter->base.symbol == NULL) {
6448                         type_t *type = skip_typeref(iter->declaration.type);
6449                         if (is_type_compound(type)) {
6450                                 entity_t *result
6451                                         = find_compound_entry(type->compound.compound, symbol);
6452                                 if (result != NULL)
6453                                         return result;
6454                         }
6455                         continue;
6456                 }
6457         }
6458
6459         return NULL;
6460 }
6461
6462 static void parse_compound_declarators(compound_t *compound,
6463                 const declaration_specifiers_t *specifiers)
6464 {
6465         while (true) {
6466                 entity_t *entity;
6467
6468                 if (token.type == ':') {
6469                         source_position_t source_position = *HERE;
6470                         next_token();
6471
6472                         type_t *base_type = specifiers->type;
6473                         expression_t *size = parse_constant_expression();
6474
6475                         type_t *type = make_bitfield_type(base_type, size,
6476                                         &source_position, sym_anonymous);
6477
6478                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
6479                         entity->base.namespc                       = NAMESPACE_NORMAL;
6480                         entity->base.source_position               = source_position;
6481                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
6482                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
6483                         entity->declaration.modifiers              = specifiers->modifiers;
6484                         entity->declaration.type                   = type;
6485                 } else {
6486                         entity = parse_declarator(specifiers,
6487                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
6488                         assert(entity->kind == ENTITY_COMPOUND_MEMBER);
6489
6490                         if (token.type == ':') {
6491                                 source_position_t source_position = *HERE;
6492                                 next_token();
6493                                 expression_t *size = parse_constant_expression();
6494
6495                                 type_t *type = entity->declaration.type;
6496                                 type_t *bitfield_type = make_bitfield_type(type, size,
6497                                                 &source_position, entity->base.symbol);
6498                                 entity->declaration.type = bitfield_type;
6499                         }
6500                 }
6501
6502                 /* make sure we don't define a symbol multiple times */
6503                 symbol_t *symbol = entity->base.symbol;
6504                 if (symbol != NULL) {
6505                         entity_t *prev = find_compound_entry(compound, symbol);
6506
6507                         if (prev != NULL) {
6508                                 errorf(&entity->base.source_position,
6509                                        "multiple declarations of symbol '%Y' (declared %P)",
6510                                        symbol, &prev->base.source_position);
6511                         }
6512                 }
6513
6514                 append_entity(&compound->members, entity);
6515
6516                 type_t *orig_type = entity->declaration.type;
6517                 type_t *type      = skip_typeref(orig_type);
6518                 if (is_type_function(type)) {
6519                         errorf(&entity->base.source_position,
6520                                         "compound member '%Y' must not have function type '%T'",
6521                                         entity->base.symbol, orig_type);
6522                 } else if (is_type_incomplete(type)) {
6523                         /* Â§6.7.2.1:16 flexible array member */
6524                         if (is_type_array(type) &&
6525                                         token.type == ';'   &&
6526                                         look_ahead(1)->type == '}') {
6527                                 compound->has_flexible_member = true;
6528                         } else {
6529                                 errorf(&entity->base.source_position,
6530                                                 "compound member '%Y' has incomplete type '%T'",
6531                                                 entity->base.symbol, orig_type);
6532                         }
6533                 }
6534
6535                 if (token.type != ',')
6536                         break;
6537                 next_token();
6538         }
6539         expect(';', end_error);
6540
6541 end_error:
6542         anonymous_entity = NULL;
6543 }
6544
6545 static void parse_compound_type_entries(compound_t *compound)
6546 {
6547         eat('{');
6548         add_anchor_token('}');
6549
6550         while (token.type != '}') {
6551                 if (token.type == T_EOF) {
6552                         errorf(HERE, "EOF while parsing struct");
6553                         break;
6554                 }
6555                 declaration_specifiers_t specifiers;
6556                 memset(&specifiers, 0, sizeof(specifiers));
6557                 parse_declaration_specifiers(&specifiers);
6558
6559                 parse_compound_declarators(compound, &specifiers);
6560         }
6561         rem_anchor_token('}');
6562         next_token();
6563
6564         /* Â§6.7.2.1:7 */
6565         compound->complete = true;
6566 }
6567
6568 static type_t *parse_typename(void)
6569 {
6570         declaration_specifiers_t specifiers;
6571         memset(&specifiers, 0, sizeof(specifiers));
6572         parse_declaration_specifiers(&specifiers);
6573         if (specifiers.storage_class != STORAGE_CLASS_NONE ||
6574                         specifiers.thread_local) {
6575                 /* TODO: improve error message, user does probably not know what a
6576                  * storage class is...
6577                  */
6578                 errorf(HERE, "typename may not have a storage class");
6579         }
6580
6581         type_t *result = parse_abstract_declarator(specifiers.type);
6582
6583         return result;
6584 }
6585
6586
6587
6588
6589 typedef expression_t* (*parse_expression_function)(void);
6590 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
6591
6592 typedef struct expression_parser_function_t expression_parser_function_t;
6593 struct expression_parser_function_t {
6594         parse_expression_function        parser;
6595         unsigned                         infix_precedence;
6596         parse_expression_infix_function  infix_parser;
6597 };
6598
6599 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
6600
6601 /**
6602  * Prints an error message if an expression was expected but not read
6603  */
6604 static expression_t *expected_expression_error(void)
6605 {
6606         /* skip the error message if the error token was read */
6607         if (token.type != T_ERROR) {
6608                 errorf(HERE, "expected expression, got token %K", &token);
6609         }
6610         next_token();
6611
6612         return create_invalid_expression();
6613 }
6614
6615 /**
6616  * Parse a string constant.
6617  */
6618 static expression_t *parse_string_const(void)
6619 {
6620         wide_string_t wres;
6621         if (token.type == T_STRING_LITERAL) {
6622                 string_t res = token.v.string;
6623                 next_token();
6624                 while (token.type == T_STRING_LITERAL) {
6625                         res = concat_strings(&res, &token.v.string);
6626                         next_token();
6627                 }
6628                 if (token.type != T_WIDE_STRING_LITERAL) {
6629                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
6630                         /* note: that we use type_char_ptr here, which is already the
6631                          * automatic converted type. revert_automatic_type_conversion
6632                          * will construct the array type */
6633                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
6634                         cnst->string.value = res;
6635                         return cnst;
6636                 }
6637
6638                 wres = concat_string_wide_string(&res, &token.v.wide_string);
6639         } else {
6640                 wres = token.v.wide_string;
6641         }
6642         next_token();
6643
6644         for (;;) {
6645                 switch (token.type) {
6646                         case T_WIDE_STRING_LITERAL:
6647                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
6648                                 break;
6649
6650                         case T_STRING_LITERAL:
6651                                 wres = concat_wide_string_string(&wres, &token.v.string);
6652                                 break;
6653
6654                         default: {
6655                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6656                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
6657                                 cnst->wide_string.value = wres;
6658                                 return cnst;
6659                         }
6660                 }
6661                 next_token();
6662         }
6663 }
6664
6665 /**
6666  * Parse a boolean constant.
6667  */
6668 static expression_t *parse_bool_const(bool value)
6669 {
6670         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6671         cnst->base.type          = type_bool;
6672         cnst->conste.v.int_value = value;
6673
6674         next_token();
6675
6676         return cnst;
6677 }
6678
6679 /**
6680  * Parse an integer constant.
6681  */
6682 static expression_t *parse_int_const(void)
6683 {
6684         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6685         cnst->base.type          = token.datatype;
6686         cnst->conste.v.int_value = token.v.intvalue;
6687
6688         next_token();
6689
6690         return cnst;
6691 }
6692
6693 /**
6694  * Parse a character constant.
6695  */
6696 static expression_t *parse_character_constant(void)
6697 {
6698         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
6699         cnst->base.type          = token.datatype;
6700         cnst->conste.v.character = token.v.string;
6701
6702         if (cnst->conste.v.character.size != 1) {
6703                 if (!GNU_MODE) {
6704                         errorf(HERE, "more than 1 character in character constant");
6705                 } else if (warning.multichar) {
6706                         warningf(HERE, "multi-character character constant");
6707                 }
6708         }
6709         next_token();
6710
6711         return cnst;
6712 }
6713
6714 /**
6715  * Parse a wide character constant.
6716  */
6717 static expression_t *parse_wide_character_constant(void)
6718 {
6719         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
6720         cnst->base.type               = token.datatype;
6721         cnst->conste.v.wide_character = token.v.wide_string;
6722
6723         if (cnst->conste.v.wide_character.size != 1) {
6724                 if (!GNU_MODE) {
6725                         errorf(HERE, "more than 1 character in character constant");
6726                 } else if (warning.multichar) {
6727                         warningf(HERE, "multi-character character constant");
6728                 }
6729         }
6730         next_token();
6731
6732         return cnst;
6733 }
6734
6735 /**
6736  * Parse a float constant.
6737  */
6738 static expression_t *parse_float_const(void)
6739 {
6740         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6741         cnst->base.type            = token.datatype;
6742         cnst->conste.v.float_value = token.v.floatvalue;
6743
6744         next_token();
6745
6746         return cnst;
6747 }
6748
6749 static entity_t *create_implicit_function(symbol_t *symbol,
6750                 const source_position_t *source_position)
6751 {
6752         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6753         ntype->function.return_type            = type_int;
6754         ntype->function.unspecified_parameters = true;
6755
6756         type_t *type = typehash_insert(ntype);
6757         if (type != ntype) {
6758                 free_type(ntype);
6759         }
6760
6761         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6762         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6763         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6764         entity->declaration.type                   = type;
6765         entity->declaration.implicit               = true;
6766         entity->base.symbol                        = symbol;
6767         entity->base.source_position               = *source_position;
6768
6769         bool strict_prototypes_old = warning.strict_prototypes;
6770         warning.strict_prototypes  = false;
6771         record_entity(entity, false);
6772         warning.strict_prototypes = strict_prototypes_old;
6773
6774         return entity;
6775 }
6776
6777 /**
6778  * Creates a return_type (func)(argument_type) function type if not
6779  * already exists.
6780  */
6781 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
6782                                     type_t *argument_type2)
6783 {
6784         function_parameter_t *parameter2
6785                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
6786         memset(parameter2, 0, sizeof(parameter2[0]));
6787         parameter2->type = argument_type2;
6788
6789         function_parameter_t *parameter1
6790                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
6791         memset(parameter1, 0, sizeof(parameter1[0]));
6792         parameter1->type = argument_type1;
6793         parameter1->next = parameter2;
6794
6795         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6796         type->function.return_type = return_type;
6797         type->function.parameters  = parameter1;
6798
6799         type_t *result = typehash_insert(type);
6800         if (result != type) {
6801                 free_type(type);
6802         }
6803
6804         return result;
6805 }
6806
6807 /**
6808  * Creates a return_type (func)(argument_type) function type if not
6809  * already exists.
6810  *
6811  * @param return_type    the return type
6812  * @param argument_type  the argument type
6813  */
6814 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
6815 {
6816         function_parameter_t *parameter
6817                 = obstack_alloc(type_obst, sizeof(parameter[0]));
6818         memset(parameter, 0, sizeof(parameter[0]));
6819         parameter->type = argument_type;
6820
6821         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6822         type->function.return_type = return_type;
6823         type->function.parameters  = parameter;
6824
6825         type_t *result = typehash_insert(type);
6826         if (result != type) {
6827                 free_type(type);
6828         }
6829
6830         return result;
6831 }
6832
6833 static type_t *make_function_0_type(type_t *return_type)
6834 {
6835         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6836         type->function.return_type = return_type;
6837         type->function.parameters  = NULL;
6838
6839         type_t *result = typehash_insert(type);
6840         if (result != type) {
6841                 free_type(type);
6842         }
6843
6844         return result;
6845 }
6846
6847 /**
6848  * Creates a function type for some function like builtins.
6849  *
6850  * @param symbol   the symbol describing the builtin
6851  */
6852 static type_t *get_builtin_symbol_type(symbol_t *symbol)
6853 {
6854         switch (symbol->ID) {
6855         case T___builtin_alloca:
6856                 return make_function_1_type(type_void_ptr, type_size_t);
6857         case T___builtin_huge_val:
6858                 return make_function_0_type(type_double);
6859         case T___builtin_inf:
6860                 return make_function_0_type(type_double);
6861         case T___builtin_inff:
6862                 return make_function_0_type(type_float);
6863         case T___builtin_infl:
6864                 return make_function_0_type(type_long_double);
6865         case T___builtin_nan:
6866                 return make_function_1_type(type_double, type_char_ptr);
6867         case T___builtin_nanf:
6868                 return make_function_1_type(type_float, type_char_ptr);
6869         case T___builtin_nanl:
6870                 return make_function_1_type(type_long_double, type_char_ptr);
6871         case T___builtin_va_end:
6872                 return make_function_1_type(type_void, type_valist);
6873         case T___builtin_expect:
6874                 return make_function_2_type(type_long, type_long, type_long);
6875         default:
6876                 internal_errorf(HERE, "not implemented builtin identifier found");
6877         }
6878 }
6879
6880 /**
6881  * Performs automatic type cast as described in Â§ 6.3.2.1.
6882  *
6883  * @param orig_type  the original type
6884  */
6885 static type_t *automatic_type_conversion(type_t *orig_type)
6886 {
6887         type_t *type = skip_typeref(orig_type);
6888         if (is_type_array(type)) {
6889                 array_type_t *array_type   = &type->array;
6890                 type_t       *element_type = array_type->element_type;
6891                 unsigned      qualifiers   = array_type->base.qualifiers;
6892
6893                 return make_pointer_type(element_type, qualifiers);
6894         }
6895
6896         if (is_type_function(type)) {
6897                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6898         }
6899
6900         return orig_type;
6901 }
6902
6903 /**
6904  * reverts the automatic casts of array to pointer types and function
6905  * to function-pointer types as defined Â§ 6.3.2.1
6906  */
6907 type_t *revert_automatic_type_conversion(const expression_t *expression)
6908 {
6909         switch (expression->kind) {
6910                 case EXPR_REFERENCE: {
6911                         entity_t *entity = expression->reference.entity;
6912                         if (is_declaration(entity)) {
6913                                 return entity->declaration.type;
6914                         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6915                                 return entity->enum_value.enum_type;
6916                         } else {
6917                                 panic("no declaration or enum in reference");
6918                         }
6919                 }
6920
6921                 case EXPR_SELECT: {
6922                         entity_t *entity = expression->select.compound_entry;
6923                         assert(is_declaration(entity));
6924                         type_t   *type   = entity->declaration.type;
6925                         return get_qualified_type(type,
6926                                                   expression->base.type->base.qualifiers);
6927                 }
6928
6929                 case EXPR_UNARY_DEREFERENCE: {
6930                         const expression_t *const value = expression->unary.value;
6931                         type_t             *const type  = skip_typeref(value->base.type);
6932                         assert(is_type_pointer(type));
6933                         return type->pointer.points_to;
6934                 }
6935
6936                 case EXPR_BUILTIN_SYMBOL:
6937                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6938
6939                 case EXPR_ARRAY_ACCESS: {
6940                         const expression_t *array_ref = expression->array_access.array_ref;
6941                         type_t             *type_left = skip_typeref(array_ref->base.type);
6942                         if (!is_type_valid(type_left))
6943                                 return type_left;
6944                         assert(is_type_pointer(type_left));
6945                         return type_left->pointer.points_to;
6946                 }
6947
6948                 case EXPR_STRING_LITERAL: {
6949                         size_t size = expression->string.value.size;
6950                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6951                 }
6952
6953                 case EXPR_WIDE_STRING_LITERAL: {
6954                         size_t size = expression->wide_string.value.size;
6955                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6956                 }
6957
6958                 case EXPR_COMPOUND_LITERAL:
6959                         return expression->compound_literal.type;
6960
6961                 default: break;
6962         }
6963
6964         return expression->base.type;
6965 }
6966
6967 static expression_t *parse_reference(void)
6968 {
6969         symbol_t *const symbol = token.v.symbol;
6970
6971         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
6972
6973         if (entity == NULL) {
6974                 if (!strict_mode && look_ahead(1)->type == '(') {
6975                         /* an implicitly declared function */
6976                         if (warning.error_implicit_function_declaration) {
6977                                 errorf(HERE, "implicit declaration of function '%Y'", symbol);
6978                         } else if (warning.implicit_function_declaration) {
6979                                 warningf(HERE, "implicit declaration of function '%Y'", symbol);
6980                         }
6981
6982                         entity = create_implicit_function(symbol, HERE);
6983                 } else {
6984                         errorf(HERE, "unknown identifier '%Y' found.", symbol);
6985                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6986                 }
6987         }
6988
6989         type_t *orig_type;
6990
6991         if (is_declaration(entity)) {
6992                 orig_type = entity->declaration.type;
6993         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6994                 orig_type = entity->enum_value.enum_type;
6995         } else if (entity->kind == ENTITY_TYPEDEF) {
6996                 errorf(HERE, "encountered typedef name '%Y' while parsing expression",
6997                         symbol);
6998                 next_token();
6999                 return create_invalid_expression();
7000         } else {
7001                 panic("expected declaration or enum value in reference");
7002         }
7003
7004         /* we always do the auto-type conversions; the & and sizeof parser contains
7005          * code to revert this! */
7006         type_t *type = automatic_type_conversion(orig_type);
7007
7008         expression_kind_t kind = EXPR_REFERENCE;
7009         if (entity->kind == ENTITY_ENUM_VALUE)
7010                 kind = EXPR_REFERENCE_ENUM_VALUE;
7011
7012         expression_t *expression     = allocate_expression_zero(kind);
7013         expression->reference.entity = entity;
7014         expression->base.type        = type;
7015
7016         /* this declaration is used */
7017         if (is_declaration(entity)) {
7018                 entity->declaration.used = true;
7019         }
7020
7021         if (entity->base.parent_scope != file_scope
7022                 && entity->base.parent_scope->depth < current_function->parameters.depth
7023                 && is_type_valid(orig_type) && !is_type_function(orig_type)) {
7024                 if (entity->kind == ENTITY_VARIABLE) {
7025                         /* access of a variable from an outer function */
7026                         entity->variable.address_taken = true;
7027                 } else if (entity->kind == ENTITY_PARAMETER) {
7028                         entity->parameter.address_taken = true;
7029                 }
7030                 current_function->need_closure = true;
7031         }
7032
7033         /* check for deprecated functions */
7034         if (warning.deprecated_declarations
7035                 && is_declaration(entity)
7036                 && entity->declaration.modifiers & DM_DEPRECATED) {
7037                 declaration_t *declaration = &entity->declaration;
7038
7039                 char const *const prefix = entity->kind == ENTITY_FUNCTION ?
7040                         "function" : "variable";
7041
7042                 if (declaration->deprecated_string != NULL) {
7043                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
7044                                  prefix, entity->base.symbol, &entity->base.source_position,
7045                                  declaration->deprecated_string);
7046                 } else {
7047                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
7048                                  entity->base.symbol, &entity->base.source_position);
7049                 }
7050         }
7051
7052         if (warning.init_self && entity == current_init_decl && !in_type_prop
7053             && entity->kind == ENTITY_VARIABLE) {
7054                 current_init_decl = NULL;
7055                 warningf(HERE, "variable '%#T' is initialized by itself",
7056                          entity->declaration.type, entity->base.symbol);
7057         }
7058
7059         next_token();
7060         return expression;
7061 }
7062
7063 static bool semantic_cast(expression_t *cast)
7064 {
7065         expression_t            *expression      = cast->unary.value;
7066         type_t                  *orig_dest_type  = cast->base.type;
7067         type_t                  *orig_type_right = expression->base.type;
7068         type_t            const *dst_type        = skip_typeref(orig_dest_type);
7069         type_t            const *src_type        = skip_typeref(orig_type_right);
7070         source_position_t const *pos             = &cast->base.source_position;
7071
7072         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
7073         if (dst_type == type_void)
7074                 return true;
7075
7076         /* only integer and pointer can be casted to pointer */
7077         if (is_type_pointer(dst_type)  &&
7078             !is_type_pointer(src_type) &&
7079             !is_type_integer(src_type) &&
7080             is_type_valid(src_type)) {
7081                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
7082                 return false;
7083         }
7084
7085         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
7086                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
7087                 return false;
7088         }
7089
7090         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
7091                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
7092                 return false;
7093         }
7094
7095         if (warning.cast_qual &&
7096             is_type_pointer(src_type) &&
7097             is_type_pointer(dst_type)) {
7098                 type_t *src = skip_typeref(src_type->pointer.points_to);
7099                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
7100                 unsigned missing_qualifiers =
7101                         src->base.qualifiers & ~dst->base.qualifiers;
7102                 if (missing_qualifiers != 0) {
7103                         warningf(pos,
7104                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
7105                                  missing_qualifiers, orig_type_right);
7106                 }
7107         }
7108         return true;
7109 }
7110
7111 static expression_t *parse_compound_literal(type_t *type)
7112 {
7113         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
7114
7115         parse_initializer_env_t env;
7116         env.type             = type;
7117         env.entity           = NULL;
7118         env.must_be_constant = false;
7119         initializer_t *initializer = parse_initializer(&env);
7120         type = env.type;
7121
7122         expression->compound_literal.initializer = initializer;
7123         expression->compound_literal.type        = type;
7124         expression->base.type                    = automatic_type_conversion(type);
7125
7126         return expression;
7127 }
7128
7129 /**
7130  * Parse a cast expression.
7131  */
7132 static expression_t *parse_cast(void)
7133 {
7134         add_anchor_token(')');
7135
7136         source_position_t source_position = token.source_position;
7137
7138         type_t *type = parse_typename();
7139
7140         rem_anchor_token(')');
7141         expect(')', end_error);
7142
7143         if (token.type == '{') {
7144                 return parse_compound_literal(type);
7145         }
7146
7147         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
7148         cast->base.source_position = source_position;
7149
7150         expression_t *value = parse_sub_expression(PREC_CAST);
7151         cast->base.type   = type;
7152         cast->unary.value = value;
7153
7154         if (! semantic_cast(cast)) {
7155                 /* TODO: record the error in the AST. else it is impossible to detect it */
7156         }
7157
7158         return cast;
7159 end_error:
7160         return create_invalid_expression();
7161 }
7162
7163 /**
7164  * Parse a statement expression.
7165  */
7166 static expression_t *parse_statement_expression(void)
7167 {
7168         add_anchor_token(')');
7169
7170         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
7171
7172         statement_t *statement          = parse_compound_statement(true);
7173         expression->statement.statement = statement;
7174
7175         /* find last statement and use its type */
7176         type_t *type = type_void;
7177         const statement_t *stmt = statement->compound.statements;
7178         if (stmt != NULL) {
7179                 while (stmt->base.next != NULL)
7180                         stmt = stmt->base.next;
7181
7182                 if (stmt->kind == STATEMENT_EXPRESSION) {
7183                         type = stmt->expression.expression->base.type;
7184                 }
7185         } else if (warning.other) {
7186                 warningf(&expression->base.source_position, "empty statement expression ({})");
7187         }
7188         expression->base.type = type;
7189
7190         rem_anchor_token(')');
7191         expect(')', end_error);
7192
7193 end_error:
7194         return expression;
7195 }
7196
7197 /**
7198  * Parse a parenthesized expression.
7199  */
7200 static expression_t *parse_parenthesized_expression(void)
7201 {
7202         eat('(');
7203
7204         switch (token.type) {
7205         case '{':
7206                 /* gcc extension: a statement expression */
7207                 return parse_statement_expression();
7208
7209         TYPE_QUALIFIERS
7210         TYPE_SPECIFIERS
7211                 return parse_cast();
7212         case T_IDENTIFIER:
7213                 if (is_typedef_symbol(token.v.symbol)) {
7214                         return parse_cast();
7215                 }
7216         }
7217
7218         add_anchor_token(')');
7219         expression_t *result = parse_expression();
7220         rem_anchor_token(')');
7221         expect(')', end_error);
7222
7223 end_error:
7224         return result;
7225 }
7226
7227 static expression_t *parse_function_keyword(void)
7228 {
7229         /* TODO */
7230
7231         if (current_function == NULL) {
7232                 errorf(HERE, "'__func__' used outside of a function");
7233         }
7234
7235         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7236         expression->base.type     = type_char_ptr;
7237         expression->funcname.kind = FUNCNAME_FUNCTION;
7238
7239         next_token();
7240
7241         return expression;
7242 }
7243
7244 static expression_t *parse_pretty_function_keyword(void)
7245 {
7246         if (current_function == NULL) {
7247                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
7248         }
7249
7250         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7251         expression->base.type     = type_char_ptr;
7252         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
7253
7254         eat(T___PRETTY_FUNCTION__);
7255
7256         return expression;
7257 }
7258
7259 static expression_t *parse_funcsig_keyword(void)
7260 {
7261         if (current_function == NULL) {
7262                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
7263         }
7264
7265         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7266         expression->base.type     = type_char_ptr;
7267         expression->funcname.kind = FUNCNAME_FUNCSIG;
7268
7269         eat(T___FUNCSIG__);
7270
7271         return expression;
7272 }
7273
7274 static expression_t *parse_funcdname_keyword(void)
7275 {
7276         if (current_function == NULL) {
7277                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
7278         }
7279
7280         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7281         expression->base.type     = type_char_ptr;
7282         expression->funcname.kind = FUNCNAME_FUNCDNAME;
7283
7284         eat(T___FUNCDNAME__);
7285
7286         return expression;
7287 }
7288
7289 static designator_t *parse_designator(void)
7290 {
7291         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
7292         result->source_position = *HERE;
7293
7294         if (token.type != T_IDENTIFIER) {
7295                 parse_error_expected("while parsing member designator",
7296                                      T_IDENTIFIER, NULL);
7297                 return NULL;
7298         }
7299         result->symbol = token.v.symbol;
7300         next_token();
7301
7302         designator_t *last_designator = result;
7303         while (true) {
7304                 if (token.type == '.') {
7305                         next_token();
7306                         if (token.type != T_IDENTIFIER) {
7307                                 parse_error_expected("while parsing member designator",
7308                                                      T_IDENTIFIER, NULL);
7309                                 return NULL;
7310                         }
7311                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
7312                         designator->source_position = *HERE;
7313                         designator->symbol          = token.v.symbol;
7314                         next_token();
7315
7316                         last_designator->next = designator;
7317                         last_designator       = designator;
7318                         continue;
7319                 }
7320                 if (token.type == '[') {
7321                         next_token();
7322                         add_anchor_token(']');
7323                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
7324                         designator->source_position = *HERE;
7325                         designator->array_index     = parse_expression();
7326                         rem_anchor_token(']');
7327                         expect(']', end_error);
7328                         if (designator->array_index == NULL) {
7329                                 return NULL;
7330                         }
7331
7332                         last_designator->next = designator;
7333                         last_designator       = designator;
7334                         continue;
7335                 }
7336                 break;
7337         }
7338
7339         return result;
7340 end_error:
7341         return NULL;
7342 }
7343
7344 /**
7345  * Parse the __builtin_offsetof() expression.
7346  */
7347 static expression_t *parse_offsetof(void)
7348 {
7349         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
7350         expression->base.type    = type_size_t;
7351
7352         eat(T___builtin_offsetof);
7353
7354         expect('(', end_error);
7355         add_anchor_token(',');
7356         type_t *type = parse_typename();
7357         rem_anchor_token(',');
7358         expect(',', end_error);
7359         add_anchor_token(')');
7360         designator_t *designator = parse_designator();
7361         rem_anchor_token(')');
7362         expect(')', end_error);
7363
7364         expression->offsetofe.type       = type;
7365         expression->offsetofe.designator = designator;
7366
7367         type_path_t path;
7368         memset(&path, 0, sizeof(path));
7369         path.top_type = type;
7370         path.path     = NEW_ARR_F(type_path_entry_t, 0);
7371
7372         descend_into_subtype(&path);
7373
7374         if (!walk_designator(&path, designator, true)) {
7375                 return create_invalid_expression();
7376         }
7377
7378         DEL_ARR_F(path.path);
7379
7380         return expression;
7381 end_error:
7382         return create_invalid_expression();
7383 }
7384
7385 /**
7386  * Parses a _builtin_va_start() expression.
7387  */
7388 static expression_t *parse_va_start(void)
7389 {
7390         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
7391
7392         eat(T___builtin_va_start);
7393
7394         expect('(', end_error);
7395         add_anchor_token(',');
7396         expression->va_starte.ap = parse_assignment_expression();
7397         rem_anchor_token(',');
7398         expect(',', end_error);
7399         expression_t *const expr = parse_assignment_expression();
7400         if (expr->kind == EXPR_REFERENCE) {
7401                 entity_t *const entity = expr->reference.entity;
7402                 if (entity->base.parent_scope != &current_function->parameters
7403                                 || entity->base.next != NULL
7404                                 || entity->kind != ENTITY_PARAMETER) {
7405                         errorf(&expr->base.source_position,
7406                                "second argument of 'va_start' must be last parameter of the current function");
7407                 } else {
7408                         expression->va_starte.parameter = &entity->variable;
7409                 }
7410                 expect(')', end_error);
7411                 return expression;
7412         }
7413         expect(')', end_error);
7414 end_error:
7415         return create_invalid_expression();
7416 }
7417
7418 /**
7419  * Parses a _builtin_va_arg() expression.
7420  */
7421 static expression_t *parse_va_arg(void)
7422 {
7423         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
7424
7425         eat(T___builtin_va_arg);
7426
7427         expect('(', end_error);
7428         expression->va_arge.ap = parse_assignment_expression();
7429         expect(',', end_error);
7430         expression->base.type = parse_typename();
7431         expect(')', end_error);
7432
7433         return expression;
7434 end_error:
7435         return create_invalid_expression();
7436 }
7437
7438 static expression_t *parse_builtin_symbol(void)
7439 {
7440         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
7441
7442         symbol_t *symbol = token.v.symbol;
7443
7444         expression->builtin_symbol.symbol = symbol;
7445         next_token();
7446
7447         type_t *type = get_builtin_symbol_type(symbol);
7448         type = automatic_type_conversion(type);
7449
7450         expression->base.type = type;
7451         return expression;
7452 }
7453
7454 /**
7455  * Parses a __builtin_constant() expression.
7456  */
7457 static expression_t *parse_builtin_constant(void)
7458 {
7459         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
7460
7461         eat(T___builtin_constant_p);
7462
7463         expect('(', end_error);
7464         add_anchor_token(')');
7465         expression->builtin_constant.value = parse_assignment_expression();
7466         rem_anchor_token(')');
7467         expect(')', end_error);
7468         expression->base.type = type_int;
7469
7470         return expression;
7471 end_error:
7472         return create_invalid_expression();
7473 }
7474
7475 /**
7476  * Parses a __builtin_prefetch() expression.
7477  */
7478 static expression_t *parse_builtin_prefetch(void)
7479 {
7480         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
7481
7482         eat(T___builtin_prefetch);
7483
7484         expect('(', end_error);
7485         add_anchor_token(')');
7486         expression->builtin_prefetch.adr = parse_assignment_expression();
7487         if (token.type == ',') {
7488                 next_token();
7489                 expression->builtin_prefetch.rw = parse_assignment_expression();
7490         }
7491         if (token.type == ',') {
7492                 next_token();
7493                 expression->builtin_prefetch.locality = parse_assignment_expression();
7494         }
7495         rem_anchor_token(')');
7496         expect(')', end_error);
7497         expression->base.type = type_void;
7498
7499         return expression;
7500 end_error:
7501         return create_invalid_expression();
7502 }
7503
7504 /**
7505  * Parses a __builtin_is_*() compare expression.
7506  */
7507 static expression_t *parse_compare_builtin(void)
7508 {
7509         expression_t *expression;
7510
7511         switch (token.type) {
7512         case T___builtin_isgreater:
7513                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
7514                 break;
7515         case T___builtin_isgreaterequal:
7516                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
7517                 break;
7518         case T___builtin_isless:
7519                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
7520                 break;
7521         case T___builtin_islessequal:
7522                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
7523                 break;
7524         case T___builtin_islessgreater:
7525                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
7526                 break;
7527         case T___builtin_isunordered:
7528                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
7529                 break;
7530         default:
7531                 internal_errorf(HERE, "invalid compare builtin found");
7532         }
7533         expression->base.source_position = *HERE;
7534         next_token();
7535
7536         expect('(', end_error);
7537         expression->binary.left = parse_assignment_expression();
7538         expect(',', end_error);
7539         expression->binary.right = parse_assignment_expression();
7540         expect(')', end_error);
7541
7542         type_t *const orig_type_left  = expression->binary.left->base.type;
7543         type_t *const orig_type_right = expression->binary.right->base.type;
7544
7545         type_t *const type_left  = skip_typeref(orig_type_left);
7546         type_t *const type_right = skip_typeref(orig_type_right);
7547         if (!is_type_float(type_left) && !is_type_float(type_right)) {
7548                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7549                         type_error_incompatible("invalid operands in comparison",
7550                                 &expression->base.source_position, orig_type_left, orig_type_right);
7551                 }
7552         } else {
7553                 semantic_comparison(&expression->binary);
7554         }
7555
7556         return expression;
7557 end_error:
7558         return create_invalid_expression();
7559 }
7560
7561 #if 0
7562 /**
7563  * Parses a __builtin_expect(, end_error) expression.
7564  */
7565 static expression_t *parse_builtin_expect(void, end_error)
7566 {
7567         expression_t *expression
7568                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
7569
7570         eat(T___builtin_expect);
7571
7572         expect('(', end_error);
7573         expression->binary.left = parse_assignment_expression();
7574         expect(',', end_error);
7575         expression->binary.right = parse_constant_expression();
7576         expect(')', end_error);
7577
7578         expression->base.type = expression->binary.left->base.type;
7579
7580         return expression;
7581 end_error:
7582         return create_invalid_expression();
7583 }
7584 #endif
7585
7586 /**
7587  * Parses a MS assume() expression.
7588  */
7589 static expression_t *parse_assume(void)
7590 {
7591         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
7592
7593         eat(T__assume);
7594
7595         expect('(', end_error);
7596         add_anchor_token(')');
7597         expression->unary.value = parse_assignment_expression();
7598         rem_anchor_token(')');
7599         expect(')', end_error);
7600
7601         expression->base.type = type_void;
7602         return expression;
7603 end_error:
7604         return create_invalid_expression();
7605 }
7606
7607 /**
7608  * Return the declaration for a given label symbol or create a new one.
7609  *
7610  * @param symbol  the symbol of the label
7611  */
7612 static label_t *get_label(symbol_t *symbol)
7613 {
7614         entity_t *label;
7615         assert(current_function != NULL);
7616
7617         label = get_entity(symbol, NAMESPACE_LABEL);
7618         /* if we found a local label, we already created the declaration */
7619         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7620                 if (label->base.parent_scope != current_scope) {
7621                         assert(label->base.parent_scope->depth < current_scope->depth);
7622                         current_function->goto_to_outer = true;
7623                 }
7624                 return &label->label;
7625         }
7626
7627         label = get_entity(symbol, NAMESPACE_LABEL);
7628         /* if we found a label in the same function, then we already created the
7629          * declaration */
7630         if (label != NULL
7631                         && label->base.parent_scope == &current_function->parameters) {
7632                 return &label->label;
7633         }
7634
7635         /* otherwise we need to create a new one */
7636         label               = allocate_entity_zero(ENTITY_LABEL);
7637         label->base.namespc = NAMESPACE_LABEL;
7638         label->base.symbol  = symbol;
7639
7640         label_push(label);
7641
7642         return &label->label;
7643 }
7644
7645 /**
7646  * Parses a GNU && label address expression.
7647  */
7648 static expression_t *parse_label_address(void)
7649 {
7650         source_position_t source_position = token.source_position;
7651         eat(T_ANDAND);
7652         if (token.type != T_IDENTIFIER) {
7653                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7654                 goto end_error;
7655         }
7656         symbol_t *symbol = token.v.symbol;
7657         next_token();
7658
7659         label_t *label       = get_label(symbol);
7660         label->used          = true;
7661         label->address_taken = true;
7662
7663         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7664         expression->base.source_position = source_position;
7665
7666         /* label address is threaten as a void pointer */
7667         expression->base.type           = type_void_ptr;
7668         expression->label_address.label = label;
7669         return expression;
7670 end_error:
7671         return create_invalid_expression();
7672 }
7673
7674 /**
7675  * Parse a microsoft __noop expression.
7676  */
7677 static expression_t *parse_noop_expression(void)
7678 {
7679         /* the result is a (int)0 */
7680         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
7681         cnst->base.type            = type_int;
7682         cnst->conste.v.int_value   = 0;
7683         cnst->conste.is_ms_noop    = true;
7684
7685         eat(T___noop);
7686
7687         if (token.type == '(') {
7688                 /* parse arguments */
7689                 eat('(');
7690                 add_anchor_token(')');
7691                 add_anchor_token(',');
7692
7693                 if (token.type != ')') {
7694                         while (true) {
7695                                 (void)parse_assignment_expression();
7696                                 if (token.type != ',')
7697                                         break;
7698                                 next_token();
7699                         }
7700                 }
7701         }
7702         rem_anchor_token(',');
7703         rem_anchor_token(')');
7704         expect(')', end_error);
7705
7706 end_error:
7707         return cnst;
7708 }
7709
7710 /**
7711  * Parses a primary expression.
7712  */
7713 static expression_t *parse_primary_expression(void)
7714 {
7715         switch (token.type) {
7716                 case T_false:                    return parse_bool_const(false);
7717                 case T_true:                     return parse_bool_const(true);
7718                 case T_INTEGER:                  return parse_int_const();
7719                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
7720                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
7721                 case T_FLOATINGPOINT:            return parse_float_const();
7722                 case T_STRING_LITERAL:
7723                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
7724                 case T_IDENTIFIER:               return parse_reference();
7725                 case T___FUNCTION__:
7726                 case T___func__:                 return parse_function_keyword();
7727                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
7728                 case T___FUNCSIG__:              return parse_funcsig_keyword();
7729                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
7730                 case T___builtin_offsetof:       return parse_offsetof();
7731                 case T___builtin_va_start:       return parse_va_start();
7732                 case T___builtin_va_arg:         return parse_va_arg();
7733                 case T___builtin_expect:
7734                 case T___builtin_alloca:
7735                 case T___builtin_inf:
7736                 case T___builtin_inff:
7737                 case T___builtin_infl:
7738                 case T___builtin_nan:
7739                 case T___builtin_nanf:
7740                 case T___builtin_nanl:
7741                 case T___builtin_huge_val:
7742                 case T___builtin_va_end:         return parse_builtin_symbol();
7743                 case T___builtin_isgreater:
7744                 case T___builtin_isgreaterequal:
7745                 case T___builtin_isless:
7746                 case T___builtin_islessequal:
7747                 case T___builtin_islessgreater:
7748                 case T___builtin_isunordered:    return parse_compare_builtin();
7749                 case T___builtin_constant_p:     return parse_builtin_constant();
7750                 case T___builtin_prefetch:       return parse_builtin_prefetch();
7751                 case T__assume:                  return parse_assume();
7752                 case T_ANDAND:
7753                         if (GNU_MODE)
7754                                 return parse_label_address();
7755                         break;
7756
7757                 case '(':                        return parse_parenthesized_expression();
7758                 case T___noop:                   return parse_noop_expression();
7759         }
7760
7761         errorf(HERE, "unexpected token %K, expected an expression", &token);
7762         return create_invalid_expression();
7763 }
7764
7765 /**
7766  * Check if the expression has the character type and issue a warning then.
7767  */
7768 static void check_for_char_index_type(const expression_t *expression)
7769 {
7770         type_t       *const type      = expression->base.type;
7771         const type_t *const base_type = skip_typeref(type);
7772
7773         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7774                         warning.char_subscripts) {
7775                 warningf(&expression->base.source_position,
7776                          "array subscript has type '%T'", type);
7777         }
7778 }
7779
7780 static expression_t *parse_array_expression(expression_t *left)
7781 {
7782         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7783
7784         eat('[');
7785         add_anchor_token(']');
7786
7787         expression_t *inside = parse_expression();
7788
7789         type_t *const orig_type_left   = left->base.type;
7790         type_t *const orig_type_inside = inside->base.type;
7791
7792         type_t *const type_left   = skip_typeref(orig_type_left);
7793         type_t *const type_inside = skip_typeref(orig_type_inside);
7794
7795         type_t                    *return_type;
7796         array_access_expression_t *array_access = &expression->array_access;
7797         if (is_type_pointer(type_left)) {
7798                 return_type             = type_left->pointer.points_to;
7799                 array_access->array_ref = left;
7800                 array_access->index     = inside;
7801                 check_for_char_index_type(inside);
7802         } else if (is_type_pointer(type_inside)) {
7803                 return_type             = type_inside->pointer.points_to;
7804                 array_access->array_ref = inside;
7805                 array_access->index     = left;
7806                 array_access->flipped   = true;
7807                 check_for_char_index_type(left);
7808         } else {
7809                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7810                         errorf(HERE,
7811                                 "array access on object with non-pointer types '%T', '%T'",
7812                                 orig_type_left, orig_type_inside);
7813                 }
7814                 return_type             = type_error_type;
7815                 array_access->array_ref = left;
7816                 array_access->index     = inside;
7817         }
7818
7819         expression->base.type = automatic_type_conversion(return_type);
7820
7821         rem_anchor_token(']');
7822         expect(']', end_error);
7823 end_error:
7824         return expression;
7825 }
7826
7827 static expression_t *parse_typeprop(expression_kind_t const kind)
7828 {
7829         expression_t  *tp_expression = allocate_expression_zero(kind);
7830         tp_expression->base.type     = type_size_t;
7831
7832         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7833
7834         /* we only refer to a type property, mark this case */
7835         bool old     = in_type_prop;
7836         in_type_prop = true;
7837
7838         type_t       *orig_type;
7839         expression_t *expression;
7840         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7841                 next_token();
7842                 add_anchor_token(')');
7843                 orig_type = parse_typename();
7844                 rem_anchor_token(')');
7845                 expect(')', end_error);
7846
7847                 if (token.type == '{') {
7848                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7849                          * starting with a compound literal */
7850                         expression = parse_compound_literal(orig_type);
7851                         goto typeprop_expression;
7852                 }
7853         } else {
7854                 expression = parse_sub_expression(PREC_UNARY);
7855
7856 typeprop_expression:
7857                 tp_expression->typeprop.tp_expression = expression;
7858
7859                 orig_type = revert_automatic_type_conversion(expression);
7860                 expression->base.type = orig_type;
7861         }
7862
7863         tp_expression->typeprop.type   = orig_type;
7864         type_t const* const type       = skip_typeref(orig_type);
7865         char   const* const wrong_type =
7866                 is_type_incomplete(type)    ? "incomplete"          :
7867                 type->kind == TYPE_FUNCTION ? "function designator" :
7868                 type->kind == TYPE_BITFIELD ? "bitfield"            :
7869                 NULL;
7870         if (wrong_type != NULL) {
7871                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7872                 errorf(&tp_expression->base.source_position,
7873                                 "operand of %s expression must not be of %s type '%T'",
7874                                 what, wrong_type, orig_type);
7875         }
7876
7877 end_error:
7878         in_type_prop = old;
7879         return tp_expression;
7880 }
7881
7882 static expression_t *parse_sizeof(void)
7883 {
7884         return parse_typeprop(EXPR_SIZEOF);
7885 }
7886
7887 static expression_t *parse_alignof(void)
7888 {
7889         return parse_typeprop(EXPR_ALIGNOF);
7890 }
7891
7892 static expression_t *parse_select_expression(expression_t *compound)
7893 {
7894         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
7895         select->select.compound = compound;
7896
7897         assert(token.type == '.' || token.type == T_MINUSGREATER);
7898         bool is_pointer = (token.type == T_MINUSGREATER);
7899         next_token();
7900
7901         if (token.type != T_IDENTIFIER) {
7902                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7903                 return select;
7904         }
7905         symbol_t *symbol = token.v.symbol;
7906         next_token();
7907
7908         type_t *const orig_type = compound->base.type;
7909         type_t *const type      = skip_typeref(orig_type);
7910
7911         type_t *type_left;
7912         bool    saw_error = false;
7913         if (is_type_pointer(type)) {
7914                 if (!is_pointer) {
7915                         errorf(HERE,
7916                                "request for member '%Y' in something not a struct or union, but '%T'",
7917                                symbol, orig_type);
7918                         saw_error = true;
7919                 }
7920                 type_left = skip_typeref(type->pointer.points_to);
7921         } else {
7922                 if (is_pointer && is_type_valid(type)) {
7923                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7924                         saw_error = true;
7925                 }
7926                 type_left = type;
7927         }
7928
7929         entity_t *entry;
7930         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7931             type_left->kind == TYPE_COMPOUND_UNION) {
7932                 compound_t *compound = type_left->compound.compound;
7933
7934                 if (!compound->complete) {
7935                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7936                                symbol, type_left);
7937                         goto create_error_entry;
7938                 }
7939
7940                 entry = find_compound_entry(compound, symbol);
7941                 if (entry == NULL) {
7942                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7943                         goto create_error_entry;
7944                 }
7945         } else {
7946                 if (is_type_valid(type_left) && !saw_error) {
7947                         errorf(HERE,
7948                                "request for member '%Y' in something not a struct or union, but '%T'",
7949                                symbol, type_left);
7950                 }
7951 create_error_entry:
7952                 entry = create_error_entity(symbol, ENTITY_COMPOUND_MEMBER);
7953         }
7954
7955         assert(is_declaration(entry));
7956         select->select.compound_entry = entry;
7957
7958         type_t *entry_type = entry->declaration.type;
7959         type_t *res_type
7960                 = get_qualified_type(entry_type, type_left->base.qualifiers);
7961
7962         /* we always do the auto-type conversions; the & and sizeof parser contains
7963          * code to revert this! */
7964         select->base.type = automatic_type_conversion(res_type);
7965
7966         type_t *skipped = skip_typeref(res_type);
7967         if (skipped->kind == TYPE_BITFIELD) {
7968                 select->base.type = skipped->bitfield.base_type;
7969         }
7970
7971         return select;
7972 }
7973
7974 static void check_call_argument(const function_parameter_t *parameter,
7975                                 call_argument_t *argument, unsigned pos)
7976 {
7977         type_t         *expected_type      = parameter->type;
7978         type_t         *expected_type_skip = skip_typeref(expected_type);
7979         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7980         expression_t   *arg_expr           = argument->expression;
7981         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7982
7983         /* handle transparent union gnu extension */
7984         if (is_type_union(expected_type_skip)
7985                         && (expected_type_skip->base.modifiers
7986                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7987                 compound_t *union_decl  = expected_type_skip->compound.compound;
7988                 type_t     *best_type   = NULL;
7989                 entity_t   *entry       = union_decl->members.entities;
7990                 for ( ; entry != NULL; entry = entry->base.next) {
7991                         assert(is_declaration(entry));
7992                         type_t *decl_type = entry->declaration.type;
7993                         error = semantic_assign(decl_type, arg_expr);
7994                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7995                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7996                                 continue;
7997
7998                         if (error == ASSIGN_SUCCESS) {
7999                                 best_type = decl_type;
8000                         } else if (best_type == NULL) {
8001                                 best_type = decl_type;
8002                         }
8003                 }
8004
8005                 if (best_type != NULL) {
8006                         expected_type = best_type;
8007                 }
8008         }
8009
8010         error                = semantic_assign(expected_type, arg_expr);
8011         argument->expression = create_implicit_cast(argument->expression,
8012                                                     expected_type);
8013
8014         if (error != ASSIGN_SUCCESS) {
8015                 /* report exact scope in error messages (like "in argument 3") */
8016                 char buf[64];
8017                 snprintf(buf, sizeof(buf), "call argument %u", pos);
8018                 report_assign_error(error, expected_type, arg_expr,     buf,
8019                                                         &arg_expr->base.source_position);
8020         } else if (warning.traditional || warning.conversion) {
8021                 type_t *const promoted_type = get_default_promoted_type(arg_type);
8022                 if (!types_compatible(expected_type_skip, promoted_type) &&
8023                     !types_compatible(expected_type_skip, type_void_ptr) &&
8024                     !types_compatible(type_void_ptr,      promoted_type)) {
8025                         /* Deliberately show the skipped types in this warning */
8026                         warningf(&arg_expr->base.source_position,
8027                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
8028                                 pos, expected_type_skip, promoted_type);
8029                 }
8030         }
8031 }
8032
8033 /**
8034  * Parse a call expression, ie. expression '( ... )'.
8035  *
8036  * @param expression  the function address
8037  */
8038 static expression_t *parse_call_expression(expression_t *expression)
8039 {
8040         expression_t      *result = allocate_expression_zero(EXPR_CALL);
8041         call_expression_t *call   = &result->call;
8042         call->function            = expression;
8043
8044         type_t *const orig_type = expression->base.type;
8045         type_t *const type      = skip_typeref(orig_type);
8046
8047         function_type_t *function_type = NULL;
8048         if (is_type_pointer(type)) {
8049                 type_t *const to_type = skip_typeref(type->pointer.points_to);
8050
8051                 if (is_type_function(to_type)) {
8052                         function_type   = &to_type->function;
8053                         call->base.type = function_type->return_type;
8054                 }
8055         }
8056
8057         if (function_type == NULL && is_type_valid(type)) {
8058                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
8059         }
8060
8061         /* parse arguments */
8062         eat('(');
8063         add_anchor_token(')');
8064         add_anchor_token(',');
8065
8066         if (token.type != ')') {
8067                 call_argument_t *last_argument = NULL;
8068
8069                 while (true) {
8070                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8071
8072                         argument->expression = parse_assignment_expression();
8073                         if (last_argument == NULL) {
8074                                 call->arguments = argument;
8075                         } else {
8076                                 last_argument->next = argument;
8077                         }
8078                         last_argument = argument;
8079
8080                         if (token.type != ',')
8081                                 break;
8082                         next_token();
8083                 }
8084         }
8085         rem_anchor_token(',');
8086         rem_anchor_token(')');
8087         expect(')', end_error);
8088
8089         if (function_type == NULL)
8090                 return result;
8091
8092         function_parameter_t *parameter = function_type->parameters;
8093         call_argument_t      *argument  = call->arguments;
8094         if (!function_type->unspecified_parameters) {
8095                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
8096                                 parameter = parameter->next, argument = argument->next) {
8097                         check_call_argument(parameter, argument, ++pos);
8098                 }
8099
8100                 if (parameter != NULL) {
8101                         errorf(HERE, "too few arguments to function '%E'", expression);
8102                 } else if (argument != NULL && !function_type->variadic) {
8103                         errorf(HERE, "too many arguments to function '%E'", expression);
8104                 }
8105         }
8106
8107         /* do default promotion */
8108         for (; argument != NULL; argument = argument->next) {
8109                 type_t *type = argument->expression->base.type;
8110
8111                 type = get_default_promoted_type(type);
8112
8113                 argument->expression
8114                         = create_implicit_cast(argument->expression, type);
8115         }
8116
8117         check_format(&result->call);
8118
8119         if (warning.aggregate_return &&
8120             is_type_compound(skip_typeref(function_type->return_type))) {
8121                 warningf(&result->base.source_position,
8122                          "function call has aggregate value");
8123         }
8124
8125 end_error:
8126         return result;
8127 }
8128
8129 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
8130
8131 static bool same_compound_type(const type_t *type1, const type_t *type2)
8132 {
8133         return
8134                 is_type_compound(type1) &&
8135                 type1->kind == type2->kind &&
8136                 type1->compound.compound == type2->compound.compound;
8137 }
8138
8139 static expression_t const *get_reference_address(expression_t const *expr)
8140 {
8141         bool regular_take_address = true;
8142         for (;;) {
8143                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8144                         expr = expr->unary.value;
8145                 } else {
8146                         regular_take_address = false;
8147                 }
8148
8149                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8150                         break;
8151
8152                 expr = expr->unary.value;
8153         }
8154
8155         if (expr->kind != EXPR_REFERENCE)
8156                 return NULL;
8157
8158         /* special case for functions which are automatically converted to a
8159          * pointer to function without an extra TAKE_ADDRESS operation */
8160         if (!regular_take_address &&
8161                         expr->reference.entity->kind != ENTITY_FUNCTION) {
8162                 return NULL;
8163         }
8164
8165         return expr;
8166 }
8167
8168 static void warn_reference_address_as_bool(expression_t const* expr)
8169 {
8170         if (!warning.address)
8171                 return;
8172
8173         expr = get_reference_address(expr);
8174         if (expr != NULL) {
8175                 warningf(&expr->base.source_position,
8176                          "the address of '%Y' will always evaluate as 'true'",
8177                          expr->reference.entity->base.symbol);
8178         }
8179 }
8180
8181 static void semantic_condition(expression_t const *const expr,
8182                                char const *const context)
8183 {
8184         type_t *const type = skip_typeref(expr->base.type);
8185         if (is_type_scalar(type)) {
8186                 warn_reference_address_as_bool(expr);
8187         } else if (is_type_valid(type)) {
8188                 errorf(&expr->base.source_position,
8189                                 "%s must have scalar type", context);
8190         }
8191 }
8192
8193 /**
8194  * Parse a conditional expression, ie. 'expression ? ... : ...'.
8195  *
8196  * @param expression  the conditional expression
8197  */
8198 static expression_t *parse_conditional_expression(expression_t *expression)
8199 {
8200         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
8201
8202         conditional_expression_t *conditional = &result->conditional;
8203         conditional->condition                = expression;
8204
8205         eat('?');
8206         add_anchor_token(':');
8207
8208         /* Â§6.5.15:2  The first operand shall have scalar type. */
8209         semantic_condition(expression, "condition of conditional operator");
8210
8211         expression_t *true_expression = expression;
8212         bool          gnu_cond = false;
8213         if (GNU_MODE && token.type == ':') {
8214                 gnu_cond = true;
8215         } else {
8216                 true_expression = parse_expression();
8217         }
8218         rem_anchor_token(':');
8219         expect(':', end_error);
8220         expression_t *false_expression =
8221                 parse_sub_expression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
8222
8223         type_t *const orig_true_type  = true_expression->base.type;
8224         type_t *const orig_false_type = false_expression->base.type;
8225         type_t *const true_type       = skip_typeref(orig_true_type);
8226         type_t *const false_type      = skip_typeref(orig_false_type);
8227
8228         /* 6.5.15.3 */
8229         type_t *result_type;
8230         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
8231                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
8232                 /* ISO/IEC 14882:1998(E) Â§5.16:2 */
8233                 if (true_expression->kind == EXPR_UNARY_THROW) {
8234                         result_type = false_type;
8235                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
8236                         result_type = true_type;
8237                 } else {
8238                         if (warning.other && (
8239                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
8240                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
8241                                         )) {
8242                                 warningf(&conditional->base.source_position,
8243                                                 "ISO C forbids conditional expression with only one void side");
8244                         }
8245                         result_type = type_void;
8246                 }
8247         } else if (is_type_arithmetic(true_type)
8248                    && is_type_arithmetic(false_type)) {
8249                 result_type = semantic_arithmetic(true_type, false_type);
8250
8251                 true_expression  = create_implicit_cast(true_expression, result_type);
8252                 false_expression = create_implicit_cast(false_expression, result_type);
8253
8254                 conditional->true_expression  = true_expression;
8255                 conditional->false_expression = false_expression;
8256                 conditional->base.type        = result_type;
8257         } else if (same_compound_type(true_type, false_type)) {
8258                 /* just take 1 of the 2 types */
8259                 result_type = true_type;
8260         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
8261                 type_t *pointer_type;
8262                 type_t *other_type;
8263                 expression_t *other_expression;
8264                 if (is_type_pointer(true_type) &&
8265                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
8266                         pointer_type     = true_type;
8267                         other_type       = false_type;
8268                         other_expression = false_expression;
8269                 } else {
8270                         pointer_type     = false_type;
8271                         other_type       = true_type;
8272                         other_expression = true_expression;
8273                 }
8274
8275                 if (is_null_pointer_constant(other_expression)) {
8276                         result_type = pointer_type;
8277                 } else if (is_type_pointer(other_type)) {
8278                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
8279                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
8280
8281                         type_t *to;
8282                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
8283                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
8284                                 to = type_void;
8285                         } else if (types_compatible(get_unqualified_type(to1),
8286                                                     get_unqualified_type(to2))) {
8287                                 to = to1;
8288                         } else {
8289                                 if (warning.other) {
8290                                         warningf(&conditional->base.source_position,
8291                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
8292                                                         true_type, false_type);
8293                                 }
8294                                 to = type_void;
8295                         }
8296
8297                         type_t *const type =
8298                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
8299                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
8300                 } else if (is_type_integer(other_type)) {
8301                         if (warning.other) {
8302                                 warningf(&conditional->base.source_position,
8303                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
8304                         }
8305                         result_type = pointer_type;
8306                 } else {
8307                         if (is_type_valid(other_type)) {
8308                                 type_error_incompatible("while parsing conditional",
8309                                                 &expression->base.source_position, true_type, false_type);
8310                         }
8311                         result_type = type_error_type;
8312                 }
8313         } else {
8314                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
8315                         type_error_incompatible("while parsing conditional",
8316                                                 &conditional->base.source_position, true_type,
8317                                                 false_type);
8318                 }
8319                 result_type = type_error_type;
8320         }
8321
8322         conditional->true_expression
8323                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
8324         conditional->false_expression
8325                 = create_implicit_cast(false_expression, result_type);
8326         conditional->base.type = result_type;
8327         return result;
8328 end_error:
8329         return create_invalid_expression();
8330 }
8331
8332 /**
8333  * Parse an extension expression.
8334  */
8335 static expression_t *parse_extension(void)
8336 {
8337         eat(T___extension__);
8338
8339         bool old_gcc_extension   = in_gcc_extension;
8340         in_gcc_extension         = true;
8341         expression_t *expression = parse_sub_expression(PREC_UNARY);
8342         in_gcc_extension         = old_gcc_extension;
8343         return expression;
8344 }
8345
8346 /**
8347  * Parse a __builtin_classify_type() expression.
8348  */
8349 static expression_t *parse_builtin_classify_type(void)
8350 {
8351         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
8352         result->base.type    = type_int;
8353
8354         eat(T___builtin_classify_type);
8355
8356         expect('(', end_error);
8357         add_anchor_token(')');
8358         expression_t *expression = parse_expression();
8359         rem_anchor_token(')');
8360         expect(')', end_error);
8361         result->classify_type.type_expression = expression;
8362
8363         return result;
8364 end_error:
8365         return create_invalid_expression();
8366 }
8367
8368 /**
8369  * Parse a delete expression
8370  * ISO/IEC 14882:1998(E) Â§5.3.5
8371  */
8372 static expression_t *parse_delete(void)
8373 {
8374         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
8375         result->base.type          = type_void;
8376
8377         eat(T_delete);
8378
8379         if (token.type == '[') {
8380                 next_token();
8381                 result->kind = EXPR_UNARY_DELETE_ARRAY;
8382                 expect(']', end_error);
8383 end_error:;
8384         }
8385
8386         expression_t *const value = parse_sub_expression(PREC_CAST);
8387         result->unary.value = value;
8388
8389         type_t *const type = skip_typeref(value->base.type);
8390         if (!is_type_pointer(type)) {
8391                 errorf(&value->base.source_position,
8392                                 "operand of delete must have pointer type");
8393         } else if (warning.other &&
8394                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
8395                 warningf(&value->base.source_position,
8396                                 "deleting 'void*' is undefined");
8397         }
8398
8399         return result;
8400 }
8401
8402 /**
8403  * Parse a throw expression
8404  * ISO/IEC 14882:1998(E) Â§15:1
8405  */
8406 static expression_t *parse_throw(void)
8407 {
8408         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
8409         result->base.type          = type_void;
8410
8411         eat(T_throw);
8412
8413         expression_t *value = NULL;
8414         switch (token.type) {
8415                 EXPRESSION_START {
8416                         value = parse_assignment_expression();
8417                         /* ISO/IEC 14882:1998(E) Â§15.1:3 */
8418                         type_t *const orig_type = value->base.type;
8419                         type_t *const type      = skip_typeref(orig_type);
8420                         if (is_type_incomplete(type)) {
8421                                 errorf(&value->base.source_position,
8422                                                 "cannot throw object of incomplete type '%T'", orig_type);
8423                         } else if (is_type_pointer(type)) {
8424                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
8425                                 if (is_type_incomplete(points_to) &&
8426                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8427                                         errorf(&value->base.source_position,
8428                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
8429                                 }
8430                         }
8431                 }
8432
8433                 default:
8434                         break;
8435         }
8436         result->unary.value = value;
8437
8438         return result;
8439 }
8440
8441 static bool check_pointer_arithmetic(const source_position_t *source_position,
8442                                      type_t *pointer_type,
8443                                      type_t *orig_pointer_type)
8444 {
8445         type_t *points_to = pointer_type->pointer.points_to;
8446         points_to = skip_typeref(points_to);
8447
8448         if (is_type_incomplete(points_to)) {
8449                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8450                         errorf(source_position,
8451                                "arithmetic with pointer to incomplete type '%T' not allowed",
8452                                orig_pointer_type);
8453                         return false;
8454                 } else if (warning.pointer_arith) {
8455                         warningf(source_position,
8456                                  "pointer of type '%T' used in arithmetic",
8457                                  orig_pointer_type);
8458                 }
8459         } else if (is_type_function(points_to)) {
8460                 if (!GNU_MODE) {
8461                         errorf(source_position,
8462                                "arithmetic with pointer to function type '%T' not allowed",
8463                                orig_pointer_type);
8464                         return false;
8465                 } else if (warning.pointer_arith) {
8466                         warningf(source_position,
8467                                  "pointer to a function '%T' used in arithmetic",
8468                                  orig_pointer_type);
8469                 }
8470         }
8471         return true;
8472 }
8473
8474 static bool is_lvalue(const expression_t *expression)
8475 {
8476         /* TODO: doesn't seem to be consistent with Â§6.3.2.1 (1) */
8477         switch (expression->kind) {
8478         case EXPR_REFERENCE:
8479         case EXPR_ARRAY_ACCESS:
8480         case EXPR_SELECT:
8481         case EXPR_UNARY_DEREFERENCE:
8482                 return true;
8483
8484         default: {
8485           type_t *type = skip_typeref(expression->base.type);
8486           return
8487                 /* ISO/IEC 14882:1998(E) Â§3.10:3 */
8488                 is_type_reference(type) ||
8489                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
8490                  * error before, which maybe prevented properly recognizing it as
8491                  * lvalue. */
8492                 !is_type_valid(type);
8493         }
8494         }
8495 }
8496
8497 static void semantic_incdec(unary_expression_t *expression)
8498 {
8499         type_t *const orig_type = expression->value->base.type;
8500         type_t *const type      = skip_typeref(orig_type);
8501         if (is_type_pointer(type)) {
8502                 if (!check_pointer_arithmetic(&expression->base.source_position,
8503                                               type, orig_type)) {
8504                         return;
8505                 }
8506         } else if (!is_type_real(type) && is_type_valid(type)) {
8507                 /* TODO: improve error message */
8508                 errorf(&expression->base.source_position,
8509                        "operation needs an arithmetic or pointer type");
8510                 return;
8511         }
8512         if (!is_lvalue(expression->value)) {
8513                 /* TODO: improve error message */
8514                 errorf(&expression->base.source_position, "lvalue required as operand");
8515         }
8516         expression->base.type = orig_type;
8517 }
8518
8519 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
8520 {
8521         type_t *const orig_type = expression->value->base.type;
8522         type_t *const type      = skip_typeref(orig_type);
8523         if (!is_type_arithmetic(type)) {
8524                 if (is_type_valid(type)) {
8525                         /* TODO: improve error message */
8526                         errorf(&expression->base.source_position,
8527                                 "operation needs an arithmetic type");
8528                 }
8529                 return;
8530         }
8531
8532         expression->base.type = orig_type;
8533 }
8534
8535 static void semantic_unexpr_plus(unary_expression_t *expression)
8536 {
8537         semantic_unexpr_arithmetic(expression);
8538         if (warning.traditional)
8539                 warningf(&expression->base.source_position,
8540                         "traditional C rejects the unary plus operator");
8541 }
8542
8543 static void semantic_not(unary_expression_t *expression)
8544 {
8545         /* Â§6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
8546         semantic_condition(expression->value, "operand of !");
8547         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8548 }
8549
8550 static void semantic_unexpr_integer(unary_expression_t *expression)
8551 {
8552         type_t *const orig_type = expression->value->base.type;
8553         type_t *const type      = skip_typeref(orig_type);
8554         if (!is_type_integer(type)) {
8555                 if (is_type_valid(type)) {
8556                         errorf(&expression->base.source_position,
8557                                "operand of ~ must be of integer type");
8558                 }
8559                 return;
8560         }
8561
8562         expression->base.type = orig_type;
8563 }
8564
8565 static void semantic_dereference(unary_expression_t *expression)
8566 {
8567         type_t *const orig_type = expression->value->base.type;
8568         type_t *const type      = skip_typeref(orig_type);
8569         if (!is_type_pointer(type)) {
8570                 if (is_type_valid(type)) {
8571                         errorf(&expression->base.source_position,
8572                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8573                 }
8574                 return;
8575         }
8576
8577         type_t *result_type   = type->pointer.points_to;
8578         result_type           = automatic_type_conversion(result_type);
8579         expression->base.type = result_type;
8580 }
8581
8582 /**
8583  * Record that an address is taken (expression represents an lvalue).
8584  *
8585  * @param expression       the expression
8586  * @param may_be_register  if true, the expression might be an register
8587  */
8588 static void set_address_taken(expression_t *expression, bool may_be_register)
8589 {
8590         if (expression->kind != EXPR_REFERENCE)
8591                 return;
8592
8593         entity_t *const entity = expression->reference.entity;
8594
8595         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
8596                 return;
8597
8598         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8599                         && !may_be_register) {
8600                 errorf(&expression->base.source_position,
8601                                 "address of register %s '%Y' requested",
8602                                 get_entity_kind_name(entity->kind),     entity->base.symbol);
8603         }
8604
8605         if (entity->kind == ENTITY_VARIABLE) {
8606                 entity->variable.address_taken = true;
8607         } else {
8608                 assert(entity->kind == ENTITY_PARAMETER);
8609                 entity->parameter.address_taken = true;
8610         }
8611 }
8612
8613 /**
8614  * Check the semantic of the address taken expression.
8615  */
8616 static void semantic_take_addr(unary_expression_t *expression)
8617 {
8618         expression_t *value = expression->value;
8619         value->base.type    = revert_automatic_type_conversion(value);
8620
8621         type_t *orig_type = value->base.type;
8622         type_t *type      = skip_typeref(orig_type);
8623         if (!is_type_valid(type))
8624                 return;
8625
8626         /* Â§6.5.3.2 */
8627         if (!is_lvalue(value)) {
8628                 errorf(&expression->base.source_position, "'&' requires an lvalue");
8629         }
8630         if (type->kind == TYPE_BITFIELD) {
8631                 errorf(&expression->base.source_position,
8632                        "'&' not allowed on object with bitfield type '%T'",
8633                        type);
8634         }
8635
8636         set_address_taken(value, false);
8637
8638         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8639 }
8640
8641 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8642 static expression_t *parse_##unexpression_type(void)                         \
8643 {                                                                            \
8644         expression_t *unary_expression                                           \
8645                 = allocate_expression_zero(unexpression_type);                       \
8646         eat(token_type);                                                         \
8647         unary_expression->unary.value = parse_sub_expression(PREC_UNARY);        \
8648                                                                                  \
8649         sfunc(&unary_expression->unary);                                         \
8650                                                                                  \
8651         return unary_expression;                                                 \
8652 }
8653
8654 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8655                                semantic_unexpr_arithmetic)
8656 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8657                                semantic_unexpr_plus)
8658 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8659                                semantic_not)
8660 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8661                                semantic_dereference)
8662 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8663                                semantic_take_addr)
8664 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8665                                semantic_unexpr_integer)
8666 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8667                                semantic_incdec)
8668 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8669                                semantic_incdec)
8670
8671 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8672                                                sfunc)                         \
8673 static expression_t *parse_##unexpression_type(expression_t *left)            \
8674 {                                                                             \
8675         expression_t *unary_expression                                            \
8676                 = allocate_expression_zero(unexpression_type);                        \
8677         eat(token_type);                                                          \
8678         unary_expression->unary.value = left;                                     \
8679                                                                                   \
8680         sfunc(&unary_expression->unary);                                          \
8681                                                                               \
8682         return unary_expression;                                                  \
8683 }
8684
8685 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8686                                        EXPR_UNARY_POSTFIX_INCREMENT,
8687                                        semantic_incdec)
8688 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8689                                        EXPR_UNARY_POSTFIX_DECREMENT,
8690                                        semantic_incdec)
8691
8692 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8693 {
8694         /* TODO: handle complex + imaginary types */
8695
8696         type_left  = get_unqualified_type(type_left);
8697         type_right = get_unqualified_type(type_right);
8698
8699         /* Â§ 6.3.1.8 Usual arithmetic conversions */
8700         if (type_left == type_long_double || type_right == type_long_double) {
8701                 return type_long_double;
8702         } else if (type_left == type_double || type_right == type_double) {
8703                 return type_double;
8704         } else if (type_left == type_float || type_right == type_float) {
8705                 return type_float;
8706         }
8707
8708         type_left  = promote_integer(type_left);
8709         type_right = promote_integer(type_right);
8710
8711         if (type_left == type_right)
8712                 return type_left;
8713
8714         bool const signed_left  = is_type_signed(type_left);
8715         bool const signed_right = is_type_signed(type_right);
8716         int const  rank_left    = get_rank(type_left);
8717         int const  rank_right   = get_rank(type_right);
8718
8719         if (signed_left == signed_right)
8720                 return rank_left >= rank_right ? type_left : type_right;
8721
8722         int     s_rank;
8723         int     u_rank;
8724         type_t *s_type;
8725         type_t *u_type;
8726         if (signed_left) {
8727                 s_rank = rank_left;
8728                 s_type = type_left;
8729                 u_rank = rank_right;
8730                 u_type = type_right;
8731         } else {
8732                 s_rank = rank_right;
8733                 s_type = type_right;
8734                 u_rank = rank_left;
8735                 u_type = type_left;
8736         }
8737
8738         if (u_rank >= s_rank)
8739                 return u_type;
8740
8741         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8742          * easier here... */
8743         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8744                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8745                 return s_type;
8746
8747         switch (s_rank) {
8748                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8749                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8750                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8751
8752                 default: panic("invalid atomic type");
8753         }
8754 }
8755
8756 /**
8757  * Check the semantic restrictions for a binary expression.
8758  */
8759 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8760 {
8761         expression_t *const left            = expression->left;
8762         expression_t *const right           = expression->right;
8763         type_t       *const orig_type_left  = left->base.type;
8764         type_t       *const orig_type_right = right->base.type;
8765         type_t       *const type_left       = skip_typeref(orig_type_left);
8766         type_t       *const type_right      = skip_typeref(orig_type_right);
8767
8768         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8769                 /* TODO: improve error message */
8770                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8771                         errorf(&expression->base.source_position,
8772                                "operation needs arithmetic types");
8773                 }
8774                 return;
8775         }
8776
8777         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8778         expression->left      = create_implicit_cast(left, arithmetic_type);
8779         expression->right     = create_implicit_cast(right, arithmetic_type);
8780         expression->base.type = arithmetic_type;
8781 }
8782
8783 static void warn_div_by_zero(binary_expression_t const *const expression)
8784 {
8785         if (!warning.div_by_zero ||
8786             !is_type_integer(expression->base.type))
8787                 return;
8788
8789         expression_t const *const right = expression->right;
8790         /* The type of the right operand can be different for /= */
8791         if (is_type_integer(right->base.type) &&
8792             is_constant_expression(right)     &&
8793             fold_constant(right) == 0) {
8794                 warningf(&expression->base.source_position, "division by zero");
8795         }
8796 }
8797
8798 /**
8799  * Check the semantic restrictions for a div/mod expression.
8800  */
8801 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
8802         semantic_binexpr_arithmetic(expression);
8803         warn_div_by_zero(expression);
8804 }
8805
8806 static void semantic_shift_op(binary_expression_t *expression)
8807 {
8808         expression_t *const left            = expression->left;
8809         expression_t *const right           = expression->right;
8810         type_t       *const orig_type_left  = left->base.type;
8811         type_t       *const orig_type_right = right->base.type;
8812         type_t       *      type_left       = skip_typeref(orig_type_left);
8813         type_t       *      type_right      = skip_typeref(orig_type_right);
8814
8815         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8816                 /* TODO: improve error message */
8817                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8818                         errorf(&expression->base.source_position,
8819                                "operands of shift operation must have integer types");
8820                 }
8821                 return;
8822         }
8823
8824         type_left  = promote_integer(type_left);
8825         type_right = promote_integer(type_right);
8826
8827         expression->left      = create_implicit_cast(left, type_left);
8828         expression->right     = create_implicit_cast(right, type_right);
8829         expression->base.type = type_left;
8830 }
8831
8832 static void semantic_add(binary_expression_t *expression)
8833 {
8834         expression_t *const left            = expression->left;
8835         expression_t *const right           = expression->right;
8836         type_t       *const orig_type_left  = left->base.type;
8837         type_t       *const orig_type_right = right->base.type;
8838         type_t       *const type_left       = skip_typeref(orig_type_left);
8839         type_t       *const type_right      = skip_typeref(orig_type_right);
8840
8841         /* Â§ 6.5.6 */
8842         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8843                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8844                 expression->left  = create_implicit_cast(left, arithmetic_type);
8845                 expression->right = create_implicit_cast(right, arithmetic_type);
8846                 expression->base.type = arithmetic_type;
8847                 return;
8848         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8849                 check_pointer_arithmetic(&expression->base.source_position,
8850                                          type_left, orig_type_left);
8851                 expression->base.type = type_left;
8852         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8853                 check_pointer_arithmetic(&expression->base.source_position,
8854                                          type_right, orig_type_right);
8855                 expression->base.type = type_right;
8856         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8857                 errorf(&expression->base.source_position,
8858                        "invalid operands to binary + ('%T', '%T')",
8859                        orig_type_left, orig_type_right);
8860         }
8861 }
8862
8863 static void semantic_sub(binary_expression_t *expression)
8864 {
8865         expression_t            *const left            = expression->left;
8866         expression_t            *const right           = expression->right;
8867         type_t                  *const orig_type_left  = left->base.type;
8868         type_t                  *const orig_type_right = right->base.type;
8869         type_t                  *const type_left       = skip_typeref(orig_type_left);
8870         type_t                  *const type_right      = skip_typeref(orig_type_right);
8871         source_position_t const *const pos             = &expression->base.source_position;
8872
8873         /* Â§ 5.6.5 */
8874         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8875                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8876                 expression->left        = create_implicit_cast(left, arithmetic_type);
8877                 expression->right       = create_implicit_cast(right, arithmetic_type);
8878                 expression->base.type =  arithmetic_type;
8879                 return;
8880         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8881                 check_pointer_arithmetic(&expression->base.source_position,
8882                                          type_left, orig_type_left);
8883                 expression->base.type = type_left;
8884         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8885                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8886                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8887                 if (!types_compatible(unqual_left, unqual_right)) {
8888                         errorf(pos,
8889                                "subtracting pointers to incompatible types '%T' and '%T'",
8890                                orig_type_left, orig_type_right);
8891                 } else if (!is_type_object(unqual_left)) {
8892                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8893                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8894                                        orig_type_left);
8895                         } else if (warning.other) {
8896                                 warningf(pos, "subtracting pointers to void");
8897                         }
8898                 }
8899                 expression->base.type = type_ptrdiff_t;
8900         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8901                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8902                        orig_type_left, orig_type_right);
8903         }
8904 }
8905
8906 static void warn_string_literal_address(expression_t const* expr)
8907 {
8908         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8909                 expr = expr->unary.value;
8910                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8911                         return;
8912                 expr = expr->unary.value;
8913         }
8914
8915         if (expr->kind == EXPR_STRING_LITERAL ||
8916             expr->kind == EXPR_WIDE_STRING_LITERAL) {
8917                 warningf(&expr->base.source_position,
8918                         "comparison with string literal results in unspecified behaviour");
8919         }
8920 }
8921
8922 /**
8923  * Check the semantics of comparison expressions.
8924  *
8925  * @param expression   The expression to check.
8926  */
8927 static void semantic_comparison(binary_expression_t *expression)
8928 {
8929         expression_t *left  = expression->left;
8930         expression_t *right = expression->right;
8931
8932         if (warning.address) {
8933                 warn_string_literal_address(left);
8934                 warn_string_literal_address(right);
8935
8936                 expression_t const* const func_left = get_reference_address(left);
8937                 if (func_left != NULL && is_null_pointer_constant(right)) {
8938                         warningf(&expression->base.source_position,
8939                                  "the address of '%Y' will never be NULL",
8940                                  func_left->reference.entity->base.symbol);
8941                 }
8942
8943                 expression_t const* const func_right = get_reference_address(right);
8944                 if (func_right != NULL && is_null_pointer_constant(right)) {
8945                         warningf(&expression->base.source_position,
8946                                  "the address of '%Y' will never be NULL",
8947                                  func_right->reference.entity->base.symbol);
8948                 }
8949         }
8950
8951         type_t *orig_type_left  = left->base.type;
8952         type_t *orig_type_right = right->base.type;
8953         type_t *type_left       = skip_typeref(orig_type_left);
8954         type_t *type_right      = skip_typeref(orig_type_right);
8955
8956         /* TODO non-arithmetic types */
8957         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8958                 /* test for signed vs unsigned compares */
8959                 if (warning.sign_compare &&
8960                     (expression->base.kind != EXPR_BINARY_EQUAL &&
8961                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
8962                     (is_type_signed(type_left) != is_type_signed(type_right))) {
8963
8964                         /* check if 1 of the operands is a constant, in this case we just
8965                          * check wether we can safely represent the resulting constant in
8966                          * the type of the other operand. */
8967                         expression_t *const_expr = NULL;
8968                         expression_t *other_expr = NULL;
8969
8970                         if (is_constant_expression(left)) {
8971                                 const_expr = left;
8972                                 other_expr = right;
8973                         } else if (is_constant_expression(right)) {
8974                                 const_expr = right;
8975                                 other_expr = left;
8976                         }
8977
8978                         if (const_expr != NULL) {
8979                                 type_t *other_type = skip_typeref(other_expr->base.type);
8980                                 long    val        = fold_constant(const_expr);
8981                                 /* TODO: check if val can be represented by other_type */
8982                                 (void) other_type;
8983                                 (void) val;
8984                         }
8985                         warningf(&expression->base.source_position,
8986                                  "comparison between signed and unsigned");
8987                 }
8988                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8989                 expression->left        = create_implicit_cast(left, arithmetic_type);
8990                 expression->right       = create_implicit_cast(right, arithmetic_type);
8991                 expression->base.type   = arithmetic_type;
8992                 if (warning.float_equal &&
8993                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8994                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8995                     is_type_float(arithmetic_type)) {
8996                         warningf(&expression->base.source_position,
8997                                  "comparing floating point with == or != is unsafe");
8998                 }
8999         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
9000                 /* TODO check compatibility */
9001         } else if (is_type_pointer(type_left)) {
9002                 expression->right = create_implicit_cast(right, type_left);
9003         } else if (is_type_pointer(type_right)) {
9004                 expression->left = create_implicit_cast(left, type_right);
9005         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9006                 type_error_incompatible("invalid operands in comparison",
9007                                         &expression->base.source_position,
9008                                         type_left, type_right);
9009         }
9010         expression->base.type = c_mode & _CXX ? type_bool : type_int;
9011 }
9012
9013 /**
9014  * Checks if a compound type has constant fields.
9015  */
9016 static bool has_const_fields(const compound_type_t *type)
9017 {
9018         compound_t *compound = type->compound;
9019         entity_t   *entry    = compound->members.entities;
9020
9021         for (; entry != NULL; entry = entry->base.next) {
9022                 if (!is_declaration(entry))
9023                         continue;
9024
9025                 const type_t *decl_type = skip_typeref(entry->declaration.type);
9026                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
9027                         return true;
9028         }
9029
9030         return false;
9031 }
9032
9033 static bool is_valid_assignment_lhs(expression_t const* const left)
9034 {
9035         type_t *const orig_type_left = revert_automatic_type_conversion(left);
9036         type_t *const type_left      = skip_typeref(orig_type_left);
9037
9038         if (!is_lvalue(left)) {
9039                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
9040                        left);
9041                 return false;
9042         }
9043
9044         if (left->kind == EXPR_REFERENCE
9045                         && left->reference.entity->kind == ENTITY_FUNCTION) {
9046                 errorf(HERE, "cannot assign to function '%E'", left);
9047                 return false;
9048         }
9049
9050         if (is_type_array(type_left)) {
9051                 errorf(HERE, "cannot assign to array '%E'", left);
9052                 return false;
9053         }
9054         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
9055                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
9056                        orig_type_left);
9057                 return false;
9058         }
9059         if (is_type_incomplete(type_left)) {
9060                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
9061                        left, orig_type_left);
9062                 return false;
9063         }
9064         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
9065                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
9066                        left, orig_type_left);
9067                 return false;
9068         }
9069
9070         return true;
9071 }
9072
9073 static void semantic_arithmetic_assign(binary_expression_t *expression)
9074 {
9075         expression_t *left            = expression->left;
9076         expression_t *right           = expression->right;
9077         type_t       *orig_type_left  = left->base.type;
9078         type_t       *orig_type_right = right->base.type;
9079
9080         if (!is_valid_assignment_lhs(left))
9081                 return;
9082
9083         type_t *type_left  = skip_typeref(orig_type_left);
9084         type_t *type_right = skip_typeref(orig_type_right);
9085
9086         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
9087                 /* TODO: improve error message */
9088                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
9089                         errorf(&expression->base.source_position,
9090                                "operation needs arithmetic types");
9091                 }
9092                 return;
9093         }
9094
9095         /* combined instructions are tricky. We can't create an implicit cast on
9096          * the left side, because we need the uncasted form for the store.
9097          * The ast2firm pass has to know that left_type must be right_type
9098          * for the arithmetic operation and create a cast by itself */
9099         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
9100         expression->right       = create_implicit_cast(right, arithmetic_type);
9101         expression->base.type   = type_left;
9102 }
9103
9104 static void semantic_divmod_assign(binary_expression_t *expression)
9105 {
9106         semantic_arithmetic_assign(expression);
9107         warn_div_by_zero(expression);
9108 }
9109
9110 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
9111 {
9112         expression_t *const left            = expression->left;
9113         expression_t *const right           = expression->right;
9114         type_t       *const orig_type_left  = left->base.type;
9115         type_t       *const orig_type_right = right->base.type;
9116         type_t       *const type_left       = skip_typeref(orig_type_left);
9117         type_t       *const type_right      = skip_typeref(orig_type_right);
9118
9119         if (!is_valid_assignment_lhs(left))
9120                 return;
9121
9122         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
9123                 /* combined instructions are tricky. We can't create an implicit cast on
9124                  * the left side, because we need the uncasted form for the store.
9125                  * The ast2firm pass has to know that left_type must be right_type
9126                  * for the arithmetic operation and create a cast by itself */
9127                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
9128                 expression->right     = create_implicit_cast(right, arithmetic_type);
9129                 expression->base.type = type_left;
9130         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
9131                 check_pointer_arithmetic(&expression->base.source_position,
9132                                          type_left, orig_type_left);
9133                 expression->base.type = type_left;
9134         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9135                 errorf(&expression->base.source_position,
9136                        "incompatible types '%T' and '%T' in assignment",
9137                        orig_type_left, orig_type_right);
9138         }
9139 }
9140
9141 /**
9142  * Check the semantic restrictions of a logical expression.
9143  */
9144 static void semantic_logical_op(binary_expression_t *expression)
9145 {
9146         /* Â§6.5.13:2  Each of the operands shall have scalar type.
9147          * Â§6.5.14:2  Each of the operands shall have scalar type. */
9148         semantic_condition(expression->left,   "left operand of logical operator");
9149         semantic_condition(expression->right, "right operand of logical operator");
9150         expression->base.type = c_mode & _CXX ? type_bool : type_int;
9151 }
9152
9153 /**
9154  * Check the semantic restrictions of a binary assign expression.
9155  */
9156 static void semantic_binexpr_assign(binary_expression_t *expression)
9157 {
9158         expression_t *left           = expression->left;
9159         type_t       *orig_type_left = left->base.type;
9160
9161         if (!is_valid_assignment_lhs(left))
9162                 return;
9163
9164         assign_error_t error = semantic_assign(orig_type_left, expression->right);
9165         report_assign_error(error, orig_type_left, expression->right,
9166                         "assignment", &left->base.source_position);
9167         expression->right = create_implicit_cast(expression->right, orig_type_left);
9168         expression->base.type = orig_type_left;
9169 }
9170
9171 /**
9172  * Determine if the outermost operation (or parts thereof) of the given
9173  * expression has no effect in order to generate a warning about this fact.
9174  * Therefore in some cases this only examines some of the operands of the
9175  * expression (see comments in the function and examples below).
9176  * Examples:
9177  *   f() + 23;    // warning, because + has no effect
9178  *   x || f();    // no warning, because x controls execution of f()
9179  *   x ? y : f(); // warning, because y has no effect
9180  *   (void)x;     // no warning to be able to suppress the warning
9181  * This function can NOT be used for an "expression has definitely no effect"-
9182  * analysis. */
9183 static bool expression_has_effect(const expression_t *const expr)
9184 {
9185         switch (expr->kind) {
9186                 case EXPR_UNKNOWN:                   break;
9187                 case EXPR_INVALID:                   return true; /* do NOT warn */
9188                 case EXPR_REFERENCE:                 return false;
9189                 case EXPR_REFERENCE_ENUM_VALUE:      return false;
9190                 /* suppress the warning for microsoft __noop operations */
9191                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
9192                 case EXPR_CHARACTER_CONSTANT:        return false;
9193                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
9194                 case EXPR_STRING_LITERAL:            return false;
9195                 case EXPR_WIDE_STRING_LITERAL:       return false;
9196                 case EXPR_LABEL_ADDRESS:             return false;
9197
9198                 case EXPR_CALL: {
9199                         const call_expression_t *const call = &expr->call;
9200                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
9201                                 return true;
9202
9203                         switch (call->function->builtin_symbol.symbol->ID) {
9204                                 case T___builtin_va_end: return true;
9205                                 default:                 return false;
9206                         }
9207                 }
9208
9209                 /* Generate the warning if either the left or right hand side of a
9210                  * conditional expression has no effect */
9211                 case EXPR_CONDITIONAL: {
9212                         const conditional_expression_t *const cond = &expr->conditional;
9213                         return
9214                                 expression_has_effect(cond->true_expression) &&
9215                                 expression_has_effect(cond->false_expression);
9216                 }
9217
9218                 case EXPR_SELECT:                    return false;
9219                 case EXPR_ARRAY_ACCESS:              return false;
9220                 case EXPR_SIZEOF:                    return false;
9221                 case EXPR_CLASSIFY_TYPE:             return false;
9222                 case EXPR_ALIGNOF:                   return false;
9223
9224                 case EXPR_FUNCNAME:                  return false;
9225                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
9226                 case EXPR_BUILTIN_CONSTANT_P:        return false;
9227                 case EXPR_BUILTIN_PREFETCH:          return true;
9228                 case EXPR_OFFSETOF:                  return false;
9229                 case EXPR_VA_START:                  return true;
9230                 case EXPR_VA_ARG:                    return true;
9231                 case EXPR_STATEMENT:                 return true; // TODO
9232                 case EXPR_COMPOUND_LITERAL:          return false;
9233
9234                 case EXPR_UNARY_NEGATE:              return false;
9235                 case EXPR_UNARY_PLUS:                return false;
9236                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
9237                 case EXPR_UNARY_NOT:                 return false;
9238                 case EXPR_UNARY_DEREFERENCE:         return false;
9239                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
9240                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
9241                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
9242                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
9243                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
9244
9245                 /* Treat void casts as if they have an effect in order to being able to
9246                  * suppress the warning */
9247                 case EXPR_UNARY_CAST: {
9248                         type_t *const type = skip_typeref(expr->base.type);
9249                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
9250                 }
9251
9252                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
9253                 case EXPR_UNARY_ASSUME:              return true;
9254                 case EXPR_UNARY_DELETE:              return true;
9255                 case EXPR_UNARY_DELETE_ARRAY:        return true;
9256                 case EXPR_UNARY_THROW:               return true;
9257
9258                 case EXPR_BINARY_ADD:                return false;
9259                 case EXPR_BINARY_SUB:                return false;
9260                 case EXPR_BINARY_MUL:                return false;
9261                 case EXPR_BINARY_DIV:                return false;
9262                 case EXPR_BINARY_MOD:                return false;
9263                 case EXPR_BINARY_EQUAL:              return false;
9264                 case EXPR_BINARY_NOTEQUAL:           return false;
9265                 case EXPR_BINARY_LESS:               return false;
9266                 case EXPR_BINARY_LESSEQUAL:          return false;
9267                 case EXPR_BINARY_GREATER:            return false;
9268                 case EXPR_BINARY_GREATEREQUAL:       return false;
9269                 case EXPR_BINARY_BITWISE_AND:        return false;
9270                 case EXPR_BINARY_BITWISE_OR:         return false;
9271                 case EXPR_BINARY_BITWISE_XOR:        return false;
9272                 case EXPR_BINARY_SHIFTLEFT:          return false;
9273                 case EXPR_BINARY_SHIFTRIGHT:         return false;
9274                 case EXPR_BINARY_ASSIGN:             return true;
9275                 case EXPR_BINARY_MUL_ASSIGN:         return true;
9276                 case EXPR_BINARY_DIV_ASSIGN:         return true;
9277                 case EXPR_BINARY_MOD_ASSIGN:         return true;
9278                 case EXPR_BINARY_ADD_ASSIGN:         return true;
9279                 case EXPR_BINARY_SUB_ASSIGN:         return true;
9280                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
9281                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
9282                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
9283                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
9284                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
9285
9286                 /* Only examine the right hand side of && and ||, because the left hand
9287                  * side already has the effect of controlling the execution of the right
9288                  * hand side */
9289                 case EXPR_BINARY_LOGICAL_AND:
9290                 case EXPR_BINARY_LOGICAL_OR:
9291                 /* Only examine the right hand side of a comma expression, because the left
9292                  * hand side has a separate warning */
9293                 case EXPR_BINARY_COMMA:
9294                         return expression_has_effect(expr->binary.right);
9295
9296                 case EXPR_BINARY_ISGREATER:          return false;
9297                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
9298                 case EXPR_BINARY_ISLESS:             return false;
9299                 case EXPR_BINARY_ISLESSEQUAL:        return false;
9300                 case EXPR_BINARY_ISLESSGREATER:      return false;
9301                 case EXPR_BINARY_ISUNORDERED:        return false;
9302         }
9303
9304         internal_errorf(HERE, "unexpected expression");
9305 }
9306
9307 static void semantic_comma(binary_expression_t *expression)
9308 {
9309         if (warning.unused_value) {
9310                 const expression_t *const left = expression->left;
9311                 if (!expression_has_effect(left)) {
9312                         warningf(&left->base.source_position,
9313                                  "left-hand operand of comma expression has no effect");
9314                 }
9315         }
9316         expression->base.type = expression->right->base.type;
9317 }
9318
9319 /**
9320  * @param prec_r precedence of the right operand
9321  */
9322 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
9323 static expression_t *parse_##binexpression_type(expression_t *left)          \
9324 {                                                                            \
9325         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
9326         binexpr->binary.left  = left;                                            \
9327         eat(token_type);                                                         \
9328                                                                              \
9329         expression_t *right = parse_sub_expression(prec_r);                      \
9330                                                                              \
9331         binexpr->binary.right = right;                                           \
9332         sfunc(&binexpr->binary);                                                 \
9333                                                                              \
9334         return binexpr;                                                          \
9335 }
9336
9337 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
9338 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
9339 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
9340 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
9341 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
9342 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
9343 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
9344 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
9345 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
9346 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
9347 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
9348 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
9349 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
9350 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
9351 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
9352 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
9353 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
9354 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
9355 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
9356 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
9357 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
9358 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9359 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
9360 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
9361 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9362 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9363 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9364 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9365 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9366 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
9367
9368
9369 static expression_t *parse_sub_expression(precedence_t precedence)
9370 {
9371         if (token.type < 0) {
9372                 return expected_expression_error();
9373         }
9374
9375         expression_parser_function_t *parser
9376                 = &expression_parsers[token.type];
9377         source_position_t             source_position = token.source_position;
9378         expression_t                 *left;
9379
9380         if (parser->parser != NULL) {
9381                 left = parser->parser();
9382         } else {
9383                 left = parse_primary_expression();
9384         }
9385         assert(left != NULL);
9386         left->base.source_position = source_position;
9387
9388         while (true) {
9389                 if (token.type < 0) {
9390                         return expected_expression_error();
9391                 }
9392
9393                 parser = &expression_parsers[token.type];
9394                 if (parser->infix_parser == NULL)
9395                         break;
9396                 if (parser->infix_precedence < precedence)
9397                         break;
9398
9399                 left = parser->infix_parser(left);
9400
9401                 assert(left != NULL);
9402                 assert(left->kind != EXPR_UNKNOWN);
9403                 left->base.source_position = source_position;
9404         }
9405
9406         return left;
9407 }
9408
9409 /**
9410  * Parse an expression.
9411  */
9412 static expression_t *parse_expression(void)
9413 {
9414         return parse_sub_expression(PREC_EXPRESSION);
9415 }
9416
9417 /**
9418  * Register a parser for a prefix-like operator.
9419  *
9420  * @param parser      the parser function
9421  * @param token_type  the token type of the prefix token
9422  */
9423 static void register_expression_parser(parse_expression_function parser,
9424                                        int token_type)
9425 {
9426         expression_parser_function_t *entry = &expression_parsers[token_type];
9427
9428         if (entry->parser != NULL) {
9429                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9430                 panic("trying to register multiple expression parsers for a token");
9431         }
9432         entry->parser = parser;
9433 }
9434
9435 /**
9436  * Register a parser for an infix operator with given precedence.
9437  *
9438  * @param parser      the parser function
9439  * @param token_type  the token type of the infix operator
9440  * @param precedence  the precedence of the operator
9441  */
9442 static void register_infix_parser(parse_expression_infix_function parser,
9443                 int token_type, unsigned precedence)
9444 {
9445         expression_parser_function_t *entry = &expression_parsers[token_type];
9446
9447         if (entry->infix_parser != NULL) {
9448                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9449                 panic("trying to register multiple infix expression parsers for a "
9450                       "token");
9451         }
9452         entry->infix_parser     = parser;
9453         entry->infix_precedence = precedence;
9454 }
9455
9456 /**
9457  * Initialize the expression parsers.
9458  */
9459 static void init_expression_parsers(void)
9460 {
9461         memset(&expression_parsers, 0, sizeof(expression_parsers));
9462
9463         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9464         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9465         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9466         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9467         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9468         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9469         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9470         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9471         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9472         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9473         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9474         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9475         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9476         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9477         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9478         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9479         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9480         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9481         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9482         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9483         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9484         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9485         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9486         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9487         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9488         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9489         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9490         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9491         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9492         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9493         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9494         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9495         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9496         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9497         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9498         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9499         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9500
9501         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9502         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9503         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9504         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9505         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9506         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9507         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9508         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9509         register_expression_parser(parse_sizeof,                      T_sizeof);
9510         register_expression_parser(parse_alignof,                     T___alignof__);
9511         register_expression_parser(parse_extension,                   T___extension__);
9512         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9513         register_expression_parser(parse_delete,                      T_delete);
9514         register_expression_parser(parse_throw,                       T_throw);
9515 }
9516
9517 /**
9518  * Parse a asm statement arguments specification.
9519  */
9520 static asm_argument_t *parse_asm_arguments(bool is_out)
9521 {
9522         asm_argument_t  *result = NULL;
9523         asm_argument_t **anchor = &result;
9524
9525         while (token.type == T_STRING_LITERAL || token.type == '[') {
9526                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9527                 memset(argument, 0, sizeof(argument[0]));
9528
9529                 if (token.type == '[') {
9530                         eat('[');
9531                         if (token.type != T_IDENTIFIER) {
9532                                 parse_error_expected("while parsing asm argument",
9533                                                      T_IDENTIFIER, NULL);
9534                                 return NULL;
9535                         }
9536                         argument->symbol = token.v.symbol;
9537
9538                         expect(']', end_error);
9539                 }
9540
9541                 argument->constraints = parse_string_literals();
9542                 expect('(', end_error);
9543                 add_anchor_token(')');
9544                 expression_t *expression = parse_expression();
9545                 rem_anchor_token(')');
9546                 if (is_out) {
9547                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9548                          * change size or type representation (e.g. int -> long is ok, but
9549                          * int -> float is not) */
9550                         if (expression->kind == EXPR_UNARY_CAST) {
9551                                 type_t      *const type = expression->base.type;
9552                                 type_kind_t  const kind = type->kind;
9553                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9554                                         unsigned flags;
9555                                         unsigned size;
9556                                         if (kind == TYPE_ATOMIC) {
9557                                                 atomic_type_kind_t const akind = type->atomic.akind;
9558                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9559                                                 size  = get_atomic_type_size(akind);
9560                                         } else {
9561                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9562                                                 size  = get_atomic_type_size(get_intptr_kind());
9563                                         }
9564
9565                                         do {
9566                                                 expression_t *const value      = expression->unary.value;
9567                                                 type_t       *const value_type = value->base.type;
9568                                                 type_kind_t   const value_kind = value_type->kind;
9569
9570                                                 unsigned value_flags;
9571                                                 unsigned value_size;
9572                                                 if (value_kind == TYPE_ATOMIC) {
9573                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9574                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9575                                                         value_size  = get_atomic_type_size(value_akind);
9576                                                 } else if (value_kind == TYPE_POINTER) {
9577                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9578                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9579                                                 } else {
9580                                                         break;
9581                                                 }
9582
9583                                                 if (value_flags != flags || value_size != size)
9584                                                         break;
9585
9586                                                 expression = value;
9587                                         } while (expression->kind == EXPR_UNARY_CAST);
9588                                 }
9589                         }
9590
9591                         if (!is_lvalue(expression)) {
9592                                 errorf(&expression->base.source_position,
9593                                        "asm output argument is not an lvalue");
9594                         }
9595
9596                         if (argument->constraints.begin[0] == '+')
9597                                 mark_vars_read(expression, NULL);
9598                 } else {
9599                         mark_vars_read(expression, NULL);
9600                 }
9601                 argument->expression = expression;
9602                 expect(')', end_error);
9603
9604                 set_address_taken(expression, true);
9605
9606                 *anchor = argument;
9607                 anchor  = &argument->next;
9608
9609                 if (token.type != ',')
9610                         break;
9611                 eat(',');
9612         }
9613
9614         return result;
9615 end_error:
9616         return NULL;
9617 }
9618
9619 /**
9620  * Parse a asm statement clobber specification.
9621  */
9622 static asm_clobber_t *parse_asm_clobbers(void)
9623 {
9624         asm_clobber_t *result = NULL;
9625         asm_clobber_t *last   = NULL;
9626
9627         while (token.type == T_STRING_LITERAL) {
9628                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9629                 clobber->clobber       = parse_string_literals();
9630
9631                 if (last != NULL) {
9632                         last->next = clobber;
9633                 } else {
9634                         result = clobber;
9635                 }
9636                 last = clobber;
9637
9638                 if (token.type != ',')
9639                         break;
9640                 eat(',');
9641         }
9642
9643         return result;
9644 }
9645
9646 /**
9647  * Parse an asm statement.
9648  */
9649 static statement_t *parse_asm_statement(void)
9650 {
9651         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9652         asm_statement_t *asm_statement = &statement->asms;
9653
9654         eat(T_asm);
9655
9656         if (token.type == T_volatile) {
9657                 next_token();
9658                 asm_statement->is_volatile = true;
9659         }
9660
9661         expect('(', end_error);
9662         add_anchor_token(')');
9663         add_anchor_token(':');
9664         asm_statement->asm_text = parse_string_literals();
9665
9666         if (token.type != ':') {
9667                 rem_anchor_token(':');
9668                 goto end_of_asm;
9669         }
9670         eat(':');
9671
9672         asm_statement->outputs = parse_asm_arguments(true);
9673         if (token.type != ':') {
9674                 rem_anchor_token(':');
9675                 goto end_of_asm;
9676         }
9677         eat(':');
9678
9679         asm_statement->inputs = parse_asm_arguments(false);
9680         if (token.type != ':') {
9681                 rem_anchor_token(':');
9682                 goto end_of_asm;
9683         }
9684         rem_anchor_token(':');
9685         eat(':');
9686
9687         asm_statement->clobbers = parse_asm_clobbers();
9688
9689 end_of_asm:
9690         rem_anchor_token(')');
9691         expect(')', end_error);
9692         expect(';', end_error);
9693
9694         if (asm_statement->outputs == NULL) {
9695                 /* GCC: An 'asm' instruction without any output operands will be treated
9696                  * identically to a volatile 'asm' instruction. */
9697                 asm_statement->is_volatile = true;
9698         }
9699
9700         return statement;
9701 end_error:
9702         return create_invalid_statement();
9703 }
9704
9705 /**
9706  * Parse a case statement.
9707  */
9708 static statement_t *parse_case_statement(void)
9709 {
9710         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9711         source_position_t *const pos       = &statement->base.source_position;
9712
9713         eat(T_case);
9714
9715         expression_t *const expression   = parse_expression();
9716         statement->case_label.expression = expression;
9717         if (!is_constant_expression(expression)) {
9718                 /* This check does not prevent the error message in all cases of an
9719                  * prior error while parsing the expression.  At least it catches the
9720                  * common case of a mistyped enum entry. */
9721                 if (is_type_valid(skip_typeref(expression->base.type))) {
9722                         errorf(pos, "case label does not reduce to an integer constant");
9723                 }
9724                 statement->case_label.is_bad = true;
9725         } else {
9726                 long const val = fold_constant(expression);
9727                 statement->case_label.first_case = val;
9728                 statement->case_label.last_case  = val;
9729         }
9730
9731         if (GNU_MODE) {
9732                 if (token.type == T_DOTDOTDOT) {
9733                         next_token();
9734                         expression_t *const end_range   = parse_expression();
9735                         statement->case_label.end_range = end_range;
9736                         if (!is_constant_expression(end_range)) {
9737                                 /* This check does not prevent the error message in all cases of an
9738                                  * prior error while parsing the expression.  At least it catches the
9739                                  * common case of a mistyped enum entry. */
9740                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9741                                         errorf(pos, "case range does not reduce to an integer constant");
9742                                 }
9743                                 statement->case_label.is_bad = true;
9744                         } else {
9745                                 long const val = fold_constant(end_range);
9746                                 statement->case_label.last_case = val;
9747
9748                                 if (warning.other && val < statement->case_label.first_case) {
9749                                         statement->case_label.is_empty_range = true;
9750                                         warningf(pos, "empty range specified");
9751                                 }
9752                         }
9753                 }
9754         }
9755
9756         PUSH_PARENT(statement);
9757
9758         expect(':', end_error);
9759 end_error:
9760
9761         if (current_switch != NULL) {
9762                 if (! statement->case_label.is_bad) {
9763                         /* Check for duplicate case values */
9764                         case_label_statement_t *c = &statement->case_label;
9765                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9766                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9767                                         continue;
9768
9769                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9770                                         continue;
9771
9772                                 errorf(pos, "duplicate case value (previously used %P)",
9773                                        &l->base.source_position);
9774                                 break;
9775                         }
9776                 }
9777                 /* link all cases into the switch statement */
9778                 if (current_switch->last_case == NULL) {
9779                         current_switch->first_case      = &statement->case_label;
9780                 } else {
9781                         current_switch->last_case->next = &statement->case_label;
9782                 }
9783                 current_switch->last_case = &statement->case_label;
9784         } else {
9785                 errorf(pos, "case label not within a switch statement");
9786         }
9787
9788         statement_t *const inner_stmt = parse_statement();
9789         statement->case_label.statement = inner_stmt;
9790         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9791                 errorf(&inner_stmt->base.source_position, "declaration after case label");
9792         }
9793
9794         POP_PARENT;
9795         return statement;
9796 }
9797
9798 /**
9799  * Parse a default statement.
9800  */
9801 static statement_t *parse_default_statement(void)
9802 {
9803         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9804
9805         eat(T_default);
9806
9807         PUSH_PARENT(statement);
9808
9809         expect(':', end_error);
9810         if (current_switch != NULL) {
9811                 const case_label_statement_t *def_label = current_switch->default_label;
9812                 if (def_label != NULL) {
9813                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9814                                &def_label->base.source_position);
9815                 } else {
9816                         current_switch->default_label = &statement->case_label;
9817
9818                         /* link all cases into the switch statement */
9819                         if (current_switch->last_case == NULL) {
9820                                 current_switch->first_case      = &statement->case_label;
9821                         } else {
9822                                 current_switch->last_case->next = &statement->case_label;
9823                         }
9824                         current_switch->last_case = &statement->case_label;
9825                 }
9826         } else {
9827                 errorf(&statement->base.source_position,
9828                         "'default' label not within a switch statement");
9829         }
9830
9831         statement_t *const inner_stmt = parse_statement();
9832         statement->case_label.statement = inner_stmt;
9833         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9834                 errorf(&inner_stmt->base.source_position, "declaration after default label");
9835         }
9836
9837         POP_PARENT;
9838         return statement;
9839 end_error:
9840         POP_PARENT;
9841         return create_invalid_statement();
9842 }
9843
9844 /**
9845  * Parse a label statement.
9846  */
9847 static statement_t *parse_label_statement(void)
9848 {
9849         assert(token.type == T_IDENTIFIER);
9850         symbol_t *symbol = token.v.symbol;
9851         label_t  *label  = get_label(symbol);
9852
9853         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9854         statement->label.label       = label;
9855
9856         next_token();
9857
9858         PUSH_PARENT(statement);
9859
9860         /* if statement is already set then the label is defined twice,
9861          * otherwise it was just mentioned in a goto/local label declaration so far
9862          */
9863         if (label->statement != NULL) {
9864                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9865                        symbol, &label->base.source_position);
9866         } else {
9867                 label->base.source_position = token.source_position;
9868                 label->statement            = statement;
9869         }
9870
9871         eat(':');
9872
9873         if (token.type == '}') {
9874                 /* TODO only warn? */
9875                 if (warning.other && false) {
9876                         warningf(HERE, "label at end of compound statement");
9877                         statement->label.statement = create_empty_statement();
9878                 } else {
9879                         errorf(HERE, "label at end of compound statement");
9880                         statement->label.statement = create_invalid_statement();
9881                 }
9882         } else if (token.type == ';') {
9883                 /* Eat an empty statement here, to avoid the warning about an empty
9884                  * statement after a label.  label:; is commonly used to have a label
9885                  * before a closing brace. */
9886                 statement->label.statement = create_empty_statement();
9887                 next_token();
9888         } else {
9889                 statement_t *const inner_stmt = parse_statement();
9890                 statement->label.statement = inner_stmt;
9891                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
9892                         errorf(&inner_stmt->base.source_position, "declaration after label");
9893                 }
9894         }
9895
9896         /* remember the labels in a list for later checking */
9897         *label_anchor = &statement->label;
9898         label_anchor  = &statement->label.next;
9899
9900         POP_PARENT;
9901         return statement;
9902 }
9903
9904 /**
9905  * Parse an if statement.
9906  */
9907 static statement_t *parse_if(void)
9908 {
9909         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9910
9911         eat(T_if);
9912
9913         PUSH_PARENT(statement);
9914
9915         add_anchor_token('{');
9916
9917         expect('(', end_error);
9918         add_anchor_token(')');
9919         expression_t *const expr = parse_expression();
9920         statement->ifs.condition = expr;
9921         /* Â§6.8.4.1:1  The controlling expression of an if statement shall have
9922          *             scalar type. */
9923         semantic_condition(expr, "condition of 'if'-statment");
9924         mark_vars_read(expr, NULL);
9925         rem_anchor_token(')');
9926         expect(')', end_error);
9927
9928 end_error:
9929         rem_anchor_token('{');
9930
9931         add_anchor_token(T_else);
9932         statement->ifs.true_statement = parse_statement();
9933         rem_anchor_token(T_else);
9934
9935         if (token.type == T_else) {
9936                 next_token();
9937                 statement->ifs.false_statement = parse_statement();
9938         }
9939
9940         POP_PARENT;
9941         return statement;
9942 }
9943
9944 /**
9945  * Check that all enums are handled in a switch.
9946  *
9947  * @param statement  the switch statement to check
9948  */
9949 static void check_enum_cases(const switch_statement_t *statement) {
9950         const type_t *type = skip_typeref(statement->expression->base.type);
9951         if (! is_type_enum(type))
9952                 return;
9953         const enum_type_t *enumt = &type->enumt;
9954
9955         /* if we have a default, no warnings */
9956         if (statement->default_label != NULL)
9957                 return;
9958
9959         /* FIXME: calculation of value should be done while parsing */
9960         /* TODO: quadratic algorithm here. Change to an n log n one */
9961         long            last_value = -1;
9962         const entity_t *entry      = enumt->enume->base.next;
9963         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9964              entry = entry->base.next) {
9965                 const expression_t *expression = entry->enum_value.value;
9966                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
9967                 bool                found      = false;
9968                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9969                         if (l->expression == NULL)
9970                                 continue;
9971                         if (l->first_case <= value && value <= l->last_case) {
9972                                 found = true;
9973                                 break;
9974                         }
9975                 }
9976                 if (! found) {
9977                         warningf(&statement->base.source_position,
9978                                  "enumeration value '%Y' not handled in switch",
9979                                  entry->base.symbol);
9980                 }
9981                 last_value = value;
9982         }
9983 }
9984
9985 /**
9986  * Parse a switch statement.
9987  */
9988 static statement_t *parse_switch(void)
9989 {
9990         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9991
9992         eat(T_switch);
9993
9994         PUSH_PARENT(statement);
9995
9996         expect('(', end_error);
9997         add_anchor_token(')');
9998         expression_t *const expr = parse_expression();
9999         mark_vars_read(expr, NULL);
10000         type_t       *      type = skip_typeref(expr->base.type);
10001         if (is_type_integer(type)) {
10002                 type = promote_integer(type);
10003                 if (warning.traditional) {
10004                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
10005                                 warningf(&expr->base.source_position,
10006                                         "'%T' switch expression not converted to '%T' in ISO C",
10007                                         type, type_int);
10008                         }
10009                 }
10010         } else if (is_type_valid(type)) {
10011                 errorf(&expr->base.source_position,
10012                        "switch quantity is not an integer, but '%T'", type);
10013                 type = type_error_type;
10014         }
10015         statement->switchs.expression = create_implicit_cast(expr, type);
10016         expect(')', end_error);
10017         rem_anchor_token(')');
10018
10019         switch_statement_t *rem = current_switch;
10020         current_switch          = &statement->switchs;
10021         statement->switchs.body = parse_statement();
10022         current_switch          = rem;
10023
10024         if (warning.switch_default &&
10025             statement->switchs.default_label == NULL) {
10026                 warningf(&statement->base.source_position, "switch has no default case");
10027         }
10028         if (warning.switch_enum)
10029                 check_enum_cases(&statement->switchs);
10030
10031         POP_PARENT;
10032         return statement;
10033 end_error:
10034         POP_PARENT;
10035         return create_invalid_statement();
10036 }
10037
10038 static statement_t *parse_loop_body(statement_t *const loop)
10039 {
10040         statement_t *const rem = current_loop;
10041         current_loop = loop;
10042
10043         statement_t *const body = parse_statement();
10044
10045         current_loop = rem;
10046         return body;
10047 }
10048
10049 /**
10050  * Parse a while statement.
10051  */
10052 static statement_t *parse_while(void)
10053 {
10054         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
10055
10056         eat(T_while);
10057
10058         PUSH_PARENT(statement);
10059
10060         expect('(', end_error);
10061         add_anchor_token(')');
10062         expression_t *const cond = parse_expression();
10063         statement->whiles.condition = cond;
10064         /* Â§6.8.5:2    The controlling expression of an iteration statement shall
10065          *             have scalar type. */
10066         semantic_condition(cond, "condition of 'while'-statement");
10067         mark_vars_read(cond, NULL);
10068         rem_anchor_token(')');
10069         expect(')', end_error);
10070
10071         statement->whiles.body = parse_loop_body(statement);
10072
10073         POP_PARENT;
10074         return statement;
10075 end_error:
10076         POP_PARENT;
10077         return create_invalid_statement();
10078 }
10079
10080 /**
10081  * Parse a do statement.
10082  */
10083 static statement_t *parse_do(void)
10084 {
10085         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
10086
10087         eat(T_do);
10088
10089         PUSH_PARENT(statement);
10090
10091         add_anchor_token(T_while);
10092         statement->do_while.body = parse_loop_body(statement);
10093         rem_anchor_token(T_while);
10094
10095         expect(T_while, end_error);
10096         expect('(', end_error);
10097         add_anchor_token(')');
10098         expression_t *const cond = parse_expression();
10099         statement->do_while.condition = cond;
10100         /* Â§6.8.5:2    The controlling expression of an iteration statement shall
10101          *             have scalar type. */
10102         semantic_condition(cond, "condition of 'do-while'-statement");
10103         mark_vars_read(cond, NULL);
10104         rem_anchor_token(')');
10105         expect(')', end_error);
10106         expect(';', end_error);
10107
10108         POP_PARENT;
10109         return statement;
10110 end_error:
10111         POP_PARENT;
10112         return create_invalid_statement();
10113 }
10114
10115 /**
10116  * Parse a for statement.
10117  */
10118 static statement_t *parse_for(void)
10119 {
10120         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
10121
10122         eat(T_for);
10123
10124         expect('(', end_error1);
10125         add_anchor_token(')');
10126
10127         PUSH_PARENT(statement);
10128
10129         size_t const  top       = environment_top();
10130         scope_t      *old_scope = scope_push(&statement->fors.scope);
10131
10132         if (token.type == ';') {
10133                 next_token();
10134         } else if (is_declaration_specifier(&token, false)) {
10135                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10136         } else {
10137                 add_anchor_token(';');
10138                 expression_t *const init = parse_expression();
10139                 statement->fors.initialisation = init;
10140                 mark_vars_read(init, ENT_ANY);
10141                 if (warning.unused_value && !expression_has_effect(init)) {
10142                         warningf(&init->base.source_position,
10143                                         "initialisation of 'for'-statement has no effect");
10144                 }
10145                 rem_anchor_token(';');
10146                 expect(';', end_error2);
10147         }
10148
10149         if (token.type != ';') {
10150                 add_anchor_token(';');
10151                 expression_t *const cond = parse_expression();
10152                 statement->fors.condition = cond;
10153                 /* Â§6.8.5:2    The controlling expression of an iteration statement
10154                  *             shall have scalar type. */
10155                 semantic_condition(cond, "condition of 'for'-statement");
10156                 mark_vars_read(cond, NULL);
10157                 rem_anchor_token(';');
10158         }
10159         expect(';', end_error2);
10160         if (token.type != ')') {
10161                 expression_t *const step = parse_expression();
10162                 statement->fors.step = step;
10163                 mark_vars_read(step, ENT_ANY);
10164                 if (warning.unused_value && !expression_has_effect(step)) {
10165                         warningf(&step->base.source_position,
10166                                  "step of 'for'-statement has no effect");
10167                 }
10168         }
10169         expect(')', end_error2);
10170         rem_anchor_token(')');
10171         statement->fors.body = parse_loop_body(statement);
10172
10173         assert(current_scope == &statement->fors.scope);
10174         scope_pop(old_scope);
10175         environment_pop_to(top);
10176
10177         POP_PARENT;
10178         return statement;
10179
10180 end_error2:
10181         POP_PARENT;
10182         rem_anchor_token(')');
10183         assert(current_scope == &statement->fors.scope);
10184         scope_pop(old_scope);
10185         environment_pop_to(top);
10186         /* fallthrough */
10187
10188 end_error1:
10189         return create_invalid_statement();
10190 }
10191
10192 /**
10193  * Parse a goto statement.
10194  */
10195 static statement_t *parse_goto(void)
10196 {
10197         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
10198         eat(T_goto);
10199
10200         if (GNU_MODE && token.type == '*') {
10201                 next_token();
10202                 expression_t *expression = parse_expression();
10203                 mark_vars_read(expression, NULL);
10204
10205                 /* Argh: although documentation says the expression must be of type void*,
10206                  * gcc accepts anything that can be casted into void* without error */
10207                 type_t *type = expression->base.type;
10208
10209                 if (type != type_error_type) {
10210                         if (!is_type_pointer(type) && !is_type_integer(type)) {
10211                                 errorf(&expression->base.source_position,
10212                                         "cannot convert to a pointer type");
10213                         } else if (warning.other && type != type_void_ptr) {
10214                                 warningf(&expression->base.source_position,
10215                                         "type of computed goto expression should be 'void*' not '%T'", type);
10216                         }
10217                         expression = create_implicit_cast(expression, type_void_ptr);
10218                 }
10219
10220                 statement->gotos.expression = expression;
10221         } else {
10222                 if (token.type != T_IDENTIFIER) {
10223                         if (GNU_MODE)
10224                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
10225                         else
10226                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
10227                         eat_until_anchor();
10228                         goto end_error;
10229                 }
10230                 symbol_t *symbol = token.v.symbol;
10231                 next_token();
10232
10233                 statement->gotos.label = get_label(symbol);
10234         }
10235
10236         /* remember the goto's in a list for later checking */
10237         *goto_anchor = &statement->gotos;
10238         goto_anchor  = &statement->gotos.next;
10239
10240         expect(';', end_error);
10241
10242         return statement;
10243 end_error:
10244         return create_invalid_statement();
10245 }
10246
10247 /**
10248  * Parse a continue statement.
10249  */
10250 static statement_t *parse_continue(void)
10251 {
10252         if (current_loop == NULL) {
10253                 errorf(HERE, "continue statement not within loop");
10254         }
10255
10256         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
10257
10258         eat(T_continue);
10259         expect(';', end_error);
10260
10261 end_error:
10262         return statement;
10263 }
10264
10265 /**
10266  * Parse a break statement.
10267  */
10268 static statement_t *parse_break(void)
10269 {
10270         if (current_switch == NULL && current_loop == NULL) {
10271                 errorf(HERE, "break statement not within loop or switch");
10272         }
10273
10274         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
10275
10276         eat(T_break);
10277         expect(';', end_error);
10278
10279 end_error:
10280         return statement;
10281 }
10282
10283 /**
10284  * Parse a __leave statement.
10285  */
10286 static statement_t *parse_leave_statement(void)
10287 {
10288         if (current_try == NULL) {
10289                 errorf(HERE, "__leave statement not within __try");
10290         }
10291
10292         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
10293
10294         eat(T___leave);
10295         expect(';', end_error);
10296
10297 end_error:
10298         return statement;
10299 }
10300
10301 /**
10302  * Check if a given entity represents a local variable.
10303  */
10304 static bool is_local_variable(const entity_t *entity)
10305 {
10306         if (entity->kind != ENTITY_VARIABLE)
10307                 return false;
10308
10309         switch ((storage_class_tag_t) entity->declaration.storage_class) {
10310         case STORAGE_CLASS_AUTO:
10311         case STORAGE_CLASS_REGISTER: {
10312                 const type_t *type = skip_typeref(entity->declaration.type);
10313                 if (is_type_function(type)) {
10314                         return false;
10315                 } else {
10316                         return true;
10317                 }
10318         }
10319         default:
10320                 return false;
10321         }
10322 }
10323
10324 /**
10325  * Check if a given expression represents a local variable.
10326  */
10327 static bool expression_is_local_variable(const expression_t *expression)
10328 {
10329         if (expression->base.kind != EXPR_REFERENCE) {
10330                 return false;
10331         }
10332         const entity_t *entity = expression->reference.entity;
10333         return is_local_variable(entity);
10334 }
10335
10336 /**
10337  * Check if a given expression represents a local variable and
10338  * return its declaration then, else return NULL.
10339  */
10340 entity_t *expression_is_variable(const expression_t *expression)
10341 {
10342         if (expression->base.kind != EXPR_REFERENCE) {
10343                 return NULL;
10344         }
10345         entity_t *entity = expression->reference.entity;
10346         if (entity->kind != ENTITY_VARIABLE)
10347                 return NULL;
10348
10349         return entity;
10350 }
10351
10352 /**
10353  * Parse a return statement.
10354  */
10355 static statement_t *parse_return(void)
10356 {
10357         eat(T_return);
10358
10359         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
10360
10361         expression_t *return_value = NULL;
10362         if (token.type != ';') {
10363                 return_value = parse_expression();
10364                 mark_vars_read(return_value, NULL);
10365         }
10366
10367         const type_t *const func_type = skip_typeref(current_function->base.type);
10368         assert(is_type_function(func_type));
10369         type_t *const return_type = skip_typeref(func_type->function.return_type);
10370
10371         if (return_value != NULL) {
10372                 type_t *return_value_type = skip_typeref(return_value->base.type);
10373
10374                 if (is_type_atomic(return_type,        ATOMIC_TYPE_VOID) &&
10375                                 !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
10376                         if (warning.other) {
10377                                 warningf(&statement->base.source_position,
10378                                                 "'return' with a value, in function returning void");
10379                         }
10380                         return_value = NULL;
10381                 } else {
10382                         assign_error_t error = semantic_assign(return_type, return_value);
10383                         report_assign_error(error, return_type, return_value, "'return'",
10384                                             &statement->base.source_position);
10385                         return_value = create_implicit_cast(return_value, return_type);
10386                 }
10387                 /* check for returning address of a local var */
10388                 if (warning.other && return_value != NULL
10389                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
10390                         const expression_t *expression = return_value->unary.value;
10391                         if (expression_is_local_variable(expression)) {
10392                                 warningf(&statement->base.source_position,
10393                                          "function returns address of local variable");
10394                         }
10395                 }
10396         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10397                 warningf(&statement->base.source_position,
10398                                 "'return' without value, in function returning non-void");
10399         }
10400         statement->returns.value = return_value;
10401
10402         expect(';', end_error);
10403
10404 end_error:
10405         return statement;
10406 }
10407
10408 /**
10409  * Parse a declaration statement.
10410  */
10411 static statement_t *parse_declaration_statement(void)
10412 {
10413         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10414
10415         entity_t *before = current_scope->last_entity;
10416         if (GNU_MODE) {
10417                 parse_external_declaration();
10418         } else {
10419                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10420         }
10421
10422         if (before == NULL) {
10423                 statement->declaration.declarations_begin = current_scope->entities;
10424         } else {
10425                 statement->declaration.declarations_begin = before->base.next;
10426         }
10427         statement->declaration.declarations_end = current_scope->last_entity;
10428
10429         return statement;
10430 }
10431
10432 /**
10433  * Parse an expression statement, ie. expr ';'.
10434  */
10435 static statement_t *parse_expression_statement(void)
10436 {
10437         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10438
10439         expression_t *const expr         = parse_expression();
10440         statement->expression.expression = expr;
10441         mark_vars_read(expr, ENT_ANY);
10442
10443         expect(';', end_error);
10444
10445 end_error:
10446         return statement;
10447 }
10448
10449 /**
10450  * Parse a microsoft __try { } __finally { } or
10451  * __try{ } __except() { }
10452  */
10453 static statement_t *parse_ms_try_statment(void)
10454 {
10455         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10456         eat(T___try);
10457
10458         PUSH_PARENT(statement);
10459
10460         ms_try_statement_t *rem = current_try;
10461         current_try = &statement->ms_try;
10462         statement->ms_try.try_statement = parse_compound_statement(false);
10463         current_try = rem;
10464
10465         POP_PARENT;
10466
10467         if (token.type == T___except) {
10468                 eat(T___except);
10469                 expect('(', end_error);
10470                 add_anchor_token(')');
10471                 expression_t *const expr = parse_expression();
10472                 mark_vars_read(expr, NULL);
10473                 type_t       *      type = skip_typeref(expr->base.type);
10474                 if (is_type_integer(type)) {
10475                         type = promote_integer(type);
10476                 } else if (is_type_valid(type)) {
10477                         errorf(&expr->base.source_position,
10478                                "__expect expression is not an integer, but '%T'", type);
10479                         type = type_error_type;
10480                 }
10481                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10482                 rem_anchor_token(')');
10483                 expect(')', end_error);
10484                 statement->ms_try.final_statement = parse_compound_statement(false);
10485         } else if (token.type == T__finally) {
10486                 eat(T___finally);
10487                 statement->ms_try.final_statement = parse_compound_statement(false);
10488         } else {
10489                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10490                 return create_invalid_statement();
10491         }
10492         return statement;
10493 end_error:
10494         return create_invalid_statement();
10495 }
10496
10497 static statement_t *parse_empty_statement(void)
10498 {
10499         if (warning.empty_statement) {
10500                 warningf(HERE, "statement is empty");
10501         }
10502         statement_t *const statement = create_empty_statement();
10503         eat(';');
10504         return statement;
10505 }
10506
10507 static statement_t *parse_local_label_declaration(void)
10508 {
10509         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10510
10511         eat(T___label__);
10512
10513         entity_t *begin = NULL, *end = NULL;
10514
10515         while (true) {
10516                 if (token.type != T_IDENTIFIER) {
10517                         parse_error_expected("while parsing local label declaration",
10518                                 T_IDENTIFIER, NULL);
10519                         goto end_error;
10520                 }
10521                 symbol_t *symbol = token.v.symbol;
10522                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
10523                 if (entity != NULL && entity->base.parent_scope == current_scope) {
10524                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10525                                symbol, &entity->base.source_position);
10526                 } else {
10527                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10528
10529                         entity->base.parent_scope    = current_scope;
10530                         entity->base.namespc         = NAMESPACE_LABEL;
10531                         entity->base.source_position = token.source_position;
10532                         entity->base.symbol          = symbol;
10533
10534                         if (end != NULL)
10535                                 end->base.next = entity;
10536                         end = entity;
10537                         if (begin == NULL)
10538                                 begin = entity;
10539
10540                         environment_push(entity);
10541                 }
10542                 next_token();
10543
10544                 if (token.type != ',')
10545                         break;
10546                 next_token();
10547         }
10548         eat(';');
10549 end_error:
10550         statement->declaration.declarations_begin = begin;
10551         statement->declaration.declarations_end   = end;
10552         return statement;
10553 }
10554
10555 static void parse_namespace_definition(void)
10556 {
10557         eat(T_namespace);
10558
10559         entity_t *entity = NULL;
10560         symbol_t *symbol = NULL;
10561
10562         if (token.type == T_IDENTIFIER) {
10563                 symbol = token.v.symbol;
10564                 next_token();
10565
10566                 entity = get_entity(symbol, NAMESPACE_NORMAL);
10567                 if (entity != NULL && entity->kind != ENTITY_NAMESPACE
10568                                 && entity->base.parent_scope == current_scope) {
10569                         error_redefined_as_different_kind(&token.source_position,
10570                                                           entity, ENTITY_NAMESPACE);
10571                         entity = NULL;
10572                 }
10573         }
10574
10575         if (entity == NULL) {
10576                 entity                       = allocate_entity_zero(ENTITY_NAMESPACE);
10577                 entity->base.symbol          = symbol;
10578                 entity->base.source_position = token.source_position;
10579                 entity->base.namespc         = NAMESPACE_NORMAL;
10580                 entity->base.parent_scope    = current_scope;
10581         }
10582
10583         if (token.type == '=') {
10584                 /* TODO: parse namespace alias */
10585                 panic("namespace alias definition not supported yet");
10586         }
10587
10588         environment_push(entity);
10589         append_entity(current_scope, entity);
10590
10591         size_t const  top       = environment_top();
10592         scope_t      *old_scope = scope_push(&entity->namespacee.members);
10593
10594         expect('{', end_error);
10595         parse_externals();
10596         expect('}', end_error);
10597
10598 end_error:
10599         assert(current_scope == &entity->namespacee.members);
10600         scope_pop(old_scope);
10601         environment_pop_to(top);
10602 }
10603
10604 /**
10605  * Parse a statement.
10606  * There's also parse_statement() which additionally checks for
10607  * "statement has no effect" warnings
10608  */
10609 static statement_t *intern_parse_statement(void)
10610 {
10611         statement_t *statement = NULL;
10612
10613         /* declaration or statement */
10614         add_anchor_token(';');
10615         switch (token.type) {
10616         case T_IDENTIFIER: {
10617                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10618                 if (la1_type == ':') {
10619                         statement = parse_label_statement();
10620                 } else if (is_typedef_symbol(token.v.symbol)) {
10621                         statement = parse_declaration_statement();
10622                 } else {
10623                         /* it's an identifier, the grammar says this must be an
10624                          * expression statement. However it is common that users mistype
10625                          * declaration types, so we guess a bit here to improve robustness
10626                          * for incorrect programs */
10627                         switch (la1_type) {
10628                         case '&':
10629                         case '*':
10630                                 if (get_entity(token.v.symbol, NAMESPACE_NORMAL) != NULL)
10631                                         goto expression_statment;
10632                                 /* FALLTHROUGH */
10633
10634                         DECLARATION_START
10635                         case T_IDENTIFIER:
10636                                 statement = parse_declaration_statement();
10637                                 break;
10638
10639                         default:
10640 expression_statment:
10641                                 statement = parse_expression_statement();
10642                                 break;
10643                         }
10644                 }
10645                 break;
10646         }
10647
10648         case T___extension__:
10649                 /* This can be a prefix to a declaration or an expression statement.
10650                  * We simply eat it now and parse the rest with tail recursion. */
10651                 do {
10652                         next_token();
10653                 } while (token.type == T___extension__);
10654                 bool old_gcc_extension = in_gcc_extension;
10655                 in_gcc_extension       = true;
10656                 statement = intern_parse_statement();
10657                 in_gcc_extension = old_gcc_extension;
10658                 break;
10659
10660         DECLARATION_START
10661                 statement = parse_declaration_statement();
10662                 break;
10663
10664         case T___label__:
10665                 statement = parse_local_label_declaration();
10666                 break;
10667
10668         case ';':         statement = parse_empty_statement();         break;
10669         case '{':         statement = parse_compound_statement(false); break;
10670         case T___leave:   statement = parse_leave_statement();         break;
10671         case T___try:     statement = parse_ms_try_statment();         break;
10672         case T_asm:       statement = parse_asm_statement();           break;
10673         case T_break:     statement = parse_break();                   break;
10674         case T_case:      statement = parse_case_statement();          break;
10675         case T_continue:  statement = parse_continue();                break;
10676         case T_default:   statement = parse_default_statement();       break;
10677         case T_do:        statement = parse_do();                      break;
10678         case T_for:       statement = parse_for();                     break;
10679         case T_goto:      statement = parse_goto();                    break;
10680         case T_if:        statement = parse_if();                      break;
10681         case T_return:    statement = parse_return();                  break;
10682         case T_switch:    statement = parse_switch();                  break;
10683         case T_while:     statement = parse_while();                   break;
10684
10685         EXPRESSION_START
10686                 statement = parse_expression_statement();
10687                 break;
10688
10689         default:
10690                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10691                 statement = create_invalid_statement();
10692                 if (!at_anchor())
10693                         next_token();
10694                 break;
10695         }
10696         rem_anchor_token(';');
10697
10698         assert(statement != NULL
10699                         && statement->base.source_position.input_name != NULL);
10700
10701         return statement;
10702 }
10703
10704 /**
10705  * parse a statement and emits "statement has no effect" warning if needed
10706  * (This is really a wrapper around intern_parse_statement with check for 1
10707  *  single warning. It is needed, because for statement expressions we have
10708  *  to avoid the warning on the last statement)
10709  */
10710 static statement_t *parse_statement(void)
10711 {
10712         statement_t *statement = intern_parse_statement();
10713
10714         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10715                 expression_t *expression = statement->expression.expression;
10716                 if (!expression_has_effect(expression)) {
10717                         warningf(&expression->base.source_position,
10718                                         "statement has no effect");
10719                 }
10720         }
10721
10722         return statement;
10723 }
10724
10725 /**
10726  * Parse a compound statement.
10727  */
10728 static statement_t *parse_compound_statement(bool inside_expression_statement)
10729 {
10730         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10731
10732         PUSH_PARENT(statement);
10733
10734         eat('{');
10735         add_anchor_token('}');
10736         /* tokens, which can start a statement */
10737         /* TODO MS, __builtin_FOO */
10738         add_anchor_token('!');
10739         add_anchor_token('&');
10740         add_anchor_token('(');
10741         add_anchor_token('*');
10742         add_anchor_token('+');
10743         add_anchor_token('-');
10744         add_anchor_token('{');
10745         add_anchor_token('~');
10746         add_anchor_token(T_CHARACTER_CONSTANT);
10747         add_anchor_token(T_COLONCOLON);
10748         add_anchor_token(T_FLOATINGPOINT);
10749         add_anchor_token(T_IDENTIFIER);
10750         add_anchor_token(T_INTEGER);
10751         add_anchor_token(T_MINUSMINUS);
10752         add_anchor_token(T_PLUSPLUS);
10753         add_anchor_token(T_STRING_LITERAL);
10754         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10755         add_anchor_token(T_WIDE_STRING_LITERAL);
10756         add_anchor_token(T__Bool);
10757         add_anchor_token(T__Complex);
10758         add_anchor_token(T__Imaginary);
10759         add_anchor_token(T___FUNCTION__);
10760         add_anchor_token(T___PRETTY_FUNCTION__);
10761         add_anchor_token(T___alignof__);
10762         add_anchor_token(T___attribute__);
10763         add_anchor_token(T___builtin_va_start);
10764         add_anchor_token(T___extension__);
10765         add_anchor_token(T___func__);
10766         add_anchor_token(T___imag__);
10767         add_anchor_token(T___label__);
10768         add_anchor_token(T___real__);
10769         add_anchor_token(T___thread);
10770         add_anchor_token(T_asm);
10771         add_anchor_token(T_auto);
10772         add_anchor_token(T_bool);
10773         add_anchor_token(T_break);
10774         add_anchor_token(T_case);
10775         add_anchor_token(T_char);
10776         add_anchor_token(T_class);
10777         add_anchor_token(T_const);
10778         add_anchor_token(T_const_cast);
10779         add_anchor_token(T_continue);
10780         add_anchor_token(T_default);
10781         add_anchor_token(T_delete);
10782         add_anchor_token(T_double);
10783         add_anchor_token(T_do);
10784         add_anchor_token(T_dynamic_cast);
10785         add_anchor_token(T_enum);
10786         add_anchor_token(T_extern);
10787         add_anchor_token(T_false);
10788         add_anchor_token(T_float);
10789         add_anchor_token(T_for);
10790         add_anchor_token(T_goto);
10791         add_anchor_token(T_if);
10792         add_anchor_token(T_inline);
10793         add_anchor_token(T_int);
10794         add_anchor_token(T_long);
10795         add_anchor_token(T_new);
10796         add_anchor_token(T_operator);
10797         add_anchor_token(T_register);
10798         add_anchor_token(T_reinterpret_cast);
10799         add_anchor_token(T_restrict);
10800         add_anchor_token(T_return);
10801         add_anchor_token(T_short);
10802         add_anchor_token(T_signed);
10803         add_anchor_token(T_sizeof);
10804         add_anchor_token(T_static);
10805         add_anchor_token(T_static_cast);
10806         add_anchor_token(T_struct);
10807         add_anchor_token(T_switch);
10808         add_anchor_token(T_template);
10809         add_anchor_token(T_this);
10810         add_anchor_token(T_throw);
10811         add_anchor_token(T_true);
10812         add_anchor_token(T_try);
10813         add_anchor_token(T_typedef);
10814         add_anchor_token(T_typeid);
10815         add_anchor_token(T_typename);
10816         add_anchor_token(T_typeof);
10817         add_anchor_token(T_union);
10818         add_anchor_token(T_unsigned);
10819         add_anchor_token(T_using);
10820         add_anchor_token(T_void);
10821         add_anchor_token(T_volatile);
10822         add_anchor_token(T_wchar_t);
10823         add_anchor_token(T_while);
10824
10825         size_t const  top       = environment_top();
10826         scope_t      *old_scope = scope_push(&statement->compound.scope);
10827
10828         statement_t **anchor            = &statement->compound.statements;
10829         bool          only_decls_so_far = true;
10830         while (token.type != '}') {
10831                 if (token.type == T_EOF) {
10832                         errorf(&statement->base.source_position,
10833                                "EOF while parsing compound statement");
10834                         break;
10835                 }
10836                 statement_t *sub_statement = intern_parse_statement();
10837                 if (is_invalid_statement(sub_statement)) {
10838                         /* an error occurred. if we are at an anchor, return */
10839                         if (at_anchor())
10840                                 goto end_error;
10841                         continue;
10842                 }
10843
10844                 if (warning.declaration_after_statement) {
10845                         if (sub_statement->kind != STATEMENT_DECLARATION) {
10846                                 only_decls_so_far = false;
10847                         } else if (!only_decls_so_far) {
10848                                 warningf(&sub_statement->base.source_position,
10849                                          "ISO C90 forbids mixed declarations and code");
10850                         }
10851                 }
10852
10853                 *anchor = sub_statement;
10854
10855                 while (sub_statement->base.next != NULL)
10856                         sub_statement = sub_statement->base.next;
10857
10858                 anchor = &sub_statement->base.next;
10859         }
10860         next_token();
10861
10862         /* look over all statements again to produce no effect warnings */
10863         if (warning.unused_value) {
10864                 statement_t *sub_statement = statement->compound.statements;
10865                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10866                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10867                                 continue;
10868                         /* don't emit a warning for the last expression in an expression
10869                          * statement as it has always an effect */
10870                         if (inside_expression_statement && sub_statement->base.next == NULL)
10871                                 continue;
10872
10873                         expression_t *expression = sub_statement->expression.expression;
10874                         if (!expression_has_effect(expression)) {
10875                                 warningf(&expression->base.source_position,
10876                                          "statement has no effect");
10877                         }
10878                 }
10879         }
10880
10881 end_error:
10882         rem_anchor_token(T_while);
10883         rem_anchor_token(T_wchar_t);
10884         rem_anchor_token(T_volatile);
10885         rem_anchor_token(T_void);
10886         rem_anchor_token(T_using);
10887         rem_anchor_token(T_unsigned);
10888         rem_anchor_token(T_union);
10889         rem_anchor_token(T_typeof);
10890         rem_anchor_token(T_typename);
10891         rem_anchor_token(T_typeid);
10892         rem_anchor_token(T_typedef);
10893         rem_anchor_token(T_try);
10894         rem_anchor_token(T_true);
10895         rem_anchor_token(T_throw);
10896         rem_anchor_token(T_this);
10897         rem_anchor_token(T_template);
10898         rem_anchor_token(T_switch);
10899         rem_anchor_token(T_struct);
10900         rem_anchor_token(T_static_cast);
10901         rem_anchor_token(T_static);
10902         rem_anchor_token(T_sizeof);
10903         rem_anchor_token(T_signed);
10904         rem_anchor_token(T_short);
10905         rem_anchor_token(T_return);
10906         rem_anchor_token(T_restrict);
10907         rem_anchor_token(T_reinterpret_cast);
10908         rem_anchor_token(T_register);
10909         rem_anchor_token(T_operator);
10910         rem_anchor_token(T_new);
10911         rem_anchor_token(T_long);
10912         rem_anchor_token(T_int);
10913         rem_anchor_token(T_inline);
10914         rem_anchor_token(T_if);
10915         rem_anchor_token(T_goto);
10916         rem_anchor_token(T_for);
10917         rem_anchor_token(T_float);
10918         rem_anchor_token(T_false);
10919         rem_anchor_token(T_extern);
10920         rem_anchor_token(T_enum);
10921         rem_anchor_token(T_dynamic_cast);
10922         rem_anchor_token(T_do);
10923         rem_anchor_token(T_double);
10924         rem_anchor_token(T_delete);
10925         rem_anchor_token(T_default);
10926         rem_anchor_token(T_continue);
10927         rem_anchor_token(T_const_cast);
10928         rem_anchor_token(T_const);
10929         rem_anchor_token(T_class);
10930         rem_anchor_token(T_char);
10931         rem_anchor_token(T_case);
10932         rem_anchor_token(T_break);
10933         rem_anchor_token(T_bool);
10934         rem_anchor_token(T_auto);
10935         rem_anchor_token(T_asm);
10936         rem_anchor_token(T___thread);
10937         rem_anchor_token(T___real__);
10938         rem_anchor_token(T___label__);
10939         rem_anchor_token(T___imag__);
10940         rem_anchor_token(T___func__);
10941         rem_anchor_token(T___extension__);
10942         rem_anchor_token(T___builtin_va_start);
10943         rem_anchor_token(T___attribute__);
10944         rem_anchor_token(T___alignof__);
10945         rem_anchor_token(T___PRETTY_FUNCTION__);
10946         rem_anchor_token(T___FUNCTION__);
10947         rem_anchor_token(T__Imaginary);
10948         rem_anchor_token(T__Complex);
10949         rem_anchor_token(T__Bool);
10950         rem_anchor_token(T_WIDE_STRING_LITERAL);
10951         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10952         rem_anchor_token(T_STRING_LITERAL);
10953         rem_anchor_token(T_PLUSPLUS);
10954         rem_anchor_token(T_MINUSMINUS);
10955         rem_anchor_token(T_INTEGER);
10956         rem_anchor_token(T_IDENTIFIER);
10957         rem_anchor_token(T_FLOATINGPOINT);
10958         rem_anchor_token(T_COLONCOLON);
10959         rem_anchor_token(T_CHARACTER_CONSTANT);
10960         rem_anchor_token('~');
10961         rem_anchor_token('{');
10962         rem_anchor_token('-');
10963         rem_anchor_token('+');
10964         rem_anchor_token('*');
10965         rem_anchor_token('(');
10966         rem_anchor_token('&');
10967         rem_anchor_token('!');
10968         rem_anchor_token('}');
10969         assert(current_scope == &statement->compound.scope);
10970         scope_pop(old_scope);
10971         environment_pop_to(top);
10972
10973         POP_PARENT;
10974         return statement;
10975 }
10976
10977 /**
10978  * Check for unused global static functions and variables
10979  */
10980 static void check_unused_globals(void)
10981 {
10982         if (!warning.unused_function && !warning.unused_variable)
10983                 return;
10984
10985         for (const entity_t *entity = file_scope->entities; entity != NULL;
10986              entity = entity->base.next) {
10987                 if (!is_declaration(entity))
10988                         continue;
10989
10990                 const declaration_t *declaration = &entity->declaration;
10991                 if (declaration->used                  ||
10992                     declaration->modifiers & DM_UNUSED ||
10993                     declaration->modifiers & DM_USED   ||
10994                     declaration->storage_class != STORAGE_CLASS_STATIC)
10995                         continue;
10996
10997                 type_t *const type = declaration->type;
10998                 const char *s;
10999                 if (entity->kind == ENTITY_FUNCTION) {
11000                         /* inhibit warning for static inline functions */
11001                         if (entity->function.is_inline)
11002                                 continue;
11003
11004                         s = entity->function.statement != NULL ? "defined" : "declared";
11005                 } else {
11006                         s = "defined";
11007                 }
11008
11009                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
11010                         type, declaration->base.symbol, s);
11011         }
11012 }
11013
11014 static void parse_global_asm(void)
11015 {
11016         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
11017
11018         eat(T_asm);
11019         expect('(', end_error);
11020
11021         statement->asms.asm_text = parse_string_literals();
11022         statement->base.next     = unit->global_asm;
11023         unit->global_asm         = statement;
11024
11025         expect(')', end_error);
11026         expect(';', end_error);
11027
11028 end_error:;
11029 }
11030
11031 static void parse_linkage_specification(void)
11032 {
11033         eat(T_extern);
11034         assert(token.type == T_STRING_LITERAL);
11035
11036         const char *linkage = parse_string_literals().begin;
11037
11038         linkage_kind_t old_linkage = current_linkage;
11039         linkage_kind_t new_linkage;
11040         if (strcmp(linkage, "C") == 0) {
11041                 new_linkage = LINKAGE_C;
11042         } else if (strcmp(linkage, "C++") == 0) {
11043                 new_linkage = LINKAGE_CXX;
11044         } else {
11045                 errorf(HERE, "linkage string \"%s\" not recognized", linkage);
11046                 new_linkage = LINKAGE_INVALID;
11047         }
11048         current_linkage = new_linkage;
11049
11050         if (token.type == '{') {
11051                 next_token();
11052                 parse_externals();
11053                 expect('}', end_error);
11054         } else {
11055                 parse_external();
11056         }
11057
11058 end_error:
11059         assert(current_linkage == new_linkage);
11060         current_linkage = old_linkage;
11061 }
11062
11063 static void parse_external(void)
11064 {
11065         switch (token.type) {
11066                 DECLARATION_START_NO_EXTERN
11067                 case T_IDENTIFIER:
11068                 case T___extension__:
11069                 /* tokens below are for implicit int */
11070                 case '&': /* & x; -> int& x; (and error later, because C++ has no
11071                              implicit int) */
11072                 case '*': /* * x; -> int* x; */
11073                 case '(': /* (x); -> int (x); */
11074                         parse_external_declaration();
11075                         return;
11076
11077                 case T_extern:
11078                         if (look_ahead(1)->type == T_STRING_LITERAL) {
11079                                 parse_linkage_specification();
11080                         } else {
11081                                 parse_external_declaration();
11082                         }
11083                         return;
11084
11085                 case T_asm:
11086                         parse_global_asm();
11087                         return;
11088
11089                 case T_namespace:
11090                         parse_namespace_definition();
11091                         return;
11092
11093                 case ';':
11094                         if (!strict_mode) {
11095                                 if (warning.other)
11096                                         warningf(HERE, "stray ';' outside of function");
11097                                 next_token();
11098                                 return;
11099                         }
11100                         /* FALLTHROUGH */
11101
11102                 default:
11103                         errorf(HERE, "stray %K outside of function", &token);
11104                         if (token.type == '(' || token.type == '{' || token.type == '[')
11105                                 eat_until_matching_token(token.type);
11106                         next_token();
11107                         return;
11108         }
11109 }
11110
11111 static void parse_externals(void)
11112 {
11113         add_anchor_token('}');
11114         add_anchor_token(T_EOF);
11115
11116 #ifndef NDEBUG
11117         unsigned char token_anchor_copy[T_LAST_TOKEN];
11118         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
11119 #endif
11120
11121         while (token.type != T_EOF && token.type != '}') {
11122 #ifndef NDEBUG
11123                 bool anchor_leak = false;
11124                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
11125                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
11126                         if (count != 0) {
11127                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
11128                                 anchor_leak = true;
11129                         }
11130                 }
11131                 if (in_gcc_extension) {
11132                         errorf(HERE, "Leaked __extension__");
11133                         anchor_leak = true;
11134                 }
11135
11136                 if (anchor_leak)
11137                         abort();
11138 #endif
11139
11140                 parse_external();
11141         }
11142
11143         rem_anchor_token(T_EOF);
11144         rem_anchor_token('}');
11145 }
11146
11147 /**
11148  * Parse a translation unit.
11149  */
11150 static void parse_translation_unit(void)
11151 {
11152         add_anchor_token(T_EOF);
11153
11154         while (true) {
11155                 parse_externals();
11156
11157                 if (token.type == T_EOF)
11158                         break;
11159
11160                 errorf(HERE, "stray %K outside of function", &token);
11161                 if (token.type == '(' || token.type == '{' || token.type == '[')
11162                         eat_until_matching_token(token.type);
11163                 next_token();
11164         }
11165 }
11166
11167 /**
11168  * Parse the input.
11169  *
11170  * @return  the translation unit or NULL if errors occurred.
11171  */
11172 void start_parsing(void)
11173 {
11174         environment_stack = NEW_ARR_F(stack_entry_t, 0);
11175         label_stack       = NEW_ARR_F(stack_entry_t, 0);
11176         diagnostic_count  = 0;
11177         error_count       = 0;
11178         warning_count     = 0;
11179
11180         type_set_output(stderr);
11181         ast_set_output(stderr);
11182
11183         assert(unit == NULL);
11184         unit = allocate_ast_zero(sizeof(unit[0]));
11185
11186         assert(file_scope == NULL);
11187         file_scope = &unit->scope;
11188
11189         assert(current_scope == NULL);
11190         scope_push(&unit->scope);
11191 }
11192
11193 translation_unit_t *finish_parsing(void)
11194 {
11195         assert(current_scope == &unit->scope);
11196         scope_pop(NULL);
11197
11198         assert(file_scope == &unit->scope);
11199         check_unused_globals();
11200         file_scope = NULL;
11201
11202         DEL_ARR_F(environment_stack);
11203         DEL_ARR_F(label_stack);
11204
11205         translation_unit_t *result = unit;
11206         unit = NULL;
11207         return result;
11208 }
11209
11210 /* GCC allows global arrays without size and assigns them a length of one,
11211  * if no different declaration follows */
11212 static void complete_incomplete_arrays(void)
11213 {
11214         size_t n = ARR_LEN(incomplete_arrays);
11215         for (size_t i = 0; i != n; ++i) {
11216                 declaration_t *const decl      = incomplete_arrays[i];
11217                 type_t        *const orig_type = decl->type;
11218                 type_t        *const type      = skip_typeref(orig_type);
11219
11220                 if (!is_type_incomplete(type))
11221                         continue;
11222
11223                 if (warning.other) {
11224                         warningf(&decl->base.source_position,
11225                                         "array '%#T' assumed to have one element",
11226                                         orig_type, decl->base.symbol);
11227                 }
11228
11229                 type_t *const new_type = duplicate_type(type);
11230                 new_type->array.size_constant     = true;
11231                 new_type->array.has_implicit_size = true;
11232                 new_type->array.size              = 1;
11233
11234                 type_t *const result = typehash_insert(new_type);
11235                 if (type != result)
11236                         free_type(type);
11237
11238                 decl->type = result;
11239         }
11240 }
11241
11242 void parse(void)
11243 {
11244         lookahead_bufpos = 0;
11245         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
11246                 next_token();
11247         }
11248         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
11249         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
11250         parse_translation_unit();
11251         complete_incomplete_arrays();
11252         DEL_ARR_F(incomplete_arrays);
11253         incomplete_arrays = NULL;
11254 }
11255
11256 /**
11257  * Initialize the parser.
11258  */
11259 void init_parser(void)
11260 {
11261         sym_anonymous = symbol_table_insert("<anonymous>");
11262
11263         if (c_mode & _MS) {
11264                 /* add predefined symbols for extended-decl-modifier */
11265                 sym_align      = symbol_table_insert("align");
11266                 sym_allocate   = symbol_table_insert("allocate");
11267                 sym_dllimport  = symbol_table_insert("dllimport");
11268                 sym_dllexport  = symbol_table_insert("dllexport");
11269                 sym_naked      = symbol_table_insert("naked");
11270                 sym_noinline   = symbol_table_insert("noinline");
11271                 sym_noreturn   = symbol_table_insert("noreturn");
11272                 sym_nothrow    = symbol_table_insert("nothrow");
11273                 sym_novtable   = symbol_table_insert("novtable");
11274                 sym_property   = symbol_table_insert("property");
11275                 sym_get        = symbol_table_insert("get");
11276                 sym_put        = symbol_table_insert("put");
11277                 sym_selectany  = symbol_table_insert("selectany");
11278                 sym_thread     = symbol_table_insert("thread");
11279                 sym_uuid       = symbol_table_insert("uuid");
11280                 sym_deprecated = symbol_table_insert("deprecated");
11281                 sym_restrict   = symbol_table_insert("restrict");
11282                 sym_noalias    = symbol_table_insert("noalias");
11283         }
11284         memset(token_anchor_set, 0, sizeof(token_anchor_set));
11285
11286         init_expression_parsers();
11287         obstack_init(&temp_obst);
11288
11289         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
11290         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
11291 }
11292
11293 /**
11294  * Terminate the parser.
11295  */
11296 void exit_parser(void)
11297 {
11298         obstack_free(&temp_obst, NULL);
11299 }