4646b4c9711caf5ba00bccb5b5ea34cc2933b9ce
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "lang_features.h"
37 #include "warning.h"
38 #include "adt/bitfiddle.h"
39 #include "adt/error.h"
40 #include "adt/array.h"
41
42 /** if wchar_t is equal to unsigned short. */
43 bool opt_short_wchar_t =
44 #ifdef _WIN32
45         true;
46 #else
47         false;
48 #endif
49
50 //#define PRINT_TOKENS
51 #define MAX_LOOKAHEAD 2
52
53 typedef struct {
54         declaration_t *old_declaration;
55         symbol_t      *symbol;
56         unsigned short namespc;
57 } stack_entry_t;
58
59 typedef struct argument_list_t argument_list_t;
60 struct argument_list_t {
61         long              argument;
62         argument_list_t  *next;
63 };
64
65 typedef struct gnu_attribute_t gnu_attribute_t;
66 struct gnu_attribute_t {
67         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
68         gnu_attribute_t     *next;
69         bool                 invalid;        /**< Set if this attribute had argument errors, */
70         bool                 have_arguments; /**< True, if this attribute has arguments. */
71         union {
72                 size_t              value;
73                 string_t            string;
74                 atomic_type_kind_t  akind;
75                 long                argument;  /**< Single argument. */
76                 argument_list_t    *arguments; /**< List of argument expressions. */
77         } u;
78 };
79
80 typedef struct declaration_specifiers_t  declaration_specifiers_t;
81 struct declaration_specifiers_t {
82         source_position_t  source_position;
83         unsigned char      declared_storage_class;
84         unsigned char      alignment;         /**< Alignment, 0 if not set. */
85         unsigned int       is_inline : 1;
86         unsigned int       deprecated : 1;
87         decl_modifiers_t   modifiers;         /**< declaration modifiers */
88         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
89         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
90         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
91         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
92         type_t            *type;
93 };
94
95 /**
96  * An environment for parsing initializers (and compound literals).
97  */
98 typedef struct parse_initializer_env_t {
99         type_t        *type;        /**< the type of the initializer. In case of an
100                                          array type with unspecified size this gets
101                                          adjusted to the actual size. */
102         declaration_t *declaration; /**< the declaration that is initialized if any */
103         bool           must_be_constant;
104 } parse_initializer_env_t;
105
106 typedef declaration_t* (*parsed_declaration_func) (declaration_t *declaration, bool is_definition);
107
108 /** The current token. */
109 static token_t             token;
110 /** The lookahead ring-buffer. */
111 static token_t             lookahead_buffer[MAX_LOOKAHEAD];
112 /** Position of the next token in the lookahead buffer. */
113 static int                 lookahead_bufpos;
114 static stack_entry_t      *environment_stack = NULL;
115 static stack_entry_t      *label_stack       = NULL;
116 static stack_entry_t      *local_label_stack = NULL;
117 static scope_t            *global_scope      = NULL;
118 static scope_t            *scope             = NULL;
119 static declaration_t      *last_declaration  = NULL;
120 static declaration_t      *current_function  = NULL;
121 static declaration_t      *current_init_decl = NULL;
122 static switch_statement_t *current_switch    = NULL;
123 static statement_t        *current_loop      = NULL;
124 static statement_t        *current_parent    = NULL;
125 static ms_try_statement_t *current_try       = NULL;
126 static goto_statement_t   *goto_first        = NULL;
127 static goto_statement_t   *goto_last         = NULL;
128 static label_statement_t  *label_first       = NULL;
129 static label_statement_t  *label_last        = NULL;
130 /** current translation unit. */
131 static translation_unit_t *unit              = NULL;
132 /** true if we are in a type property context (evaluation only for type. */
133 static bool                in_type_prop      = false;
134 /** true in we are in a __extension__ context. */
135 static bool                in_gcc_extension  = false;
136 static struct obstack      temp_obst;
137
138
139 #define PUSH_PARENT(stmt)                          \
140         statement_t *const prev_parent = current_parent; \
141         current_parent = (stmt);
142 #define POP_PARENT ((void)(current_parent = prev_parent))
143
144 static source_position_t null_position = { NULL, 0 };
145
146 /** special symbol used for anonymous entities. */
147 static const symbol_t *sym_anonymous = NULL;
148
149 /* symbols for Microsoft extended-decl-modifier */
150 static const symbol_t *sym_align      = NULL;
151 static const symbol_t *sym_allocate   = NULL;
152 static const symbol_t *sym_dllimport  = NULL;
153 static const symbol_t *sym_dllexport  = NULL;
154 static const symbol_t *sym_naked      = NULL;
155 static const symbol_t *sym_noinline   = NULL;
156 static const symbol_t *sym_noreturn   = NULL;
157 static const symbol_t *sym_nothrow    = NULL;
158 static const symbol_t *sym_novtable   = NULL;
159 static const symbol_t *sym_property   = NULL;
160 static const symbol_t *sym_get        = NULL;
161 static const symbol_t *sym_put        = NULL;
162 static const symbol_t *sym_selectany  = NULL;
163 static const symbol_t *sym_thread     = NULL;
164 static const symbol_t *sym_uuid       = NULL;
165 static const symbol_t *sym_deprecated = NULL;
166 static const symbol_t *sym_restrict   = NULL;
167 static const symbol_t *sym_noalias    = NULL;
168
169 /** The token anchor set */
170 static unsigned char token_anchor_set[T_LAST_TOKEN];
171
172 /** The current source position. */
173 #define HERE (&token.source_position)
174
175 /** true if we are in GCC mode. */
176 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
177
178 static type_t *type_valist;
179
180 static statement_t *parse_compound_statement(bool inside_expression_statement);
181 static statement_t *parse_statement(void);
182
183 static expression_t *parse_sub_expression(unsigned precedence);
184 static expression_t *parse_expression(void);
185 static type_t       *parse_typename(void);
186
187 static void parse_compound_type_entries(declaration_t *compound_declaration);
188 static declaration_t *parse_declarator(
189                 const declaration_specifiers_t *specifiers, bool may_be_abstract);
190 static declaration_t *record_declaration(declaration_t *declaration, bool is_definition);
191
192 static void semantic_comparison(binary_expression_t *expression);
193
194 #define STORAGE_CLASSES     \
195         case T_typedef:         \
196         case T_extern:          \
197         case T_static:          \
198         case T_auto:            \
199         case T_register:        \
200         case T___thread:
201
202 #define TYPE_QUALIFIERS     \
203         case T_const:           \
204         case T_restrict:        \
205         case T_volatile:        \
206         case T_inline:          \
207         case T__forceinline:    \
208         case T___attribute__:
209
210 #ifdef PROVIDE_COMPLEX
211 #define COMPLEX_SPECIFIERS  \
212         case T__Complex:
213 #define IMAGINARY_SPECIFIERS \
214         case T__Imaginary:
215 #else
216 #define COMPLEX_SPECIFIERS
217 #define IMAGINARY_SPECIFIERS
218 #endif
219
220 #define TYPE_SPECIFIERS       \
221         case T_void:              \
222         case T_char:              \
223         case T_short:             \
224         case T_int:               \
225         case T_long:              \
226         case T_float:             \
227         case T_double:            \
228         case T_signed:            \
229         case T_unsigned:          \
230         case T__Bool:             \
231         case T_struct:            \
232         case T_union:             \
233         case T_enum:              \
234         case T___typeof__:        \
235         case T___builtin_va_list: \
236         case T__declspec:         \
237         COMPLEX_SPECIFIERS        \
238         IMAGINARY_SPECIFIERS
239
240 #define DECLARATION_START   \
241         STORAGE_CLASSES         \
242         TYPE_QUALIFIERS         \
243         TYPE_SPECIFIERS
244
245 #define TYPENAME_START      \
246         TYPE_QUALIFIERS         \
247         TYPE_SPECIFIERS
248
249 /**
250  * Allocate an AST node with given size and
251  * initialize all fields with zero.
252  */
253 static void *allocate_ast_zero(size_t size)
254 {
255         void *res = allocate_ast(size);
256         memset(res, 0, size);
257         return res;
258 }
259
260 static declaration_t *allocate_declaration_zero(void)
261 {
262         declaration_t *declaration = allocate_ast_zero(sizeof(declaration_t));
263         declaration->type      = type_error_type;
264         declaration->alignment = 0;
265         return declaration;
266 }
267
268 /**
269  * Returns the size of a statement node.
270  *
271  * @param kind  the statement kind
272  */
273 static size_t get_statement_struct_size(statement_kind_t kind)
274 {
275         static const size_t sizes[] = {
276                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
277                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
278                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
279                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
280                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
281                 [STATEMENT_IF]          = sizeof(if_statement_t),
282                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
283                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
284                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
285                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
286                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
287                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
288                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
289                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
290                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
291                 [STATEMENT_FOR]         = sizeof(for_statement_t),
292                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
293                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
294                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
295         };
296         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
297         assert(sizes[kind] != 0);
298         return sizes[kind];
299 }
300
301 /**
302  * Returns the size of an expression node.
303  *
304  * @param kind  the expression kind
305  */
306 static size_t get_expression_struct_size(expression_kind_t kind)
307 {
308         static const size_t sizes[] = {
309                 [EXPR_INVALID]                 = sizeof(expression_base_t),
310                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
311                 [EXPR_CONST]                   = sizeof(const_expression_t),
312                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
313                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
314                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
315                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
316                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
317                 [EXPR_CALL]                    = sizeof(call_expression_t),
318                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
319                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
320                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
321                 [EXPR_SELECT]                  = sizeof(select_expression_t),
322                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
323                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
324                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
325                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
326                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
327                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
328                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
329                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
330                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
331                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
332                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
333                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
334                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
335         };
336         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
337                 return sizes[EXPR_UNARY_FIRST];
338         }
339         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
340                 return sizes[EXPR_BINARY_FIRST];
341         }
342         assert(kind <= sizeof(sizes) / sizeof(sizes[0]));
343         assert(sizes[kind] != 0);
344         return sizes[kind];
345 }
346
347 /**
348  * Allocate a statement node of given kind and initialize all
349  * fields with zero.
350  */
351 static statement_t *allocate_statement_zero(statement_kind_t kind)
352 {
353         size_t       size = get_statement_struct_size(kind);
354         statement_t *res  = allocate_ast_zero(size);
355
356         res->base.kind   = kind;
357         res->base.parent = current_parent;
358         return res;
359 }
360
361 /**
362  * Allocate an expression node of given kind and initialize all
363  * fields with zero.
364  */
365 static expression_t *allocate_expression_zero(expression_kind_t kind)
366 {
367         size_t        size = get_expression_struct_size(kind);
368         expression_t *res  = allocate_ast_zero(size);
369
370         res->base.kind = kind;
371         res->base.type = type_error_type;
372         return res;
373 }
374
375 /**
376  * Creates a new invalid expression.
377  */
378 static expression_t *create_invalid_expression(void)
379 {
380         expression_t *expression         = allocate_expression_zero(EXPR_INVALID);
381         expression->base.source_position = token.source_position;
382         return expression;
383 }
384
385 /**
386  * Creates a new invalid statement.
387  */
388 static statement_t *create_invalid_statement(void)
389 {
390         statement_t *statement          = allocate_statement_zero(STATEMENT_INVALID);
391         statement->base.source_position = token.source_position;
392         return statement;
393 }
394
395 /**
396  * Allocate a new empty statement.
397  */
398 static statement_t *create_empty_statement(void)
399 {
400         statement_t *statement          = allocate_statement_zero(STATEMENT_EMPTY);
401         statement->base.source_position = token.source_position;
402         return statement;
403 }
404
405 /**
406  * Returns the size of a type node.
407  *
408  * @param kind  the type kind
409  */
410 static size_t get_type_struct_size(type_kind_t kind)
411 {
412         static const size_t sizes[] = {
413                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
414                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
415                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
416                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
417                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
418                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
419                 [TYPE_ENUM]            = sizeof(enum_type_t),
420                 [TYPE_FUNCTION]        = sizeof(function_type_t),
421                 [TYPE_POINTER]         = sizeof(pointer_type_t),
422                 [TYPE_ARRAY]           = sizeof(array_type_t),
423                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
424                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
425                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
426         };
427         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
428         assert(kind <= TYPE_TYPEOF);
429         assert(sizes[kind] != 0);
430         return sizes[kind];
431 }
432
433 /**
434  * Allocate a type node of given kind and initialize all
435  * fields with zero.
436  *
437  * @param kind             type kind to allocate
438  * @param source_position  the source position of the type definition
439  */
440 static type_t *allocate_type_zero(type_kind_t kind, const source_position_t *source_position)
441 {
442         size_t  size = get_type_struct_size(kind);
443         type_t *res  = obstack_alloc(type_obst, size);
444         memset(res, 0, size);
445
446         res->base.kind            = kind;
447         res->base.source_position = *source_position;
448         return res;
449 }
450
451 /**
452  * Returns the size of an initializer node.
453  *
454  * @param kind  the initializer kind
455  */
456 static size_t get_initializer_size(initializer_kind_t kind)
457 {
458         static const size_t sizes[] = {
459                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
460                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
461                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
462                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
463                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
464         };
465         assert(kind < sizeof(sizes) / sizeof(*sizes));
466         assert(sizes[kind] != 0);
467         return sizes[kind];
468 }
469
470 /**
471  * Allocate an initializer node of given kind and initialize all
472  * fields with zero.
473  */
474 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
475 {
476         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
477         result->kind          = kind;
478
479         return result;
480 }
481
482 /**
483  * Free a type from the type obstack.
484  */
485 static void free_type(void *type)
486 {
487         obstack_free(type_obst, type);
488 }
489
490 /**
491  * Returns the index of the top element of the environment stack.
492  */
493 static size_t environment_top(void)
494 {
495         return ARR_LEN(environment_stack);
496 }
497
498 /**
499  * Returns the index of the top element of the global label stack.
500  */
501 static size_t label_top(void)
502 {
503         return ARR_LEN(label_stack);
504 }
505
506 /**
507  * Returns the index of the top element of the local label stack.
508  */
509 static size_t local_label_top(void)
510 {
511         return ARR_LEN(local_label_stack);
512 }
513
514 /**
515  * Return the next token.
516  */
517 static inline void next_token(void)
518 {
519         token                              = lookahead_buffer[lookahead_bufpos];
520         lookahead_buffer[lookahead_bufpos] = lexer_token;
521         lexer_next_token();
522
523         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
524
525 #ifdef PRINT_TOKENS
526         print_token(stderr, &token);
527         fprintf(stderr, "\n");
528 #endif
529 }
530
531 /**
532  * Return the next token with a given lookahead.
533  */
534 static inline const token_t *look_ahead(int num)
535 {
536         assert(num > 0 && num <= MAX_LOOKAHEAD);
537         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
538         return &lookahead_buffer[pos];
539 }
540
541 /**
542  * Adds a token to the token anchor set (a multi-set).
543  */
544 static void add_anchor_token(int token_type)
545 {
546         assert(0 <= token_type && token_type < T_LAST_TOKEN);
547         ++token_anchor_set[token_type];
548 }
549
550 static int save_and_reset_anchor_state(int token_type)
551 {
552         assert(0 <= token_type && token_type < T_LAST_TOKEN);
553         int count = token_anchor_set[token_type];
554         token_anchor_set[token_type] = 0;
555         return count;
556 }
557
558 static void restore_anchor_state(int token_type, int count)
559 {
560         assert(0 <= token_type && token_type < T_LAST_TOKEN);
561         token_anchor_set[token_type] = count;
562 }
563
564 /**
565  * Remove a token from the token anchor set (a multi-set).
566  */
567 static void rem_anchor_token(int token_type)
568 {
569         assert(0 <= token_type && token_type < T_LAST_TOKEN);
570         assert(token_anchor_set[token_type] != 0);
571         --token_anchor_set[token_type];
572 }
573
574 static bool at_anchor(void)
575 {
576         if (token.type < 0)
577                 return false;
578         return token_anchor_set[token.type];
579 }
580
581 /**
582  * Eat tokens until a matching token is found.
583  */
584 static void eat_until_matching_token(int type)
585 {
586         int end_token;
587         switch (type) {
588                 case '(': end_token = ')';  break;
589                 case '{': end_token = '}';  break;
590                 case '[': end_token = ']';  break;
591                 default:  end_token = type; break;
592         }
593
594         unsigned parenthesis_count = 0;
595         unsigned brace_count       = 0;
596         unsigned bracket_count     = 0;
597         while (token.type        != end_token ||
598                parenthesis_count != 0         ||
599                brace_count       != 0         ||
600                bracket_count     != 0) {
601                 switch (token.type) {
602                 case T_EOF: return;
603                 case '(': ++parenthesis_count; break;
604                 case '{': ++brace_count;       break;
605                 case '[': ++bracket_count;     break;
606
607                 case ')':
608                         if (parenthesis_count > 0)
609                                 --parenthesis_count;
610                         goto check_stop;
611
612                 case '}':
613                         if (brace_count > 0)
614                                 --brace_count;
615                         goto check_stop;
616
617                 case ']':
618                         if (bracket_count > 0)
619                                 --bracket_count;
620 check_stop:
621                         if (token.type        == end_token &&
622                             parenthesis_count == 0         &&
623                             brace_count       == 0         &&
624                             bracket_count     == 0)
625                                 return;
626                         break;
627
628                 default:
629                         break;
630                 }
631                 next_token();
632         }
633 }
634
635 /**
636  * Eat input tokens until an anchor is found.
637  */
638 static void eat_until_anchor(void)
639 {
640         if (token.type == T_EOF)
641                 return;
642         while (token_anchor_set[token.type] == 0) {
643                 if (token.type == '(' || token.type == '{' || token.type == '[')
644                         eat_until_matching_token(token.type);
645                 if (token.type == T_EOF)
646                         break;
647                 next_token();
648         }
649 }
650
651 static void eat_block(void)
652 {
653         eat_until_matching_token('{');
654         if (token.type == '}')
655                 next_token();
656 }
657
658 #define eat(token_type)  do { assert(token.type == token_type); next_token(); } while (0)
659
660 /**
661  * Report a parse error because an expected token was not found.
662  */
663 static
664 #if defined __GNUC__ && __GNUC__ >= 4
665 __attribute__((sentinel))
666 #endif
667 void parse_error_expected(const char *message, ...)
668 {
669         if (message != NULL) {
670                 errorf(HERE, "%s", message);
671         }
672         va_list ap;
673         va_start(ap, message);
674         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
675         va_end(ap);
676 }
677
678 /**
679  * Report a type error.
680  */
681 static void type_error(const char *msg, const source_position_t *source_position,
682                        type_t *type)
683 {
684         errorf(source_position, "%s, but found type '%T'", msg, type);
685 }
686
687 /**
688  * Report an incompatible type.
689  */
690 static void type_error_incompatible(const char *msg,
691                 const source_position_t *source_position, type_t *type1, type_t *type2)
692 {
693         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
694                msg, type1, type2);
695 }
696
697 /**
698  * Expect the the current token is the expected token.
699  * If not, generate an error, eat the current statement,
700  * and goto the end_error label.
701  */
702 #define expect(expected)                                  \
703         do {                                                  \
704                 if (UNLIKELY(token.type != (expected))) {         \
705                         parse_error_expected(NULL, (expected), NULL); \
706                         add_anchor_token(expected);                   \
707                         eat_until_anchor();                           \
708                         if (token.type == expected)                   \
709                                 next_token();                             \
710                         rem_anchor_token(expected);                   \
711                         goto end_error;                               \
712                 }                                                 \
713                 next_token();                                     \
714         } while (0)
715
716 static void set_scope(scope_t *new_scope)
717 {
718         if (scope != NULL) {
719                 scope->last_declaration = last_declaration;
720         }
721         scope = new_scope;
722
723         last_declaration = new_scope->last_declaration;
724 }
725
726 /**
727  * Search a symbol in a given namespace and returns its declaration or
728  * NULL if this symbol was not found.
729  */
730 static declaration_t *get_declaration(const symbol_t *const symbol,
731                                       const namespace_t namespc)
732 {
733         declaration_t *declaration = symbol->declaration;
734         for( ; declaration != NULL; declaration = declaration->symbol_next) {
735                 if (declaration->namespc == namespc)
736                         return declaration;
737         }
738
739         return NULL;
740 }
741
742 /**
743  * pushs an environment_entry on the environment stack and links the
744  * corresponding symbol to the new entry
745  */
746 static void stack_push(stack_entry_t **stack_ptr, declaration_t *declaration)
747 {
748         symbol_t    *symbol  = declaration->symbol;
749         namespace_t  namespc = (namespace_t) declaration->namespc;
750
751         /* replace/add declaration into declaration list of the symbol */
752         declaration_t *iter = symbol->declaration;
753         if (iter == NULL) {
754                 symbol->declaration = declaration;
755         } else {
756                 declaration_t *iter_last = NULL;
757                 for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
758                         /* replace an entry? */
759                         if (iter->namespc == namespc) {
760                                 if (iter_last == NULL) {
761                                         symbol->declaration = declaration;
762                                 } else {
763                                         iter_last->symbol_next = declaration;
764                                 }
765                                 declaration->symbol_next = iter->symbol_next;
766                                 break;
767                         }
768                 }
769                 if (iter == NULL) {
770                         assert(iter_last->symbol_next == NULL);
771                         iter_last->symbol_next = declaration;
772                 }
773         }
774
775         /* remember old declaration */
776         stack_entry_t entry;
777         entry.symbol          = symbol;
778         entry.old_declaration = iter;
779         entry.namespc         = (unsigned short) namespc;
780         ARR_APP1(stack_entry_t, *stack_ptr, entry);
781 }
782
783 /**
784  * Push a declaration on the environment stack.
785  *
786  * @param declaration  the declaration
787  */
788 static void environment_push(declaration_t *declaration)
789 {
790         assert(declaration->source_position.input_name != NULL);
791         assert(declaration->parent_scope != NULL);
792         stack_push(&environment_stack, declaration);
793 }
794
795 /**
796  * Push a declaration on the global label stack.
797  *
798  * @param declaration  the declaration
799  */
800 static void label_push(declaration_t *declaration)
801 {
802         declaration->parent_scope = &current_function->scope;
803         stack_push(&label_stack, declaration);
804 }
805
806 /**
807  * Push a declaration of the local label stack.
808  *
809  * @param declaration  the declaration
810  */
811 static void local_label_push(declaration_t *declaration)
812 {
813         assert(declaration->parent_scope != NULL);
814         stack_push(&local_label_stack, declaration);
815 }
816
817 /**
818  * pops symbols from the environment stack until @p new_top is the top element
819  */
820 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
821 {
822         stack_entry_t *stack = *stack_ptr;
823         size_t         top   = ARR_LEN(stack);
824         size_t         i;
825
826         assert(new_top <= top);
827         if (new_top == top)
828                 return;
829
830         for(i = top; i > new_top; --i) {
831                 stack_entry_t *entry = &stack[i - 1];
832
833                 declaration_t *old_declaration = entry->old_declaration;
834                 symbol_t      *symbol          = entry->symbol;
835                 namespace_t    namespc         = (namespace_t)entry->namespc;
836
837                 /* replace/remove declaration */
838                 declaration_t *declaration = symbol->declaration;
839                 assert(declaration != NULL);
840                 if (declaration->namespc == namespc) {
841                         if (old_declaration == NULL) {
842                                 symbol->declaration = declaration->symbol_next;
843                         } else {
844                                 symbol->declaration = old_declaration;
845                         }
846                 } else {
847                         declaration_t *iter_last = declaration;
848                         declaration_t *iter      = declaration->symbol_next;
849                         for( ; iter != NULL; iter_last = iter, iter = iter->symbol_next) {
850                                 /* replace an entry? */
851                                 if (iter->namespc == namespc) {
852                                         assert(iter_last != NULL);
853                                         iter_last->symbol_next = old_declaration;
854                                         if (old_declaration != NULL) {
855                                                 old_declaration->symbol_next = iter->symbol_next;
856                                         }
857                                         break;
858                                 }
859                         }
860                         assert(iter != NULL);
861                 }
862         }
863
864         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
865 }
866
867 /**
868  * Pop all entries from the environment stack until the new_top
869  * is reached.
870  *
871  * @param new_top  the new stack top
872  */
873 static void environment_pop_to(size_t new_top)
874 {
875         stack_pop_to(&environment_stack, new_top);
876 }
877
878 /**
879  * Pop all entries from the global label stack until the new_top
880  * is reached.
881  *
882  * @param new_top  the new stack top
883  */
884 static void label_pop_to(size_t new_top)
885 {
886         stack_pop_to(&label_stack, new_top);
887 }
888
889 /**
890  * Pop all entries from the local label stack until the new_top
891  * is reached.
892  *
893  * @param new_top  the new stack top
894  */
895 static void local_label_pop_to(size_t new_top)
896 {
897         stack_pop_to(&local_label_stack, new_top);
898 }
899
900
901 static int get_akind_rank(atomic_type_kind_t akind)
902 {
903         return (int) akind;
904 }
905
906 static int get_rank(const type_t *type)
907 {
908         assert(!is_typeref(type));
909         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
910          * and esp. footnote 108). However we can't fold constants (yet), so we
911          * can't decide whether unsigned int is possible, while int always works.
912          * (unsigned int would be preferable when possible... for stuff like
913          *  struct { enum { ... } bla : 4; } ) */
914         if (type->kind == TYPE_ENUM)
915                 return get_akind_rank(ATOMIC_TYPE_INT);
916
917         assert(type->kind == TYPE_ATOMIC);
918         return get_akind_rank(type->atomic.akind);
919 }
920
921 static type_t *promote_integer(type_t *type)
922 {
923         if (type->kind == TYPE_BITFIELD)
924                 type = type->bitfield.base_type;
925
926         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
927                 type = type_int;
928
929         return type;
930 }
931
932 /**
933  * Create a cast expression.
934  *
935  * @param expression  the expression to cast
936  * @param dest_type   the destination type
937  */
938 static expression_t *create_cast_expression(expression_t *expression,
939                                             type_t *dest_type)
940 {
941         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
942
943         cast->unary.value = expression;
944         cast->base.type   = dest_type;
945
946         return cast;
947 }
948
949 /**
950  * Check if a given expression represents the 0 pointer constant.
951  */
952 static bool is_null_pointer_constant(const expression_t *expression)
953 {
954         /* skip void* cast */
955         if (expression->kind == EXPR_UNARY_CAST
956                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
957                 expression = expression->unary.value;
958         }
959
960         /* TODO: not correct yet, should be any constant integer expression
961          * which evaluates to 0 */
962         if (expression->kind != EXPR_CONST)
963                 return false;
964
965         type_t *const type = skip_typeref(expression->base.type);
966         if (!is_type_integer(type))
967                 return false;
968
969         return expression->conste.v.int_value == 0;
970 }
971
972 /**
973  * Create an implicit cast expression.
974  *
975  * @param expression  the expression to cast
976  * @param dest_type   the destination type
977  */
978 static expression_t *create_implicit_cast(expression_t *expression,
979                                           type_t *dest_type)
980 {
981         type_t *const source_type = expression->base.type;
982
983         if (source_type == dest_type)
984                 return expression;
985
986         return create_cast_expression(expression, dest_type);
987 }
988
989 typedef enum assign_error_t {
990         ASSIGN_SUCCESS,
991         ASSIGN_ERROR_INCOMPATIBLE,
992         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
993         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
994         ASSIGN_WARNING_POINTER_FROM_INT,
995         ASSIGN_WARNING_INT_FROM_POINTER
996 } assign_error_t;
997
998 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
999                                 const expression_t *const right,
1000                                 const char *context,
1001                                 const source_position_t *source_position)
1002 {
1003         type_t *const orig_type_right = right->base.type;
1004         type_t *const type_left       = skip_typeref(orig_type_left);
1005         type_t *const type_right      = skip_typeref(orig_type_right);
1006
1007         switch (error) {
1008         case ASSIGN_SUCCESS:
1009                 return;
1010         case ASSIGN_ERROR_INCOMPATIBLE:
1011                 errorf(source_position,
1012                        "destination type '%T' in %s is incompatible with type '%T'",
1013                        orig_type_left, context, orig_type_right);
1014                 return;
1015
1016         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1017                 type_t *points_to_left
1018                         = skip_typeref(type_left->pointer.points_to);
1019                 type_t *points_to_right
1020                         = skip_typeref(type_right->pointer.points_to);
1021
1022                 /* the left type has all qualifiers from the right type */
1023                 unsigned missing_qualifiers
1024                         = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1025                 warningf(source_position,
1026                          "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1027                          orig_type_left, context, orig_type_right, missing_qualifiers);
1028                 return;
1029         }
1030
1031         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1032                 warningf(source_position,
1033                          "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1034                                  orig_type_left, context, right, orig_type_right);
1035                 return;
1036
1037         case ASSIGN_WARNING_POINTER_FROM_INT:
1038                 warningf(source_position,
1039                          "%s makes pointer '%T' from integer '%T' without a cast",
1040                                  context, orig_type_left, orig_type_right);
1041                 return;
1042
1043         case ASSIGN_WARNING_INT_FROM_POINTER:
1044                 warningf(source_position,
1045                                 "%s makes integer '%T' from pointer '%T' without a cast",
1046                                 context, orig_type_left, orig_type_right);
1047                 return;
1048
1049         default:
1050                 panic("invalid error value");
1051         }
1052 }
1053
1054 /** Implements the rules from Â§ 6.5.16.1 */
1055 static assign_error_t semantic_assign(type_t *orig_type_left,
1056                                       const expression_t *const right)
1057 {
1058         type_t *const orig_type_right = right->base.type;
1059         type_t *const type_left       = skip_typeref(orig_type_left);
1060         type_t *const type_right      = skip_typeref(orig_type_right);
1061
1062         if (is_type_pointer(type_left)) {
1063                 if (is_null_pointer_constant(right)) {
1064                         return ASSIGN_SUCCESS;
1065                 } else if (is_type_pointer(type_right)) {
1066                         type_t *points_to_left
1067                                 = skip_typeref(type_left->pointer.points_to);
1068                         type_t *points_to_right
1069                                 = skip_typeref(type_right->pointer.points_to);
1070                         assign_error_t res = ASSIGN_SUCCESS;
1071
1072                         /* the left type has all qualifiers from the right type */
1073                         unsigned missing_qualifiers
1074                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1075                         if (missing_qualifiers != 0) {
1076                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1077                         }
1078
1079                         points_to_left  = get_unqualified_type(points_to_left);
1080                         points_to_right = get_unqualified_type(points_to_right);
1081
1082                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID) ||
1083                                         is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1084                                 return res;
1085                         }
1086
1087                         if (!types_compatible(points_to_left, points_to_right)) {
1088                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1089                         }
1090
1091                         return res;
1092                 } else if (is_type_integer(type_right)) {
1093                         return ASSIGN_WARNING_POINTER_FROM_INT;
1094                 }
1095         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1096             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1097                 && is_type_pointer(type_right))) {
1098                 return ASSIGN_SUCCESS;
1099         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1100                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1101                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1102                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1103                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1104                         return ASSIGN_SUCCESS;
1105                 }
1106         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1107                 return ASSIGN_WARNING_INT_FROM_POINTER;
1108         }
1109
1110         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1111                 return ASSIGN_SUCCESS;
1112
1113         return ASSIGN_ERROR_INCOMPATIBLE;
1114 }
1115
1116 static expression_t *parse_constant_expression(void)
1117 {
1118         /* start parsing at precedence 7 (conditional expression) */
1119         expression_t *result = parse_sub_expression(7);
1120
1121         if (!is_constant_expression(result)) {
1122                 errorf(&result->base.source_position,
1123                        "expression '%E' is not constant\n", result);
1124         }
1125
1126         return result;
1127 }
1128
1129 static expression_t *parse_assignment_expression(void)
1130 {
1131         /* start parsing at precedence 2 (assignment expression) */
1132         return parse_sub_expression(2);
1133 }
1134
1135 static type_t *make_global_typedef(const char *name, type_t *type)
1136 {
1137         symbol_t *const symbol       = symbol_table_insert(name);
1138
1139         declaration_t *const declaration = allocate_declaration_zero();
1140         declaration->namespc                = NAMESPACE_NORMAL;
1141         declaration->storage_class          = STORAGE_CLASS_TYPEDEF;
1142         declaration->declared_storage_class = STORAGE_CLASS_TYPEDEF;
1143         declaration->type                   = type;
1144         declaration->symbol                 = symbol;
1145         declaration->source_position        = builtin_source_position;
1146         declaration->implicit               = true;
1147
1148         record_declaration(declaration, false);
1149
1150         type_t *typedef_type               = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
1151         typedef_type->typedeft.declaration = declaration;
1152
1153         return typedef_type;
1154 }
1155
1156 static string_t parse_string_literals(void)
1157 {
1158         assert(token.type == T_STRING_LITERAL);
1159         string_t result = token.v.string;
1160
1161         next_token();
1162
1163         while (token.type == T_STRING_LITERAL) {
1164                 result = concat_strings(&result, &token.v.string);
1165                 next_token();
1166         }
1167
1168         return result;
1169 }
1170
1171 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1172         [GNU_AK_CONST]                  = "const",
1173         [GNU_AK_VOLATILE]               = "volatile",
1174         [GNU_AK_CDECL]                  = "cdecl",
1175         [GNU_AK_STDCALL]                = "stdcall",
1176         [GNU_AK_FASTCALL]               = "fastcall",
1177         [GNU_AK_DEPRECATED]             = "deprecated",
1178         [GNU_AK_NOINLINE]               = "noinline",
1179         [GNU_AK_NORETURN]               = "noreturn",
1180         [GNU_AK_NAKED]                  = "naked",
1181         [GNU_AK_PURE]                   = "pure",
1182         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1183         [GNU_AK_MALLOC]                 = "malloc",
1184         [GNU_AK_WEAK]                   = "weak",
1185         [GNU_AK_CONSTRUCTOR]            = "constructor",
1186         [GNU_AK_DESTRUCTOR]             = "destructor",
1187         [GNU_AK_NOTHROW]                = "nothrow",
1188         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1189         [GNU_AK_COMMON]                 = "common",
1190         [GNU_AK_NOCOMMON]               = "nocommon",
1191         [GNU_AK_PACKED]                 = "packed",
1192         [GNU_AK_SHARED]                 = "shared",
1193         [GNU_AK_NOTSHARED]              = "notshared",
1194         [GNU_AK_USED]                   = "used",
1195         [GNU_AK_UNUSED]                 = "unused",
1196         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1197         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1198         [GNU_AK_LONGCALL]               = "longcall",
1199         [GNU_AK_SHORTCALL]              = "shortcall",
1200         [GNU_AK_LONG_CALL]              = "long_call",
1201         [GNU_AK_SHORT_CALL]             = "short_call",
1202         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1203         [GNU_AK_INTERRUPT]              = "interrupt",
1204         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1205         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1206         [GNU_AK_NESTING]                = "nesting",
1207         [GNU_AK_NEAR]                   = "near",
1208         [GNU_AK_FAR]                    = "far",
1209         [GNU_AK_SIGNAL]                 = "signal",
1210         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1211         [GNU_AK_TINY_DATA]              = "tiny_data",
1212         [GNU_AK_SAVEALL]                = "saveall",
1213         [GNU_AK_FLATTEN]                = "flatten",
1214         [GNU_AK_SSEREGPARM]             = "sseregparm",
1215         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1216         [GNU_AK_RETURN_TWICE]           = "return_twice",
1217         [GNU_AK_MAY_ALIAS]              = "may_alias",
1218         [GNU_AK_MS_STRUCT]              = "ms_struct",
1219         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1220         [GNU_AK_DLLIMPORT]              = "dllimport",
1221         [GNU_AK_DLLEXPORT]              = "dllexport",
1222         [GNU_AK_ALIGNED]                = "aligned",
1223         [GNU_AK_ALIAS]                  = "alias",
1224         [GNU_AK_SECTION]                = "section",
1225         [GNU_AK_FORMAT]                 = "format",
1226         [GNU_AK_FORMAT_ARG]             = "format_arg",
1227         [GNU_AK_WEAKREF]                = "weakref",
1228         [GNU_AK_NONNULL]                = "nonnull",
1229         [GNU_AK_TLS_MODEL]              = "tls_model",
1230         [GNU_AK_VISIBILITY]             = "visibility",
1231         [GNU_AK_REGPARM]                = "regparm",
1232         [GNU_AK_MODE]                   = "mode",
1233         [GNU_AK_MODEL]                  = "model",
1234         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1235         [GNU_AK_SP_SWITCH]              = "sp_switch",
1236         [GNU_AK_SENTINEL]               = "sentinel"
1237 };
1238
1239 /**
1240  * compare two string, ignoring double underscores on the second.
1241  */
1242 static int strcmp_underscore(const char *s1, const char *s2)
1243 {
1244         if (s2[0] == '_' && s2[1] == '_') {
1245                 size_t len2 = strlen(s2);
1246                 size_t len1 = strlen(s1);
1247                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1248                         return strncmp(s1, s2+2, len2-4);
1249                 }
1250         }
1251
1252         return strcmp(s1, s2);
1253 }
1254
1255 /**
1256  * Allocate a new gnu temporal attribute.
1257  */
1258 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1259 {
1260         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1261         attribute->kind            = kind;
1262         attribute->next            = NULL;
1263         attribute->invalid         = false;
1264         attribute->have_arguments  = false;
1265
1266         return attribute;
1267 }
1268
1269 /**
1270  * parse one constant expression argument.
1271  */
1272 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1273 {
1274         expression_t *expression;
1275         add_anchor_token(')');
1276         expression = parse_constant_expression();
1277         rem_anchor_token(')');
1278         expect(')');
1279         attribute->u.argument = fold_constant(expression);
1280         return;
1281 end_error:
1282         attribute->invalid = true;
1283 }
1284
1285 /**
1286  * parse a list of constant expressions arguments.
1287  */
1288 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1289 {
1290         argument_list_t **list = &attribute->u.arguments;
1291         argument_list_t  *entry;
1292         expression_t     *expression;
1293         add_anchor_token(')');
1294         add_anchor_token(',');
1295         while (true) {
1296                 expression = parse_constant_expression();
1297                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1298                 entry->argument = fold_constant(expression);
1299                 entry->next     = NULL;
1300                 *list = entry;
1301                 list = &entry->next;
1302                 if (token.type != ',')
1303                         break;
1304                 next_token();
1305         }
1306         rem_anchor_token(',');
1307         rem_anchor_token(')');
1308         expect(')');
1309         return;
1310 end_error:
1311         attribute->invalid = true;
1312 }
1313
1314 /**
1315  * parse one string literal argument.
1316  */
1317 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1318                                            string_t *string)
1319 {
1320         add_anchor_token('(');
1321         if (token.type != T_STRING_LITERAL) {
1322                 parse_error_expected("while parsing attribute directive",
1323                                      T_STRING_LITERAL, NULL);
1324                 goto end_error;
1325         }
1326         *string = parse_string_literals();
1327         rem_anchor_token('(');
1328         expect(')');
1329         return;
1330 end_error:
1331         attribute->invalid = true;
1332 }
1333
1334 /**
1335  * parse one tls model.
1336  */
1337 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1338 {
1339         static const char *const tls_models[] = {
1340                 "global-dynamic",
1341                 "local-dynamic",
1342                 "initial-exec",
1343                 "local-exec"
1344         };
1345         string_t string = { NULL, 0 };
1346         parse_gnu_attribute_string_arg(attribute, &string);
1347         if (string.begin != NULL) {
1348                 for(size_t i = 0; i < 4; ++i) {
1349                         if (strcmp(tls_models[i], string.begin) == 0) {
1350                                 attribute->u.value = i;
1351                                 return;
1352                         }
1353                 }
1354                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1355         }
1356         attribute->invalid = true;
1357 }
1358
1359 /**
1360  * parse one tls model.
1361  */
1362 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1363 {
1364         static const char *const visibilities[] = {
1365                 "default",
1366                 "protected",
1367                 "hidden",
1368                 "internal"
1369         };
1370         string_t string = { NULL, 0 };
1371         parse_gnu_attribute_string_arg(attribute, &string);
1372         if (string.begin != NULL) {
1373                 for(size_t i = 0; i < 4; ++i) {
1374                         if (strcmp(visibilities[i], string.begin) == 0) {
1375                                 attribute->u.value = i;
1376                                 return;
1377                         }
1378                 }
1379                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1380         }
1381         attribute->invalid = true;
1382 }
1383
1384 /**
1385  * parse one (code) model.
1386  */
1387 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1388 {
1389         static const char *const visibilities[] = {
1390                 "small",
1391                 "medium",
1392                 "large"
1393         };
1394         string_t string = { NULL, 0 };
1395         parse_gnu_attribute_string_arg(attribute, &string);
1396         if (string.begin != NULL) {
1397                 for(int i = 0; i < 3; ++i) {
1398                         if (strcmp(visibilities[i], string.begin) == 0) {
1399                                 attribute->u.value = i;
1400                                 return;
1401                         }
1402                 }
1403                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1404         }
1405         attribute->invalid = true;
1406 }
1407
1408 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1409 {
1410         /* TODO: find out what is allowed here... */
1411
1412         /* at least: byte, word, pointer, list of machine modes
1413          * __XXX___ is interpreted as XXX */
1414         add_anchor_token(')');
1415
1416         if (token.type != T_IDENTIFIER) {
1417                 expect(T_IDENTIFIER);
1418         }
1419
1420         /* This isn't really correct, the backend should provide a list of machine
1421          * specific modes (according to gcc philosophy that is...) */
1422         const char *symbol_str = token.v.symbol->string;
1423         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1424             strcmp_underscore("byte", symbol_str) == 0) {
1425                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1426         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1427                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1428         } else if (strcmp_underscore("SI",      symbol_str) == 0
1429                 || strcmp_underscore("word",    symbol_str) == 0
1430                 || strcmp_underscore("pointer", symbol_str) == 0) {
1431                 attribute->u.akind = ATOMIC_TYPE_INT;
1432         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1433                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1434         } else {
1435                 warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1436                 attribute->invalid = true;
1437         }
1438         next_token();
1439
1440         rem_anchor_token(')');
1441         expect(')');
1442         return;
1443 end_error:
1444         attribute->invalid = true;
1445 }
1446
1447 /**
1448  * parse one interrupt argument.
1449  */
1450 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1451 {
1452         static const char *const interrupts[] = {
1453                 "IRQ",
1454                 "FIQ",
1455                 "SWI",
1456                 "ABORT",
1457                 "UNDEF"
1458         };
1459         string_t string = { NULL, 0 };
1460         parse_gnu_attribute_string_arg(attribute, &string);
1461         if (string.begin != NULL) {
1462                 for(size_t i = 0; i < 5; ++i) {
1463                         if (strcmp(interrupts[i], string.begin) == 0) {
1464                                 attribute->u.value = i;
1465                                 return;
1466                         }
1467                 }
1468                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1469         }
1470         attribute->invalid = true;
1471 }
1472
1473 /**
1474  * parse ( identifier, const expression, const expression )
1475  */
1476 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1477 {
1478         static const char *const format_names[] = {
1479                 "printf",
1480                 "scanf",
1481                 "strftime",
1482                 "strfmon"
1483         };
1484         int i;
1485
1486         if (token.type != T_IDENTIFIER) {
1487                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1488                 goto end_error;
1489         }
1490         const char *name = token.v.symbol->string;
1491         for(i = 0; i < 4; ++i) {
1492                 if (strcmp_underscore(format_names[i], name) == 0)
1493                         break;
1494         }
1495         if (i >= 4) {
1496                 if (warning.attribute)
1497                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1498         }
1499         next_token();
1500
1501         expect(',');
1502         add_anchor_token(')');
1503         add_anchor_token(',');
1504         parse_constant_expression();
1505         rem_anchor_token(',');
1506         rem_anchor_token(')');
1507
1508         expect(',');
1509         add_anchor_token(')');
1510         parse_constant_expression();
1511         rem_anchor_token(')');
1512         expect(')');
1513         return;
1514 end_error:
1515         attribute->u.value = true;
1516 }
1517
1518 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1519 {
1520         if (!attribute->have_arguments)
1521                 return;
1522
1523         /* should have no arguments */
1524         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1525         eat_until_matching_token('(');
1526         /* we have already consumed '(', so we stop before ')', eat it */
1527         eat(')');
1528         attribute->invalid = true;
1529 }
1530
1531 /**
1532  * Parse one GNU attribute.
1533  *
1534  * Note that attribute names can be specified WITH or WITHOUT
1535  * double underscores, ie const or __const__.
1536  *
1537  * The following attributes are parsed without arguments
1538  *  const
1539  *  volatile
1540  *  cdecl
1541  *  stdcall
1542  *  fastcall
1543  *  deprecated
1544  *  noinline
1545  *  noreturn
1546  *  naked
1547  *  pure
1548  *  always_inline
1549  *  malloc
1550  *  weak
1551  *  constructor
1552  *  destructor
1553  *  nothrow
1554  *  transparent_union
1555  *  common
1556  *  nocommon
1557  *  packed
1558  *  shared
1559  *  notshared
1560  *  used
1561  *  unused
1562  *  no_instrument_function
1563  *  warn_unused_result
1564  *  longcall
1565  *  shortcall
1566  *  long_call
1567  *  short_call
1568  *  function_vector
1569  *  interrupt_handler
1570  *  nmi_handler
1571  *  nesting
1572  *  near
1573  *  far
1574  *  signal
1575  *  eightbit_data
1576  *  tiny_data
1577  *  saveall
1578  *  flatten
1579  *  sseregparm
1580  *  externally_visible
1581  *  return_twice
1582  *  may_alias
1583  *  ms_struct
1584  *  gcc_struct
1585  *  dllimport
1586  *  dllexport
1587  *
1588  * The following attributes are parsed with arguments
1589  *  aligned( const expression )
1590  *  alias( string literal )
1591  *  section( string literal )
1592  *  format( identifier, const expression, const expression )
1593  *  format_arg( const expression )
1594  *  tls_model( string literal )
1595  *  visibility( string literal )
1596  *  regparm( const expression )
1597  *  model( string leteral )
1598  *  trap_exit( const expression )
1599  *  sp_switch( string literal )
1600  *
1601  * The following attributes might have arguments
1602  *  weak_ref( string literal )
1603  *  non_null( const expression // ',' )
1604  *  interrupt( string literal )
1605  *  sentinel( constant expression )
1606  */
1607 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1608 {
1609         gnu_attribute_t *head      = *attributes;
1610         gnu_attribute_t *last      = *attributes;
1611         decl_modifiers_t modifiers = 0;
1612         gnu_attribute_t *attribute;
1613
1614         eat(T___attribute__);
1615         expect('(');
1616         expect('(');
1617
1618         if (token.type != ')') {
1619                 /* find the end of the list */
1620                 if (last != NULL) {
1621                         while (last->next != NULL)
1622                                 last = last->next;
1623                 }
1624
1625                 /* non-empty attribute list */
1626                 while (true) {
1627                         const char *name;
1628                         if (token.type == T_const) {
1629                                 name = "const";
1630                         } else if (token.type == T_volatile) {
1631                                 name = "volatile";
1632                         } else if (token.type == T_cdecl) {
1633                                 /* __attribute__((cdecl)), WITH ms mode */
1634                                 name = "cdecl";
1635                         } else if (token.type == T_IDENTIFIER) {
1636                                 const symbol_t *sym = token.v.symbol;
1637                                 name = sym->string;
1638                         } else {
1639                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1640                                 break;
1641                         }
1642
1643                         next_token();
1644
1645                         int i;
1646                         for(i = 0; i < GNU_AK_LAST; ++i) {
1647                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1648                                         break;
1649                         }
1650                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1651
1652                         attribute = NULL;
1653                         if (kind == GNU_AK_LAST) {
1654                                 if (warning.attribute)
1655                                         warningf(HERE, "'%s' attribute directive ignored", name);
1656
1657                                 /* skip possible arguments */
1658                                 if (token.type == '(') {
1659                                         eat_until_matching_token(')');
1660                                 }
1661                         } else {
1662                                 /* check for arguments */
1663                                 attribute = allocate_gnu_attribute(kind);
1664                                 if (token.type == '(') {
1665                                         next_token();
1666                                         if (token.type == ')') {
1667                                                 /* empty args are allowed */
1668                                                 next_token();
1669                                         } else
1670                                                 attribute->have_arguments = true;
1671                                 }
1672
1673                                 switch(kind) {
1674                                 case GNU_AK_CONST:
1675                                 case GNU_AK_VOLATILE:
1676                                 case GNU_AK_NAKED:
1677                                 case GNU_AK_MALLOC:
1678                                 case GNU_AK_WEAK:
1679                                 case GNU_AK_COMMON:
1680                                 case GNU_AK_NOCOMMON:
1681                                 case GNU_AK_SHARED:
1682                                 case GNU_AK_NOTSHARED:
1683                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1684                                 case GNU_AK_WARN_UNUSED_RESULT:
1685                                 case GNU_AK_LONGCALL:
1686                                 case GNU_AK_SHORTCALL:
1687                                 case GNU_AK_LONG_CALL:
1688                                 case GNU_AK_SHORT_CALL:
1689                                 case GNU_AK_FUNCTION_VECTOR:
1690                                 case GNU_AK_INTERRUPT_HANDLER:
1691                                 case GNU_AK_NMI_HANDLER:
1692                                 case GNU_AK_NESTING:
1693                                 case GNU_AK_NEAR:
1694                                 case GNU_AK_FAR:
1695                                 case GNU_AK_SIGNAL:
1696                                 case GNU_AK_EIGTHBIT_DATA:
1697                                 case GNU_AK_TINY_DATA:
1698                                 case GNU_AK_SAVEALL:
1699                                 case GNU_AK_FLATTEN:
1700                                 case GNU_AK_SSEREGPARM:
1701                                 case GNU_AK_EXTERNALLY_VISIBLE:
1702                                 case GNU_AK_RETURN_TWICE:
1703                                 case GNU_AK_MAY_ALIAS:
1704                                 case GNU_AK_MS_STRUCT:
1705                                 case GNU_AK_GCC_STRUCT:
1706                                         goto no_arg;
1707
1708                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1709                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1710                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1711                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1712                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1713                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1714                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1715                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1716                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1717                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1718                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1719                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1720                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1721                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1722                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1723                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1724                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1725
1726                                 case GNU_AK_ALIGNED:
1727                                         /* __align__ may be used without an argument */
1728                                         if (attribute->have_arguments) {
1729                                                 parse_gnu_attribute_const_arg(attribute);
1730                                         }
1731                                         break;
1732
1733                                 case GNU_AK_FORMAT_ARG:
1734                                 case GNU_AK_REGPARM:
1735                                 case GNU_AK_TRAP_EXIT:
1736                                         if (!attribute->have_arguments) {
1737                                                 /* should have arguments */
1738                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1739                                                 attribute->invalid = true;
1740                                         } else
1741                                                 parse_gnu_attribute_const_arg(attribute);
1742                                         break;
1743                                 case GNU_AK_ALIAS:
1744                                 case GNU_AK_SECTION:
1745                                 case GNU_AK_SP_SWITCH:
1746                                         if (!attribute->have_arguments) {
1747                                                 /* should have arguments */
1748                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1749                                                 attribute->invalid = true;
1750                                         } else
1751                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1752                                         break;
1753                                 case GNU_AK_FORMAT:
1754                                         if (!attribute->have_arguments) {
1755                                                 /* should have arguments */
1756                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1757                                                 attribute->invalid = true;
1758                                         } else
1759                                                 parse_gnu_attribute_format_args(attribute);
1760                                         break;
1761                                 case GNU_AK_WEAKREF:
1762                                         /* may have one string argument */
1763                                         if (attribute->have_arguments)
1764                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1765                                         break;
1766                                 case GNU_AK_NONNULL:
1767                                         if (attribute->have_arguments)
1768                                                 parse_gnu_attribute_const_arg_list(attribute);
1769                                         break;
1770                                 case GNU_AK_TLS_MODEL:
1771                                         if (!attribute->have_arguments) {
1772                                                 /* should have arguments */
1773                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1774                                         } else
1775                                                 parse_gnu_attribute_tls_model_arg(attribute);
1776                                         break;
1777                                 case GNU_AK_VISIBILITY:
1778                                         if (!attribute->have_arguments) {
1779                                                 /* should have arguments */
1780                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1781                                         } else
1782                                                 parse_gnu_attribute_visibility_arg(attribute);
1783                                         break;
1784                                 case GNU_AK_MODEL:
1785                                         if (!attribute->have_arguments) {
1786                                                 /* should have arguments */
1787                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1788                                         } else {
1789                                                 parse_gnu_attribute_model_arg(attribute);
1790                                         }
1791                                         break;
1792                                 case GNU_AK_MODE:
1793                                         if (!attribute->have_arguments) {
1794                                                 /* should have arguments */
1795                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1796                                         } else {
1797                                                 parse_gnu_attribute_mode_arg(attribute);
1798                                         }
1799                                         break;
1800                                 case GNU_AK_INTERRUPT:
1801                                         /* may have one string argument */
1802                                         if (attribute->have_arguments)
1803                                                 parse_gnu_attribute_interrupt_arg(attribute);
1804                                         break;
1805                                 case GNU_AK_SENTINEL:
1806                                         /* may have one string argument */
1807                                         if (attribute->have_arguments)
1808                                                 parse_gnu_attribute_const_arg(attribute);
1809                                         break;
1810                                 case GNU_AK_LAST:
1811                                         /* already handled */
1812                                         break;
1813
1814 no_arg:
1815                                         check_no_argument(attribute, name);
1816                                 }
1817                         }
1818                         if (attribute != NULL) {
1819                                 if (last != NULL) {
1820                                         last->next = attribute;
1821                                         last       = attribute;
1822                                 } else {
1823                                         head = last = attribute;
1824                                 }
1825                         }
1826
1827                         if (token.type != ',')
1828                                 break;
1829                         next_token();
1830                 }
1831         }
1832         expect(')');
1833         expect(')');
1834 end_error:
1835         *attributes = head;
1836
1837         return modifiers;
1838 }
1839
1840 /**
1841  * Parse GNU attributes.
1842  */
1843 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1844 {
1845         decl_modifiers_t modifiers = 0;
1846
1847         while (true) {
1848                 switch(token.type) {
1849                 case T___attribute__:
1850                         modifiers |= parse_gnu_attribute(attributes);
1851                         continue;
1852
1853                 case T_asm:
1854                         next_token();
1855                         expect('(');
1856                         if (token.type != T_STRING_LITERAL) {
1857                                 parse_error_expected("while parsing assembler attribute",
1858                                                      T_STRING_LITERAL, NULL);
1859                                 eat_until_matching_token('(');
1860                                 break;
1861                         } else {
1862                                 parse_string_literals();
1863                         }
1864                         expect(')');
1865                         continue;
1866
1867                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1868                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1869                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1870
1871                 case T___thiscall:
1872                         /* TODO record modifier */
1873                         warningf(HERE, "Ignoring declaration modifier %K", &token);
1874                         break;
1875
1876 end_error:
1877                 default: return modifiers;
1878                 }
1879
1880                 next_token();
1881         }
1882 }
1883
1884 static designator_t *parse_designation(void)
1885 {
1886         designator_t *result = NULL;
1887         designator_t *last   = NULL;
1888
1889         while (true) {
1890                 designator_t *designator;
1891                 switch(token.type) {
1892                 case '[':
1893                         designator = allocate_ast_zero(sizeof(designator[0]));
1894                         designator->source_position = token.source_position;
1895                         next_token();
1896                         add_anchor_token(']');
1897                         designator->array_index = parse_constant_expression();
1898                         rem_anchor_token(']');
1899                         expect(']');
1900                         break;
1901                 case '.':
1902                         designator = allocate_ast_zero(sizeof(designator[0]));
1903                         designator->source_position = token.source_position;
1904                         next_token();
1905                         if (token.type != T_IDENTIFIER) {
1906                                 parse_error_expected("while parsing designator",
1907                                                      T_IDENTIFIER, NULL);
1908                                 return NULL;
1909                         }
1910                         designator->symbol = token.v.symbol;
1911                         next_token();
1912                         break;
1913                 default:
1914                         expect('=');
1915                         return result;
1916                 }
1917
1918                 assert(designator != NULL);
1919                 if (last != NULL) {
1920                         last->next = designator;
1921                 } else {
1922                         result = designator;
1923                 }
1924                 last = designator;
1925         }
1926 end_error:
1927         return NULL;
1928 }
1929
1930 static initializer_t *initializer_from_string(array_type_t *type,
1931                                               const string_t *const string)
1932 {
1933         /* TODO: check len vs. size of array type */
1934         (void) type;
1935
1936         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1937         initializer->string.string = *string;
1938
1939         return initializer;
1940 }
1941
1942 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1943                                                    wide_string_t *const string)
1944 {
1945         /* TODO: check len vs. size of array type */
1946         (void) type;
1947
1948         initializer_t *const initializer =
1949                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1950         initializer->wide_string.string = *string;
1951
1952         return initializer;
1953 }
1954
1955 /**
1956  * Build an initializer from a given expression.
1957  */
1958 static initializer_t *initializer_from_expression(type_t *orig_type,
1959                                                   expression_t *expression)
1960 {
1961         /* TODO check that expression is a constant expression */
1962
1963         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
1964         type_t *type           = skip_typeref(orig_type);
1965         type_t *expr_type_orig = expression->base.type;
1966         type_t *expr_type      = skip_typeref(expr_type_orig);
1967         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1968                 array_type_t *const array_type   = &type->array;
1969                 type_t       *const element_type = skip_typeref(array_type->element_type);
1970
1971                 if (element_type->kind == TYPE_ATOMIC) {
1972                         atomic_type_kind_t akind = element_type->atomic.akind;
1973                         switch (expression->kind) {
1974                                 case EXPR_STRING_LITERAL:
1975                                         if (akind == ATOMIC_TYPE_CHAR
1976                                                         || akind == ATOMIC_TYPE_SCHAR
1977                                                         || akind == ATOMIC_TYPE_UCHAR) {
1978                                                 return initializer_from_string(array_type,
1979                                                         &expression->string.value);
1980                                         }
1981
1982                                 case EXPR_WIDE_STRING_LITERAL: {
1983                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1984                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1985                                                 return initializer_from_wide_string(array_type,
1986                                                         &expression->wide_string.value);
1987                                         }
1988                                 }
1989
1990                                 default:
1991                                         break;
1992                         }
1993                 }
1994         }
1995
1996         assign_error_t error = semantic_assign(type, expression);
1997         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1998                 return NULL;
1999         report_assign_error(error, type, expression, "initializer",
2000                             &expression->base.source_position);
2001
2002         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2003         result->value.value = create_implicit_cast(expression, type);
2004
2005         return result;
2006 }
2007
2008 /**
2009  * Checks if a given expression can be used as an constant initializer.
2010  */
2011 static bool is_initializer_constant(const expression_t *expression)
2012 {
2013         return is_constant_expression(expression)
2014                 || is_address_constant(expression);
2015 }
2016
2017 /**
2018  * Parses an scalar initializer.
2019  *
2020  * Â§ 6.7.8.11; eat {} without warning
2021  */
2022 static initializer_t *parse_scalar_initializer(type_t *type,
2023                                                bool must_be_constant)
2024 {
2025         /* there might be extra {} hierarchies */
2026         int braces = 0;
2027         if (token.type == '{') {
2028                 warningf(HERE, "extra curly braces around scalar initializer");
2029                 do {
2030                         ++braces;
2031                         next_token();
2032                 } while (token.type == '{');
2033         }
2034
2035         expression_t *expression = parse_assignment_expression();
2036         if (must_be_constant && !is_initializer_constant(expression)) {
2037                 errorf(&expression->base.source_position,
2038                        "Initialisation expression '%E' is not constant\n",
2039                        expression);
2040         }
2041
2042         initializer_t *initializer = initializer_from_expression(type, expression);
2043
2044         if (initializer == NULL) {
2045                 errorf(&expression->base.source_position,
2046                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2047                        expression, expression->base.type, type);
2048                 /* TODO */
2049                 return NULL;
2050         }
2051
2052         bool additional_warning_displayed = false;
2053         while (braces > 0) {
2054                 if (token.type == ',') {
2055                         next_token();
2056                 }
2057                 if (token.type != '}') {
2058                         if (!additional_warning_displayed) {
2059                                 warningf(HERE, "additional elements in scalar initializer");
2060                                 additional_warning_displayed = true;
2061                         }
2062                 }
2063                 eat_block();
2064                 braces--;
2065         }
2066
2067         return initializer;
2068 }
2069
2070 /**
2071  * An entry in the type path.
2072  */
2073 typedef struct type_path_entry_t type_path_entry_t;
2074 struct type_path_entry_t {
2075         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2076         union {
2077                 size_t         index;          /**< For array types: the current index. */
2078                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2079         } v;
2080 };
2081
2082 /**
2083  * A type path expression a position inside compound or array types.
2084  */
2085 typedef struct type_path_t type_path_t;
2086 struct type_path_t {
2087         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2088         type_t            *top_type;     /**< type of the element the path points */
2089         size_t             max_index;    /**< largest index in outermost array */
2090 };
2091
2092 /**
2093  * Prints a type path for debugging.
2094  */
2095 static __attribute__((unused)) void debug_print_type_path(
2096                 const type_path_t *path)
2097 {
2098         size_t len = ARR_LEN(path->path);
2099
2100         for(size_t i = 0; i < len; ++i) {
2101                 const type_path_entry_t *entry = & path->path[i];
2102
2103                 type_t *type = skip_typeref(entry->type);
2104                 if (is_type_compound(type)) {
2105                         /* in gcc mode structs can have no members */
2106                         if (entry->v.compound_entry == NULL) {
2107                                 assert(i == len-1);
2108                                 continue;
2109                         }
2110                         fprintf(stderr, ".%s", entry->v.compound_entry->symbol->string);
2111                 } else if (is_type_array(type)) {
2112                         fprintf(stderr, "[%zu]", entry->v.index);
2113                 } else {
2114                         fprintf(stderr, "-INVALID-");
2115                 }
2116         }
2117         if (path->top_type != NULL) {
2118                 fprintf(stderr, "  (");
2119                 print_type(path->top_type);
2120                 fprintf(stderr, ")");
2121         }
2122 }
2123
2124 /**
2125  * Return the top type path entry, ie. in a path
2126  * (type).a.b returns the b.
2127  */
2128 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2129 {
2130         size_t len = ARR_LEN(path->path);
2131         assert(len > 0);
2132         return &path->path[len-1];
2133 }
2134
2135 /**
2136  * Enlarge the type path by an (empty) element.
2137  */
2138 static type_path_entry_t *append_to_type_path(type_path_t *path)
2139 {
2140         size_t len = ARR_LEN(path->path);
2141         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2142
2143         type_path_entry_t *result = & path->path[len];
2144         memset(result, 0, sizeof(result[0]));
2145         return result;
2146 }
2147
2148 /**
2149  * Descending into a sub-type. Enter the scope of the current
2150  * top_type.
2151  */
2152 static void descend_into_subtype(type_path_t *path)
2153 {
2154         type_t *orig_top_type = path->top_type;
2155         type_t *top_type      = skip_typeref(orig_top_type);
2156
2157         type_path_entry_t *top = append_to_type_path(path);
2158         top->type              = top_type;
2159
2160         if (is_type_compound(top_type)) {
2161                 declaration_t *declaration = top_type->compound.declaration;
2162                 declaration_t *entry       = declaration->scope.declarations;
2163                 top->v.compound_entry      = entry;
2164
2165                 if (entry != NULL) {
2166                         path->top_type         = entry->type;
2167                 } else {
2168                         path->top_type         = NULL;
2169                 }
2170         } else if (is_type_array(top_type)) {
2171                 top->v.index   = 0;
2172                 path->top_type = top_type->array.element_type;
2173         } else {
2174                 assert(!is_type_valid(top_type));
2175         }
2176 }
2177
2178 /**
2179  * Pop an entry from the given type path, ie. returning from
2180  * (type).a.b to (type).a
2181  */
2182 static void ascend_from_subtype(type_path_t *path)
2183 {
2184         type_path_entry_t *top = get_type_path_top(path);
2185
2186         path->top_type = top->type;
2187
2188         size_t len = ARR_LEN(path->path);
2189         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2190 }
2191
2192 /**
2193  * Pop entries from the given type path until the given
2194  * path level is reached.
2195  */
2196 static void ascend_to(type_path_t *path, size_t top_path_level)
2197 {
2198         size_t len = ARR_LEN(path->path);
2199
2200         while (len > top_path_level) {
2201                 ascend_from_subtype(path);
2202                 len = ARR_LEN(path->path);
2203         }
2204 }
2205
2206 static bool walk_designator(type_path_t *path, const designator_t *designator,
2207                             bool used_in_offsetof)
2208 {
2209         for( ; designator != NULL; designator = designator->next) {
2210                 type_path_entry_t *top       = get_type_path_top(path);
2211                 type_t            *orig_type = top->type;
2212
2213                 type_t *type = skip_typeref(orig_type);
2214
2215                 if (designator->symbol != NULL) {
2216                         symbol_t *symbol = designator->symbol;
2217                         if (!is_type_compound(type)) {
2218                                 if (is_type_valid(type)) {
2219                                         errorf(&designator->source_position,
2220                                                "'.%Y' designator used for non-compound type '%T'",
2221                                                symbol, orig_type);
2222                                 }
2223                                 goto failed;
2224                         }
2225
2226                         declaration_t *declaration = type->compound.declaration;
2227                         declaration_t *iter        = declaration->scope.declarations;
2228                         for( ; iter != NULL; iter = iter->next) {
2229                                 if (iter->symbol == symbol) {
2230                                         break;
2231                                 }
2232                         }
2233                         if (iter == NULL) {
2234                                 errorf(&designator->source_position,
2235                                        "'%T' has no member named '%Y'", orig_type, symbol);
2236                                 goto failed;
2237                         }
2238                         if (used_in_offsetof) {
2239                                 type_t *real_type = skip_typeref(iter->type);
2240                                 if (real_type->kind == TYPE_BITFIELD) {
2241                                         errorf(&designator->source_position,
2242                                                "offsetof designator '%Y' may not specify bitfield",
2243                                                symbol);
2244                                         goto failed;
2245                                 }
2246                         }
2247
2248                         top->type             = orig_type;
2249                         top->v.compound_entry = iter;
2250                         orig_type             = iter->type;
2251                 } else {
2252                         expression_t *array_index = designator->array_index;
2253                         assert(designator->array_index != NULL);
2254
2255                         if (!is_type_array(type)) {
2256                                 if (is_type_valid(type)) {
2257                                         errorf(&designator->source_position,
2258                                                "[%E] designator used for non-array type '%T'",
2259                                                array_index, orig_type);
2260                                 }
2261                                 goto failed;
2262                         }
2263                         if (!is_type_valid(array_index->base.type)) {
2264                                 goto failed;
2265                         }
2266
2267                         long index = fold_constant(array_index);
2268                         if (!used_in_offsetof) {
2269                                 if (index < 0) {
2270                                         errorf(&designator->source_position,
2271                                                "array index [%E] must be positive", array_index);
2272                                         goto failed;
2273                                 }
2274                                 if (type->array.size_constant == true) {
2275                                         long array_size = type->array.size;
2276                                         if (index >= array_size) {
2277                                                 errorf(&designator->source_position,
2278                                                        "designator [%E] (%d) exceeds array size %d",
2279                                                        array_index, index, array_size);
2280                                                 goto failed;
2281                                         }
2282                                 }
2283                         }
2284
2285                         top->type    = orig_type;
2286                         top->v.index = (size_t) index;
2287                         orig_type    = type->array.element_type;
2288                 }
2289                 path->top_type = orig_type;
2290
2291                 if (designator->next != NULL) {
2292                         descend_into_subtype(path);
2293                 }
2294         }
2295         return true;
2296
2297 failed:
2298         return false;
2299 }
2300
2301 static void advance_current_object(type_path_t *path, size_t top_path_level)
2302 {
2303         type_path_entry_t *top = get_type_path_top(path);
2304
2305         type_t *type = skip_typeref(top->type);
2306         if (is_type_union(type)) {
2307                 /* in unions only the first element is initialized */
2308                 top->v.compound_entry = NULL;
2309         } else if (is_type_struct(type)) {
2310                 declaration_t *entry = top->v.compound_entry;
2311
2312                 entry                 = entry->next;
2313                 top->v.compound_entry = entry;
2314                 if (entry != NULL) {
2315                         path->top_type = entry->type;
2316                         return;
2317                 }
2318         } else {
2319                 assert(is_type_array(type));
2320
2321                 top->v.index++;
2322
2323                 if (!type->array.size_constant || top->v.index < type->array.size) {
2324                         return;
2325                 }
2326         }
2327
2328         /* we're past the last member of the current sub-aggregate, try if we
2329          * can ascend in the type hierarchy and continue with another subobject */
2330         size_t len = ARR_LEN(path->path);
2331
2332         if (len > top_path_level) {
2333                 ascend_from_subtype(path);
2334                 advance_current_object(path, top_path_level);
2335         } else {
2336                 path->top_type = NULL;
2337         }
2338 }
2339
2340 /**
2341  * skip until token is found.
2342  */
2343 static void skip_until(int type)
2344 {
2345         while (token.type != type) {
2346                 if (token.type == T_EOF)
2347                         return;
2348                 next_token();
2349         }
2350 }
2351
2352 /**
2353  * skip any {...} blocks until a closing bracket is reached.
2354  */
2355 static void skip_initializers(void)
2356 {
2357         if (token.type == '{')
2358                 next_token();
2359
2360         while (token.type != '}') {
2361                 if (token.type == T_EOF)
2362                         return;
2363                 if (token.type == '{') {
2364                         eat_block();
2365                         continue;
2366                 }
2367                 next_token();
2368         }
2369 }
2370
2371 static initializer_t *create_empty_initializer(void)
2372 {
2373         static initializer_t empty_initializer
2374                 = { .list = { { INITIALIZER_LIST }, 0 } };
2375         return &empty_initializer;
2376 }
2377
2378 /**
2379  * Parse a part of an initialiser for a struct or union,
2380  */
2381 static initializer_t *parse_sub_initializer(type_path_t *path,
2382                 type_t *outer_type, size_t top_path_level,
2383                 parse_initializer_env_t *env)
2384 {
2385         if (token.type == '}') {
2386                 /* empty initializer */
2387                 return create_empty_initializer();
2388         }
2389
2390         type_t *orig_type = path->top_type;
2391         type_t *type      = NULL;
2392
2393         if (orig_type == NULL) {
2394                 /* We are initializing an empty compound. */
2395         } else {
2396                 type = skip_typeref(orig_type);
2397
2398                 /* we can't do usefull stuff if we didn't even parse the type. Skip the
2399                  * initializers in this case. */
2400                 if (!is_type_valid(type)) {
2401                         skip_initializers();
2402                         return create_empty_initializer();
2403                 }
2404         }
2405
2406         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2407
2408         while (true) {
2409                 designator_t *designator = NULL;
2410                 if (token.type == '.' || token.type == '[') {
2411                         designator = parse_designation();
2412                         goto finish_designator;
2413                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2414                         /* GNU-style designator ("identifier: value") */
2415                         designator = allocate_ast_zero(sizeof(designator[0]));
2416                         designator->source_position = token.source_position;
2417                         designator->symbol          = token.v.symbol;
2418                         eat(T_IDENTIFIER);
2419                         eat(':');
2420
2421 finish_designator:
2422                         /* reset path to toplevel, evaluate designator from there */
2423                         ascend_to(path, top_path_level);
2424                         if (!walk_designator(path, designator, false)) {
2425                                 /* can't continue after designation error */
2426                                 goto end_error;
2427                         }
2428
2429                         initializer_t *designator_initializer
2430                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2431                         designator_initializer->designator.designator = designator;
2432                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2433
2434                         orig_type = path->top_type;
2435                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2436                 }
2437
2438                 initializer_t *sub;
2439
2440                 if (token.type == '{') {
2441                         if (type != NULL && is_type_scalar(type)) {
2442                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2443                         } else {
2444                                 eat('{');
2445                                 if (type == NULL) {
2446                                         if (env->declaration != NULL) {
2447                                                 errorf(HERE, "extra brace group at end of initializer for '%Y'",
2448                                                        env->declaration->symbol);
2449                                         } else {
2450                                                 errorf(HERE, "extra brace group at end of initializer");
2451                                         }
2452                                 } else
2453                                         descend_into_subtype(path);
2454
2455                                 add_anchor_token('}');
2456                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2457                                                             env);
2458                                 rem_anchor_token('}');
2459
2460                                 if (type != NULL) {
2461                                         ascend_from_subtype(path);
2462                                         expect('}');
2463                                 } else {
2464                                         expect('}');
2465                                         goto error_parse_next;
2466                                 }
2467                         }
2468                 } else {
2469                         /* must be an expression */
2470                         expression_t *expression = parse_assignment_expression();
2471
2472                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2473                                 errorf(&expression->base.source_position,
2474                                        "Initialisation expression '%E' is not constant\n",
2475                                        expression);
2476                         }
2477
2478                         if (type == NULL) {
2479                                 /* we are already outside, ... */
2480                                 if (is_type_compound(outer_type) &&
2481                                     !outer_type->compound.declaration->init.complete) {
2482                                         goto error_parse_next;
2483                                 }
2484                                 goto error_excess;
2485                         }
2486
2487                         /* handle { "string" } special case */
2488                         if ((expression->kind == EXPR_STRING_LITERAL
2489                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2490                                         && outer_type != NULL) {
2491                                 sub = initializer_from_expression(outer_type, expression);
2492                                 if (sub != NULL) {
2493                                         if (token.type == ',') {
2494                                                 next_token();
2495                                         }
2496                                         if (token.type != '}') {
2497                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2498                                                                  orig_type);
2499                                         }
2500                                         /* TODO: eat , ... */
2501                                         return sub;
2502                                 }
2503                         }
2504
2505                         /* descend into subtypes until expression matches type */
2506                         while (true) {
2507                                 orig_type = path->top_type;
2508                                 type      = skip_typeref(orig_type);
2509
2510                                 sub = initializer_from_expression(orig_type, expression);
2511                                 if (sub != NULL) {
2512                                         break;
2513                                 }
2514                                 if (!is_type_valid(type)) {
2515                                         goto end_error;
2516                                 }
2517                                 if (is_type_scalar(type)) {
2518                                         errorf(&expression->base.source_position,
2519                                                         "expression '%E' doesn't match expected type '%T'",
2520                                                         expression, orig_type);
2521                                         goto end_error;
2522                                 }
2523
2524                                 descend_into_subtype(path);
2525                         }
2526                 }
2527
2528                 /* update largest index of top array */
2529                 const type_path_entry_t *first      = &path->path[0];
2530                 type_t                  *first_type = first->type;
2531                 first_type                          = skip_typeref(first_type);
2532                 if (is_type_array(first_type)) {
2533                         size_t index = first->v.index;
2534                         if (index > path->max_index)
2535                                 path->max_index = index;
2536                 }
2537
2538                 if (type != NULL) {
2539                         /* append to initializers list */
2540                         ARR_APP1(initializer_t*, initializers, sub);
2541                 } else {
2542 error_excess:
2543                         if (env->declaration != NULL)
2544                                 warningf(HERE, "excess elements in struct initializer for '%Y'",
2545                                  env->declaration->symbol);
2546                         else
2547                                 warningf(HERE, "excess elements in struct initializer");
2548                 }
2549
2550 error_parse_next:
2551                 if (token.type == '}') {
2552                         break;
2553                 }
2554                 expect(',');
2555                 if (token.type == '}') {
2556                         break;
2557                 }
2558
2559                 if (type != NULL) {
2560                         /* advance to the next declaration if we are not at the end */
2561                         advance_current_object(path, top_path_level);
2562                         orig_type = path->top_type;
2563                         if (orig_type != NULL)
2564                                 type = skip_typeref(orig_type);
2565                         else
2566                                 type = NULL;
2567                 }
2568         }
2569
2570         size_t len  = ARR_LEN(initializers);
2571         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2572         initializer_t *result = allocate_ast_zero(size);
2573         result->kind          = INITIALIZER_LIST;
2574         result->list.len      = len;
2575         memcpy(&result->list.initializers, initializers,
2576                len * sizeof(initializers[0]));
2577
2578         DEL_ARR_F(initializers);
2579         ascend_to(path, top_path_level+1);
2580
2581         return result;
2582
2583 end_error:
2584         skip_initializers();
2585         DEL_ARR_F(initializers);
2586         ascend_to(path, top_path_level+1);
2587         return NULL;
2588 }
2589
2590 /**
2591  * Parses an initializer. Parsers either a compound literal
2592  * (env->declaration == NULL) or an initializer of a declaration.
2593  */
2594 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2595 {
2596         type_t        *type   = skip_typeref(env->type);
2597         initializer_t *result = NULL;
2598         size_t         max_index;
2599
2600         if (is_type_scalar(type)) {
2601                 result = parse_scalar_initializer(type, env->must_be_constant);
2602         } else if (token.type == '{') {
2603                 eat('{');
2604
2605                 type_path_t path;
2606                 memset(&path, 0, sizeof(path));
2607                 path.top_type = env->type;
2608                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2609
2610                 descend_into_subtype(&path);
2611
2612                 add_anchor_token('}');
2613                 result = parse_sub_initializer(&path, env->type, 1, env);
2614                 rem_anchor_token('}');
2615
2616                 max_index = path.max_index;
2617                 DEL_ARR_F(path.path);
2618
2619                 expect('}');
2620         } else {
2621                 /* parse_scalar_initializer() also works in this case: we simply
2622                  * have an expression without {} around it */
2623                 result = parse_scalar_initializer(type, env->must_be_constant);
2624         }
2625
2626         /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
2627          * the array type size */
2628         if (is_type_array(type) && type->array.size_expression == NULL
2629                         && result != NULL) {
2630                 size_t size;
2631                 switch (result->kind) {
2632                 case INITIALIZER_LIST:
2633                         size = max_index + 1;
2634                         break;
2635
2636                 case INITIALIZER_STRING:
2637                         size = result->string.string.size;
2638                         break;
2639
2640                 case INITIALIZER_WIDE_STRING:
2641                         size = result->wide_string.string.size;
2642                         break;
2643
2644                 case INITIALIZER_DESIGNATOR:
2645                 case INITIALIZER_VALUE:
2646                         /* can happen for parse errors */
2647                         size = 0;
2648                         break;
2649
2650                 default:
2651                         internal_errorf(HERE, "invalid initializer type");
2652                 }
2653
2654                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2655                 cnst->base.type          = type_size_t;
2656                 cnst->conste.v.int_value = size;
2657
2658                 type_t *new_type = duplicate_type(type);
2659
2660                 new_type->array.size_expression = cnst;
2661                 new_type->array.size_constant   = true;
2662                 new_type->array.size            = size;
2663                 env->type = new_type;
2664         }
2665
2666         return result;
2667 end_error:
2668         return NULL;
2669 }
2670
2671 static declaration_t *append_declaration(declaration_t *declaration);
2672
2673 static declaration_t *parse_compound_type_specifier(bool is_struct)
2674 {
2675         gnu_attribute_t  *attributes = NULL;
2676         decl_modifiers_t  modifiers  = 0;
2677         if (is_struct) {
2678                 eat(T_struct);
2679         } else {
2680                 eat(T_union);
2681         }
2682
2683         symbol_t      *symbol      = NULL;
2684         declaration_t *declaration = NULL;
2685
2686         if (token.type == T___attribute__) {
2687                 modifiers |= parse_attributes(&attributes);
2688         }
2689
2690         if (token.type == T_IDENTIFIER) {
2691                 symbol = token.v.symbol;
2692                 next_token();
2693
2694                 namespace_t const namespc =
2695                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
2696                 declaration = get_declaration(symbol, namespc);
2697                 if (declaration != NULL) {
2698                         if (declaration->parent_scope != scope &&
2699                             (token.type == '{' || token.type == ';')) {
2700                                 declaration = NULL;
2701                         } else if (declaration->init.complete &&
2702                                    token.type == '{') {
2703                                 assert(symbol != NULL);
2704                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition at %P)",
2705                                        is_struct ? "struct" : "union", symbol,
2706                                        &declaration->source_position);
2707                                 declaration->scope.declarations = NULL;
2708                         }
2709                 }
2710         } else if (token.type != '{') {
2711                 if (is_struct) {
2712                         parse_error_expected("while parsing struct type specifier",
2713                                              T_IDENTIFIER, '{', NULL);
2714                 } else {
2715                         parse_error_expected("while parsing union type specifier",
2716                                              T_IDENTIFIER, '{', NULL);
2717                 }
2718
2719                 return NULL;
2720         }
2721
2722         if (declaration == NULL) {
2723                 declaration = allocate_declaration_zero();
2724                 declaration->namespc         =
2725                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
2726                 declaration->source_position = token.source_position;
2727                 declaration->symbol          = symbol;
2728                 declaration->parent_scope    = scope;
2729                 if (symbol != NULL) {
2730                         environment_push(declaration);
2731                 }
2732                 append_declaration(declaration);
2733         }
2734
2735         if (token.type == '{') {
2736                 declaration->init.complete = true;
2737
2738                 parse_compound_type_entries(declaration);
2739                 modifiers |= parse_attributes(&attributes);
2740         }
2741
2742         declaration->modifiers |= modifiers;
2743         return declaration;
2744 }
2745
2746 static void parse_enum_entries(type_t *const enum_type)
2747 {
2748         eat('{');
2749
2750         if (token.type == '}') {
2751                 next_token();
2752                 errorf(HERE, "empty enum not allowed");
2753                 return;
2754         }
2755
2756         add_anchor_token('}');
2757         do {
2758                 if (token.type != T_IDENTIFIER) {
2759                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2760                         eat_block();
2761                         rem_anchor_token('}');
2762                         return;
2763                 }
2764
2765                 declaration_t *const entry = allocate_declaration_zero();
2766                 entry->storage_class   = STORAGE_CLASS_ENUM_ENTRY;
2767                 entry->type            = enum_type;
2768                 entry->symbol          = token.v.symbol;
2769                 entry->source_position = token.source_position;
2770                 next_token();
2771
2772                 if (token.type == '=') {
2773                         next_token();
2774                         expression_t *value = parse_constant_expression();
2775
2776                         value = create_implicit_cast(value, enum_type);
2777                         entry->init.enum_value = value;
2778
2779                         /* TODO semantic */
2780                 }
2781
2782                 record_declaration(entry, false);
2783
2784                 if (token.type != ',')
2785                         break;
2786                 next_token();
2787         } while (token.type != '}');
2788         rem_anchor_token('}');
2789
2790         expect('}');
2791
2792 end_error:
2793         ;
2794 }
2795
2796 static type_t *parse_enum_specifier(void)
2797 {
2798         gnu_attribute_t *attributes = NULL;
2799         declaration_t   *declaration;
2800         symbol_t        *symbol;
2801
2802         eat(T_enum);
2803         if (token.type == T_IDENTIFIER) {
2804                 symbol = token.v.symbol;
2805                 next_token();
2806
2807                 declaration = get_declaration(symbol, NAMESPACE_ENUM);
2808         } else if (token.type != '{') {
2809                 parse_error_expected("while parsing enum type specifier",
2810                                      T_IDENTIFIER, '{', NULL);
2811                 return NULL;
2812         } else {
2813                 declaration = NULL;
2814                 symbol      = NULL;
2815         }
2816
2817         if (declaration == NULL) {
2818                 declaration = allocate_declaration_zero();
2819                 declaration->namespc         = NAMESPACE_ENUM;
2820                 declaration->source_position = token.source_position;
2821                 declaration->symbol          = symbol;
2822                 declaration->parent_scope  = scope;
2823         }
2824
2825         type_t *const type      = allocate_type_zero(TYPE_ENUM, &declaration->source_position);
2826         type->enumt.declaration = declaration;
2827
2828         if (token.type == '{') {
2829                 if (declaration->init.complete) {
2830                         errorf(HERE, "multiple definitions of enum %Y", symbol);
2831                 }
2832                 if (symbol != NULL) {
2833                         environment_push(declaration);
2834                 }
2835                 append_declaration(declaration);
2836                 declaration->init.complete = true;
2837
2838                 parse_enum_entries(type);
2839                 parse_attributes(&attributes);
2840         }
2841
2842         return type;
2843 }
2844
2845 /**
2846  * if a symbol is a typedef to another type, return true
2847  */
2848 static bool is_typedef_symbol(symbol_t *symbol)
2849 {
2850         const declaration_t *const declaration =
2851                 get_declaration(symbol, NAMESPACE_NORMAL);
2852         return
2853                 declaration != NULL &&
2854                 declaration->storage_class == STORAGE_CLASS_TYPEDEF;
2855 }
2856
2857 static type_t *parse_typeof(void)
2858 {
2859         eat(T___typeof__);
2860
2861         type_t *type;
2862
2863         expect('(');
2864         add_anchor_token(')');
2865
2866         expression_t *expression  = NULL;
2867
2868         bool old_type_prop     = in_type_prop;
2869         bool old_gcc_extension = in_gcc_extension;
2870         in_type_prop           = true;
2871
2872         while (token.type == T___extension__) {
2873                 /* This can be a prefix to a typename or an expression.  We simply eat
2874                  * it now. */
2875                 next_token();
2876                 in_gcc_extension = true;
2877         }
2878         switch (token.type) {
2879         case T_IDENTIFIER:
2880                 if (is_typedef_symbol(token.v.symbol)) {
2881                         type = parse_typename();
2882                 } else {
2883                         expression = parse_expression();
2884                         type       = expression->base.type;
2885                 }
2886                 break;
2887
2888         TYPENAME_START
2889                 type = parse_typename();
2890                 break;
2891
2892         default:
2893                 expression = parse_expression();
2894                 type       = expression->base.type;
2895                 break;
2896         }
2897         in_type_prop     = old_type_prop;
2898         in_gcc_extension = old_gcc_extension;
2899
2900         rem_anchor_token(')');
2901         expect(')');
2902
2903         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF, &expression->base.source_position);
2904         typeof_type->typeoft.expression  = expression;
2905         typeof_type->typeoft.typeof_type = type;
2906
2907         return typeof_type;
2908 end_error:
2909         return NULL;
2910 }
2911
2912 typedef enum specifiers_t {
2913         SPECIFIER_SIGNED    = 1 << 0,
2914         SPECIFIER_UNSIGNED  = 1 << 1,
2915         SPECIFIER_LONG      = 1 << 2,
2916         SPECIFIER_INT       = 1 << 3,
2917         SPECIFIER_DOUBLE    = 1 << 4,
2918         SPECIFIER_CHAR      = 1 << 5,
2919         SPECIFIER_SHORT     = 1 << 6,
2920         SPECIFIER_LONG_LONG = 1 << 7,
2921         SPECIFIER_FLOAT     = 1 << 8,
2922         SPECIFIER_BOOL      = 1 << 9,
2923         SPECIFIER_VOID      = 1 << 10,
2924         SPECIFIER_INT8      = 1 << 11,
2925         SPECIFIER_INT16     = 1 << 12,
2926         SPECIFIER_INT32     = 1 << 13,
2927         SPECIFIER_INT64     = 1 << 14,
2928         SPECIFIER_INT128    = 1 << 15,
2929         SPECIFIER_COMPLEX   = 1 << 16,
2930         SPECIFIER_IMAGINARY = 1 << 17,
2931 } specifiers_t;
2932
2933 static type_t *create_builtin_type(symbol_t *const symbol,
2934                                    type_t *const real_type)
2935 {
2936         type_t *type            = allocate_type_zero(TYPE_BUILTIN, &builtin_source_position);
2937         type->builtin.symbol    = symbol;
2938         type->builtin.real_type = real_type;
2939
2940         type_t *result = typehash_insert(type);
2941         if (type != result) {
2942                 free_type(type);
2943         }
2944
2945         return result;
2946 }
2947
2948 static type_t *get_typedef_type(symbol_t *symbol)
2949 {
2950         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
2951         if (declaration == NULL ||
2952            declaration->storage_class != STORAGE_CLASS_TYPEDEF)
2953                 return NULL;
2954
2955         type_t *type               = allocate_type_zero(TYPE_TYPEDEF, &declaration->source_position);
2956         type->typedeft.declaration = declaration;
2957
2958         return type;
2959 }
2960
2961 /**
2962  * check for the allowed MS alignment values.
2963  */
2964 static bool check_alignment_value(long long intvalue)
2965 {
2966         if (intvalue < 1 || intvalue > 8192) {
2967                 errorf(HERE, "illegal alignment value");
2968                 return false;
2969         }
2970         unsigned v = (unsigned)intvalue;
2971         for(unsigned i = 1; i <= 8192; i += i) {
2972                 if (i == v)
2973                         return true;
2974         }
2975         errorf(HERE, "alignment must be power of two");
2976         return false;
2977 }
2978
2979 #define DET_MOD(name, tag) do { \
2980         if (*modifiers & tag) warningf(HERE, #name " used more than once"); \
2981         *modifiers |= tag; \
2982 } while (0)
2983
2984 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
2985 {
2986         decl_modifiers_t *modifiers = &specifiers->modifiers;
2987
2988         while (true) {
2989                 if (token.type == T_restrict) {
2990                         next_token();
2991                         DET_MOD(restrict, DM_RESTRICT);
2992                         goto end_loop;
2993                 } else if (token.type != T_IDENTIFIER)
2994                         break;
2995                 symbol_t *symbol = token.v.symbol;
2996                 if (symbol == sym_align) {
2997                         next_token();
2998                         expect('(');
2999                         if (token.type != T_INTEGER)
3000                                 goto end_error;
3001                         if (check_alignment_value(token.v.intvalue)) {
3002                                 if (specifiers->alignment != 0)
3003                                         warningf(HERE, "align used more than once");
3004                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3005                         }
3006                         next_token();
3007                         expect(')');
3008                 } else if (symbol == sym_allocate) {
3009                         next_token();
3010                         expect('(');
3011                         if (token.type != T_IDENTIFIER)
3012                                 goto end_error;
3013                         (void)token.v.symbol;
3014                         expect(')');
3015                 } else if (symbol == sym_dllimport) {
3016                         next_token();
3017                         DET_MOD(dllimport, DM_DLLIMPORT);
3018                 } else if (symbol == sym_dllexport) {
3019                         next_token();
3020                         DET_MOD(dllexport, DM_DLLEXPORT);
3021                 } else if (symbol == sym_thread) {
3022                         next_token();
3023                         DET_MOD(thread, DM_THREAD);
3024                 } else if (symbol == sym_naked) {
3025                         next_token();
3026                         DET_MOD(naked, DM_NAKED);
3027                 } else if (symbol == sym_noinline) {
3028                         next_token();
3029                         DET_MOD(noinline, DM_NOINLINE);
3030                 } else if (symbol == sym_noreturn) {
3031                         next_token();
3032                         DET_MOD(noreturn, DM_NORETURN);
3033                 } else if (symbol == sym_nothrow) {
3034                         next_token();
3035                         DET_MOD(nothrow, DM_NOTHROW);
3036                 } else if (symbol == sym_novtable) {
3037                         next_token();
3038                         DET_MOD(novtable, DM_NOVTABLE);
3039                 } else if (symbol == sym_property) {
3040                         next_token();
3041                         expect('(');
3042                         for(;;) {
3043                                 bool is_get = false;
3044                                 if (token.type != T_IDENTIFIER)
3045                                         goto end_error;
3046                                 if (token.v.symbol == sym_get) {
3047                                         is_get = true;
3048                                 } else if (token.v.symbol == sym_put) {
3049                                 } else {
3050                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3051                                         goto end_error;
3052                                 }
3053                                 next_token();
3054                                 expect('=');
3055                                 if (token.type != T_IDENTIFIER)
3056                                         goto end_error;
3057                                 if (is_get) {
3058                                         if (specifiers->get_property_sym != NULL) {
3059                                                 errorf(HERE, "get property name already specified");
3060                                         } else {
3061                                                 specifiers->get_property_sym = token.v.symbol;
3062                                         }
3063                                 } else {
3064                                         if (specifiers->put_property_sym != NULL) {
3065                                                 errorf(HERE, "put property name already specified");
3066                                         } else {
3067                                                 specifiers->put_property_sym = token.v.symbol;
3068                                         }
3069                                 }
3070                                 next_token();
3071                                 if (token.type == ',') {
3072                                         next_token();
3073                                         continue;
3074                                 }
3075                                 break;
3076                         }
3077                         expect(')');
3078                 } else if (symbol == sym_selectany) {
3079                         next_token();
3080                         DET_MOD(selectany, DM_SELECTANY);
3081                 } else if (symbol == sym_uuid) {
3082                         next_token();
3083                         expect('(');
3084                         if (token.type != T_STRING_LITERAL)
3085                                 goto end_error;
3086                         next_token();
3087                         expect(')');
3088                 } else if (symbol == sym_deprecated) {
3089                         next_token();
3090                         if (specifiers->deprecated != 0)
3091                                 warningf(HERE, "deprecated used more than once");
3092                         specifiers->deprecated = 1;
3093                         if (token.type == '(') {
3094                                 next_token();
3095                                 if (token.type == T_STRING_LITERAL) {
3096                                         specifiers->deprecated_string = token.v.string.begin;
3097                                         next_token();
3098                                 } else {
3099                                         errorf(HERE, "string literal expected");
3100                                 }
3101                                 expect(')');
3102                         }
3103                 } else if (symbol == sym_noalias) {
3104                         next_token();
3105                         DET_MOD(noalias, DM_NOALIAS);
3106                 } else {
3107                         warningf(HERE, "Unknown modifier %Y ignored", token.v.symbol);
3108                         next_token();
3109                         if (token.type == '(')
3110                                 skip_until(')');
3111                 }
3112 end_loop:
3113                 if (token.type == ',')
3114                         next_token();
3115         }
3116 end_error:
3117         return;
3118 }
3119
3120 static declaration_t *create_error_declaration(symbol_t *symbol, storage_class_tag_t storage_class)
3121 {
3122         declaration_t *const decl    = allocate_declaration_zero();
3123         decl->source_position        = *HERE;
3124         decl->declared_storage_class = storage_class;
3125         decl->storage_class          =
3126                 storage_class != STORAGE_CLASS_NONE || scope == global_scope ?
3127                         storage_class : STORAGE_CLASS_AUTO;
3128         decl->symbol                 = symbol;
3129         decl->implicit               = true;
3130         record_declaration(decl, false);
3131         return decl;
3132 }
3133
3134 /**
3135  * Finish the construction of a struct type by calculating
3136  * its size, offsets, alignment.
3137  */
3138 static void finish_struct_type(compound_type_t *type) {
3139         if (type->declaration == NULL)
3140                 return;
3141         declaration_t *struct_decl = type->declaration;
3142         if (! struct_decl->init.complete)
3143                 return;
3144
3145         il_size_t      size           = 0;
3146         il_size_t      offset;
3147         il_alignment_t alignment      = 1;
3148         bool           need_pad       = false;
3149
3150         declaration_t *entry = struct_decl->scope.declarations;
3151         for (; entry != NULL; entry = entry->next) {
3152                 if (entry->namespc != NAMESPACE_NORMAL)
3153                         continue;
3154
3155                 type_t *m_type = skip_typeref(entry->type);
3156                 if (! is_type_valid(m_type)) {
3157                         /* simply ignore errors here */
3158                         continue;
3159                 }
3160                 il_alignment_t m_alignment = m_type->base.alignment;
3161                 if (m_alignment > alignment)
3162                         alignment = m_alignment;
3163
3164                 offset = (size + m_alignment - 1) & -m_alignment;
3165
3166                 if (offset > size)
3167                         need_pad = true;
3168                 entry->offset = offset;
3169                 size = offset + m_type->base.size;
3170         }
3171         if (type->base.alignment != 0) {
3172                 alignment = type->base.alignment;
3173         }
3174
3175         offset = (size + alignment - 1) & -alignment;
3176         if (offset > size)
3177                 need_pad = true;
3178
3179         if (warning.padded && need_pad) {
3180                 warningf(&struct_decl->source_position,
3181                         "'%#T' needs padding", type, struct_decl->symbol);
3182         }
3183         if (warning.packed && !need_pad) {
3184                 warningf(&struct_decl->source_position,
3185                         "superfluous packed attribute on '%#T'",
3186                         type, struct_decl->symbol);
3187         }
3188
3189         type->base.size      = offset;
3190         type->base.alignment = alignment;
3191 }
3192
3193 /**
3194  * Finish the construction of an union type by calculating
3195  * its size and alignment.
3196  */
3197 static void finish_union_type(compound_type_t *type) {
3198         if (type->declaration == NULL)
3199                 return;
3200         declaration_t *union_decl = type->declaration;
3201         if (! union_decl->init.complete)
3202                 return;
3203
3204         il_size_t      size      = 0;
3205         il_alignment_t alignment = 1;
3206
3207         declaration_t *entry = union_decl->scope.declarations;
3208         for (; entry != NULL; entry = entry->next) {
3209                 if (entry->namespc != NAMESPACE_NORMAL)
3210                         continue;
3211
3212                 type_t *m_type = skip_typeref(entry->type);
3213                 if (! is_type_valid(m_type))
3214                         continue;
3215
3216                 entry->offset = 0;
3217                 if (m_type->base.size > size)
3218                         size = m_type->base.size;
3219                 if (m_type->base.alignment > alignment)
3220                         alignment = m_type->base.alignment;
3221         }
3222         if (type->base.alignment != 0) {
3223                 alignment = type->base.alignment;
3224         }
3225         size = (size + alignment - 1) & -alignment;
3226         type->base.size      = size;
3227         type->base.alignment = alignment;
3228 }
3229
3230 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3231 {
3232         type_t            *type              = NULL;
3233         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3234         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3235         unsigned           type_specifiers   = 0;
3236         bool               newtype           = false;
3237         bool               saw_error         = false;
3238         bool               old_gcc_extension = in_gcc_extension;
3239
3240         specifiers->source_position = token.source_position;
3241
3242         while (true) {
3243                 specifiers->modifiers
3244                         |= parse_attributes(&specifiers->gnu_attributes);
3245                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3246                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3247
3248                 switch (token.type) {
3249
3250                 /* storage class */
3251 #define MATCH_STORAGE_CLASS(token, class)                                  \
3252                 case token:                                                        \
3253                         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) { \
3254                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3255                         }                                                              \
3256                         specifiers->declared_storage_class = class;                    \
3257                         next_token();                                                  \
3258                         break;
3259
3260                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3261                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3262                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3263                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3264                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3265
3266                 case T__declspec:
3267                         next_token();
3268                         expect('(');
3269                         add_anchor_token(')');
3270                         parse_microsoft_extended_decl_modifier(specifiers);
3271                         rem_anchor_token(')');
3272                         expect(')');
3273                         break;
3274
3275                 case T___thread:
3276                         switch (specifiers->declared_storage_class) {
3277                         case STORAGE_CLASS_NONE:
3278                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD;
3279                                 break;
3280
3281                         case STORAGE_CLASS_EXTERN:
3282                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_EXTERN;
3283                                 break;
3284
3285                         case STORAGE_CLASS_STATIC:
3286                                 specifiers->declared_storage_class = STORAGE_CLASS_THREAD_STATIC;
3287                                 break;
3288
3289                         default:
3290                                 errorf(HERE, "multiple storage classes in declaration specifiers");
3291                                 break;
3292                         }
3293                         next_token();
3294                         break;
3295
3296                 /* type qualifiers */
3297 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3298                 case token:                                                     \
3299                         qualifiers |= qualifier;                                    \
3300                         next_token();                                               \
3301                         break
3302
3303                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3304                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3305                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3306                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3307                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3308                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3309                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3310                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3311
3312                 case T___extension__:
3313                         next_token();
3314                         in_gcc_extension = true;
3315                         break;
3316
3317                 /* type specifiers */
3318 #define MATCH_SPECIFIER(token, specifier, name)                         \
3319                 case token:                                                     \
3320                         next_token();                                               \
3321                         if (type_specifiers & specifier) {                           \
3322                                 errorf(HERE, "multiple " name " type specifiers given"); \
3323                         } else {                                                    \
3324                                 type_specifiers |= specifier;                           \
3325                         }                                                           \
3326                         break
3327
3328                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3329                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3330                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3331                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3332                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3333                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3334                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3335                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3336                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3337                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3338                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3339                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3340                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3341                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3342                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3343                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3344
3345                 case T__forceinline:
3346                         /* only in microsoft mode */
3347                         specifiers->modifiers |= DM_FORCEINLINE;
3348                         /* FALLTHROUGH */
3349
3350                 case T_inline:
3351                         next_token();
3352                         specifiers->is_inline = true;
3353                         break;
3354
3355                 case T_long:
3356                         next_token();
3357                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3358                                 errorf(HERE, "multiple type specifiers given");
3359                         } else if (type_specifiers & SPECIFIER_LONG) {
3360                                 type_specifiers |= SPECIFIER_LONG_LONG;
3361                         } else {
3362                                 type_specifiers |= SPECIFIER_LONG;
3363                         }
3364                         break;
3365
3366                 case T_struct: {
3367                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT, HERE);
3368
3369                         type->compound.declaration = parse_compound_type_specifier(true);
3370                         finish_struct_type(&type->compound);
3371                         break;
3372                 }
3373                 case T_union: {
3374                         type = allocate_type_zero(TYPE_COMPOUND_UNION, HERE);
3375                         type->compound.declaration = parse_compound_type_specifier(false);
3376                         if (type->compound.declaration->modifiers & DM_TRANSPARENT_UNION)
3377                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3378                         break;
3379                         finish_union_type(&type->compound);
3380                 }
3381                 case T_enum:
3382                         type = parse_enum_specifier();
3383                         break;
3384                 case T___typeof__:
3385                         type = parse_typeof();
3386                         break;
3387                 case T___builtin_va_list:
3388                         type = duplicate_type(type_valist);
3389                         next_token();
3390                         break;
3391
3392                 case T_IDENTIFIER: {
3393                         /* only parse identifier if we haven't found a type yet */
3394                         if (type != NULL || type_specifiers != 0) {
3395                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3396                                  * declaration, so it doesn't generate errors about expecting '(' or
3397                                  * '{' later on. */
3398                                 switch (look_ahead(1)->type) {
3399                                         STORAGE_CLASSES
3400                                         TYPE_SPECIFIERS
3401                                         case T_const:
3402                                         case T_restrict:
3403                                         case T_volatile:
3404                                         case T_inline:
3405                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3406                                         case T_IDENTIFIER:
3407                                         case '*':
3408                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3409                                                 next_token();
3410                                                 continue;
3411
3412                                         default:
3413                                                 goto finish_specifiers;
3414                                 }
3415                         }
3416
3417                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3418                         if (typedef_type == NULL) {
3419                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3420                                  * declaration, so it doesn't generate 'implicit int' followed by more
3421                                  * errors later on. */
3422                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3423                                 switch (la1_type) {
3424                                         DECLARATION_START
3425                                         case T_IDENTIFIER:
3426                                         case '*': {
3427                                                 errorf(HERE, "%K does not name a type", &token);
3428
3429                                                 declaration_t *const decl =
3430                                                         create_error_declaration(token.v.symbol, STORAGE_CLASS_TYPEDEF);
3431
3432                                                 type = allocate_type_zero(TYPE_TYPEDEF, HERE);
3433                                                 type->typedeft.declaration = decl;
3434
3435                                                 next_token();
3436                                                 saw_error = true;
3437                                                 if (la1_type == '*')
3438                                                         goto finish_specifiers;
3439                                                 continue;
3440                                         }
3441
3442                                         default:
3443                                                 goto finish_specifiers;
3444                                 }
3445                         }
3446
3447                         next_token();
3448                         type = typedef_type;
3449                         break;
3450                 }
3451
3452                 /* function specifier */
3453                 default:
3454                         goto finish_specifiers;
3455                 }
3456         }
3457
3458 finish_specifiers:
3459         in_gcc_extension = old_gcc_extension;
3460
3461         if (type == NULL || (saw_error && type_specifiers != 0)) {
3462                 atomic_type_kind_t atomic_type;
3463
3464                 /* match valid basic types */
3465                 switch(type_specifiers) {
3466                 case SPECIFIER_VOID:
3467                         atomic_type = ATOMIC_TYPE_VOID;
3468                         break;
3469                 case SPECIFIER_CHAR:
3470                         atomic_type = ATOMIC_TYPE_CHAR;
3471                         break;
3472                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3473                         atomic_type = ATOMIC_TYPE_SCHAR;
3474                         break;
3475                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3476                         atomic_type = ATOMIC_TYPE_UCHAR;
3477                         break;
3478                 case SPECIFIER_SHORT:
3479                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3480                 case SPECIFIER_SHORT | SPECIFIER_INT:
3481                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3482                         atomic_type = ATOMIC_TYPE_SHORT;
3483                         break;
3484                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3485                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3486                         atomic_type = ATOMIC_TYPE_USHORT;
3487                         break;
3488                 case SPECIFIER_INT:
3489                 case SPECIFIER_SIGNED:
3490                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3491                         atomic_type = ATOMIC_TYPE_INT;
3492                         break;
3493                 case SPECIFIER_UNSIGNED:
3494                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3495                         atomic_type = ATOMIC_TYPE_UINT;
3496                         break;
3497                 case SPECIFIER_LONG:
3498                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3499                 case SPECIFIER_LONG | SPECIFIER_INT:
3500                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3501                         atomic_type = ATOMIC_TYPE_LONG;
3502                         break;
3503                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3504                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3505                         atomic_type = ATOMIC_TYPE_ULONG;
3506                         break;
3507
3508                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3509                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3510                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3511                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3512                         | SPECIFIER_INT:
3513                         atomic_type = ATOMIC_TYPE_LONGLONG;
3514                         goto warn_about_long_long;
3515
3516                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3517                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3518                         | SPECIFIER_INT:
3519                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3520 warn_about_long_long:
3521                         if (warning.long_long) {
3522                                 warningf(&specifiers->source_position,
3523                                          "ISO C90 does not support 'long long'");
3524                         }
3525                         break;
3526
3527                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3528                         atomic_type = unsigned_int8_type_kind;
3529                         break;
3530
3531                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3532                         atomic_type = unsigned_int16_type_kind;
3533                         break;
3534
3535                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3536                         atomic_type = unsigned_int32_type_kind;
3537                         break;
3538
3539                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3540                         atomic_type = unsigned_int64_type_kind;
3541                         break;
3542
3543                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3544                         atomic_type = unsigned_int128_type_kind;
3545                         break;
3546
3547                 case SPECIFIER_INT8:
3548                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3549                         atomic_type = int8_type_kind;
3550                         break;
3551
3552                 case SPECIFIER_INT16:
3553                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3554                         atomic_type = int16_type_kind;
3555                         break;
3556
3557                 case SPECIFIER_INT32:
3558                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3559                         atomic_type = int32_type_kind;
3560                         break;
3561
3562                 case SPECIFIER_INT64:
3563                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3564                         atomic_type = int64_type_kind;
3565                         break;
3566
3567                 case SPECIFIER_INT128:
3568                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3569                         atomic_type = int128_type_kind;
3570                         break;
3571
3572                 case SPECIFIER_FLOAT:
3573                         atomic_type = ATOMIC_TYPE_FLOAT;
3574                         break;
3575                 case SPECIFIER_DOUBLE:
3576                         atomic_type = ATOMIC_TYPE_DOUBLE;
3577                         break;
3578                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3579                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3580                         break;
3581                 case SPECIFIER_BOOL:
3582                         atomic_type = ATOMIC_TYPE_BOOL;
3583                         break;
3584                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3585                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3586                         atomic_type = ATOMIC_TYPE_FLOAT;
3587                         break;
3588                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3589                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3590                         atomic_type = ATOMIC_TYPE_DOUBLE;
3591                         break;
3592                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3593                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3594                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3595                         break;
3596                 default:
3597                         /* invalid specifier combination, give an error message */
3598                         if (type_specifiers == 0) {
3599                                 if (saw_error)
3600                                         goto end_error;
3601
3602                                 if (!strict_mode) {
3603                                         if (warning.implicit_int) {
3604                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3605                                         }
3606                                         atomic_type = ATOMIC_TYPE_INT;
3607                                         break;
3608                                 } else {
3609                                         errorf(HERE, "no type specifiers given in declaration");
3610                                 }
3611                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3612                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3613                                 errorf(HERE, "signed and unsigned specifiers given");
3614                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3615                                 errorf(HERE, "only integer types can be signed or unsigned");
3616                         } else {
3617                                 errorf(HERE, "multiple datatypes in declaration");
3618                         }
3619                         goto end_error;
3620                 }
3621
3622                 if (type_specifiers & SPECIFIER_COMPLEX) {
3623                         type                = allocate_type_zero(TYPE_COMPLEX, &builtin_source_position);
3624                         type->complex.akind = atomic_type;
3625                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3626                         type                  = allocate_type_zero(TYPE_IMAGINARY, &builtin_source_position);
3627                         type->imaginary.akind = atomic_type;
3628                 } else {
3629                         type               = allocate_type_zero(TYPE_ATOMIC, &builtin_source_position);
3630                         type->atomic.akind = atomic_type;
3631                 }
3632                 newtype = true;
3633         } else if (type_specifiers != 0) {
3634                 errorf(HERE, "multiple datatypes in declaration");
3635         }
3636
3637         /* FIXME: check type qualifiers here */
3638
3639         type->base.qualifiers = qualifiers;
3640         type->base.modifiers  = modifiers;
3641
3642         type_t *result = typehash_insert(type);
3643         if (newtype && result != type) {
3644                 free_type(type);
3645         }
3646
3647         specifiers->type = result;
3648         return;
3649
3650 end_error:
3651         specifiers->type = type_error_type;
3652         return;
3653 }
3654
3655 static type_qualifiers_t parse_type_qualifiers(void)
3656 {
3657         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3658
3659         while (true) {
3660                 switch(token.type) {
3661                 /* type qualifiers */
3662                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3663                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3664                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3665                 /* microsoft extended type modifiers */
3666                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3667                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3668                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3669                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3670                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3671
3672                 default:
3673                         return qualifiers;
3674                 }
3675         }
3676 }
3677
3678 static declaration_t *parse_identifier_list(void)
3679 {
3680         declaration_t *declarations     = NULL;
3681         declaration_t *last_declaration = NULL;
3682         do {
3683                 declaration_t *const declaration = allocate_declaration_zero();
3684                 declaration->type            = NULL; /* a K&R parameter list has no types, yet */
3685                 declaration->source_position = token.source_position;
3686                 declaration->symbol          = token.v.symbol;
3687                 next_token();
3688
3689                 if (last_declaration != NULL) {
3690                         last_declaration->next = declaration;
3691                 } else {
3692                         declarations = declaration;
3693                 }
3694                 last_declaration = declaration;
3695
3696                 if (token.type != ',') {
3697                         break;
3698                 }
3699                 next_token();
3700         } while (token.type == T_IDENTIFIER);
3701
3702         return declarations;
3703 }
3704
3705 static type_t *automatic_type_conversion(type_t *orig_type);
3706
3707 static void semantic_parameter(declaration_t *declaration)
3708 {
3709         /* TODO: improve error messages */
3710         source_position_t const* const pos = &declaration->source_position;
3711
3712         switch (declaration->declared_storage_class) {
3713                 case STORAGE_CLASS_TYPEDEF:
3714                         errorf(pos, "typedef not allowed in parameter list");
3715                         break;
3716
3717                 /* Allowed storage classes */
3718                 case STORAGE_CLASS_NONE:
3719                 case STORAGE_CLASS_REGISTER:
3720                         break;
3721
3722                 default:
3723                         errorf(pos, "parameter may only have none or register storage class");
3724                         break;
3725         }
3726
3727         type_t *const orig_type = declaration->type;
3728         /* Â§6.7.5.3(7): Array as last part of a parameter type is just syntactic
3729          * sugar.  Turn it into a pointer.
3730          * Â§6.7.5.3(8): A declaration of a parameter as ``function returning type''
3731          * shall be adjusted to ``pointer to function returning type'', as in 6.3.2.1.
3732          */
3733         type_t *const type = automatic_type_conversion(orig_type);
3734         declaration->type = type;
3735
3736         if (is_type_incomplete(skip_typeref(type))) {
3737                 errorf(pos, "parameter '%#T' is of incomplete type",
3738                        orig_type, declaration->symbol);
3739         }
3740 }
3741
3742 static declaration_t *parse_parameter(void)
3743 {
3744         declaration_specifiers_t specifiers;
3745         memset(&specifiers, 0, sizeof(specifiers));
3746
3747         parse_declaration_specifiers(&specifiers);
3748
3749         declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/true);
3750
3751         return declaration;
3752 }
3753
3754 static declaration_t *parse_parameters(function_type_t *type)
3755 {
3756         declaration_t *declarations = NULL;
3757
3758         eat('(');
3759         add_anchor_token(')');
3760         int saved_comma_state = save_and_reset_anchor_state(',');
3761
3762         if (token.type == T_IDENTIFIER &&
3763             !is_typedef_symbol(token.v.symbol)) {
3764                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3765                 if (la1_type == ',' || la1_type == ')') {
3766                         type->kr_style_parameters = true;
3767                         declarations = parse_identifier_list();
3768                         goto parameters_finished;
3769                 }
3770         }
3771
3772         if (token.type == ')') {
3773                 type->unspecified_parameters = 1;
3774                 goto parameters_finished;
3775         }
3776
3777         declaration_t        *declaration;
3778         declaration_t        *last_declaration = NULL;
3779         function_parameter_t *parameter;
3780         function_parameter_t *last_parameter = NULL;
3781
3782         while (true) {
3783                 switch(token.type) {
3784                 case T_DOTDOTDOT:
3785                         next_token();
3786                         type->variadic = 1;
3787                         goto parameters_finished;
3788
3789                 case T_IDENTIFIER:
3790                 case T___extension__:
3791                 DECLARATION_START
3792                         declaration = parse_parameter();
3793
3794                         /* func(void) is not a parameter */
3795                         if (last_parameter == NULL
3796                                         && token.type == ')'
3797                                         && declaration->symbol == NULL
3798                                         && skip_typeref(declaration->type) == type_void) {
3799                                 goto parameters_finished;
3800                         }
3801                         semantic_parameter(declaration);
3802
3803                         parameter       = obstack_alloc(type_obst, sizeof(parameter[0]));
3804                         memset(parameter, 0, sizeof(parameter[0]));
3805                         parameter->type = declaration->type;
3806
3807                         if (last_parameter != NULL) {
3808                                 last_declaration->next = declaration;
3809                                 last_parameter->next   = parameter;
3810                         } else {
3811                                 type->parameters = parameter;
3812                                 declarations     = declaration;
3813                         }
3814                         last_parameter   = parameter;
3815                         last_declaration = declaration;
3816                         break;
3817
3818                 default:
3819                         goto parameters_finished;
3820                 }
3821                 if (token.type != ',') {
3822                         goto parameters_finished;
3823                 }
3824                 next_token();
3825         }
3826
3827
3828 parameters_finished:
3829         rem_anchor_token(')');
3830         expect(')');
3831
3832         restore_anchor_state(',', saved_comma_state);
3833         return declarations;
3834
3835 end_error:
3836         restore_anchor_state(',', saved_comma_state);
3837         return NULL;
3838 }
3839
3840 typedef enum construct_type_kind_t {
3841         CONSTRUCT_INVALID,
3842         CONSTRUCT_POINTER,
3843         CONSTRUCT_FUNCTION,
3844         CONSTRUCT_ARRAY
3845 } construct_type_kind_t;
3846
3847 typedef struct construct_type_t construct_type_t;
3848 struct construct_type_t {
3849         construct_type_kind_t  kind;
3850         construct_type_t      *next;
3851 };
3852
3853 typedef struct parsed_pointer_t parsed_pointer_t;
3854 struct parsed_pointer_t {
3855         construct_type_t  construct_type;
3856         type_qualifiers_t type_qualifiers;
3857 };
3858
3859 typedef struct construct_function_type_t construct_function_type_t;
3860 struct construct_function_type_t {
3861         construct_type_t  construct_type;
3862         type_t           *function_type;
3863 };
3864
3865 typedef struct parsed_array_t parsed_array_t;
3866 struct parsed_array_t {
3867         construct_type_t  construct_type;
3868         type_qualifiers_t type_qualifiers;
3869         bool              is_static;
3870         bool              is_variable;
3871         expression_t     *size;
3872 };
3873
3874 typedef struct construct_base_type_t construct_base_type_t;
3875 struct construct_base_type_t {
3876         construct_type_t  construct_type;
3877         type_t           *type;
3878 };
3879
3880 static construct_type_t *parse_pointer_declarator(void)
3881 {
3882         eat('*');
3883
3884         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3885         memset(pointer, 0, sizeof(pointer[0]));
3886         pointer->construct_type.kind = CONSTRUCT_POINTER;
3887         pointer->type_qualifiers     = parse_type_qualifiers();
3888
3889         return (construct_type_t*) pointer;
3890 }
3891
3892 static construct_type_t *parse_array_declarator(void)
3893 {
3894         eat('[');
3895         add_anchor_token(']');
3896
3897         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
3898         memset(array, 0, sizeof(array[0]));
3899         array->construct_type.kind = CONSTRUCT_ARRAY;
3900
3901         if (token.type == T_static) {
3902                 array->is_static = true;
3903                 next_token();
3904         }
3905
3906         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3907         if (type_qualifiers != 0) {
3908                 if (token.type == T_static) {
3909                         array->is_static = true;
3910                         next_token();
3911                 }
3912         }
3913         array->type_qualifiers = type_qualifiers;
3914
3915         if (token.type == '*' && look_ahead(1)->type == ']') {
3916                 array->is_variable = true;
3917                 next_token();
3918         } else if (token.type != ']') {
3919                 array->size = parse_assignment_expression();
3920         }
3921
3922         rem_anchor_token(']');
3923         expect(']');
3924
3925 end_error:
3926         return (construct_type_t*) array;
3927 }
3928
3929 static construct_type_t *parse_function_declarator(declaration_t *declaration)
3930 {
3931         type_t *type;
3932         if (declaration != NULL) {
3933                 type = allocate_type_zero(TYPE_FUNCTION, &declaration->source_position);
3934
3935                 unsigned mask = declaration->modifiers & (DM_CDECL|DM_STDCALL|DM_FASTCALL|DM_THISCALL);
3936
3937                 if (mask & (mask-1)) {
3938                         const char *first = NULL, *second = NULL;
3939
3940                         /* more than one calling convention set */
3941                         if (declaration->modifiers & DM_CDECL) {
3942                                 if (first == NULL)       first = "cdecl";
3943                                 else if (second == NULL) second = "cdecl";
3944                         }
3945                         if (declaration->modifiers & DM_STDCALL) {
3946                                 if (first == NULL)       first = "stdcall";
3947                                 else if (second == NULL) second = "stdcall";
3948                         }
3949                         if (declaration->modifiers & DM_FASTCALL) {
3950                                 if (first == NULL)       first = "fastcall";
3951                                 else if (second == NULL) second = "fastcall";
3952                         }
3953                         if (declaration->modifiers & DM_THISCALL) {
3954                                 if (first == NULL)       first = "thiscall";
3955                                 else if (second == NULL) second = "thiscall";
3956                         }
3957                         errorf(&declaration->source_position, "%s and %s attributes are not compatible", first, second);
3958                 }
3959
3960                 if (declaration->modifiers & DM_CDECL)
3961                         type->function.calling_convention = CC_CDECL;
3962                 else if (declaration->modifiers & DM_STDCALL)
3963                         type->function.calling_convention = CC_STDCALL;
3964                 else if (declaration->modifiers & DM_FASTCALL)
3965                         type->function.calling_convention = CC_FASTCALL;
3966                 else if (declaration->modifiers & DM_THISCALL)
3967                         type->function.calling_convention = CC_THISCALL;
3968         } else {
3969                 type = allocate_type_zero(TYPE_FUNCTION, HERE);
3970         }
3971
3972         declaration_t *parameters = parse_parameters(&type->function);
3973         if (declaration != NULL) {
3974                 declaration->scope.declarations = parameters;
3975         }
3976
3977         construct_function_type_t *construct_function_type =
3978                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
3979         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
3980         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
3981         construct_function_type->function_type       = type;
3982
3983         return &construct_function_type->construct_type;
3984 }
3985
3986 static void fix_declaration_type(declaration_t *declaration)
3987 {
3988         decl_modifiers_t declaration_modifiers = declaration->modifiers;
3989         type_modifiers_t type_modifiers        = declaration->type->base.modifiers;
3990
3991         if (declaration_modifiers & DM_TRANSPARENT_UNION)
3992                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3993
3994         if (declaration->type->base.modifiers == type_modifiers)
3995                 return;
3996
3997         type_t *copy = duplicate_type(declaration->type);
3998         copy->base.modifiers = type_modifiers;
3999
4000         type_t *result = typehash_insert(copy);
4001         if (result != copy) {
4002                 obstack_free(type_obst, copy);
4003         }
4004
4005         declaration->type = result;
4006 }
4007
4008 static construct_type_t *parse_inner_declarator(declaration_t *declaration,
4009                 bool may_be_abstract)
4010 {
4011         /* construct a single linked list of construct_type_t's which describe
4012          * how to construct the final declarator type */
4013         construct_type_t *first = NULL;
4014         construct_type_t *last  = NULL;
4015         gnu_attribute_t  *attributes = NULL;
4016
4017         decl_modifiers_t modifiers = parse_attributes(&attributes);
4018
4019         /* pointers */
4020         while (token.type == '*') {
4021                 construct_type_t *type = parse_pointer_declarator();
4022
4023                 if (last == NULL) {
4024                         first = type;
4025                         last  = type;
4026                 } else {
4027                         last->next = type;
4028                         last       = type;
4029                 }
4030
4031                 /* TODO: find out if this is correct */
4032                 modifiers |= parse_attributes(&attributes);
4033         }
4034
4035         if (declaration != NULL)
4036                 declaration->modifiers |= modifiers;
4037
4038         construct_type_t *inner_types = NULL;
4039
4040         switch(token.type) {
4041         case T_IDENTIFIER:
4042                 if (declaration == NULL) {
4043                         errorf(HERE, "no identifier expected in typename");
4044                 } else {
4045                         declaration->symbol          = token.v.symbol;
4046                         declaration->source_position = token.source_position;
4047                 }
4048                 next_token();
4049                 break;
4050         case '(':
4051                 next_token();
4052                 add_anchor_token(')');
4053                 inner_types = parse_inner_declarator(declaration, may_be_abstract);
4054                 if (inner_types != NULL) {
4055                         /* All later declarators only modify the return type, not declaration */
4056                         declaration = NULL;
4057                 }
4058                 rem_anchor_token(')');
4059                 expect(')');
4060                 break;
4061         default:
4062                 if (may_be_abstract)
4063                         break;
4064                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4065                 eat_until_anchor();
4066                 return NULL;
4067         }
4068
4069         construct_type_t *p = last;
4070
4071         while(true) {
4072                 construct_type_t *type;
4073                 switch(token.type) {
4074                 case '(':
4075                         type = parse_function_declarator(declaration);
4076                         break;
4077                 case '[':
4078                         type = parse_array_declarator();
4079                         break;
4080                 default:
4081                         goto declarator_finished;
4082                 }
4083
4084                 /* insert in the middle of the list (behind p) */
4085                 if (p != NULL) {
4086                         type->next = p->next;
4087                         p->next    = type;
4088                 } else {
4089                         type->next = first;
4090                         first      = type;
4091                 }
4092                 if (last == p) {
4093                         last = type;
4094                 }
4095         }
4096
4097 declarator_finished:
4098         /* append inner_types at the end of the list, we don't to set last anymore
4099          * as it's not needed anymore */
4100         if (last == NULL) {
4101                 assert(first == NULL);
4102                 first = inner_types;
4103         } else {
4104                 last->next = inner_types;
4105         }
4106
4107         return first;
4108 end_error:
4109         return NULL;
4110 }
4111
4112 static void parse_declaration_attributes(declaration_t *declaration)
4113 {
4114         gnu_attribute_t  *attributes = NULL;
4115         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4116
4117         if (declaration == NULL)
4118                 return;
4119
4120         declaration->modifiers |= modifiers;
4121         /* check if we have these stupid mode attributes... */
4122         type_t *old_type = declaration->type;
4123         if (old_type == NULL)
4124                 return;
4125
4126         gnu_attribute_t *attribute = attributes;
4127         for ( ; attribute != NULL; attribute = attribute->next) {
4128                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4129                         continue;
4130
4131                 atomic_type_kind_t  akind = attribute->u.akind;
4132                 if (!is_type_signed(old_type)) {
4133                         switch(akind) {
4134                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4135                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4136                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4137                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4138                         default:
4139                                 panic("invalid akind in mode attribute");
4140                         }
4141                 }
4142                 declaration->type
4143                         = make_atomic_type(akind, old_type->base.qualifiers);
4144         }
4145 }
4146
4147 static type_t *construct_declarator_type(construct_type_t *construct_list,
4148                                          type_t *type)
4149 {
4150         construct_type_t *iter = construct_list;
4151         for( ; iter != NULL; iter = iter->next) {
4152                 switch(iter->kind) {
4153                 case CONSTRUCT_INVALID:
4154                         internal_errorf(HERE, "invalid type construction found");
4155                 case CONSTRUCT_FUNCTION: {
4156                         construct_function_type_t *construct_function_type
4157                                 = (construct_function_type_t*) iter;
4158
4159                         type_t *function_type = construct_function_type->function_type;
4160
4161                         function_type->function.return_type = type;
4162
4163                         type_t *skipped_return_type = skip_typeref(type);
4164                         /* Â§6.7.5.3(1) */
4165                         if (is_type_function(skipped_return_type)) {
4166                                 errorf(HERE, "function returning function is not allowed");
4167                         } else if (is_type_array(skipped_return_type)) {
4168                                 errorf(HERE, "function returning array is not allowed");
4169                         } else {
4170                                 if (skipped_return_type->base.qualifiers != 0) {
4171                                         warningf(HERE,
4172                                                 "type qualifiers in return type of function type are meaningless");
4173                                 }
4174                         }
4175
4176                         type = function_type;
4177                         break;
4178                 }
4179
4180                 case CONSTRUCT_POINTER: {
4181                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4182                         type_t           *pointer_type   = allocate_type_zero(TYPE_POINTER, &null_position);
4183                         pointer_type->pointer.points_to  = type;
4184                         pointer_type->base.qualifiers    = parsed_pointer->type_qualifiers;
4185
4186                         type = pointer_type;
4187                         break;
4188                 }
4189
4190                 case CONSTRUCT_ARRAY: {
4191                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4192                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY, &null_position);
4193
4194                         expression_t *size_expression = parsed_array->size;
4195                         if (size_expression != NULL) {
4196                                 size_expression
4197                                         = create_implicit_cast(size_expression, type_size_t);
4198                         }
4199
4200                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4201                         array_type->array.element_type    = type;
4202                         array_type->array.is_static       = parsed_array->is_static;
4203                         array_type->array.is_variable     = parsed_array->is_variable;
4204                         array_type->array.size_expression = size_expression;
4205
4206                         if (size_expression != NULL) {
4207                                 if (is_constant_expression(size_expression)) {
4208                                         array_type->array.size_constant = true;
4209                                         array_type->array.size
4210                                                 = fold_constant(size_expression);
4211                                 } else {
4212                                         array_type->array.is_vla = true;
4213                                 }
4214                         }
4215
4216                         type_t *skipped_type = skip_typeref(type);
4217                         /* Â§6.7.5.2(1) */
4218                         if (is_type_incomplete(skipped_type)) {
4219                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4220                         } else if (is_type_function(skipped_type)) {
4221                                 errorf(HERE, "array of functions is not allowed");
4222                         }
4223                         type = array_type;
4224                         break;
4225                 }
4226                 }
4227
4228                 type_t *hashed_type = typehash_insert(type);
4229                 if (hashed_type != type) {
4230                         /* the function type was constructed earlier freeing it here will
4231                          * destroy other types... */
4232                         if (iter->kind != CONSTRUCT_FUNCTION) {
4233                                 free_type(type);
4234                         }
4235                         type = hashed_type;
4236                 }
4237         }
4238
4239         return type;
4240 }
4241
4242 static declaration_t *parse_declarator(
4243                 const declaration_specifiers_t *specifiers, bool may_be_abstract)
4244 {
4245         declaration_t *const declaration    = allocate_declaration_zero();
4246         declaration->source_position        = specifiers->source_position;
4247         declaration->declared_storage_class = specifiers->declared_storage_class;
4248         declaration->modifiers              = specifiers->modifiers;
4249         declaration->deprecated_string      = specifiers->deprecated_string;
4250         declaration->get_property_sym       = specifiers->get_property_sym;
4251         declaration->put_property_sym       = specifiers->put_property_sym;
4252         declaration->is_inline              = specifiers->is_inline;
4253
4254         declaration->storage_class          = specifiers->declared_storage_class;
4255         if (declaration->storage_class == STORAGE_CLASS_NONE
4256                         && scope != global_scope) {
4257                 declaration->storage_class = STORAGE_CLASS_AUTO;
4258         }
4259
4260         if (specifiers->alignment != 0) {
4261                 /* TODO: add checks here */
4262                 declaration->alignment = specifiers->alignment;
4263         }
4264
4265         construct_type_t *construct_type
4266                 = parse_inner_declarator(declaration, may_be_abstract);
4267         type_t *const type = specifiers->type;
4268         declaration->type = construct_declarator_type(construct_type, type);
4269
4270         parse_declaration_attributes(declaration);
4271
4272         fix_declaration_type(declaration);
4273
4274         if (construct_type != NULL) {
4275                 obstack_free(&temp_obst, construct_type);
4276         }
4277
4278         return declaration;
4279 }
4280
4281 static type_t *parse_abstract_declarator(type_t *base_type)
4282 {
4283         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4284
4285         type_t *result = construct_declarator_type(construct_type, base_type);
4286         if (construct_type != NULL) {
4287                 obstack_free(&temp_obst, construct_type);
4288         }
4289
4290         return result;
4291 }
4292
4293 static declaration_t *append_declaration(declaration_t* const declaration)
4294 {
4295         if (last_declaration != NULL) {
4296                 last_declaration->next = declaration;
4297         } else {
4298                 scope->declarations = declaration;
4299         }
4300         last_declaration = declaration;
4301         return declaration;
4302 }
4303
4304 /**
4305  * Check if the declaration of main is suspicious.  main should be a
4306  * function with external linkage, returning int, taking either zero
4307  * arguments, two, or three arguments of appropriate types, ie.
4308  *
4309  * int main([ int argc, char **argv [, char **env ] ]).
4310  *
4311  * @param decl    the declaration to check
4312  * @param type    the function type of the declaration
4313  */
4314 static void check_type_of_main(const declaration_t *const decl, const function_type_t *const func_type)
4315 {
4316         if (decl->storage_class == STORAGE_CLASS_STATIC) {
4317                 warningf(&decl->source_position,
4318                          "'main' is normally a non-static function");
4319         }
4320         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4321                 warningf(&decl->source_position,
4322                          "return type of 'main' should be 'int', but is '%T'",
4323                          func_type->return_type);
4324         }
4325         const function_parameter_t *parm = func_type->parameters;
4326         if (parm != NULL) {
4327                 type_t *const first_type = parm->type;
4328                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4329                         warningf(&decl->source_position,
4330                                  "first argument of 'main' should be 'int', but is '%T'", first_type);
4331                 }
4332                 parm = parm->next;
4333                 if (parm != NULL) {
4334                         type_t *const second_type = parm->type;
4335                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4336                                 warningf(&decl->source_position,
4337                                          "second argument of 'main' should be 'char**', but is '%T'", second_type);
4338                         }
4339                         parm = parm->next;
4340                         if (parm != NULL) {
4341                                 type_t *const third_type = parm->type;
4342                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4343                                         warningf(&decl->source_position,
4344                                                  "third argument of 'main' should be 'char**', but is '%T'", third_type);
4345                                 }
4346                                 parm = parm->next;
4347                                 if (parm != NULL)
4348                                         goto warn_arg_count;
4349                         }
4350                 } else {
4351 warn_arg_count:
4352                         warningf(&decl->source_position, "'main' takes only zero, two or three arguments");
4353                 }
4354         }
4355 }
4356
4357 /**
4358  * Check if a symbol is the equal to "main".
4359  */
4360 static bool is_sym_main(const symbol_t *const sym)
4361 {
4362         return strcmp(sym->string, "main") == 0;
4363 }
4364
4365 static declaration_t *record_declaration(
4366         declaration_t *const declaration,
4367         const bool is_definition)
4368 {
4369         const symbol_t *const symbol  = declaration->symbol;
4370         const namespace_t     namespc = (namespace_t)declaration->namespc;
4371
4372         assert(symbol != NULL);
4373         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4374
4375         type_t *const orig_type = declaration->type;
4376         type_t *const type      = skip_typeref(orig_type);
4377         if (is_type_function(type) &&
4378                         type->function.unspecified_parameters &&
4379                         warning.strict_prototypes &&
4380                         previous_declaration == NULL) {
4381                 warningf(&declaration->source_position,
4382                          "function declaration '%#T' is not a prototype",
4383                          orig_type, symbol);
4384         }
4385
4386         if (warning.main && is_type_function(type) && is_sym_main(symbol)) {
4387                 check_type_of_main(declaration, &type->function);
4388         }
4389
4390         if (warning.nested_externs                             &&
4391             declaration->storage_class == STORAGE_CLASS_EXTERN &&
4392             scope                      != global_scope) {
4393                 warningf(&declaration->source_position,
4394                          "nested extern declaration of '%#T'", declaration->type, symbol);
4395         }
4396
4397         assert(declaration != previous_declaration);
4398         if (previous_declaration != NULL
4399                         && previous_declaration->parent_scope == scope) {
4400                 /* can happen for K&R style declarations */
4401                 if (previous_declaration->type == NULL) {
4402                         previous_declaration->type = declaration->type;
4403                 }
4404
4405                 const type_t *prev_type = skip_typeref(previous_declaration->type);
4406                 if (!types_compatible(type, prev_type)) {
4407                         errorf(&declaration->source_position,
4408                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
4409                                    orig_type, symbol, previous_declaration->type, symbol,
4410                                    &previous_declaration->source_position);
4411                 } else {
4412                         unsigned old_storage_class = previous_declaration->storage_class;
4413                         if (old_storage_class == STORAGE_CLASS_ENUM_ENTRY) {
4414                                 errorf(&declaration->source_position,
4415                                            "redeclaration of enum entry '%Y' (declared %P)",
4416                                            symbol, &previous_declaration->source_position);
4417                                 return previous_declaration;
4418                         }
4419
4420                         if (warning.redundant_decls                                     &&
4421                             is_definition                                               &&
4422                             previous_declaration->storage_class == STORAGE_CLASS_STATIC &&
4423                             !(previous_declaration->modifiers & DM_USED)                &&
4424                             !previous_declaration->used) {
4425                                 warningf(&previous_declaration->source_position,
4426                                          "unnecessary static forward declaration for '%#T'",
4427                                          previous_declaration->type, symbol);
4428                         }
4429
4430                         unsigned new_storage_class = declaration->storage_class;
4431
4432                         if (is_type_incomplete(prev_type)) {
4433                                 previous_declaration->type = type;
4434                                 prev_type                  = type;
4435                         }
4436
4437                         /* pretend no storage class means extern for function
4438                          * declarations (except if the previous declaration is neither
4439                          * none nor extern) */
4440                         if (is_type_function(type)) {
4441                                 if (prev_type->function.unspecified_parameters) {
4442                                         previous_declaration->type = type;
4443                                         prev_type                  = type;
4444                                 }
4445
4446                                 switch (old_storage_class) {
4447                                 case STORAGE_CLASS_NONE:
4448                                         old_storage_class = STORAGE_CLASS_EXTERN;
4449                                         /* FALLTHROUGH */
4450
4451                                 case STORAGE_CLASS_EXTERN:
4452                                         if (is_definition) {
4453                                                 if (warning.missing_prototypes &&
4454                                                     prev_type->function.unspecified_parameters &&
4455                                                     !is_sym_main(symbol)) {
4456                                                         warningf(&declaration->source_position,
4457                                                                          "no previous prototype for '%#T'",
4458                                                                          orig_type, symbol);
4459                                                 }
4460                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4461                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4462                                         }
4463                                         break;
4464
4465                                 default:
4466                                         break;
4467                                 }
4468                         }
4469
4470                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
4471                                         new_storage_class == STORAGE_CLASS_EXTERN) {
4472 warn_redundant_declaration:
4473                                 if (!is_definition           &&
4474                                     warning.redundant_decls  &&
4475                                     is_type_valid(prev_type) &&
4476                                     strcmp(previous_declaration->source_position.input_name, "<builtin>") != 0) {
4477                                         warningf(&declaration->source_position,
4478                                                  "redundant declaration for '%Y' (declared %P)",
4479                                                  symbol, &previous_declaration->source_position);
4480                                 }
4481                         } else if (current_function == NULL) {
4482                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
4483                                     new_storage_class == STORAGE_CLASS_STATIC) {
4484                                         errorf(&declaration->source_position,
4485                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
4486                                                symbol, &previous_declaration->source_position);
4487                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4488                                         previous_declaration->storage_class          = STORAGE_CLASS_NONE;
4489                                         previous_declaration->declared_storage_class = STORAGE_CLASS_NONE;
4490                                 } else {
4491                                         goto warn_redundant_declaration;
4492                                 }
4493                         } else if (is_type_valid(prev_type)) {
4494                                 if (old_storage_class == new_storage_class) {
4495                                         errorf(&declaration->source_position,
4496                                                "redeclaration of '%Y' (declared %P)",
4497                                                symbol, &previous_declaration->source_position);
4498                                 } else {
4499                                         errorf(&declaration->source_position,
4500                                                "redeclaration of '%Y' with different linkage (declared %P)",
4501                                                symbol, &previous_declaration->source_position);
4502                                 }
4503                         }
4504                 }
4505
4506                 previous_declaration->modifiers |= declaration->modifiers;
4507                 previous_declaration->is_inline |= declaration->is_inline;
4508                 return previous_declaration;
4509         } else if (is_type_function(type)) {
4510                 if (is_definition &&
4511                     declaration->storage_class != STORAGE_CLASS_STATIC) {
4512                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4513                                 warningf(&declaration->source_position,
4514                                          "no previous prototype for '%#T'", orig_type, symbol);
4515                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4516                                 warningf(&declaration->source_position,
4517                                          "no previous declaration for '%#T'", orig_type,
4518                                          symbol);
4519                         }
4520                 }
4521         } else {
4522                 if (warning.missing_declarations &&
4523                     scope == global_scope && (
4524                       declaration->storage_class == STORAGE_CLASS_NONE ||
4525                       declaration->storage_class == STORAGE_CLASS_THREAD
4526                     )) {
4527                         warningf(&declaration->source_position,
4528                                  "no previous declaration for '%#T'", orig_type, symbol);
4529                 }
4530         }
4531
4532         assert(declaration->parent_scope == NULL);
4533         assert(scope != NULL);
4534
4535         declaration->parent_scope = scope;
4536
4537         environment_push(declaration);
4538         return append_declaration(declaration);
4539 }
4540
4541 static void parser_error_multiple_definition(declaration_t *declaration,
4542                 const source_position_t *source_position)
4543 {
4544         errorf(source_position, "multiple definition of symbol '%Y' (declared %P)",
4545                declaration->symbol, &declaration->source_position);
4546 }
4547
4548 static bool is_declaration_specifier(const token_t *token,
4549                                      bool only_specifiers_qualifiers)
4550 {
4551         switch (token->type) {
4552                 TYPE_SPECIFIERS
4553                 TYPE_QUALIFIERS
4554                         return true;
4555                 case T_IDENTIFIER:
4556                         return is_typedef_symbol(token->v.symbol);
4557
4558                 case T___extension__:
4559                 STORAGE_CLASSES
4560                         return !only_specifiers_qualifiers;
4561
4562                 default:
4563                         return false;
4564         }
4565 }
4566
4567 static void parse_init_declarator_rest(declaration_t *declaration)
4568 {
4569         eat('=');
4570
4571         type_t *orig_type = declaration->type;
4572         type_t *type      = skip_typeref(orig_type);
4573
4574         if (declaration->init.initializer != NULL) {
4575                 parser_error_multiple_definition(declaration, HERE);
4576         }
4577
4578         bool must_be_constant = false;
4579         if (declaration->storage_class == STORAGE_CLASS_STATIC
4580                         || declaration->storage_class == STORAGE_CLASS_THREAD_STATIC
4581                         || declaration->parent_scope == global_scope) {
4582                 must_be_constant = true;
4583         }
4584
4585         if (is_type_function(type)) {
4586                 errorf(&declaration->source_position,
4587                        "function '%#T' is initialized like a variable",
4588                        orig_type, declaration->symbol);
4589                 orig_type = type_error_type;
4590         }
4591
4592         parse_initializer_env_t env;
4593         env.type             = orig_type;
4594         env.must_be_constant = must_be_constant;
4595         env.declaration      = current_init_decl = declaration;
4596
4597         initializer_t *initializer = parse_initializer(&env);
4598         current_init_decl = NULL;
4599
4600         if (!is_type_function(type)) {
4601                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size determine
4602                  * the array type size */
4603                 declaration->type             = env.type;
4604                 declaration->init.initializer = initializer;
4605         }
4606 }
4607
4608 /* parse rest of a declaration without any declarator */
4609 static void parse_anonymous_declaration_rest(
4610                 const declaration_specifiers_t *specifiers)
4611 {
4612         eat(';');
4613
4614         if (specifiers->declared_storage_class != STORAGE_CLASS_NONE) {
4615                 warningf(&specifiers->source_position,
4616                          "useless storage class in empty declaration");
4617         }
4618
4619         type_t *type = specifiers->type;
4620         switch (type->kind) {
4621                 case TYPE_COMPOUND_STRUCT:
4622                 case TYPE_COMPOUND_UNION: {
4623                         if (type->compound.declaration->symbol == NULL) {
4624                                 warningf(&specifiers->source_position,
4625                                          "unnamed struct/union that defines no instances");
4626                         }
4627                         break;
4628                 }
4629
4630                 case TYPE_ENUM:
4631                         break;
4632
4633                 default:
4634                         warningf(&specifiers->source_position, "empty declaration");
4635                         break;
4636         }
4637
4638 #ifdef RECORD_EMPTY_DECLARATIONS
4639         declaration_t *const declaration    = allocate_declaration_zero();
4640         declaration->type                   = specifiers->type;
4641         declaration->declared_storage_class = specifiers->declared_storage_class;
4642         declaration->source_position        = specifiers->source_position;
4643         declaration->modifiers              = specifiers->modifiers;
4644         declaration->storage_class          = STORAGE_CLASS_NONE;
4645
4646         append_declaration(declaration);
4647 #endif
4648 }
4649
4650 static void parse_declaration_rest(declaration_t *ndeclaration,
4651                 const declaration_specifiers_t *specifiers,
4652                 parsed_declaration_func finished_declaration)
4653 {
4654         add_anchor_token(';');
4655         add_anchor_token(',');
4656         while(true) {
4657                 declaration_t *declaration =
4658                         finished_declaration(ndeclaration, token.type == '=');
4659
4660                 type_t *orig_type = declaration->type;
4661                 type_t *type      = skip_typeref(orig_type);
4662
4663                 if (type->kind != TYPE_FUNCTION &&
4664                     declaration->is_inline &&
4665                     is_type_valid(type)) {
4666                         warningf(&declaration->source_position,
4667                                  "variable '%Y' declared 'inline'\n", declaration->symbol);
4668                 }
4669
4670                 if (token.type == '=') {
4671                         parse_init_declarator_rest(declaration);
4672                 }
4673
4674                 if (token.type != ',')
4675                         break;
4676                 eat(',');
4677
4678                 add_anchor_token('=');
4679                 ndeclaration = parse_declarator(specifiers, /*may_be_abstract=*/false);
4680                 rem_anchor_token('=');
4681         }
4682         expect(';');
4683
4684 end_error:
4685         rem_anchor_token(';');
4686         rem_anchor_token(',');
4687 }
4688
4689 static declaration_t *finished_kr_declaration(declaration_t *declaration, bool is_definition)
4690 {
4691         symbol_t *symbol  = declaration->symbol;
4692         if (symbol == NULL) {
4693                 errorf(HERE, "anonymous declaration not valid as function parameter");
4694                 return declaration;
4695         }
4696         namespace_t namespc = (namespace_t) declaration->namespc;
4697         if (namespc != NAMESPACE_NORMAL) {
4698                 return record_declaration(declaration, false);
4699         }
4700
4701         declaration_t *previous_declaration = get_declaration(symbol, namespc);
4702         if (previous_declaration == NULL ||
4703                         previous_declaration->parent_scope != scope) {
4704                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4705                        symbol);
4706                 return declaration;
4707         }
4708
4709         if (is_definition) {
4710                 errorf(HERE, "parameter %Y is initialised", declaration->symbol);
4711         }
4712
4713         if (previous_declaration->type == NULL) {
4714                 previous_declaration->type          = declaration->type;
4715                 previous_declaration->declared_storage_class = declaration->declared_storage_class;
4716                 previous_declaration->storage_class = declaration->storage_class;
4717                 previous_declaration->parent_scope  = scope;
4718                 return previous_declaration;
4719         } else {
4720                 return record_declaration(declaration, false);
4721         }
4722 }
4723
4724 static void parse_declaration(parsed_declaration_func finished_declaration)
4725 {
4726         declaration_specifiers_t specifiers;
4727         memset(&specifiers, 0, sizeof(specifiers));
4728
4729         add_anchor_token(';');
4730         parse_declaration_specifiers(&specifiers);
4731         rem_anchor_token(';');
4732
4733         if (token.type == ';') {
4734                 parse_anonymous_declaration_rest(&specifiers);
4735         } else {
4736                 declaration_t *declaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
4737                 parse_declaration_rest(declaration, &specifiers, finished_declaration);
4738         }
4739 }
4740
4741 static type_t *get_default_promoted_type(type_t *orig_type)
4742 {
4743         type_t *result = orig_type;
4744
4745         type_t *type = skip_typeref(orig_type);
4746         if (is_type_integer(type)) {
4747                 result = promote_integer(type);
4748         } else if (type == type_float) {
4749                 result = type_double;
4750         }
4751
4752         return result;
4753 }
4754
4755 static void parse_kr_declaration_list(declaration_t *declaration)
4756 {
4757         type_t *type = skip_typeref(declaration->type);
4758         if (!is_type_function(type))
4759                 return;
4760
4761         if (!type->function.kr_style_parameters)
4762                 return;
4763
4764         /* push function parameters */
4765         int       top        = environment_top();
4766         scope_t  *last_scope = scope;
4767         set_scope(&declaration->scope);
4768
4769         declaration_t *parameter = declaration->scope.declarations;
4770         for ( ; parameter != NULL; parameter = parameter->next) {
4771                 assert(parameter->parent_scope == NULL);
4772                 parameter->parent_scope = scope;
4773                 environment_push(parameter);
4774         }
4775
4776         /* parse declaration list */
4777         while (is_declaration_specifier(&token, false)) {
4778                 parse_declaration(finished_kr_declaration);
4779         }
4780
4781         /* pop function parameters */
4782         assert(scope == &declaration->scope);
4783         set_scope(last_scope);
4784         environment_pop_to(top);
4785
4786         /* update function type */
4787         type_t *new_type = duplicate_type(type);
4788
4789         function_parameter_t *parameters     = NULL;
4790         function_parameter_t *last_parameter = NULL;
4791
4792         declaration_t *parameter_declaration = declaration->scope.declarations;
4793         for( ; parameter_declaration != NULL;
4794                         parameter_declaration = parameter_declaration->next) {
4795                 type_t *parameter_type = parameter_declaration->type;
4796                 if (parameter_type == NULL) {
4797                         if (strict_mode) {
4798                                 errorf(HERE, "no type specified for function parameter '%Y'",
4799                                        parameter_declaration->symbol);
4800                         } else {
4801                                 if (warning.implicit_int) {
4802                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4803                                                 parameter_declaration->symbol);
4804                                 }
4805                                 parameter_type              = type_int;
4806                                 parameter_declaration->type = parameter_type;
4807                         }
4808                 }
4809
4810                 semantic_parameter(parameter_declaration);
4811                 parameter_type = parameter_declaration->type;
4812
4813                 /*
4814                  * we need the default promoted types for the function type
4815                  */
4816                 parameter_type = get_default_promoted_type(parameter_type);
4817
4818                 function_parameter_t *function_parameter
4819                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
4820                 memset(function_parameter, 0, sizeof(function_parameter[0]));
4821
4822                 function_parameter->type = parameter_type;
4823                 if (last_parameter != NULL) {
4824                         last_parameter->next = function_parameter;
4825                 } else {
4826                         parameters = function_parameter;
4827                 }
4828                 last_parameter = function_parameter;
4829         }
4830
4831         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
4832          * prototype */
4833         new_type->function.parameters             = parameters;
4834         new_type->function.unspecified_parameters = true;
4835
4836         type = typehash_insert(new_type);
4837         if (type != new_type) {
4838                 obstack_free(type_obst, new_type);
4839         }
4840
4841         declaration->type = type;
4842 }
4843
4844 static bool first_err = true;
4845
4846 /**
4847  * When called with first_err set, prints the name of the current function,
4848  * else does noting.
4849  */
4850 static void print_in_function(void)
4851 {
4852         if (first_err) {
4853                 first_err = false;
4854                 diagnosticf("%s: In function '%Y':\n",
4855                         current_function->source_position.input_name,
4856                         current_function->symbol);
4857         }
4858 }
4859
4860 /**
4861  * Check if all labels are defined in the current function.
4862  * Check if all labels are used in the current function.
4863  */
4864 static void check_labels(void)
4865 {
4866         for (const goto_statement_t *goto_statement = goto_first;
4867             goto_statement != NULL;
4868             goto_statement = goto_statement->next) {
4869                 /* skip computed gotos */
4870                 if (goto_statement->expression != NULL)
4871                         continue;
4872
4873                 declaration_t *label = goto_statement->label;
4874
4875                 label->used = true;
4876                 if (label->source_position.input_name == NULL) {
4877                         print_in_function();
4878                         errorf(&goto_statement->base.source_position,
4879                                "label '%Y' used but not defined", label->symbol);
4880                  }
4881         }
4882         goto_first = goto_last = NULL;
4883
4884         if (warning.unused_label) {
4885                 for (const label_statement_t *label_statement = label_first;
4886                          label_statement != NULL;
4887                          label_statement = label_statement->next) {
4888                         const declaration_t *label = label_statement->label;
4889
4890                         if (! label->used) {
4891                                 print_in_function();
4892                                 warningf(&label_statement->base.source_position,
4893                                         "label '%Y' defined but not used", label->symbol);
4894                         }
4895                 }
4896         }
4897         label_first = label_last = NULL;
4898 }
4899
4900 /**
4901  * Check declarations of current_function for unused entities.
4902  */
4903 static void check_declarations(void)
4904 {
4905         if (warning.unused_parameter) {
4906                 const scope_t *scope = &current_function->scope;
4907
4908                 if (is_sym_main(current_function->symbol)) {
4909                         /* do not issue unused warnings for main */
4910                         return;
4911                 }
4912                 const declaration_t *parameter = scope->declarations;
4913                 for (; parameter != NULL; parameter = parameter->next) {
4914                         if (! parameter->used) {
4915                                 print_in_function();
4916                                 warningf(&parameter->source_position,
4917                                          "unused parameter '%Y'", parameter->symbol);
4918                         }
4919                 }
4920         }
4921         if (warning.unused_variable) {
4922         }
4923 }
4924
4925 static int determine_truth(expression_t const* const cond)
4926 {
4927         return
4928                 !is_constant_expression(cond) ? 0 :
4929                 fold_constant(cond) != 0      ? 1 :
4930                 -1;
4931 }
4932
4933 static bool noreturn_candidate;
4934
4935 static void check_reachable(statement_t *const stmt)
4936 {
4937         if (stmt->base.reachable)
4938                 return;
4939         if (stmt->kind != STATEMENT_DO_WHILE)
4940                 stmt->base.reachable = true;
4941
4942         statement_t *last = stmt;
4943         statement_t *next;
4944         switch (stmt->kind) {
4945                 case STATEMENT_INVALID:
4946                 case STATEMENT_EMPTY:
4947                 case STATEMENT_DECLARATION:
4948                 case STATEMENT_ASM:
4949                         next = stmt->base.next;
4950                         break;
4951
4952                 case STATEMENT_COMPOUND:
4953                         next = stmt->compound.statements;
4954                         break;
4955
4956                 case STATEMENT_RETURN:
4957                         noreturn_candidate = false;
4958                         return;
4959
4960                 case STATEMENT_IF: {
4961                         if_statement_t const* const ifs = &stmt->ifs;
4962                         int            const        val = determine_truth(ifs->condition);
4963
4964                         if (val >= 0)
4965                                 check_reachable(ifs->true_statement);
4966
4967                         if (val > 0)
4968                                 return;
4969
4970                         if (ifs->false_statement != NULL) {
4971                                 check_reachable(ifs->false_statement);
4972                                 return;
4973                         }
4974
4975                         next = stmt->base.next;
4976                         break;
4977                 }
4978
4979                 case STATEMENT_SWITCH: {
4980                         switch_statement_t const *const switchs = &stmt->switchs;
4981                         expression_t       const *const expr    = switchs->expression;
4982
4983                         if (is_constant_expression(expr)) {
4984                                 long                    const val      = fold_constant(expr);
4985                                 case_label_statement_t *      defaults = NULL;
4986                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
4987                                         if (i->expression == NULL) {
4988                                                 defaults = i;
4989                                                 continue;
4990                                         }
4991
4992                                         if (i->first_case <= val && val <= i->last_case) {
4993                                                 check_reachable((statement_t*)i);
4994                                                 return;
4995                                         }
4996                                 }
4997
4998                                 if (defaults != NULL) {
4999                                         check_reachable((statement_t*)defaults);
5000                                         return;
5001                                 }
5002                         } else {
5003                                 bool has_default = false;
5004                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5005                                         if (i->expression == NULL)
5006                                                 has_default = true;
5007
5008                                         check_reachable((statement_t*)i);
5009                                 }
5010
5011                                 if (has_default)
5012                                         return;
5013                         }
5014
5015                         next = stmt->base.next;
5016                         break;
5017                 }
5018
5019                 case STATEMENT_EXPRESSION: {
5020                         /* Check for noreturn function call */
5021                         expression_t const *const expr = stmt->expression.expression;
5022                         if (expr->kind == EXPR_CALL) {
5023                                 expression_t const *const func = expr->call.function;
5024                                 if (func->kind == EXPR_REFERENCE) {
5025                                         declaration_t const *const decl = func->reference.declaration;
5026                                         if (decl != NULL && decl->modifiers & DM_NORETURN) {
5027                                                 return;
5028                                         }
5029                                 }
5030                         }
5031
5032                         next = stmt->base.next;
5033                         break;
5034                 }
5035
5036                 case STATEMENT_CONTINUE: {
5037                         statement_t *parent = stmt;
5038                         for (;;) {
5039                                 parent = parent->base.parent;
5040                                 if (parent == NULL) /* continue not within loop */
5041                                         return;
5042
5043                                 next = parent;
5044                                 switch (parent->kind) {
5045                                         case STATEMENT_WHILE:    goto continue_while;
5046                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5047                                         case STATEMENT_FOR:      goto continue_for;
5048
5049                                         default: break;
5050                                 }
5051                         }
5052                 }
5053
5054                 case STATEMENT_BREAK: {
5055                         statement_t *parent = stmt;
5056                         for (;;) {
5057                                 parent = parent->base.parent;
5058                                 if (parent == NULL) /* break not within loop/switch */
5059                                         return;
5060
5061                                 switch (parent->kind) {
5062                                         case STATEMENT_SWITCH:
5063                                         case STATEMENT_WHILE:
5064                                         case STATEMENT_DO_WHILE:
5065                                         case STATEMENT_FOR:
5066                                                 last = parent;
5067                                                 next = parent->base.next;
5068                                                 goto found_break_parent;
5069
5070                                         default: break;
5071                                 }
5072                         }
5073 found_break_parent:
5074                         break;
5075                 }
5076
5077                 case STATEMENT_GOTO:
5078                         if (stmt->gotos.expression) {
5079                                 statement_t *parent = stmt->base.parent;
5080                                 if (parent == NULL) /* top level goto */
5081                                         return;
5082                                 next = parent;
5083                         } else {
5084                                 next = stmt->gotos.label->init.statement;
5085                                 if (next == NULL) /* missing label */
5086                                         return;
5087                         }
5088                         break;
5089
5090                 case STATEMENT_LABEL:
5091                         next = stmt->label.statement;
5092                         break;
5093
5094                 case STATEMENT_CASE_LABEL:
5095                         next = stmt->case_label.statement;
5096                         break;
5097
5098                 case STATEMENT_WHILE: {
5099                         while_statement_t const *const whiles = &stmt->whiles;
5100                         int                      const val    = determine_truth(whiles->condition);
5101
5102                         if (val >= 0)
5103                                 check_reachable(whiles->body);
5104
5105                         if (val > 0)
5106                                 return;
5107
5108                         next = stmt->base.next;
5109                         break;
5110                 }
5111
5112                 case STATEMENT_DO_WHILE:
5113                         next = stmt->do_while.body;
5114                         break;
5115
5116                 case STATEMENT_FOR: {
5117                         for_statement_t *const fors = &stmt->fors;
5118
5119                         if (fors->condition_reachable)
5120                                 return;
5121                         fors->condition_reachable = true;
5122
5123                         expression_t const *const cond = fors->condition;
5124                         int          const        val  =
5125                                 cond == NULL ? 1 : determine_truth(cond);
5126
5127                         if (val >= 0)
5128                                 check_reachable(fors->body);
5129
5130                         if (val > 0)
5131                                 return;
5132
5133                         next = stmt->base.next;
5134                         break;
5135                 }
5136
5137                 case STATEMENT_MS_TRY: {
5138                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5139                         check_reachable(ms_try->try_statement);
5140                         next = ms_try->final_statement;
5141                         break;
5142                 }
5143
5144                 case STATEMENT_LEAVE: {
5145                         statement_t *parent = stmt;
5146                         for (;;) {
5147                                 parent = parent->base.parent;
5148                                 if (parent == NULL) /* __leave not within __try */
5149                                         return;
5150
5151                                 if (parent->kind == STATEMENT_MS_TRY) {
5152                                         last = parent;
5153                                         next = parent->ms_try.final_statement;
5154                                         break;
5155                                 }
5156                         }
5157                         break;
5158                 }
5159         }
5160
5161         while (next == NULL) {
5162                 next = last->base.parent;
5163                 if (next == NULL) {
5164                         noreturn_candidate = false;
5165
5166                         type_t *const type = current_function->type;
5167                         assert(is_type_function(type));
5168                         type_t *const ret  = skip_typeref(type->function.return_type);
5169                         if (warning.return_type                    &&
5170                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5171                             is_type_valid(ret)                     &&
5172                             !is_sym_main(current_function->symbol)) {
5173                                 warningf(&stmt->base.source_position,
5174                                          "control reaches end of non-void function");
5175                         }
5176                         return;
5177                 }
5178
5179                 switch (next->kind) {
5180                         case STATEMENT_INVALID:
5181                         case STATEMENT_EMPTY:
5182                         case STATEMENT_DECLARATION:
5183                         case STATEMENT_EXPRESSION:
5184                         case STATEMENT_ASM:
5185                         case STATEMENT_RETURN:
5186                         case STATEMENT_CONTINUE:
5187                         case STATEMENT_BREAK:
5188                         case STATEMENT_GOTO:
5189                         case STATEMENT_LEAVE:
5190                                 panic("invalid control flow in function");
5191
5192                         case STATEMENT_COMPOUND:
5193                         case STATEMENT_IF:
5194                         case STATEMENT_SWITCH:
5195                         case STATEMENT_LABEL:
5196                         case STATEMENT_CASE_LABEL:
5197                                 last = next;
5198                                 next = next->base.next;
5199                                 break;
5200
5201                         case STATEMENT_WHILE: {
5202 continue_while:
5203                                 if (next->base.reachable)
5204                                         return;
5205                                 next->base.reachable = true;
5206
5207                                 while_statement_t const *const whiles = &next->whiles;
5208                                 int                      const val    = determine_truth(whiles->condition);
5209
5210                                 if (val >= 0)
5211                                         check_reachable(whiles->body);
5212
5213                                 if (val > 0)
5214                                         return;
5215
5216                                 last = next;
5217                                 next = next->base.next;
5218                                 break;
5219                         }
5220
5221                         case STATEMENT_DO_WHILE: {
5222 continue_do_while:
5223                                 if (next->base.reachable)
5224                                         return;
5225                                 next->base.reachable = true;
5226
5227                                 do_while_statement_t const *const dw  = &next->do_while;
5228                                 int                  const        val = determine_truth(dw->condition);
5229
5230                                 if (val >= 0)
5231                                         check_reachable(dw->body);
5232
5233                                 if (val > 0)
5234                                         return;
5235
5236                                 last = next;
5237                                 next = next->base.next;
5238                                 break;
5239                         }
5240
5241                         case STATEMENT_FOR: {
5242 continue_for:;
5243                                 for_statement_t *const fors = &next->fors;
5244
5245                                 fors->step_reachable = true;
5246
5247                                 if (fors->condition_reachable)
5248                                         return;
5249                                 fors->condition_reachable = true;
5250
5251                                 expression_t const *const cond = fors->condition;
5252                                 int          const        val  =
5253                                         cond == NULL ? 1 : determine_truth(cond);
5254
5255                                 if (val >= 0)
5256                                         check_reachable(fors->body);
5257
5258                                 if (val > 0)
5259                                         return;
5260
5261                                 last = next;
5262                                 next = next->base.next;
5263                                 break;
5264                         }
5265
5266                         case STATEMENT_MS_TRY:
5267                                 last = next;
5268                                 next = next->ms_try.final_statement;
5269                                 break;
5270                 }
5271         }
5272
5273         if (next == NULL) {
5274                 next = stmt->base.parent;
5275                 if (next == NULL) {
5276                         warningf(&stmt->base.source_position,
5277                                  "control reaches end of non-void function");
5278                 }
5279         }
5280
5281         check_reachable(next);
5282 }
5283
5284 static void check_unreachable(statement_t const* const stmt)
5285 {
5286         if (!stmt->base.reachable            &&
5287             stmt->kind != STATEMENT_DO_WHILE &&
5288             stmt->kind != STATEMENT_FOR      &&
5289             (stmt->kind != STATEMENT_COMPOUND || stmt->compound.statements == NULL)) {
5290                 warningf(&stmt->base.source_position, "statement is unreachable");
5291         }
5292
5293         switch (stmt->kind) {
5294                 case STATEMENT_INVALID:
5295                 case STATEMENT_EMPTY:
5296                 case STATEMENT_RETURN:
5297                 case STATEMENT_DECLARATION:
5298                 case STATEMENT_EXPRESSION:
5299                 case STATEMENT_CONTINUE:
5300                 case STATEMENT_BREAK:
5301                 case STATEMENT_GOTO:
5302                 case STATEMENT_ASM:
5303                 case STATEMENT_LEAVE:
5304                         break;
5305
5306                 case STATEMENT_COMPOUND:
5307                         if (stmt->compound.statements)
5308                                 check_unreachable(stmt->compound.statements);
5309                         break;
5310
5311                 case STATEMENT_IF:
5312                         check_unreachable(stmt->ifs.true_statement);
5313                         if (stmt->ifs.false_statement != NULL)
5314                                 check_unreachable(stmt->ifs.false_statement);
5315                         break;
5316
5317                 case STATEMENT_SWITCH:
5318                         check_unreachable(stmt->switchs.body);
5319                         break;
5320
5321                 case STATEMENT_LABEL:
5322                         check_unreachable(stmt->label.statement);
5323                         break;
5324
5325                 case STATEMENT_CASE_LABEL:
5326                         check_unreachable(stmt->case_label.statement);
5327                         break;
5328
5329                 case STATEMENT_WHILE:
5330                         check_unreachable(stmt->whiles.body);
5331                         break;
5332
5333                 case STATEMENT_DO_WHILE:
5334                         check_unreachable(stmt->do_while.body);
5335                         if (!stmt->base.reachable) {
5336                                 expression_t const *const cond = stmt->do_while.condition;
5337                                 if (determine_truth(cond) >= 0) {
5338                                         warningf(&cond->base.source_position,
5339                                                  "condition of do-while-loop is unreachable");
5340                                 }
5341                         }
5342                         break;
5343
5344                 case STATEMENT_FOR: {
5345                         for_statement_t const* const fors = &stmt->fors;
5346
5347                         // if init and step are unreachable, cond is unreachable, too
5348                         if (!stmt->base.reachable && !fors->step_reachable) {
5349                                 warningf(&stmt->base.source_position, "statement is unreachable");
5350                         } else {
5351                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5352                                         warningf(&fors->initialisation->base.source_position,
5353                                                  "initialisation of for-statement is unreachable");
5354                                 }
5355
5356                                 if (!fors->condition_reachable && fors->condition != NULL) {
5357                                         warningf(&fors->condition->base.source_position,
5358                                                  "condition of for-statement is unreachable");
5359                                 }
5360
5361                                 if (!fors->step_reachable && fors->step != NULL) {
5362                                         warningf(&fors->step->base.source_position,
5363                                                  "step of for-statement is unreachable");
5364                                 }
5365                         }
5366
5367                         check_unreachable(fors->body);
5368                         break;
5369                 }
5370
5371                 case STATEMENT_MS_TRY: {
5372                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5373                         check_unreachable(ms_try->try_statement);
5374                         check_unreachable(ms_try->final_statement);
5375                 }
5376         }
5377
5378         if (stmt->base.next)
5379                 check_unreachable(stmt->base.next);
5380 }
5381
5382 static void parse_external_declaration(void)
5383 {
5384         /* function-definitions and declarations both start with declaration
5385          * specifiers */
5386         declaration_specifiers_t specifiers;
5387         memset(&specifiers, 0, sizeof(specifiers));
5388
5389         add_anchor_token(';');
5390         parse_declaration_specifiers(&specifiers);
5391         rem_anchor_token(';');
5392
5393         /* must be a declaration */
5394         if (token.type == ';') {
5395                 parse_anonymous_declaration_rest(&specifiers);
5396                 return;
5397         }
5398
5399         add_anchor_token(',');
5400         add_anchor_token('=');
5401         add_anchor_token(';');
5402
5403         /* declarator is common to both function-definitions and declarations */
5404         declaration_t *ndeclaration = parse_declarator(&specifiers, /*may_be_abstract=*/false);
5405
5406         rem_anchor_token(',');
5407         rem_anchor_token('=');
5408         rem_anchor_token(';');
5409
5410         /* must be a declaration */
5411         switch (token.type) {
5412                 case ',':
5413                 case ';':
5414                 case '=':
5415                         parse_declaration_rest(ndeclaration, &specifiers, record_declaration);
5416                         return;
5417         }
5418
5419         /* must be a function definition */
5420         parse_kr_declaration_list(ndeclaration);
5421
5422         if (token.type != '{') {
5423                 parse_error_expected("while parsing function definition", '{', NULL);
5424                 eat_until_matching_token(';');
5425                 return;
5426         }
5427
5428         type_t *type = ndeclaration->type;
5429
5430         /* note that we don't skip typerefs: the standard doesn't allow them here
5431          * (so we can't use is_type_function here) */
5432         if (type->kind != TYPE_FUNCTION) {
5433                 if (is_type_valid(type)) {
5434                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5435                                type, ndeclaration->symbol);
5436                 }
5437                 eat_block();
5438                 return;
5439         }
5440
5441         if (warning.aggregate_return &&
5442             is_type_compound(skip_typeref(type->function.return_type))) {
5443                 warningf(HERE, "function '%Y' returns an aggregate",
5444                          ndeclaration->symbol);
5445         }
5446         if (warning.traditional && !type->function.unspecified_parameters) {
5447                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5448                         ndeclaration->symbol);
5449         }
5450         if (warning.old_style_definition && type->function.unspecified_parameters) {
5451                 warningf(HERE, "old-style function definition '%Y'",
5452                         ndeclaration->symbol);
5453         }
5454
5455         /* Â§ 6.7.5.3 (14) a function definition with () means no
5456          * parameters (and not unspecified parameters) */
5457         if (type->function.unspecified_parameters
5458                         && type->function.parameters == NULL
5459                         && !type->function.kr_style_parameters) {
5460                 type_t *duplicate = duplicate_type(type);
5461                 duplicate->function.unspecified_parameters = false;
5462
5463                 type = typehash_insert(duplicate);
5464                 if (type != duplicate) {
5465                         obstack_free(type_obst, duplicate);
5466                 }
5467                 ndeclaration->type = type;
5468         }
5469
5470         declaration_t *const declaration = record_declaration(ndeclaration, true);
5471         if (ndeclaration != declaration) {
5472                 declaration->scope = ndeclaration->scope;
5473         }
5474         type = skip_typeref(declaration->type);
5475
5476         /* push function parameters and switch scope */
5477         int       top        = environment_top();
5478         scope_t  *last_scope = scope;
5479         set_scope(&declaration->scope);
5480
5481         declaration_t *parameter = declaration->scope.declarations;
5482         for( ; parameter != NULL; parameter = parameter->next) {
5483                 if (parameter->parent_scope == &ndeclaration->scope) {
5484                         parameter->parent_scope = scope;
5485                 }
5486                 assert(parameter->parent_scope == NULL
5487                                 || parameter->parent_scope == scope);
5488                 parameter->parent_scope = scope;
5489                 if (parameter->symbol == NULL) {
5490                         errorf(&parameter->source_position, "parameter name omitted");
5491                         continue;
5492                 }
5493                 environment_push(parameter);
5494         }
5495
5496         if (declaration->init.statement != NULL) {
5497                 parser_error_multiple_definition(declaration, HERE);
5498                 eat_block();
5499         } else {
5500                 /* parse function body */
5501                 int            label_stack_top      = label_top();
5502                 declaration_t *old_current_function = current_function;
5503                 current_function                    = declaration;
5504                 current_parent                      = NULL;
5505
5506                 statement_t *const body = parse_compound_statement(false);
5507                 declaration->init.statement = body;
5508                 first_err = true;
5509                 check_labels();
5510                 check_declarations();
5511                 if (warning.return_type      ||
5512                     warning.unreachable_code ||
5513                     (warning.missing_noreturn && !(declaration->modifiers & DM_NORETURN))) {
5514                         noreturn_candidate = true;
5515                         check_reachable(body);
5516                         if (warning.unreachable_code)
5517                                 check_unreachable(body);
5518                         if (warning.missing_noreturn &&
5519                             noreturn_candidate       &&
5520                             !(declaration->modifiers & DM_NORETURN)) {
5521                                 warningf(&body->base.source_position,
5522                                          "function '%#T' is candidate for attribute 'noreturn'",
5523                                          type, declaration->symbol);
5524                         }
5525                 }
5526
5527                 assert(current_parent   == NULL);
5528                 assert(current_function == declaration);
5529                 current_function = old_current_function;
5530                 label_pop_to(label_stack_top);
5531         }
5532
5533         assert(scope == &declaration->scope);
5534         set_scope(last_scope);
5535         environment_pop_to(top);
5536 }
5537
5538 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5539                                   source_position_t *source_position,
5540                                   const symbol_t *symbol)
5541 {
5542         type_t *type = allocate_type_zero(TYPE_BITFIELD, source_position);
5543
5544         type->bitfield.base_type       = base_type;
5545         type->bitfield.size_expression = size;
5546
5547         il_size_t bit_size;
5548         type_t *skipped_type = skip_typeref(base_type);
5549         if (!is_type_integer(skipped_type)) {
5550                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5551                         base_type);
5552                 bit_size = 0;
5553         } else {
5554                 bit_size = skipped_type->base.size * 8;
5555         }
5556
5557         if (is_constant_expression(size)) {
5558                 long v = fold_constant(size);
5559
5560                 if (v < 0) {
5561                         errorf(source_position, "negative width in bit-field '%Y'",
5562                                 symbol);
5563                 } else if (v == 0) {
5564                         errorf(source_position, "zero width for bit-field '%Y'",
5565                                 symbol);
5566                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5567                         errorf(source_position, "width of '%Y' exceeds its type",
5568                                 symbol);
5569                 } else {
5570                         type->bitfield.bit_size = v;
5571                 }
5572         }
5573
5574         return type;
5575 }
5576
5577 static declaration_t *find_compound_entry(declaration_t *compound_declaration,
5578                                           symbol_t *symbol)
5579 {
5580         declaration_t *iter = compound_declaration->scope.declarations;
5581         for( ; iter != NULL; iter = iter->next) {
5582                 if (iter->namespc != NAMESPACE_NORMAL)
5583                         continue;
5584
5585                 if (iter->symbol == NULL) {
5586                         type_t *type = skip_typeref(iter->type);
5587                         if (is_type_compound(type)) {
5588                                 declaration_t *result
5589                                         = find_compound_entry(type->compound.declaration, symbol);
5590                                 if (result != NULL)
5591                                         return result;
5592                         }
5593                         continue;
5594                 }
5595
5596                 if (iter->symbol == symbol) {
5597                         return iter;
5598                 }
5599         }
5600
5601         return NULL;
5602 }
5603
5604 static void parse_compound_declarators(declaration_t *struct_declaration,
5605                 const declaration_specifiers_t *specifiers)
5606 {
5607         declaration_t *last_declaration = struct_declaration->scope.declarations;
5608         if (last_declaration != NULL) {
5609                 while (last_declaration->next != NULL) {
5610                         last_declaration = last_declaration->next;
5611                 }
5612         }
5613
5614         while (true) {
5615                 declaration_t *declaration;
5616
5617                 if (token.type == ':') {
5618                         source_position_t source_position = *HERE;
5619                         next_token();
5620
5621                         type_t *base_type = specifiers->type;
5622                         expression_t *size = parse_constant_expression();
5623
5624                         type_t *type = make_bitfield_type(base_type, size,
5625                                         &source_position, sym_anonymous);
5626
5627                         declaration                         = allocate_declaration_zero();
5628                         declaration->namespc                = NAMESPACE_NORMAL;
5629                         declaration->declared_storage_class = STORAGE_CLASS_NONE;
5630                         declaration->storage_class          = STORAGE_CLASS_NONE;
5631                         declaration->source_position        = source_position;
5632                         declaration->modifiers              = specifiers->modifiers;
5633                         declaration->type                   = type;
5634                 } else {
5635                         declaration = parse_declarator(specifiers,/*may_be_abstract=*/true);
5636
5637                         type_t *orig_type = declaration->type;
5638                         type_t *type      = skip_typeref(orig_type);
5639
5640                         if (token.type == ':') {
5641                                 source_position_t source_position = *HERE;
5642                                 next_token();
5643                                 expression_t *size = parse_constant_expression();
5644
5645                                 type_t *bitfield_type = make_bitfield_type(orig_type, size,
5646                                                 &source_position, declaration->symbol);
5647                                 declaration->type = bitfield_type;
5648                         } else {
5649                                 /* TODO we ignore arrays for now... what is missing is a check
5650                                  * that they're at the end of the struct */
5651                                 if (is_type_incomplete(type) && !is_type_array(type)) {
5652                                         errorf(HERE,
5653                                                "compound member '%Y' has incomplete type '%T'",
5654                                                declaration->symbol, orig_type);
5655                                 } else if (is_type_function(type)) {
5656                                         errorf(HERE, "compound member '%Y' must not have function type '%T'",
5657                                                declaration->symbol, orig_type);
5658                                 }
5659                         }
5660                 }
5661
5662                 /* make sure we don't define a symbol multiple times */
5663                 symbol_t *symbol = declaration->symbol;
5664                 if (symbol != NULL) {
5665                         declaration_t *prev_decl
5666                                 = find_compound_entry(struct_declaration, symbol);
5667
5668                         if (prev_decl != NULL) {
5669                                 assert(prev_decl->symbol == symbol);
5670                                 errorf(&declaration->source_position,
5671                                        "multiple declarations of symbol '%Y' (declared %P)",
5672                                        symbol, &prev_decl->source_position);
5673                         }
5674                 }
5675
5676                 /* append declaration */
5677                 if (last_declaration != NULL) {
5678                         last_declaration->next = declaration;
5679                 } else {
5680                         struct_declaration->scope.declarations = declaration;
5681                 }
5682                 last_declaration = declaration;
5683
5684                 if (token.type != ',')
5685                         break;
5686                 next_token();
5687         }
5688         expect(';');
5689
5690 end_error:
5691         ;
5692 }
5693
5694 static void parse_compound_type_entries(declaration_t *compound_declaration)
5695 {
5696         eat('{');
5697         add_anchor_token('}');
5698
5699         while (token.type != '}' && token.type != T_EOF) {
5700                 declaration_specifiers_t specifiers;
5701                 memset(&specifiers, 0, sizeof(specifiers));
5702                 parse_declaration_specifiers(&specifiers);
5703
5704                 parse_compound_declarators(compound_declaration, &specifiers);
5705         }
5706         rem_anchor_token('}');
5707
5708         if (token.type == T_EOF) {
5709                 errorf(HERE, "EOF while parsing struct");
5710         }
5711         next_token();
5712 }
5713
5714 static type_t *parse_typename(void)
5715 {
5716         declaration_specifiers_t specifiers;
5717         memset(&specifiers, 0, sizeof(specifiers));
5718         parse_declaration_specifiers(&specifiers);
5719         if (specifiers.declared_storage_class != STORAGE_CLASS_NONE) {
5720                 /* TODO: improve error message, user does probably not know what a
5721                  * storage class is...
5722                  */
5723                 errorf(HERE, "typename may not have a storage class");
5724         }
5725
5726         type_t *result = parse_abstract_declarator(specifiers.type);
5727
5728         return result;
5729 }
5730
5731
5732
5733
5734 typedef expression_t* (*parse_expression_function) (unsigned precedence);
5735 typedef expression_t* (*parse_expression_infix_function) (unsigned precedence,
5736                                                           expression_t *left);
5737
5738 typedef struct expression_parser_function_t expression_parser_function_t;
5739 struct expression_parser_function_t {
5740         unsigned                         precedence;
5741         parse_expression_function        parser;
5742         unsigned                         infix_precedence;
5743         parse_expression_infix_function  infix_parser;
5744 };
5745
5746 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
5747
5748 /**
5749  * Prints an error message if an expression was expected but not read
5750  */
5751 static expression_t *expected_expression_error(void)
5752 {
5753         /* skip the error message if the error token was read */
5754         if (token.type != T_ERROR) {
5755                 errorf(HERE, "expected expression, got token '%K'", &token);
5756         }
5757         next_token();
5758
5759         return create_invalid_expression();
5760 }
5761
5762 /**
5763  * Parse a string constant.
5764  */
5765 static expression_t *parse_string_const(void)
5766 {
5767         wide_string_t wres;
5768         if (token.type == T_STRING_LITERAL) {
5769                 string_t res = token.v.string;
5770                 next_token();
5771                 while (token.type == T_STRING_LITERAL) {
5772                         res = concat_strings(&res, &token.v.string);
5773                         next_token();
5774                 }
5775                 if (token.type != T_WIDE_STRING_LITERAL) {
5776                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
5777                         /* note: that we use type_char_ptr here, which is already the
5778                          * automatic converted type. revert_automatic_type_conversion
5779                          * will construct the array type */
5780                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
5781                         cnst->string.value = res;
5782                         return cnst;
5783                 }
5784
5785                 wres = concat_string_wide_string(&res, &token.v.wide_string);
5786         } else {
5787                 wres = token.v.wide_string;
5788         }
5789         next_token();
5790
5791         for (;;) {
5792                 switch (token.type) {
5793                         case T_WIDE_STRING_LITERAL:
5794                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
5795                                 break;
5796
5797                         case T_STRING_LITERAL:
5798                                 wres = concat_wide_string_string(&wres, &token.v.string);
5799                                 break;
5800
5801                         default: {
5802                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
5803                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
5804                                 cnst->wide_string.value = wres;
5805                                 return cnst;
5806                         }
5807                 }
5808                 next_token();
5809         }
5810 }
5811
5812 /**
5813  * Parse an integer constant.
5814  */
5815 static expression_t *parse_int_const(void)
5816 {
5817         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5818         cnst->base.source_position = *HERE;
5819         cnst->base.type            = token.datatype;
5820         cnst->conste.v.int_value   = token.v.intvalue;
5821
5822         next_token();
5823
5824         return cnst;
5825 }
5826
5827 /**
5828  * Parse a character constant.
5829  */
5830 static expression_t *parse_character_constant(void)
5831 {
5832         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
5833
5834         cnst->base.source_position = *HERE;
5835         cnst->base.type            = token.datatype;
5836         cnst->conste.v.character   = token.v.string;
5837
5838         if (cnst->conste.v.character.size != 1) {
5839                 if (warning.multichar && GNU_MODE) {
5840                         warningf(HERE, "multi-character character constant");
5841                 } else {
5842                         errorf(HERE, "more than 1 characters in character constant");
5843                 }
5844         }
5845         next_token();
5846
5847         return cnst;
5848 }
5849
5850 /**
5851  * Parse a wide character constant.
5852  */
5853 static expression_t *parse_wide_character_constant(void)
5854 {
5855         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
5856
5857         cnst->base.source_position    = *HERE;
5858         cnst->base.type               = token.datatype;
5859         cnst->conste.v.wide_character = token.v.wide_string;
5860
5861         if (cnst->conste.v.wide_character.size != 1) {
5862                 if (warning.multichar && GNU_MODE) {
5863                         warningf(HERE, "multi-character character constant");
5864                 } else {
5865                         errorf(HERE, "more than 1 characters in character constant");
5866                 }
5867         }
5868         next_token();
5869
5870         return cnst;
5871 }
5872
5873 /**
5874  * Parse a float constant.
5875  */
5876 static expression_t *parse_float_const(void)
5877 {
5878         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
5879         cnst->base.type            = token.datatype;
5880         cnst->conste.v.float_value = token.v.floatvalue;
5881
5882         next_token();
5883
5884         return cnst;
5885 }
5886
5887 static declaration_t *create_implicit_function(symbol_t *symbol,
5888                 const source_position_t *source_position)
5889 {
5890         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION, source_position);
5891         ntype->function.return_type            = type_int;
5892         ntype->function.unspecified_parameters = true;
5893
5894         type_t *type = typehash_insert(ntype);
5895         if (type != ntype) {
5896                 free_type(ntype);
5897         }
5898
5899         declaration_t *const declaration    = allocate_declaration_zero();
5900         declaration->storage_class          = STORAGE_CLASS_EXTERN;
5901         declaration->declared_storage_class = STORAGE_CLASS_EXTERN;
5902         declaration->type                   = type;
5903         declaration->symbol                 = symbol;
5904         declaration->source_position        = *source_position;
5905         declaration->implicit               = true;
5906
5907         bool strict_prototypes_old = warning.strict_prototypes;
5908         warning.strict_prototypes  = false;
5909         record_declaration(declaration, false);
5910         warning.strict_prototypes = strict_prototypes_old;
5911
5912         return declaration;
5913 }
5914
5915 /**
5916  * Creates a return_type (func)(argument_type) function type if not
5917  * already exists.
5918  */
5919 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
5920                                     type_t *argument_type2)
5921 {
5922         function_parameter_t *parameter2
5923                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
5924         memset(parameter2, 0, sizeof(parameter2[0]));
5925         parameter2->type = argument_type2;
5926
5927         function_parameter_t *parameter1
5928                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
5929         memset(parameter1, 0, sizeof(parameter1[0]));
5930         parameter1->type = argument_type1;
5931         parameter1->next = parameter2;
5932
5933         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5934         type->function.return_type = return_type;
5935         type->function.parameters  = parameter1;
5936
5937         type_t *result = typehash_insert(type);
5938         if (result != type) {
5939                 free_type(type);
5940         }
5941
5942         return result;
5943 }
5944
5945 /**
5946  * Creates a return_type (func)(argument_type) function type if not
5947  * already exists.
5948  *
5949  * @param return_type    the return type
5950  * @param argument_type  the argument type
5951  */
5952 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
5953 {
5954         function_parameter_t *parameter
5955                 = obstack_alloc(type_obst, sizeof(parameter[0]));
5956         memset(parameter, 0, sizeof(parameter[0]));
5957         parameter->type = argument_type;
5958
5959         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5960         type->function.return_type = return_type;
5961         type->function.parameters  = parameter;
5962
5963         type_t *result = typehash_insert(type);
5964         if (result != type) {
5965                 free_type(type);
5966         }
5967
5968         return result;
5969 }
5970
5971 static type_t *make_function_0_type(type_t *return_type)
5972 {
5973         type_t *type               = allocate_type_zero(TYPE_FUNCTION, &builtin_source_position);
5974         type->function.return_type = return_type;
5975         type->function.parameters  = NULL;
5976
5977         type_t *result = typehash_insert(type);
5978         if (result != type) {
5979                 free_type(type);
5980         }
5981
5982         return result;
5983 }
5984
5985 /**
5986  * Creates a function type for some function like builtins.
5987  *
5988  * @param symbol   the symbol describing the builtin
5989  */
5990 static type_t *get_builtin_symbol_type(symbol_t *symbol)
5991 {
5992         switch(symbol->ID) {
5993         case T___builtin_alloca:
5994                 return make_function_1_type(type_void_ptr, type_size_t);
5995         case T___builtin_huge_val:
5996                 return make_function_0_type(type_double);
5997         case T___builtin_nan:
5998                 return make_function_1_type(type_double, type_char_ptr);
5999         case T___builtin_nanf:
6000                 return make_function_1_type(type_float, type_char_ptr);
6001         case T___builtin_nand:
6002                 return make_function_1_type(type_long_double, type_char_ptr);
6003         case T___builtin_va_end:
6004                 return make_function_1_type(type_void, type_valist);
6005         case T___builtin_expect:
6006                 return make_function_2_type(type_long, type_long, type_long);
6007         default:
6008                 internal_errorf(HERE, "not implemented builtin symbol found");
6009         }
6010 }
6011
6012 /**
6013  * Performs automatic type cast as described in Â§ 6.3.2.1.
6014  *
6015  * @param orig_type  the original type
6016  */
6017 static type_t *automatic_type_conversion(type_t *orig_type)
6018 {
6019         type_t *type = skip_typeref(orig_type);
6020         if (is_type_array(type)) {
6021                 array_type_t *array_type   = &type->array;
6022                 type_t       *element_type = array_type->element_type;
6023                 unsigned      qualifiers   = array_type->base.qualifiers;
6024
6025                 return make_pointer_type(element_type, qualifiers);
6026         }
6027
6028         if (is_type_function(type)) {
6029                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6030         }
6031
6032         return orig_type;
6033 }
6034
6035 /**
6036  * reverts the automatic casts of array to pointer types and function
6037  * to function-pointer types as defined Â§ 6.3.2.1
6038  */
6039 type_t *revert_automatic_type_conversion(const expression_t *expression)
6040 {
6041         switch (expression->kind) {
6042                 case EXPR_REFERENCE: return expression->reference.declaration->type;
6043
6044                 case EXPR_SELECT:
6045                         return get_qualified_type(expression->select.compound_entry->type,
6046                                                   expression->base.type->base.qualifiers);
6047
6048                 case EXPR_UNARY_DEREFERENCE: {
6049                         const expression_t *const value = expression->unary.value;
6050                         type_t             *const type  = skip_typeref(value->base.type);
6051                         assert(is_type_pointer(type));
6052                         return type->pointer.points_to;
6053                 }
6054
6055                 case EXPR_BUILTIN_SYMBOL:
6056                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6057
6058                 case EXPR_ARRAY_ACCESS: {
6059                         const expression_t *array_ref = expression->array_access.array_ref;
6060                         type_t             *type_left = skip_typeref(array_ref->base.type);
6061                         if (!is_type_valid(type_left))
6062                                 return type_left;
6063                         assert(is_type_pointer(type_left));
6064                         return type_left->pointer.points_to;
6065                 }
6066
6067                 case EXPR_STRING_LITERAL: {
6068                         size_t size = expression->string.value.size;
6069                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6070                 }
6071
6072                 case EXPR_WIDE_STRING_LITERAL: {
6073                         size_t size = expression->wide_string.value.size;
6074                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6075                 }
6076
6077                 case EXPR_COMPOUND_LITERAL:
6078                         return expression->compound_literal.type;
6079
6080                 default: break;
6081         }
6082
6083         return expression->base.type;
6084 }
6085
6086 static expression_t *parse_reference(void)
6087 {
6088         expression_t *expression = allocate_expression_zero(EXPR_REFERENCE);
6089
6090         reference_expression_t *ref = &expression->reference;
6091         symbol_t *const symbol = token.v.symbol;
6092
6093         declaration_t *declaration = get_declaration(symbol, NAMESPACE_NORMAL);
6094
6095         if (declaration == NULL) {
6096                 if (!strict_mode && look_ahead(1)->type == '(') {
6097                         /* an implicitly declared function */
6098                         if (warning.implicit_function_declaration) {
6099                                 warningf(HERE, "implicit declaration of function '%Y'",
6100                                         symbol);
6101                         }
6102
6103                         declaration = create_implicit_function(symbol, HERE);
6104                 } else {
6105                         errorf(HERE, "unknown symbol '%Y' found.", symbol);
6106                         declaration = create_error_declaration(symbol, STORAGE_CLASS_NONE);
6107                 }
6108         }
6109
6110         type_t *type = declaration->type;
6111
6112         /* we always do the auto-type conversions; the & and sizeof parser contains
6113          * code to revert this! */
6114         type = automatic_type_conversion(type);
6115
6116         ref->declaration = declaration;
6117         ref->base.type   = type;
6118
6119         /* this declaration is used */
6120         declaration->used = true;
6121
6122         /* check for deprecated functions */
6123         if (warning.deprecated_declarations &&
6124             declaration->modifiers & DM_DEPRECATED) {
6125                 char const *const prefix = is_type_function(declaration->type) ?
6126                         "function" : "variable";
6127
6128                 if (declaration->deprecated_string != NULL) {
6129                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
6130                                 prefix, declaration->symbol, &declaration->source_position,
6131                                 declaration->deprecated_string);
6132                 } else {
6133                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
6134                                 declaration->symbol, &declaration->source_position);
6135                 }
6136         }
6137         if (warning.init_self && declaration == current_init_decl && !in_type_prop) {
6138                 current_init_decl = NULL;
6139                 warningf(HERE, "variable '%#T' is initialized by itself",
6140                         declaration->type, declaration->symbol);
6141         }
6142
6143         next_token();
6144         return expression;
6145 }
6146
6147 static bool semantic_cast(expression_t *cast)
6148 {
6149         expression_t            *expression      = cast->unary.value;
6150         type_t                  *orig_dest_type  = cast->base.type;
6151         type_t                  *orig_type_right = expression->base.type;
6152         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6153         type_t            const *src_type        = skip_typeref(orig_type_right);
6154         source_position_t const *pos             = &cast->base.source_position;
6155
6156         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6157         if (dst_type == type_void)
6158                 return true;
6159
6160         /* only integer and pointer can be casted to pointer */
6161         if (is_type_pointer(dst_type)  &&
6162             !is_type_pointer(src_type) &&
6163             !is_type_integer(src_type) &&
6164             is_type_valid(src_type)) {
6165                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6166                 return false;
6167         }
6168
6169         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6170                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6171                 return false;
6172         }
6173
6174         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6175                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6176                 return false;
6177         }
6178
6179         if (warning.cast_qual &&
6180             is_type_pointer(src_type) &&
6181             is_type_pointer(dst_type)) {
6182                 type_t *src = skip_typeref(src_type->pointer.points_to);
6183                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6184                 unsigned missing_qualifiers =
6185                         src->base.qualifiers & ~dst->base.qualifiers;
6186                 if (missing_qualifiers != 0) {
6187                         warningf(pos,
6188                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6189                                  missing_qualifiers, orig_type_right);
6190                 }
6191         }
6192         return true;
6193 }
6194
6195 static expression_t *parse_compound_literal(type_t *type)
6196 {
6197         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6198
6199         parse_initializer_env_t env;
6200         env.type             = type;
6201         env.declaration      = NULL;
6202         env.must_be_constant = false;
6203         initializer_t *initializer = parse_initializer(&env);
6204         type = env.type;
6205
6206         expression->compound_literal.initializer = initializer;
6207         expression->compound_literal.type        = type;
6208         expression->base.type                    = automatic_type_conversion(type);
6209
6210         return expression;
6211 }
6212
6213 /**
6214  * Parse a cast expression.
6215  */
6216 static expression_t *parse_cast(void)
6217 {
6218         add_anchor_token(')');
6219
6220         source_position_t source_position = token.source_position;
6221
6222         type_t *type  = parse_typename();
6223
6224         rem_anchor_token(')');
6225         expect(')');
6226
6227         if (token.type == '{') {
6228                 return parse_compound_literal(type);
6229         }
6230
6231         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6232         cast->base.source_position = source_position;
6233
6234         expression_t *value = parse_sub_expression(20);
6235         cast->base.type   = type;
6236         cast->unary.value = value;
6237
6238         if (! semantic_cast(cast)) {
6239                 /* TODO: record the error in the AST. else it is impossible to detect it */
6240         }
6241
6242         return cast;
6243 end_error:
6244         return create_invalid_expression();
6245 }
6246
6247 /**
6248  * Parse a statement expression.
6249  */
6250 static expression_t *parse_statement_expression(void)
6251 {
6252         add_anchor_token(')');
6253
6254         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6255
6256         statement_t *statement           = parse_compound_statement(true);
6257         expression->statement.statement  = statement;
6258         expression->base.source_position = statement->base.source_position;
6259
6260         /* find last statement and use its type */
6261         type_t *type = type_void;
6262         const statement_t *stmt = statement->compound.statements;
6263         if (stmt != NULL) {
6264                 while (stmt->base.next != NULL)
6265                         stmt = stmt->base.next;
6266
6267                 if (stmt->kind == STATEMENT_EXPRESSION) {
6268                         type = stmt->expression.expression->base.type;
6269                 }
6270         } else {
6271                 warningf(&expression->base.source_position, "empty statement expression ({})");
6272         }
6273         expression->base.type = type;
6274
6275         rem_anchor_token(')');
6276         expect(')');
6277
6278 end_error:
6279         return expression;
6280 }
6281
6282 /**
6283  * Parse a parenthesized expression.
6284  */
6285 static expression_t *parse_parenthesized_expression(void)
6286 {
6287         eat('(');
6288
6289         switch(token.type) {
6290         case '{':
6291                 /* gcc extension: a statement expression */
6292                 return parse_statement_expression();
6293
6294         TYPE_QUALIFIERS
6295         TYPE_SPECIFIERS
6296                 return parse_cast();
6297         case T_IDENTIFIER:
6298                 if (is_typedef_symbol(token.v.symbol)) {
6299                         return parse_cast();
6300                 }
6301         }
6302
6303         add_anchor_token(')');
6304         expression_t *result = parse_expression();
6305         rem_anchor_token(')');
6306         expect(')');
6307
6308 end_error:
6309         return result;
6310 }
6311
6312 static expression_t *parse_function_keyword(void)
6313 {
6314         next_token();
6315         /* TODO */
6316
6317         if (current_function == NULL) {
6318                 errorf(HERE, "'__func__' used outside of a function");
6319         }
6320
6321         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6322         expression->base.type     = type_char_ptr;
6323         expression->funcname.kind = FUNCNAME_FUNCTION;
6324
6325         return expression;
6326 }
6327
6328 static expression_t *parse_pretty_function_keyword(void)
6329 {
6330         eat(T___PRETTY_FUNCTION__);
6331
6332         if (current_function == NULL) {
6333                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6334         }
6335
6336         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6337         expression->base.type     = type_char_ptr;
6338         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6339
6340         return expression;
6341 }
6342
6343 static expression_t *parse_funcsig_keyword(void)
6344 {
6345         eat(T___FUNCSIG__);
6346
6347         if (current_function == NULL) {
6348                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6349         }
6350
6351         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6352         expression->base.type     = type_char_ptr;
6353         expression->funcname.kind = FUNCNAME_FUNCSIG;
6354
6355         return expression;
6356 }
6357
6358 static expression_t *parse_funcdname_keyword(void)
6359 {
6360         eat(T___FUNCDNAME__);
6361
6362         if (current_function == NULL) {
6363                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6364         }
6365
6366         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6367         expression->base.type     = type_char_ptr;
6368         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6369
6370         return expression;
6371 }
6372
6373 static designator_t *parse_designator(void)
6374 {
6375         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6376         result->source_position = *HERE;
6377
6378         if (token.type != T_IDENTIFIER) {
6379                 parse_error_expected("while parsing member designator",
6380                                      T_IDENTIFIER, NULL);
6381                 return NULL;
6382         }
6383         result->symbol = token.v.symbol;
6384         next_token();
6385
6386         designator_t *last_designator = result;
6387         while(true) {
6388                 if (token.type == '.') {
6389                         next_token();
6390                         if (token.type != T_IDENTIFIER) {
6391                                 parse_error_expected("while parsing member designator",
6392                                                      T_IDENTIFIER, NULL);
6393                                 return NULL;
6394                         }
6395                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6396                         designator->source_position = *HERE;
6397                         designator->symbol          = token.v.symbol;
6398                         next_token();
6399
6400                         last_designator->next = designator;
6401                         last_designator       = designator;
6402                         continue;
6403                 }
6404                 if (token.type == '[') {
6405                         next_token();
6406                         add_anchor_token(']');
6407                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6408                         designator->source_position = *HERE;
6409                         designator->array_index     = parse_expression();
6410                         rem_anchor_token(']');
6411                         expect(']');
6412                         if (designator->array_index == NULL) {
6413                                 return NULL;
6414                         }
6415
6416                         last_designator->next = designator;
6417                         last_designator       = designator;
6418                         continue;
6419                 }
6420                 break;
6421         }
6422
6423         return result;
6424 end_error:
6425         return NULL;
6426 }
6427
6428 /**
6429  * Parse the __builtin_offsetof() expression.
6430  */
6431 static expression_t *parse_offsetof(void)
6432 {
6433         eat(T___builtin_offsetof);
6434
6435         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6436         expression->base.type    = type_size_t;
6437
6438         expect('(');
6439         add_anchor_token(',');
6440         type_t *type = parse_typename();
6441         rem_anchor_token(',');
6442         expect(',');
6443         add_anchor_token(')');
6444         designator_t *designator = parse_designator();
6445         rem_anchor_token(')');
6446         expect(')');
6447
6448         expression->offsetofe.type       = type;
6449         expression->offsetofe.designator = designator;
6450
6451         type_path_t path;
6452         memset(&path, 0, sizeof(path));
6453         path.top_type = type;
6454         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6455
6456         descend_into_subtype(&path);
6457
6458         if (!walk_designator(&path, designator, true)) {
6459                 return create_invalid_expression();
6460         }
6461
6462         DEL_ARR_F(path.path);
6463
6464         return expression;
6465 end_error:
6466         return create_invalid_expression();
6467 }
6468
6469 /**
6470  * Parses a _builtin_va_start() expression.
6471  */
6472 static expression_t *parse_va_start(void)
6473 {
6474         eat(T___builtin_va_start);
6475
6476         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6477
6478         expect('(');
6479         add_anchor_token(',');
6480         expression->va_starte.ap = parse_assignment_expression();
6481         rem_anchor_token(',');
6482         expect(',');
6483         expression_t *const expr = parse_assignment_expression();
6484         if (expr->kind == EXPR_REFERENCE) {
6485                 declaration_t *const decl = expr->reference.declaration;
6486                 if (decl->parent_scope != &current_function->scope || decl->next != NULL) {
6487                         errorf(&expr->base.source_position,
6488                                "second argument of 'va_start' must be last parameter of the current function");
6489                 }
6490                 expression->va_starte.parameter = decl;
6491                 expect(')');
6492                 return expression;
6493         }
6494         expect(')');
6495 end_error:
6496         return create_invalid_expression();
6497 }
6498
6499 /**
6500  * Parses a _builtin_va_arg() expression.
6501  */
6502 static expression_t *parse_va_arg(void)
6503 {
6504         eat(T___builtin_va_arg);
6505
6506         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6507
6508         expect('(');
6509         expression->va_arge.ap = parse_assignment_expression();
6510         expect(',');
6511         expression->base.type = parse_typename();
6512         expect(')');
6513
6514         return expression;
6515 end_error:
6516         return create_invalid_expression();
6517 }
6518
6519 static expression_t *parse_builtin_symbol(void)
6520 {
6521         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
6522
6523         symbol_t *symbol = token.v.symbol;
6524
6525         expression->builtin_symbol.symbol = symbol;
6526         next_token();
6527
6528         type_t *type = get_builtin_symbol_type(symbol);
6529         type = automatic_type_conversion(type);
6530
6531         expression->base.type = type;
6532         return expression;
6533 }
6534
6535 /**
6536  * Parses a __builtin_constant() expression.
6537  */
6538 static expression_t *parse_builtin_constant(void)
6539 {
6540         eat(T___builtin_constant_p);
6541
6542         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6543
6544         expect('(');
6545         add_anchor_token(')');
6546         expression->builtin_constant.value = parse_assignment_expression();
6547         rem_anchor_token(')');
6548         expect(')');
6549         expression->base.type = type_int;
6550
6551         return expression;
6552 end_error:
6553         return create_invalid_expression();
6554 }
6555
6556 /**
6557  * Parses a __builtin_prefetch() expression.
6558  */
6559 static expression_t *parse_builtin_prefetch(void)
6560 {
6561         eat(T___builtin_prefetch);
6562
6563         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
6564
6565         expect('(');
6566         add_anchor_token(')');
6567         expression->builtin_prefetch.adr = parse_assignment_expression();
6568         if (token.type == ',') {
6569                 next_token();
6570                 expression->builtin_prefetch.rw = parse_assignment_expression();
6571         }
6572         if (token.type == ',') {
6573                 next_token();
6574                 expression->builtin_prefetch.locality = parse_assignment_expression();
6575         }
6576         rem_anchor_token(')');
6577         expect(')');
6578         expression->base.type = type_void;
6579
6580         return expression;
6581 end_error:
6582         return create_invalid_expression();
6583 }
6584
6585 /**
6586  * Parses a __builtin_is_*() compare expression.
6587  */
6588 static expression_t *parse_compare_builtin(void)
6589 {
6590         expression_t *expression;
6591
6592         switch(token.type) {
6593         case T___builtin_isgreater:
6594                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6595                 break;
6596         case T___builtin_isgreaterequal:
6597                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6598                 break;
6599         case T___builtin_isless:
6600                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6601                 break;
6602         case T___builtin_islessequal:
6603                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6604                 break;
6605         case T___builtin_islessgreater:
6606                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6607                 break;
6608         case T___builtin_isunordered:
6609                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6610                 break;
6611         default:
6612                 internal_errorf(HERE, "invalid compare builtin found");
6613                 break;
6614         }
6615         expression->base.source_position = *HERE;
6616         next_token();
6617
6618         expect('(');
6619         expression->binary.left = parse_assignment_expression();
6620         expect(',');
6621         expression->binary.right = parse_assignment_expression();
6622         expect(')');
6623
6624         type_t *const orig_type_left  = expression->binary.left->base.type;
6625         type_t *const orig_type_right = expression->binary.right->base.type;
6626
6627         type_t *const type_left  = skip_typeref(orig_type_left);
6628         type_t *const type_right = skip_typeref(orig_type_right);
6629         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6630                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6631                         type_error_incompatible("invalid operands in comparison",
6632                                 &expression->base.source_position, orig_type_left, orig_type_right);
6633                 }
6634         } else {
6635                 semantic_comparison(&expression->binary);
6636         }
6637
6638         return expression;
6639 end_error:
6640         return create_invalid_expression();
6641 }
6642
6643 #if 0
6644 /**
6645  * Parses a __builtin_expect() expression.
6646  */
6647 static expression_t *parse_builtin_expect(void)
6648 {
6649         eat(T___builtin_expect);
6650
6651         expression_t *expression
6652                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
6653
6654         expect('(');
6655         expression->binary.left = parse_assignment_expression();
6656         expect(',');
6657         expression->binary.right = parse_constant_expression();
6658         expect(')');
6659
6660         expression->base.type = expression->binary.left->base.type;
6661
6662         return expression;
6663 end_error:
6664         return create_invalid_expression();
6665 }
6666 #endif
6667
6668 /**
6669  * Parses a MS assume() expression.
6670  */
6671 static expression_t *parse_assume(void)
6672 {
6673         eat(T__assume);
6674
6675         expression_t *expression
6676                 = allocate_expression_zero(EXPR_UNARY_ASSUME);
6677
6678         expect('(');
6679         add_anchor_token(')');
6680         expression->unary.value = parse_assignment_expression();
6681         rem_anchor_token(')');
6682         expect(')');
6683
6684         expression->base.type = type_void;
6685         return expression;
6686 end_error:
6687         return create_invalid_expression();
6688 }
6689
6690 /**
6691  * Return the declaration for a given label symbol or create a new one.
6692  *
6693  * @param symbol  the symbol of the label
6694  */
6695 static declaration_t *get_label(symbol_t *symbol)
6696 {
6697         declaration_t *candidate;
6698         assert(current_function != NULL);
6699
6700         candidate = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
6701         /* if we found a local label, we already created the declaration */
6702         if (candidate != NULL) {
6703                 assert(candidate->parent_scope == scope);
6704                 return candidate;
6705         }
6706
6707         candidate = get_declaration(symbol, NAMESPACE_LABEL);
6708         /* if we found a label in the same function, then we already created the
6709          * declaration */
6710         if (candidate != NULL
6711                         && candidate->parent_scope == &current_function->scope) {
6712                 return candidate;
6713         }
6714
6715         /* otherwise we need to create a new one */
6716         declaration_t *const declaration = allocate_declaration_zero();
6717         declaration->namespc       = NAMESPACE_LABEL;
6718         declaration->symbol        = symbol;
6719
6720         label_push(declaration);
6721
6722         return declaration;
6723 }
6724
6725 /**
6726  * Parses a GNU && label address expression.
6727  */
6728 static expression_t *parse_label_address(void)
6729 {
6730         source_position_t source_position = token.source_position;
6731         eat(T_ANDAND);
6732         if (token.type != T_IDENTIFIER) {
6733                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
6734                 goto end_error;
6735         }
6736         symbol_t *symbol = token.v.symbol;
6737         next_token();
6738
6739         declaration_t *label = get_label(symbol);
6740
6741         label->used          = true;
6742         label->address_taken = true;
6743
6744         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
6745         expression->base.source_position = source_position;
6746
6747         /* label address is threaten as a void pointer */
6748         expression->base.type                 = type_void_ptr;
6749         expression->label_address.declaration = label;
6750         return expression;
6751 end_error:
6752         return create_invalid_expression();
6753 }
6754
6755 /**
6756  * Parse a microsoft __noop expression.
6757  */
6758 static expression_t *parse_noop_expression(void)
6759 {
6760         source_position_t source_position = *HERE;
6761         eat(T___noop);
6762
6763         if (token.type == '(') {
6764                 /* parse arguments */
6765                 eat('(');
6766                 add_anchor_token(')');
6767                 add_anchor_token(',');
6768
6769                 if (token.type != ')') {
6770                         while(true) {
6771                                 (void)parse_assignment_expression();
6772                                 if (token.type != ',')
6773                                         break;
6774                                 next_token();
6775                         }
6776                 }
6777         }
6778         rem_anchor_token(',');
6779         rem_anchor_token(')');
6780         expect(')');
6781
6782         /* the result is a (int)0 */
6783         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6784         cnst->base.source_position = source_position;
6785         cnst->base.type            = type_int;
6786         cnst->conste.v.int_value   = 0;
6787         cnst->conste.is_ms_noop    = true;
6788
6789         return cnst;
6790
6791 end_error:
6792         return create_invalid_expression();
6793 }
6794
6795 /**
6796  * Parses a primary expression.
6797  */
6798 static expression_t *parse_primary_expression(void)
6799 {
6800         switch (token.type) {
6801                 case T_INTEGER:                  return parse_int_const();
6802                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
6803                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
6804                 case T_FLOATINGPOINT:            return parse_float_const();
6805                 case T_STRING_LITERAL:
6806                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
6807                 case T_IDENTIFIER:               return parse_reference();
6808                 case T___FUNCTION__:
6809                 case T___func__:                 return parse_function_keyword();
6810                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
6811                 case T___FUNCSIG__:              return parse_funcsig_keyword();
6812                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
6813                 case T___builtin_offsetof:       return parse_offsetof();
6814                 case T___builtin_va_start:       return parse_va_start();
6815                 case T___builtin_va_arg:         return parse_va_arg();
6816                 case T___builtin_expect:
6817                 case T___builtin_alloca:
6818                 case T___builtin_nan:
6819                 case T___builtin_nand:
6820                 case T___builtin_nanf:
6821                 case T___builtin_huge_val:
6822                 case T___builtin_va_end:         return parse_builtin_symbol();
6823                 case T___builtin_isgreater:
6824                 case T___builtin_isgreaterequal:
6825                 case T___builtin_isless:
6826                 case T___builtin_islessequal:
6827                 case T___builtin_islessgreater:
6828                 case T___builtin_isunordered:    return parse_compare_builtin();
6829                 case T___builtin_constant_p:     return parse_builtin_constant();
6830                 case T___builtin_prefetch:       return parse_builtin_prefetch();
6831                 case T__assume:                  return parse_assume();
6832                 case T_ANDAND:
6833                         if (GNU_MODE)
6834                                 return parse_label_address();
6835                         break;
6836
6837                 case '(':                        return parse_parenthesized_expression();
6838                 case T___noop:                   return parse_noop_expression();
6839         }
6840
6841         errorf(HERE, "unexpected token %K, expected an expression", &token);
6842         return create_invalid_expression();
6843 }
6844
6845 /**
6846  * Check if the expression has the character type and issue a warning then.
6847  */
6848 static void check_for_char_index_type(const expression_t *expression)
6849 {
6850         type_t       *const type      = expression->base.type;
6851         const type_t *const base_type = skip_typeref(type);
6852
6853         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
6854                         warning.char_subscripts) {
6855                 warningf(&expression->base.source_position,
6856                          "array subscript has type '%T'", type);
6857         }
6858 }
6859
6860 static expression_t *parse_array_expression(unsigned precedence,
6861                                             expression_t *left)
6862 {
6863         (void) precedence;
6864
6865         eat('[');
6866         add_anchor_token(']');
6867
6868         expression_t *inside = parse_expression();
6869
6870         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
6871
6872         array_access_expression_t *array_access = &expression->array_access;
6873
6874         type_t *const orig_type_left   = left->base.type;
6875         type_t *const orig_type_inside = inside->base.type;
6876
6877         type_t *const type_left   = skip_typeref(orig_type_left);
6878         type_t *const type_inside = skip_typeref(orig_type_inside);
6879
6880         type_t *return_type;
6881         if (is_type_pointer(type_left)) {
6882                 return_type             = type_left->pointer.points_to;
6883                 array_access->array_ref = left;
6884                 array_access->index     = inside;
6885                 check_for_char_index_type(inside);
6886         } else if (is_type_pointer(type_inside)) {
6887                 return_type             = type_inside->pointer.points_to;
6888                 array_access->array_ref = inside;
6889                 array_access->index     = left;
6890                 array_access->flipped   = true;
6891                 check_for_char_index_type(left);
6892         } else {
6893                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
6894                         errorf(HERE,
6895                                 "array access on object with non-pointer types '%T', '%T'",
6896                                 orig_type_left, orig_type_inside);
6897                 }
6898                 return_type             = type_error_type;
6899                 array_access->array_ref = left;
6900                 array_access->index     = inside;
6901         }
6902
6903         expression->base.type = automatic_type_conversion(return_type);
6904
6905         rem_anchor_token(']');
6906         if (token.type == ']') {
6907                 next_token();
6908         } else {
6909                 parse_error_expected("Problem while parsing array access", ']', NULL);
6910         }
6911         return expression;
6912 }
6913
6914 static expression_t *parse_typeprop(expression_kind_t const kind,
6915                                     source_position_t const pos,
6916                                     unsigned const precedence)
6917 {
6918         expression_t  *tp_expression = allocate_expression_zero(kind);
6919         tp_expression->base.type            = type_size_t;
6920         tp_expression->base.source_position = pos;
6921
6922         char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
6923
6924         /* we only refer to a type property, mark this case */
6925         bool old     = in_type_prop;
6926         in_type_prop = true;
6927         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
6928                 next_token();
6929                 add_anchor_token(')');
6930                 type_t* const orig_type = parse_typename();
6931                 tp_expression->typeprop.type = orig_type;
6932
6933                 type_t const* const type = skip_typeref(orig_type);
6934                 char const* const wrong_type =
6935                         is_type_incomplete(type)    ? "incomplete"          :
6936                         type->kind == TYPE_FUNCTION ? "function designator" :
6937                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6938                         NULL;
6939                 if (wrong_type != NULL) {
6940                         errorf(&pos, "operand of %s expression must not be %s type '%T'",
6941                                what, wrong_type, type);
6942                 }
6943
6944                 rem_anchor_token(')');
6945                 expect(')');
6946         } else {
6947                 expression_t *expression = parse_sub_expression(precedence);
6948
6949                 type_t* const orig_type = revert_automatic_type_conversion(expression);
6950                 expression->base.type = orig_type;
6951
6952                 type_t const* const type = skip_typeref(orig_type);
6953                 char const* const wrong_type =
6954                         is_type_incomplete(type)    ? "incomplete"          :
6955                         type->kind == TYPE_FUNCTION ? "function designator" :
6956                         type->kind == TYPE_BITFIELD ? "bitfield"            :
6957                         NULL;
6958                 if (wrong_type != NULL) {
6959                         errorf(&pos, "operand of %s expression must not be expression of %s type '%T'", what, wrong_type, type);
6960                 }
6961
6962                 tp_expression->typeprop.type          = expression->base.type;
6963                 tp_expression->typeprop.tp_expression = expression;
6964         }
6965
6966 end_error:
6967         in_type_prop = old;
6968         return tp_expression;
6969 }
6970
6971 static expression_t *parse_sizeof(unsigned precedence)
6972 {
6973         source_position_t pos = *HERE;
6974         eat(T_sizeof);
6975         return parse_typeprop(EXPR_SIZEOF, pos, precedence);
6976 }
6977
6978 static expression_t *parse_alignof(unsigned precedence)
6979 {
6980         source_position_t pos = *HERE;
6981         eat(T___alignof__);
6982         return parse_typeprop(EXPR_ALIGNOF, pos, precedence);
6983 }
6984
6985 static expression_t *parse_select_expression(unsigned precedence,
6986                                              expression_t *compound)
6987 {
6988         (void) precedence;
6989         assert(token.type == '.' || token.type == T_MINUSGREATER);
6990
6991         bool is_pointer = (token.type == T_MINUSGREATER);
6992         next_token();
6993
6994         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
6995         select->select.compound = compound;
6996
6997         if (token.type != T_IDENTIFIER) {
6998                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
6999                 return select;
7000         }
7001         symbol_t *symbol = token.v.symbol;
7002         next_token();
7003
7004         type_t *const orig_type = compound->base.type;
7005         type_t *const type      = skip_typeref(orig_type);
7006
7007         type_t *type_left;
7008         bool    saw_error = false;
7009         if (is_type_pointer(type)) {
7010                 if (!is_pointer) {
7011                         errorf(HERE,
7012                                "request for member '%Y' in something not a struct or union, but '%T'",
7013                                symbol, orig_type);
7014                         saw_error = true;
7015                 }
7016                 type_left = skip_typeref(type->pointer.points_to);
7017         } else {
7018                 if (is_pointer && is_type_valid(type)) {
7019                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7020                         saw_error = true;
7021                 }
7022                 type_left = type;
7023         }
7024
7025         declaration_t *entry;
7026         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7027             type_left->kind == TYPE_COMPOUND_UNION) {
7028                 declaration_t *const declaration = type_left->compound.declaration;
7029
7030                 if (!declaration->init.complete) {
7031                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7032                                symbol, type_left);
7033                         goto create_error_entry;
7034                 }
7035
7036                 entry = find_compound_entry(declaration, symbol);
7037                 if (entry == NULL) {
7038                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7039                         goto create_error_entry;
7040                 }
7041         } else {
7042                 if (is_type_valid(type_left) && !saw_error) {
7043                         errorf(HERE,
7044                                "request for member '%Y' in something not a struct or union, but '%T'",
7045                                symbol, type_left);
7046                 }
7047 create_error_entry:
7048                 entry         = allocate_declaration_zero();
7049                 entry->symbol = symbol;
7050         }
7051
7052         select->select.compound_entry = entry;
7053
7054         type_t *const res_type =
7055                 get_qualified_type(entry->type, type_left->base.qualifiers);
7056
7057         /* we always do the auto-type conversions; the & and sizeof parser contains
7058          * code to revert this! */
7059         select->base.type = automatic_type_conversion(res_type);
7060
7061         type_t *skipped = skip_typeref(res_type);
7062         if (skipped->kind == TYPE_BITFIELD) {
7063                 select->base.type = skipped->bitfield.base_type;
7064         }
7065
7066         return select;
7067 }
7068
7069 static void check_call_argument(const function_parameter_t *parameter,
7070                                 call_argument_t *argument, unsigned pos)
7071 {
7072         type_t         *expected_type      = parameter->type;
7073         type_t         *expected_type_skip = skip_typeref(expected_type);
7074         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7075         expression_t   *arg_expr           = argument->expression;
7076         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7077
7078         /* handle transparent union gnu extension */
7079         if (is_type_union(expected_type_skip)
7080                         && (expected_type_skip->base.modifiers
7081                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7082                 declaration_t  *union_decl = expected_type_skip->compound.declaration;
7083
7084                 declaration_t *declaration = union_decl->scope.declarations;
7085                 type_t        *best_type   = NULL;
7086                 for ( ; declaration != NULL; declaration = declaration->next) {
7087                         type_t *decl_type = declaration->type;
7088                         error = semantic_assign(decl_type, arg_expr);
7089                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7090                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7091                                 continue;
7092
7093                         if (error == ASSIGN_SUCCESS) {
7094                                 best_type = decl_type;
7095                         } else if (best_type == NULL) {
7096                                 best_type = decl_type;
7097                         }
7098                 }
7099
7100                 if (best_type != NULL) {
7101                         expected_type = best_type;
7102                 }
7103         }
7104
7105         error                = semantic_assign(expected_type, arg_expr);
7106         argument->expression = create_implicit_cast(argument->expression,
7107                                                     expected_type);
7108
7109         if (error != ASSIGN_SUCCESS) {
7110                 /* report exact scope in error messages (like "in argument 3") */
7111                 char buf[64];
7112                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7113                 report_assign_error(error, expected_type, arg_expr,     buf,
7114                                                         &arg_expr->base.source_position);
7115         } else if (warning.traditional || warning.conversion) {
7116                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7117                 if (!types_compatible(expected_type_skip, promoted_type) &&
7118                     !types_compatible(expected_type_skip, type_void_ptr) &&
7119                     !types_compatible(type_void_ptr,      promoted_type)) {
7120                         /* Deliberately show the skipped types in this warning */
7121                         warningf(&arg_expr->base.source_position,
7122                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7123                                 pos, expected_type_skip, promoted_type);
7124                 }
7125         }
7126 }
7127
7128 /**
7129  * Parse a call expression, ie. expression '( ... )'.
7130  *
7131  * @param expression  the function address
7132  */
7133 static expression_t *parse_call_expression(unsigned precedence,
7134                                            expression_t *expression)
7135 {
7136         (void) precedence;
7137         expression_t *result = allocate_expression_zero(EXPR_CALL);
7138         result->base.source_position = expression->base.source_position;
7139
7140         call_expression_t *call = &result->call;
7141         call->function          = expression;
7142
7143         type_t *const orig_type = expression->base.type;
7144         type_t *const type      = skip_typeref(orig_type);
7145
7146         function_type_t *function_type = NULL;
7147         if (is_type_pointer(type)) {
7148                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7149
7150                 if (is_type_function(to_type)) {
7151                         function_type   = &to_type->function;
7152                         call->base.type = function_type->return_type;
7153                 }
7154         }
7155
7156         if (function_type == NULL && is_type_valid(type)) {
7157                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
7158         }
7159
7160         /* parse arguments */
7161         eat('(');
7162         add_anchor_token(')');
7163         add_anchor_token(',');
7164
7165         if (token.type != ')') {
7166                 call_argument_t *last_argument = NULL;
7167
7168                 while (true) {
7169                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
7170
7171                         argument->expression = parse_assignment_expression();
7172                         if (last_argument == NULL) {
7173                                 call->arguments = argument;
7174                         } else {
7175                                 last_argument->next = argument;
7176                         }
7177                         last_argument = argument;
7178
7179                         if (token.type != ',')
7180                                 break;
7181                         next_token();
7182                 }
7183         }
7184         rem_anchor_token(',');
7185         rem_anchor_token(')');
7186         expect(')');
7187
7188         if (function_type == NULL)
7189                 return result;
7190
7191         function_parameter_t *parameter = function_type->parameters;
7192         call_argument_t      *argument  = call->arguments;
7193         if (!function_type->unspecified_parameters) {
7194                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7195                                 parameter = parameter->next, argument = argument->next) {
7196                         check_call_argument(parameter, argument, ++pos);
7197                 }
7198
7199                 if (parameter != NULL) {
7200                         errorf(HERE, "too few arguments to function '%E'", expression);
7201                 } else if (argument != NULL && !function_type->variadic) {
7202                         errorf(HERE, "too many arguments to function '%E'", expression);
7203                 }
7204         }
7205
7206         /* do default promotion */
7207         for( ; argument != NULL; argument = argument->next) {
7208                 type_t *type = argument->expression->base.type;
7209
7210                 type = get_default_promoted_type(type);
7211
7212                 argument->expression
7213                         = create_implicit_cast(argument->expression, type);
7214         }
7215
7216         check_format(&result->call);
7217
7218         if (warning.aggregate_return &&
7219             is_type_compound(skip_typeref(function_type->return_type))) {
7220                 warningf(&result->base.source_position,
7221                          "function call has aggregate value");
7222         }
7223
7224 end_error:
7225         return result;
7226 }
7227
7228 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7229
7230 static bool same_compound_type(const type_t *type1, const type_t *type2)
7231 {
7232         return
7233                 is_type_compound(type1) &&
7234                 type1->kind == type2->kind &&
7235                 type1->compound.declaration == type2->compound.declaration;
7236 }
7237
7238 /**
7239  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7240  *
7241  * @param expression  the conditional expression
7242  */
7243 static expression_t *parse_conditional_expression(unsigned precedence,
7244                                                   expression_t *expression)
7245 {
7246         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7247
7248         conditional_expression_t *conditional = &result->conditional;
7249         conditional->base.source_position = *HERE;
7250         conditional->condition            = expression;
7251
7252         eat('?');
7253         add_anchor_token(':');
7254
7255         /* 6.5.15.2 */
7256         type_t *const condition_type_orig = expression->base.type;
7257         type_t *const condition_type      = skip_typeref(condition_type_orig);
7258         if (!is_type_scalar(condition_type) && is_type_valid(condition_type)) {
7259                 type_error("expected a scalar type in conditional condition",
7260                            &expression->base.source_position, condition_type_orig);
7261         }
7262
7263         expression_t *true_expression = expression;
7264         bool          gnu_cond = false;
7265         if (GNU_MODE && token.type == ':') {
7266                 gnu_cond = true;
7267         } else
7268                 true_expression = parse_expression();
7269         rem_anchor_token(':');
7270         expect(':');
7271         expression_t *false_expression = parse_sub_expression(precedence);
7272
7273         type_t *const orig_true_type  = true_expression->base.type;
7274         type_t *const orig_false_type = false_expression->base.type;
7275         type_t *const true_type       = skip_typeref(orig_true_type);
7276         type_t *const false_type      = skip_typeref(orig_false_type);
7277
7278         /* 6.5.15.3 */
7279         type_t *result_type;
7280         if (is_type_atomic(true_type, ATOMIC_TYPE_VOID) ||
7281                 is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7282                 if (!is_type_atomic(true_type, ATOMIC_TYPE_VOID)
7283                     || !is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7284                         warningf(&conditional->base.source_position,
7285                                         "ISO C forbids conditional expression with only one void side");
7286                 }
7287                 result_type = type_void;
7288         } else if (is_type_arithmetic(true_type)
7289                    && is_type_arithmetic(false_type)) {
7290                 result_type = semantic_arithmetic(true_type, false_type);
7291
7292                 true_expression  = create_implicit_cast(true_expression, result_type);
7293                 false_expression = create_implicit_cast(false_expression, result_type);
7294
7295                 conditional->true_expression  = true_expression;
7296                 conditional->false_expression = false_expression;
7297                 conditional->base.type        = result_type;
7298         } else if (same_compound_type(true_type, false_type)) {
7299                 /* just take 1 of the 2 types */
7300                 result_type = true_type;
7301         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7302                 type_t *pointer_type;
7303                 type_t *other_type;
7304                 expression_t *other_expression;
7305                 if (is_type_pointer(true_type) &&
7306                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7307                         pointer_type     = true_type;
7308                         other_type       = false_type;
7309                         other_expression = false_expression;
7310                 } else {
7311                         pointer_type     = false_type;
7312                         other_type       = true_type;
7313                         other_expression = true_expression;
7314                 }
7315
7316                 if (is_null_pointer_constant(other_expression)) {
7317                         result_type = pointer_type;
7318                 } else if (is_type_pointer(other_type)) {
7319                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7320                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7321
7322                         type_t *to;
7323                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7324                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7325                                 to = type_void;
7326                         } else if (types_compatible(get_unqualified_type(to1),
7327                                                     get_unqualified_type(to2))) {
7328                                 to = to1;
7329                         } else {
7330                                 warningf(&conditional->base.source_position,
7331                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7332                                         true_type, false_type);
7333                                 to = type_void;
7334                         }
7335
7336                         type_t *const type =
7337                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7338                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7339                 } else if (is_type_integer(other_type)) {
7340                         warningf(&conditional->base.source_position,
7341                                         "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7342                         result_type = pointer_type;
7343                 } else {
7344                         type_error_incompatible("while parsing conditional",
7345                                         &expression->base.source_position, true_type, false_type);
7346                         result_type = type_error_type;
7347                 }
7348         } else {
7349                 /* TODO: one pointer to void*, other some pointer */
7350
7351                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7352                         type_error_incompatible("while parsing conditional",
7353                                                 &conditional->base.source_position, true_type,
7354                                                 false_type);
7355                 }
7356                 result_type = type_error_type;
7357         }
7358
7359         conditional->true_expression
7360                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7361         conditional->false_expression
7362                 = create_implicit_cast(false_expression, result_type);
7363         conditional->base.type = result_type;
7364         return result;
7365 end_error:
7366         return create_invalid_expression();
7367 }
7368
7369 /**
7370  * Parse an extension expression.
7371  */
7372 static expression_t *parse_extension(unsigned precedence)
7373 {
7374         eat(T___extension__);
7375
7376         bool old_gcc_extension   = in_gcc_extension;
7377         in_gcc_extension         = true;
7378         expression_t *expression = parse_sub_expression(precedence);
7379         in_gcc_extension         = old_gcc_extension;
7380         return expression;
7381 }
7382
7383 /**
7384  * Parse a __builtin_classify_type() expression.
7385  */
7386 static expression_t *parse_builtin_classify_type(const unsigned precedence)
7387 {
7388         eat(T___builtin_classify_type);
7389
7390         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7391         result->base.type    = type_int;
7392
7393         expect('(');
7394         add_anchor_token(')');
7395         expression_t *expression = parse_sub_expression(precedence);
7396         rem_anchor_token(')');
7397         expect(')');
7398         result->classify_type.type_expression = expression;
7399
7400         return result;
7401 end_error:
7402         return create_invalid_expression();
7403 }
7404
7405 static bool check_pointer_arithmetic(const source_position_t *source_position,
7406                                      type_t *pointer_type,
7407                                      type_t *orig_pointer_type)
7408 {
7409         type_t *points_to = pointer_type->pointer.points_to;
7410         points_to = skip_typeref(points_to);
7411
7412         if (is_type_incomplete(points_to)) {
7413                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7414                         errorf(source_position,
7415                                "arithmetic with pointer to incomplete type '%T' not allowed",
7416                                orig_pointer_type);
7417                         return false;
7418                 } else if (warning.pointer_arith) {
7419                         warningf(source_position,
7420                                  "pointer of type '%T' used in arithmetic",
7421                                  orig_pointer_type);
7422                 }
7423         } else if (is_type_function(points_to)) {
7424                 if (!GNU_MODE) {
7425                         errorf(source_position,
7426                                "arithmetic with pointer to function type '%T' not allowed",
7427                                orig_pointer_type);
7428                         return false;
7429                 } else if (warning.pointer_arith) {
7430                         warningf(source_position,
7431                                  "pointer to a function '%T' used in arithmetic",
7432                                  orig_pointer_type);
7433                 }
7434         }
7435         return true;
7436 }
7437
7438 static bool is_lvalue(const expression_t *expression)
7439 {
7440         switch (expression->kind) {
7441         case EXPR_REFERENCE:
7442         case EXPR_ARRAY_ACCESS:
7443         case EXPR_SELECT:
7444         case EXPR_UNARY_DEREFERENCE:
7445                 return true;
7446
7447         default:
7448                 return false;
7449         }
7450 }
7451
7452 static void semantic_incdec(unary_expression_t *expression)
7453 {
7454         type_t *const orig_type = expression->value->base.type;
7455         type_t *const type      = skip_typeref(orig_type);
7456         if (is_type_pointer(type)) {
7457                 if (!check_pointer_arithmetic(&expression->base.source_position,
7458                                               type, orig_type)) {
7459                         return;
7460                 }
7461         } else if (!is_type_real(type) && is_type_valid(type)) {
7462                 /* TODO: improve error message */
7463                 errorf(&expression->base.source_position,
7464                        "operation needs an arithmetic or pointer type");
7465                 return;
7466         }
7467         if (!is_lvalue(expression->value)) {
7468                 /* TODO: improve error message */
7469                 errorf(&expression->base.source_position, "lvalue required as operand");
7470         }
7471         expression->base.type = orig_type;
7472 }
7473
7474 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
7475 {
7476         type_t *const orig_type = expression->value->base.type;
7477         type_t *const type      = skip_typeref(orig_type);
7478         if (!is_type_arithmetic(type)) {
7479                 if (is_type_valid(type)) {
7480                         /* TODO: improve error message */
7481                         errorf(&expression->base.source_position,
7482                                 "operation needs an arithmetic type");
7483                 }
7484                 return;
7485         }
7486
7487         expression->base.type = orig_type;
7488 }
7489
7490 static void semantic_unexpr_plus(unary_expression_t *expression)
7491 {
7492         semantic_unexpr_arithmetic(expression);
7493         if (warning.traditional)
7494                 warningf(&expression->base.source_position,
7495                         "traditional C rejects the unary plus operator");
7496 }
7497
7498 static void semantic_not(unary_expression_t *expression)
7499 {
7500         type_t *const orig_type = expression->value->base.type;
7501         type_t *const type      = skip_typeref(orig_type);
7502         if (!is_type_scalar(type) && is_type_valid(type)) {
7503                 errorf(&expression->base.source_position,
7504                        "operand of ! must be of scalar type");
7505         }
7506
7507         expression->base.type = type_int;
7508 }
7509
7510 static void semantic_unexpr_integer(unary_expression_t *expression)
7511 {
7512         type_t *const orig_type = expression->value->base.type;
7513         type_t *const type      = skip_typeref(orig_type);
7514         if (!is_type_integer(type)) {
7515                 if (is_type_valid(type)) {
7516                         errorf(&expression->base.source_position,
7517                                "operand of ~ must be of integer type");
7518                 }
7519                 return;
7520         }
7521
7522         expression->base.type = orig_type;
7523 }
7524
7525 static void semantic_dereference(unary_expression_t *expression)
7526 {
7527         type_t *const orig_type = expression->value->base.type;
7528         type_t *const type      = skip_typeref(orig_type);
7529         if (!is_type_pointer(type)) {
7530                 if (is_type_valid(type)) {
7531                         errorf(&expression->base.source_position,
7532                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
7533                 }
7534                 return;
7535         }
7536
7537         type_t *result_type   = type->pointer.points_to;
7538         result_type           = automatic_type_conversion(result_type);
7539         expression->base.type = result_type;
7540 }
7541
7542 /**
7543  * Record that an address is taken (expression represents an lvalue).
7544  *
7545  * @param expression       the expression
7546  * @param may_be_register  if true, the expression might be an register
7547  */
7548 static void set_address_taken(expression_t *expression, bool may_be_register)
7549 {
7550         if (expression->kind != EXPR_REFERENCE)
7551                 return;
7552
7553         declaration_t *const declaration = expression->reference.declaration;
7554         /* happens for parse errors */
7555         if (declaration == NULL)
7556                 return;
7557
7558         if (declaration->storage_class == STORAGE_CLASS_REGISTER && !may_be_register) {
7559                 errorf(&expression->base.source_position,
7560                                 "address of register variable '%Y' requested",
7561                                 declaration->symbol);
7562         } else {
7563                 declaration->address_taken = 1;
7564         }
7565 }
7566
7567 /**
7568  * Check the semantic of the address taken expression.
7569  */
7570 static void semantic_take_addr(unary_expression_t *expression)
7571 {
7572         expression_t *value = expression->value;
7573         value->base.type    = revert_automatic_type_conversion(value);
7574
7575         type_t *orig_type = value->base.type;
7576         if (!is_type_valid(orig_type))
7577                 return;
7578
7579         set_address_taken(value, false);
7580
7581         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
7582 }
7583
7584 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc)   \
7585 static expression_t *parse_##unexpression_type(unsigned precedence)            \
7586 {                                                                              \
7587         expression_t *unary_expression                                             \
7588                 = allocate_expression_zero(unexpression_type);                         \
7589         unary_expression->base.source_position = *HERE;                            \
7590         eat(token_type);                                                           \
7591         unary_expression->unary.value = parse_sub_expression(precedence);          \
7592                                                                                    \
7593         sfunc(&unary_expression->unary);                                           \
7594                                                                                    \
7595         return unary_expression;                                                   \
7596 }
7597
7598 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
7599                                semantic_unexpr_arithmetic)
7600 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
7601                                semantic_unexpr_plus)
7602 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
7603                                semantic_not)
7604 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
7605                                semantic_dereference)
7606 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
7607                                semantic_take_addr)
7608 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
7609                                semantic_unexpr_integer)
7610 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
7611                                semantic_incdec)
7612 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
7613                                semantic_incdec)
7614
7615 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
7616                                                sfunc)                         \
7617 static expression_t *parse_##unexpression_type(unsigned precedence,           \
7618                                                expression_t *left)            \
7619 {                                                                             \
7620         (void) precedence;                                                        \
7621                                                                               \
7622         expression_t *unary_expression                                            \
7623                 = allocate_expression_zero(unexpression_type);                        \
7624         unary_expression->base.source_position = *HERE;                           \
7625         eat(token_type);                                                          \
7626         unary_expression->unary.value          = left;                            \
7627                                                                                   \
7628         sfunc(&unary_expression->unary);                                          \
7629                                                                               \
7630         return unary_expression;                                                  \
7631 }
7632
7633 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
7634                                        EXPR_UNARY_POSTFIX_INCREMENT,
7635                                        semantic_incdec)
7636 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
7637                                        EXPR_UNARY_POSTFIX_DECREMENT,
7638                                        semantic_incdec)
7639
7640 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
7641 {
7642         /* TODO: handle complex + imaginary types */
7643
7644         type_left  = get_unqualified_type(type_left);
7645         type_right = get_unqualified_type(type_right);
7646
7647         /* Â§ 6.3.1.8 Usual arithmetic conversions */
7648         if (type_left == type_long_double || type_right == type_long_double) {
7649                 return type_long_double;
7650         } else if (type_left == type_double || type_right == type_double) {
7651                 return type_double;
7652         } else if (type_left == type_float || type_right == type_float) {
7653                 return type_float;
7654         }
7655
7656         type_left  = promote_integer(type_left);
7657         type_right = promote_integer(type_right);
7658
7659         if (type_left == type_right)
7660                 return type_left;
7661
7662         bool const signed_left  = is_type_signed(type_left);
7663         bool const signed_right = is_type_signed(type_right);
7664         int const  rank_left    = get_rank(type_left);
7665         int const  rank_right   = get_rank(type_right);
7666
7667         if (signed_left == signed_right)
7668                 return rank_left >= rank_right ? type_left : type_right;
7669
7670         int     s_rank;
7671         int     u_rank;
7672         type_t *s_type;
7673         type_t *u_type;
7674         if (signed_left) {
7675                 s_rank = rank_left;
7676                 s_type = type_left;
7677                 u_rank = rank_right;
7678                 u_type = type_right;
7679         } else {
7680                 s_rank = rank_right;
7681                 s_type = type_right;
7682                 u_rank = rank_left;
7683                 u_type = type_left;
7684         }
7685
7686         if (u_rank >= s_rank)
7687                 return u_type;
7688
7689         /* casting rank to atomic_type_kind is a bit hacky, but makes things
7690          * easier here... */
7691         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
7692                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
7693                 return s_type;
7694
7695         switch (s_rank) {
7696                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
7697                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
7698                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
7699
7700                 default: panic("invalid atomic type");
7701         }
7702 }
7703
7704 /**
7705  * Check the semantic restrictions for a binary expression.
7706  */
7707 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
7708 {
7709         expression_t *const left            = expression->left;
7710         expression_t *const right           = expression->right;
7711         type_t       *const orig_type_left  = left->base.type;
7712         type_t       *const orig_type_right = right->base.type;
7713         type_t       *const type_left       = skip_typeref(orig_type_left);
7714         type_t       *const type_right      = skip_typeref(orig_type_right);
7715
7716         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7717                 /* TODO: improve error message */
7718                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7719                         errorf(&expression->base.source_position,
7720                                "operation needs arithmetic types");
7721                 }
7722                 return;
7723         }
7724
7725         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7726         expression->left      = create_implicit_cast(left, arithmetic_type);
7727         expression->right     = create_implicit_cast(right, arithmetic_type);
7728         expression->base.type = arithmetic_type;
7729 }
7730
7731 static void warn_div_by_zero(binary_expression_t const *const expression)
7732 {
7733         if (!warning.div_by_zero ||
7734             !is_type_integer(expression->base.type))
7735                 return;
7736
7737         expression_t const *const right = expression->right;
7738         /* The type of the right operand can be different for /= */
7739         if (is_type_integer(right->base.type) &&
7740             is_constant_expression(right)     &&
7741             fold_constant(right) == 0) {
7742                 warningf(&expression->base.source_position, "division by zero");
7743         }
7744 }
7745
7746 /**
7747  * Check the semantic restrictions for a div/mod expression.
7748  */
7749 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
7750         semantic_binexpr_arithmetic(expression);
7751         warn_div_by_zero(expression);
7752 }
7753
7754 static void semantic_shift_op(binary_expression_t *expression)
7755 {
7756         expression_t *const left            = expression->left;
7757         expression_t *const right           = expression->right;
7758         type_t       *const orig_type_left  = left->base.type;
7759         type_t       *const orig_type_right = right->base.type;
7760         type_t       *      type_left       = skip_typeref(orig_type_left);
7761         type_t       *      type_right      = skip_typeref(orig_type_right);
7762
7763         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
7764                 /* TODO: improve error message */
7765                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7766                         errorf(&expression->base.source_position,
7767                                "operands of shift operation must have integer types");
7768                 }
7769                 return;
7770         }
7771
7772         type_left  = promote_integer(type_left);
7773         type_right = promote_integer(type_right);
7774
7775         expression->left      = create_implicit_cast(left, type_left);
7776         expression->right     = create_implicit_cast(right, type_right);
7777         expression->base.type = type_left;
7778 }
7779
7780 static void semantic_add(binary_expression_t *expression)
7781 {
7782         expression_t *const left            = expression->left;
7783         expression_t *const right           = expression->right;
7784         type_t       *const orig_type_left  = left->base.type;
7785         type_t       *const orig_type_right = right->base.type;
7786         type_t       *const type_left       = skip_typeref(orig_type_left);
7787         type_t       *const type_right      = skip_typeref(orig_type_right);
7788
7789         /* Â§ 6.5.6 */
7790         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7791                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7792                 expression->left  = create_implicit_cast(left, arithmetic_type);
7793                 expression->right = create_implicit_cast(right, arithmetic_type);
7794                 expression->base.type = arithmetic_type;
7795                 return;
7796         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7797                 check_pointer_arithmetic(&expression->base.source_position,
7798                                          type_left, orig_type_left);
7799                 expression->base.type = type_left;
7800         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
7801                 check_pointer_arithmetic(&expression->base.source_position,
7802                                          type_right, orig_type_right);
7803                 expression->base.type = type_right;
7804         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7805                 errorf(&expression->base.source_position,
7806                        "invalid operands to binary + ('%T', '%T')",
7807                        orig_type_left, orig_type_right);
7808         }
7809 }
7810
7811 static void semantic_sub(binary_expression_t *expression)
7812 {
7813         expression_t            *const left            = expression->left;
7814         expression_t            *const right           = expression->right;
7815         type_t                  *const orig_type_left  = left->base.type;
7816         type_t                  *const orig_type_right = right->base.type;
7817         type_t                  *const type_left       = skip_typeref(orig_type_left);
7818         type_t                  *const type_right      = skip_typeref(orig_type_right);
7819         source_position_t const *const pos             = &expression->base.source_position;
7820
7821         /* Â§ 5.6.5 */
7822         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7823                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7824                 expression->left        = create_implicit_cast(left, arithmetic_type);
7825                 expression->right       = create_implicit_cast(right, arithmetic_type);
7826                 expression->base.type =  arithmetic_type;
7827                 return;
7828         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
7829                 check_pointer_arithmetic(&expression->base.source_position,
7830                                          type_left, orig_type_left);
7831                 expression->base.type = type_left;
7832         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7833                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
7834                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
7835                 if (!types_compatible(unqual_left, unqual_right)) {
7836                         errorf(pos,
7837                                "subtracting pointers to incompatible types '%T' and '%T'",
7838                                orig_type_left, orig_type_right);
7839                 } else if (!is_type_object(unqual_left)) {
7840                         if (is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
7841                                 warningf(pos, "subtracting pointers to void");
7842                         } else {
7843                                 errorf(pos, "subtracting pointers to non-object types '%T'",
7844                                        orig_type_left);
7845                         }
7846                 }
7847                 expression->base.type = type_ptrdiff_t;
7848         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7849                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
7850                        orig_type_left, orig_type_right);
7851         }
7852 }
7853
7854 /**
7855  * Check the semantics of comparison expressions.
7856  *
7857  * @param expression   The expression to check.
7858  */
7859 static void semantic_comparison(binary_expression_t *expression)
7860 {
7861         expression_t *left            = expression->left;
7862         expression_t *right           = expression->right;
7863         type_t       *orig_type_left  = left->base.type;
7864         type_t       *orig_type_right = right->base.type;
7865
7866         type_t *type_left  = skip_typeref(orig_type_left);
7867         type_t *type_right = skip_typeref(orig_type_right);
7868
7869         /* TODO non-arithmetic types */
7870         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
7871                 /* test for signed vs unsigned compares */
7872                 if (warning.sign_compare &&
7873                     (expression->base.kind != EXPR_BINARY_EQUAL &&
7874                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
7875                     (is_type_signed(type_left) != is_type_signed(type_right))) {
7876
7877                         /* check if 1 of the operands is a constant, in this case we just
7878                          * check wether we can safely represent the resulting constant in
7879                          * the type of the other operand. */
7880                         expression_t *const_expr = NULL;
7881                         expression_t *other_expr = NULL;
7882
7883                         if (is_constant_expression(left)) {
7884                                 const_expr = left;
7885                                 other_expr = right;
7886                         } else if (is_constant_expression(right)) {
7887                                 const_expr = right;
7888                                 other_expr = left;
7889                         }
7890
7891                         if (const_expr != NULL) {
7892                                 type_t *other_type = skip_typeref(other_expr->base.type);
7893                                 long    val        = fold_constant(const_expr);
7894                                 /* TODO: check if val can be represented by other_type */
7895                                 (void) other_type;
7896                                 (void) val;
7897                         }
7898                         warningf(&expression->base.source_position,
7899                                  "comparison between signed and unsigned");
7900                 }
7901                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
7902                 expression->left        = create_implicit_cast(left, arithmetic_type);
7903                 expression->right       = create_implicit_cast(right, arithmetic_type);
7904                 expression->base.type   = arithmetic_type;
7905                 if (warning.float_equal &&
7906                     (expression->base.kind == EXPR_BINARY_EQUAL ||
7907                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
7908                     is_type_float(arithmetic_type)) {
7909                         warningf(&expression->base.source_position,
7910                                  "comparing floating point with == or != is unsafe");
7911                 }
7912         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
7913                 /* TODO check compatibility */
7914         } else if (is_type_pointer(type_left)) {
7915                 expression->right = create_implicit_cast(right, type_left);
7916         } else if (is_type_pointer(type_right)) {
7917                 expression->left = create_implicit_cast(left, type_right);
7918         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
7919                 type_error_incompatible("invalid operands in comparison",
7920                                         &expression->base.source_position,
7921                                         type_left, type_right);
7922         }
7923         expression->base.type = type_int;
7924 }
7925
7926 /**
7927  * Checks if a compound type has constant fields.
7928  */
7929 static bool has_const_fields(const compound_type_t *type)
7930 {
7931         const scope_t       *scope       = &type->declaration->scope;
7932         const declaration_t *declaration = scope->declarations;
7933
7934         for (; declaration != NULL; declaration = declaration->next) {
7935                 if (declaration->namespc != NAMESPACE_NORMAL)
7936                         continue;
7937
7938                 const type_t *decl_type = skip_typeref(declaration->type);
7939                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
7940                         return true;
7941         }
7942         /* TODO */
7943         return false;
7944 }
7945
7946 static bool is_valid_assignment_lhs(expression_t const* const left)
7947 {
7948         type_t *const orig_type_left = revert_automatic_type_conversion(left);
7949         type_t *const type_left      = skip_typeref(orig_type_left);
7950
7951         if (!is_lvalue(left)) {
7952                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
7953                        left);
7954                 return false;
7955         }
7956
7957         if (is_type_array(type_left)) {
7958                 errorf(HERE, "cannot assign to arrays ('%E')", left);
7959                 return false;
7960         }
7961         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
7962                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
7963                        orig_type_left);
7964                 return false;
7965         }
7966         if (is_type_incomplete(type_left)) {
7967                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
7968                        left, orig_type_left);
7969                 return false;
7970         }
7971         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
7972                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
7973                        left, orig_type_left);
7974                 return false;
7975         }
7976
7977         return true;
7978 }
7979
7980 static void semantic_arithmetic_assign(binary_expression_t *expression)
7981 {
7982         expression_t *left            = expression->left;
7983         expression_t *right           = expression->right;
7984         type_t       *orig_type_left  = left->base.type;
7985         type_t       *orig_type_right = right->base.type;
7986
7987         if (!is_valid_assignment_lhs(left))
7988                 return;
7989
7990         type_t *type_left  = skip_typeref(orig_type_left);
7991         type_t *type_right = skip_typeref(orig_type_right);
7992
7993         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
7994                 /* TODO: improve error message */
7995                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7996                         errorf(&expression->base.source_position,
7997                                "operation needs arithmetic types");
7998                 }
7999                 return;
8000         }
8001
8002         /* combined instructions are tricky. We can't create an implicit cast on
8003          * the left side, because we need the uncasted form for the store.
8004          * The ast2firm pass has to know that left_type must be right_type
8005          * for the arithmetic operation and create a cast by itself */
8006         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8007         expression->right       = create_implicit_cast(right, arithmetic_type);
8008         expression->base.type   = type_left;
8009 }
8010
8011 static void semantic_divmod_assign(binary_expression_t *expression)
8012 {
8013         semantic_arithmetic_assign(expression);
8014         warn_div_by_zero(expression);
8015 }
8016
8017 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8018 {
8019         expression_t *const left            = expression->left;
8020         expression_t *const right           = expression->right;
8021         type_t       *const orig_type_left  = left->base.type;
8022         type_t       *const orig_type_right = right->base.type;
8023         type_t       *const type_left       = skip_typeref(orig_type_left);
8024         type_t       *const type_right      = skip_typeref(orig_type_right);
8025
8026         if (!is_valid_assignment_lhs(left))
8027                 return;
8028
8029         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8030                 /* combined instructions are tricky. We can't create an implicit cast on
8031                  * the left side, because we need the uncasted form for the store.
8032                  * The ast2firm pass has to know that left_type must be right_type
8033                  * for the arithmetic operation and create a cast by itself */
8034                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8035                 expression->right     = create_implicit_cast(right, arithmetic_type);
8036                 expression->base.type = type_left;
8037         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8038                 check_pointer_arithmetic(&expression->base.source_position,
8039                                          type_left, orig_type_left);
8040                 expression->base.type = type_left;
8041         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8042                 errorf(&expression->base.source_position,
8043                        "incompatible types '%T' and '%T' in assignment",
8044                        orig_type_left, orig_type_right);
8045         }
8046 }
8047
8048 /**
8049  * Check the semantic restrictions of a logical expression.
8050  */
8051 static void semantic_logical_op(binary_expression_t *expression)
8052 {
8053         expression_t *const left            = expression->left;
8054         expression_t *const right           = expression->right;
8055         type_t       *const orig_type_left  = left->base.type;
8056         type_t       *const orig_type_right = right->base.type;
8057         type_t       *const type_left       = skip_typeref(orig_type_left);
8058         type_t       *const type_right      = skip_typeref(orig_type_right);
8059
8060         if (!is_type_scalar(type_left) || !is_type_scalar(type_right)) {
8061                 /* TODO: improve error message */
8062                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8063                         errorf(&expression->base.source_position,
8064                                "operation needs scalar types");
8065                 }
8066                 return;
8067         }
8068
8069         expression->base.type = type_int;
8070 }
8071
8072 /**
8073  * Check the semantic restrictions of a binary assign expression.
8074  */
8075 static void semantic_binexpr_assign(binary_expression_t *expression)
8076 {
8077         expression_t *left           = expression->left;
8078         type_t       *orig_type_left = left->base.type;
8079
8080         if (!is_valid_assignment_lhs(left))
8081                 return;
8082
8083         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8084         report_assign_error(error, orig_type_left, expression->right,
8085                         "assignment", &left->base.source_position);
8086         expression->right = create_implicit_cast(expression->right, orig_type_left);
8087         expression->base.type = orig_type_left;
8088 }
8089
8090 /**
8091  * Determine if the outermost operation (or parts thereof) of the given
8092  * expression has no effect in order to generate a warning about this fact.
8093  * Therefore in some cases this only examines some of the operands of the
8094  * expression (see comments in the function and examples below).
8095  * Examples:
8096  *   f() + 23;    // warning, because + has no effect
8097  *   x || f();    // no warning, because x controls execution of f()
8098  *   x ? y : f(); // warning, because y has no effect
8099  *   (void)x;     // no warning to be able to suppress the warning
8100  * This function can NOT be used for an "expression has definitely no effect"-
8101  * analysis. */
8102 static bool expression_has_effect(const expression_t *const expr)
8103 {
8104         switch (expr->kind) {
8105                 case EXPR_UNKNOWN:                   break;
8106                 case EXPR_INVALID:                   return true; /* do NOT warn */
8107                 case EXPR_REFERENCE:                 return false;
8108                 /* suppress the warning for microsoft __noop operations */
8109                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
8110                 case EXPR_CHARACTER_CONSTANT:        return false;
8111                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
8112                 case EXPR_STRING_LITERAL:            return false;
8113                 case EXPR_WIDE_STRING_LITERAL:       return false;
8114                 case EXPR_LABEL_ADDRESS:             return false;
8115
8116                 case EXPR_CALL: {
8117                         const call_expression_t *const call = &expr->call;
8118                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
8119                                 return true;
8120
8121                         switch (call->function->builtin_symbol.symbol->ID) {
8122                                 case T___builtin_va_end: return true;
8123                                 default:                 return false;
8124                         }
8125                 }
8126
8127                 /* Generate the warning if either the left or right hand side of a
8128                  * conditional expression has no effect */
8129                 case EXPR_CONDITIONAL: {
8130                         const conditional_expression_t *const cond = &expr->conditional;
8131                         return
8132                                 expression_has_effect(cond->true_expression) &&
8133                                 expression_has_effect(cond->false_expression);
8134                 }
8135
8136                 case EXPR_SELECT:                    return false;
8137                 case EXPR_ARRAY_ACCESS:              return false;
8138                 case EXPR_SIZEOF:                    return false;
8139                 case EXPR_CLASSIFY_TYPE:             return false;
8140                 case EXPR_ALIGNOF:                   return false;
8141
8142                 case EXPR_FUNCNAME:                  return false;
8143                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
8144                 case EXPR_BUILTIN_CONSTANT_P:        return false;
8145                 case EXPR_BUILTIN_PREFETCH:          return true;
8146                 case EXPR_OFFSETOF:                  return false;
8147                 case EXPR_VA_START:                  return true;
8148                 case EXPR_VA_ARG:                    return true;
8149                 case EXPR_STATEMENT:                 return true; // TODO
8150                 case EXPR_COMPOUND_LITERAL:          return false;
8151
8152                 case EXPR_UNARY_NEGATE:              return false;
8153                 case EXPR_UNARY_PLUS:                return false;
8154                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
8155                 case EXPR_UNARY_NOT:                 return false;
8156                 case EXPR_UNARY_DEREFERENCE:         return false;
8157                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
8158                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
8159                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
8160                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
8161                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
8162
8163                 /* Treat void casts as if they have an effect in order to being able to
8164                  * suppress the warning */
8165                 case EXPR_UNARY_CAST: {
8166                         type_t *const type = skip_typeref(expr->base.type);
8167                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8168                 }
8169
8170                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
8171                 case EXPR_UNARY_ASSUME:              return true;
8172
8173                 case EXPR_BINARY_ADD:                return false;
8174                 case EXPR_BINARY_SUB:                return false;
8175                 case EXPR_BINARY_MUL:                return false;
8176                 case EXPR_BINARY_DIV:                return false;
8177                 case EXPR_BINARY_MOD:                return false;
8178                 case EXPR_BINARY_EQUAL:              return false;
8179                 case EXPR_BINARY_NOTEQUAL:           return false;
8180                 case EXPR_BINARY_LESS:               return false;
8181                 case EXPR_BINARY_LESSEQUAL:          return false;
8182                 case EXPR_BINARY_GREATER:            return false;
8183                 case EXPR_BINARY_GREATEREQUAL:       return false;
8184                 case EXPR_BINARY_BITWISE_AND:        return false;
8185                 case EXPR_BINARY_BITWISE_OR:         return false;
8186                 case EXPR_BINARY_BITWISE_XOR:        return false;
8187                 case EXPR_BINARY_SHIFTLEFT:          return false;
8188                 case EXPR_BINARY_SHIFTRIGHT:         return false;
8189                 case EXPR_BINARY_ASSIGN:             return true;
8190                 case EXPR_BINARY_MUL_ASSIGN:         return true;
8191                 case EXPR_BINARY_DIV_ASSIGN:         return true;
8192                 case EXPR_BINARY_MOD_ASSIGN:         return true;
8193                 case EXPR_BINARY_ADD_ASSIGN:         return true;
8194                 case EXPR_BINARY_SUB_ASSIGN:         return true;
8195                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
8196                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
8197                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
8198                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
8199                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
8200
8201                 /* Only examine the right hand side of && and ||, because the left hand
8202                  * side already has the effect of controlling the execution of the right
8203                  * hand side */
8204                 case EXPR_BINARY_LOGICAL_AND:
8205                 case EXPR_BINARY_LOGICAL_OR:
8206                 /* Only examine the right hand side of a comma expression, because the left
8207                  * hand side has a separate warning */
8208                 case EXPR_BINARY_COMMA:
8209                         return expression_has_effect(expr->binary.right);
8210
8211                 case EXPR_BINARY_BUILTIN_EXPECT:     return true;
8212                 case EXPR_BINARY_ISGREATER:          return false;
8213                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
8214                 case EXPR_BINARY_ISLESS:             return false;
8215                 case EXPR_BINARY_ISLESSEQUAL:        return false;
8216                 case EXPR_BINARY_ISLESSGREATER:      return false;
8217                 case EXPR_BINARY_ISUNORDERED:        return false;
8218         }
8219
8220         internal_errorf(HERE, "unexpected expression");
8221 }
8222
8223 static void semantic_comma(binary_expression_t *expression)
8224 {
8225         if (warning.unused_value) {
8226                 const expression_t *const left = expression->left;
8227                 if (!expression_has_effect(left)) {
8228                         warningf(&left->base.source_position,
8229                                  "left-hand operand of comma expression has no effect");
8230                 }
8231         }
8232         expression->base.type = expression->right->base.type;
8233 }
8234
8235 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, sfunc, lr)  \
8236 static expression_t *parse_##binexpression_type(unsigned precedence,      \
8237                                                 expression_t *left)       \
8238 {                                                                         \
8239         expression_t *binexpr = allocate_expression_zero(binexpression_type); \
8240         binexpr->base.source_position = *HERE;                                \
8241         binexpr->binary.left          = left;                                 \
8242         eat(token_type);                                                      \
8243                                                                           \
8244         expression_t *right = parse_sub_expression(precedence + lr);          \
8245                                                                           \
8246         binexpr->binary.right = right;                                        \
8247         sfunc(&binexpr->binary);                                              \
8248                                                                           \
8249         return binexpr;                                                       \
8250 }
8251
8252 CREATE_BINEXPR_PARSER(',', EXPR_BINARY_COMMA,    semantic_comma, 1)
8253 CREATE_BINEXPR_PARSER('*', EXPR_BINARY_MUL,      semantic_binexpr_arithmetic, 1)
8254 CREATE_BINEXPR_PARSER('/', EXPR_BINARY_DIV,      semantic_divmod_arithmetic, 1)
8255 CREATE_BINEXPR_PARSER('%', EXPR_BINARY_MOD,      semantic_divmod_arithmetic, 1)
8256 CREATE_BINEXPR_PARSER('+', EXPR_BINARY_ADD,      semantic_add, 1)
8257 CREATE_BINEXPR_PARSER('-', EXPR_BINARY_SUB,      semantic_sub, 1)
8258 CREATE_BINEXPR_PARSER('<', EXPR_BINARY_LESS,     semantic_comparison, 1)
8259 CREATE_BINEXPR_PARSER('>', EXPR_BINARY_GREATER,  semantic_comparison, 1)
8260 CREATE_BINEXPR_PARSER('=', EXPR_BINARY_ASSIGN,   semantic_binexpr_assign, 0)
8261
8262 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,
8263                       semantic_comparison, 1)
8264 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,
8265                       semantic_comparison, 1)
8266 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,
8267                       semantic_comparison, 1)
8268 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,
8269                       semantic_comparison, 1)
8270
8271 CREATE_BINEXPR_PARSER('&', EXPR_BINARY_BITWISE_AND,
8272                       semantic_binexpr_arithmetic, 1)
8273 CREATE_BINEXPR_PARSER('|', EXPR_BINARY_BITWISE_OR,
8274                       semantic_binexpr_arithmetic, 1)
8275 CREATE_BINEXPR_PARSER('^', EXPR_BINARY_BITWISE_XOR,
8276                       semantic_binexpr_arithmetic, 1)
8277 CREATE_BINEXPR_PARSER(T_ANDAND, EXPR_BINARY_LOGICAL_AND,
8278                       semantic_logical_op, 1)
8279 CREATE_BINEXPR_PARSER(T_PIPEPIPE, EXPR_BINARY_LOGICAL_OR,
8280                       semantic_logical_op, 1)
8281 CREATE_BINEXPR_PARSER(T_LESSLESS, EXPR_BINARY_SHIFTLEFT,
8282                       semantic_shift_op, 1)
8283 CREATE_BINEXPR_PARSER(T_GREATERGREATER, EXPR_BINARY_SHIFTRIGHT,
8284                       semantic_shift_op, 1)
8285 CREATE_BINEXPR_PARSER(T_PLUSEQUAL, EXPR_BINARY_ADD_ASSIGN,
8286                       semantic_arithmetic_addsubb_assign, 0)
8287 CREATE_BINEXPR_PARSER(T_MINUSEQUAL, EXPR_BINARY_SUB_ASSIGN,
8288                       semantic_arithmetic_addsubb_assign, 0)
8289 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL, EXPR_BINARY_MUL_ASSIGN,
8290                       semantic_arithmetic_assign, 0)
8291 CREATE_BINEXPR_PARSER(T_SLASHEQUAL, EXPR_BINARY_DIV_ASSIGN,
8292                       semantic_divmod_assign, 0)
8293 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL, EXPR_BINARY_MOD_ASSIGN,
8294                       semantic_divmod_assign, 0)
8295 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL, EXPR_BINARY_SHIFTLEFT_ASSIGN,
8296                       semantic_arithmetic_assign, 0)
8297 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL, EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8298                       semantic_arithmetic_assign, 0)
8299 CREATE_BINEXPR_PARSER(T_ANDEQUAL, EXPR_BINARY_BITWISE_AND_ASSIGN,
8300                       semantic_arithmetic_assign, 0)
8301 CREATE_BINEXPR_PARSER(T_PIPEEQUAL, EXPR_BINARY_BITWISE_OR_ASSIGN,
8302                       semantic_arithmetic_assign, 0)
8303 CREATE_BINEXPR_PARSER(T_CARETEQUAL, EXPR_BINARY_BITWISE_XOR_ASSIGN,
8304                       semantic_arithmetic_assign, 0)
8305
8306 static expression_t *parse_sub_expression(unsigned precedence)
8307 {
8308         if (token.type < 0) {
8309                 return expected_expression_error();
8310         }
8311
8312         expression_parser_function_t *parser
8313                 = &expression_parsers[token.type];
8314         source_position_t             source_position = token.source_position;
8315         expression_t                 *left;
8316
8317         if (parser->parser != NULL) {
8318                 left = parser->parser(parser->precedence);
8319         } else {
8320                 left = parse_primary_expression();
8321         }
8322         assert(left != NULL);
8323         left->base.source_position = source_position;
8324
8325         while(true) {
8326                 if (token.type < 0) {
8327                         return expected_expression_error();
8328                 }
8329
8330                 parser = &expression_parsers[token.type];
8331                 if (parser->infix_parser == NULL)
8332                         break;
8333                 if (parser->infix_precedence < precedence)
8334                         break;
8335
8336                 left = parser->infix_parser(parser->infix_precedence, left);
8337
8338                 assert(left != NULL);
8339                 assert(left->kind != EXPR_UNKNOWN);
8340                 left->base.source_position = source_position;
8341         }
8342
8343         return left;
8344 }
8345
8346 /**
8347  * Parse an expression.
8348  */
8349 static expression_t *parse_expression(void)
8350 {
8351         return parse_sub_expression(1);
8352 }
8353
8354 /**
8355  * Register a parser for a prefix-like operator with given precedence.
8356  *
8357  * @param parser      the parser function
8358  * @param token_type  the token type of the prefix token
8359  * @param precedence  the precedence of the operator
8360  */
8361 static void register_expression_parser(parse_expression_function parser,
8362                                        int token_type, unsigned precedence)
8363 {
8364         expression_parser_function_t *entry = &expression_parsers[token_type];
8365
8366         if (entry->parser != NULL) {
8367                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8368                 panic("trying to register multiple expression parsers for a token");
8369         }
8370         entry->parser     = parser;
8371         entry->precedence = precedence;
8372 }
8373
8374 /**
8375  * Register a parser for an infix operator with given precedence.
8376  *
8377  * @param parser      the parser function
8378  * @param token_type  the token type of the infix operator
8379  * @param precedence  the precedence of the operator
8380  */
8381 static void register_infix_parser(parse_expression_infix_function parser,
8382                 int token_type, unsigned precedence)
8383 {
8384         expression_parser_function_t *entry = &expression_parsers[token_type];
8385
8386         if (entry->infix_parser != NULL) {
8387                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
8388                 panic("trying to register multiple infix expression parsers for a "
8389                       "token");
8390         }
8391         entry->infix_parser     = parser;
8392         entry->infix_precedence = precedence;
8393 }
8394
8395 /**
8396  * Initialize the expression parsers.
8397  */
8398 static void init_expression_parsers(void)
8399 {
8400         memset(&expression_parsers, 0, sizeof(expression_parsers));
8401
8402         register_infix_parser(parse_array_expression,         '[',              30);
8403         register_infix_parser(parse_call_expression,          '(',              30);
8404         register_infix_parser(parse_select_expression,        '.',              30);
8405         register_infix_parser(parse_select_expression,        T_MINUSGREATER,   30);
8406         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,
8407                                                               T_PLUSPLUS,       30);
8408         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,
8409                                                               T_MINUSMINUS,     30);
8410
8411         register_infix_parser(parse_EXPR_BINARY_MUL,          '*',              17);
8412         register_infix_parser(parse_EXPR_BINARY_DIV,          '/',              17);
8413         register_infix_parser(parse_EXPR_BINARY_MOD,          '%',              17);
8414         register_infix_parser(parse_EXPR_BINARY_ADD,          '+',              16);
8415         register_infix_parser(parse_EXPR_BINARY_SUB,          '-',              16);
8416         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,    T_LESSLESS,       15);
8417         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,   T_GREATERGREATER, 15);
8418         register_infix_parser(parse_EXPR_BINARY_LESS,         '<',              14);
8419         register_infix_parser(parse_EXPR_BINARY_GREATER,      '>',              14);
8420         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,    T_LESSEQUAL,      14);
8421         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL, T_GREATEREQUAL,   14);
8422         register_infix_parser(parse_EXPR_BINARY_EQUAL,        T_EQUALEQUAL,     13);
8423         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,
8424                                                     T_EXCLAMATIONMARKEQUAL, 13);
8425         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,  '&',              12);
8426         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,  '^',              11);
8427         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,   '|',              10);
8428         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,  T_ANDAND,          9);
8429         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,   T_PIPEPIPE,        8);
8430         register_infix_parser(parse_conditional_expression,   '?',               7);
8431         register_infix_parser(parse_EXPR_BINARY_ASSIGN,       '=',               2);
8432         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,   T_PLUSEQUAL,       2);
8433         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,   T_MINUSEQUAL,      2);
8434         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,   T_ASTERISKEQUAL,   2);
8435         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,   T_SLASHEQUAL,      2);
8436         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,   T_PERCENTEQUAL,    2);
8437         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,
8438                                                                 T_LESSLESSEQUAL, 2);
8439         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,
8440                                                           T_GREATERGREATEREQUAL, 2);
8441         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN,
8442                                                                      T_ANDEQUAL, 2);
8443         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,
8444                                                                     T_PIPEEQUAL, 2);
8445         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN,
8446                                                                    T_CARETEQUAL, 2);
8447
8448         register_infix_parser(parse_EXPR_BINARY_COMMA,        ',',               1);
8449
8450         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-',      25);
8451         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+',      25);
8452         register_expression_parser(parse_EXPR_UNARY_NOT,              '!',      25);
8453         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~',      25);
8454         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*',      25);
8455         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&',      25);
8456         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT,
8457                                                                   T_PLUSPLUS,   25);
8458         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT,
8459                                                                   T_MINUSMINUS, 25);
8460         register_expression_parser(parse_sizeof,                      T_sizeof, 25);
8461         register_expression_parser(parse_alignof,                T___alignof__, 25);
8462         register_expression_parser(parse_extension,            T___extension__, 25);
8463         register_expression_parser(parse_builtin_classify_type,
8464                                                      T___builtin_classify_type, 25);
8465 }
8466
8467 /**
8468  * Parse a asm statement arguments specification.
8469  */
8470 static asm_argument_t *parse_asm_arguments(bool is_out)
8471 {
8472         asm_argument_t *result = NULL;
8473         asm_argument_t *last   = NULL;
8474
8475         while (token.type == T_STRING_LITERAL || token.type == '[') {
8476                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8477                 memset(argument, 0, sizeof(argument[0]));
8478
8479                 if (token.type == '[') {
8480                         eat('[');
8481                         if (token.type != T_IDENTIFIER) {
8482                                 parse_error_expected("while parsing asm argument",
8483                                                      T_IDENTIFIER, NULL);
8484                                 return NULL;
8485                         }
8486                         argument->symbol = token.v.symbol;
8487
8488                         expect(']');
8489                 }
8490
8491                 argument->constraints = parse_string_literals();
8492                 expect('(');
8493                 add_anchor_token(')');
8494                 expression_t *expression = parse_expression();
8495                 rem_anchor_token(')');
8496                 if (is_out) {
8497                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
8498                          * change size or type representation (e.g. int -> long is ok, but
8499                          * int -> float is not) */
8500                         if (expression->kind == EXPR_UNARY_CAST) {
8501                                 type_t      *const type = expression->base.type;
8502                                 type_kind_t  const kind = type->kind;
8503                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
8504                                         unsigned flags;
8505                                         unsigned size;
8506                                         if (kind == TYPE_ATOMIC) {
8507                                                 atomic_type_kind_t const akind = type->atomic.akind;
8508                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8509                                                 size  = get_atomic_type_size(akind);
8510                                         } else {
8511                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8512                                                 size  = get_atomic_type_size(get_intptr_kind());
8513                                         }
8514
8515                                         do {
8516                                                 expression_t *const value      = expression->unary.value;
8517                                                 type_t       *const value_type = value->base.type;
8518                                                 type_kind_t   const value_kind = value_type->kind;
8519
8520                                                 unsigned value_flags;
8521                                                 unsigned value_size;
8522                                                 if (value_kind == TYPE_ATOMIC) {
8523                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
8524                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
8525                                                         value_size  = get_atomic_type_size(value_akind);
8526                                                 } else if (value_kind == TYPE_POINTER) {
8527                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
8528                                                         value_size  = get_atomic_type_size(get_intptr_kind());
8529                                                 } else {
8530                                                         break;
8531                                                 }
8532
8533                                                 if (value_flags != flags || value_size != size)
8534                                                         break;
8535
8536                                                 expression = value;
8537                                         } while (expression->kind == EXPR_UNARY_CAST);
8538                                 }
8539                         }
8540
8541                         if (!is_lvalue(expression)) {
8542                                 errorf(&expression->base.source_position,
8543                                        "asm output argument is not an lvalue");
8544                         }
8545                 }
8546                 argument->expression = expression;
8547                 expect(')');
8548
8549                 set_address_taken(expression, true);
8550
8551                 if (last != NULL) {
8552                         last->next = argument;
8553                 } else {
8554                         result = argument;
8555                 }
8556                 last = argument;
8557
8558                 if (token.type != ',')
8559                         break;
8560                 eat(',');
8561         }
8562
8563         return result;
8564 end_error:
8565         return NULL;
8566 }
8567
8568 /**
8569  * Parse a asm statement clobber specification.
8570  */
8571 static asm_clobber_t *parse_asm_clobbers(void)
8572 {
8573         asm_clobber_t *result = NULL;
8574         asm_clobber_t *last   = NULL;
8575
8576         while(token.type == T_STRING_LITERAL) {
8577                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
8578                 clobber->clobber       = parse_string_literals();
8579
8580                 if (last != NULL) {
8581                         last->next = clobber;
8582                 } else {
8583                         result = clobber;
8584                 }
8585                 last = clobber;
8586
8587                 if (token.type != ',')
8588                         break;
8589                 eat(',');
8590         }
8591
8592         return result;
8593 }
8594
8595 /**
8596  * Parse an asm statement.
8597  */
8598 static statement_t *parse_asm_statement(void)
8599 {
8600         eat(T_asm);
8601
8602         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
8603         statement->base.source_position = token.source_position;
8604
8605         asm_statement_t *asm_statement = &statement->asms;
8606
8607         if (token.type == T_volatile) {
8608                 next_token();
8609                 asm_statement->is_volatile = true;
8610         }
8611
8612         expect('(');
8613         add_anchor_token(')');
8614         add_anchor_token(':');
8615         asm_statement->asm_text = parse_string_literals();
8616
8617         if (token.type != ':') {
8618                 rem_anchor_token(':');
8619                 goto end_of_asm;
8620         }
8621         eat(':');
8622
8623         asm_statement->outputs = parse_asm_arguments(true);
8624         if (token.type != ':') {
8625                 rem_anchor_token(':');
8626                 goto end_of_asm;
8627         }
8628         eat(':');
8629
8630         asm_statement->inputs = parse_asm_arguments(false);
8631         if (token.type != ':') {
8632                 rem_anchor_token(':');
8633                 goto end_of_asm;
8634         }
8635         rem_anchor_token(':');
8636         eat(':');
8637
8638         asm_statement->clobbers = parse_asm_clobbers();
8639
8640 end_of_asm:
8641         rem_anchor_token(')');
8642         expect(')');
8643         expect(';');
8644
8645         if (asm_statement->outputs == NULL) {
8646                 /* GCC: An 'asm' instruction without any output operands will be treated
8647                  * identically to a volatile 'asm' instruction. */
8648                 asm_statement->is_volatile = true;
8649         }
8650
8651         return statement;
8652 end_error:
8653         return create_invalid_statement();
8654 }
8655
8656 /**
8657  * Parse a case statement.
8658  */
8659 static statement_t *parse_case_statement(void)
8660 {
8661         eat(T_case);
8662
8663         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8664         source_position_t *const pos       = &statement->base.source_position;
8665
8666         *pos                             = token.source_position;
8667         expression_t *const expression   = parse_expression();
8668         statement->case_label.expression = expression;
8669         if (!is_constant_expression(expression)) {
8670                 /* This check does not prevent the error message in all cases of an
8671                  * prior error while parsing the expression.  At least it catches the
8672                  * common case of a mistyped enum entry. */
8673                 if (is_type_valid(expression->base.type)) {
8674                         errorf(pos, "case label does not reduce to an integer constant");
8675                 }
8676                 statement->case_label.is_bad = true;
8677         } else {
8678                 long const val = fold_constant(expression);
8679                 statement->case_label.first_case = val;
8680                 statement->case_label.last_case  = val;
8681         }
8682
8683         if (GNU_MODE) {
8684                 if (token.type == T_DOTDOTDOT) {
8685                         next_token();
8686                         expression_t *const end_range   = parse_expression();
8687                         statement->case_label.end_range = end_range;
8688                         if (!is_constant_expression(end_range)) {
8689                                 /* This check does not prevent the error message in all cases of an
8690                                  * prior error while parsing the expression.  At least it catches the
8691                                  * common case of a mistyped enum entry. */
8692                                 if (is_type_valid(end_range->base.type)) {
8693                                         errorf(pos, "case range does not reduce to an integer constant");
8694                                 }
8695                                 statement->case_label.is_bad = true;
8696                         } else {
8697                                 long const val = fold_constant(end_range);
8698                                 statement->case_label.last_case = val;
8699
8700                                 if (val < statement->case_label.first_case) {
8701                                         statement->case_label.is_empty_range = true;
8702                                         warningf(pos, "empty range specified");
8703                                 }
8704                         }
8705                 }
8706         }
8707
8708         PUSH_PARENT(statement);
8709
8710         expect(':');
8711
8712         if (current_switch != NULL) {
8713                 if (! statement->case_label.is_bad) {
8714                         /* Check for duplicate case values */
8715                         case_label_statement_t *c = &statement->case_label;
8716                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
8717                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
8718                                         continue;
8719
8720                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
8721                                         continue;
8722
8723                                 errorf(pos, "duplicate case value (previously used %P)",
8724                                        &l->base.source_position);
8725                                 break;
8726                         }
8727                 }
8728                 /* link all cases into the switch statement */
8729                 if (current_switch->last_case == NULL) {
8730                         current_switch->first_case      = &statement->case_label;
8731                 } else {
8732                         current_switch->last_case->next = &statement->case_label;
8733                 }
8734                 current_switch->last_case = &statement->case_label;
8735         } else {
8736                 errorf(pos, "case label not within a switch statement");
8737         }
8738
8739         statement_t *const inner_stmt = parse_statement();
8740         statement->case_label.statement = inner_stmt;
8741         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8742                 errorf(&inner_stmt->base.source_position, "declaration after case label");
8743         }
8744
8745         POP_PARENT;
8746         return statement;
8747 end_error:
8748         POP_PARENT;
8749         return create_invalid_statement();
8750 }
8751
8752 /**
8753  * Parse a default statement.
8754  */
8755 static statement_t *parse_default_statement(void)
8756 {
8757         eat(T_default);
8758
8759         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
8760         statement->base.source_position = token.source_position;
8761
8762         PUSH_PARENT(statement);
8763
8764         expect(':');
8765         if (current_switch != NULL) {
8766                 const case_label_statement_t *def_label = current_switch->default_label;
8767                 if (def_label != NULL) {
8768                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
8769                                &def_label->base.source_position);
8770                 } else {
8771                         current_switch->default_label = &statement->case_label;
8772
8773                         /* link all cases into the switch statement */
8774                         if (current_switch->last_case == NULL) {
8775                                 current_switch->first_case      = &statement->case_label;
8776                         } else {
8777                                 current_switch->last_case->next = &statement->case_label;
8778                         }
8779                         current_switch->last_case = &statement->case_label;
8780                 }
8781         } else {
8782                 errorf(&statement->base.source_position,
8783                         "'default' label not within a switch statement");
8784         }
8785
8786         statement_t *const inner_stmt = parse_statement();
8787         statement->case_label.statement = inner_stmt;
8788         if (inner_stmt->kind == STATEMENT_DECLARATION) {
8789                 errorf(&inner_stmt->base.source_position, "declaration after default label");
8790         }
8791
8792         POP_PARENT;
8793         return statement;
8794 end_error:
8795         POP_PARENT;
8796         return create_invalid_statement();
8797 }
8798
8799 /**
8800  * Parse a label statement.
8801  */
8802 static statement_t *parse_label_statement(void)
8803 {
8804         assert(token.type == T_IDENTIFIER);
8805         symbol_t *symbol = token.v.symbol;
8806         next_token();
8807
8808         declaration_t *label = get_label(symbol);
8809
8810         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
8811         statement->base.source_position = token.source_position;
8812         statement->label.label          = label;
8813
8814         PUSH_PARENT(statement);
8815
8816         /* if statement is already set then the label is defined twice,
8817          * otherwise it was just mentioned in a goto/local label declaration so far */
8818         if (label->init.statement != NULL) {
8819                 errorf(HERE, "duplicate label '%Y' (declared %P)",
8820                        symbol, &label->source_position);
8821         } else {
8822                 label->source_position = token.source_position;
8823                 label->init.statement  = statement;
8824         }
8825
8826         eat(':');
8827
8828         if (token.type == '}') {
8829                 /* TODO only warn? */
8830                 if (false) {
8831                         warningf(HERE, "label at end of compound statement");
8832                         statement->label.statement = create_empty_statement();
8833                 } else {
8834                         errorf(HERE, "label at end of compound statement");
8835                         statement->label.statement = create_invalid_statement();
8836                 }
8837         } else if (token.type == ';') {
8838                 /* Eat an empty statement here, to avoid the warning about an empty
8839                  * statement after a label.  label:; is commonly used to have a label
8840                  * before a closing brace. */
8841                 statement->label.statement = create_empty_statement();
8842                 next_token();
8843         } else {
8844                 statement_t *const inner_stmt = parse_statement();
8845                 statement->label.statement = inner_stmt;
8846                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
8847                         errorf(&inner_stmt->base.source_position, "declaration after label");
8848                 }
8849         }
8850
8851         /* remember the labels in a list for later checking */
8852         if (label_last == NULL) {
8853                 label_first = &statement->label;
8854         } else {
8855                 label_last->next = &statement->label;
8856         }
8857         label_last = &statement->label;
8858
8859         POP_PARENT;
8860         return statement;
8861 }
8862
8863 /**
8864  * Parse an if statement.
8865  */
8866 static statement_t *parse_if(void)
8867 {
8868         eat(T_if);
8869
8870         statement_t *statement          = allocate_statement_zero(STATEMENT_IF);
8871         statement->base.source_position = token.source_position;
8872
8873         PUSH_PARENT(statement);
8874
8875         expect('(');
8876         add_anchor_token(')');
8877         statement->ifs.condition = parse_expression();
8878         rem_anchor_token(')');
8879         expect(')');
8880
8881         add_anchor_token(T_else);
8882         statement->ifs.true_statement = parse_statement();
8883         rem_anchor_token(T_else);
8884
8885         if (token.type == T_else) {
8886                 next_token();
8887                 statement->ifs.false_statement = parse_statement();
8888         }
8889
8890         POP_PARENT;
8891         return statement;
8892 end_error:
8893         POP_PARENT;
8894         return create_invalid_statement();
8895 }
8896
8897 /**
8898  * Check that all enums are handled in a switch.
8899  *
8900  * @param statement  the switch statement to check
8901  */
8902 static void check_enum_cases(const switch_statement_t *statement) {
8903         const type_t *type = skip_typeref(statement->expression->base.type);
8904         if (! is_type_enum(type))
8905                 return;
8906         const enum_type_t *enumt = &type->enumt;
8907
8908         /* if we have a default, no warnings */
8909         if (statement->default_label != NULL)
8910                 return;
8911
8912         /* FIXME: calculation of value should be done while parsing */
8913         const declaration_t *declaration;
8914         long last_value = -1;
8915         for (declaration = enumt->declaration->next;
8916              declaration != NULL && declaration->storage_class == STORAGE_CLASS_ENUM_ENTRY;
8917                  declaration = declaration->next) {
8918                 const expression_t *expression = declaration->init.enum_value;
8919                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
8920                 bool                found      = false;
8921                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
8922                         if (l->expression == NULL)
8923                                 continue;
8924                         if (l->first_case <= value && value <= l->last_case) {
8925                                 found = true;
8926                                 break;
8927                         }
8928                 }
8929                 if (! found) {
8930                         warningf(&statement->base.source_position,
8931                                 "enumeration value '%Y' not handled in switch", declaration->symbol);
8932                 }
8933                 last_value = value;
8934         }
8935 }
8936
8937 /**
8938  * Parse a switch statement.
8939  */
8940 static statement_t *parse_switch(void)
8941 {
8942         eat(T_switch);
8943
8944         statement_t *statement          = allocate_statement_zero(STATEMENT_SWITCH);
8945         statement->base.source_position = token.source_position;
8946
8947         PUSH_PARENT(statement);
8948
8949         expect('(');
8950         add_anchor_token(')');
8951         expression_t *const expr = parse_expression();
8952         type_t       *      type = skip_typeref(expr->base.type);
8953         if (is_type_integer(type)) {
8954                 type = promote_integer(type);
8955                 if (warning.traditional) {
8956                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
8957                                 warningf(&expr->base.source_position,
8958                                         "'%T' switch expression not converted to '%T' in ISO C",
8959                                         type, type_int);
8960                         }
8961                 }
8962         } else if (is_type_valid(type)) {
8963                 errorf(&expr->base.source_position,
8964                        "switch quantity is not an integer, but '%T'", type);
8965                 type = type_error_type;
8966         }
8967         statement->switchs.expression = create_implicit_cast(expr, type);
8968         expect(')');
8969         rem_anchor_token(')');
8970
8971         switch_statement_t *rem = current_switch;
8972         current_switch          = &statement->switchs;
8973         statement->switchs.body = parse_statement();
8974         current_switch          = rem;
8975
8976         if (warning.switch_default &&
8977             statement->switchs.default_label == NULL) {
8978                 warningf(&statement->base.source_position, "switch has no default case");
8979         }
8980         if (warning.switch_enum)
8981                 check_enum_cases(&statement->switchs);
8982
8983         POP_PARENT;
8984         return statement;
8985 end_error:
8986         POP_PARENT;
8987         return create_invalid_statement();
8988 }
8989
8990 static statement_t *parse_loop_body(statement_t *const loop)
8991 {
8992         statement_t *const rem = current_loop;
8993         current_loop = loop;
8994
8995         statement_t *const body = parse_statement();
8996
8997         current_loop = rem;
8998         return body;
8999 }
9000
9001 /**
9002  * Parse a while statement.
9003  */
9004 static statement_t *parse_while(void)
9005 {
9006         eat(T_while);
9007
9008         statement_t *statement          = allocate_statement_zero(STATEMENT_WHILE);
9009         statement->base.source_position = token.source_position;
9010
9011         PUSH_PARENT(statement);
9012
9013         expect('(');
9014         add_anchor_token(')');
9015         statement->whiles.condition = parse_expression();
9016         rem_anchor_token(')');
9017         expect(')');
9018
9019         statement->whiles.body = parse_loop_body(statement);
9020
9021         POP_PARENT;
9022         return statement;
9023 end_error:
9024         POP_PARENT;
9025         return create_invalid_statement();
9026 }
9027
9028 /**
9029  * Parse a do statement.
9030  */
9031 static statement_t *parse_do(void)
9032 {
9033         eat(T_do);
9034
9035         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9036         statement->base.source_position = token.source_position;
9037
9038         PUSH_PARENT(statement)
9039
9040         add_anchor_token(T_while);
9041         statement->do_while.body = parse_loop_body(statement);
9042         rem_anchor_token(T_while);
9043
9044         expect(T_while);
9045         expect('(');
9046         add_anchor_token(')');
9047         statement->do_while.condition = parse_expression();
9048         rem_anchor_token(')');
9049         expect(')');
9050         expect(';');
9051
9052         POP_PARENT;
9053         return statement;
9054 end_error:
9055         POP_PARENT;
9056         return create_invalid_statement();
9057 }
9058
9059 /**
9060  * Parse a for statement.
9061  */
9062 static statement_t *parse_for(void)
9063 {
9064         eat(T_for);
9065
9066         statement_t *statement          = allocate_statement_zero(STATEMENT_FOR);
9067         statement->base.source_position = token.source_position;
9068
9069         PUSH_PARENT(statement);
9070
9071         int      top        = environment_top();
9072         scope_t *last_scope = scope;
9073         set_scope(&statement->fors.scope);
9074
9075         expect('(');
9076         add_anchor_token(')');
9077
9078         if (token.type != ';') {
9079                 if (is_declaration_specifier(&token, false)) {
9080                         parse_declaration(record_declaration);
9081                 } else {
9082                         add_anchor_token(';');
9083                         expression_t *const init = parse_expression();
9084                         statement->fors.initialisation = init;
9085                         if (warning.unused_value && !expression_has_effect(init)) {
9086                                 warningf(&init->base.source_position,
9087                                          "initialisation of 'for'-statement has no effect");
9088                         }
9089                         rem_anchor_token(';');
9090                         expect(';');
9091                 }
9092         } else {
9093                 expect(';');
9094         }
9095
9096         if (token.type != ';') {
9097                 add_anchor_token(';');
9098                 statement->fors.condition = parse_expression();
9099                 rem_anchor_token(';');
9100         }
9101         expect(';');
9102         if (token.type != ')') {
9103                 expression_t *const step = parse_expression();
9104                 statement->fors.step = step;
9105                 if (warning.unused_value && !expression_has_effect(step)) {
9106                         warningf(&step->base.source_position,
9107                                  "step of 'for'-statement has no effect");
9108                 }
9109         }
9110         rem_anchor_token(')');
9111         expect(')');
9112         statement->fors.body = parse_loop_body(statement);
9113
9114         assert(scope == &statement->fors.scope);
9115         set_scope(last_scope);
9116         environment_pop_to(top);
9117
9118         POP_PARENT;
9119         return statement;
9120
9121 end_error:
9122         POP_PARENT;
9123         rem_anchor_token(')');
9124         assert(scope == &statement->fors.scope);
9125         set_scope(last_scope);
9126         environment_pop_to(top);
9127
9128         return create_invalid_statement();
9129 }
9130
9131 /**
9132  * Parse a goto statement.
9133  */
9134 static statement_t *parse_goto(void)
9135 {
9136         source_position_t source_position = token.source_position;
9137         eat(T_goto);
9138
9139         statement_t *statement;
9140         if (GNU_MODE && token.type == '*') {
9141                 next_token();
9142                 expression_t *expression = parse_expression();
9143
9144                 /* Argh: although documentation say the expression must be of type void *,
9145                  * gcc excepts anything that can be casted into void * without error */
9146                 type_t *type = expression->base.type;
9147
9148                 if (type != type_error_type) {
9149                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9150                                 errorf(&source_position, "cannot convert to a pointer type");
9151                         } else if (type != type_void_ptr) {
9152                                 warningf(&source_position,
9153                                         "type of computed goto expression should be 'void*' not '%T'", type);
9154                         }
9155                         expression = create_implicit_cast(expression, type_void_ptr);
9156                 }
9157
9158                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9159                 statement->base.source_position = source_position;
9160                 statement->gotos.expression     = expression;
9161         } else {
9162                 if (token.type != T_IDENTIFIER) {
9163                         if (GNU_MODE)
9164                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9165                         else
9166                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9167                         eat_until_anchor();
9168                         goto end_error;
9169                 }
9170                 symbol_t *symbol = token.v.symbol;
9171                 next_token();
9172
9173                 statement                       = allocate_statement_zero(STATEMENT_GOTO);
9174                 statement->base.source_position = source_position;
9175                 statement->gotos.label          = get_label(symbol);
9176         }
9177
9178         /* remember the goto's in a list for later checking */
9179         if (goto_last == NULL) {
9180                 goto_first = &statement->gotos;
9181         } else {
9182                 goto_last->next = &statement->gotos;
9183         }
9184         goto_last = &statement->gotos;
9185
9186         expect(';');
9187
9188         return statement;
9189 end_error:
9190         return create_invalid_statement();
9191 }
9192
9193 /**
9194  * Parse a continue statement.
9195  */
9196 static statement_t *parse_continue(void)
9197 {
9198         if (current_loop == NULL) {
9199                 errorf(HERE, "continue statement not within loop");
9200         }
9201
9202         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9203         statement->base.source_position = token.source_position;
9204
9205         eat(T_continue);
9206         expect(';');
9207
9208 end_error:
9209         return statement;
9210 }
9211
9212 /**
9213  * Parse a break statement.
9214  */
9215 static statement_t *parse_break(void)
9216 {
9217         if (current_switch == NULL && current_loop == NULL) {
9218                 errorf(HERE, "break statement not within loop or switch");
9219         }
9220
9221         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9222         statement->base.source_position = token.source_position;
9223
9224         eat(T_break);
9225         expect(';');
9226
9227 end_error:
9228         return statement;
9229 }
9230
9231 /**
9232  * Parse a __leave statement.
9233  */
9234 static statement_t *parse_leave_statement(void)
9235 {
9236         if (current_try == NULL) {
9237                 errorf(HERE, "__leave statement not within __try");
9238         }
9239
9240         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9241         statement->base.source_position = token.source_position;
9242
9243         eat(T___leave);
9244         expect(';');
9245
9246 end_error:
9247         return statement;
9248 }
9249
9250 /**
9251  * Check if a given declaration represents a local variable.
9252  */
9253 static bool is_local_var_declaration(const declaration_t *declaration)
9254 {
9255         switch ((storage_class_tag_t) declaration->storage_class) {
9256         case STORAGE_CLASS_AUTO:
9257         case STORAGE_CLASS_REGISTER: {
9258                 const type_t *type = skip_typeref(declaration->type);
9259                 if (is_type_function(type)) {
9260                         return false;
9261                 } else {
9262                         return true;
9263                 }
9264         }
9265         default:
9266                 return false;
9267         }
9268 }
9269
9270 /**
9271  * Check if a given declaration represents a variable.
9272  */
9273 static bool is_var_declaration(const declaration_t *declaration)
9274 {
9275         if (declaration->storage_class == STORAGE_CLASS_TYPEDEF)
9276                 return false;
9277
9278         const type_t *type = skip_typeref(declaration->type);
9279         return !is_type_function(type);
9280 }
9281
9282 /**
9283  * Check if a given expression represents a local variable.
9284  */
9285 static bool is_local_variable(const expression_t *expression)
9286 {
9287         if (expression->base.kind != EXPR_REFERENCE) {
9288                 return false;
9289         }
9290         const declaration_t *declaration = expression->reference.declaration;
9291         return is_local_var_declaration(declaration);
9292 }
9293
9294 /**
9295  * Check if a given expression represents a local variable and
9296  * return its declaration then, else return NULL.
9297  */
9298 declaration_t *expr_is_variable(const expression_t *expression)
9299 {
9300         if (expression->base.kind != EXPR_REFERENCE) {
9301                 return NULL;
9302         }
9303         declaration_t *declaration = expression->reference.declaration;
9304         if (is_var_declaration(declaration))
9305                 return declaration;
9306         return NULL;
9307 }
9308
9309 /**
9310  * Parse a return statement.
9311  */
9312 static statement_t *parse_return(void)
9313 {
9314         statement_t *statement          = allocate_statement_zero(STATEMENT_RETURN);
9315         statement->base.source_position = token.source_position;
9316
9317         eat(T_return);
9318
9319         expression_t *return_value = NULL;
9320         if (token.type != ';') {
9321                 return_value = parse_expression();
9322         }
9323
9324         const type_t *const func_type = current_function->type;
9325         assert(is_type_function(func_type));
9326         type_t *const return_type = skip_typeref(func_type->function.return_type);
9327
9328         if (return_value != NULL) {
9329                 type_t *return_value_type = skip_typeref(return_value->base.type);
9330
9331                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)
9332                                 && !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9333                         warningf(&statement->base.source_position,
9334                                  "'return' with a value, in function returning void");
9335                         return_value = NULL;
9336                 } else {
9337                         assign_error_t error = semantic_assign(return_type, return_value);
9338                         report_assign_error(error, return_type, return_value, "'return'",
9339                                             &statement->base.source_position);
9340                         return_value = create_implicit_cast(return_value, return_type);
9341                 }
9342                 /* check for returning address of a local var */
9343                 if (return_value != NULL &&
9344                                 return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
9345                         const expression_t *expression = return_value->unary.value;
9346                         if (is_local_variable(expression)) {
9347                                 warningf(&statement->base.source_position,
9348                                          "function returns address of local variable");
9349                         }
9350                 }
9351         } else {
9352                 if (!is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9353                         warningf(&statement->base.source_position,
9354                                  "'return' without value, in function returning non-void");
9355                 }
9356         }
9357         statement->returns.value = return_value;
9358
9359         expect(';');
9360
9361 end_error:
9362         return statement;
9363 }
9364
9365 /**
9366  * Parse a declaration statement.
9367  */
9368 static statement_t *parse_declaration_statement(void)
9369 {
9370         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9371
9372         statement->base.source_position = token.source_position;
9373
9374         declaration_t *before = last_declaration;
9375         if (GNU_MODE)
9376                 parse_external_declaration();
9377         else
9378                 parse_declaration(record_declaration);
9379
9380         if (before == NULL) {
9381                 statement->declaration.declarations_begin = scope->declarations;
9382         } else {
9383                 statement->declaration.declarations_begin = before->next;
9384         }
9385         statement->declaration.declarations_end = last_declaration;
9386
9387         return statement;
9388 }
9389
9390 /**
9391  * Parse an expression statement, ie. expr ';'.
9392  */
9393 static statement_t *parse_expression_statement(void)
9394 {
9395         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
9396
9397         statement->base.source_position  = token.source_position;
9398         expression_t *const expr         = parse_expression();
9399         statement->expression.expression = expr;
9400
9401         expect(';');
9402
9403 end_error:
9404         return statement;
9405 }
9406
9407 /**
9408  * Parse a microsoft __try { } __finally { } or
9409  * __try{ } __except() { }
9410  */
9411 static statement_t *parse_ms_try_statment(void)
9412 {
9413         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
9414         statement->base.source_position  = token.source_position;
9415         eat(T___try);
9416
9417         PUSH_PARENT(statement);
9418
9419         ms_try_statement_t *rem = current_try;
9420         current_try = &statement->ms_try;
9421         statement->ms_try.try_statement = parse_compound_statement(false);
9422         current_try = rem;
9423
9424         POP_PARENT;
9425
9426         if (token.type == T___except) {
9427                 eat(T___except);
9428                 expect('(');
9429                 add_anchor_token(')');
9430                 expression_t *const expr = parse_expression();
9431                 type_t       *      type = skip_typeref(expr->base.type);
9432                 if (is_type_integer(type)) {
9433                         type = promote_integer(type);
9434                 } else if (is_type_valid(type)) {
9435                         errorf(&expr->base.source_position,
9436                                "__expect expression is not an integer, but '%T'", type);
9437                         type = type_error_type;
9438                 }
9439                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
9440                 rem_anchor_token(')');
9441                 expect(')');
9442                 statement->ms_try.final_statement = parse_compound_statement(false);
9443         } else if (token.type == T__finally) {
9444                 eat(T___finally);
9445                 statement->ms_try.final_statement = parse_compound_statement(false);
9446         } else {
9447                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
9448                 return create_invalid_statement();
9449         }
9450         return statement;
9451 end_error:
9452         return create_invalid_statement();
9453 }
9454
9455 static statement_t *parse_empty_statement(void)
9456 {
9457         if (warning.empty_statement) {
9458                 warningf(HERE, "statement is empty");
9459         }
9460         statement_t *const statement = create_empty_statement();
9461         eat(';');
9462         return statement;
9463 }
9464
9465 static statement_t *parse_local_label_declaration(void) {
9466         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
9467         statement->base.source_position = token.source_position;
9468
9469         eat(T___label__);
9470
9471         declaration_t *begin = NULL, *end = NULL;
9472
9473         while (true) {
9474                 if (token.type != T_IDENTIFIER) {
9475                         parse_error_expected("while parsing local label declaration",
9476                                 T_IDENTIFIER, NULL);
9477                         goto end_error;
9478                 }
9479                 symbol_t      *symbol      = token.v.symbol;
9480                 declaration_t *declaration = get_declaration(symbol, NAMESPACE_LOCAL_LABEL);
9481                 if (declaration != NULL) {
9482                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition at %P)",
9483                                 symbol, &declaration->source_position);
9484                 } else {
9485                         declaration = allocate_declaration_zero();
9486                         declaration->namespc         = NAMESPACE_LOCAL_LABEL;
9487                         declaration->source_position = token.source_position;
9488                         declaration->symbol          = symbol;
9489                         declaration->parent_scope    = scope;
9490                         declaration->init.statement  = NULL;
9491
9492                         if (end != NULL)
9493                                 end->next = declaration;
9494                         end = declaration;
9495                         if (begin == NULL)
9496                                 begin = declaration;
9497
9498                         local_label_push(declaration);
9499                 }
9500                 next_token();
9501
9502                 if (token.type != ',')
9503                         break;
9504                 next_token();
9505         }
9506         eat(';');
9507 end_error:
9508         statement->declaration.declarations_begin = begin;
9509         statement->declaration.declarations_end   = end;
9510         return statement;
9511 }
9512
9513 /**
9514  * Parse a statement.
9515  * There's also parse_statement() which additionally checks for
9516  * "statement has no effect" warnings
9517  */
9518 static statement_t *intern_parse_statement(void)
9519 {
9520         statement_t *statement = NULL;
9521
9522         /* declaration or statement */
9523         add_anchor_token(';');
9524         switch (token.type) {
9525         case T_IDENTIFIER: {
9526                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
9527                 if (la1_type == ':') {
9528                         statement = parse_label_statement();
9529                 } else if (is_typedef_symbol(token.v.symbol)) {
9530                         statement = parse_declaration_statement();
9531                 } else switch (la1_type) {
9532                         case '*':
9533                                 if (get_declaration(token.v.symbol, NAMESPACE_NORMAL) != NULL)
9534                                         goto expression_statment;
9535                                 /* FALLTHROUGH */
9536
9537                         DECLARATION_START
9538                         case T_IDENTIFIER:
9539                                 statement = parse_declaration_statement();
9540                                 break;
9541
9542                         default:
9543 expression_statment:
9544                                 statement = parse_expression_statement();
9545                                 break;
9546                 }
9547                 break;
9548         }
9549
9550         case T___extension__:
9551                 /* This can be a prefix to a declaration or an expression statement.
9552                  * We simply eat it now and parse the rest with tail recursion. */
9553                 do {
9554                         next_token();
9555                 } while (token.type == T___extension__);
9556                 bool old_gcc_extension = in_gcc_extension;
9557                 in_gcc_extension       = true;
9558                 statement = parse_statement();
9559                 in_gcc_extension = false;
9560                 break;
9561
9562         DECLARATION_START
9563                 statement = parse_declaration_statement();
9564                 break;
9565
9566         case T___label__:
9567                 statement = parse_local_label_declaration();
9568                 break;
9569
9570         case ';':        statement = parse_empty_statement();         break;
9571         case '{':        statement = parse_compound_statement(false); break;
9572         case T___leave:  statement = parse_leave_statement();         break;
9573         case T___try:    statement = parse_ms_try_statment();         break;
9574         case T_asm:      statement = parse_asm_statement();           break;
9575         case T_break:    statement = parse_break();                   break;
9576         case T_case:     statement = parse_case_statement();          break;
9577         case T_continue: statement = parse_continue();                break;
9578         case T_default:  statement = parse_default_statement();       break;
9579         case T_do:       statement = parse_do();                      break;
9580         case T_for:      statement = parse_for();                     break;
9581         case T_goto:     statement = parse_goto();                    break;
9582         case T_if:       statement = parse_if ();                     break;
9583         case T_return:   statement = parse_return();                  break;
9584         case T_switch:   statement = parse_switch();                  break;
9585         case T_while:    statement = parse_while();                   break;
9586
9587         case '!':
9588         case '&':
9589         case '(':
9590         case '*':
9591         case '+':
9592         case '-':
9593         case '~':
9594         case T_ANDAND:
9595         case T_CHARACTER_CONSTANT:
9596         case T_FLOATINGPOINT:
9597         case T_INTEGER:
9598         case T_MINUSMINUS:
9599         case T_PLUSPLUS:
9600         case T_STRING_LITERAL:
9601         case T_WIDE_CHARACTER_CONSTANT:
9602         case T_WIDE_STRING_LITERAL:
9603         case T___FUNCDNAME__:
9604         case T___FUNCSIG__:
9605         case T___FUNCTION__:
9606         case T___PRETTY_FUNCTION__:
9607         case T___builtin_alloca:
9608         case T___builtin_classify_type:
9609         case T___builtin_constant_p:
9610         case T___builtin_expect:
9611         case T___builtin_huge_val:
9612         case T___builtin_isgreater:
9613         case T___builtin_isgreaterequal:
9614         case T___builtin_isless:
9615         case T___builtin_islessequal:
9616         case T___builtin_islessgreater:
9617         case T___builtin_isunordered:
9618         case T___builtin_nan:
9619         case T___builtin_nand:
9620         case T___builtin_nanf:
9621         case T___builtin_offsetof:
9622         case T___builtin_prefetch:
9623         case T___builtin_va_arg:
9624         case T___builtin_va_end:
9625         case T___builtin_va_start:
9626         case T___func__:
9627         case T___noop:
9628         case T__assume:
9629                 statement = parse_expression_statement();
9630                 break;
9631
9632         default:
9633                 errorf(HERE, "unexpected token %K while parsing statement", &token);
9634                 statement = create_invalid_statement();
9635                 if (!at_anchor())
9636                         next_token();
9637                 break;
9638         }
9639         rem_anchor_token(';');
9640
9641         assert(statement != NULL
9642                         && statement->base.source_position.input_name != NULL);
9643
9644         return statement;
9645 }
9646
9647 /**
9648  * parse a statement and emits "statement has no effect" warning if needed
9649  * (This is really a wrapper around intern_parse_statement with check for 1
9650  *  single warning. It is needed, because for statement expressions we have
9651  *  to avoid the warning on the last statement)
9652  */
9653 static statement_t *parse_statement(void)
9654 {
9655         statement_t *statement = intern_parse_statement();
9656
9657         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
9658                 expression_t *expression = statement->expression.expression;
9659                 if (!expression_has_effect(expression)) {
9660                         warningf(&expression->base.source_position,
9661                                         "statement has no effect");
9662                 }
9663         }
9664
9665         return statement;
9666 }
9667
9668 /**
9669  * Parse a compound statement.
9670  */
9671 static statement_t *parse_compound_statement(bool inside_expression_statement)
9672 {
9673         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
9674         statement->base.source_position = token.source_position;
9675
9676         PUSH_PARENT(statement);
9677
9678         eat('{');
9679         add_anchor_token('}');
9680
9681         int      top        = environment_top();
9682         int      top_local  = local_label_top();
9683         scope_t *last_scope = scope;
9684         set_scope(&statement->compound.scope);
9685
9686         statement_t **anchor            = &statement->compound.statements;
9687         bool          only_decls_so_far = true;
9688         while (token.type != '}' && token.type != T_EOF) {
9689                 statement_t *sub_statement = intern_parse_statement();
9690                 if (is_invalid_statement(sub_statement)) {
9691                         /* an error occurred. if we are at an anchor, return */
9692                         if (at_anchor())
9693                                 goto end_error;
9694                         continue;
9695                 }
9696
9697                 if (warning.declaration_after_statement) {
9698                         if (sub_statement->kind != STATEMENT_DECLARATION) {
9699                                 only_decls_so_far = false;
9700                         } else if (!only_decls_so_far) {
9701                                 warningf(&sub_statement->base.source_position,
9702                                          "ISO C90 forbids mixed declarations and code");
9703                         }
9704                 }
9705
9706                 *anchor = sub_statement;
9707
9708                 while (sub_statement->base.next != NULL)
9709                         sub_statement = sub_statement->base.next;
9710
9711                 anchor = &sub_statement->base.next;
9712         }
9713
9714         if (token.type == '}') {
9715                 next_token();
9716         } else {
9717                 errorf(&statement->base.source_position,
9718                        "end of file while looking for closing '}'");
9719         }
9720
9721         /* look over all statements again to produce no effect warnings */
9722         if (warning.unused_value) {
9723                 statement_t *sub_statement = statement->compound.statements;
9724                 for( ; sub_statement != NULL; sub_statement = sub_statement->base.next) {
9725                         if (sub_statement->kind != STATEMENT_EXPRESSION)
9726                                 continue;
9727                         /* don't emit a warning for the last expression in an expression
9728                          * statement as it has always an effect */
9729                         if (inside_expression_statement && sub_statement->base.next == NULL)
9730                                 continue;
9731
9732                         expression_t *expression = sub_statement->expression.expression;
9733                         if (!expression_has_effect(expression)) {
9734                                 warningf(&expression->base.source_position,
9735                                          "statement has no effect");
9736                         }
9737                 }
9738         }
9739
9740 end_error:
9741         rem_anchor_token('}');
9742         assert(scope == &statement->compound.scope);
9743         set_scope(last_scope);
9744         environment_pop_to(top);
9745         local_label_pop_to(top_local);
9746
9747         POP_PARENT;
9748         return statement;
9749 }
9750
9751 /**
9752  * Initialize builtin types.
9753  */
9754 static void initialize_builtin_types(void)
9755 {
9756         type_intmax_t    = make_global_typedef("__intmax_t__",      type_long_long);
9757         type_size_t      = make_global_typedef("__SIZE_TYPE__",     type_unsigned_long);
9758         type_ssize_t     = make_global_typedef("__SSIZE_TYPE__",    type_long);
9759         type_ptrdiff_t   = make_global_typedef("__PTRDIFF_TYPE__",  type_long);
9760         type_uintmax_t   = make_global_typedef("__uintmax_t__",     type_unsigned_long_long);
9761         type_uptrdiff_t  = make_global_typedef("__UPTRDIFF_TYPE__", type_unsigned_long);
9762         type_wchar_t     = make_global_typedef("__WCHAR_TYPE__",    opt_short_wchar_t ? type_unsigned_short : type_int);
9763         type_wint_t      = make_global_typedef("__WINT_TYPE__",     type_int);
9764
9765         type_intmax_t_ptr  = make_pointer_type(type_intmax_t,  TYPE_QUALIFIER_NONE);
9766         type_ptrdiff_t_ptr = make_pointer_type(type_ptrdiff_t, TYPE_QUALIFIER_NONE);
9767         type_ssize_t_ptr   = make_pointer_type(type_ssize_t,   TYPE_QUALIFIER_NONE);
9768         type_wchar_t_ptr   = make_pointer_type(type_wchar_t,   TYPE_QUALIFIER_NONE);
9769
9770         /* const version of wchar_t */
9771         type_const_wchar_t = allocate_type_zero(TYPE_TYPEDEF, &builtin_source_position);
9772         type_const_wchar_t->typedeft.declaration  = type_wchar_t->typedeft.declaration;
9773         type_const_wchar_t->base.qualifiers      |= TYPE_QUALIFIER_CONST;
9774
9775         type_const_wchar_t_ptr = make_pointer_type(type_const_wchar_t, TYPE_QUALIFIER_NONE);
9776 }
9777
9778 /**
9779  * Check for unused global static functions and variables
9780  */
9781 static void check_unused_globals(void)
9782 {
9783         if (!warning.unused_function && !warning.unused_variable)
9784                 return;
9785
9786         for (const declaration_t *decl = global_scope->declarations; decl != NULL; decl = decl->next) {
9787                 if (decl->used                  ||
9788                     decl->modifiers & DM_UNUSED ||
9789                     decl->modifiers & DM_USED   ||
9790                     decl->storage_class != STORAGE_CLASS_STATIC)
9791                         continue;
9792
9793                 type_t *const type = decl->type;
9794                 const char *s;
9795                 if (is_type_function(skip_typeref(type))) {
9796                         if (!warning.unused_function || decl->is_inline)
9797                                 continue;
9798
9799                         s = (decl->init.statement != NULL ? "defined" : "declared");
9800                 } else {
9801                         if (!warning.unused_variable)
9802                                 continue;
9803
9804                         s = "defined";
9805                 }
9806
9807                 warningf(&decl->source_position, "'%#T' %s but not used",
9808                         type, decl->symbol, s);
9809         }
9810 }
9811
9812 static void parse_global_asm(void)
9813 {
9814         eat(T_asm);
9815         expect('(');
9816
9817         statement_t *statement          = allocate_statement_zero(STATEMENT_ASM);
9818         statement->base.source_position = token.source_position;
9819         statement->asms.asm_text        = parse_string_literals();
9820         statement->base.next            = unit->global_asm;
9821         unit->global_asm                = statement;
9822
9823         expect(')');
9824         expect(';');
9825
9826 end_error:;
9827 }
9828
9829 /**
9830  * Parse a translation unit.
9831  */
9832 static void parse_translation_unit(void)
9833 {
9834         for (;;) {
9835 #ifndef NDEBUG
9836                 bool anchor_leak = false;
9837                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
9838                         unsigned char count = token_anchor_set[i];
9839                         if (count != 0) {
9840                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
9841                                 anchor_leak = true;
9842                         }
9843                 }
9844                 if (in_gcc_extension) {
9845                         errorf(HERE, "Leaked __extension__");
9846                         anchor_leak = true;
9847                 }
9848
9849                 if (anchor_leak)
9850                         abort();
9851 #endif
9852
9853                 switch (token.type) {
9854                         DECLARATION_START
9855                         case T_IDENTIFIER:
9856                         case T___extension__:
9857                                 parse_external_declaration();
9858                                 break;
9859
9860                         case T_asm:
9861                                 parse_global_asm();
9862                                 break;
9863
9864                         case T_EOF:
9865                                 return;
9866
9867                         case ';':
9868                                 /* TODO error in strict mode */
9869                                 warningf(HERE, "stray ';' outside of function");
9870                                 next_token();
9871                                 break;
9872
9873                         default:
9874                                 errorf(HERE, "stray %K outside of function", &token);
9875                                 if (token.type == '(' || token.type == '{' || token.type == '[')
9876                                         eat_until_matching_token(token.type);
9877                                 next_token();
9878                                 break;
9879                 }
9880         }
9881 }
9882
9883 /**
9884  * Parse the input.
9885  *
9886  * @return  the translation unit or NULL if errors occurred.
9887  */
9888 void start_parsing(void)
9889 {
9890         environment_stack = NEW_ARR_F(stack_entry_t, 0);
9891         label_stack       = NEW_ARR_F(stack_entry_t, 0);
9892         local_label_stack = NEW_ARR_F(stack_entry_t, 0);
9893         diagnostic_count  = 0;
9894         error_count       = 0;
9895         warning_count     = 0;
9896
9897         type_set_output(stderr);
9898         ast_set_output(stderr);
9899
9900         assert(unit == NULL);
9901         unit = allocate_ast_zero(sizeof(unit[0]));
9902
9903         assert(global_scope == NULL);
9904         global_scope = &unit->scope;
9905
9906         assert(scope == NULL);
9907         set_scope(&unit->scope);
9908
9909         initialize_builtin_types();
9910 }
9911
9912 translation_unit_t *finish_parsing(void)
9913 {
9914         assert(scope == &unit->scope);
9915         scope          = NULL;
9916         last_declaration = NULL;
9917
9918         assert(global_scope == &unit->scope);
9919         check_unused_globals();
9920         global_scope = NULL;
9921
9922         DEL_ARR_F(environment_stack);
9923         DEL_ARR_F(label_stack);
9924         DEL_ARR_F(local_label_stack);
9925
9926         translation_unit_t *result = unit;
9927         unit = NULL;
9928         return result;
9929 }
9930
9931 void parse(void)
9932 {
9933         lookahead_bufpos = 0;
9934         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
9935                 next_token();
9936         }
9937         parse_translation_unit();
9938 }
9939
9940 /**
9941  * Initialize the parser.
9942  */
9943 void init_parser(void)
9944 {
9945         sym_anonymous = symbol_table_insert("<anonymous>");
9946
9947         if (c_mode & _MS) {
9948                 /* add predefined symbols for extended-decl-modifier */
9949                 sym_align      = symbol_table_insert("align");
9950                 sym_allocate   = symbol_table_insert("allocate");
9951                 sym_dllimport  = symbol_table_insert("dllimport");
9952                 sym_dllexport  = symbol_table_insert("dllexport");
9953                 sym_naked      = symbol_table_insert("naked");
9954                 sym_noinline   = symbol_table_insert("noinline");
9955                 sym_noreturn   = symbol_table_insert("noreturn");
9956                 sym_nothrow    = symbol_table_insert("nothrow");
9957                 sym_novtable   = symbol_table_insert("novtable");
9958                 sym_property   = symbol_table_insert("property");
9959                 sym_get        = symbol_table_insert("get");
9960                 sym_put        = symbol_table_insert("put");
9961                 sym_selectany  = symbol_table_insert("selectany");
9962                 sym_thread     = symbol_table_insert("thread");
9963                 sym_uuid       = symbol_table_insert("uuid");
9964                 sym_deprecated = symbol_table_insert("deprecated");
9965                 sym_restrict   = symbol_table_insert("restrict");
9966                 sym_noalias    = symbol_table_insert("noalias");
9967         }
9968         memset(token_anchor_set, 0, sizeof(token_anchor_set));
9969
9970         init_expression_parsers();
9971         obstack_init(&temp_obst);
9972
9973         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
9974         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
9975 }
9976
9977 /**
9978  * Terminate the parser.
9979  */
9980 void exit_parser(void)
9981 {
9982         obstack_free(&temp_obst, NULL);
9983 }