fix
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "attribute_t.h"
38 #include "lang_features.h"
39 #include "walk_statements.h"
40 #include "warning.h"
41 #include "adt/bitfiddle.h"
42 #include "adt/error.h"
43 #include "adt/array.h"
44
45 //#define PRINT_TOKENS
46 #define MAX_LOOKAHEAD 1
47
48 typedef struct {
49         entity_t           *old_entity;
50         symbol_t           *symbol;
51         entity_namespace_t  namespc;
52 } stack_entry_t;
53
54 typedef struct declaration_specifiers_t  declaration_specifiers_t;
55 struct declaration_specifiers_t {
56         source_position_t  source_position;
57         storage_class_t    storage_class;
58         unsigned char      alignment;         /**< Alignment, 0 if not set. */
59         bool               is_inline    : 1;
60         bool               thread_local : 1;  /**< GCC __thread */
61         attribute_t       *attributes;        /**< list of attributes */
62         type_t            *type;
63 };
64
65 /**
66  * An environment for parsing initializers (and compound literals).
67  */
68 typedef struct parse_initializer_env_t {
69         type_t     *type;   /**< the type of the initializer. In case of an
70                                  array type with unspecified size this gets
71                                  adjusted to the actual size. */
72         entity_t   *entity; /**< the variable that is initialized if any */
73         bool        must_be_constant;
74 } parse_initializer_env_t;
75
76 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
77
78 /** The current token. */
79 static token_t              token;
80 /** The lookahead ring-buffer. */
81 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
82 /** Position of the next token in the lookahead buffer. */
83 static size_t               lookahead_bufpos;
84 static stack_entry_t       *environment_stack = NULL;
85 static stack_entry_t       *label_stack       = NULL;
86 static scope_t             *file_scope        = NULL;
87 static scope_t             *current_scope     = NULL;
88 /** Point to the current function declaration if inside a function. */
89 static function_t          *current_function  = NULL;
90 static entity_t            *current_init_decl = NULL;
91 static switch_statement_t  *current_switch    = NULL;
92 static statement_t         *current_loop      = NULL;
93 static statement_t         *current_parent    = NULL;
94 static ms_try_statement_t  *current_try       = NULL;
95 static linkage_kind_t       current_linkage   = LINKAGE_INVALID;
96 static goto_statement_t    *goto_first        = NULL;
97 static goto_statement_t   **goto_anchor       = NULL;
98 static label_statement_t   *label_first       = NULL;
99 static label_statement_t  **label_anchor      = NULL;
100 /** current translation unit. */
101 static translation_unit_t  *unit              = NULL;
102 /** true if we are in a type property context (evaluation only for type. */
103 static bool                 in_type_prop      = false;
104 /** true in we are in a __extension__ context. */
105 static bool                 in_gcc_extension  = false;
106 static struct obstack       temp_obst;
107 static entity_t            *anonymous_entity;
108 static declaration_t      **incomplete_arrays;
109
110
111 #define PUSH_PARENT(stmt)                          \
112         statement_t *const prev_parent = current_parent; \
113         ((void)(current_parent = (stmt)))
114 #define POP_PARENT ((void)(current_parent = prev_parent))
115
116 /** special symbol used for anonymous entities. */
117 static const symbol_t *sym_anonymous = NULL;
118
119 /** The token anchor set */
120 static unsigned char token_anchor_set[T_LAST_TOKEN];
121
122 /** The current source position. */
123 #define HERE (&token.source_position)
124
125 /** true if we are in GCC mode. */
126 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
127
128 static statement_t *parse_compound_statement(bool inside_expression_statement);
129 static statement_t *parse_statement(void);
130
131 static expression_t *parse_sub_expression(precedence_t);
132 static expression_t *parse_expression(void);
133 static type_t       *parse_typename(void);
134 static void          parse_externals(void);
135 static void          parse_external(void);
136
137 static void parse_compound_type_entries(compound_t *compound_declaration);
138
139 static void check_call_argument(type_t          *expected_type,
140                                                                 call_argument_t *argument, unsigned pos);
141
142 typedef enum declarator_flags_t {
143         DECL_FLAGS_NONE             = 0,
144         DECL_MAY_BE_ABSTRACT        = 1U << 0,
145         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
146         DECL_IS_PARAMETER           = 1U << 2
147 } declarator_flags_t;
148
149 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
150                                   declarator_flags_t flags);
151
152 static entity_t *record_entity(entity_t *entity, bool is_definition);
153
154 static void semantic_comparison(binary_expression_t *expression);
155
156 static void create_gnu_builtins(void);
157 static void create_microsoft_intrinsics(void);
158
159 #define STORAGE_CLASSES       \
160         STORAGE_CLASSES_NO_EXTERN \
161         case T_extern:
162
163 #define STORAGE_CLASSES_NO_EXTERN \
164         case T_typedef:         \
165         case T_static:          \
166         case T_auto:            \
167         case T_register:        \
168         case T___thread:
169
170 #define TYPE_QUALIFIERS     \
171         case T_const:           \
172         case T_restrict:        \
173         case T_volatile:        \
174         case T_inline:          \
175         case T__forceinline:    \
176         case T___attribute__:
177
178 #define COMPLEX_SPECIFIERS  \
179         case T__Complex:
180 #define IMAGINARY_SPECIFIERS \
181         case T__Imaginary:
182
183 #define TYPE_SPECIFIERS       \
184         case T__Bool:             \
185         case T___builtin_va_list: \
186         case T___typeof__:        \
187         case T__declspec:         \
188         case T_bool:              \
189         case T_char:              \
190         case T_double:            \
191         case T_enum:              \
192         case T_float:             \
193         case T_int:               \
194         case T_long:              \
195         case T_short:             \
196         case T_signed:            \
197         case T_struct:            \
198         case T_union:             \
199         case T_unsigned:          \
200         case T_void:              \
201         case T_wchar_t:           \
202         case T__int8:             \
203         case T__int16:            \
204         case T__int32:            \
205         case T__int64:            \
206         case T__int128:           \
207         COMPLEX_SPECIFIERS        \
208         IMAGINARY_SPECIFIERS
209
210 #define DECLARATION_START   \
211         STORAGE_CLASSES         \
212         TYPE_QUALIFIERS         \
213         TYPE_SPECIFIERS
214
215 #define DECLARATION_START_NO_EXTERN \
216         STORAGE_CLASSES_NO_EXTERN       \
217         TYPE_QUALIFIERS                 \
218         TYPE_SPECIFIERS
219
220 #define TYPENAME_START      \
221         TYPE_QUALIFIERS         \
222         TYPE_SPECIFIERS
223
224 #define EXPRESSION_START           \
225         case '!':                        \
226         case '&':                        \
227         case '(':                        \
228         case '*':                        \
229         case '+':                        \
230         case '-':                        \
231         case '~':                        \
232         case T_ANDAND:                   \
233         case T_CHARACTER_CONSTANT:       \
234         case T_FLOATINGPOINT:            \
235         case T_INTEGER:                  \
236         case T_MINUSMINUS:               \
237         case T_PLUSPLUS:                 \
238         case T_STRING_LITERAL:           \
239         case T_WIDE_CHARACTER_CONSTANT:  \
240         case T_WIDE_STRING_LITERAL:      \
241         case T___FUNCDNAME__:            \
242         case T___FUNCSIG__:              \
243         case T___FUNCTION__:             \
244         case T___PRETTY_FUNCTION__:      \
245         case T___alignof__:              \
246         case T___builtin_classify_type:  \
247         case T___builtin_constant_p:     \
248         case T___builtin_isgreater:      \
249         case T___builtin_isgreaterequal: \
250         case T___builtin_isless:         \
251         case T___builtin_islessequal:    \
252         case T___builtin_islessgreater:  \
253         case T___builtin_isunordered:    \
254         case T___builtin_offsetof:       \
255         case T___builtin_va_arg:         \
256         case T___builtin_va_start:       \
257         case T___builtin_va_copy:        \
258         case T___func__:                 \
259         case T___noop:                   \
260         case T__assume:                  \
261         case T_delete:                   \
262         case T_false:                    \
263         case T_sizeof:                   \
264         case T_throw:                    \
265         case T_true:
266
267 /**
268  * Allocate an AST node with given size and
269  * initialize all fields with zero.
270  */
271 static void *allocate_ast_zero(size_t size)
272 {
273         void *res = allocate_ast(size);
274         memset(res, 0, size);
275         return res;
276 }
277
278 /**
279  * Returns the size of an entity node.
280  *
281  * @param kind  the entity kind
282  */
283 static size_t get_entity_struct_size(entity_kind_t kind)
284 {
285         static const size_t sizes[] = {
286                 [ENTITY_VARIABLE]        = sizeof(variable_t),
287                 [ENTITY_PARAMETER]       = sizeof(parameter_t),
288                 [ENTITY_COMPOUND_MEMBER] = sizeof(compound_member_t),
289                 [ENTITY_FUNCTION]        = sizeof(function_t),
290                 [ENTITY_TYPEDEF]         = sizeof(typedef_t),
291                 [ENTITY_STRUCT]          = sizeof(compound_t),
292                 [ENTITY_UNION]           = sizeof(compound_t),
293                 [ENTITY_ENUM]            = sizeof(enum_t),
294                 [ENTITY_ENUM_VALUE]      = sizeof(enum_value_t),
295                 [ENTITY_LABEL]           = sizeof(label_t),
296                 [ENTITY_LOCAL_LABEL]     = sizeof(label_t),
297                 [ENTITY_NAMESPACE]       = sizeof(namespace_t)
298         };
299         assert(kind < lengthof(sizes));
300         assert(sizes[kind] != 0);
301         return sizes[kind];
302 }
303
304 /**
305  * Allocate an entity of given kind and initialize all
306  * fields with zero.
307  *
308  * @param kind   the kind of the entity to allocate
309  */
310 static entity_t *allocate_entity_zero(entity_kind_t kind)
311 {
312         size_t    size   = get_entity_struct_size(kind);
313         entity_t *entity = allocate_ast_zero(size);
314         entity->kind     = kind;
315         return entity;
316 }
317
318 /**
319  * Returns the size of a statement node.
320  *
321  * @param kind  the statement kind
322  */
323 static size_t get_statement_struct_size(statement_kind_t kind)
324 {
325         static const size_t sizes[] = {
326                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
327                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
328                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
329                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
330                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
331                 [STATEMENT_IF]          = sizeof(if_statement_t),
332                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
333                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
334                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
335                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
336                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
337                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
338                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
339                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
340                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
341                 [STATEMENT_FOR]         = sizeof(for_statement_t),
342                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
343                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
344                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
345         };
346         assert(kind < lengthof(sizes));
347         assert(sizes[kind] != 0);
348         return sizes[kind];
349 }
350
351 /**
352  * Returns the size of an expression node.
353  *
354  * @param kind  the expression kind
355  */
356 static size_t get_expression_struct_size(expression_kind_t kind)
357 {
358         static const size_t sizes[] = {
359                 [EXPR_INVALID]                    = sizeof(expression_base_t),
360                 [EXPR_REFERENCE]                  = sizeof(reference_expression_t),
361                 [EXPR_REFERENCE_ENUM_VALUE]       = sizeof(reference_expression_t),
362                 [EXPR_CONST]                      = sizeof(const_expression_t),
363                 [EXPR_CHARACTER_CONSTANT]         = sizeof(const_expression_t),
364                 [EXPR_WIDE_CHARACTER_CONSTANT]    = sizeof(const_expression_t),
365                 [EXPR_STRING_LITERAL]             = sizeof(string_literal_expression_t),
366                 [EXPR_WIDE_STRING_LITERAL]        = sizeof(wide_string_literal_expression_t),
367                 [EXPR_COMPOUND_LITERAL]           = sizeof(compound_literal_expression_t),
368                 [EXPR_CALL]                       = sizeof(call_expression_t),
369                 [EXPR_UNARY_FIRST]                = sizeof(unary_expression_t),
370                 [EXPR_BINARY_FIRST]               = sizeof(binary_expression_t),
371                 [EXPR_CONDITIONAL]                = sizeof(conditional_expression_t),
372                 [EXPR_SELECT]                     = sizeof(select_expression_t),
373                 [EXPR_ARRAY_ACCESS]               = sizeof(array_access_expression_t),
374                 [EXPR_SIZEOF]                     = sizeof(typeprop_expression_t),
375                 [EXPR_ALIGNOF]                    = sizeof(typeprop_expression_t),
376                 [EXPR_CLASSIFY_TYPE]              = sizeof(classify_type_expression_t),
377                 [EXPR_FUNCNAME]                   = sizeof(funcname_expression_t),
378                 [EXPR_BUILTIN_CONSTANT_P]         = sizeof(builtin_constant_expression_t),
379                 [EXPR_BUILTIN_TYPES_COMPATIBLE_P] = sizeof(builtin_types_compatible_expression_t),
380                 [EXPR_OFFSETOF]                   = sizeof(offsetof_expression_t),
381                 [EXPR_VA_START]                   = sizeof(va_start_expression_t),
382                 [EXPR_VA_ARG]                     = sizeof(va_arg_expression_t),
383                 [EXPR_VA_COPY]                    = sizeof(va_copy_expression_t),
384                 [EXPR_STATEMENT]                  = sizeof(statement_expression_t),
385                 [EXPR_LABEL_ADDRESS]              = sizeof(label_address_expression_t),
386         };
387         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
388                 return sizes[EXPR_UNARY_FIRST];
389         }
390         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
391                 return sizes[EXPR_BINARY_FIRST];
392         }
393         assert(kind < lengthof(sizes));
394         assert(sizes[kind] != 0);
395         return sizes[kind];
396 }
397
398 /**
399  * Allocate a statement node of given kind and initialize all
400  * fields with zero. Sets its source position to the position
401  * of the current token.
402  */
403 static statement_t *allocate_statement_zero(statement_kind_t kind)
404 {
405         size_t       size = get_statement_struct_size(kind);
406         statement_t *res  = allocate_ast_zero(size);
407
408         res->base.kind            = kind;
409         res->base.parent          = current_parent;
410         res->base.source_position = token.source_position;
411         return res;
412 }
413
414 /**
415  * Allocate an expression node of given kind and initialize all
416  * fields with zero.
417  *
418  * @param kind  the kind of the expression to allocate
419  */
420 static expression_t *allocate_expression_zero(expression_kind_t kind)
421 {
422         size_t        size = get_expression_struct_size(kind);
423         expression_t *res  = allocate_ast_zero(size);
424
425         res->base.kind            = kind;
426         res->base.type            = type_error_type;
427         res->base.source_position = token.source_position;
428         return res;
429 }
430
431 /**
432  * Creates a new invalid expression at the source position
433  * of the current token.
434  */
435 static expression_t *create_invalid_expression(void)
436 {
437         return allocate_expression_zero(EXPR_INVALID);
438 }
439
440 /**
441  * Creates a new invalid statement.
442  */
443 static statement_t *create_invalid_statement(void)
444 {
445         return allocate_statement_zero(STATEMENT_INVALID);
446 }
447
448 /**
449  * Allocate a new empty statement.
450  */
451 static statement_t *create_empty_statement(void)
452 {
453         return allocate_statement_zero(STATEMENT_EMPTY);
454 }
455
456 /**
457  * Returns the size of a type node.
458  *
459  * @param kind  the type kind
460  */
461 static size_t get_type_struct_size(type_kind_t kind)
462 {
463         static const size_t sizes[] = {
464                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
465                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
466                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
467                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
468                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
469                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
470                 [TYPE_ENUM]            = sizeof(enum_type_t),
471                 [TYPE_FUNCTION]        = sizeof(function_type_t),
472                 [TYPE_POINTER]         = sizeof(pointer_type_t),
473                 [TYPE_ARRAY]           = sizeof(array_type_t),
474                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
475                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
476                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
477         };
478         assert(lengthof(sizes) == (int)TYPE_TYPEOF + 1);
479         assert(kind <= TYPE_TYPEOF);
480         assert(sizes[kind] != 0);
481         return sizes[kind];
482 }
483
484 /**
485  * Allocate a type node of given kind and initialize all
486  * fields with zero.
487  *
488  * @param kind             type kind to allocate
489  */
490 static type_t *allocate_type_zero(type_kind_t kind)
491 {
492         size_t  size = get_type_struct_size(kind);
493         type_t *res  = obstack_alloc(type_obst, size);
494         memset(res, 0, size);
495         res->base.kind = kind;
496
497         return res;
498 }
499
500 static function_parameter_t *allocate_parameter(type_t *const type)
501 {
502         function_parameter_t *const param = obstack_alloc(type_obst, sizeof(*param));
503         memset(param, 0, sizeof(*param));
504         param->type = type;
505         return param;
506 }
507
508 /**
509  * Returns the size of an initializer node.
510  *
511  * @param kind  the initializer kind
512  */
513 static size_t get_initializer_size(initializer_kind_t kind)
514 {
515         static const size_t sizes[] = {
516                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
517                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
518                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
519                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
520                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
521         };
522         assert(kind < lengthof(sizes));
523         assert(sizes[kind] != 0);
524         return sizes[kind];
525 }
526
527 /**
528  * Allocate an initializer node of given kind and initialize all
529  * fields with zero.
530  */
531 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
532 {
533         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
534         result->kind          = kind;
535
536         return result;
537 }
538
539 /**
540  * Returns the index of the top element of the environment stack.
541  */
542 static size_t environment_top(void)
543 {
544         return ARR_LEN(environment_stack);
545 }
546
547 /**
548  * Returns the index of the top element of the global label stack.
549  */
550 static size_t label_top(void)
551 {
552         return ARR_LEN(label_stack);
553 }
554
555 /**
556  * Return the next token.
557  */
558 static inline void next_token(void)
559 {
560         token                              = lookahead_buffer[lookahead_bufpos];
561         lookahead_buffer[lookahead_bufpos] = lexer_token;
562         lexer_next_token();
563
564         lookahead_bufpos = (lookahead_bufpos + 1) % MAX_LOOKAHEAD;
565
566 #ifdef PRINT_TOKENS
567         print_token(stderr, &token);
568         fprintf(stderr, "\n");
569 #endif
570 }
571
572 /**
573  * Return the next token with a given lookahead.
574  */
575 static inline const token_t *look_ahead(size_t num)
576 {
577         assert(0 < num && num <= MAX_LOOKAHEAD);
578         size_t pos = (lookahead_bufpos + num - 1) % MAX_LOOKAHEAD;
579         return &lookahead_buffer[pos];
580 }
581
582 /**
583  * Adds a token type to the token type anchor set (a multi-set).
584  */
585 static void add_anchor_token(int token_type)
586 {
587         assert(0 <= token_type && token_type < T_LAST_TOKEN);
588         ++token_anchor_set[token_type];
589 }
590
591 /**
592  * Set the number of tokens types of the given type
593  * to zero and return the old count.
594  */
595 static int save_and_reset_anchor_state(int token_type)
596 {
597         assert(0 <= token_type && token_type < T_LAST_TOKEN);
598         int count = token_anchor_set[token_type];
599         token_anchor_set[token_type] = 0;
600         return count;
601 }
602
603 /**
604  * Restore the number of token types to the given count.
605  */
606 static void restore_anchor_state(int token_type, int count)
607 {
608         assert(0 <= token_type && token_type < T_LAST_TOKEN);
609         token_anchor_set[token_type] = count;
610 }
611
612 /**
613  * Remove a token type from the token type anchor set (a multi-set).
614  */
615 static void rem_anchor_token(int token_type)
616 {
617         assert(0 <= token_type && token_type < T_LAST_TOKEN);
618         assert(token_anchor_set[token_type] != 0);
619         --token_anchor_set[token_type];
620 }
621
622 /**
623  * Return true if the token type of the current token is
624  * in the anchor set.
625  */
626 static bool at_anchor(void)
627 {
628         if (token.type < 0)
629                 return false;
630         return token_anchor_set[token.type];
631 }
632
633 /**
634  * Eat tokens until a matching token type is found.
635  */
636 static void eat_until_matching_token(int type)
637 {
638         int end_token;
639         switch (type) {
640                 case '(': end_token = ')';  break;
641                 case '{': end_token = '}';  break;
642                 case '[': end_token = ']';  break;
643                 default:  end_token = type; break;
644         }
645
646         unsigned parenthesis_count = 0;
647         unsigned brace_count       = 0;
648         unsigned bracket_count     = 0;
649         while (token.type        != end_token ||
650                parenthesis_count != 0         ||
651                brace_count       != 0         ||
652                bracket_count     != 0) {
653                 switch (token.type) {
654                 case T_EOF: return;
655                 case '(': ++parenthesis_count; break;
656                 case '{': ++brace_count;       break;
657                 case '[': ++bracket_count;     break;
658
659                 case ')':
660                         if (parenthesis_count > 0)
661                                 --parenthesis_count;
662                         goto check_stop;
663
664                 case '}':
665                         if (brace_count > 0)
666                                 --brace_count;
667                         goto check_stop;
668
669                 case ']':
670                         if (bracket_count > 0)
671                                 --bracket_count;
672 check_stop:
673                         if (token.type        == end_token &&
674                             parenthesis_count == 0         &&
675                             brace_count       == 0         &&
676                             bracket_count     == 0)
677                                 return;
678                         break;
679
680                 default:
681                         break;
682                 }
683                 next_token();
684         }
685 }
686
687 /**
688  * Eat input tokens until an anchor is found.
689  */
690 static void eat_until_anchor(void)
691 {
692         while (token_anchor_set[token.type] == 0) {
693                 if (token.type == '(' || token.type == '{' || token.type == '[')
694                         eat_until_matching_token(token.type);
695                 next_token();
696         }
697 }
698
699 /**
700  * Eat a whole block from input tokens.
701  */
702 static void eat_block(void)
703 {
704         eat_until_matching_token('{');
705         if (token.type == '}')
706                 next_token();
707 }
708
709 #define eat(token_type) (assert(token.type == (token_type)), next_token())
710
711 /**
712  * Report a parse error because an expected token was not found.
713  */
714 static
715 #if defined __GNUC__ && __GNUC__ >= 4
716 __attribute__((sentinel))
717 #endif
718 void parse_error_expected(const char *message, ...)
719 {
720         if (message != NULL) {
721                 errorf(HERE, "%s", message);
722         }
723         va_list ap;
724         va_start(ap, message);
725         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
726         va_end(ap);
727 }
728
729 /**
730  * Report an incompatible type.
731  */
732 static void type_error_incompatible(const char *msg,
733                 const source_position_t *source_position, type_t *type1, type_t *type2)
734 {
735         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
736                msg, type1, type2);
737 }
738
739 /**
740  * Expect the current token is the expected token.
741  * If not, generate an error, eat the current statement,
742  * and goto the end_error label.
743  */
744 #define expect(expected, error_label)                     \
745         do {                                                  \
746                 if (UNLIKELY(token.type != (expected))) {         \
747                         parse_error_expected(NULL, (expected), NULL); \
748                         add_anchor_token(expected);                   \
749                         eat_until_anchor();                           \
750                         if (token.type == expected)                   \
751                                 next_token();                             \
752                         rem_anchor_token(expected);                   \
753                         goto error_label;                             \
754                 }                                                 \
755                 next_token();                                     \
756         } while (0)
757
758 /**
759  * Push a given scope on the scope stack and make it the
760  * current scope
761  */
762 static scope_t *scope_push(scope_t *new_scope)
763 {
764         if (current_scope != NULL) {
765                 new_scope->depth = current_scope->depth + 1;
766         }
767
768         scope_t *old_scope = current_scope;
769         current_scope      = new_scope;
770         return old_scope;
771 }
772
773 /**
774  * Pop the current scope from the scope stack.
775  */
776 static void scope_pop(scope_t *old_scope)
777 {
778         current_scope = old_scope;
779 }
780
781 /**
782  * Search an entity by its symbol in a given namespace.
783  */
784 static entity_t *get_entity(const symbol_t *const symbol,
785                             namespace_tag_t namespc)
786 {
787         entity_t *entity = symbol->entity;
788         for (; entity != NULL; entity = entity->base.symbol_next) {
789                 if (entity->base.namespc == namespc)
790                         return entity;
791         }
792
793         return NULL;
794 }
795
796 /* §6.2.3:1 24)  There is only one name space for tags even though three are
797  * possible. */
798 static entity_t *get_tag(symbol_t const *const symbol,
799                 entity_kind_tag_t const kind)
800 {
801         entity_t *entity = get_entity(symbol, NAMESPACE_TAG);
802         if (entity != NULL && entity->kind != kind) {
803                 errorf(HERE,
804                                 "'%Y' defined as wrong kind of tag (previous definition %P)",
805                                 symbol, &entity->base.source_position);
806                 entity = NULL;
807         }
808         return entity;
809 }
810
811 /**
812  * pushs an entity on the environment stack and links the corresponding symbol
813  * it.
814  */
815 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
816 {
817         symbol_t           *symbol  = entity->base.symbol;
818         entity_namespace_t  namespc = entity->base.namespc;
819         assert(namespc != NAMESPACE_INVALID);
820
821         /* replace/add entity into entity list of the symbol */
822         entity_t **anchor;
823         entity_t  *iter;
824         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
825                 iter = *anchor;
826                 if (iter == NULL)
827                         break;
828
829                 /* replace an entry? */
830                 if (iter->base.namespc == namespc) {
831                         entity->base.symbol_next = iter->base.symbol_next;
832                         break;
833                 }
834         }
835         *anchor = entity;
836
837         /* remember old declaration */
838         stack_entry_t entry;
839         entry.symbol     = symbol;
840         entry.old_entity = iter;
841         entry.namespc    = namespc;
842         ARR_APP1(stack_entry_t, *stack_ptr, entry);
843 }
844
845 /**
846  * Push an entity on the environment stack.
847  */
848 static void environment_push(entity_t *entity)
849 {
850         assert(entity->base.source_position.input_name != NULL);
851         assert(entity->base.parent_scope != NULL);
852         stack_push(&environment_stack, entity);
853 }
854
855 /**
856  * Push a declaration on the global label stack.
857  *
858  * @param declaration  the declaration
859  */
860 static void label_push(entity_t *label)
861 {
862         /* we abuse the parameters scope as parent for the labels */
863         label->base.parent_scope = &current_function->parameters;
864         stack_push(&label_stack, label);
865 }
866
867 /**
868  * pops symbols from the environment stack until @p new_top is the top element
869  */
870 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
871 {
872         stack_entry_t *stack = *stack_ptr;
873         size_t         top   = ARR_LEN(stack);
874         size_t         i;
875
876         assert(new_top <= top);
877         if (new_top == top)
878                 return;
879
880         for (i = top; i > new_top; --i) {
881                 stack_entry_t *entry = &stack[i - 1];
882
883                 entity_t           *old_entity = entry->old_entity;
884                 symbol_t           *symbol     = entry->symbol;
885                 entity_namespace_t  namespc    = entry->namespc;
886
887                 /* replace with old_entity/remove */
888                 entity_t **anchor;
889                 entity_t  *iter;
890                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
891                         iter = *anchor;
892                         assert(iter != NULL);
893                         /* replace an entry? */
894                         if (iter->base.namespc == namespc)
895                                 break;
896                 }
897
898                 /* restore definition from outer scopes (if there was one) */
899                 if (old_entity != NULL) {
900                         old_entity->base.symbol_next = iter->base.symbol_next;
901                         *anchor                      = old_entity;
902                 } else {
903                         /* remove entry from list */
904                         *anchor = iter->base.symbol_next;
905                 }
906         }
907
908         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
909 }
910
911 /**
912  * Pop all entries from the environment stack until the new_top
913  * is reached.
914  *
915  * @param new_top  the new stack top
916  */
917 static void environment_pop_to(size_t new_top)
918 {
919         stack_pop_to(&environment_stack, new_top);
920 }
921
922 /**
923  * Pop all entries from the global label stack until the new_top
924  * is reached.
925  *
926  * @param new_top  the new stack top
927  */
928 static void label_pop_to(size_t new_top)
929 {
930         stack_pop_to(&label_stack, new_top);
931 }
932
933 static int get_akind_rank(atomic_type_kind_t akind)
934 {
935         return (int) akind;
936 }
937
938 /**
939  * Return the type rank for an atomic type.
940  */
941 static int get_rank(const type_t *type)
942 {
943         assert(!is_typeref(type));
944         if (type->kind == TYPE_ENUM)
945                 return get_akind_rank(type->enumt.akind);
946
947         assert(type->kind == TYPE_ATOMIC);
948         return get_akind_rank(type->atomic.akind);
949 }
950
951 /**
952  * §6.3.1.1:2  Do integer promotion for a given type.
953  *
954  * @param type  the type to promote
955  * @return the promoted type
956  */
957 static type_t *promote_integer(type_t *type)
958 {
959         if (type->kind == TYPE_BITFIELD)
960                 type = type->bitfield.base_type;
961
962         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
963                 type = type_int;
964
965         return type;
966 }
967
968 /**
969  * Create a cast expression.
970  *
971  * @param expression  the expression to cast
972  * @param dest_type   the destination type
973  */
974 static expression_t *create_cast_expression(expression_t *expression,
975                                             type_t *dest_type)
976 {
977         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
978
979         cast->unary.value = expression;
980         cast->base.type   = dest_type;
981
982         return cast;
983 }
984
985 /**
986  * Check if a given expression represents a null pointer constant.
987  *
988  * @param expression  the expression to check
989  */
990 static bool is_null_pointer_constant(const expression_t *expression)
991 {
992         /* skip void* cast */
993         if (expression->kind == EXPR_UNARY_CAST ||
994                         expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
995                 type_t *const type = skip_typeref(expression->base.type);
996                 if (types_compatible(type, type_void_ptr))
997                         expression = expression->unary.value;
998         }
999
1000         type_t *const type = skip_typeref(expression->base.type);
1001         return
1002                 is_type_integer(type)              &&
1003                 is_constant_expression(expression) &&
1004                 !fold_constant_to_bool(expression);
1005 }
1006
1007 /**
1008  * Create an implicit cast expression.
1009  *
1010  * @param expression  the expression to cast
1011  * @param dest_type   the destination type
1012  */
1013 static expression_t *create_implicit_cast(expression_t *expression,
1014                                           type_t *dest_type)
1015 {
1016         type_t *const source_type = expression->base.type;
1017
1018         if (source_type == dest_type)
1019                 return expression;
1020
1021         return create_cast_expression(expression, dest_type);
1022 }
1023
1024 typedef enum assign_error_t {
1025         ASSIGN_SUCCESS,
1026         ASSIGN_ERROR_INCOMPATIBLE,
1027         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
1028         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
1029         ASSIGN_WARNING_POINTER_FROM_INT,
1030         ASSIGN_WARNING_INT_FROM_POINTER
1031 } assign_error_t;
1032
1033 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
1034                                 const expression_t *const right,
1035                                 const char *context,
1036                                 const source_position_t *source_position)
1037 {
1038         type_t *const orig_type_right = right->base.type;
1039         type_t *const type_left       = skip_typeref(orig_type_left);
1040         type_t *const type_right      = skip_typeref(orig_type_right);
1041
1042         switch (error) {
1043         case ASSIGN_SUCCESS:
1044                 return;
1045         case ASSIGN_ERROR_INCOMPATIBLE:
1046                 errorf(source_position,
1047                        "destination type '%T' in %s is incompatible with type '%T'",
1048                        orig_type_left, context, orig_type_right);
1049                 return;
1050
1051         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1052                 if (warning.other) {
1053                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
1054                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
1055
1056                         /* the left type has all qualifiers from the right type */
1057                         unsigned missing_qualifiers
1058                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1059                         warningf(source_position,
1060                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1061                                         orig_type_left, context, orig_type_right, missing_qualifiers);
1062                 }
1063                 return;
1064         }
1065
1066         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1067                 if (warning.other) {
1068                         warningf(source_position,
1069                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1070                                         orig_type_left, context, right, orig_type_right);
1071                 }
1072                 return;
1073
1074         case ASSIGN_WARNING_POINTER_FROM_INT:
1075                 if (warning.other) {
1076                         warningf(source_position,
1077                                         "%s makes pointer '%T' from integer '%T' without a cast",
1078                                         context, orig_type_left, orig_type_right);
1079                 }
1080                 return;
1081
1082         case ASSIGN_WARNING_INT_FROM_POINTER:
1083                 if (warning.other) {
1084                         warningf(source_position,
1085                                         "%s makes integer '%T' from pointer '%T' without a cast",
1086                                         context, orig_type_left, orig_type_right);
1087                 }
1088                 return;
1089
1090         default:
1091                 panic("invalid error value");
1092         }
1093 }
1094
1095 /** Implements the rules from §6.5.16.1 */
1096 static assign_error_t semantic_assign(type_t *orig_type_left,
1097                                       const expression_t *const right)
1098 {
1099         type_t *const orig_type_right = right->base.type;
1100         type_t *const type_left       = skip_typeref(orig_type_left);
1101         type_t *const type_right      = skip_typeref(orig_type_right);
1102
1103         if (is_type_pointer(type_left)) {
1104                 if (is_null_pointer_constant(right)) {
1105                         return ASSIGN_SUCCESS;
1106                 } else if (is_type_pointer(type_right)) {
1107                         type_t *points_to_left
1108                                 = skip_typeref(type_left->pointer.points_to);
1109                         type_t *points_to_right
1110                                 = skip_typeref(type_right->pointer.points_to);
1111                         assign_error_t res = ASSIGN_SUCCESS;
1112
1113                         /* the left type has all qualifiers from the right type */
1114                         unsigned missing_qualifiers
1115                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1116                         if (missing_qualifiers != 0) {
1117                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1118                         }
1119
1120                         points_to_left  = get_unqualified_type(points_to_left);
1121                         points_to_right = get_unqualified_type(points_to_right);
1122
1123                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1124                                 return res;
1125
1126                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1127                                 /* ISO/IEC 14882:1998(E) §C.1.2:6 */
1128                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1129                         }
1130
1131                         if (!types_compatible(points_to_left, points_to_right)) {
1132                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1133                         }
1134
1135                         return res;
1136                 } else if (is_type_integer(type_right)) {
1137                         return ASSIGN_WARNING_POINTER_FROM_INT;
1138                 }
1139         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1140             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1141                 && is_type_pointer(type_right))) {
1142                 return ASSIGN_SUCCESS;
1143         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1144                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1145                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1146                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1147                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1148                         return ASSIGN_SUCCESS;
1149                 }
1150         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1151                 return ASSIGN_WARNING_INT_FROM_POINTER;
1152         }
1153
1154         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1155                 return ASSIGN_SUCCESS;
1156
1157         return ASSIGN_ERROR_INCOMPATIBLE;
1158 }
1159
1160 static expression_t *parse_constant_expression(void)
1161 {
1162         expression_t *result = parse_sub_expression(PREC_CONDITIONAL);
1163
1164         if (!is_constant_expression(result)) {
1165                 errorf(&result->base.source_position,
1166                        "expression '%E' is not constant", result);
1167         }
1168
1169         return result;
1170 }
1171
1172 static expression_t *parse_assignment_expression(void)
1173 {
1174         return parse_sub_expression(PREC_ASSIGNMENT);
1175 }
1176
1177 static string_t parse_string_literals(void)
1178 {
1179         assert(token.type == T_STRING_LITERAL);
1180         string_t result = token.v.string;
1181
1182         next_token();
1183
1184         while (token.type == T_STRING_LITERAL) {
1185                 result = concat_strings(&result, &token.v.string);
1186                 next_token();
1187         }
1188
1189         return result;
1190 }
1191
1192 /**
1193  * compare two string, ignoring double underscores on the second.
1194  */
1195 static int strcmp_underscore(const char *s1, const char *s2)
1196 {
1197         if (s2[0] == '_' && s2[1] == '_') {
1198                 size_t len2 = strlen(s2);
1199                 size_t len1 = strlen(s1);
1200                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1201                         return strncmp(s1, s2+2, len2-4);
1202                 }
1203         }
1204
1205         return strcmp(s1, s2);
1206 }
1207
1208 static attribute_t *allocate_attribute_zero(attribute_kind_t kind)
1209 {
1210         attribute_t *attribute = allocate_ast_zero(sizeof(*attribute));
1211         attribute->kind        = kind;
1212         return attribute;
1213 }
1214
1215 /**
1216  * Parse (gcc) attribute argument. From gcc comments in gcc source:
1217  *
1218  *  attribute:
1219  *    __attribute__ ( ( attribute-list ) )
1220  *
1221  *  attribute-list:
1222  *    attrib
1223  *    attribute_list , attrib
1224  *
1225  *  attrib:
1226  *    empty
1227  *    any-word
1228  *    any-word ( identifier )
1229  *    any-word ( identifier , nonempty-expr-list )
1230  *    any-word ( expr-list )
1231  *
1232  *  where the "identifier" must not be declared as a type, and
1233  *  "any-word" may be any identifier (including one declared as a
1234  *  type), a reserved word storage class specifier, type specifier or
1235  *  type qualifier.  ??? This still leaves out most reserved keywords
1236  *  (following the old parser), shouldn't we include them, and why not
1237  *  allow identifiers declared as types to start the arguments?
1238  *
1239  *  Matze: this all looks confusing and little systematic, so we're even less
1240  *  strict and parse any list of things which are identifiers or
1241  *  (assignment-)expressions.
1242  */
1243 static attribute_argument_t *parse_attribute_arguments(void)
1244 {
1245         if (token.type == ')')
1246                 return NULL;
1247
1248         attribute_argument_t *first = NULL;
1249         attribute_argument_t *last  = NULL;
1250         while (true) {
1251                 attribute_argument_t *argument = allocate_ast_zero(sizeof(*argument));
1252
1253                 /* is it an identifier */
1254                 if (token.type == T_IDENTIFIER
1255                                 && (look_ahead(1)->type == ',' || look_ahead(1)->type == ')')) {
1256                         symbol_t *symbol   = token.v.symbol;
1257                         argument->kind     = ATTRIBUTE_ARGUMENT_SYMBOL;
1258                         argument->v.symbol = symbol;
1259                         next_token();
1260                 } else {
1261                         /* must be an expression */
1262                         expression_t *expression = parse_assignment_expression();
1263
1264                         argument->kind         = ATTRIBUTE_ARGUMENT_EXPRESSION;
1265                         argument->v.expression = expression;
1266                 }
1267
1268                 /* append argument */
1269                 if (last == NULL) {
1270                         first = argument;
1271                 } else {
1272                         last->next = argument;
1273                 }
1274                 last = argument;
1275
1276                 if (token.type == ',') {
1277                         next_token();
1278                         continue;
1279                 }
1280                 expect(')', end_error);
1281                 break;
1282         }
1283
1284         return first;
1285
1286 end_error:
1287         /* TODO... */
1288         return first;
1289 }
1290
1291 static attribute_t *parse_attribute_asm(void)
1292 {
1293         eat(T_asm);
1294
1295         attribute_t *attribute = allocate_attribute_zero(ATTRIBUTE_GNU_ASM);
1296
1297         expect('(', end_error);
1298         attribute->a.arguments = parse_attribute_arguments();
1299         return attribute;
1300
1301 end_error:
1302         return NULL;
1303 }
1304
1305 static symbol_t *get_symbol_from_token(void)
1306 {
1307         switch(token.type) {
1308         case T_IDENTIFIER:
1309                 return token.v.symbol;
1310         case T_auto:
1311         case T_char:
1312         case T_double:
1313         case T_enum:
1314         case T_extern:
1315         case T_float:
1316         case T_int:
1317         case T_long:
1318         case T_register:
1319         case T_short:
1320         case T_static:
1321         case T_struct:
1322         case T_union:
1323         case T_unsigned:
1324         case T_void:
1325         case T_bool:
1326         case T__Bool:
1327         case T_class:
1328         case T_explicit:
1329         case T_export:
1330         case T_wchar_t:
1331         case T_const:
1332         case T_signed:
1333         case T___real__:
1334         case T___imag__:
1335         case T_restrict:
1336         case T_volatile:
1337         case T_inline:
1338                 /* maybe we need more tokens ... add them on demand */
1339                 return get_token_symbol(&token);
1340         default:
1341                 return NULL;
1342         }
1343 }
1344
1345 static attribute_t *parse_attribute_gnu_single(void)
1346 {
1347         /* parse "any-word" */
1348         symbol_t *symbol = get_symbol_from_token();
1349         if (symbol == NULL) {
1350                 parse_error_expected("while parsing attribute((", T_IDENTIFIER, NULL);
1351                 goto end_error;
1352         }
1353
1354         const char *name = symbol->string;
1355         next_token();
1356
1357         attribute_kind_t kind;
1358         for (kind = ATTRIBUTE_GNU_FIRST; kind <= ATTRIBUTE_GNU_LAST; ++kind) {
1359                 const char *attribute_name = get_attribute_name(kind);
1360                 if (attribute_name != NULL
1361                                 && strcmp_underscore(attribute_name, name) == 0)
1362                         break;
1363         }
1364
1365         if (kind >= ATTRIBUTE_GNU_LAST) {
1366                 if (warning.attribute) {
1367                         warningf(HERE, "unknown attribute '%s' ignored", name);
1368                 }
1369                 /* TODO: we should still save the attribute in the list... */
1370                 kind = ATTRIBUTE_UNKNOWN;
1371         }
1372
1373         attribute_t *attribute = allocate_attribute_zero(kind);
1374
1375         /* parse arguments */
1376         if (token.type == '(') {
1377                 next_token();
1378                 attribute->a.arguments = parse_attribute_arguments();
1379         }
1380
1381         return attribute;
1382
1383 end_error:
1384         return NULL;
1385 }
1386
1387 static attribute_t *parse_attribute_gnu(void)
1388 {
1389         attribute_t *first = NULL;
1390         attribute_t *last  = NULL;
1391
1392         eat(T___attribute__);
1393         expect('(', end_error);
1394         expect('(', end_error);
1395
1396         if (token.type == ')') {
1397                 next_token();
1398                 expect(')', end_error);
1399                 return first;
1400         }
1401
1402         while (true) {
1403                 attribute_t *attribute = parse_attribute_gnu_single();
1404                 if (attribute == NULL)
1405                         goto end_error;
1406
1407                 if (last == NULL) {
1408                         first = attribute;
1409                 } else {
1410                         last->next = attribute;
1411                 }
1412                 last = attribute;
1413
1414                 if (token.type == ')') {
1415                         next_token();
1416                         break;
1417                 }
1418                 expect(',', end_error);
1419         }
1420         expect(')', end_error);
1421
1422 end_error:
1423         return first;
1424 }
1425
1426 /** Parse attributes. */
1427 static attribute_t *parse_attributes(attribute_t *first)
1428 {
1429         attribute_t *last = first;
1430         while (true) {
1431                 if (last != NULL) {
1432                         while (last->next != NULL)
1433                                 last = last->next;
1434                 }
1435
1436                 attribute_t *attribute;
1437                 switch (token.type) {
1438                 case T___attribute__:
1439                         attribute = parse_attribute_gnu();
1440                         break;
1441
1442                 case T_asm:
1443                         attribute = parse_attribute_asm();
1444                         break;
1445
1446                 case T_cdecl:
1447                         next_token();
1448                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_CDECL);
1449                         break;
1450
1451                 case T__fastcall:
1452                         next_token();
1453                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FASTCALL);
1454                         break;
1455
1456                 case T__forceinline:
1457                         next_token();
1458                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_FORCEINLINE);
1459                         break;
1460
1461                 case T__stdcall:
1462                         next_token();
1463                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_STDCALL);
1464                         break;
1465
1466                 case T___thiscall:
1467                         next_token();
1468                         /* TODO record modifier */
1469                         if (warning.other)
1470                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1471                         attribute = allocate_attribute_zero(ATTRIBUTE_MS_THISCALL);
1472                         break;
1473
1474                 default:
1475                         return first;
1476                 }
1477
1478                 if (last == NULL) {
1479                         first = attribute;
1480                 } else {
1481                         last->next = attribute;
1482                 }
1483                 last = attribute;
1484         }
1485 }
1486
1487 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1488
1489 static entity_t *determine_lhs_ent(expression_t *const expr,
1490                                    entity_t *lhs_ent)
1491 {
1492         switch (expr->kind) {
1493                 case EXPR_REFERENCE: {
1494                         entity_t *const entity = expr->reference.entity;
1495                         /* we should only find variables as lvalues... */
1496                         if (entity->base.kind != ENTITY_VARIABLE
1497                                         && entity->base.kind != ENTITY_PARAMETER)
1498                                 return NULL;
1499
1500                         return entity;
1501                 }
1502
1503                 case EXPR_ARRAY_ACCESS: {
1504                         expression_t *const ref = expr->array_access.array_ref;
1505                         entity_t     *      ent = NULL;
1506                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1507                                 ent     = determine_lhs_ent(ref, lhs_ent);
1508                                 lhs_ent = ent;
1509                         } else {
1510                                 mark_vars_read(expr->select.compound, lhs_ent);
1511                         }
1512                         mark_vars_read(expr->array_access.index, lhs_ent);
1513                         return ent;
1514                 }
1515
1516                 case EXPR_SELECT: {
1517                         if (is_type_compound(skip_typeref(expr->base.type))) {
1518                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1519                         } else {
1520                                 mark_vars_read(expr->select.compound, lhs_ent);
1521                                 return NULL;
1522                         }
1523                 }
1524
1525                 case EXPR_UNARY_DEREFERENCE: {
1526                         expression_t *const val = expr->unary.value;
1527                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1528                                 /* *&x is a NOP */
1529                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1530                         } else {
1531                                 mark_vars_read(val, NULL);
1532                                 return NULL;
1533                         }
1534                 }
1535
1536                 default:
1537                         mark_vars_read(expr, NULL);
1538                         return NULL;
1539         }
1540 }
1541
1542 #define ENT_ANY ((entity_t*)-1)
1543
1544 /**
1545  * Mark declarations, which are read.  This is used to detect variables, which
1546  * are never read.
1547  * Example:
1548  * x = x + 1;
1549  *   x is not marked as "read", because it is only read to calculate its own new
1550  *   value.
1551  *
1552  * x += y; y += x;
1553  *   x and y are not detected as "not read", because multiple variables are
1554  *   involved.
1555  */
1556 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
1557 {
1558         switch (expr->kind) {
1559                 case EXPR_REFERENCE: {
1560                         entity_t *const entity = expr->reference.entity;
1561                         if (entity->kind != ENTITY_VARIABLE
1562                                         && entity->kind != ENTITY_PARAMETER)
1563                                 return;
1564
1565                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
1566                                 if (entity->kind == ENTITY_VARIABLE) {
1567                                         entity->variable.read = true;
1568                                 } else {
1569                                         entity->parameter.read = true;
1570                                 }
1571                         }
1572                         return;
1573                 }
1574
1575                 case EXPR_CALL:
1576                         // TODO respect pure/const
1577                         mark_vars_read(expr->call.function, NULL);
1578                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
1579                                 mark_vars_read(arg->expression, NULL);
1580                         }
1581                         return;
1582
1583                 case EXPR_CONDITIONAL:
1584                         // TODO lhs_decl should depend on whether true/false have an effect
1585                         mark_vars_read(expr->conditional.condition, NULL);
1586                         if (expr->conditional.true_expression != NULL)
1587                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
1588                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
1589                         return;
1590
1591                 case EXPR_SELECT:
1592                         if (lhs_ent == ENT_ANY
1593                                         && !is_type_compound(skip_typeref(expr->base.type)))
1594                                 lhs_ent = NULL;
1595                         mark_vars_read(expr->select.compound, lhs_ent);
1596                         return;
1597
1598                 case EXPR_ARRAY_ACCESS: {
1599                         expression_t *const ref = expr->array_access.array_ref;
1600                         mark_vars_read(ref, lhs_ent);
1601                         lhs_ent = determine_lhs_ent(ref, lhs_ent);
1602                         mark_vars_read(expr->array_access.index, lhs_ent);
1603                         return;
1604                 }
1605
1606                 case EXPR_VA_ARG:
1607                         mark_vars_read(expr->va_arge.ap, lhs_ent);
1608                         return;
1609
1610                 case EXPR_VA_COPY:
1611                         mark_vars_read(expr->va_copye.src, lhs_ent);
1612                         return;
1613
1614                 case EXPR_UNARY_CAST:
1615                         /* Special case: Use void cast to mark a variable as "read" */
1616                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
1617                                 lhs_ent = NULL;
1618                         goto unary;
1619
1620
1621                 case EXPR_UNARY_THROW:
1622                         if (expr->unary.value == NULL)
1623                                 return;
1624                         /* FALLTHROUGH */
1625                 case EXPR_UNARY_DEREFERENCE:
1626                 case EXPR_UNARY_DELETE:
1627                 case EXPR_UNARY_DELETE_ARRAY:
1628                         if (lhs_ent == ENT_ANY)
1629                                 lhs_ent = NULL;
1630                         goto unary;
1631
1632                 case EXPR_UNARY_NEGATE:
1633                 case EXPR_UNARY_PLUS:
1634                 case EXPR_UNARY_BITWISE_NEGATE:
1635                 case EXPR_UNARY_NOT:
1636                 case EXPR_UNARY_TAKE_ADDRESS:
1637                 case EXPR_UNARY_POSTFIX_INCREMENT:
1638                 case EXPR_UNARY_POSTFIX_DECREMENT:
1639                 case EXPR_UNARY_PREFIX_INCREMENT:
1640                 case EXPR_UNARY_PREFIX_DECREMENT:
1641                 case EXPR_UNARY_CAST_IMPLICIT:
1642                 case EXPR_UNARY_ASSUME:
1643 unary:
1644                         mark_vars_read(expr->unary.value, lhs_ent);
1645                         return;
1646
1647                 case EXPR_BINARY_ADD:
1648                 case EXPR_BINARY_SUB:
1649                 case EXPR_BINARY_MUL:
1650                 case EXPR_BINARY_DIV:
1651                 case EXPR_BINARY_MOD:
1652                 case EXPR_BINARY_EQUAL:
1653                 case EXPR_BINARY_NOTEQUAL:
1654                 case EXPR_BINARY_LESS:
1655                 case EXPR_BINARY_LESSEQUAL:
1656                 case EXPR_BINARY_GREATER:
1657                 case EXPR_BINARY_GREATEREQUAL:
1658                 case EXPR_BINARY_BITWISE_AND:
1659                 case EXPR_BINARY_BITWISE_OR:
1660                 case EXPR_BINARY_BITWISE_XOR:
1661                 case EXPR_BINARY_LOGICAL_AND:
1662                 case EXPR_BINARY_LOGICAL_OR:
1663                 case EXPR_BINARY_SHIFTLEFT:
1664                 case EXPR_BINARY_SHIFTRIGHT:
1665                 case EXPR_BINARY_COMMA:
1666                 case EXPR_BINARY_ISGREATER:
1667                 case EXPR_BINARY_ISGREATEREQUAL:
1668                 case EXPR_BINARY_ISLESS:
1669                 case EXPR_BINARY_ISLESSEQUAL:
1670                 case EXPR_BINARY_ISLESSGREATER:
1671                 case EXPR_BINARY_ISUNORDERED:
1672                         mark_vars_read(expr->binary.left,  lhs_ent);
1673                         mark_vars_read(expr->binary.right, lhs_ent);
1674                         return;
1675
1676                 case EXPR_BINARY_ASSIGN:
1677                 case EXPR_BINARY_MUL_ASSIGN:
1678                 case EXPR_BINARY_DIV_ASSIGN:
1679                 case EXPR_BINARY_MOD_ASSIGN:
1680                 case EXPR_BINARY_ADD_ASSIGN:
1681                 case EXPR_BINARY_SUB_ASSIGN:
1682                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
1683                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
1684                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
1685                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
1686                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
1687                         if (lhs_ent == ENT_ANY)
1688                                 lhs_ent = NULL;
1689                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
1690                         mark_vars_read(expr->binary.right, lhs_ent);
1691                         return;
1692                 }
1693
1694                 case EXPR_VA_START:
1695                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
1696                         return;
1697
1698                 case EXPR_UNKNOWN:
1699                 case EXPR_INVALID:
1700                 case EXPR_CONST:
1701                 case EXPR_CHARACTER_CONSTANT:
1702                 case EXPR_WIDE_CHARACTER_CONSTANT:
1703                 case EXPR_STRING_LITERAL:
1704                 case EXPR_WIDE_STRING_LITERAL:
1705                 case EXPR_COMPOUND_LITERAL: // TODO init?
1706                 case EXPR_SIZEOF:
1707                 case EXPR_CLASSIFY_TYPE:
1708                 case EXPR_ALIGNOF:
1709                 case EXPR_FUNCNAME:
1710                 case EXPR_BUILTIN_CONSTANT_P:
1711                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
1712                 case EXPR_OFFSETOF:
1713                 case EXPR_STATEMENT: // TODO
1714                 case EXPR_LABEL_ADDRESS:
1715                 case EXPR_REFERENCE_ENUM_VALUE:
1716                         return;
1717         }
1718
1719         panic("unhandled expression");
1720 }
1721
1722 static designator_t *parse_designation(void)
1723 {
1724         designator_t *result = NULL;
1725         designator_t *last   = NULL;
1726
1727         while (true) {
1728                 designator_t *designator;
1729                 switch (token.type) {
1730                 case '[':
1731                         designator = allocate_ast_zero(sizeof(designator[0]));
1732                         designator->source_position = token.source_position;
1733                         next_token();
1734                         add_anchor_token(']');
1735                         designator->array_index = parse_constant_expression();
1736                         rem_anchor_token(']');
1737                         expect(']', end_error);
1738                         break;
1739                 case '.':
1740                         designator = allocate_ast_zero(sizeof(designator[0]));
1741                         designator->source_position = token.source_position;
1742                         next_token();
1743                         if (token.type != T_IDENTIFIER) {
1744                                 parse_error_expected("while parsing designator",
1745                                                      T_IDENTIFIER, NULL);
1746                                 return NULL;
1747                         }
1748                         designator->symbol = token.v.symbol;
1749                         next_token();
1750                         break;
1751                 default:
1752                         expect('=', end_error);
1753                         return result;
1754                 }
1755
1756                 assert(designator != NULL);
1757                 if (last != NULL) {
1758                         last->next = designator;
1759                 } else {
1760                         result = designator;
1761                 }
1762                 last = designator;
1763         }
1764 end_error:
1765         return NULL;
1766 }
1767
1768 static initializer_t *initializer_from_string(array_type_t *type,
1769                                               const string_t *const string)
1770 {
1771         /* TODO: check len vs. size of array type */
1772         (void) type;
1773
1774         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
1775         initializer->string.string = *string;
1776
1777         return initializer;
1778 }
1779
1780 static initializer_t *initializer_from_wide_string(array_type_t *const type,
1781                                                    wide_string_t *const string)
1782 {
1783         /* TODO: check len vs. size of array type */
1784         (void) type;
1785
1786         initializer_t *const initializer =
1787                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
1788         initializer->wide_string.string = *string;
1789
1790         return initializer;
1791 }
1792
1793 /**
1794  * Build an initializer from a given expression.
1795  */
1796 static initializer_t *initializer_from_expression(type_t *orig_type,
1797                                                   expression_t *expression)
1798 {
1799         /* TODO check that expression is a constant expression */
1800
1801         /* §6.7.8.14/15 char array may be initialized by string literals */
1802         type_t *type           = skip_typeref(orig_type);
1803         type_t *expr_type_orig = expression->base.type;
1804         type_t *expr_type      = skip_typeref(expr_type_orig);
1805         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
1806                 array_type_t *const array_type   = &type->array;
1807                 type_t       *const element_type = skip_typeref(array_type->element_type);
1808
1809                 if (element_type->kind == TYPE_ATOMIC) {
1810                         atomic_type_kind_t akind = element_type->atomic.akind;
1811                         switch (expression->kind) {
1812                                 case EXPR_STRING_LITERAL:
1813                                         if (akind == ATOMIC_TYPE_CHAR
1814                                                         || akind == ATOMIC_TYPE_SCHAR
1815                                                         || akind == ATOMIC_TYPE_UCHAR) {
1816                                                 return initializer_from_string(array_type,
1817                                                         &expression->string.value);
1818                                         }
1819                                         break;
1820
1821                                 case EXPR_WIDE_STRING_LITERAL: {
1822                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
1823                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
1824                                                 return initializer_from_wide_string(array_type,
1825                                                         &expression->wide_string.value);
1826                                         }
1827                                         break;
1828                                 }
1829
1830                                 default:
1831                                         break;
1832                         }
1833                 }
1834         }
1835
1836         assign_error_t error = semantic_assign(type, expression);
1837         if (error == ASSIGN_ERROR_INCOMPATIBLE)
1838                 return NULL;
1839         report_assign_error(error, type, expression, "initializer",
1840                             &expression->base.source_position);
1841
1842         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
1843 #if 0
1844         if (type->kind == TYPE_BITFIELD) {
1845                 type = type->bitfield.base_type;
1846         }
1847 #endif
1848         result->value.value = create_implicit_cast(expression, type);
1849
1850         return result;
1851 }
1852
1853 /**
1854  * Checks if a given expression can be used as an constant initializer.
1855  */
1856 static bool is_initializer_constant(const expression_t *expression)
1857 {
1858         return is_constant_expression(expression)
1859                 || is_address_constant(expression);
1860 }
1861
1862 /**
1863  * Parses an scalar initializer.
1864  *
1865  * §6.7.8.11; eat {} without warning
1866  */
1867 static initializer_t *parse_scalar_initializer(type_t *type,
1868                                                bool must_be_constant)
1869 {
1870         /* there might be extra {} hierarchies */
1871         int braces = 0;
1872         if (token.type == '{') {
1873                 if (warning.other)
1874                         warningf(HERE, "extra curly braces around scalar initializer");
1875                 do {
1876                         ++braces;
1877                         next_token();
1878                 } while (token.type == '{');
1879         }
1880
1881         expression_t *expression = parse_assignment_expression();
1882         mark_vars_read(expression, NULL);
1883         if (must_be_constant && !is_initializer_constant(expression)) {
1884                 errorf(&expression->base.source_position,
1885                        "Initialisation expression '%E' is not constant",
1886                        expression);
1887         }
1888
1889         initializer_t *initializer = initializer_from_expression(type, expression);
1890
1891         if (initializer == NULL) {
1892                 errorf(&expression->base.source_position,
1893                        "expression '%E' (type '%T') doesn't match expected type '%T'",
1894                        expression, expression->base.type, type);
1895                 /* TODO */
1896                 return NULL;
1897         }
1898
1899         bool additional_warning_displayed = false;
1900         while (braces > 0) {
1901                 if (token.type == ',') {
1902                         next_token();
1903                 }
1904                 if (token.type != '}') {
1905                         if (!additional_warning_displayed && warning.other) {
1906                                 warningf(HERE, "additional elements in scalar initializer");
1907                                 additional_warning_displayed = true;
1908                         }
1909                 }
1910                 eat_block();
1911                 braces--;
1912         }
1913
1914         return initializer;
1915 }
1916
1917 /**
1918  * An entry in the type path.
1919  */
1920 typedef struct type_path_entry_t type_path_entry_t;
1921 struct type_path_entry_t {
1922         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
1923         union {
1924                 size_t         index;          /**< For array types: the current index. */
1925                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
1926         } v;
1927 };
1928
1929 /**
1930  * A type path expression a position inside compound or array types.
1931  */
1932 typedef struct type_path_t type_path_t;
1933 struct type_path_t {
1934         type_path_entry_t *path;         /**< An flexible array containing the current path. */
1935         type_t            *top_type;     /**< type of the element the path points */
1936         size_t             max_index;    /**< largest index in outermost array */
1937 };
1938
1939 /**
1940  * Prints a type path for debugging.
1941  */
1942 static __attribute__((unused)) void debug_print_type_path(
1943                 const type_path_t *path)
1944 {
1945         size_t len = ARR_LEN(path->path);
1946
1947         for (size_t i = 0; i < len; ++i) {
1948                 const type_path_entry_t *entry = & path->path[i];
1949
1950                 type_t *type = skip_typeref(entry->type);
1951                 if (is_type_compound(type)) {
1952                         /* in gcc mode structs can have no members */
1953                         if (entry->v.compound_entry == NULL) {
1954                                 assert(i == len-1);
1955                                 continue;
1956                         }
1957                         fprintf(stderr, ".%s",
1958                                 entry->v.compound_entry->base.symbol->string);
1959                 } else if (is_type_array(type)) {
1960                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
1961                 } else {
1962                         fprintf(stderr, "-INVALID-");
1963                 }
1964         }
1965         if (path->top_type != NULL) {
1966                 fprintf(stderr, "  (");
1967                 print_type(path->top_type);
1968                 fprintf(stderr, ")");
1969         }
1970 }
1971
1972 /**
1973  * Return the top type path entry, ie. in a path
1974  * (type).a.b returns the b.
1975  */
1976 static type_path_entry_t *get_type_path_top(const type_path_t *path)
1977 {
1978         size_t len = ARR_LEN(path->path);
1979         assert(len > 0);
1980         return &path->path[len-1];
1981 }
1982
1983 /**
1984  * Enlarge the type path by an (empty) element.
1985  */
1986 static type_path_entry_t *append_to_type_path(type_path_t *path)
1987 {
1988         size_t len = ARR_LEN(path->path);
1989         ARR_RESIZE(type_path_entry_t, path->path, len+1);
1990
1991         type_path_entry_t *result = & path->path[len];
1992         memset(result, 0, sizeof(result[0]));
1993         return result;
1994 }
1995
1996 /**
1997  * Descending into a sub-type. Enter the scope of the current top_type.
1998  */
1999 static void descend_into_subtype(type_path_t *path)
2000 {
2001         type_t *orig_top_type = path->top_type;
2002         type_t *top_type      = skip_typeref(orig_top_type);
2003
2004         type_path_entry_t *top = append_to_type_path(path);
2005         top->type              = top_type;
2006
2007         if (is_type_compound(top_type)) {
2008                 compound_t *compound  = top_type->compound.compound;
2009                 entity_t   *entry     = compound->members.entities;
2010
2011                 if (entry != NULL) {
2012                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2013                         top->v.compound_entry = &entry->declaration;
2014                         path->top_type = entry->declaration.type;
2015                 } else {
2016                         path->top_type = NULL;
2017                 }
2018         } else if (is_type_array(top_type)) {
2019                 top->v.index   = 0;
2020                 path->top_type = top_type->array.element_type;
2021         } else {
2022                 assert(!is_type_valid(top_type));
2023         }
2024 }
2025
2026 /**
2027  * Pop an entry from the given type path, ie. returning from
2028  * (type).a.b to (type).a
2029  */
2030 static void ascend_from_subtype(type_path_t *path)
2031 {
2032         type_path_entry_t *top = get_type_path_top(path);
2033
2034         path->top_type = top->type;
2035
2036         size_t len = ARR_LEN(path->path);
2037         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2038 }
2039
2040 /**
2041  * Pop entries from the given type path until the given
2042  * path level is reached.
2043  */
2044 static void ascend_to(type_path_t *path, size_t top_path_level)
2045 {
2046         size_t len = ARR_LEN(path->path);
2047
2048         while (len > top_path_level) {
2049                 ascend_from_subtype(path);
2050                 len = ARR_LEN(path->path);
2051         }
2052 }
2053
2054 static bool walk_designator(type_path_t *path, const designator_t *designator,
2055                             bool used_in_offsetof)
2056 {
2057         for (; designator != NULL; designator = designator->next) {
2058                 type_path_entry_t *top       = get_type_path_top(path);
2059                 type_t            *orig_type = top->type;
2060
2061                 type_t *type = skip_typeref(orig_type);
2062
2063                 if (designator->symbol != NULL) {
2064                         symbol_t *symbol = designator->symbol;
2065                         if (!is_type_compound(type)) {
2066                                 if (is_type_valid(type)) {
2067                                         errorf(&designator->source_position,
2068                                                "'.%Y' designator used for non-compound type '%T'",
2069                                                symbol, orig_type);
2070                                 }
2071
2072                                 top->type             = type_error_type;
2073                                 top->v.compound_entry = NULL;
2074                                 orig_type             = type_error_type;
2075                         } else {
2076                                 compound_t *compound = type->compound.compound;
2077                                 entity_t   *iter     = compound->members.entities;
2078                                 for (; iter != NULL; iter = iter->base.next) {
2079                                         if (iter->base.symbol == symbol) {
2080                                                 break;
2081                                         }
2082                                 }
2083                                 if (iter == NULL) {
2084                                         errorf(&designator->source_position,
2085                                                "'%T' has no member named '%Y'", orig_type, symbol);
2086                                         goto failed;
2087                                 }
2088                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2089                                 if (used_in_offsetof) {
2090                                         type_t *real_type = skip_typeref(iter->declaration.type);
2091                                         if (real_type->kind == TYPE_BITFIELD) {
2092                                                 errorf(&designator->source_position,
2093                                                        "offsetof designator '%Y' may not specify bitfield",
2094                                                        symbol);
2095                                                 goto failed;
2096                                         }
2097                                 }
2098
2099                                 top->type             = orig_type;
2100                                 top->v.compound_entry = &iter->declaration;
2101                                 orig_type             = iter->declaration.type;
2102                         }
2103                 } else {
2104                         expression_t *array_index = designator->array_index;
2105                         assert(designator->array_index != NULL);
2106
2107                         if (!is_type_array(type)) {
2108                                 if (is_type_valid(type)) {
2109                                         errorf(&designator->source_position,
2110                                                "[%E] designator used for non-array type '%T'",
2111                                                array_index, orig_type);
2112                                 }
2113                                 goto failed;
2114                         }
2115
2116                         long index = fold_constant_to_int(array_index);
2117                         if (!used_in_offsetof) {
2118                                 if (index < 0) {
2119                                         errorf(&designator->source_position,
2120                                                "array index [%E] must be positive", array_index);
2121                                 } else if (type->array.size_constant) {
2122                                         long array_size = type->array.size;
2123                                         if (index >= array_size) {
2124                                                 errorf(&designator->source_position,
2125                                                        "designator [%E] (%d) exceeds array size %d",
2126                                                        array_index, index, array_size);
2127                                         }
2128                                 }
2129                         }
2130
2131                         top->type    = orig_type;
2132                         top->v.index = (size_t) index;
2133                         orig_type    = type->array.element_type;
2134                 }
2135                 path->top_type = orig_type;
2136
2137                 if (designator->next != NULL) {
2138                         descend_into_subtype(path);
2139                 }
2140         }
2141         return true;
2142
2143 failed:
2144         return false;
2145 }
2146
2147 static void advance_current_object(type_path_t *path, size_t top_path_level)
2148 {
2149         type_path_entry_t *top = get_type_path_top(path);
2150
2151         type_t *type = skip_typeref(top->type);
2152         if (is_type_union(type)) {
2153                 /* in unions only the first element is initialized */
2154                 top->v.compound_entry = NULL;
2155         } else if (is_type_struct(type)) {
2156                 declaration_t *entry = top->v.compound_entry;
2157
2158                 entity_t *next_entity = entry->base.next;
2159                 if (next_entity != NULL) {
2160                         assert(is_declaration(next_entity));
2161                         entry = &next_entity->declaration;
2162                 } else {
2163                         entry = NULL;
2164                 }
2165
2166                 top->v.compound_entry = entry;
2167                 if (entry != NULL) {
2168                         path->top_type = entry->type;
2169                         return;
2170                 }
2171         } else if (is_type_array(type)) {
2172                 assert(is_type_array(type));
2173
2174                 top->v.index++;
2175
2176                 if (!type->array.size_constant || top->v.index < type->array.size) {
2177                         return;
2178                 }
2179         } else {
2180                 assert(!is_type_valid(type));
2181                 return;
2182         }
2183
2184         /* we're past the last member of the current sub-aggregate, try if we
2185          * can ascend in the type hierarchy and continue with another subobject */
2186         size_t len = ARR_LEN(path->path);
2187
2188         if (len > top_path_level) {
2189                 ascend_from_subtype(path);
2190                 advance_current_object(path, top_path_level);
2191         } else {
2192                 path->top_type = NULL;
2193         }
2194 }
2195
2196 /**
2197  * skip any {...} blocks until a closing bracket is reached.
2198  */
2199 static void skip_initializers(void)
2200 {
2201         if (token.type == '{')
2202                 next_token();
2203
2204         while (token.type != '}') {
2205                 if (token.type == T_EOF)
2206                         return;
2207                 if (token.type == '{') {
2208                         eat_block();
2209                         continue;
2210                 }
2211                 next_token();
2212         }
2213 }
2214
2215 static initializer_t *create_empty_initializer(void)
2216 {
2217         static initializer_t empty_initializer
2218                 = { .list = { { INITIALIZER_LIST }, 0 } };
2219         return &empty_initializer;
2220 }
2221
2222 /**
2223  * Parse a part of an initialiser for a struct or union,
2224  */
2225 static initializer_t *parse_sub_initializer(type_path_t *path,
2226                 type_t *outer_type, size_t top_path_level,
2227                 parse_initializer_env_t *env)
2228 {
2229         if (token.type == '}') {
2230                 /* empty initializer */
2231                 return create_empty_initializer();
2232         }
2233
2234         type_t *orig_type = path->top_type;
2235         type_t *type      = NULL;
2236
2237         if (orig_type == NULL) {
2238                 /* We are initializing an empty compound. */
2239         } else {
2240                 type = skip_typeref(orig_type);
2241         }
2242
2243         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2244
2245         while (true) {
2246                 designator_t *designator = NULL;
2247                 if (token.type == '.' || token.type == '[') {
2248                         designator = parse_designation();
2249                         goto finish_designator;
2250                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2251                         /* GNU-style designator ("identifier: value") */
2252                         designator = allocate_ast_zero(sizeof(designator[0]));
2253                         designator->source_position = token.source_position;
2254                         designator->symbol          = token.v.symbol;
2255                         eat(T_IDENTIFIER);
2256                         eat(':');
2257
2258 finish_designator:
2259                         /* reset path to toplevel, evaluate designator from there */
2260                         ascend_to(path, top_path_level);
2261                         if (!walk_designator(path, designator, false)) {
2262                                 /* can't continue after designation error */
2263                                 goto end_error;
2264                         }
2265
2266                         initializer_t *designator_initializer
2267                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2268                         designator_initializer->designator.designator = designator;
2269                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2270
2271                         orig_type = path->top_type;
2272                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2273                 }
2274
2275                 initializer_t *sub;
2276
2277                 if (token.type == '{') {
2278                         if (type != NULL && is_type_scalar(type)) {
2279                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2280                         } else {
2281                                 eat('{');
2282                                 if (type == NULL) {
2283                                         if (env->entity != NULL) {
2284                                                 errorf(HERE,
2285                                                      "extra brace group at end of initializer for '%Y'",
2286                                                      env->entity->base.symbol);
2287                                         } else {
2288                                                 errorf(HERE, "extra brace group at end of initializer");
2289                                         }
2290                                 } else
2291                                         descend_into_subtype(path);
2292
2293                                 add_anchor_token('}');
2294                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2295                                                             env);
2296                                 rem_anchor_token('}');
2297
2298                                 if (type != NULL) {
2299                                         ascend_from_subtype(path);
2300                                         expect('}', end_error);
2301                                 } else {
2302                                         expect('}', end_error);
2303                                         goto error_parse_next;
2304                                 }
2305                         }
2306                 } else {
2307                         /* must be an expression */
2308                         expression_t *expression = parse_assignment_expression();
2309                         mark_vars_read(expression, NULL);
2310
2311                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2312                                 errorf(&expression->base.source_position,
2313                                        "Initialisation expression '%E' is not constant",
2314                                        expression);
2315                         }
2316
2317                         if (type == NULL) {
2318                                 /* we are already outside, ... */
2319                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2320                                 if (is_type_compound(outer_type_skip) &&
2321                                     !outer_type_skip->compound.compound->complete) {
2322                                         goto error_parse_next;
2323                                 }
2324                                 goto error_excess;
2325                         }
2326
2327                         /* handle { "string" } special case */
2328                         if ((expression->kind == EXPR_STRING_LITERAL
2329                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2330                                         && outer_type != NULL) {
2331                                 sub = initializer_from_expression(outer_type, expression);
2332                                 if (sub != NULL) {
2333                                         if (token.type == ',') {
2334                                                 next_token();
2335                                         }
2336                                         if (token.type != '}' && warning.other) {
2337                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2338                                                                  orig_type);
2339                                         }
2340                                         /* TODO: eat , ... */
2341                                         return sub;
2342                                 }
2343                         }
2344
2345                         /* descend into subtypes until expression matches type */
2346                         while (true) {
2347                                 orig_type = path->top_type;
2348                                 type      = skip_typeref(orig_type);
2349
2350                                 sub = initializer_from_expression(orig_type, expression);
2351                                 if (sub != NULL) {
2352                                         break;
2353                                 }
2354                                 if (!is_type_valid(type)) {
2355                                         goto end_error;
2356                                 }
2357                                 if (is_type_scalar(type)) {
2358                                         errorf(&expression->base.source_position,
2359                                                         "expression '%E' doesn't match expected type '%T'",
2360                                                         expression, orig_type);
2361                                         goto end_error;
2362                                 }
2363
2364                                 descend_into_subtype(path);
2365                         }
2366                 }
2367
2368                 /* update largest index of top array */
2369                 const type_path_entry_t *first      = &path->path[0];
2370                 type_t                  *first_type = first->type;
2371                 first_type                          = skip_typeref(first_type);
2372                 if (is_type_array(first_type)) {
2373                         size_t index = first->v.index;
2374                         if (index > path->max_index)
2375                                 path->max_index = index;
2376                 }
2377
2378                 if (type != NULL) {
2379                         /* append to initializers list */
2380                         ARR_APP1(initializer_t*, initializers, sub);
2381                 } else {
2382 error_excess:
2383                         if (warning.other) {
2384                                 if (env->entity != NULL) {
2385                                         warningf(HERE, "excess elements in struct initializer for '%Y'",
2386                                            env->entity->base.symbol);
2387                                 } else {
2388                                         warningf(HERE, "excess elements in struct initializer");
2389                                 }
2390                         }
2391                 }
2392
2393 error_parse_next:
2394                 if (token.type == '}') {
2395                         break;
2396                 }
2397                 expect(',', end_error);
2398                 if (token.type == '}') {
2399                         break;
2400                 }
2401
2402                 if (type != NULL) {
2403                         /* advance to the next declaration if we are not at the end */
2404                         advance_current_object(path, top_path_level);
2405                         orig_type = path->top_type;
2406                         if (orig_type != NULL)
2407                                 type = skip_typeref(orig_type);
2408                         else
2409                                 type = NULL;
2410                 }
2411         }
2412
2413         size_t len  = ARR_LEN(initializers);
2414         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2415         initializer_t *result = allocate_ast_zero(size);
2416         result->kind          = INITIALIZER_LIST;
2417         result->list.len      = len;
2418         memcpy(&result->list.initializers, initializers,
2419                len * sizeof(initializers[0]));
2420
2421         DEL_ARR_F(initializers);
2422         ascend_to(path, top_path_level+1);
2423
2424         return result;
2425
2426 end_error:
2427         skip_initializers();
2428         DEL_ARR_F(initializers);
2429         ascend_to(path, top_path_level+1);
2430         return NULL;
2431 }
2432
2433 /**
2434  * Parses an initializer. Parsers either a compound literal
2435  * (env->declaration == NULL) or an initializer of a declaration.
2436  */
2437 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2438 {
2439         type_t        *type      = skip_typeref(env->type);
2440         size_t         max_index = 0xdeadbeaf;   // TODO: Resolve this uninitialized variable problem
2441         initializer_t *result;
2442
2443         if (is_type_scalar(type)) {
2444                 result = parse_scalar_initializer(type, env->must_be_constant);
2445         } else if (token.type == '{') {
2446                 eat('{');
2447
2448                 type_path_t path;
2449                 memset(&path, 0, sizeof(path));
2450                 path.top_type = env->type;
2451                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2452
2453                 descend_into_subtype(&path);
2454
2455                 add_anchor_token('}');
2456                 result = parse_sub_initializer(&path, env->type, 1, env);
2457                 rem_anchor_token('}');
2458
2459                 max_index = path.max_index;
2460                 DEL_ARR_F(path.path);
2461
2462                 expect('}', end_error);
2463         } else {
2464                 /* parse_scalar_initializer() also works in this case: we simply
2465                  * have an expression without {} around it */
2466                 result = parse_scalar_initializer(type, env->must_be_constant);
2467         }
2468
2469         /* §6.7.8:22 array initializers for arrays with unknown size determine
2470          * the array type size */
2471         if (is_type_array(type) && type->array.size_expression == NULL
2472                         && result != NULL) {
2473                 size_t size;
2474                 switch (result->kind) {
2475                 case INITIALIZER_LIST:
2476                         assert(max_index != 0xdeadbeaf);
2477                         size = max_index + 1;
2478                         break;
2479
2480                 case INITIALIZER_STRING:
2481                         size = result->string.string.size;
2482                         break;
2483
2484                 case INITIALIZER_WIDE_STRING:
2485                         size = result->wide_string.string.size;
2486                         break;
2487
2488                 case INITIALIZER_DESIGNATOR:
2489                 case INITIALIZER_VALUE:
2490                         /* can happen for parse errors */
2491                         size = 0;
2492                         break;
2493
2494                 default:
2495                         internal_errorf(HERE, "invalid initializer type");
2496                 }
2497
2498                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2499                 cnst->base.type          = type_size_t;
2500                 cnst->conste.v.int_value = size;
2501
2502                 type_t *new_type = duplicate_type(type);
2503
2504                 new_type->array.size_expression   = cnst;
2505                 new_type->array.size_constant     = true;
2506                 new_type->array.has_implicit_size = true;
2507                 new_type->array.size              = size;
2508                 env->type = new_type;
2509         }
2510
2511         return result;
2512 end_error:
2513         return NULL;
2514 }
2515
2516 static void append_entity(scope_t *scope, entity_t *entity)
2517 {
2518         if (scope->last_entity != NULL) {
2519                 scope->last_entity->base.next = entity;
2520         } else {
2521                 scope->entities = entity;
2522         }
2523         scope->last_entity = entity;
2524 }
2525
2526
2527 static compound_t *parse_compound_type_specifier(bool is_struct)
2528 {
2529         if (is_struct) {
2530                 eat(T_struct);
2531         } else {
2532                 eat(T_union);
2533         }
2534
2535         symbol_t    *symbol   = NULL;
2536         compound_t  *compound = NULL;
2537         attribute_t *attributes = NULL;
2538
2539         if (token.type == T___attribute__) {
2540                 attributes = parse_attributes(NULL);
2541         }
2542
2543         entity_kind_tag_t const kind = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
2544         if (token.type == T_IDENTIFIER) {
2545                 /* the compound has a name, check if we have seen it already */
2546                 symbol = token.v.symbol;
2547                 next_token();
2548
2549                 entity_t *entity = get_tag(symbol, kind);
2550                 if (entity != NULL) {
2551                         compound = &entity->compound;
2552                         if (compound->base.parent_scope != current_scope &&
2553                             (token.type == '{' || token.type == ';')) {
2554                                 /* we're in an inner scope and have a definition. Shadow
2555                                  * existing definition in outer scope */
2556                                 compound = NULL;
2557                         } else if (compound->complete && token.type == '{') {
2558                                 assert(symbol != NULL);
2559                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
2560                                        is_struct ? "struct" : "union", symbol,
2561                                        &compound->base.source_position);
2562                                 /* clear members in the hope to avoid further errors */
2563                                 compound->members.entities = NULL;
2564                         }
2565                 }
2566         } else if (token.type != '{') {
2567                 if (is_struct) {
2568                         parse_error_expected("while parsing struct type specifier",
2569                                              T_IDENTIFIER, '{', NULL);
2570                 } else {
2571                         parse_error_expected("while parsing union type specifier",
2572                                              T_IDENTIFIER, '{', NULL);
2573                 }
2574
2575                 return NULL;
2576         }
2577
2578         if (compound == NULL) {
2579                 entity_t *entity = allocate_entity_zero(kind);
2580                 compound         = &entity->compound;
2581
2582                 compound->alignment            = 1;
2583                 compound->base.namespc         = NAMESPACE_TAG;
2584                 compound->base.source_position = token.source_position;
2585                 compound->base.symbol          = symbol;
2586                 compound->base.parent_scope    = current_scope;
2587                 if (symbol != NULL) {
2588                         environment_push(entity);
2589                 }
2590                 append_entity(current_scope, entity);
2591         }
2592
2593         if (token.type == '{') {
2594                 parse_compound_type_entries(compound);
2595
2596                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2597                 if (symbol == NULL) {
2598                         assert(anonymous_entity == NULL);
2599                         anonymous_entity = (entity_t*)compound;
2600                 }
2601         }
2602
2603         if (attributes != NULL) {
2604                 handle_entity_attributes(attributes, (entity_t*) compound);
2605         }
2606
2607         return compound;
2608 }
2609
2610 static void parse_enum_entries(type_t *const enum_type)
2611 {
2612         eat('{');
2613
2614         if (token.type == '}') {
2615                 errorf(HERE, "empty enum not allowed");
2616                 next_token();
2617                 return;
2618         }
2619
2620         add_anchor_token('}');
2621         do {
2622                 if (token.type != T_IDENTIFIER) {
2623                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
2624                         eat_block();
2625                         rem_anchor_token('}');
2626                         return;
2627                 }
2628
2629                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
2630                 entity->enum_value.enum_type = enum_type;
2631                 entity->base.symbol          = token.v.symbol;
2632                 entity->base.source_position = token.source_position;
2633                 next_token();
2634
2635                 if (token.type == '=') {
2636                         next_token();
2637                         expression_t *value = parse_constant_expression();
2638
2639                         value = create_implicit_cast(value, enum_type);
2640                         entity->enum_value.value = value;
2641
2642                         /* TODO semantic */
2643                 }
2644
2645                 record_entity(entity, false);
2646
2647                 if (token.type != ',')
2648                         break;
2649                 next_token();
2650         } while (token.type != '}');
2651         rem_anchor_token('}');
2652
2653         expect('}', end_error);
2654
2655 end_error:
2656         ;
2657 }
2658
2659 static type_t *parse_enum_specifier(void)
2660 {
2661         entity_t        *entity;
2662         symbol_t        *symbol;
2663
2664         eat(T_enum);
2665         if (token.type == T_IDENTIFIER) {
2666                 symbol = token.v.symbol;
2667                 next_token();
2668
2669                 entity = get_tag(symbol, ENTITY_ENUM);
2670                 if (entity != NULL) {
2671                         if (entity->base.parent_scope != current_scope &&
2672                                         (token.type == '{' || token.type == ';')) {
2673                                 /* we're in an inner scope and have a definition. Shadow
2674                                  * existing definition in outer scope */
2675                                 entity = NULL;
2676                         } else if (entity->enume.complete && token.type == '{') {
2677                                 errorf(HERE, "multiple definitions of 'enum %Y' (previous definition %P)",
2678                                                 symbol, &entity->base.source_position);
2679                         }
2680                 }
2681         } else if (token.type != '{') {
2682                 parse_error_expected("while parsing enum type specifier",
2683                                      T_IDENTIFIER, '{', NULL);
2684                 return NULL;
2685         } else {
2686                 entity  = NULL;
2687                 symbol  = NULL;
2688         }
2689
2690         if (entity == NULL) {
2691                 entity                       = allocate_entity_zero(ENTITY_ENUM);
2692                 entity->base.namespc         = NAMESPACE_TAG;
2693                 entity->base.source_position = token.source_position;
2694                 entity->base.symbol          = symbol;
2695                 entity->base.parent_scope    = current_scope;
2696         }
2697
2698         type_t *const type = allocate_type_zero(TYPE_ENUM);
2699         type->enumt.enume  = &entity->enume;
2700         type->enumt.akind  = ATOMIC_TYPE_INT;
2701
2702         if (token.type == '{') {
2703                 if (symbol != NULL) {
2704                         environment_push(entity);
2705                 }
2706                 append_entity(current_scope, entity);
2707                 entity->enume.complete = true;
2708
2709                 parse_enum_entries(type);
2710                 parse_attributes(NULL);
2711
2712                 /* ISO/IEC 14882:1998(E) §7.1.3:5 */
2713                 if (symbol == NULL) {
2714                         assert(anonymous_entity == NULL);
2715                         anonymous_entity = entity;
2716                 }
2717         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
2718                 errorf(HERE, "'enum %Y' used before definition (incomplete enums are a GNU extension)",
2719                        symbol);
2720         }
2721
2722         return type;
2723 }
2724
2725 /**
2726  * if a symbol is a typedef to another type, return true
2727  */
2728 static bool is_typedef_symbol(symbol_t *symbol)
2729 {
2730         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
2731         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
2732 }
2733
2734 static type_t *parse_typeof(void)
2735 {
2736         eat(T___typeof__);
2737
2738         type_t *type;
2739
2740         expect('(', end_error);
2741         add_anchor_token(')');
2742
2743         expression_t *expression  = NULL;
2744
2745         bool old_type_prop     = in_type_prop;
2746         bool old_gcc_extension = in_gcc_extension;
2747         in_type_prop           = true;
2748
2749         while (token.type == T___extension__) {
2750                 /* This can be a prefix to a typename or an expression. */
2751                 next_token();
2752                 in_gcc_extension = true;
2753         }
2754         switch (token.type) {
2755         case T_IDENTIFIER:
2756                 if (is_typedef_symbol(token.v.symbol)) {
2757                         type = parse_typename();
2758                 } else {
2759                         expression = parse_expression();
2760                         type       = revert_automatic_type_conversion(expression);
2761                 }
2762                 break;
2763
2764         TYPENAME_START
2765                 type = parse_typename();
2766                 break;
2767
2768         default:
2769                 expression = parse_expression();
2770                 type       = expression->base.type;
2771                 break;
2772         }
2773         in_type_prop     = old_type_prop;
2774         in_gcc_extension = old_gcc_extension;
2775
2776         rem_anchor_token(')');
2777         expect(')', end_error);
2778
2779         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
2780         typeof_type->typeoft.expression  = expression;
2781         typeof_type->typeoft.typeof_type = type;
2782
2783         return typeof_type;
2784 end_error:
2785         return NULL;
2786 }
2787
2788 typedef enum specifiers_t {
2789         SPECIFIER_SIGNED    = 1 << 0,
2790         SPECIFIER_UNSIGNED  = 1 << 1,
2791         SPECIFIER_LONG      = 1 << 2,
2792         SPECIFIER_INT       = 1 << 3,
2793         SPECIFIER_DOUBLE    = 1 << 4,
2794         SPECIFIER_CHAR      = 1 << 5,
2795         SPECIFIER_WCHAR_T   = 1 << 6,
2796         SPECIFIER_SHORT     = 1 << 7,
2797         SPECIFIER_LONG_LONG = 1 << 8,
2798         SPECIFIER_FLOAT     = 1 << 9,
2799         SPECIFIER_BOOL      = 1 << 10,
2800         SPECIFIER_VOID      = 1 << 11,
2801         SPECIFIER_INT8      = 1 << 12,
2802         SPECIFIER_INT16     = 1 << 13,
2803         SPECIFIER_INT32     = 1 << 14,
2804         SPECIFIER_INT64     = 1 << 15,
2805         SPECIFIER_INT128    = 1 << 16,
2806         SPECIFIER_COMPLEX   = 1 << 17,
2807         SPECIFIER_IMAGINARY = 1 << 18,
2808 } specifiers_t;
2809
2810 static type_t *create_builtin_type(symbol_t *const symbol,
2811                                    type_t *const real_type)
2812 {
2813         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
2814         type->builtin.symbol    = symbol;
2815         type->builtin.real_type = real_type;
2816         return identify_new_type(type);
2817 }
2818
2819 static type_t *get_typedef_type(symbol_t *symbol)
2820 {
2821         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
2822         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
2823                 return NULL;
2824
2825         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
2826         type->typedeft.typedefe = &entity->typedefe;
2827
2828         return type;
2829 }
2830
2831 static attribute_t *parse_attribute_ms_property(attribute_t *attribute)
2832 {
2833         expect('(', end_error);
2834
2835         attribute_property_argument_t *property
2836                 = allocate_ast_zero(sizeof(*property));
2837
2838         while (true) {
2839                 if (token.type != T_IDENTIFIER) {
2840                         parse_error_expected("while parsing property declspec",
2841                                              T_IDENTIFIER, NULL);
2842                         goto end_error;
2843                 }
2844
2845                 bool is_put;
2846                 symbol_t *symbol = token.v.symbol;
2847                 next_token();
2848                 if (strcmp(symbol->string, "put") == 0) {
2849                         is_put = true;
2850                 } else if (strcmp(symbol->string, "get") == 0) {
2851                         is_put = false;
2852                 } else {
2853                         errorf(HERE, "expected put or get in property declspec");
2854                         goto end_error;
2855                 }
2856                 expect('=', end_error);
2857                 if (token.type != T_IDENTIFIER) {
2858                         parse_error_expected("while parsing property declspec",
2859                                              T_IDENTIFIER, NULL);
2860                         goto end_error;
2861                 }
2862                 if (is_put) {
2863                         property->put_symbol = token.v.symbol;
2864                 } else {
2865                         property->get_symbol = token.v.symbol;
2866                 }
2867                 next_token();
2868                 if (token.type == ')')
2869                         break;
2870                 expect(',', end_error);
2871         }
2872
2873         attribute->a.property = property;
2874
2875         expect(')', end_error);
2876
2877 end_error:
2878         return attribute;
2879 }
2880
2881 static attribute_t *parse_microsoft_extended_decl_modifier_single(void)
2882 {
2883         attribute_kind_t kind = ATTRIBUTE_UNKNOWN;
2884         if (token.type == T_restrict) {
2885                 kind = ATTRIBUTE_MS_RESTRICT;
2886                 next_token();
2887         } else if (token.type == T_IDENTIFIER) {
2888                 const char *name = token.v.symbol->string;
2889                 next_token();
2890                 for (attribute_kind_t k = ATTRIBUTE_MS_FIRST; k <= ATTRIBUTE_MS_LAST;
2891                      ++k) {
2892                         const char *attribute_name = get_attribute_name(k);
2893                         if (attribute_name != NULL && strcmp(attribute_name, name) == 0) {
2894                                 kind = k;
2895                                 break;
2896                         }
2897                 }
2898
2899                 if (kind == ATTRIBUTE_UNKNOWN && warning.attribute) {
2900                         warningf(HERE, "unknown __declspec '%s' ignored", name);
2901                 }
2902         } else {
2903                 parse_error_expected("while parsing __declspec", T_IDENTIFIER, NULL);
2904                 return NULL;
2905         }
2906
2907         attribute_t *attribute = allocate_attribute_zero(kind);
2908
2909         if (kind == ATTRIBUTE_MS_PROPERTY) {
2910                 return parse_attribute_ms_property(attribute);
2911         }
2912
2913         /* parse arguments */
2914         if (token.type == '(') {
2915                 next_token();
2916                 attribute->a.arguments = parse_attribute_arguments();
2917         }
2918
2919         return attribute;
2920 }
2921
2922 static attribute_t *parse_microsoft_extended_decl_modifier(attribute_t *first)
2923 {
2924         eat(T__declspec);
2925
2926         expect('(', end_error);
2927
2928         if (token.type == ')') {
2929                 next_token();
2930                 return NULL;
2931         }
2932
2933         add_anchor_token(')');
2934
2935         attribute_t *last = first;
2936         while (true) {
2937                 if (last != NULL) {
2938                         while (last->next != NULL)
2939                                 last = last->next;
2940                 }
2941
2942                 attribute_t *attribute
2943                         = parse_microsoft_extended_decl_modifier_single();
2944                 if (attribute == NULL)
2945                         goto end_error;
2946
2947                 if (last == NULL) {
2948                         first = attribute;
2949                 } else {
2950                         last->next = attribute;
2951                 }
2952                 last = attribute;
2953
2954                 if (token.type == ')') {
2955                         break;
2956                 }
2957                 expect(',', end_error);
2958         }
2959
2960         rem_anchor_token(')');
2961         expect(')', end_error);
2962         return first;
2963
2964 end_error:
2965         rem_anchor_token(')');
2966         return first;
2967 }
2968
2969 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
2970 {
2971         entity_t *entity             = allocate_entity_zero(kind);
2972         entity->base.source_position = *HERE;
2973         entity->base.symbol          = symbol;
2974         if (is_declaration(entity)) {
2975                 entity->declaration.type     = type_error_type;
2976                 entity->declaration.implicit = true;
2977         } else if (kind == ENTITY_TYPEDEF) {
2978                 entity->typedefe.type    = type_error_type;
2979                 entity->typedefe.builtin = true;
2980         }
2981         if (kind != ENTITY_COMPOUND_MEMBER)
2982                 record_entity(entity, false);
2983         return entity;
2984 }
2985
2986 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
2987 {
2988         type_t            *type              = NULL;
2989         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
2990         unsigned           type_specifiers   = 0;
2991         bool               newtype           = false;
2992         bool               saw_error         = false;
2993         bool               old_gcc_extension = in_gcc_extension;
2994
2995         specifiers->source_position = token.source_position;
2996
2997         while (true) {
2998                 specifiers->attributes = parse_attributes(specifiers->attributes);
2999
3000                 switch (token.type) {
3001                 /* storage class */
3002 #define MATCH_STORAGE_CLASS(token, class)                                  \
3003                 case token:                                                        \
3004                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
3005                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3006                         }                                                              \
3007                         specifiers->storage_class = class;                             \
3008                         if (specifiers->thread_local)                                  \
3009                                 goto check_thread_storage_class;                           \
3010                         next_token();                                                  \
3011                         break;
3012
3013                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3014                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3015                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3016                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3017                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3018
3019                 case T__declspec:
3020                         specifiers->attributes
3021                                 = parse_microsoft_extended_decl_modifier(specifiers->attributes);
3022                         break;
3023
3024                 case T___thread:
3025                         if (specifiers->thread_local) {
3026                                 errorf(HERE, "duplicate '__thread'");
3027                         } else {
3028                                 specifiers->thread_local = true;
3029 check_thread_storage_class:
3030                                 switch (specifiers->storage_class) {
3031                                         case STORAGE_CLASS_EXTERN:
3032                                         case STORAGE_CLASS_NONE:
3033                                         case STORAGE_CLASS_STATIC:
3034                                                 break;
3035
3036                                                 char const* wrong;
3037                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_stoarge_class;
3038                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_stoarge_class;
3039                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_stoarge_class;
3040 wrong_thread_stoarge_class:
3041                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
3042                                                 break;
3043                                 }
3044                         }
3045                         next_token();
3046                         break;
3047
3048                 /* type qualifiers */
3049 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3050                 case token:                                                     \
3051                         qualifiers |= qualifier;                                    \
3052                         next_token();                                               \
3053                         break
3054
3055                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3056                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3057                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3058                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3059                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3060                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3061                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3062                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3063
3064                 case T___extension__:
3065                         next_token();
3066                         in_gcc_extension = true;
3067                         break;
3068
3069                 /* type specifiers */
3070 #define MATCH_SPECIFIER(token, specifier, name)                         \
3071                 case token:                                                     \
3072                         if (type_specifiers & specifier) {                           \
3073                                 errorf(HERE, "multiple " name " type specifiers given"); \
3074                         } else {                                                    \
3075                                 type_specifiers |= specifier;                           \
3076                         }                                                           \
3077                         next_token();                                               \
3078                         break
3079
3080                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3081                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3082                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3083                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3084                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3085                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3086                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3087                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3088                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
3089                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3090                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3091                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3092                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3093                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3094                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3095                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3096                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3097                 MATCH_SPECIFIER(T_wchar_t,    SPECIFIER_WCHAR_T,   "wchar_t");
3098
3099                 case T_inline:
3100                         next_token();
3101                         specifiers->is_inline = true;
3102                         break;
3103
3104 #if 0
3105                 case T__forceinline:
3106                         next_token();
3107                         specifiers->modifiers |= DM_FORCEINLINE;
3108                         break;
3109 #endif
3110
3111                 case T_long:
3112                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3113                                 errorf(HERE, "multiple type specifiers given");
3114                         } else if (type_specifiers & SPECIFIER_LONG) {
3115                                 type_specifiers |= SPECIFIER_LONG_LONG;
3116                         } else {
3117                                 type_specifiers |= SPECIFIER_LONG;
3118                         }
3119                         next_token();
3120                         break;
3121
3122 #define CHECK_DOUBLE_TYPE()        \
3123                         if ( type != NULL)     \
3124                                 errorf(HERE, "multiple data types in declaration specifiers");
3125
3126                 case T_struct:
3127                         CHECK_DOUBLE_TYPE();
3128                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
3129
3130                         type->compound.compound = parse_compound_type_specifier(true);
3131                         break;
3132                 case T_union:
3133                         CHECK_DOUBLE_TYPE();
3134                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
3135                         type->compound.compound = parse_compound_type_specifier(false);
3136                         break;
3137                 case T_enum:
3138                         CHECK_DOUBLE_TYPE();
3139                         type = parse_enum_specifier();
3140                         break;
3141                 case T___typeof__:
3142                         CHECK_DOUBLE_TYPE();
3143                         type = parse_typeof();
3144                         break;
3145                 case T___builtin_va_list:
3146                         CHECK_DOUBLE_TYPE();
3147                         type = duplicate_type(type_valist);
3148                         next_token();
3149                         break;
3150
3151                 case T_IDENTIFIER: {
3152                         /* only parse identifier if we haven't found a type yet */
3153                         if (type != NULL || type_specifiers != 0) {
3154                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3155                                  * declaration, so it doesn't generate errors about expecting '(' or
3156                                  * '{' later on. */
3157                                 switch (look_ahead(1)->type) {
3158                                         STORAGE_CLASSES
3159                                         TYPE_SPECIFIERS
3160                                         case T_const:
3161                                         case T_restrict:
3162                                         case T_volatile:
3163                                         case T_inline:
3164                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3165                                         case T_IDENTIFIER:
3166                                         case '&':
3167                                         case '*':
3168                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3169                                                 next_token();
3170                                                 continue;
3171
3172                                         default:
3173                                                 goto finish_specifiers;
3174                                 }
3175                         }
3176
3177                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3178                         if (typedef_type == NULL) {
3179                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3180                                  * declaration, so it doesn't generate 'implicit int' followed by more
3181                                  * errors later on. */
3182                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3183                                 switch (la1_type) {
3184                                         DECLARATION_START
3185                                         case T_IDENTIFIER:
3186                                         case '&':
3187                                         case '*': {
3188                                                 errorf(HERE, "%K does not name a type", &token);
3189
3190                                                 entity_t *entity =
3191                                                         create_error_entity(token.v.symbol, ENTITY_TYPEDEF);
3192
3193                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3194                                                 type->typedeft.typedefe = &entity->typedefe;
3195
3196                                                 next_token();
3197                                                 saw_error = true;
3198                                                 if (la1_type == '&' || la1_type == '*')
3199                                                         goto finish_specifiers;
3200                                                 continue;
3201                                         }
3202
3203                                         default:
3204                                                 goto finish_specifiers;
3205                                 }
3206                         }
3207
3208                         next_token();
3209                         type = typedef_type;
3210                         break;
3211                 }
3212
3213                 /* function specifier */
3214                 default:
3215                         goto finish_specifiers;
3216                 }
3217         }
3218
3219 finish_specifiers:
3220         specifiers->attributes = parse_attributes(specifiers->attributes);
3221
3222         in_gcc_extension = old_gcc_extension;
3223
3224         if (type == NULL || (saw_error && type_specifiers != 0)) {
3225                 atomic_type_kind_t atomic_type;
3226
3227                 /* match valid basic types */
3228                 switch (type_specifiers) {
3229                 case SPECIFIER_VOID:
3230                         atomic_type = ATOMIC_TYPE_VOID;
3231                         break;
3232                 case SPECIFIER_WCHAR_T:
3233                         atomic_type = ATOMIC_TYPE_WCHAR_T;
3234                         break;
3235                 case SPECIFIER_CHAR:
3236                         atomic_type = ATOMIC_TYPE_CHAR;
3237                         break;
3238                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3239                         atomic_type = ATOMIC_TYPE_SCHAR;
3240                         break;
3241                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3242                         atomic_type = ATOMIC_TYPE_UCHAR;
3243                         break;
3244                 case SPECIFIER_SHORT:
3245                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3246                 case SPECIFIER_SHORT | SPECIFIER_INT:
3247                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3248                         atomic_type = ATOMIC_TYPE_SHORT;
3249                         break;
3250                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3251                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3252                         atomic_type = ATOMIC_TYPE_USHORT;
3253                         break;
3254                 case SPECIFIER_INT:
3255                 case SPECIFIER_SIGNED:
3256                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3257                         atomic_type = ATOMIC_TYPE_INT;
3258                         break;
3259                 case SPECIFIER_UNSIGNED:
3260                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3261                         atomic_type = ATOMIC_TYPE_UINT;
3262                         break;
3263                 case SPECIFIER_LONG:
3264                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3265                 case SPECIFIER_LONG | SPECIFIER_INT:
3266                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3267                         atomic_type = ATOMIC_TYPE_LONG;
3268                         break;
3269                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3270                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3271                         atomic_type = ATOMIC_TYPE_ULONG;
3272                         break;
3273
3274                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3275                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3276                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3277                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3278                         | SPECIFIER_INT:
3279                         atomic_type = ATOMIC_TYPE_LONGLONG;
3280                         goto warn_about_long_long;
3281
3282                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3283                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3284                         | SPECIFIER_INT:
3285                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3286 warn_about_long_long:
3287                         if (warning.long_long) {
3288                                 warningf(&specifiers->source_position,
3289                                          "ISO C90 does not support 'long long'");
3290                         }
3291                         break;
3292
3293                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3294                         atomic_type = unsigned_int8_type_kind;
3295                         break;
3296
3297                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3298                         atomic_type = unsigned_int16_type_kind;
3299                         break;
3300
3301                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3302                         atomic_type = unsigned_int32_type_kind;
3303                         break;
3304
3305                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3306                         atomic_type = unsigned_int64_type_kind;
3307                         break;
3308
3309                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3310                         atomic_type = unsigned_int128_type_kind;
3311                         break;
3312
3313                 case SPECIFIER_INT8:
3314                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3315                         atomic_type = int8_type_kind;
3316                         break;
3317
3318                 case SPECIFIER_INT16:
3319                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3320                         atomic_type = int16_type_kind;
3321                         break;
3322
3323                 case SPECIFIER_INT32:
3324                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3325                         atomic_type = int32_type_kind;
3326                         break;
3327
3328                 case SPECIFIER_INT64:
3329                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3330                         atomic_type = int64_type_kind;
3331                         break;
3332
3333                 case SPECIFIER_INT128:
3334                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3335                         atomic_type = int128_type_kind;
3336                         break;
3337
3338                 case SPECIFIER_FLOAT:
3339                         atomic_type = ATOMIC_TYPE_FLOAT;
3340                         break;
3341                 case SPECIFIER_DOUBLE:
3342                         atomic_type = ATOMIC_TYPE_DOUBLE;
3343                         break;
3344                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3345                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3346                         break;
3347                 case SPECIFIER_BOOL:
3348                         atomic_type = ATOMIC_TYPE_BOOL;
3349                         break;
3350                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3351                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3352                         atomic_type = ATOMIC_TYPE_FLOAT;
3353                         break;
3354                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3355                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3356                         atomic_type = ATOMIC_TYPE_DOUBLE;
3357                         break;
3358                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3359                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3360                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3361                         break;
3362                 default:
3363                         /* invalid specifier combination, give an error message */
3364                         if (type_specifiers == 0) {
3365                                 if (saw_error)
3366                                         goto end_error;
3367
3368                                 /* ISO/IEC 14882:1998(E) §C.1.5:4 */
3369                                 if (!(c_mode & _CXX) && !strict_mode) {
3370                                         if (warning.implicit_int) {
3371                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3372                                         }
3373                                         atomic_type = ATOMIC_TYPE_INT;
3374                                         break;
3375                                 } else {
3376                                         errorf(HERE, "no type specifiers given in declaration");
3377                                 }
3378                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
3379                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
3380                                 errorf(HERE, "signed and unsigned specifiers given");
3381                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
3382                                 errorf(HERE, "only integer types can be signed or unsigned");
3383                         } else {
3384                                 errorf(HERE, "multiple datatypes in declaration");
3385                         }
3386                         goto end_error;
3387                 }
3388
3389                 if (type_specifiers & SPECIFIER_COMPLEX) {
3390                         type                = allocate_type_zero(TYPE_COMPLEX);
3391                         type->complex.akind = atomic_type;
3392                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
3393                         type                  = allocate_type_zero(TYPE_IMAGINARY);
3394                         type->imaginary.akind = atomic_type;
3395                 } else {
3396                         type                 = allocate_type_zero(TYPE_ATOMIC);
3397                         type->atomic.akind   = atomic_type;
3398                 }
3399                 newtype = true;
3400         } else if (type_specifiers != 0) {
3401                 errorf(HERE, "multiple datatypes in declaration");
3402         }
3403
3404         /* FIXME: check type qualifiers here */
3405         type->base.qualifiers = qualifiers;
3406
3407         if (newtype) {
3408                 type = identify_new_type(type);
3409         } else {
3410                 type = typehash_insert(type);
3411         }
3412
3413         if (specifiers->attributes != NULL)
3414                 type = handle_type_attributes(specifiers->attributes, type);
3415         specifiers->type = type;
3416         return;
3417
3418 end_error:
3419         specifiers->type = type_error_type;
3420         return;
3421 }
3422
3423 static type_qualifiers_t parse_type_qualifiers(void)
3424 {
3425         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
3426
3427         while (true) {
3428                 switch (token.type) {
3429                 /* type qualifiers */
3430                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3431                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3432                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3433                 /* microsoft extended type modifiers */
3434                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3435                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3436                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3437                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3438                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3439
3440                 default:
3441                         return qualifiers;
3442                 }
3443         }
3444 }
3445
3446 /**
3447  * Parses an K&R identifier list
3448  */
3449 static void parse_identifier_list(scope_t *scope)
3450 {
3451         do {
3452                 entity_t *entity = allocate_entity_zero(ENTITY_PARAMETER);
3453                 entity->base.source_position = token.source_position;
3454                 entity->base.namespc         = NAMESPACE_NORMAL;
3455                 entity->base.symbol          = token.v.symbol;
3456                 /* a K&R parameter has no type, yet */
3457                 next_token();
3458
3459                 if (scope != NULL)
3460                         append_entity(scope, entity);
3461
3462                 if (token.type != ',') {
3463                         break;
3464                 }
3465                 next_token();
3466         } while (token.type == T_IDENTIFIER);
3467 }
3468
3469 static entity_t *parse_parameter(void)
3470 {
3471         declaration_specifiers_t specifiers;
3472         memset(&specifiers, 0, sizeof(specifiers));
3473
3474         parse_declaration_specifiers(&specifiers);
3475
3476         entity_t *entity = parse_declarator(&specifiers,
3477                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
3478         anonymous_entity = NULL;
3479         return entity;
3480 }
3481
3482 static void semantic_parameter_incomplete(const entity_t *entity)
3483 {
3484         assert(entity->kind == ENTITY_PARAMETER);
3485
3486         /* §6.7.5.3:4  After adjustment, the parameters in a parameter type
3487          *             list in a function declarator that is part of a
3488          *             definition of that function shall not have
3489          *             incomplete type. */
3490         type_t *type = skip_typeref(entity->declaration.type);
3491         if (is_type_incomplete(type)) {
3492                 errorf(&entity->base.source_position,
3493                                 "parameter '%#T' has incomplete type",
3494                                 entity->declaration.type, entity->base.symbol);
3495         }
3496 }
3497
3498 static bool has_parameters(void)
3499 {
3500         /* func(void) is not a parameter */
3501         if (token.type == T_IDENTIFIER) {
3502                 entity_t const *const entity = get_entity(token.v.symbol, NAMESPACE_NORMAL);
3503                 if (entity == NULL)
3504                         return true;
3505                 if (entity->kind != ENTITY_TYPEDEF)
3506                         return true;
3507                 if (skip_typeref(entity->typedefe.type) != type_void)
3508                         return true;
3509         } else if (token.type != T_void) {
3510                 return true;
3511         }
3512         if (look_ahead(1)->type != ')')
3513                 return true;
3514         next_token();
3515         return false;
3516 }
3517
3518 /**
3519  * Parses function type parameters (and optionally creates variable_t entities
3520  * for them in a scope)
3521  */
3522 static void parse_parameters(function_type_t *type, scope_t *scope)
3523 {
3524         eat('(');
3525         add_anchor_token(')');
3526         int saved_comma_state = save_and_reset_anchor_state(',');
3527
3528         if (token.type == T_IDENTIFIER &&
3529             !is_typedef_symbol(token.v.symbol)) {
3530                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
3531                 if (la1_type == ',' || la1_type == ')') {
3532                         type->kr_style_parameters    = true;
3533                         type->unspecified_parameters = true;
3534                         parse_identifier_list(scope);
3535                         goto parameters_finished;
3536                 }
3537         }
3538
3539         if (token.type == ')') {
3540                 /* ISO/IEC 14882:1998(E) §C.1.6:1 */
3541                 if (!(c_mode & _CXX))
3542                         type->unspecified_parameters = true;
3543                 goto parameters_finished;
3544         }
3545
3546         if (has_parameters()) {
3547                 function_parameter_t **anchor = &type->parameters;
3548                 for (;;) {
3549                         switch (token.type) {
3550                         case T_DOTDOTDOT:
3551                                 next_token();
3552                                 type->variadic = true;
3553                                 goto parameters_finished;
3554
3555                         case T_IDENTIFIER:
3556                         case T___extension__:
3557                         DECLARATION_START
3558                         {
3559                                 entity_t *entity = parse_parameter();
3560                                 if (entity->kind == ENTITY_TYPEDEF) {
3561                                         errorf(&entity->base.source_position,
3562                                                         "typedef not allowed as function parameter");
3563                                         break;
3564                                 }
3565                                 assert(is_declaration(entity));
3566
3567                                 semantic_parameter_incomplete(entity);
3568
3569                                 function_parameter_t *const parameter =
3570                                         allocate_parameter(entity->declaration.type);
3571
3572                                 if (scope != NULL) {
3573                                         append_entity(scope, entity);
3574                                 }
3575
3576                                 *anchor = parameter;
3577                                 anchor  = &parameter->next;
3578                                 break;
3579                         }
3580
3581                         default:
3582                                 goto parameters_finished;
3583                         }
3584                         if (token.type != ',') {
3585                                 goto parameters_finished;
3586                         }
3587                         next_token();
3588                 }
3589         }
3590
3591
3592 parameters_finished:
3593         rem_anchor_token(')');
3594         expect(')', end_error);
3595
3596 end_error:
3597         restore_anchor_state(',', saved_comma_state);
3598 }
3599
3600 typedef enum construct_type_kind_t {
3601         CONSTRUCT_INVALID,
3602         CONSTRUCT_POINTER,
3603         CONSTRUCT_REFERENCE,
3604         CONSTRUCT_FUNCTION,
3605         CONSTRUCT_ARRAY
3606 } construct_type_kind_t;
3607
3608 typedef union construct_type_t construct_type_t;
3609
3610 typedef struct construct_type_base_t {
3611         construct_type_kind_t  kind;
3612         construct_type_t      *next;
3613 } construct_type_base_t;
3614
3615 typedef struct parsed_pointer_t {
3616         construct_type_base_t  base;
3617         type_qualifiers_t      type_qualifiers;
3618         variable_t            *base_variable;  /**< MS __based extension. */
3619 } parsed_pointer_t;
3620
3621 typedef struct parsed_reference_t {
3622         construct_type_base_t base;
3623 } parsed_reference_t;
3624
3625 typedef struct construct_function_type_t {
3626         construct_type_base_t  base;
3627         type_t                *function_type;
3628 } construct_function_type_t;
3629
3630 typedef struct parsed_array_t {
3631         construct_type_base_t  base;
3632         type_qualifiers_t      type_qualifiers;
3633         bool                   is_static;
3634         bool                   is_variable;
3635         expression_t          *size;
3636 } parsed_array_t;
3637
3638 union construct_type_t {
3639         construct_type_kind_t     kind;
3640         construct_type_base_t     base;
3641         parsed_pointer_t          pointer;
3642         parsed_reference_t        reference;
3643         construct_function_type_t function;
3644         parsed_array_t            array;
3645 };
3646
3647 static construct_type_t *parse_pointer_declarator(void)
3648 {
3649         eat('*');
3650
3651         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
3652         memset(pointer, 0, sizeof(pointer[0]));
3653         pointer->base.kind       = CONSTRUCT_POINTER;
3654         pointer->type_qualifiers = parse_type_qualifiers();
3655         //pointer->base_variable       = base_variable;
3656
3657         return (construct_type_t*) pointer;
3658 }
3659
3660 static construct_type_t *parse_reference_declarator(void)
3661 {
3662         eat('&');
3663
3664         construct_type_t   *cons      = obstack_alloc(&temp_obst, sizeof(cons->reference));
3665         parsed_reference_t *reference = &cons->reference;
3666         memset(reference, 0, sizeof(*reference));
3667         cons->kind = CONSTRUCT_REFERENCE;
3668
3669         return cons;
3670 }
3671
3672 static construct_type_t *parse_array_declarator(void)
3673 {
3674         eat('[');
3675         add_anchor_token(']');
3676
3677         construct_type_t *cons  = obstack_alloc(&temp_obst, sizeof(cons->array));
3678         parsed_array_t   *array = &cons->array;
3679         memset(array, 0, sizeof(*array));
3680         cons->kind = CONSTRUCT_ARRAY;
3681
3682         if (token.type == T_static) {
3683                 array->is_static = true;
3684                 next_token();
3685         }
3686
3687         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
3688         if (type_qualifiers != 0) {
3689                 if (token.type == T_static) {
3690                         array->is_static = true;
3691                         next_token();
3692                 }
3693         }
3694         array->type_qualifiers = type_qualifiers;
3695
3696         if (token.type == '*' && look_ahead(1)->type == ']') {
3697                 array->is_variable = true;
3698                 next_token();
3699         } else if (token.type != ']') {
3700                 expression_t *const size = parse_assignment_expression();
3701
3702                 /* §6.7.5.2:1  Array size must have integer type */
3703                 type_t *const orig_type = size->base.type;
3704                 type_t *const type      = skip_typeref(orig_type);
3705                 if (!is_type_integer(type) && is_type_valid(type)) {
3706                         errorf(&size->base.source_position,
3707                                "array size '%E' must have integer type but has type '%T'",
3708                                size, orig_type);
3709                 }
3710
3711                 array->size = size;
3712                 mark_vars_read(size, NULL);
3713         }
3714
3715         rem_anchor_token(']');
3716         expect(']', end_error);
3717
3718 end_error:
3719         return cons;
3720 }
3721
3722 static construct_type_t *parse_function_declarator(scope_t *scope)
3723 {
3724         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
3725         function_type_t *ftype = &type->function;
3726
3727         ftype->linkage            = current_linkage;
3728         ftype->calling_convention = CC_CDECL;
3729
3730         parse_parameters(ftype, scope);
3731
3732         construct_type_t          *cons     = obstack_alloc(&temp_obst, sizeof(cons->function));
3733         construct_function_type_t *function = &cons->function;
3734         memset(function, 0, sizeof(*function));
3735         cons->kind              = CONSTRUCT_FUNCTION;
3736         function->function_type = type;
3737
3738         return cons;
3739 }
3740
3741 typedef struct parse_declarator_env_t {
3742         bool               may_be_abstract : 1;
3743         bool               must_be_abstract : 1;
3744         decl_modifiers_t   modifiers;
3745         symbol_t          *symbol;
3746         source_position_t  source_position;
3747         scope_t            parameters;
3748         attribute_t       *attributes;
3749 } parse_declarator_env_t;
3750
3751 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env)
3752 {
3753         /* construct a single linked list of construct_type_t's which describe
3754          * how to construct the final declarator type */
3755         construct_type_t  *first      = NULL;
3756         construct_type_t **anchor     = &first;
3757
3758         env->attributes = parse_attributes(env->attributes);
3759
3760         for (;;) {
3761                 construct_type_t *type;
3762                 //variable_t       *based = NULL; /* MS __based extension */
3763                 switch (token.type) {
3764                         case '&':
3765                                 if (!(c_mode & _CXX))
3766                                         errorf(HERE, "references are only available for C++");
3767                                 type = parse_reference_declarator();
3768                                 break;
3769
3770                         case T__based: {
3771 #if 0
3772                                 source_position_t const pos = *HERE;
3773                                 next_token();
3774                                 expect('(', end_error);
3775                                 add_anchor_token(')');
3776                                 based = parse_microsoft_based();
3777                                 rem_anchor_token(')');
3778                                 expect(')', end_error);
3779                                 if (token.type != '*') {
3780                                         if (token.type == T__based) {
3781                                                 errorf(&pos, "__based type modifier specified more than once");
3782                                         } else if (warning.other) {
3783                                                 warningf(&pos,
3784                                                                 "__based does not precede a pointer declarator, ignored");
3785                                         }
3786                                         continue;
3787                                 }
3788 #else
3789                                 panic("based currently disabled");
3790 #endif
3791                                 /* FALLTHROUGH */
3792                         }
3793
3794                         case '*':
3795                                 type = parse_pointer_declarator();
3796                                 break;
3797
3798                         default:
3799                                 goto ptr_operator_end;
3800                 }
3801
3802                 *anchor = type;
3803                 anchor  = &type->base.next;
3804
3805                 /* TODO: find out if this is correct */
3806                 env->attributes = parse_attributes(env->attributes);
3807         }
3808
3809 ptr_operator_end: ;
3810 #if 0
3811         modifiers      |= env->modifiers;
3812         env->modifiers  = modifiers;
3813 #endif
3814
3815         construct_type_t *inner_types = NULL;
3816
3817         switch (token.type) {
3818         case T_IDENTIFIER:
3819                 if (env->must_be_abstract) {
3820                         errorf(HERE, "no identifier expected in typename");
3821                 } else {
3822                         env->symbol          = token.v.symbol;
3823                         env->source_position = token.source_position;
3824                 }
3825                 next_token();
3826                 break;
3827         case '(':
3828                 /* §6.7.6:2 footnote 126:  Empty parentheses in a type name are
3829                  * interpreted as ``function with no parameter specification'', rather
3830                  * than redundant parentheses around the omitted identifier. */
3831                 if (look_ahead(1)->type != ')') {
3832                         next_token();
3833                         add_anchor_token(')');
3834                         inner_types = parse_inner_declarator(env);
3835                         if (inner_types != NULL) {
3836                                 /* All later declarators only modify the return type */
3837                                 env->must_be_abstract = true;
3838                         }
3839                         rem_anchor_token(')');
3840                         expect(')', end_error);
3841                 }
3842                 break;
3843         default:
3844                 if (env->may_be_abstract)
3845                         break;
3846                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
3847                 eat_until_anchor();
3848                 return NULL;
3849         }
3850
3851         construct_type_t **const p = anchor;
3852
3853         for (;;) {
3854                 construct_type_t *type;
3855                 switch (token.type) {
3856                 case '(': {
3857                         scope_t *scope = NULL;
3858                         if (!env->must_be_abstract) {
3859                                 scope = &env->parameters;
3860                         }
3861
3862                         type = parse_function_declarator(scope);
3863                         break;
3864                 }
3865                 case '[':
3866                         type = parse_array_declarator();
3867                         break;
3868                 default:
3869                         goto declarator_finished;
3870                 }
3871
3872                 /* insert in the middle of the list (at p) */
3873                 type->base.next = *p;
3874                 *p              = type;
3875                 if (anchor == p)
3876                         anchor = &type->base.next;
3877         }
3878
3879 declarator_finished:
3880         /* append inner_types at the end of the list, we don't to set anchor anymore
3881          * as it's not needed anymore */
3882         *anchor = inner_types;
3883
3884         return first;
3885 end_error:
3886         return NULL;
3887 }
3888
3889 static type_t *construct_declarator_type(construct_type_t *construct_list, type_t *type)
3890 {
3891         construct_type_t *iter = construct_list;
3892         for (; iter != NULL; iter = iter->base.next) {
3893                 switch (iter->kind) {
3894                 case CONSTRUCT_INVALID:
3895                         break;
3896                 case CONSTRUCT_FUNCTION: {
3897                         construct_function_type_t *function      = &iter->function;
3898                         type_t                    *function_type = function->function_type;
3899
3900                         function_type->function.return_type = type;
3901
3902                         type_t *skipped_return_type = skip_typeref(type);
3903                         /* §6.7.5.3:1 */
3904                         if (is_type_function(skipped_return_type)) {
3905                                 errorf(HERE, "function returning function is not allowed");
3906                         } else if (is_type_array(skipped_return_type)) {
3907                                 errorf(HERE, "function returning array is not allowed");
3908                         } else {
3909                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
3910                                         warningf(HERE,
3911                                                 "type qualifiers in return type of function type are meaningless");
3912                                 }
3913                         }
3914
3915                         /* The function type was constructed earlier.  Freeing it here will
3916                          * destroy other types. */
3917                         type = typehash_insert(function_type);
3918                         continue;
3919                 }
3920
3921                 case CONSTRUCT_POINTER: {
3922                         if (is_type_reference(skip_typeref(type)))
3923                                 errorf(HERE, "cannot declare a pointer to reference");
3924
3925                         parsed_pointer_t *pointer = &iter->pointer;
3926                         type = make_based_pointer_type(type, pointer->type_qualifiers, pointer->base_variable);
3927                         continue;
3928                 }
3929
3930                 case CONSTRUCT_REFERENCE:
3931                         if (is_type_reference(skip_typeref(type)))
3932                                 errorf(HERE, "cannot declare a reference to reference");
3933
3934                         type = make_reference_type(type);
3935                         continue;
3936
3937                 case CONSTRUCT_ARRAY: {
3938                         if (is_type_reference(skip_typeref(type)))
3939                                 errorf(HERE, "cannot declare an array of references");
3940
3941                         parsed_array_t *array      = &iter->array;
3942                         type_t         *array_type = allocate_type_zero(TYPE_ARRAY);
3943
3944                         expression_t *size_expression = array->size;
3945                         if (size_expression != NULL) {
3946                                 size_expression
3947                                         = create_implicit_cast(size_expression, type_size_t);
3948                         }
3949
3950                         array_type->base.qualifiers       = array->type_qualifiers;
3951                         array_type->array.element_type    = type;
3952                         array_type->array.is_static       = array->is_static;
3953                         array_type->array.is_variable     = array->is_variable;
3954                         array_type->array.size_expression = size_expression;
3955
3956                         if (size_expression != NULL) {
3957                                 if (is_constant_expression(size_expression)) {
3958                                         long const size
3959                                                 = fold_constant_to_int(size_expression);
3960                                         array_type->array.size          = size;
3961                                         array_type->array.size_constant = true;
3962                                         /* §6.7.5.2:1  If the expression is a constant expression, it shall
3963                                          * have a value greater than zero. */
3964                                         if (size <= 0) {
3965                                                 if (size < 0 || !GNU_MODE) {
3966                                                         errorf(&size_expression->base.source_position,
3967                                                                         "size of array must be greater than zero");
3968                                                 } else if (warning.other) {
3969                                                         warningf(&size_expression->base.source_position,
3970                                                                         "zero length arrays are a GCC extension");
3971                                                 }
3972                                         }
3973                                 } else {
3974                                         array_type->array.is_vla = true;
3975                                 }
3976                         }
3977
3978                         type_t *skipped_type = skip_typeref(type);
3979                         /* §6.7.5.2:1 */
3980                         if (is_type_incomplete(skipped_type)) {
3981                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
3982                         } else if (is_type_function(skipped_type)) {
3983                                 errorf(HERE, "array of functions is not allowed");
3984                         }
3985                         type = identify_new_type(array_type);
3986                         continue;
3987                 }
3988                 }
3989                 internal_errorf(HERE, "invalid type construction found");
3990         }
3991
3992         return type;
3993 }
3994
3995 static type_t *automatic_type_conversion(type_t *orig_type);
3996
3997 static type_t *semantic_parameter(const source_position_t *pos,
3998                                   type_t *type,
3999                                   const declaration_specifiers_t *specifiers,
4000                                   symbol_t *symbol)
4001 {
4002         /* §6.7.5.3:7  A declaration of a parameter as ``array of type''
4003          *             shall be adjusted to ``qualified pointer to type'',
4004          *             [...]
4005          * §6.7.5.3:8  A declaration of a parameter as ``function returning
4006          *             type'' shall be adjusted to ``pointer to function
4007          *             returning type'', as in 6.3.2.1. */
4008         type = automatic_type_conversion(type);
4009
4010         if (specifiers->is_inline && is_type_valid(type)) {
4011                 errorf(pos, "parameter '%#T' declared 'inline'", type, symbol);
4012         }
4013
4014         /* §6.9.1:6  The declarations in the declaration list shall contain
4015          *           no storage-class specifier other than register and no
4016          *           initializations. */
4017         if (specifiers->thread_local || (
4018                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4019                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
4020            ) {
4021                 errorf(pos, "invalid storage class for parameter '%#T'", type, symbol);
4022         }
4023
4024         /* delay test for incomplete type, because we might have (void)
4025          * which is legal but incomplete... */
4026
4027         return type;
4028 }
4029
4030 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
4031                                   declarator_flags_t flags)
4032 {
4033         parse_declarator_env_t env;
4034         memset(&env, 0, sizeof(env));
4035         env.may_be_abstract = (flags & DECL_MAY_BE_ABSTRACT) != 0;
4036
4037         construct_type_t *construct_type = parse_inner_declarator(&env);
4038         type_t           *orig_type      =
4039                 construct_declarator_type(construct_type, specifiers->type);
4040         type_t           *type           = skip_typeref(orig_type);
4041
4042         if (construct_type != NULL) {
4043                 obstack_free(&temp_obst, construct_type);
4044         }
4045
4046         attribute_t *attributes = parse_attributes(env.attributes);
4047         /* append (shared) specifier attribute behind attributes of this
4048            declarator */
4049         if (attributes != NULL) {
4050                 attribute_t *last = attributes;
4051                 while (last->next != NULL)
4052                         last = last->next;
4053                 last->next = specifiers->attributes;
4054         } else {
4055                 attributes = specifiers->attributes;
4056         }
4057
4058         entity_t *entity;
4059         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
4060                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
4061                 entity->base.symbol          = env.symbol;
4062                 entity->base.source_position = env.source_position;
4063                 entity->typedefe.type        = orig_type;
4064
4065                 if (anonymous_entity != NULL) {
4066                         if (is_type_compound(type)) {
4067                                 assert(anonymous_entity->compound.alias == NULL);
4068                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
4069                                        anonymous_entity->kind == ENTITY_UNION);
4070                                 anonymous_entity->compound.alias = entity;
4071                                 anonymous_entity = NULL;
4072                         } else if (is_type_enum(type)) {
4073                                 assert(anonymous_entity->enume.alias == NULL);
4074                                 assert(anonymous_entity->kind == ENTITY_ENUM);
4075                                 anonymous_entity->enume.alias = entity;
4076                                 anonymous_entity = NULL;
4077                         }
4078                 }
4079         } else {
4080                 /* create a declaration type entity */
4081                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
4082                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
4083
4084                         if (env.symbol != NULL) {
4085                                 if (specifiers->is_inline && is_type_valid(type)) {
4086                                         errorf(&env.source_position,
4087                                                         "compound member '%Y' declared 'inline'", env.symbol);
4088                                 }
4089
4090                                 if (specifiers->thread_local ||
4091                                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
4092                                         errorf(&env.source_position,
4093                                                         "compound member '%Y' must have no storage class",
4094                                                         env.symbol);
4095                                 }
4096                         }
4097                 } else if (flags & DECL_IS_PARAMETER) {
4098                         orig_type = semantic_parameter(&env.source_position, orig_type,
4099                                                        specifiers, env.symbol);
4100
4101                         entity = allocate_entity_zero(ENTITY_PARAMETER);
4102                 } else if (is_type_function(type)) {
4103                         entity = allocate_entity_zero(ENTITY_FUNCTION);
4104
4105                         entity->function.is_inline  = specifiers->is_inline;
4106                         entity->function.parameters = env.parameters;
4107
4108                         if (env.symbol != NULL) {
4109                                 /* this needs fixes for C++ */
4110                                 bool in_function_scope = current_function != NULL;
4111
4112                                 if (specifiers->thread_local || (
4113                                       specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4114                                           specifiers->storage_class != STORAGE_CLASS_NONE   &&
4115                                           (in_function_scope || specifiers->storage_class != STORAGE_CLASS_STATIC)
4116                                    )) {
4117                                         errorf(&env.source_position,
4118                                                         "invalid storage class for function '%Y'", env.symbol);
4119                                 }
4120                         }
4121                 } else {
4122                         entity = allocate_entity_zero(ENTITY_VARIABLE);
4123
4124                         entity->variable.thread_local = specifiers->thread_local;
4125
4126                         if (env.symbol != NULL) {
4127                                 if (specifiers->is_inline && is_type_valid(type)) {
4128                                         errorf(&env.source_position,
4129                                                         "variable '%Y' declared 'inline'", env.symbol);
4130                                 }
4131
4132                                 bool invalid_storage_class = false;
4133                                 if (current_scope == file_scope) {
4134                                         if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4135                                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4136                                                         specifiers->storage_class != STORAGE_CLASS_STATIC) {
4137                                                 invalid_storage_class = true;
4138                                         }
4139                                 } else {
4140                                         if (specifiers->thread_local &&
4141                                                         specifiers->storage_class == STORAGE_CLASS_NONE) {
4142                                                 invalid_storage_class = true;
4143                                         }
4144                                 }
4145                                 if (invalid_storage_class) {
4146                                         errorf(&env.source_position,
4147                                                         "invalid storage class for variable '%Y'", env.symbol);
4148                                 }
4149                         }
4150                 }
4151
4152                 if (env.symbol != NULL) {
4153                         entity->base.symbol          = env.symbol;
4154                         entity->base.source_position = env.source_position;
4155                 } else {
4156                         entity->base.source_position = specifiers->source_position;
4157                 }
4158                 entity->base.namespc           = NAMESPACE_NORMAL;
4159                 entity->declaration.type       = orig_type;
4160                 entity->declaration.alignment  = get_type_alignment(orig_type);
4161                 entity->declaration.modifiers  = env.modifiers;
4162                 entity->declaration.attributes = attributes;
4163
4164                 storage_class_t storage_class = specifiers->storage_class;
4165                 entity->declaration.declared_storage_class = storage_class;
4166
4167                 if (storage_class == STORAGE_CLASS_NONE && current_scope != file_scope)
4168                         storage_class = STORAGE_CLASS_AUTO;
4169                 entity->declaration.storage_class = storage_class;
4170         }
4171
4172         if (attributes != NULL) {
4173                 handle_entity_attributes(attributes, entity);
4174         }
4175
4176         return entity;
4177 }
4178
4179 static type_t *parse_abstract_declarator(type_t *base_type)
4180 {
4181         parse_declarator_env_t env;
4182         memset(&env, 0, sizeof(env));
4183         env.may_be_abstract = true;
4184         env.must_be_abstract = true;
4185
4186         construct_type_t *construct_type = parse_inner_declarator(&env);
4187
4188         type_t *result = construct_declarator_type(construct_type, base_type);
4189         if (construct_type != NULL) {
4190                 obstack_free(&temp_obst, construct_type);
4191         }
4192         result = handle_type_attributes(env.attributes, result);
4193
4194         return result;
4195 }
4196
4197 /**
4198  * Check if the declaration of main is suspicious.  main should be a
4199  * function with external linkage, returning int, taking either zero
4200  * arguments, two, or three arguments of appropriate types, ie.
4201  *
4202  * int main([ int argc, char **argv [, char **env ] ]).
4203  *
4204  * @param decl    the declaration to check
4205  * @param type    the function type of the declaration
4206  */
4207 static void check_main(const entity_t *entity)
4208 {
4209         const source_position_t *pos = &entity->base.source_position;
4210         if (entity->kind != ENTITY_FUNCTION) {
4211                 warningf(pos, "'main' is not a function");
4212                 return;
4213         }
4214
4215         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4216                 warningf(pos, "'main' is normally a non-static function");
4217         }
4218
4219         type_t *type = skip_typeref(entity->declaration.type);
4220         assert(is_type_function(type));
4221
4222         function_type_t *func_type = &type->function;
4223         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4224                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4225                          func_type->return_type);
4226         }
4227         const function_parameter_t *parm = func_type->parameters;
4228         if (parm != NULL) {
4229                 type_t *const first_type = parm->type;
4230                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4231                         warningf(pos,
4232                                  "first argument of 'main' should be 'int', but is '%T'",
4233                                  first_type);
4234                 }
4235                 parm = parm->next;
4236                 if (parm != NULL) {
4237                         type_t *const second_type = parm->type;
4238                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4239                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4240                         }
4241                         parm = parm->next;
4242                         if (parm != NULL) {
4243                                 type_t *const third_type = parm->type;
4244                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4245                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4246                                 }
4247                                 parm = parm->next;
4248                                 if (parm != NULL)
4249                                         goto warn_arg_count;
4250                         }
4251                 } else {
4252 warn_arg_count:
4253                         warningf(pos, "'main' takes only zero, two or three arguments");
4254                 }
4255         }
4256 }
4257
4258 /**
4259  * Check if a symbol is the equal to "main".
4260  */
4261 static bool is_sym_main(const symbol_t *const sym)
4262 {
4263         return strcmp(sym->string, "main") == 0;
4264 }
4265
4266 static void error_redefined_as_different_kind(const source_position_t *pos,
4267                 const entity_t *old, entity_kind_t new_kind)
4268 {
4269         errorf(pos, "redeclaration of %s '%Y' as %s (declared %P)",
4270                get_entity_kind_name(old->kind), old->base.symbol,
4271                get_entity_kind_name(new_kind), &old->base.source_position);
4272 }
4273
4274 static bool is_error_entity(entity_t *const ent)
4275 {
4276         if (is_declaration(ent)) {
4277                 return is_type_valid(skip_typeref(ent->declaration.type));
4278         } else if (ent->kind == ENTITY_TYPEDEF) {
4279                 return is_type_valid(skip_typeref(ent->typedefe.type));
4280         }
4281         return false;
4282 }
4283
4284 /**
4285  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4286  * for various problems that occur for multiple definitions
4287  */
4288 static entity_t *record_entity(entity_t *entity, const bool is_definition)
4289 {
4290         const symbol_t *const    symbol  = entity->base.symbol;
4291         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
4292         const source_position_t *pos     = &entity->base.source_position;
4293
4294         /* can happen in error cases */
4295         if (symbol == NULL)
4296                 return entity;
4297
4298         entity_t *const previous_entity = get_entity(symbol, namespc);
4299         /* pushing the same entity twice will break the stack structure */
4300         assert(previous_entity != entity);
4301
4302         if (entity->kind == ENTITY_FUNCTION) {
4303                 type_t *const orig_type = entity->declaration.type;
4304                 type_t *const type      = skip_typeref(orig_type);
4305
4306                 assert(is_type_function(type));
4307                 if (type->function.unspecified_parameters &&
4308                                 warning.strict_prototypes &&
4309                                 previous_entity == NULL) {
4310                         warningf(pos, "function declaration '%#T' is not a prototype",
4311                                          orig_type, symbol);
4312                 }
4313
4314                 if (warning.main && current_scope == file_scope
4315                                 && is_sym_main(symbol)) {
4316                         check_main(entity);
4317                 }
4318         }
4319
4320         if (is_declaration(entity) &&
4321                         warning.nested_externs &&
4322                         entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
4323                         current_scope != file_scope) {
4324                 warningf(pos, "nested extern declaration of '%#T'",
4325                          entity->declaration.type, symbol);
4326         }
4327
4328         if (previous_entity != NULL) {
4329                 if (previous_entity->base.parent_scope == &current_function->parameters &&
4330                                 previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
4331                         assert(previous_entity->kind == ENTITY_PARAMETER);
4332                         errorf(pos,
4333                                         "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4334                                         entity->declaration.type, symbol,
4335                                         previous_entity->declaration.type, symbol,
4336                                         &previous_entity->base.source_position);
4337                         goto finish;
4338                 }
4339
4340                 if (previous_entity->base.parent_scope == current_scope) {
4341                         if (previous_entity->kind != entity->kind) {
4342                                 if (!is_error_entity(previous_entity) && !is_error_entity(entity)) {
4343                                         error_redefined_as_different_kind(pos, previous_entity,
4344                                                         entity->kind);
4345                                 }
4346                                 goto finish;
4347                         }
4348                         if (previous_entity->kind == ENTITY_ENUM_VALUE) {
4349                                 errorf(pos, "redeclaration of enum entry '%Y' (declared %P)",
4350                                                 symbol, &previous_entity->base.source_position);
4351                                 goto finish;
4352                         }
4353                         if (previous_entity->kind == ENTITY_TYPEDEF) {
4354                                 /* TODO: C++ allows this for exactly the same type */
4355                                 errorf(pos, "redefinition of typedef '%Y' (declared %P)",
4356                                                 symbol, &previous_entity->base.source_position);
4357                                 goto finish;
4358                         }
4359
4360                         /* at this point we should have only VARIABLES or FUNCTIONS */
4361                         assert(is_declaration(previous_entity) && is_declaration(entity));
4362
4363                         declaration_t *const prev_decl = &previous_entity->declaration;
4364                         declaration_t *const decl      = &entity->declaration;
4365
4366                         /* can happen for K&R style declarations */
4367                         if (prev_decl->type       == NULL             &&
4368                                         previous_entity->kind == ENTITY_PARAMETER &&
4369                                         entity->kind          == ENTITY_PARAMETER) {
4370                                 prev_decl->type                   = decl->type;
4371                                 prev_decl->storage_class          = decl->storage_class;
4372                                 prev_decl->declared_storage_class = decl->declared_storage_class;
4373                                 prev_decl->modifiers              = decl->modifiers;
4374                                 return previous_entity;
4375                         }
4376
4377                         type_t *const orig_type = decl->type;
4378                         assert(orig_type != NULL);
4379                         type_t *const type      = skip_typeref(orig_type);
4380                         type_t *const prev_type = skip_typeref(prev_decl->type);
4381
4382                         if (!types_compatible(type, prev_type)) {
4383                                 errorf(pos,
4384                                                 "declaration '%#T' is incompatible with '%#T' (declared %P)",
4385                                                 orig_type, symbol, prev_decl->type, symbol,
4386                                                 &previous_entity->base.source_position);
4387                         } else {
4388                                 unsigned old_storage_class = prev_decl->storage_class;
4389                                 if (warning.redundant_decls               &&
4390                                                 is_definition                     &&
4391                                                 !prev_decl->used                  &&
4392                                                 !(prev_decl->modifiers & DM_USED) &&
4393                                                 prev_decl->storage_class == STORAGE_CLASS_STATIC) {
4394                                         warningf(&previous_entity->base.source_position,
4395                                                         "unnecessary static forward declaration for '%#T'",
4396                                                         prev_decl->type, symbol);
4397                                 }
4398
4399                                 storage_class_t new_storage_class = decl->storage_class;
4400
4401                                 /* pretend no storage class means extern for function
4402                                  * declarations (except if the previous declaration is neither
4403                                  * none nor extern) */
4404                                 if (entity->kind == ENTITY_FUNCTION) {
4405                                         /* the previous declaration could have unspecified parameters or
4406                                          * be a typedef, so use the new type */
4407                                         if (prev_type->function.unspecified_parameters || is_definition)
4408                                                 prev_decl->type = type;
4409
4410                                         switch (old_storage_class) {
4411                                                 case STORAGE_CLASS_NONE:
4412                                                         old_storage_class = STORAGE_CLASS_EXTERN;
4413                                                         /* FALLTHROUGH */
4414
4415                                                 case STORAGE_CLASS_EXTERN:
4416                                                         if (is_definition) {
4417                                                                 if (warning.missing_prototypes &&
4418                                                                                 prev_type->function.unspecified_parameters &&
4419                                                                                 !is_sym_main(symbol)) {
4420                                                                         warningf(pos, "no previous prototype for '%#T'",
4421                                                                                         orig_type, symbol);
4422                                                                 }
4423                                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
4424                                                                 new_storage_class = STORAGE_CLASS_EXTERN;
4425                                                         }
4426                                                         break;
4427
4428                                                 default:
4429                                                         break;
4430                                         }
4431                                 } else if (is_type_incomplete(prev_type)) {
4432                                         prev_decl->type = type;
4433                                 }
4434
4435                                 if (old_storage_class == STORAGE_CLASS_EXTERN &&
4436                                                 new_storage_class == STORAGE_CLASS_EXTERN) {
4437 warn_redundant_declaration:
4438                                         if (!is_definition           &&
4439                                                         warning.redundant_decls  &&
4440                                                         is_type_valid(prev_type) &&
4441                                                         strcmp(previous_entity->base.source_position.input_name,
4442                                                                 "<builtin>") != 0) {
4443                                                 warningf(pos,
4444                                                                 "redundant declaration for '%Y' (declared %P)",
4445                                                                 symbol, &previous_entity->base.source_position);
4446                                         }
4447                                 } else if (current_function == NULL) {
4448                                         if (old_storage_class != STORAGE_CLASS_STATIC &&
4449                                                         new_storage_class == STORAGE_CLASS_STATIC) {
4450                                                 errorf(pos,
4451                                                                 "static declaration of '%Y' follows non-static declaration (declared %P)",
4452                                                                 symbol, &previous_entity->base.source_position);
4453                                         } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
4454                                                 prev_decl->storage_class          = STORAGE_CLASS_NONE;
4455                                                 prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
4456                                         } else {
4457                                                 /* ISO/IEC 14882:1998(E) §C.1.2:1 */
4458                                                 if (c_mode & _CXX)
4459                                                         goto error_redeclaration;
4460                                                 goto warn_redundant_declaration;
4461                                         }
4462                                 } else if (is_type_valid(prev_type)) {
4463                                         if (old_storage_class == new_storage_class) {
4464 error_redeclaration:
4465                                                 errorf(pos, "redeclaration of '%Y' (declared %P)",
4466                                                                 symbol, &previous_entity->base.source_position);
4467                                         } else {
4468                                                 errorf(pos,
4469                                                                 "redeclaration of '%Y' with different linkage (declared %P)",
4470                                                                 symbol, &previous_entity->base.source_position);
4471                                         }
4472                                 }
4473                         }
4474
4475                         prev_decl->modifiers |= decl->modifiers;
4476                         if (entity->kind == ENTITY_FUNCTION) {
4477                                 previous_entity->function.is_inline |= entity->function.is_inline;
4478                         }
4479                         return previous_entity;
4480                 }
4481
4482                 if (warning.shadow) {
4483                         warningf(pos, "%s '%Y' shadows %s (declared %P)",
4484                                         get_entity_kind_name(entity->kind), symbol,
4485                                         get_entity_kind_name(previous_entity->kind),
4486                                         &previous_entity->base.source_position);
4487                 }
4488         }
4489
4490         if (entity->kind == ENTITY_FUNCTION) {
4491                 if (is_definition &&
4492                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
4493                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
4494                                 warningf(pos, "no previous prototype for '%#T'",
4495                                          entity->declaration.type, symbol);
4496                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
4497                                 warningf(pos, "no previous declaration for '%#T'",
4498                                          entity->declaration.type, symbol);
4499                         }
4500                 }
4501         } else if (warning.missing_declarations &&
4502                         entity->kind == ENTITY_VARIABLE &&
4503                         current_scope == file_scope) {
4504                 declaration_t *declaration = &entity->declaration;
4505                 if (declaration->storage_class == STORAGE_CLASS_NONE) {
4506                         warningf(pos, "no previous declaration for '%#T'",
4507                                  declaration->type, symbol);
4508                 }
4509         }
4510
4511 finish:
4512         assert(entity->base.parent_scope == NULL);
4513         assert(current_scope != NULL);
4514
4515         entity->base.parent_scope = current_scope;
4516         entity->base.namespc      = NAMESPACE_NORMAL;
4517         environment_push(entity);
4518         append_entity(current_scope, entity);
4519
4520         return entity;
4521 }
4522
4523 static void parser_error_multiple_definition(entity_t *entity,
4524                 const source_position_t *source_position)
4525 {
4526         errorf(source_position, "multiple definition of '%Y' (declared %P)",
4527                entity->base.symbol, &entity->base.source_position);
4528 }
4529
4530 static bool is_declaration_specifier(const token_t *token,
4531                                      bool only_specifiers_qualifiers)
4532 {
4533         switch (token->type) {
4534                 TYPE_SPECIFIERS
4535                 TYPE_QUALIFIERS
4536                         return true;
4537                 case T_IDENTIFIER:
4538                         return is_typedef_symbol(token->v.symbol);
4539
4540                 case T___extension__:
4541                 STORAGE_CLASSES
4542                         return !only_specifiers_qualifiers;
4543
4544                 default:
4545                         return false;
4546         }
4547 }
4548
4549 static void parse_init_declarator_rest(entity_t *entity)
4550 {
4551         assert(is_declaration(entity));
4552         declaration_t *const declaration = &entity->declaration;
4553
4554         eat('=');
4555
4556         type_t *orig_type = declaration->type;
4557         type_t *type      = skip_typeref(orig_type);
4558
4559         if (entity->kind == ENTITY_VARIABLE
4560                         && entity->variable.initializer != NULL) {
4561                 parser_error_multiple_definition(entity, HERE);
4562         }
4563
4564         bool must_be_constant = false;
4565         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
4566             entity->base.parent_scope  == file_scope) {
4567                 must_be_constant = true;
4568         }
4569
4570         if (is_type_function(type)) {
4571                 errorf(&entity->base.source_position,
4572                        "function '%#T' is initialized like a variable",
4573                        orig_type, entity->base.symbol);
4574                 orig_type = type_error_type;
4575         }
4576
4577         parse_initializer_env_t env;
4578         env.type             = orig_type;
4579         env.must_be_constant = must_be_constant;
4580         env.entity           = entity;
4581         current_init_decl    = entity;
4582
4583         initializer_t *initializer = parse_initializer(&env);
4584         current_init_decl = NULL;
4585
4586         if (entity->kind == ENTITY_VARIABLE) {
4587                 /* §6.7.5:22  array initializers for arrays with unknown size
4588                  * determine the array type size */
4589                 declaration->type            = env.type;
4590                 entity->variable.initializer = initializer;
4591         }
4592 }
4593
4594 /* parse rest of a declaration without any declarator */
4595 static void parse_anonymous_declaration_rest(
4596                 const declaration_specifiers_t *specifiers)
4597 {
4598         eat(';');
4599         anonymous_entity = NULL;
4600
4601         if (warning.other) {
4602                 if (specifiers->storage_class != STORAGE_CLASS_NONE ||
4603                                 specifiers->thread_local) {
4604                         warningf(&specifiers->source_position,
4605                                  "useless storage class in empty declaration");
4606                 }
4607
4608                 type_t *type = specifiers->type;
4609                 switch (type->kind) {
4610                         case TYPE_COMPOUND_STRUCT:
4611                         case TYPE_COMPOUND_UNION: {
4612                                 if (type->compound.compound->base.symbol == NULL) {
4613                                         warningf(&specifiers->source_position,
4614                                                  "unnamed struct/union that defines no instances");
4615                                 }
4616                                 break;
4617                         }
4618
4619                         case TYPE_ENUM:
4620                                 break;
4621
4622                         default:
4623                                 warningf(&specifiers->source_position, "empty declaration");
4624                                 break;
4625                 }
4626         }
4627 }
4628
4629 static void check_variable_type_complete(entity_t *ent)
4630 {
4631         if (ent->kind != ENTITY_VARIABLE)
4632                 return;
4633
4634         /* §6.7:7  If an identifier for an object is declared with no linkage, the
4635          *         type for the object shall be complete [...] */
4636         declaration_t *decl = &ent->declaration;
4637         if (decl->storage_class == STORAGE_CLASS_EXTERN ||
4638                         decl->storage_class == STORAGE_CLASS_STATIC)
4639                 return;
4640
4641         type_t *const orig_type = decl->type;
4642         type_t *const type      = skip_typeref(orig_type);
4643         if (!is_type_incomplete(type))
4644                 return;
4645
4646         /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
4647          * are given length one. */
4648         if (is_type_array(type) && ent->base.parent_scope == file_scope) {
4649                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
4650                 return;
4651         }
4652
4653         errorf(&ent->base.source_position, "variable '%#T' has incomplete type",
4654                         orig_type, ent->base.symbol);
4655 }
4656
4657
4658 static void parse_declaration_rest(entity_t *ndeclaration,
4659                 const declaration_specifiers_t *specifiers,
4660                 parsed_declaration_func         finished_declaration,
4661                 declarator_flags_t              flags)
4662 {
4663         add_anchor_token(';');
4664         add_anchor_token(',');
4665         while (true) {
4666                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
4667
4668                 if (token.type == '=') {
4669                         parse_init_declarator_rest(entity);
4670                 } else if (entity->kind == ENTITY_VARIABLE) {
4671                         /* ISO/IEC 14882:1998(E) §8.5.3:3  The initializer can be omitted
4672                          * [...] where the extern specifier is explicitly used. */
4673                         declaration_t *decl = &entity->declaration;
4674                         if (decl->storage_class != STORAGE_CLASS_EXTERN) {
4675                                 type_t *type = decl->type;
4676                                 if (is_type_reference(skip_typeref(type))) {
4677                                         errorf(&entity->base.source_position,
4678                                                         "reference '%#T' must be initialized",
4679                                                         type, entity->base.symbol);
4680                                 }
4681                         }
4682                 }
4683
4684                 check_variable_type_complete(entity);
4685
4686                 if (token.type != ',')
4687                         break;
4688                 eat(',');
4689
4690                 add_anchor_token('=');
4691                 ndeclaration = parse_declarator(specifiers, flags);
4692                 rem_anchor_token('=');
4693         }
4694         expect(';', end_error);
4695
4696 end_error:
4697         anonymous_entity = NULL;
4698         rem_anchor_token(';');
4699         rem_anchor_token(',');
4700 }
4701
4702 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
4703 {
4704         symbol_t *symbol = entity->base.symbol;
4705         if (symbol == NULL) {
4706                 errorf(HERE, "anonymous declaration not valid as function parameter");
4707                 return entity;
4708         }
4709
4710         assert(entity->base.namespc == NAMESPACE_NORMAL);
4711         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
4712         if (previous_entity == NULL
4713                         || previous_entity->base.parent_scope != current_scope) {
4714                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
4715                        symbol);
4716                 return entity;
4717         }
4718
4719         if (is_definition) {
4720                 errorf(HERE, "parameter '%Y' is initialised", entity->base.symbol);
4721         }
4722
4723         return record_entity(entity, false);
4724 }
4725
4726 static void parse_declaration(parsed_declaration_func finished_declaration,
4727                               declarator_flags_t      flags)
4728 {
4729         declaration_specifiers_t specifiers;
4730         memset(&specifiers, 0, sizeof(specifiers));
4731
4732         add_anchor_token(';');
4733         parse_declaration_specifiers(&specifiers);
4734         rem_anchor_token(';');
4735
4736         if (token.type == ';') {
4737                 parse_anonymous_declaration_rest(&specifiers);
4738         } else {
4739                 entity_t *entity = parse_declarator(&specifiers, flags);
4740                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
4741         }
4742 }
4743
4744 /* §6.5.2.2:6 */
4745 static type_t *get_default_promoted_type(type_t *orig_type)
4746 {
4747         type_t *result = orig_type;
4748
4749         type_t *type = skip_typeref(orig_type);
4750         if (is_type_integer(type)) {
4751                 result = promote_integer(type);
4752         } else if (is_type_atomic(type, ATOMIC_TYPE_FLOAT)) {
4753                 result = type_double;
4754         }
4755
4756         return result;
4757 }
4758
4759 static void parse_kr_declaration_list(entity_t *entity)
4760 {
4761         if (entity->kind != ENTITY_FUNCTION)
4762                 return;
4763
4764         type_t *type = skip_typeref(entity->declaration.type);
4765         assert(is_type_function(type));
4766         if (!type->function.kr_style_parameters)
4767                 return;
4768
4769
4770         add_anchor_token('{');
4771
4772         /* push function parameters */
4773         size_t const  top       = environment_top();
4774         scope_t      *old_scope = scope_push(&entity->function.parameters);
4775
4776         entity_t *parameter = entity->function.parameters.entities;
4777         for ( ; parameter != NULL; parameter = parameter->base.next) {
4778                 assert(parameter->base.parent_scope == NULL);
4779                 parameter->base.parent_scope = current_scope;
4780                 environment_push(parameter);
4781         }
4782
4783         /* parse declaration list */
4784         for (;;) {
4785                 switch (token.type) {
4786                         DECLARATION_START
4787                         case T___extension__:
4788                         /* This covers symbols, which are no type, too, and results in
4789                          * better error messages.  The typical cases are misspelled type
4790                          * names and missing includes. */
4791                         case T_IDENTIFIER:
4792                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
4793                                 break;
4794                         default:
4795                                 goto decl_list_end;
4796                 }
4797         }
4798 decl_list_end:
4799
4800         /* pop function parameters */
4801         assert(current_scope == &entity->function.parameters);
4802         scope_pop(old_scope);
4803         environment_pop_to(top);
4804
4805         /* update function type */
4806         type_t *new_type = duplicate_type(type);
4807
4808         function_parameter_t  *parameters = NULL;
4809         function_parameter_t **anchor     = &parameters;
4810
4811         parameter = entity->function.parameters.entities;
4812         for (; parameter != NULL; parameter = parameter->base.next) {
4813                 if (parameter->kind != ENTITY_PARAMETER)
4814                         continue;
4815
4816                 type_t *parameter_type = parameter->declaration.type;
4817                 if (parameter_type == NULL) {
4818                         if (strict_mode) {
4819                                 errorf(HERE, "no type specified for function parameter '%Y'",
4820                                        parameter->base.symbol);
4821                                 parameter_type = type_error_type;
4822                         } else {
4823                                 if (warning.implicit_int) {
4824                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
4825                                                  parameter->base.symbol);
4826                                 }
4827                                 parameter_type = type_int;
4828                         }
4829                         parameter->declaration.type = parameter_type;
4830                 }
4831
4832                 semantic_parameter_incomplete(parameter);
4833
4834                 /*
4835                  * we need the default promoted types for the function type
4836                  */
4837                 parameter_type = get_default_promoted_type(parameter_type);
4838
4839                 function_parameter_t *const parameter =
4840                         allocate_parameter(parameter_type);
4841
4842                 *anchor = parameter;
4843                 anchor  = &parameter->next;
4844         }
4845
4846         /* §6.9.1.7: A K&R style parameter list does NOT act as a function
4847          * prototype */
4848         new_type->function.parameters             = parameters;
4849         new_type->function.unspecified_parameters = true;
4850
4851         new_type = identify_new_type(new_type);
4852
4853         entity->declaration.type = new_type;
4854
4855         rem_anchor_token('{');
4856 }
4857
4858 static bool first_err = true;
4859
4860 /**
4861  * When called with first_err set, prints the name of the current function,
4862  * else does noting.
4863  */
4864 static void print_in_function(void)
4865 {
4866         if (first_err) {
4867                 first_err = false;
4868                 diagnosticf("%s: In function '%Y':\n",
4869                             current_function->base.base.source_position.input_name,
4870                             current_function->base.base.symbol);
4871         }
4872 }
4873
4874 /**
4875  * Check if all labels are defined in the current function.
4876  * Check if all labels are used in the current function.
4877  */
4878 static void check_labels(void)
4879 {
4880         for (const goto_statement_t *goto_statement = goto_first;
4881             goto_statement != NULL;
4882             goto_statement = goto_statement->next) {
4883                 /* skip computed gotos */
4884                 if (goto_statement->expression != NULL)
4885                         continue;
4886
4887                 label_t *label = goto_statement->label;
4888
4889                 label->used = true;
4890                 if (label->base.source_position.input_name == NULL) {
4891                         print_in_function();
4892                         errorf(&goto_statement->base.source_position,
4893                                "label '%Y' used but not defined", label->base.symbol);
4894                  }
4895         }
4896
4897         if (warning.unused_label) {
4898                 for (const label_statement_t *label_statement = label_first;
4899                          label_statement != NULL;
4900                          label_statement = label_statement->next) {
4901                         label_t *label = label_statement->label;
4902
4903                         if (! label->used) {
4904                                 print_in_function();
4905                                 warningf(&label_statement->base.source_position,
4906                                          "label '%Y' defined but not used", label->base.symbol);
4907                         }
4908                 }
4909         }
4910 }
4911
4912 static void warn_unused_entity(entity_t *entity, entity_t *last)
4913 {
4914         entity_t const *const end = last != NULL ? last->base.next : NULL;
4915         for (; entity != end; entity = entity->base.next) {
4916                 if (!is_declaration(entity))
4917                         continue;
4918
4919                 declaration_t *declaration = &entity->declaration;
4920                 if (declaration->implicit)
4921                         continue;
4922
4923                 if (!declaration->used) {
4924                         print_in_function();
4925                         const char *what = get_entity_kind_name(entity->kind);
4926                         warningf(&entity->base.source_position, "%s '%Y' is unused",
4927                                  what, entity->base.symbol);
4928                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
4929                         print_in_function();
4930                         const char *what = get_entity_kind_name(entity->kind);
4931                         warningf(&entity->base.source_position, "%s '%Y' is never read",
4932                                  what, entity->base.symbol);
4933                 }
4934         }
4935 }
4936
4937 static void check_unused_variables(statement_t *const stmt, void *const env)
4938 {
4939         (void)env;
4940
4941         switch (stmt->kind) {
4942                 case STATEMENT_DECLARATION: {
4943                         declaration_statement_t const *const decls = &stmt->declaration;
4944                         warn_unused_entity(decls->declarations_begin,
4945                                            decls->declarations_end);
4946                         return;
4947                 }
4948
4949                 case STATEMENT_FOR:
4950                         warn_unused_entity(stmt->fors.scope.entities, NULL);
4951                         return;
4952
4953                 default:
4954                         return;
4955         }
4956 }
4957
4958 /**
4959  * Check declarations of current_function for unused entities.
4960  */
4961 static void check_declarations(void)
4962 {
4963         if (warning.unused_parameter) {
4964                 const scope_t *scope = &current_function->parameters;
4965
4966                 /* do not issue unused warnings for main */
4967                 if (!is_sym_main(current_function->base.base.symbol)) {
4968                         warn_unused_entity(scope->entities, NULL);
4969                 }
4970         }
4971         if (warning.unused_variable) {
4972                 walk_statements(current_function->statement, check_unused_variables,
4973                                 NULL);
4974         }
4975 }
4976
4977 static int determine_truth(expression_t const* const cond)
4978 {
4979         return
4980                 !is_constant_expression(cond) ? 0 :
4981                 fold_constant_to_bool(cond)   ? 1 :
4982                 -1;
4983 }
4984
4985 static void check_reachable(statement_t *);
4986 static bool reaches_end;
4987
4988 static bool expression_returns(expression_t const *const expr)
4989 {
4990         switch (expr->kind) {
4991                 case EXPR_CALL: {
4992                         expression_t const *const func = expr->call.function;
4993                         if (func->kind == EXPR_REFERENCE) {
4994                                 entity_t *entity = func->reference.entity;
4995                                 if (entity->kind == ENTITY_FUNCTION
4996                                                 && entity->declaration.modifiers & DM_NORETURN)
4997                                         return false;
4998                         }
4999
5000                         if (!expression_returns(func))
5001                                 return false;
5002
5003                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
5004                                 if (!expression_returns(arg->expression))
5005                                         return false;
5006                         }
5007
5008                         return true;
5009                 }
5010
5011                 case EXPR_REFERENCE:
5012                 case EXPR_REFERENCE_ENUM_VALUE:
5013                 case EXPR_CONST:
5014                 case EXPR_CHARACTER_CONSTANT:
5015                 case EXPR_WIDE_CHARACTER_CONSTANT:
5016                 case EXPR_STRING_LITERAL:
5017                 case EXPR_WIDE_STRING_LITERAL:
5018                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
5019                 case EXPR_LABEL_ADDRESS:
5020                 case EXPR_CLASSIFY_TYPE:
5021                 case EXPR_SIZEOF: // TODO handle obscure VLA case
5022                 case EXPR_ALIGNOF:
5023                 case EXPR_FUNCNAME:
5024                 case EXPR_BUILTIN_CONSTANT_P:
5025                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P:
5026                 case EXPR_OFFSETOF:
5027                 case EXPR_INVALID:
5028                         return true;
5029
5030                 case EXPR_STATEMENT: {
5031                         bool old_reaches_end = reaches_end;
5032                         reaches_end = false;
5033                         check_reachable(expr->statement.statement);
5034                         bool returns = reaches_end;
5035                         reaches_end = old_reaches_end;
5036                         return returns;
5037                 }
5038
5039                 case EXPR_CONDITIONAL:
5040                         // TODO handle constant expression
5041
5042                         if (!expression_returns(expr->conditional.condition))
5043                                 return false;
5044
5045                         if (expr->conditional.true_expression != NULL
5046                                         && expression_returns(expr->conditional.true_expression))
5047                                 return true;
5048
5049                         return expression_returns(expr->conditional.false_expression);
5050
5051                 case EXPR_SELECT:
5052                         return expression_returns(expr->select.compound);
5053
5054                 case EXPR_ARRAY_ACCESS:
5055                         return
5056                                 expression_returns(expr->array_access.array_ref) &&
5057                                 expression_returns(expr->array_access.index);
5058
5059                 case EXPR_VA_START:
5060                         return expression_returns(expr->va_starte.ap);
5061
5062                 case EXPR_VA_ARG:
5063                         return expression_returns(expr->va_arge.ap);
5064
5065                 case EXPR_VA_COPY:
5066                         return expression_returns(expr->va_copye.src);
5067
5068                 EXPR_UNARY_CASES_MANDATORY
5069                         return expression_returns(expr->unary.value);
5070
5071                 case EXPR_UNARY_THROW:
5072                         return false;
5073
5074                 EXPR_BINARY_CASES
5075                         // TODO handle constant lhs of && and ||
5076                         return
5077                                 expression_returns(expr->binary.left) &&
5078                                 expression_returns(expr->binary.right);
5079
5080                 case EXPR_UNKNOWN:
5081                         break;
5082         }
5083
5084         panic("unhandled expression");
5085 }
5086
5087 static bool initializer_returns(initializer_t const *const init)
5088 {
5089         switch (init->kind) {
5090                 case INITIALIZER_VALUE:
5091                         return expression_returns(init->value.value);
5092
5093                 case INITIALIZER_LIST: {
5094                         initializer_t * const*       i       = init->list.initializers;
5095                         initializer_t * const* const end     = i + init->list.len;
5096                         bool                         returns = true;
5097                         for (; i != end; ++i) {
5098                                 if (!initializer_returns(*i))
5099                                         returns = false;
5100                         }
5101                         return returns;
5102                 }
5103
5104                 case INITIALIZER_STRING:
5105                 case INITIALIZER_WIDE_STRING:
5106                 case INITIALIZER_DESIGNATOR: // designators have no payload
5107                         return true;
5108         }
5109         panic("unhandled initializer");
5110 }
5111
5112 static bool noreturn_candidate;
5113
5114 static void check_reachable(statement_t *const stmt)
5115 {
5116         if (stmt->base.reachable)
5117                 return;
5118         if (stmt->kind != STATEMENT_DO_WHILE)
5119                 stmt->base.reachable = true;
5120
5121         statement_t *last = stmt;
5122         statement_t *next;
5123         switch (stmt->kind) {
5124                 case STATEMENT_INVALID:
5125                 case STATEMENT_EMPTY:
5126                 case STATEMENT_ASM:
5127                         next = stmt->base.next;
5128                         break;
5129
5130                 case STATEMENT_DECLARATION: {
5131                         declaration_statement_t const *const decl = &stmt->declaration;
5132                         entity_t                const *      ent  = decl->declarations_begin;
5133                         entity_t                const *const last = decl->declarations_end;
5134                         if (ent != NULL) {
5135                                 for (;; ent = ent->base.next) {
5136                                         if (ent->kind                 == ENTITY_VARIABLE &&
5137                                                         ent->variable.initializer != NULL            &&
5138                                                         !initializer_returns(ent->variable.initializer)) {
5139                                                 return;
5140                                         }
5141                                         if (ent == last)
5142                                                 break;
5143                                 }
5144                         }
5145                         next = stmt->base.next;
5146                         break;
5147                 }
5148
5149                 case STATEMENT_COMPOUND:
5150                         next = stmt->compound.statements;
5151                         if (next == NULL)
5152                                 next = stmt->base.next;
5153                         break;
5154
5155                 case STATEMENT_RETURN: {
5156                         expression_t const *const val = stmt->returns.value;
5157                         if (val == NULL || expression_returns(val))
5158                                 noreturn_candidate = false;
5159                         return;
5160                 }
5161
5162                 case STATEMENT_IF: {
5163                         if_statement_t const *const ifs  = &stmt->ifs;
5164                         expression_t   const *const cond = ifs->condition;
5165
5166                         if (!expression_returns(cond))
5167                                 return;
5168
5169                         int const val = determine_truth(cond);
5170
5171                         if (val >= 0)
5172                                 check_reachable(ifs->true_statement);
5173
5174                         if (val > 0)
5175                                 return;
5176
5177                         if (ifs->false_statement != NULL) {
5178                                 check_reachable(ifs->false_statement);
5179                                 return;
5180                         }
5181
5182                         next = stmt->base.next;
5183                         break;
5184                 }
5185
5186                 case STATEMENT_SWITCH: {
5187                         switch_statement_t const *const switchs = &stmt->switchs;
5188                         expression_t       const *const expr    = switchs->expression;
5189
5190                         if (!expression_returns(expr))
5191                                 return;
5192
5193                         if (is_constant_expression(expr)) {
5194                                 long                    const val      = fold_constant_to_int(expr);
5195                                 case_label_statement_t *      defaults = NULL;
5196                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5197                                         if (i->expression == NULL) {
5198                                                 defaults = i;
5199                                                 continue;
5200                                         }
5201
5202                                         if (i->first_case <= val && val <= i->last_case) {
5203                                                 check_reachable((statement_t*)i);
5204                                                 return;
5205                                         }
5206                                 }
5207
5208                                 if (defaults != NULL) {
5209                                         check_reachable((statement_t*)defaults);
5210                                         return;
5211                                 }
5212                         } else {
5213                                 bool has_default = false;
5214                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5215                                         if (i->expression == NULL)
5216                                                 has_default = true;
5217
5218                                         check_reachable((statement_t*)i);
5219                                 }
5220
5221                                 if (has_default)
5222                                         return;
5223                         }
5224
5225                         next = stmt->base.next;
5226                         break;
5227                 }
5228
5229                 case STATEMENT_EXPRESSION: {
5230                         /* Check for noreturn function call */
5231                         expression_t const *const expr = stmt->expression.expression;
5232                         if (!expression_returns(expr))
5233                                 return;
5234
5235                         next = stmt->base.next;
5236                         break;
5237                 }
5238
5239                 case STATEMENT_CONTINUE: {
5240                         statement_t *parent = stmt;
5241                         for (;;) {
5242                                 parent = parent->base.parent;
5243                                 if (parent == NULL) /* continue not within loop */
5244                                         return;
5245
5246                                 next = parent;
5247                                 switch (parent->kind) {
5248                                         case STATEMENT_WHILE:    goto continue_while;
5249                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5250                                         case STATEMENT_FOR:      goto continue_for;
5251
5252                                         default: break;
5253                                 }
5254                         }
5255                 }
5256
5257                 case STATEMENT_BREAK: {
5258                         statement_t *parent = stmt;
5259                         for (;;) {
5260                                 parent = parent->base.parent;
5261                                 if (parent == NULL) /* break not within loop/switch */
5262                                         return;
5263
5264                                 switch (parent->kind) {
5265                                         case STATEMENT_SWITCH:
5266                                         case STATEMENT_WHILE:
5267                                         case STATEMENT_DO_WHILE:
5268                                         case STATEMENT_FOR:
5269                                                 last = parent;
5270                                                 next = parent->base.next;
5271                                                 goto found_break_parent;
5272
5273                                         default: break;
5274                                 }
5275                         }
5276 found_break_parent:
5277                         break;
5278                 }
5279
5280                 case STATEMENT_GOTO:
5281                         if (stmt->gotos.expression) {
5282                                 if (!expression_returns(stmt->gotos.expression))
5283                                         return;
5284
5285                                 statement_t *parent = stmt->base.parent;
5286                                 if (parent == NULL) /* top level goto */
5287                                         return;
5288                                 next = parent;
5289                         } else {
5290                                 next = stmt->gotos.label->statement;
5291                                 if (next == NULL) /* missing label */
5292                                         return;
5293                         }
5294                         break;
5295
5296                 case STATEMENT_LABEL:
5297                         next = stmt->label.statement;
5298                         break;
5299
5300                 case STATEMENT_CASE_LABEL:
5301                         next = stmt->case_label.statement;
5302                         break;
5303
5304                 case STATEMENT_WHILE: {
5305                         while_statement_t const *const whiles = &stmt->whiles;
5306                         expression_t      const *const cond   = whiles->condition;
5307
5308                         if (!expression_returns(cond))
5309                                 return;
5310
5311                         int const val = determine_truth(cond);
5312
5313                         if (val >= 0)
5314                                 check_reachable(whiles->body);
5315
5316                         if (val > 0)
5317                                 return;
5318
5319                         next = stmt->base.next;
5320                         break;
5321                 }
5322
5323                 case STATEMENT_DO_WHILE:
5324                         next = stmt->do_while.body;
5325                         break;
5326
5327                 case STATEMENT_FOR: {
5328                         for_statement_t *const fors = &stmt->fors;
5329
5330                         if (fors->condition_reachable)
5331                                 return;
5332                         fors->condition_reachable = true;
5333
5334                         expression_t const *const cond = fors->condition;
5335
5336                         int val;
5337                         if (cond == NULL) {
5338                                 val = 1;
5339                         } else if (expression_returns(cond)) {
5340                                 val = determine_truth(cond);
5341                         } else {
5342                                 return;
5343                         }
5344
5345                         if (val >= 0)
5346                                 check_reachable(fors->body);
5347
5348                         if (val > 0)
5349                                 return;
5350
5351                         next = stmt->base.next;
5352                         break;
5353                 }
5354
5355                 case STATEMENT_MS_TRY: {
5356                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
5357                         check_reachable(ms_try->try_statement);
5358                         next = ms_try->final_statement;
5359                         break;
5360                 }
5361
5362                 case STATEMENT_LEAVE: {
5363                         statement_t *parent = stmt;
5364                         for (;;) {
5365                                 parent = parent->base.parent;
5366                                 if (parent == NULL) /* __leave not within __try */
5367                                         return;
5368
5369                                 if (parent->kind == STATEMENT_MS_TRY) {
5370                                         last = parent;
5371                                         next = parent->ms_try.final_statement;
5372                                         break;
5373                                 }
5374                         }
5375                         break;
5376                 }
5377
5378                 default:
5379                         panic("invalid statement kind");
5380         }
5381
5382         while (next == NULL) {
5383                 next = last->base.parent;
5384                 if (next == NULL) {
5385                         noreturn_candidate = false;
5386
5387                         type_t *const type = skip_typeref(current_function->base.type);
5388                         assert(is_type_function(type));
5389                         type_t *const ret  = skip_typeref(type->function.return_type);
5390                         if (warning.return_type                    &&
5391                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
5392                             is_type_valid(ret)                     &&
5393                             !is_sym_main(current_function->base.base.symbol)) {
5394                                 warningf(&stmt->base.source_position,
5395                                          "control reaches end of non-void function");
5396                         }
5397                         return;
5398                 }
5399
5400                 switch (next->kind) {
5401                         case STATEMENT_INVALID:
5402                         case STATEMENT_EMPTY:
5403                         case STATEMENT_DECLARATION:
5404                         case STATEMENT_EXPRESSION:
5405                         case STATEMENT_ASM:
5406                         case STATEMENT_RETURN:
5407                         case STATEMENT_CONTINUE:
5408                         case STATEMENT_BREAK:
5409                         case STATEMENT_GOTO:
5410                         case STATEMENT_LEAVE:
5411                                 panic("invalid control flow in function");
5412
5413                         case STATEMENT_COMPOUND:
5414                                 if (next->compound.stmt_expr) {
5415                                         reaches_end = true;
5416                                         return;
5417                                 }
5418                                 /* FALLTHROUGH */
5419                         case STATEMENT_IF:
5420                         case STATEMENT_SWITCH:
5421                         case STATEMENT_LABEL:
5422                         case STATEMENT_CASE_LABEL:
5423                                 last = next;
5424                                 next = next->base.next;
5425                                 break;
5426
5427                         case STATEMENT_WHILE: {
5428 continue_while:
5429                                 if (next->base.reachable)
5430                                         return;
5431                                 next->base.reachable = true;
5432
5433                                 while_statement_t const *const whiles = &next->whiles;
5434                                 expression_t      const *const cond   = whiles->condition;
5435
5436                                 if (!expression_returns(cond))
5437                                         return;
5438
5439                                 int const val = determine_truth(cond);
5440
5441                                 if (val >= 0)
5442                                         check_reachable(whiles->body);
5443
5444                                 if (val > 0)
5445                                         return;
5446
5447                                 last = next;
5448                                 next = next->base.next;
5449                                 break;
5450                         }
5451
5452                         case STATEMENT_DO_WHILE: {
5453 continue_do_while:
5454                                 if (next->base.reachable)
5455                                         return;
5456                                 next->base.reachable = true;
5457
5458                                 do_while_statement_t const *const dw   = &next->do_while;
5459                                 expression_t         const *const cond = dw->condition;
5460
5461                                 if (!expression_returns(cond))
5462                                         return;
5463
5464                                 int const val = determine_truth(cond);
5465
5466                                 if (val >= 0)
5467                                         check_reachable(dw->body);
5468
5469                                 if (val > 0)
5470                                         return;
5471
5472                                 last = next;
5473                                 next = next->base.next;
5474                                 break;
5475                         }
5476
5477                         case STATEMENT_FOR: {
5478 continue_for:;
5479                                 for_statement_t *const fors = &next->fors;
5480
5481                                 fors->step_reachable = true;
5482
5483                                 if (fors->condition_reachable)
5484                                         return;
5485                                 fors->condition_reachable = true;
5486
5487                                 expression_t const *const cond = fors->condition;
5488
5489                                 int val;
5490                                 if (cond == NULL) {
5491                                         val = 1;
5492                                 } else if (expression_returns(cond)) {
5493                                         val = determine_truth(cond);
5494                                 } else {
5495                                         return;
5496                                 }
5497
5498                                 if (val >= 0)
5499                                         check_reachable(fors->body);
5500
5501                                 if (val > 0)
5502                                         return;
5503
5504                                 last = next;
5505                                 next = next->base.next;
5506                                 break;
5507                         }
5508
5509                         case STATEMENT_MS_TRY:
5510                                 last = next;
5511                                 next = next->ms_try.final_statement;
5512                                 break;
5513                 }
5514         }
5515
5516         check_reachable(next);
5517 }
5518
5519 static void check_unreachable(statement_t* const stmt, void *const env)
5520 {
5521         (void)env;
5522
5523         switch (stmt->kind) {
5524                 case STATEMENT_DO_WHILE:
5525                         if (!stmt->base.reachable) {
5526                                 expression_t const *const cond = stmt->do_while.condition;
5527                                 if (determine_truth(cond) >= 0) {
5528                                         warningf(&cond->base.source_position,
5529                                                  "condition of do-while-loop is unreachable");
5530                                 }
5531                         }
5532                         return;
5533
5534                 case STATEMENT_FOR: {
5535                         for_statement_t const* const fors = &stmt->fors;
5536
5537                         // if init and step are unreachable, cond is unreachable, too
5538                         if (!stmt->base.reachable && !fors->step_reachable) {
5539                                 warningf(&stmt->base.source_position, "statement is unreachable");
5540                         } else {
5541                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
5542                                         warningf(&fors->initialisation->base.source_position,
5543                                                  "initialisation of for-statement is unreachable");
5544                                 }
5545
5546                                 if (!fors->condition_reachable && fors->condition != NULL) {
5547                                         warningf(&fors->condition->base.source_position,
5548                                                  "condition of for-statement is unreachable");
5549                                 }
5550
5551                                 if (!fors->step_reachable && fors->step != NULL) {
5552                                         warningf(&fors->step->base.source_position,
5553                                                  "step of for-statement is unreachable");
5554                                 }
5555                         }
5556                         return;
5557                 }
5558
5559                 case STATEMENT_COMPOUND:
5560                         if (stmt->compound.statements != NULL)
5561                                 return;
5562                         goto warn_unreachable;
5563
5564                 case STATEMENT_DECLARATION: {
5565                         /* Only warn if there is at least one declarator with an initializer.
5566                          * This typically occurs in switch statements. */
5567                         declaration_statement_t const *const decl = &stmt->declaration;
5568                         entity_t                const *      ent  = decl->declarations_begin;
5569                         entity_t                const *const last = decl->declarations_end;
5570                         if (ent != NULL) {
5571                                 for (;; ent = ent->base.next) {
5572                                         if (ent->kind                 == ENTITY_VARIABLE &&
5573                                                         ent->variable.initializer != NULL) {
5574                                                 goto warn_unreachable;
5575                                         }
5576                                         if (ent == last)
5577                                                 return;
5578                                 }
5579                         }
5580                 }
5581
5582                 default:
5583 warn_unreachable:
5584                         if (!stmt->base.reachable)
5585                                 warningf(&stmt->base.source_position, "statement is unreachable");
5586                         return;
5587         }
5588 }
5589
5590 static void parse_external_declaration(void)
5591 {
5592         /* function-definitions and declarations both start with declaration
5593          * specifiers */
5594         declaration_specifiers_t specifiers;
5595         memset(&specifiers, 0, sizeof(specifiers));
5596
5597         add_anchor_token(';');
5598         parse_declaration_specifiers(&specifiers);
5599         rem_anchor_token(';');
5600
5601         /* must be a declaration */
5602         if (token.type == ';') {
5603                 parse_anonymous_declaration_rest(&specifiers);
5604                 return;
5605         }
5606
5607         add_anchor_token(',');
5608         add_anchor_token('=');
5609         add_anchor_token(';');
5610         add_anchor_token('{');
5611
5612         /* declarator is common to both function-definitions and declarations */
5613         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
5614
5615         rem_anchor_token('{');
5616         rem_anchor_token(';');
5617         rem_anchor_token('=');
5618         rem_anchor_token(',');
5619
5620         /* must be a declaration */
5621         switch (token.type) {
5622                 case ',':
5623                 case ';':
5624                 case '=':
5625                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
5626                                         DECL_FLAGS_NONE);
5627                         return;
5628         }
5629
5630         /* must be a function definition */
5631         parse_kr_declaration_list(ndeclaration);
5632
5633         if (token.type != '{') {
5634                 parse_error_expected("while parsing function definition", '{', NULL);
5635                 eat_until_matching_token(';');
5636                 return;
5637         }
5638
5639         assert(is_declaration(ndeclaration));
5640         type_t *const orig_type = ndeclaration->declaration.type;
5641         type_t *      type      = skip_typeref(orig_type);
5642
5643         if (!is_type_function(type)) {
5644                 if (is_type_valid(type)) {
5645                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
5646                                type, ndeclaration->base.symbol);
5647                 }
5648                 eat_block();
5649                 return;
5650         } else if (is_typeref(orig_type)) {
5651                 /* §6.9.1:2 */
5652                 errorf(&ndeclaration->base.source_position,
5653                                 "type of function definition '%#T' is a typedef",
5654                                 orig_type, ndeclaration->base.symbol);
5655         }
5656
5657         if (warning.aggregate_return &&
5658             is_type_compound(skip_typeref(type->function.return_type))) {
5659                 warningf(HERE, "function '%Y' returns an aggregate",
5660                          ndeclaration->base.symbol);
5661         }
5662         if (warning.traditional && !type->function.unspecified_parameters) {
5663                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
5664                         ndeclaration->base.symbol);
5665         }
5666         if (warning.old_style_definition && type->function.unspecified_parameters) {
5667                 warningf(HERE, "old-style function definition '%Y'",
5668                         ndeclaration->base.symbol);
5669         }
5670
5671         /* §6.7.5.3:14 a function definition with () means no
5672          * parameters (and not unspecified parameters) */
5673         if (type->function.unspecified_parameters &&
5674                         type->function.parameters == NULL     &&
5675                         !type->function.kr_style_parameters) {
5676                 type_t *copy                          = duplicate_type(type);
5677                 copy->function.unspecified_parameters = false;
5678                 type                                  = identify_new_type(copy);
5679
5680                 ndeclaration->declaration.type = type;
5681         }
5682
5683         entity_t *const entity = record_entity(ndeclaration, true);
5684         assert(entity->kind == ENTITY_FUNCTION);
5685         assert(ndeclaration->kind == ENTITY_FUNCTION);
5686
5687         function_t *function = &entity->function;
5688         if (ndeclaration != entity) {
5689                 function->parameters = ndeclaration->function.parameters;
5690         }
5691         assert(is_declaration(entity));
5692         type = skip_typeref(entity->declaration.type);
5693
5694         /* push function parameters and switch scope */
5695         size_t const  top       = environment_top();
5696         scope_t      *old_scope = scope_push(&function->parameters);
5697
5698         entity_t *parameter = function->parameters.entities;
5699         for (; parameter != NULL; parameter = parameter->base.next) {
5700                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
5701                         parameter->base.parent_scope = current_scope;
5702                 }
5703                 assert(parameter->base.parent_scope == NULL
5704                                 || parameter->base.parent_scope == current_scope);
5705                 parameter->base.parent_scope = current_scope;
5706                 if (parameter->base.symbol == NULL) {
5707                         errorf(&parameter->base.source_position, "parameter name omitted");
5708                         continue;
5709                 }
5710                 environment_push(parameter);
5711         }
5712
5713         if (function->statement != NULL) {
5714                 parser_error_multiple_definition(entity, HERE);
5715                 eat_block();
5716         } else {
5717                 /* parse function body */
5718                 int         label_stack_top      = label_top();
5719                 function_t *old_current_function = current_function;
5720                 current_function                 = function;
5721                 current_parent                   = NULL;
5722
5723                 goto_first   = NULL;
5724                 goto_anchor  = &goto_first;
5725                 label_first  = NULL;
5726                 label_anchor = &label_first;
5727
5728                 statement_t *const body = parse_compound_statement(false);
5729                 function->statement = body;
5730                 first_err = true;
5731                 check_labels();
5732                 check_declarations();
5733                 if (warning.return_type      ||
5734                     warning.unreachable_code ||
5735                     (warning.missing_noreturn
5736                      && !(function->base.modifiers & DM_NORETURN))) {
5737                         noreturn_candidate = true;
5738                         check_reachable(body);
5739                         if (warning.unreachable_code)
5740                                 walk_statements(body, check_unreachable, NULL);
5741                         if (warning.missing_noreturn &&
5742                             noreturn_candidate       &&
5743                             !(function->base.modifiers & DM_NORETURN)) {
5744                                 warningf(&body->base.source_position,
5745                                          "function '%#T' is candidate for attribute 'noreturn'",
5746                                          type, entity->base.symbol);
5747                         }
5748                 }
5749
5750                 assert(current_parent   == NULL);
5751                 assert(current_function == function);
5752                 current_function = old_current_function;
5753                 label_pop_to(label_stack_top);
5754         }
5755
5756         assert(current_scope == &function->parameters);
5757         scope_pop(old_scope);
5758         environment_pop_to(top);
5759 }
5760
5761 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
5762                                   source_position_t *source_position,
5763                                   const symbol_t *symbol)
5764 {
5765         type_t *type = allocate_type_zero(TYPE_BITFIELD);
5766
5767         type->bitfield.base_type       = base_type;
5768         type->bitfield.size_expression = size;
5769
5770         il_size_t bit_size;
5771         type_t *skipped_type = skip_typeref(base_type);
5772         if (!is_type_integer(skipped_type)) {
5773                 errorf(HERE, "bitfield base type '%T' is not an integer type",
5774                         base_type);
5775                 bit_size = 0;
5776         } else {
5777                 bit_size = get_type_size(base_type) * 8;
5778         }
5779
5780         if (is_constant_expression(size)) {
5781                 long v = fold_constant_to_int(size);
5782                 const symbol_t *user_symbol = symbol == NULL ? sym_anonymous : symbol;
5783
5784                 if (v < 0) {
5785                         errorf(source_position, "negative width in bit-field '%Y'",
5786                                user_symbol);
5787                 } else if (v == 0 && symbol != NULL) {
5788                         errorf(source_position, "zero width for bit-field '%Y'",
5789                                user_symbol);
5790                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
5791                         errorf(source_position, "width of '%Y' exceeds its type",
5792                                user_symbol);
5793                 } else {
5794                         type->bitfield.bit_size = v;
5795                 }
5796         }
5797
5798         return type;
5799 }
5800
5801 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
5802 {
5803         entity_t *iter = compound->members.entities;
5804         for (; iter != NULL; iter = iter->base.next) {
5805                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5806                         continue;
5807
5808                 if (iter->base.symbol == symbol) {
5809                         return iter;
5810                 } else if (iter->base.symbol == NULL) {
5811                         /* search in anonymous structs and unions */
5812                         type_t *type = skip_typeref(iter->declaration.type);
5813                         if (is_type_compound(type)) {
5814                                 if (find_compound_entry(type->compound.compound, symbol)
5815                                                 != NULL)
5816                                         return iter;
5817                         }
5818                         continue;
5819                 }
5820         }
5821
5822         return NULL;
5823 }
5824
5825 static void check_deprecated(const source_position_t *source_position,
5826                              const entity_t *entity)
5827 {
5828         if (!warning.deprecated_declarations)
5829                 return;
5830         if (!is_declaration(entity))
5831                 return;
5832         if ((entity->declaration.modifiers & DM_DEPRECATED) == 0)
5833                 return;
5834
5835         char const *const prefix = get_entity_kind_name(entity->kind);
5836         const char *deprecated_string
5837                         = get_deprecated_string(entity->declaration.attributes);
5838         if (deprecated_string != NULL) {
5839                 warningf(source_position, "%s '%Y' is deprecated (declared %P): \"%s\"",
5840                                  prefix, entity->base.symbol, &entity->base.source_position,
5841                                  deprecated_string);
5842         } else {
5843                 warningf(source_position, "%s '%Y' is deprecated (declared %P)", prefix,
5844                                  entity->base.symbol, &entity->base.source_position);
5845         }
5846 }
5847
5848
5849 static expression_t *create_select(const source_position_t *pos,
5850                                    expression_t *addr,
5851                                    type_qualifiers_t qualifiers,
5852                                                                    entity_t *entry)
5853 {
5854         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
5855
5856         check_deprecated(pos, entry);
5857
5858         expression_t *select          = allocate_expression_zero(EXPR_SELECT);
5859         select->select.compound       = addr;
5860         select->select.compound_entry = entry;
5861
5862         type_t *entry_type = entry->declaration.type;
5863         type_t *res_type   = get_qualified_type(entry_type, qualifiers);
5864
5865         /* we always do the auto-type conversions; the & and sizeof parser contains
5866          * code to revert this! */
5867         select->base.type = automatic_type_conversion(res_type);
5868         if (res_type->kind == TYPE_BITFIELD) {
5869                 select->base.type = res_type->bitfield.base_type;
5870         }
5871
5872         return select;
5873 }
5874
5875 /**
5876  * Find entry with symbol in compound. Search anonymous structs and unions and
5877  * creates implicit select expressions for them.
5878  * Returns the adress for the innermost compound.
5879  */
5880 static expression_t *find_create_select(const source_position_t *pos,
5881                                         expression_t *addr,
5882                                         type_qualifiers_t qualifiers,
5883                                         compound_t *compound, symbol_t *symbol)
5884 {
5885         entity_t *iter = compound->members.entities;
5886         for (; iter != NULL; iter = iter->base.next) {
5887                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
5888                         continue;
5889
5890                 symbol_t *iter_symbol = iter->base.symbol;
5891                 if (iter_symbol == NULL) {
5892                         type_t *type = iter->declaration.type;
5893                         if (type->kind != TYPE_COMPOUND_STRUCT
5894                                         && type->kind != TYPE_COMPOUND_UNION)
5895                                 continue;
5896
5897                         compound_t *sub_compound = type->compound.compound;
5898
5899                         if (find_compound_entry(sub_compound, symbol) == NULL)
5900                                 continue;
5901
5902                         expression_t *sub_addr = create_select(pos, addr, qualifiers, iter);
5903                         sub_addr->base.source_position = *pos;
5904                         sub_addr->select.implicit      = true;
5905                         return find_create_select(pos, sub_addr, qualifiers, sub_compound,
5906                                                   symbol);
5907                 }
5908
5909                 if (iter_symbol == symbol) {
5910                         return create_select(pos, addr, qualifiers, iter);
5911                 }
5912         }
5913
5914         return NULL;
5915 }
5916
5917 static void parse_compound_declarators(compound_t *compound,
5918                 const declaration_specifiers_t *specifiers)
5919 {
5920         while (true) {
5921                 entity_t *entity;
5922
5923                 if (token.type == ':') {
5924                         source_position_t source_position = *HERE;
5925                         next_token();
5926
5927                         type_t *base_type = specifiers->type;
5928                         expression_t *size = parse_constant_expression();
5929
5930                         type_t *type = make_bitfield_type(base_type, size,
5931                                         &source_position, NULL);
5932
5933                         attribute_t *attributes = parse_attributes(NULL);
5934                         if (attributes != NULL) {
5935                                 attribute_t *last = attributes;
5936                                 while (last->next != NULL)
5937                                         last = last->next;
5938                                 last->next = specifiers->attributes;
5939                         } else {
5940                                 attributes = specifiers->attributes;
5941                         }
5942
5943                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
5944                         entity->base.namespc                       = NAMESPACE_NORMAL;
5945                         entity->base.source_position               = source_position;
5946                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
5947                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
5948                         entity->declaration.type                   = type;
5949                         entity->declaration.attributes             = attributes;
5950
5951                         if (attributes != NULL) {
5952                                 handle_entity_attributes(attributes, entity);
5953                         }
5954                         append_entity(&compound->members, entity);
5955                 } else {
5956                         entity = parse_declarator(specifiers,
5957                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
5958                         if (entity->kind == ENTITY_TYPEDEF) {
5959                                 errorf(&entity->base.source_position,
5960                                                 "typedef not allowed as compound member");
5961                         } else {
5962                                 assert(entity->kind == ENTITY_COMPOUND_MEMBER);
5963
5964                                 /* make sure we don't define a symbol multiple times */
5965                                 symbol_t *symbol = entity->base.symbol;
5966                                 if (symbol != NULL) {
5967                                         entity_t *prev = find_compound_entry(compound, symbol);
5968                                         if (prev != NULL) {
5969                                                 errorf(&entity->base.source_position,
5970                                                                 "multiple declarations of symbol '%Y' (declared %P)",
5971                                                                 symbol, &prev->base.source_position);
5972                                         }
5973                                 }
5974
5975                                 if (token.type == ':') {
5976                                         source_position_t source_position = *HERE;
5977                                         next_token();
5978                                         expression_t *size = parse_constant_expression();
5979
5980                                         type_t *type          = entity->declaration.type;
5981                                         type_t *bitfield_type = make_bitfield_type(type, size,
5982                                                         &source_position, entity->base.symbol);
5983
5984                                         attribute_t *attributes = parse_attributes(NULL);
5985                                         entity->declaration.type = bitfield_type;
5986                                         handle_entity_attributes(attributes, entity);
5987                                 } else {
5988                                         type_t *orig_type = entity->declaration.type;
5989                                         type_t *type      = skip_typeref(orig_type);
5990                                         if (is_type_function(type)) {
5991                                                 errorf(&entity->base.source_position,
5992                                                                 "compound member '%Y' must not have function type '%T'",
5993                                                                 entity->base.symbol, orig_type);
5994                                         } else if (is_type_incomplete(type)) {
5995                                                 /* §6.7.2.1:16 flexible array member */
5996                                                 if (!is_type_array(type)       ||
5997                                                                 token.type          != ';' ||
5998                                                                 look_ahead(1)->type != '}') {
5999                                                         errorf(&entity->base.source_position,
6000                                                                         "compound member '%Y' has incomplete type '%T'",
6001                                                                         entity->base.symbol, orig_type);
6002                                                 }
6003                                         }
6004                                 }
6005
6006                                 append_entity(&compound->members, entity);
6007                         }
6008                 }
6009
6010                 if (token.type != ',')
6011                         break;
6012                 next_token();
6013         }
6014         expect(';', end_error);
6015
6016 end_error:
6017         anonymous_entity = NULL;
6018 }
6019
6020 static void parse_compound_type_entries(compound_t *compound)
6021 {
6022         eat('{');
6023         add_anchor_token('}');
6024
6025         while (token.type != '}') {
6026                 if (token.type == T_EOF) {
6027                         errorf(HERE, "EOF while parsing struct");
6028                         break;
6029                 }
6030                 declaration_specifiers_t specifiers;
6031                 memset(&specifiers, 0, sizeof(specifiers));
6032                 parse_declaration_specifiers(&specifiers);
6033
6034                 parse_compound_declarators(compound, &specifiers);
6035         }
6036         rem_anchor_token('}');
6037         next_token();
6038
6039         /* §6.7.2.1:7 */
6040         compound->complete = true;
6041 }
6042
6043 static type_t *parse_typename(void)
6044 {
6045         declaration_specifiers_t specifiers;
6046         memset(&specifiers, 0, sizeof(specifiers));
6047         parse_declaration_specifiers(&specifiers);
6048         if (specifiers.storage_class != STORAGE_CLASS_NONE ||
6049                         specifiers.thread_local) {
6050                 /* TODO: improve error message, user does probably not know what a
6051                  * storage class is...
6052                  */
6053                 errorf(HERE, "typename may not have a storage class");
6054         }
6055
6056         type_t *result = parse_abstract_declarator(specifiers.type);
6057
6058         return result;
6059 }
6060
6061
6062
6063
6064 typedef expression_t* (*parse_expression_function)(void);
6065 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
6066
6067 typedef struct expression_parser_function_t expression_parser_function_t;
6068 struct expression_parser_function_t {
6069         parse_expression_function        parser;
6070         precedence_t                     infix_precedence;
6071         parse_expression_infix_function  infix_parser;
6072 };
6073
6074 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
6075
6076 /**
6077  * Prints an error message if an expression was expected but not read
6078  */
6079 static expression_t *expected_expression_error(void)
6080 {
6081         /* skip the error message if the error token was read */
6082         if (token.type != T_ERROR) {
6083                 errorf(HERE, "expected expression, got token %K", &token);
6084         }
6085         next_token();
6086
6087         return create_invalid_expression();
6088 }
6089
6090 /**
6091  * Parse a string constant.
6092  */
6093 static expression_t *parse_string_const(void)
6094 {
6095         wide_string_t wres;
6096         if (token.type == T_STRING_LITERAL) {
6097                 string_t res = token.v.string;
6098                 next_token();
6099                 while (token.type == T_STRING_LITERAL) {
6100                         res = concat_strings(&res, &token.v.string);
6101                         next_token();
6102                 }
6103                 if (token.type != T_WIDE_STRING_LITERAL) {
6104                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
6105                         /* note: that we use type_char_ptr here, which is already the
6106                          * automatic converted type. revert_automatic_type_conversion
6107                          * will construct the array type */
6108                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
6109                         cnst->string.value = res;
6110                         return cnst;
6111                 }
6112
6113                 wres = concat_string_wide_string(&res, &token.v.wide_string);
6114         } else {
6115                 wres = token.v.wide_string;
6116         }
6117         next_token();
6118
6119         for (;;) {
6120                 switch (token.type) {
6121                         case T_WIDE_STRING_LITERAL:
6122                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
6123                                 break;
6124
6125                         case T_STRING_LITERAL:
6126                                 wres = concat_wide_string_string(&wres, &token.v.string);
6127                                 break;
6128
6129                         default: {
6130                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6131                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
6132                                 cnst->wide_string.value = wres;
6133                                 return cnst;
6134                         }
6135                 }
6136                 next_token();
6137         }
6138 }
6139
6140 /**
6141  * Parse a boolean constant.
6142  */
6143 static expression_t *parse_bool_const(bool value)
6144 {
6145         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6146         cnst->base.type          = type_bool;
6147         cnst->conste.v.int_value = value;
6148
6149         next_token();
6150
6151         return cnst;
6152 }
6153
6154 /**
6155  * Parse an integer constant.
6156  */
6157 static expression_t *parse_int_const(void)
6158 {
6159         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6160         cnst->base.type          = token.datatype;
6161         cnst->conste.v.int_value = token.v.intvalue;
6162
6163         next_token();
6164
6165         return cnst;
6166 }
6167
6168 /**
6169  * Parse a character constant.
6170  */
6171 static expression_t *parse_character_constant(void)
6172 {
6173         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
6174         cnst->base.type          = token.datatype;
6175         cnst->conste.v.character = token.v.string;
6176
6177         if (cnst->conste.v.character.size != 1) {
6178                 if (!GNU_MODE) {
6179                         errorf(HERE, "more than 1 character in character constant");
6180                 } else if (warning.multichar) {
6181                         warningf(HERE, "multi-character character constant");
6182                 }
6183         }
6184         next_token();
6185
6186         return cnst;
6187 }
6188
6189 /**
6190  * Parse a wide character constant.
6191  */
6192 static expression_t *parse_wide_character_constant(void)
6193 {
6194         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
6195         cnst->base.type               = token.datatype;
6196         cnst->conste.v.wide_character = token.v.wide_string;
6197
6198         if (cnst->conste.v.wide_character.size != 1) {
6199                 if (!GNU_MODE) {
6200                         errorf(HERE, "more than 1 character in character constant");
6201                 } else if (warning.multichar) {
6202                         warningf(HERE, "multi-character character constant");
6203                 }
6204         }
6205         next_token();
6206
6207         return cnst;
6208 }
6209
6210 /**
6211  * Parse a float constant.
6212  */
6213 static expression_t *parse_float_const(void)
6214 {
6215         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6216         cnst->base.type            = token.datatype;
6217         cnst->conste.v.float_value = token.v.floatvalue;
6218
6219         next_token();
6220
6221         return cnst;
6222 }
6223
6224 static entity_t *create_implicit_function(symbol_t *symbol,
6225                 const source_position_t *source_position)
6226 {
6227         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6228         ntype->function.return_type            = type_int;
6229         ntype->function.unspecified_parameters = true;
6230         ntype->function.linkage                = LINKAGE_C;
6231         type_t *type                           = identify_new_type(ntype);
6232
6233         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6234         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6235         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6236         entity->declaration.type                   = type;
6237         entity->declaration.implicit               = true;
6238         entity->base.symbol                        = symbol;
6239         entity->base.source_position               = *source_position;
6240
6241         if (current_scope != NULL) {
6242                 bool strict_prototypes_old = warning.strict_prototypes;
6243                 warning.strict_prototypes  = false;
6244                 record_entity(entity, false);
6245                 warning.strict_prototypes = strict_prototypes_old;
6246         }
6247
6248         return entity;
6249 }
6250
6251 /**
6252  * Creates a return_type (func)(argument_type) function type if not
6253  * already exists.
6254  */
6255 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
6256                                     type_t *argument_type2)
6257 {
6258         function_parameter_t *const parameter2 = allocate_parameter(argument_type2);
6259         function_parameter_t *const parameter1 = allocate_parameter(argument_type1);
6260         parameter1->next = parameter2;
6261
6262         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6263         type->function.return_type = return_type;
6264         type->function.parameters  = parameter1;
6265
6266         return identify_new_type(type);
6267 }
6268
6269 /**
6270  * Creates a return_type (func)(argument_type) function type if not
6271  * already exists.
6272  *
6273  * @param return_type    the return type
6274  * @param argument_type  the argument type
6275  */
6276 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
6277 {
6278         function_parameter_t *const parameter = allocate_parameter(argument_type);
6279
6280         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6281         type->function.return_type = return_type;
6282         type->function.parameters  = parameter;
6283
6284         return identify_new_type(type);
6285 }
6286
6287 static type_t *make_function_1_type_variadic(type_t *return_type, type_t *argument_type)
6288 {
6289         type_t *res = make_function_1_type(return_type, argument_type);
6290         res->function.variadic = 1;
6291         return res;
6292 }
6293
6294 /**
6295  * Creates a return_type (func)(void) function type if not
6296  * already exists.
6297  *
6298  * @param return_type    the return type
6299  */
6300 static type_t *make_function_0_type(type_t *return_type)
6301 {
6302         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6303         type->function.return_type = return_type;
6304         type->function.parameters  = NULL;
6305
6306         return identify_new_type(type);
6307 }
6308
6309 /**
6310  * Creates a NO_RETURN return_type (func)(void) function type if not
6311  * already exists.
6312  *
6313  * @param return_type    the return type
6314  */
6315 static type_t *make_function_0_type_noreturn(type_t *return_type)
6316 {
6317         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6318         type->function.return_type = return_type;
6319         type->function.parameters  = NULL;
6320         type->function.modifiers  |= DM_NORETURN;
6321         return identify_new_type(type);
6322 }
6323
6324 /**
6325  * Performs automatic type cast as described in §6.3.2.1.
6326  *
6327  * @param orig_type  the original type
6328  */
6329 static type_t *automatic_type_conversion(type_t *orig_type)
6330 {
6331         type_t *type = skip_typeref(orig_type);
6332         if (is_type_array(type)) {
6333                 array_type_t *array_type   = &type->array;
6334                 type_t       *element_type = array_type->element_type;
6335                 unsigned      qualifiers   = array_type->base.qualifiers;
6336
6337                 return make_pointer_type(element_type, qualifiers);
6338         }
6339
6340         if (is_type_function(type)) {
6341                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6342         }
6343
6344         return orig_type;
6345 }
6346
6347 /**
6348  * reverts the automatic casts of array to pointer types and function
6349  * to function-pointer types as defined §6.3.2.1
6350  */
6351 type_t *revert_automatic_type_conversion(const expression_t *expression)
6352 {
6353         switch (expression->kind) {
6354                 case EXPR_REFERENCE: {
6355                         entity_t *entity = expression->reference.entity;
6356                         if (is_declaration(entity)) {
6357                                 return entity->declaration.type;
6358                         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6359                                 return entity->enum_value.enum_type;
6360                         } else {
6361                                 panic("no declaration or enum in reference");
6362                         }
6363                 }
6364
6365                 case EXPR_SELECT: {
6366                         entity_t *entity = expression->select.compound_entry;
6367                         assert(is_declaration(entity));
6368                         type_t   *type   = entity->declaration.type;
6369                         return get_qualified_type(type,
6370                                         expression->base.type->base.qualifiers);
6371                 }
6372
6373                 case EXPR_UNARY_DEREFERENCE: {
6374                         const expression_t *const value = expression->unary.value;
6375                         type_t             *const type  = skip_typeref(value->base.type);
6376                         if (!is_type_pointer(type))
6377                                 return type_error_type;
6378                         return type->pointer.points_to;
6379                 }
6380
6381                 case EXPR_ARRAY_ACCESS: {
6382                         const expression_t *array_ref = expression->array_access.array_ref;
6383                         type_t             *type_left = skip_typeref(array_ref->base.type);
6384                         if (!is_type_pointer(type_left))
6385                                 return type_error_type;
6386                         return type_left->pointer.points_to;
6387                 }
6388
6389                 case EXPR_STRING_LITERAL: {
6390                         size_t size = expression->string.value.size;
6391                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6392                 }
6393
6394                 case EXPR_WIDE_STRING_LITERAL: {
6395                         size_t size = expression->wide_string.value.size;
6396                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6397                 }
6398
6399                 case EXPR_COMPOUND_LITERAL:
6400                         return expression->compound_literal.type;
6401
6402                 default:
6403                         return expression->base.type;
6404         }
6405 }
6406
6407 static expression_t *parse_reference(void)
6408 {
6409         symbol_t *const symbol = token.v.symbol;
6410
6411         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
6412
6413         if (entity == NULL) {
6414                 if (!strict_mode && look_ahead(1)->type == '(') {
6415                         /* an implicitly declared function */
6416                         if (warning.error_implicit_function_declaration) {
6417                                 errorf(HERE, "implicit declaration of function '%Y'", symbol);
6418                         } else if (warning.implicit_function_declaration) {
6419                                 warningf(HERE, "implicit declaration of function '%Y'", symbol);
6420                         }
6421
6422                         entity = create_implicit_function(symbol, HERE);
6423                 } else {
6424                         errorf(HERE, "unknown identifier '%Y' found.", symbol);
6425                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6426                 }
6427         }
6428
6429         type_t *orig_type;
6430
6431         if (is_declaration(entity)) {
6432                 orig_type = entity->declaration.type;
6433         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6434                 orig_type = entity->enum_value.enum_type;
6435         } else {
6436                 panic("expected declaration or enum value in reference");
6437         }
6438
6439         /* we always do the auto-type conversions; the & and sizeof parser contains
6440          * code to revert this! */
6441         type_t *type = automatic_type_conversion(orig_type);
6442
6443         expression_kind_t kind = EXPR_REFERENCE;
6444         if (entity->kind == ENTITY_ENUM_VALUE)
6445                 kind = EXPR_REFERENCE_ENUM_VALUE;
6446
6447         expression_t *expression     = allocate_expression_zero(kind);
6448         expression->reference.entity = entity;
6449         expression->base.type        = type;
6450
6451         /* this declaration is used */
6452         if (is_declaration(entity)) {
6453                 entity->declaration.used = true;
6454         }
6455
6456         if (entity->base.parent_scope != file_scope
6457                 && (current_function != NULL && entity->base.parent_scope->depth < current_function->parameters.depth)
6458                 && is_type_valid(orig_type) && !is_type_function(orig_type)) {
6459                 if (entity->kind == ENTITY_VARIABLE) {
6460                         /* access of a variable from an outer function */
6461                         entity->variable.address_taken = true;
6462                 } else if (entity->kind == ENTITY_PARAMETER) {
6463                         entity->parameter.address_taken = true;
6464                 }
6465                 current_function->need_closure = true;
6466         }
6467
6468         check_deprecated(HERE, entity);
6469
6470         if (warning.init_self && entity == current_init_decl && !in_type_prop
6471             && entity->kind == ENTITY_VARIABLE) {
6472                 current_init_decl = NULL;
6473                 warningf(HERE, "variable '%#T' is initialized by itself",
6474                          entity->declaration.type, entity->base.symbol);
6475         }
6476
6477         next_token();
6478         return expression;
6479 }
6480
6481 static bool semantic_cast(expression_t *cast)
6482 {
6483         expression_t            *expression      = cast->unary.value;
6484         type_t                  *orig_dest_type  = cast->base.type;
6485         type_t                  *orig_type_right = expression->base.type;
6486         type_t            const *dst_type        = skip_typeref(orig_dest_type);
6487         type_t            const *src_type        = skip_typeref(orig_type_right);
6488         source_position_t const *pos             = &cast->base.source_position;
6489
6490         /* §6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
6491         if (dst_type == type_void)
6492                 return true;
6493
6494         /* only integer and pointer can be casted to pointer */
6495         if (is_type_pointer(dst_type)  &&
6496             !is_type_pointer(src_type) &&
6497             !is_type_integer(src_type) &&
6498             is_type_valid(src_type)) {
6499                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
6500                 return false;
6501         }
6502
6503         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
6504                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
6505                 return false;
6506         }
6507
6508         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
6509                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
6510                 return false;
6511         }
6512
6513         if (warning.cast_qual &&
6514             is_type_pointer(src_type) &&
6515             is_type_pointer(dst_type)) {
6516                 type_t *src = skip_typeref(src_type->pointer.points_to);
6517                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
6518                 unsigned missing_qualifiers =
6519                         src->base.qualifiers & ~dst->base.qualifiers;
6520                 if (missing_qualifiers != 0) {
6521                         warningf(pos,
6522                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
6523                                  missing_qualifiers, orig_type_right);
6524                 }
6525         }
6526         return true;
6527 }
6528
6529 static expression_t *parse_compound_literal(type_t *type)
6530 {
6531         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
6532
6533         parse_initializer_env_t env;
6534         env.type             = type;
6535         env.entity           = NULL;
6536         env.must_be_constant = false;
6537         initializer_t *initializer = parse_initializer(&env);
6538         type = env.type;
6539
6540         expression->compound_literal.initializer = initializer;
6541         expression->compound_literal.type        = type;
6542         expression->base.type                    = automatic_type_conversion(type);
6543
6544         return expression;
6545 }
6546
6547 /**
6548  * Parse a cast expression.
6549  */
6550 static expression_t *parse_cast(void)
6551 {
6552         add_anchor_token(')');
6553
6554         source_position_t source_position = token.source_position;
6555
6556         type_t *type = parse_typename();
6557
6558         rem_anchor_token(')');
6559         expect(')', end_error);
6560
6561         if (token.type == '{') {
6562                 return parse_compound_literal(type);
6563         }
6564
6565         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
6566         cast->base.source_position = source_position;
6567
6568         expression_t *value = parse_sub_expression(PREC_CAST);
6569         cast->base.type   = type;
6570         cast->unary.value = value;
6571
6572         if (! semantic_cast(cast)) {
6573                 /* TODO: record the error in the AST. else it is impossible to detect it */
6574         }
6575
6576         return cast;
6577 end_error:
6578         return create_invalid_expression();
6579 }
6580
6581 /**
6582  * Parse a statement expression.
6583  */
6584 static expression_t *parse_statement_expression(void)
6585 {
6586         add_anchor_token(')');
6587
6588         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
6589
6590         statement_t *statement          = parse_compound_statement(true);
6591         statement->compound.stmt_expr   = true;
6592         expression->statement.statement = statement;
6593
6594         /* find last statement and use its type */
6595         type_t *type = type_void;
6596         const statement_t *stmt = statement->compound.statements;
6597         if (stmt != NULL) {
6598                 while (stmt->base.next != NULL)
6599                         stmt = stmt->base.next;
6600
6601                 if (stmt->kind == STATEMENT_EXPRESSION) {
6602                         type = stmt->expression.expression->base.type;
6603                 }
6604         } else if (warning.other) {
6605                 warningf(&expression->base.source_position, "empty statement expression ({})");
6606         }
6607         expression->base.type = type;
6608
6609         rem_anchor_token(')');
6610         expect(')', end_error);
6611
6612 end_error:
6613         return expression;
6614 }
6615
6616 /**
6617  * Parse a parenthesized expression.
6618  */
6619 static expression_t *parse_parenthesized_expression(void)
6620 {
6621         eat('(');
6622
6623         switch (token.type) {
6624         case '{':
6625                 /* gcc extension: a statement expression */
6626                 return parse_statement_expression();
6627
6628         TYPE_QUALIFIERS
6629         TYPE_SPECIFIERS
6630                 return parse_cast();
6631         case T_IDENTIFIER:
6632                 if (is_typedef_symbol(token.v.symbol)) {
6633                         return parse_cast();
6634                 }
6635         }
6636
6637         add_anchor_token(')');
6638         expression_t *result = parse_expression();
6639         result->base.parenthesized = true;
6640         rem_anchor_token(')');
6641         expect(')', end_error);
6642
6643 end_error:
6644         return result;
6645 }
6646
6647 static expression_t *parse_function_keyword(void)
6648 {
6649         /* TODO */
6650
6651         if (current_function == NULL) {
6652                 errorf(HERE, "'__func__' used outside of a function");
6653         }
6654
6655         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6656         expression->base.type     = type_char_ptr;
6657         expression->funcname.kind = FUNCNAME_FUNCTION;
6658
6659         next_token();
6660
6661         return expression;
6662 }
6663
6664 static expression_t *parse_pretty_function_keyword(void)
6665 {
6666         if (current_function == NULL) {
6667                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
6668         }
6669
6670         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6671         expression->base.type     = type_char_ptr;
6672         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
6673
6674         eat(T___PRETTY_FUNCTION__);
6675
6676         return expression;
6677 }
6678
6679 static expression_t *parse_funcsig_keyword(void)
6680 {
6681         if (current_function == NULL) {
6682                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
6683         }
6684
6685         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6686         expression->base.type     = type_char_ptr;
6687         expression->funcname.kind = FUNCNAME_FUNCSIG;
6688
6689         eat(T___FUNCSIG__);
6690
6691         return expression;
6692 }
6693
6694 static expression_t *parse_funcdname_keyword(void)
6695 {
6696         if (current_function == NULL) {
6697                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
6698         }
6699
6700         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
6701         expression->base.type     = type_char_ptr;
6702         expression->funcname.kind = FUNCNAME_FUNCDNAME;
6703
6704         eat(T___FUNCDNAME__);
6705
6706         return expression;
6707 }
6708
6709 static designator_t *parse_designator(void)
6710 {
6711         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
6712         result->source_position = *HERE;
6713
6714         if (token.type != T_IDENTIFIER) {
6715                 parse_error_expected("while parsing member designator",
6716                                      T_IDENTIFIER, NULL);
6717                 return NULL;
6718         }
6719         result->symbol = token.v.symbol;
6720         next_token();
6721
6722         designator_t *last_designator = result;
6723         while (true) {
6724                 if (token.type == '.') {
6725                         next_token();
6726                         if (token.type != T_IDENTIFIER) {
6727                                 parse_error_expected("while parsing member designator",
6728                                                      T_IDENTIFIER, NULL);
6729                                 return NULL;
6730                         }
6731                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6732                         designator->source_position = *HERE;
6733                         designator->symbol          = token.v.symbol;
6734                         next_token();
6735
6736                         last_designator->next = designator;
6737                         last_designator       = designator;
6738                         continue;
6739                 }
6740                 if (token.type == '[') {
6741                         next_token();
6742                         add_anchor_token(']');
6743                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
6744                         designator->source_position = *HERE;
6745                         designator->array_index     = parse_expression();
6746                         rem_anchor_token(']');
6747                         expect(']', end_error);
6748                         if (designator->array_index == NULL) {
6749                                 return NULL;
6750                         }
6751
6752                         last_designator->next = designator;
6753                         last_designator       = designator;
6754                         continue;
6755                 }
6756                 break;
6757         }
6758
6759         return result;
6760 end_error:
6761         return NULL;
6762 }
6763
6764 /**
6765  * Parse the __builtin_offsetof() expression.
6766  */
6767 static expression_t *parse_offsetof(void)
6768 {
6769         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
6770         expression->base.type    = type_size_t;
6771
6772         eat(T___builtin_offsetof);
6773
6774         expect('(', end_error);
6775         add_anchor_token(',');
6776         type_t *type = parse_typename();
6777         rem_anchor_token(',');
6778         expect(',', end_error);
6779         add_anchor_token(')');
6780         designator_t *designator = parse_designator();
6781         rem_anchor_token(')');
6782         expect(')', end_error);
6783
6784         expression->offsetofe.type       = type;
6785         expression->offsetofe.designator = designator;
6786
6787         type_path_t path;
6788         memset(&path, 0, sizeof(path));
6789         path.top_type = type;
6790         path.path     = NEW_ARR_F(type_path_entry_t, 0);
6791
6792         descend_into_subtype(&path);
6793
6794         if (!walk_designator(&path, designator, true)) {
6795                 return create_invalid_expression();
6796         }
6797
6798         DEL_ARR_F(path.path);
6799
6800         return expression;
6801 end_error:
6802         return create_invalid_expression();
6803 }
6804
6805 /**
6806  * Parses a _builtin_va_start() expression.
6807  */
6808 static expression_t *parse_va_start(void)
6809 {
6810         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
6811
6812         eat(T___builtin_va_start);
6813
6814         expect('(', end_error);
6815         add_anchor_token(',');
6816         expression->va_starte.ap = parse_assignment_expression();
6817         rem_anchor_token(',');
6818         expect(',', end_error);
6819         expression_t *const expr = parse_assignment_expression();
6820         if (expr->kind == EXPR_REFERENCE) {
6821                 entity_t *const entity = expr->reference.entity;
6822                 if (entity->base.parent_scope != &current_function->parameters
6823                                 || entity->base.next != NULL
6824                                 || entity->kind != ENTITY_PARAMETER) {
6825                         errorf(&expr->base.source_position,
6826                                "second argument of 'va_start' must be last parameter of the current function");
6827                 } else {
6828                         expression->va_starte.parameter = &entity->variable;
6829                 }
6830                 expect(')', end_error);
6831                 return expression;
6832         }
6833         expect(')', end_error);
6834 end_error:
6835         return create_invalid_expression();
6836 }
6837
6838 /**
6839  * Parses a __builtin_va_arg() expression.
6840  */
6841 static expression_t *parse_va_arg(void)
6842 {
6843         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
6844
6845         eat(T___builtin_va_arg);
6846
6847         expect('(', end_error);
6848         call_argument_t ap;
6849         ap.expression = parse_assignment_expression();
6850         expression->va_arge.ap = ap.expression;
6851         check_call_argument(type_valist, &ap, 1);
6852
6853         expect(',', end_error);
6854         expression->base.type = parse_typename();
6855         expect(')', end_error);
6856
6857         return expression;
6858 end_error:
6859         return create_invalid_expression();
6860 }
6861
6862 /**
6863  * Parses a __builtin_va_copy() expression.
6864  */
6865 static expression_t *parse_va_copy(void)
6866 {
6867         expression_t *expression = allocate_expression_zero(EXPR_VA_COPY);
6868
6869         eat(T___builtin_va_copy);
6870
6871         expect('(', end_error);
6872         expression_t *dst = parse_assignment_expression();
6873         assign_error_t error = semantic_assign(type_valist, dst);
6874         report_assign_error(error, type_valist, dst, "call argument 1",
6875                             &dst->base.source_position);
6876         expression->va_copye.dst = dst;
6877
6878         expect(',', end_error);
6879
6880         call_argument_t src;
6881         src.expression = parse_assignment_expression();
6882         check_call_argument(type_valist, &src, 2);
6883         expression->va_copye.src = src.expression;
6884         expect(')', end_error);
6885
6886         return expression;
6887 end_error:
6888         return create_invalid_expression();
6889 }
6890
6891 /**
6892  * Parses a __builtin_constant_p() expression.
6893  */
6894 static expression_t *parse_builtin_constant(void)
6895 {
6896         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
6897
6898         eat(T___builtin_constant_p);
6899
6900         expect('(', end_error);
6901         add_anchor_token(')');
6902         expression->builtin_constant.value = parse_assignment_expression();
6903         rem_anchor_token(')');
6904         expect(')', end_error);
6905         expression->base.type = type_int;
6906
6907         return expression;
6908 end_error:
6909         return create_invalid_expression();
6910 }
6911
6912 /**
6913  * Parses a __builtin_types_compatible_p() expression.
6914  */
6915 static expression_t *parse_builtin_types_compatible(void)
6916 {
6917         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_TYPES_COMPATIBLE_P);
6918
6919         eat(T___builtin_types_compatible_p);
6920
6921         expect('(', end_error);
6922         add_anchor_token(')');
6923         add_anchor_token(',');
6924         expression->builtin_types_compatible.left = parse_typename();
6925         rem_anchor_token(',');
6926         expect(',', end_error);
6927         expression->builtin_types_compatible.right = parse_typename();
6928         rem_anchor_token(')');
6929         expect(')', end_error);
6930         expression->base.type = type_int;
6931
6932         return expression;
6933 end_error:
6934         return create_invalid_expression();
6935 }
6936
6937 /**
6938  * Parses a __builtin_is_*() compare expression.
6939  */
6940 static expression_t *parse_compare_builtin(void)
6941 {
6942         expression_t *expression;
6943
6944         switch (token.type) {
6945         case T___builtin_isgreater:
6946                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
6947                 break;
6948         case T___builtin_isgreaterequal:
6949                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
6950                 break;
6951         case T___builtin_isless:
6952                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
6953                 break;
6954         case T___builtin_islessequal:
6955                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
6956                 break;
6957         case T___builtin_islessgreater:
6958                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
6959                 break;
6960         case T___builtin_isunordered:
6961                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
6962                 break;
6963         default:
6964                 internal_errorf(HERE, "invalid compare builtin found");
6965         }
6966         expression->base.source_position = *HERE;
6967         next_token();
6968
6969         expect('(', end_error);
6970         expression->binary.left = parse_assignment_expression();
6971         expect(',', end_error);
6972         expression->binary.right = parse_assignment_expression();
6973         expect(')', end_error);
6974
6975         type_t *const orig_type_left  = expression->binary.left->base.type;
6976         type_t *const orig_type_right = expression->binary.right->base.type;
6977
6978         type_t *const type_left  = skip_typeref(orig_type_left);
6979         type_t *const type_right = skip_typeref(orig_type_right);
6980         if (!is_type_float(type_left) && !is_type_float(type_right)) {
6981                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
6982                         type_error_incompatible("invalid operands in comparison",
6983                                 &expression->base.source_position, orig_type_left, orig_type_right);
6984                 }
6985         } else {
6986                 semantic_comparison(&expression->binary);
6987         }
6988
6989         return expression;
6990 end_error:
6991         return create_invalid_expression();
6992 }
6993
6994 #if 0
6995 /**
6996  * Parses a __builtin_expect(, end_error) expression.
6997  */
6998 static expression_t *parse_builtin_expect(void, end_error)
6999 {
7000         expression_t *expression
7001                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
7002
7003         eat(T___builtin_expect);
7004
7005         expect('(', end_error);
7006         expression->binary.left = parse_assignment_expression();
7007         expect(',', end_error);
7008         expression->binary.right = parse_constant_expression();
7009         expect(')', end_error);
7010
7011         expression->base.type = expression->binary.left->base.type;
7012
7013         return expression;
7014 end_error:
7015         return create_invalid_expression();
7016 }
7017 #endif
7018
7019 /**
7020  * Parses a MS assume() expression.
7021  */
7022 static expression_t *parse_assume(void)
7023 {
7024         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
7025
7026         eat(T__assume);
7027
7028         expect('(', end_error);
7029         add_anchor_token(')');
7030         expression->unary.value = parse_assignment_expression();
7031         rem_anchor_token(')');
7032         expect(')', end_error);
7033
7034         expression->base.type = type_void;
7035         return expression;
7036 end_error:
7037         return create_invalid_expression();
7038 }
7039
7040 /**
7041  * Return the declaration for a given label symbol or create a new one.
7042  *
7043  * @param symbol  the symbol of the label
7044  */
7045 static label_t *get_label(symbol_t *symbol)
7046 {
7047         entity_t *label;
7048         assert(current_function != NULL);
7049
7050         label = get_entity(symbol, NAMESPACE_LABEL);
7051         /* if we found a local label, we already created the declaration */
7052         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7053                 if (label->base.parent_scope != current_scope) {
7054                         assert(label->base.parent_scope->depth < current_scope->depth);
7055                         current_function->goto_to_outer = true;
7056                 }
7057                 return &label->label;
7058         }
7059
7060         label = get_entity(symbol, NAMESPACE_LABEL);
7061         /* if we found a label in the same function, then we already created the
7062          * declaration */
7063         if (label != NULL
7064                         && label->base.parent_scope == &current_function->parameters) {
7065                 return &label->label;
7066         }
7067
7068         /* otherwise we need to create a new one */
7069         label               = allocate_entity_zero(ENTITY_LABEL);
7070         label->base.namespc = NAMESPACE_LABEL;
7071         label->base.symbol  = symbol;
7072
7073         label_push(label);
7074
7075         return &label->label;
7076 }
7077
7078 /**
7079  * Parses a GNU && label address expression.
7080  */
7081 static expression_t *parse_label_address(void)
7082 {
7083         source_position_t source_position = token.source_position;
7084         eat(T_ANDAND);
7085         if (token.type != T_IDENTIFIER) {
7086                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7087                 goto end_error;
7088         }
7089         symbol_t *symbol = token.v.symbol;
7090         next_token();
7091
7092         label_t *label       = get_label(symbol);
7093         label->used          = true;
7094         label->address_taken = true;
7095
7096         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7097         expression->base.source_position = source_position;
7098
7099         /* label address is threaten as a void pointer */
7100         expression->base.type           = type_void_ptr;
7101         expression->label_address.label = label;
7102         return expression;
7103 end_error:
7104         return create_invalid_expression();
7105 }
7106
7107 /**
7108  * Parse a microsoft __noop expression.
7109  */
7110 static expression_t *parse_noop_expression(void)
7111 {
7112         /* the result is a (int)0 */
7113         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
7114         cnst->base.type            = type_int;
7115         cnst->conste.v.int_value   = 0;
7116         cnst->conste.is_ms_noop    = true;
7117
7118         eat(T___noop);
7119
7120         if (token.type == '(') {
7121                 /* parse arguments */
7122                 eat('(');
7123                 add_anchor_token(')');
7124                 add_anchor_token(',');
7125
7126                 if (token.type != ')') {
7127                         while (true) {
7128                                 (void)parse_assignment_expression();
7129                                 if (token.type != ',')
7130                                         break;
7131                                 next_token();
7132                         }
7133                 }
7134         }
7135         rem_anchor_token(',');
7136         rem_anchor_token(')');
7137         expect(')', end_error);
7138
7139 end_error:
7140         return cnst;
7141 }
7142
7143 /**
7144  * Parses a primary expression.
7145  */
7146 static expression_t *parse_primary_expression(void)
7147 {
7148         switch (token.type) {
7149                 case T_false:                        return parse_bool_const(false);
7150                 case T_true:                         return parse_bool_const(true);
7151                 case T_INTEGER:                      return parse_int_const();
7152                 case T_CHARACTER_CONSTANT:           return parse_character_constant();
7153                 case T_WIDE_CHARACTER_CONSTANT:      return parse_wide_character_constant();
7154                 case T_FLOATINGPOINT:                return parse_float_const();
7155                 case T_STRING_LITERAL:
7156                 case T_WIDE_STRING_LITERAL:          return parse_string_const();
7157                 case T___FUNCTION__:
7158                 case T___func__:                     return parse_function_keyword();
7159                 case T___PRETTY_FUNCTION__:          return parse_pretty_function_keyword();
7160                 case T___FUNCSIG__:                  return parse_funcsig_keyword();
7161                 case T___FUNCDNAME__:                return parse_funcdname_keyword();
7162                 case T___builtin_offsetof:           return parse_offsetof();
7163                 case T___builtin_va_start:           return parse_va_start();
7164                 case T___builtin_va_arg:             return parse_va_arg();
7165                 case T___builtin_va_copy:            return parse_va_copy();
7166                 case T___builtin_isgreater:
7167                 case T___builtin_isgreaterequal:
7168                 case T___builtin_isless:
7169                 case T___builtin_islessequal:
7170                 case T___builtin_islessgreater:
7171                 case T___builtin_isunordered:        return parse_compare_builtin();
7172                 case T___builtin_constant_p:         return parse_builtin_constant();
7173                 case T___builtin_types_compatible_p: return parse_builtin_types_compatible();
7174                 case T__assume:                      return parse_assume();
7175                 case T_ANDAND:
7176                         if (GNU_MODE)
7177                                 return parse_label_address();
7178                         break;
7179
7180                 case '(':                            return parse_parenthesized_expression();
7181                 case T___noop:                       return parse_noop_expression();
7182
7183                 /* Gracefully handle type names while parsing expressions. */
7184                 case T_IDENTIFIER:
7185                         if (!is_typedef_symbol(token.v.symbol)) {
7186                                 return parse_reference();
7187                         }
7188                         /* FALLTHROUGH */
7189                 TYPENAME_START {
7190                         source_position_t  const pos  = *HERE;
7191                         type_t const      *const type = parse_typename();
7192                         errorf(&pos, "encountered type '%T' while parsing expression", type);
7193                         return create_invalid_expression();
7194                 }
7195         }
7196
7197         errorf(HERE, "unexpected token %K, expected an expression", &token);
7198         return create_invalid_expression();
7199 }
7200
7201 /**
7202  * Check if the expression has the character type and issue a warning then.
7203  */
7204 static void check_for_char_index_type(const expression_t *expression)
7205 {
7206         type_t       *const type      = expression->base.type;
7207         const type_t *const base_type = skip_typeref(type);
7208
7209         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7210                         warning.char_subscripts) {
7211                 warningf(&expression->base.source_position,
7212                          "array subscript has type '%T'", type);
7213         }
7214 }
7215
7216 static expression_t *parse_array_expression(expression_t *left)
7217 {
7218         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7219
7220         eat('[');
7221         add_anchor_token(']');
7222
7223         expression_t *inside = parse_expression();
7224
7225         type_t *const orig_type_left   = left->base.type;
7226         type_t *const orig_type_inside = inside->base.type;
7227
7228         type_t *const type_left   = skip_typeref(orig_type_left);
7229         type_t *const type_inside = skip_typeref(orig_type_inside);
7230
7231         type_t                    *return_type;
7232         array_access_expression_t *array_access = &expression->array_access;
7233         if (is_type_pointer(type_left)) {
7234                 return_type             = type_left->pointer.points_to;
7235                 array_access->array_ref = left;
7236                 array_access->index     = inside;
7237                 check_for_char_index_type(inside);
7238         } else if (is_type_pointer(type_inside)) {
7239                 return_type             = type_inside->pointer.points_to;
7240                 array_access->array_ref = inside;
7241                 array_access->index     = left;
7242                 array_access->flipped   = true;
7243                 check_for_char_index_type(left);
7244         } else {
7245                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7246                         errorf(HERE,
7247                                 "array access on object with non-pointer types '%T', '%T'",
7248                                 orig_type_left, orig_type_inside);
7249                 }
7250                 return_type             = type_error_type;
7251                 array_access->array_ref = left;
7252                 array_access->index     = inside;
7253         }
7254
7255         expression->base.type = automatic_type_conversion(return_type);
7256
7257         rem_anchor_token(']');
7258         expect(']', end_error);
7259 end_error:
7260         return expression;
7261 }
7262
7263 static expression_t *parse_typeprop(expression_kind_t const kind)
7264 {
7265         expression_t  *tp_expression = allocate_expression_zero(kind);
7266         tp_expression->base.type     = type_size_t;
7267
7268         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7269
7270         /* we only refer to a type property, mark this case */
7271         bool old     = in_type_prop;
7272         in_type_prop = true;
7273
7274         type_t       *orig_type;
7275         expression_t *expression;
7276         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7277                 next_token();
7278                 add_anchor_token(')');
7279                 orig_type = parse_typename();
7280                 rem_anchor_token(')');
7281                 expect(')', end_error);
7282
7283                 if (token.type == '{') {
7284                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7285                          * starting with a compound literal */
7286                         expression = parse_compound_literal(orig_type);
7287                         goto typeprop_expression;
7288                 }
7289         } else {
7290                 expression = parse_sub_expression(PREC_UNARY);
7291
7292 typeprop_expression:
7293                 tp_expression->typeprop.tp_expression = expression;
7294
7295                 orig_type = revert_automatic_type_conversion(expression);
7296                 expression->base.type = orig_type;
7297         }
7298
7299         tp_expression->typeprop.type   = orig_type;
7300         type_t const* const type       = skip_typeref(orig_type);
7301         char   const* const wrong_type =
7302                 GNU_MODE && is_type_atomic(type, ATOMIC_TYPE_VOID) ? NULL                  :
7303                 is_type_incomplete(type)                           ? "incomplete"          :
7304                 type->kind == TYPE_FUNCTION                        ? "function designator" :
7305                 type->kind == TYPE_BITFIELD                        ? "bitfield"            :
7306                 NULL;
7307         if (wrong_type != NULL) {
7308                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7309                 errorf(&tp_expression->base.source_position,
7310                                 "operand of %s expression must not be of %s type '%T'",
7311                                 what, wrong_type, orig_type);
7312         }
7313
7314 end_error:
7315         in_type_prop = old;
7316         return tp_expression;
7317 }
7318
7319 static expression_t *parse_sizeof(void)
7320 {
7321         return parse_typeprop(EXPR_SIZEOF);
7322 }
7323
7324 static expression_t *parse_alignof(void)
7325 {
7326         return parse_typeprop(EXPR_ALIGNOF);
7327 }
7328
7329 static expression_t *parse_select_expression(expression_t *addr)
7330 {
7331         assert(token.type == '.' || token.type == T_MINUSGREATER);
7332         bool select_left_arrow = (token.type == T_MINUSGREATER);
7333         next_token();
7334
7335         if (token.type != T_IDENTIFIER) {
7336                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7337                 return create_invalid_expression();
7338         }
7339         symbol_t *symbol = token.v.symbol;
7340         next_token();
7341
7342         type_t *const orig_type = addr->base.type;
7343         type_t *const type      = skip_typeref(orig_type);
7344
7345         type_t *type_left;
7346         bool    saw_error = false;
7347         if (is_type_pointer(type)) {
7348                 if (!select_left_arrow) {
7349                         errorf(HERE,
7350                                "request for member '%Y' in something not a struct or union, but '%T'",
7351                                symbol, orig_type);
7352                         saw_error = true;
7353                 }
7354                 type_left = skip_typeref(type->pointer.points_to);
7355         } else {
7356                 if (select_left_arrow && is_type_valid(type)) {
7357                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7358                         saw_error = true;
7359                 }
7360                 type_left = type;
7361         }
7362
7363         if (type_left->kind != TYPE_COMPOUND_STRUCT &&
7364             type_left->kind != TYPE_COMPOUND_UNION) {
7365
7366                 if (is_type_valid(type_left) && !saw_error) {
7367                         errorf(HERE,
7368                                "request for member '%Y' in something not a struct or union, but '%T'",
7369                                symbol, type_left);
7370                 }
7371                 return create_invalid_expression();
7372         }
7373
7374         compound_t *compound = type_left->compound.compound;
7375         if (!compound->complete) {
7376                 errorf(HERE, "request for member '%Y' in incomplete type '%T'",
7377                        symbol, type_left);
7378                 return create_invalid_expression();
7379         }
7380
7381         type_qualifiers_t  qualifiers = type_left->base.qualifiers;
7382         expression_t      *result
7383                 = find_create_select(HERE, addr, qualifiers, compound, symbol);
7384
7385         if (result == NULL) {
7386                 errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7387                 return create_invalid_expression();
7388         }
7389
7390         return result;
7391 }
7392
7393 static void check_call_argument(type_t          *expected_type,
7394                                 call_argument_t *argument, unsigned pos)
7395 {
7396         type_t         *expected_type_skip = skip_typeref(expected_type);
7397         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7398         expression_t   *arg_expr           = argument->expression;
7399         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7400
7401         /* handle transparent union gnu extension */
7402         if (is_type_union(expected_type_skip)
7403                         && (get_type_modifiers(expected_type) & DM_TRANSPARENT_UNION)) {
7404                 compound_t *union_decl  = expected_type_skip->compound.compound;
7405                 type_t     *best_type   = NULL;
7406                 entity_t   *entry       = union_decl->members.entities;
7407                 for ( ; entry != NULL; entry = entry->base.next) {
7408                         assert(is_declaration(entry));
7409                         type_t *decl_type = entry->declaration.type;
7410                         error = semantic_assign(decl_type, arg_expr);
7411                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7412                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7413                                 continue;
7414
7415                         if (error == ASSIGN_SUCCESS) {
7416                                 best_type = decl_type;
7417                         } else if (best_type == NULL) {
7418                                 best_type = decl_type;
7419                         }
7420                 }
7421
7422                 if (best_type != NULL) {
7423                         expected_type = best_type;
7424                 }
7425         }
7426
7427         error                = semantic_assign(expected_type, arg_expr);
7428         argument->expression = create_implicit_cast(arg_expr, expected_type);
7429
7430         if (error != ASSIGN_SUCCESS) {
7431                 /* report exact scope in error messages (like "in argument 3") */
7432                 char buf[64];
7433                 snprintf(buf, sizeof(buf), "call argument %u", pos);
7434                 report_assign_error(error, expected_type, arg_expr,     buf,
7435                                                         &arg_expr->base.source_position);
7436         } else if (warning.traditional || warning.conversion) {
7437                 type_t *const promoted_type = get_default_promoted_type(arg_type);
7438                 if (!types_compatible(expected_type_skip, promoted_type) &&
7439                     !types_compatible(expected_type_skip, type_void_ptr) &&
7440                     !types_compatible(type_void_ptr,      promoted_type)) {
7441                         /* Deliberately show the skipped types in this warning */
7442                         warningf(&arg_expr->base.source_position,
7443                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
7444                                 pos, expected_type_skip, promoted_type);
7445                 }
7446         }
7447 }
7448
7449 /**
7450  * Handle the semantic restrictions of builtin calls
7451  */
7452 static void handle_builtin_argument_restrictions(call_expression_t *call) {
7453         switch (call->function->reference.entity->function.btk) {
7454                 case bk_gnu_builtin_return_address:
7455                 case bk_gnu_builtin_frame_address: {
7456                         /* argument must be constant */
7457                         call_argument_t *argument = call->arguments;
7458
7459                         if (! is_constant_expression(argument->expression)) {
7460                                 errorf(&call->base.source_position,
7461                                        "argument of '%Y' must be a constant expression",
7462                                        call->function->reference.entity->base.symbol);
7463                         }
7464                         break;
7465                 }
7466                 case bk_gnu_builtin_prefetch: {
7467                         /* second and third argument must be constant if existent */
7468                         call_argument_t *rw = call->arguments->next;
7469                         call_argument_t *locality = NULL;
7470
7471                         if (rw != NULL) {
7472                                 if (! is_constant_expression(rw->expression)) {
7473                                         errorf(&call->base.source_position,
7474                                                "second argument of '%Y' must be a constant expression",
7475                                                call->function->reference.entity->base.symbol);
7476                                 }
7477                                 locality = rw->next;
7478                         }
7479                         if (locality != NULL) {
7480                                 if (! is_constant_expression(locality->expression)) {
7481                                         errorf(&call->base.source_position,
7482                                                "third argument of '%Y' must be a constant expression",
7483                                                call->function->reference.entity->base.symbol);
7484                                 }
7485                                 locality = rw->next;
7486                         }
7487                         break;
7488                 }
7489                 default:
7490                         break;
7491         }
7492 }
7493
7494 /**
7495  * Parse a call expression, ie. expression '( ... )'.
7496  *
7497  * @param expression  the function address
7498  */
7499 static expression_t *parse_call_expression(expression_t *expression)
7500 {
7501         expression_t      *result = allocate_expression_zero(EXPR_CALL);
7502         call_expression_t *call   = &result->call;
7503         call->function            = expression;
7504
7505         type_t *const orig_type = expression->base.type;
7506         type_t *const type      = skip_typeref(orig_type);
7507
7508         function_type_t *function_type = NULL;
7509         if (is_type_pointer(type)) {
7510                 type_t *const to_type = skip_typeref(type->pointer.points_to);
7511
7512                 if (is_type_function(to_type)) {
7513                         function_type   = &to_type->function;
7514                         call->base.type = function_type->return_type;
7515                 }
7516         }
7517
7518         if (function_type == NULL && is_type_valid(type)) {
7519                 errorf(HERE,
7520                        "called object '%E' (type '%T') is not a pointer to a function",
7521                        expression, orig_type);
7522         }
7523
7524         /* parse arguments */
7525         eat('(');
7526         add_anchor_token(')');
7527         add_anchor_token(',');
7528
7529         if (token.type != ')') {
7530                 call_argument_t **anchor = &call->arguments;
7531                 for (;;) {
7532                         call_argument_t *argument = allocate_ast_zero(sizeof(*argument));
7533                         argument->expression = parse_assignment_expression();
7534
7535                         *anchor = argument;
7536                         anchor  = &argument->next;
7537
7538                         if (token.type != ',')
7539                                 break;
7540                         next_token();
7541                 }
7542         }
7543         rem_anchor_token(',');
7544         rem_anchor_token(')');
7545         expect(')', end_error);
7546
7547         if (function_type == NULL)
7548                 return result;
7549
7550         /* check type and count of call arguments */
7551         function_parameter_t *parameter = function_type->parameters;
7552         call_argument_t      *argument  = call->arguments;
7553         if (!function_type->unspecified_parameters) {
7554                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
7555                                 parameter = parameter->next, argument = argument->next) {
7556                         check_call_argument(parameter->type, argument, ++pos);
7557                 }
7558
7559                 if (parameter != NULL) {
7560                         errorf(HERE, "too few arguments to function '%E'", expression);
7561                 } else if (argument != NULL && !function_type->variadic) {
7562                         errorf(HERE, "too many arguments to function '%E'", expression);
7563                 }
7564         }
7565
7566         /* do default promotion for other arguments */
7567         for (; argument != NULL; argument = argument->next) {
7568                 type_t *type = argument->expression->base.type;
7569
7570                 type = get_default_promoted_type(type);
7571
7572                 argument->expression
7573                         = create_implicit_cast(argument->expression, type);
7574         }
7575
7576         check_format(&result->call);
7577
7578         if (warning.aggregate_return &&
7579             is_type_compound(skip_typeref(function_type->return_type))) {
7580                 warningf(&result->base.source_position,
7581                          "function call has aggregate value");
7582         }
7583
7584         if (call->function->kind == EXPR_REFERENCE) {
7585                 reference_expression_t *reference = &call->function->reference;
7586                 if (reference->entity->kind == ENTITY_FUNCTION &&
7587                     reference->entity->function.btk != bk_none)
7588                         handle_builtin_argument_restrictions(call);
7589         }
7590
7591 end_error:
7592         return result;
7593 }
7594
7595 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
7596
7597 static bool same_compound_type(const type_t *type1, const type_t *type2)
7598 {
7599         return
7600                 is_type_compound(type1) &&
7601                 type1->kind == type2->kind &&
7602                 type1->compound.compound == type2->compound.compound;
7603 }
7604
7605 static expression_t const *get_reference_address(expression_t const *expr)
7606 {
7607         bool regular_take_address = true;
7608         for (;;) {
7609                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
7610                         expr = expr->unary.value;
7611                 } else {
7612                         regular_take_address = false;
7613                 }
7614
7615                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
7616                         break;
7617
7618                 expr = expr->unary.value;
7619         }
7620
7621         if (expr->kind != EXPR_REFERENCE)
7622                 return NULL;
7623
7624         /* special case for functions which are automatically converted to a
7625          * pointer to function without an extra TAKE_ADDRESS operation */
7626         if (!regular_take_address &&
7627                         expr->reference.entity->kind != ENTITY_FUNCTION) {
7628                 return NULL;
7629         }
7630
7631         return expr;
7632 }
7633
7634 static void warn_reference_address_as_bool(expression_t const* expr)
7635 {
7636         if (!warning.address)
7637                 return;
7638
7639         expr = get_reference_address(expr);
7640         if (expr != NULL) {
7641                 warningf(&expr->base.source_position,
7642                          "the address of '%Y' will always evaluate as 'true'",
7643                          expr->reference.entity->base.symbol);
7644         }
7645 }
7646
7647 static void warn_assignment_in_condition(const expression_t *const expr)
7648 {
7649         if (!warning.parentheses)
7650                 return;
7651         if (expr->base.kind != EXPR_BINARY_ASSIGN)
7652                 return;
7653         if (expr->base.parenthesized)
7654                 return;
7655         warningf(&expr->base.source_position,
7656                         "suggest parentheses around assignment used as truth value");
7657 }
7658
7659 static void semantic_condition(expression_t const *const expr,
7660                                char const *const context)
7661 {
7662         type_t *const type = skip_typeref(expr->base.type);
7663         if (is_type_scalar(type)) {
7664                 warn_reference_address_as_bool(expr);
7665                 warn_assignment_in_condition(expr);
7666         } else if (is_type_valid(type)) {
7667                 errorf(&expr->base.source_position,
7668                                 "%s must have scalar type", context);
7669         }
7670 }
7671
7672 /**
7673  * Parse a conditional expression, ie. 'expression ? ... : ...'.
7674  *
7675  * @param expression  the conditional expression
7676  */
7677 static expression_t *parse_conditional_expression(expression_t *expression)
7678 {
7679         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
7680
7681         conditional_expression_t *conditional = &result->conditional;
7682         conditional->condition                = expression;
7683
7684         eat('?');
7685         add_anchor_token(':');
7686
7687         /* §6.5.15:2  The first operand shall have scalar type. */
7688         semantic_condition(expression, "condition of conditional operator");
7689
7690         expression_t *true_expression = expression;
7691         bool          gnu_cond = false;
7692         if (GNU_MODE && token.type == ':') {
7693                 gnu_cond = true;
7694         } else {
7695                 true_expression = parse_expression();
7696         }
7697         rem_anchor_token(':');
7698         expect(':', end_error);
7699 end_error:;
7700         expression_t *false_expression =
7701                 parse_sub_expression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
7702
7703         type_t *const orig_true_type  = true_expression->base.type;
7704         type_t *const orig_false_type = false_expression->base.type;
7705         type_t *const true_type       = skip_typeref(orig_true_type);
7706         type_t *const false_type      = skip_typeref(orig_false_type);
7707
7708         /* 6.5.15.3 */
7709         type_t *result_type;
7710         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7711                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
7712                 /* ISO/IEC 14882:1998(E) §5.16:2 */
7713                 if (true_expression->kind == EXPR_UNARY_THROW) {
7714                         result_type = false_type;
7715                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
7716                         result_type = true_type;
7717                 } else {
7718                         if (warning.other && (
7719                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
7720                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
7721                                         )) {
7722                                 warningf(&conditional->base.source_position,
7723                                                 "ISO C forbids conditional expression with only one void side");
7724                         }
7725                         result_type = type_void;
7726                 }
7727         } else if (is_type_arithmetic(true_type)
7728                    && is_type_arithmetic(false_type)) {
7729                 result_type = semantic_arithmetic(true_type, false_type);
7730
7731                 true_expression  = create_implicit_cast(true_expression, result_type);
7732                 false_expression = create_implicit_cast(false_expression, result_type);
7733
7734                 conditional->true_expression  = true_expression;
7735                 conditional->false_expression = false_expression;
7736                 conditional->base.type        = result_type;
7737         } else if (same_compound_type(true_type, false_type)) {
7738                 /* just take 1 of the 2 types */
7739                 result_type = true_type;
7740         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
7741                 type_t *pointer_type;
7742                 type_t *other_type;
7743                 expression_t *other_expression;
7744                 if (is_type_pointer(true_type) &&
7745                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
7746                         pointer_type     = true_type;
7747                         other_type       = false_type;
7748                         other_expression = false_expression;
7749                 } else {
7750                         pointer_type     = false_type;
7751                         other_type       = true_type;
7752                         other_expression = true_expression;
7753                 }
7754
7755                 if (is_null_pointer_constant(other_expression)) {
7756                         result_type = pointer_type;
7757                 } else if (is_type_pointer(other_type)) {
7758                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
7759                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
7760
7761                         type_t *to;
7762                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
7763                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
7764                                 to = type_void;
7765                         } else if (types_compatible(get_unqualified_type(to1),
7766                                                     get_unqualified_type(to2))) {
7767                                 to = to1;
7768                         } else {
7769                                 if (warning.other) {
7770                                         warningf(&conditional->base.source_position,
7771                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
7772                                                         true_type, false_type);
7773                                 }
7774                                 to = type_void;
7775                         }
7776
7777                         type_t *const type =
7778                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
7779                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
7780                 } else if (is_type_integer(other_type)) {
7781                         if (warning.other) {
7782                                 warningf(&conditional->base.source_position,
7783                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
7784                         }
7785                         result_type = pointer_type;
7786                 } else {
7787                         if (is_type_valid(other_type)) {
7788                                 type_error_incompatible("while parsing conditional",
7789                                                 &expression->base.source_position, true_type, false_type);
7790                         }
7791                         result_type = type_error_type;
7792                 }
7793         } else {
7794                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
7795                         type_error_incompatible("while parsing conditional",
7796                                                 &conditional->base.source_position, true_type,
7797                                                 false_type);
7798                 }
7799                 result_type = type_error_type;
7800         }
7801
7802         conditional->true_expression
7803                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
7804         conditional->false_expression
7805                 = create_implicit_cast(false_expression, result_type);
7806         conditional->base.type = result_type;
7807         return result;
7808 }
7809
7810 /**
7811  * Parse an extension expression.
7812  */
7813 static expression_t *parse_extension(void)
7814 {
7815         eat(T___extension__);
7816
7817         bool old_gcc_extension   = in_gcc_extension;
7818         in_gcc_extension         = true;
7819         expression_t *expression = parse_sub_expression(PREC_UNARY);
7820         in_gcc_extension         = old_gcc_extension;
7821         return expression;
7822 }
7823
7824 /**
7825  * Parse a __builtin_classify_type() expression.
7826  */
7827 static expression_t *parse_builtin_classify_type(void)
7828 {
7829         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
7830         result->base.type    = type_int;
7831
7832         eat(T___builtin_classify_type);
7833
7834         expect('(', end_error);
7835         add_anchor_token(')');
7836         expression_t *expression = parse_expression();
7837         rem_anchor_token(')');
7838         expect(')', end_error);
7839         result->classify_type.type_expression = expression;
7840
7841         return result;
7842 end_error:
7843         return create_invalid_expression();
7844 }
7845
7846 /**
7847  * Parse a delete expression
7848  * ISO/IEC 14882:1998(E) §5.3.5
7849  */
7850 static expression_t *parse_delete(void)
7851 {
7852         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
7853         result->base.type          = type_void;
7854
7855         eat(T_delete);
7856
7857         if (token.type == '[') {
7858                 next_token();
7859                 result->kind = EXPR_UNARY_DELETE_ARRAY;
7860                 expect(']', end_error);
7861 end_error:;
7862         }
7863
7864         expression_t *const value = parse_sub_expression(PREC_CAST);
7865         result->unary.value = value;
7866
7867         type_t *const type = skip_typeref(value->base.type);
7868         if (!is_type_pointer(type)) {
7869                 if (is_type_valid(type)) {
7870                         errorf(&value->base.source_position,
7871                                         "operand of delete must have pointer type");
7872                 }
7873         } else if (warning.other &&
7874                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
7875                 warningf(&value->base.source_position,
7876                                 "deleting 'void*' is undefined");
7877         }
7878
7879         return result;
7880 }
7881
7882 /**
7883  * Parse a throw expression
7884  * ISO/IEC 14882:1998(E) §15:1
7885  */
7886 static expression_t *parse_throw(void)
7887 {
7888         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
7889         result->base.type          = type_void;
7890
7891         eat(T_throw);
7892
7893         expression_t *value = NULL;
7894         switch (token.type) {
7895                 EXPRESSION_START {
7896                         value = parse_assignment_expression();
7897                         /* ISO/IEC 14882:1998(E) §15.1:3 */
7898                         type_t *const orig_type = value->base.type;
7899                         type_t *const type      = skip_typeref(orig_type);
7900                         if (is_type_incomplete(type)) {
7901                                 errorf(&value->base.source_position,
7902                                                 "cannot throw object of incomplete type '%T'", orig_type);
7903                         } else if (is_type_pointer(type)) {
7904                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
7905                                 if (is_type_incomplete(points_to) &&
7906                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7907                                         errorf(&value->base.source_position,
7908                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
7909                                 }
7910                         }
7911                 }
7912
7913                 default:
7914                         break;
7915         }
7916         result->unary.value = value;
7917
7918         return result;
7919 }
7920
7921 static bool check_pointer_arithmetic(const source_position_t *source_position,
7922                                      type_t *pointer_type,
7923                                      type_t *orig_pointer_type)
7924 {
7925         type_t *points_to = pointer_type->pointer.points_to;
7926         points_to = skip_typeref(points_to);
7927
7928         if (is_type_incomplete(points_to)) {
7929                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
7930                         errorf(source_position,
7931                                "arithmetic with pointer to incomplete type '%T' not allowed",
7932                                orig_pointer_type);
7933                         return false;
7934                 } else if (warning.pointer_arith) {
7935                         warningf(source_position,
7936                                  "pointer of type '%T' used in arithmetic",
7937                                  orig_pointer_type);
7938                 }
7939         } else if (is_type_function(points_to)) {
7940                 if (!GNU_MODE) {
7941                         errorf(source_position,
7942                                "arithmetic with pointer to function type '%T' not allowed",
7943                                orig_pointer_type);
7944                         return false;
7945                 } else if (warning.pointer_arith) {
7946                         warningf(source_position,
7947                                  "pointer to a function '%T' used in arithmetic",
7948                                  orig_pointer_type);
7949                 }
7950         }
7951         return true;
7952 }
7953
7954 static bool is_lvalue(const expression_t *expression)
7955 {
7956         /* TODO: doesn't seem to be consistent with §6.3.2.1:1 */
7957         switch (expression->kind) {
7958         case EXPR_ARRAY_ACCESS:
7959         case EXPR_COMPOUND_LITERAL:
7960         case EXPR_REFERENCE:
7961         case EXPR_SELECT:
7962         case EXPR_UNARY_DEREFERENCE:
7963                 return true;
7964
7965         default: {
7966           type_t *type = skip_typeref(expression->base.type);
7967           return
7968                 /* ISO/IEC 14882:1998(E) §3.10:3 */
7969                 is_type_reference(type) ||
7970                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
7971                  * error before, which maybe prevented properly recognizing it as
7972                  * lvalue. */
7973                 !is_type_valid(type);
7974         }
7975         }
7976 }
7977
7978 static void semantic_incdec(unary_expression_t *expression)
7979 {
7980         type_t *const orig_type = expression->value->base.type;
7981         type_t *const type      = skip_typeref(orig_type);
7982         if (is_type_pointer(type)) {
7983                 if (!check_pointer_arithmetic(&expression->base.source_position,
7984                                               type, orig_type)) {
7985                         return;
7986                 }
7987         } else if (!is_type_real(type) && is_type_valid(type)) {
7988                 /* TODO: improve error message */
7989                 errorf(&expression->base.source_position,
7990                        "operation needs an arithmetic or pointer type");
7991                 return;
7992         }
7993         if (!is_lvalue(expression->value)) {
7994                 /* TODO: improve error message */
7995                 errorf(&expression->base.source_position, "lvalue required as operand");
7996         }
7997         expression->base.type = orig_type;
7998 }
7999
8000 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
8001 {
8002         type_t *const orig_type = expression->value->base.type;
8003         type_t *const type      = skip_typeref(orig_type);
8004         if (!is_type_arithmetic(type)) {
8005                 if (is_type_valid(type)) {
8006                         /* TODO: improve error message */
8007                         errorf(&expression->base.source_position,
8008                                 "operation needs an arithmetic type");
8009                 }
8010                 return;
8011         }
8012
8013         expression->base.type = orig_type;
8014 }
8015
8016 static void semantic_unexpr_plus(unary_expression_t *expression)
8017 {
8018         semantic_unexpr_arithmetic(expression);
8019         if (warning.traditional)
8020                 warningf(&expression->base.source_position,
8021                         "traditional C rejects the unary plus operator");
8022 }
8023
8024 static void semantic_not(unary_expression_t *expression)
8025 {
8026         /* §6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
8027         semantic_condition(expression->value, "operand of !");
8028         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8029 }
8030
8031 static void semantic_unexpr_integer(unary_expression_t *expression)
8032 {
8033         type_t *const orig_type = expression->value->base.type;
8034         type_t *const type      = skip_typeref(orig_type);
8035         if (!is_type_integer(type)) {
8036                 if (is_type_valid(type)) {
8037                         errorf(&expression->base.source_position,
8038                                "operand of ~ must be of integer type");
8039                 }
8040                 return;
8041         }
8042
8043         expression->base.type = orig_type;
8044 }
8045
8046 static void semantic_dereference(unary_expression_t *expression)
8047 {
8048         type_t *const orig_type = expression->value->base.type;
8049         type_t *const type      = skip_typeref(orig_type);
8050         if (!is_type_pointer(type)) {
8051                 if (is_type_valid(type)) {
8052                         errorf(&expression->base.source_position,
8053                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8054                 }
8055                 return;
8056         }
8057
8058         type_t *result_type   = type->pointer.points_to;
8059         result_type           = automatic_type_conversion(result_type);
8060         expression->base.type = result_type;
8061 }
8062
8063 /**
8064  * Record that an address is taken (expression represents an lvalue).
8065  *
8066  * @param expression       the expression
8067  * @param may_be_register  if true, the expression might be an register
8068  */
8069 static void set_address_taken(expression_t *expression, bool may_be_register)
8070 {
8071         if (expression->kind != EXPR_REFERENCE)
8072                 return;
8073
8074         entity_t *const entity = expression->reference.entity;
8075
8076         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
8077                 return;
8078
8079         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8080                         && !may_be_register) {
8081                 errorf(&expression->base.source_position,
8082                                 "address of register %s '%Y' requested",
8083                                 get_entity_kind_name(entity->kind),     entity->base.symbol);
8084         }
8085
8086         if (entity->kind == ENTITY_VARIABLE) {
8087                 entity->variable.address_taken = true;
8088         } else {
8089                 assert(entity->kind == ENTITY_PARAMETER);
8090                 entity->parameter.address_taken = true;
8091         }
8092 }
8093
8094 /**
8095  * Check the semantic of the address taken expression.
8096  */
8097 static void semantic_take_addr(unary_expression_t *expression)
8098 {
8099         expression_t *value = expression->value;
8100         value->base.type    = revert_automatic_type_conversion(value);
8101
8102         type_t *orig_type = value->base.type;
8103         type_t *type      = skip_typeref(orig_type);
8104         if (!is_type_valid(type))
8105                 return;
8106
8107         /* §6.5.3.2 */
8108         if (!is_lvalue(value)) {
8109                 errorf(&expression->base.source_position, "'&' requires an lvalue");
8110         }
8111         if (type->kind == TYPE_BITFIELD) {
8112                 errorf(&expression->base.source_position,
8113                        "'&' not allowed on object with bitfield type '%T'",
8114                        type);
8115         }
8116
8117         set_address_taken(value, false);
8118
8119         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8120 }
8121
8122 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8123 static expression_t *parse_##unexpression_type(void)                         \
8124 {                                                                            \
8125         expression_t *unary_expression                                           \
8126                 = allocate_expression_zero(unexpression_type);                       \
8127         eat(token_type);                                                         \
8128         unary_expression->unary.value = parse_sub_expression(PREC_UNARY);        \
8129                                                                                  \
8130         sfunc(&unary_expression->unary);                                         \
8131                                                                                  \
8132         return unary_expression;                                                 \
8133 }
8134
8135 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8136                                semantic_unexpr_arithmetic)
8137 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8138                                semantic_unexpr_plus)
8139 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8140                                semantic_not)
8141 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8142                                semantic_dereference)
8143 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8144                                semantic_take_addr)
8145 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8146                                semantic_unexpr_integer)
8147 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8148                                semantic_incdec)
8149 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8150                                semantic_incdec)
8151
8152 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8153                                                sfunc)                         \
8154 static expression_t *parse_##unexpression_type(expression_t *left)            \
8155 {                                                                             \
8156         expression_t *unary_expression                                            \
8157                 = allocate_expression_zero(unexpression_type);                        \
8158         eat(token_type);                                                          \
8159         unary_expression->unary.value = left;                                     \
8160                                                                                   \
8161         sfunc(&unary_expression->unary);                                          \
8162                                                                               \
8163         return unary_expression;                                                  \
8164 }
8165
8166 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8167                                        EXPR_UNARY_POSTFIX_INCREMENT,
8168                                        semantic_incdec)
8169 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8170                                        EXPR_UNARY_POSTFIX_DECREMENT,
8171                                        semantic_incdec)
8172
8173 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8174 {
8175         /* TODO: handle complex + imaginary types */
8176
8177         type_left  = get_unqualified_type(type_left);
8178         type_right = get_unqualified_type(type_right);
8179
8180         /* §6.3.1.8 Usual arithmetic conversions */
8181         if (type_left == type_long_double || type_right == type_long_double) {
8182                 return type_long_double;
8183         } else if (type_left == type_double || type_right == type_double) {
8184                 return type_double;
8185         } else if (type_left == type_float || type_right == type_float) {
8186                 return type_float;
8187         }
8188
8189         type_left  = promote_integer(type_left);
8190         type_right = promote_integer(type_right);
8191
8192         if (type_left == type_right)
8193                 return type_left;
8194
8195         bool const signed_left  = is_type_signed(type_left);
8196         bool const signed_right = is_type_signed(type_right);
8197         int const  rank_left    = get_rank(type_left);
8198         int const  rank_right   = get_rank(type_right);
8199
8200         if (signed_left == signed_right)
8201                 return rank_left >= rank_right ? type_left : type_right;
8202
8203         int     s_rank;
8204         int     u_rank;
8205         type_t *s_type;
8206         type_t *u_type;
8207         if (signed_left) {
8208                 s_rank = rank_left;
8209                 s_type = type_left;
8210                 u_rank = rank_right;
8211                 u_type = type_right;
8212         } else {
8213                 s_rank = rank_right;
8214                 s_type = type_right;
8215                 u_rank = rank_left;
8216                 u_type = type_left;
8217         }
8218
8219         if (u_rank >= s_rank)
8220                 return u_type;
8221
8222         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8223          * easier here... */
8224         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8225                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8226                 return s_type;
8227
8228         switch (s_rank) {
8229                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8230                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8231                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8232
8233                 default: panic("invalid atomic type");
8234         }
8235 }
8236
8237 /**
8238  * Check the semantic restrictions for a binary expression.
8239  */
8240 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8241 {
8242         expression_t *const left            = expression->left;
8243         expression_t *const right           = expression->right;
8244         type_t       *const orig_type_left  = left->base.type;
8245         type_t       *const orig_type_right = right->base.type;
8246         type_t       *const type_left       = skip_typeref(orig_type_left);
8247         type_t       *const type_right      = skip_typeref(orig_type_right);
8248
8249         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8250                 /* TODO: improve error message */
8251                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8252                         errorf(&expression->base.source_position,
8253                                "operation needs arithmetic types");
8254                 }
8255                 return;
8256         }
8257
8258         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8259         expression->left      = create_implicit_cast(left, arithmetic_type);
8260         expression->right     = create_implicit_cast(right, arithmetic_type);
8261         expression->base.type = arithmetic_type;
8262 }
8263
8264 static void warn_div_by_zero(binary_expression_t const *const expression)
8265 {
8266         if (!warning.div_by_zero ||
8267             !is_type_integer(expression->base.type))
8268                 return;
8269
8270         expression_t const *const right = expression->right;
8271         /* The type of the right operand can be different for /= */
8272         if (is_type_integer(right->base.type) &&
8273             is_constant_expression(right)     &&
8274             !fold_constant_to_bool(right)) {
8275                 warningf(&expression->base.source_position, "division by zero");
8276         }
8277 }
8278
8279 /**
8280  * Check the semantic restrictions for a div/mod expression.
8281  */
8282 static void semantic_divmod_arithmetic(binary_expression_t *expression)
8283 {
8284         semantic_binexpr_arithmetic(expression);
8285         warn_div_by_zero(expression);
8286 }
8287
8288 static void warn_addsub_in_shift(const expression_t *const expr)
8289 {
8290         if (expr->base.parenthesized)
8291                 return;
8292
8293         char op;
8294         switch (expr->kind) {
8295                 case EXPR_BINARY_ADD: op = '+'; break;
8296                 case EXPR_BINARY_SUB: op = '-'; break;
8297                 default:              return;
8298         }
8299
8300         warningf(&expr->base.source_position,
8301                         "suggest parentheses around '%c' inside shift", op);
8302 }
8303
8304 static bool semantic_shift(binary_expression_t *expression)
8305 {
8306         expression_t *const left            = expression->left;
8307         expression_t *const right           = expression->right;
8308         type_t       *const orig_type_left  = left->base.type;
8309         type_t       *const orig_type_right = right->base.type;
8310         type_t       *      type_left       = skip_typeref(orig_type_left);
8311         type_t       *      type_right      = skip_typeref(orig_type_right);
8312
8313         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8314                 /* TODO: improve error message */
8315                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8316                         errorf(&expression->base.source_position,
8317                                "operands of shift operation must have integer types");
8318                 }
8319                 return false;
8320         }
8321
8322         type_left = promote_integer(type_left);
8323
8324         if (is_constant_expression(right)) {
8325                 long count = fold_constant_to_int(right);
8326                 if (count < 0) {
8327                         warningf(&right->base.source_position,
8328                                         "shift count must be non-negative");
8329                 } else if ((unsigned long)count >=
8330                                 get_atomic_type_size(type_left->atomic.akind) * 8) {
8331                         warningf(&right->base.source_position,
8332                                         "shift count must be less than type width");
8333                 }
8334         }
8335
8336         type_right        = promote_integer(type_right);
8337         expression->right = create_implicit_cast(right, type_right);
8338
8339         return true;
8340 }
8341
8342 static void semantic_shift_op(binary_expression_t *expression)
8343 {
8344         expression_t *const left  = expression->left;
8345         expression_t *const right = expression->right;
8346
8347         if (!semantic_shift(expression))
8348                 return;
8349
8350         if (warning.parentheses) {
8351                 warn_addsub_in_shift(left);
8352                 warn_addsub_in_shift(right);
8353         }
8354
8355         type_t *const orig_type_left = left->base.type;
8356         type_t *      type_left      = skip_typeref(orig_type_left);
8357
8358         type_left             = promote_integer(type_left);
8359         expression->left      = create_implicit_cast(left, type_left);
8360         expression->base.type = type_left;
8361 }
8362
8363 static void semantic_add(binary_expression_t *expression)
8364 {
8365         expression_t *const left            = expression->left;
8366         expression_t *const right           = expression->right;
8367         type_t       *const orig_type_left  = left->base.type;
8368         type_t       *const orig_type_right = right->base.type;
8369         type_t       *const type_left       = skip_typeref(orig_type_left);
8370         type_t       *const type_right      = skip_typeref(orig_type_right);
8371
8372         /* §6.5.6 */
8373         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8374                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8375                 expression->left  = create_implicit_cast(left, arithmetic_type);
8376                 expression->right = create_implicit_cast(right, arithmetic_type);
8377                 expression->base.type = arithmetic_type;
8378         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8379                 check_pointer_arithmetic(&expression->base.source_position,
8380                                          type_left, orig_type_left);
8381                 expression->base.type = type_left;
8382         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8383                 check_pointer_arithmetic(&expression->base.source_position,
8384                                          type_right, orig_type_right);
8385                 expression->base.type = type_right;
8386         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8387                 errorf(&expression->base.source_position,
8388                        "invalid operands to binary + ('%T', '%T')",
8389                        orig_type_left, orig_type_right);
8390         }
8391 }
8392
8393 static void semantic_sub(binary_expression_t *expression)
8394 {
8395         expression_t            *const left            = expression->left;
8396         expression_t            *const right           = expression->right;
8397         type_t                  *const orig_type_left  = left->base.type;
8398         type_t                  *const orig_type_right = right->base.type;
8399         type_t                  *const type_left       = skip_typeref(orig_type_left);
8400         type_t                  *const type_right      = skip_typeref(orig_type_right);
8401         source_position_t const *const pos             = &expression->base.source_position;
8402
8403         /* §5.6.5 */
8404         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8405                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8406                 expression->left        = create_implicit_cast(left, arithmetic_type);
8407                 expression->right       = create_implicit_cast(right, arithmetic_type);
8408                 expression->base.type =  arithmetic_type;
8409         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8410                 check_pointer_arithmetic(&expression->base.source_position,
8411                                          type_left, orig_type_left);
8412                 expression->base.type = type_left;
8413         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8414                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8415                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8416                 if (!types_compatible(unqual_left, unqual_right)) {
8417                         errorf(pos,
8418                                "subtracting pointers to incompatible types '%T' and '%T'",
8419                                orig_type_left, orig_type_right);
8420                 } else if (!is_type_object(unqual_left)) {
8421                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8422                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8423                                        orig_type_left);
8424                         } else if (warning.other) {
8425                                 warningf(pos, "subtracting pointers to void");
8426                         }
8427                 }
8428                 expression->base.type = type_ptrdiff_t;
8429         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8430                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8431                        orig_type_left, orig_type_right);
8432         }
8433 }
8434
8435 static void warn_string_literal_address(expression_t const* expr)
8436 {
8437         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8438                 expr = expr->unary.value;
8439                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8440                         return;
8441                 expr = expr->unary.value;
8442         }
8443
8444         if (expr->kind == EXPR_STRING_LITERAL ||
8445             expr->kind == EXPR_WIDE_STRING_LITERAL) {
8446                 warningf(&expr->base.source_position,
8447                         "comparison with string literal results in unspecified behaviour");
8448         }
8449 }
8450
8451 static void warn_comparison_in_comparison(const expression_t *const expr)
8452 {
8453         if (expr->base.parenthesized)
8454                 return;
8455         switch (expr->base.kind) {
8456                 case EXPR_BINARY_LESS:
8457                 case EXPR_BINARY_GREATER:
8458                 case EXPR_BINARY_LESSEQUAL:
8459                 case EXPR_BINARY_GREATEREQUAL:
8460                 case EXPR_BINARY_NOTEQUAL:
8461                 case EXPR_BINARY_EQUAL:
8462                         warningf(&expr->base.source_position,
8463                                         "comparisons like 'x <= y < z' do not have their mathematical meaning");
8464                         break;
8465                 default:
8466                         break;
8467         }
8468 }
8469
8470 static bool maybe_negative(expression_t const *const expr)
8471 {
8472         return
8473                 !is_constant_expression(expr) ||
8474                 fold_constant_to_int(expr) < 0;
8475 }
8476
8477 /**
8478  * Check the semantics of comparison expressions.
8479  *
8480  * @param expression   The expression to check.
8481  */
8482 static void semantic_comparison(binary_expression_t *expression)
8483 {
8484         expression_t *left  = expression->left;
8485         expression_t *right = expression->right;
8486
8487         if (warning.address) {
8488                 warn_string_literal_address(left);
8489                 warn_string_literal_address(right);
8490
8491                 expression_t const* const func_left = get_reference_address(left);
8492                 if (func_left != NULL && is_null_pointer_constant(right)) {
8493                         warningf(&expression->base.source_position,
8494                                  "the address of '%Y' will never be NULL",
8495                                  func_left->reference.entity->base.symbol);
8496                 }
8497
8498                 expression_t const* const func_right = get_reference_address(right);
8499                 if (func_right != NULL && is_null_pointer_constant(right)) {
8500                         warningf(&expression->base.source_position,
8501                                  "the address of '%Y' will never be NULL",
8502                                  func_right->reference.entity->base.symbol);
8503                 }
8504         }
8505
8506         if (warning.parentheses) {
8507                 warn_comparison_in_comparison(left);
8508                 warn_comparison_in_comparison(right);
8509         }
8510
8511         type_t *orig_type_left  = left->base.type;
8512         type_t *orig_type_right = right->base.type;
8513         type_t *type_left       = skip_typeref(orig_type_left);
8514         type_t *type_right      = skip_typeref(orig_type_right);
8515
8516         /* TODO non-arithmetic types */
8517         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8518                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8519
8520                 /* test for signed vs unsigned compares */
8521                 if (warning.sign_compare && is_type_integer(arithmetic_type)) {
8522                         bool const signed_left  = is_type_signed(type_left);
8523                         bool const signed_right = is_type_signed(type_right);
8524                         if (signed_left != signed_right) {
8525                                 /* FIXME long long needs better const folding magic */
8526                                 /* TODO check whether constant value can be represented by other type */
8527                                 if ((signed_left  && maybe_negative(left)) ||
8528                                                 (signed_right && maybe_negative(right))) {
8529                                         warningf(&expression->base.source_position,
8530                                                         "comparison between signed and unsigned");
8531                                 }
8532                         }
8533                 }
8534
8535                 expression->left        = create_implicit_cast(left, arithmetic_type);
8536                 expression->right       = create_implicit_cast(right, arithmetic_type);
8537                 expression->base.type   = arithmetic_type;
8538                 if (warning.float_equal &&
8539                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8540                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8541                     is_type_float(arithmetic_type)) {
8542                         warningf(&expression->base.source_position,
8543                                  "comparing floating point with == or != is unsafe");
8544                 }
8545         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8546                 /* TODO check compatibility */
8547         } else if (is_type_pointer(type_left)) {
8548                 expression->right = create_implicit_cast(right, type_left);
8549         } else if (is_type_pointer(type_right)) {
8550                 expression->left = create_implicit_cast(left, type_right);
8551         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8552                 type_error_incompatible("invalid operands in comparison",
8553                                         &expression->base.source_position,
8554                                         type_left, type_right);
8555         }
8556         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8557 }
8558
8559 /**
8560  * Checks if a compound type has constant fields.
8561  */
8562 static bool has_const_fields(const compound_type_t *type)
8563 {
8564         compound_t *compound = type->compound;
8565         entity_t   *entry    = compound->members.entities;
8566
8567         for (; entry != NULL; entry = entry->base.next) {
8568                 if (!is_declaration(entry))
8569                         continue;
8570
8571                 const type_t *decl_type = skip_typeref(entry->declaration.type);
8572                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
8573                         return true;
8574         }
8575
8576         return false;
8577 }
8578
8579 static bool is_valid_assignment_lhs(expression_t const* const left)
8580 {
8581         type_t *const orig_type_left = revert_automatic_type_conversion(left);
8582         type_t *const type_left      = skip_typeref(orig_type_left);
8583
8584         if (!is_lvalue(left)) {
8585                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
8586                        left);
8587                 return false;
8588         }
8589
8590         if (left->kind == EXPR_REFERENCE
8591                         && left->reference.entity->kind == ENTITY_FUNCTION) {
8592                 errorf(HERE, "cannot assign to function '%E'", left);
8593                 return false;
8594         }
8595
8596         if (is_type_array(type_left)) {
8597                 errorf(HERE, "cannot assign to array '%E'", left);
8598                 return false;
8599         }
8600         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
8601                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
8602                        orig_type_left);
8603                 return false;
8604         }
8605         if (is_type_incomplete(type_left)) {
8606                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
8607                        left, orig_type_left);
8608                 return false;
8609         }
8610         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
8611                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
8612                        left, orig_type_left);
8613                 return false;
8614         }
8615
8616         return true;
8617 }
8618
8619 static void semantic_arithmetic_assign(binary_expression_t *expression)
8620 {
8621         expression_t *left            = expression->left;
8622         expression_t *right           = expression->right;
8623         type_t       *orig_type_left  = left->base.type;
8624         type_t       *orig_type_right = right->base.type;
8625
8626         if (!is_valid_assignment_lhs(left))
8627                 return;
8628
8629         type_t *type_left  = skip_typeref(orig_type_left);
8630         type_t *type_right = skip_typeref(orig_type_right);
8631
8632         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8633                 /* TODO: improve error message */
8634                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8635                         errorf(&expression->base.source_position,
8636                                "operation needs arithmetic types");
8637                 }
8638                 return;
8639         }
8640
8641         /* combined instructions are tricky. We can't create an implicit cast on
8642          * the left side, because we need the uncasted form for the store.
8643          * The ast2firm pass has to know that left_type must be right_type
8644          * for the arithmetic operation and create a cast by itself */
8645         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8646         expression->right       = create_implicit_cast(right, arithmetic_type);
8647         expression->base.type   = type_left;
8648 }
8649
8650 static void semantic_divmod_assign(binary_expression_t *expression)
8651 {
8652         semantic_arithmetic_assign(expression);
8653         warn_div_by_zero(expression);
8654 }
8655
8656 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
8657 {
8658         expression_t *const left            = expression->left;
8659         expression_t *const right           = expression->right;
8660         type_t       *const orig_type_left  = left->base.type;
8661         type_t       *const orig_type_right = right->base.type;
8662         type_t       *const type_left       = skip_typeref(orig_type_left);
8663         type_t       *const type_right      = skip_typeref(orig_type_right);
8664
8665         if (!is_valid_assignment_lhs(left))
8666                 return;
8667
8668         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8669                 /* combined instructions are tricky. We can't create an implicit cast on
8670                  * the left side, because we need the uncasted form for the store.
8671                  * The ast2firm pass has to know that left_type must be right_type
8672                  * for the arithmetic operation and create a cast by itself */
8673                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
8674                 expression->right     = create_implicit_cast(right, arithmetic_type);
8675                 expression->base.type = type_left;
8676         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8677                 check_pointer_arithmetic(&expression->base.source_position,
8678                                          type_left, orig_type_left);
8679                 expression->base.type = type_left;
8680         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8681                 errorf(&expression->base.source_position,
8682                        "incompatible types '%T' and '%T' in assignment",
8683                        orig_type_left, orig_type_right);
8684         }
8685 }
8686
8687 static void semantic_integer_assign(binary_expression_t *expression)
8688 {
8689         expression_t *left            = expression->left;
8690         expression_t *right           = expression->right;
8691         type_t       *orig_type_left  = left->base.type;
8692         type_t       *orig_type_right = right->base.type;
8693
8694         if (!is_valid_assignment_lhs(left))
8695                 return;
8696
8697         type_t *type_left  = skip_typeref(orig_type_left);
8698         type_t *type_right = skip_typeref(orig_type_right);
8699
8700         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8701                 /* TODO: improve error message */
8702                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8703                         errorf(&expression->base.source_position,
8704                                "operation needs integer types");
8705                 }
8706                 return;
8707         }
8708
8709         /* combined instructions are tricky. We can't create an implicit cast on
8710          * the left side, because we need the uncasted form for the store.
8711          * The ast2firm pass has to know that left_type must be right_type
8712          * for the arithmetic operation and create a cast by itself */
8713         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8714         expression->right       = create_implicit_cast(right, arithmetic_type);
8715         expression->base.type   = type_left;
8716 }
8717
8718 static void semantic_shift_assign(binary_expression_t *expression)
8719 {
8720         expression_t *left           = expression->left;
8721
8722         if (!is_valid_assignment_lhs(left))
8723                 return;
8724
8725         if (!semantic_shift(expression))
8726                 return;
8727
8728         expression->base.type = skip_typeref(left->base.type);
8729 }
8730
8731 static void warn_logical_and_within_or(const expression_t *const expr)
8732 {
8733         if (expr->base.kind != EXPR_BINARY_LOGICAL_AND)
8734                 return;
8735         if (expr->base.parenthesized)
8736                 return;
8737         warningf(&expr->base.source_position,
8738                         "suggest parentheses around && within ||");
8739 }
8740
8741 /**
8742  * Check the semantic restrictions of a logical expression.
8743  */
8744 static void semantic_logical_op(binary_expression_t *expression)
8745 {
8746         /* §6.5.13:2  Each of the operands shall have scalar type.
8747          * §6.5.14:2  Each of the operands shall have scalar type. */
8748         semantic_condition(expression->left,   "left operand of logical operator");
8749         semantic_condition(expression->right, "right operand of logical operator");
8750         if (expression->base.kind == EXPR_BINARY_LOGICAL_OR &&
8751                         warning.parentheses) {
8752                 warn_logical_and_within_or(expression->left);
8753                 warn_logical_and_within_or(expression->right);
8754         }
8755         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8756 }
8757
8758 /**
8759  * Check the semantic restrictions of a binary assign expression.
8760  */
8761 static void semantic_binexpr_assign(binary_expression_t *expression)
8762 {
8763         expression_t *left           = expression->left;
8764         type_t       *orig_type_left = left->base.type;
8765
8766         if (!is_valid_assignment_lhs(left))
8767                 return;
8768
8769         assign_error_t error = semantic_assign(orig_type_left, expression->right);
8770         report_assign_error(error, orig_type_left, expression->right,
8771                         "assignment", &left->base.source_position);
8772         expression->right = create_implicit_cast(expression->right, orig_type_left);
8773         expression->base.type = orig_type_left;
8774 }
8775
8776 /**
8777  * Determine if the outermost operation (or parts thereof) of the given
8778  * expression has no effect in order to generate a warning about this fact.
8779  * Therefore in some cases this only examines some of the operands of the
8780  * expression (see comments in the function and examples below).
8781  * Examples:
8782  *   f() + 23;    // warning, because + has no effect
8783  *   x || f();    // no warning, because x controls execution of f()
8784  *   x ? y : f(); // warning, because y has no effect
8785  *   (void)x;     // no warning to be able to suppress the warning
8786  * This function can NOT be used for an "expression has definitely no effect"-
8787  * analysis. */
8788 static bool expression_has_effect(const expression_t *const expr)
8789 {
8790         switch (expr->kind) {
8791                 case EXPR_UNKNOWN:                    break;
8792                 case EXPR_INVALID:                    return true; /* do NOT warn */
8793                 case EXPR_REFERENCE:                  return false;
8794                 case EXPR_REFERENCE_ENUM_VALUE:       return false;
8795                 /* suppress the warning for microsoft __noop operations */
8796                 case EXPR_CONST:                      return expr->conste.is_ms_noop;
8797                 case EXPR_CHARACTER_CONSTANT:         return false;
8798                 case EXPR_WIDE_CHARACTER_CONSTANT:    return false;
8799                 case EXPR_STRING_LITERAL:             return false;
8800                 case EXPR_WIDE_STRING_LITERAL:        return false;
8801                 case EXPR_LABEL_ADDRESS:              return false;
8802
8803                 case EXPR_CALL: {
8804                         const call_expression_t *const call = &expr->call;
8805                         if (call->function->kind != EXPR_REFERENCE)
8806                                 return true;
8807
8808                         switch (call->function->reference.entity->function.btk) {
8809                                 /* FIXME: which builtins have no effect? */
8810                                 default:                      return true;
8811                         }
8812                 }
8813
8814                 /* Generate the warning if either the left or right hand side of a
8815                  * conditional expression has no effect */
8816                 case EXPR_CONDITIONAL: {
8817                         conditional_expression_t const *const cond = &expr->conditional;
8818                         expression_t             const *const t    = cond->true_expression;
8819                         return
8820                                 (t == NULL || expression_has_effect(t)) &&
8821                                 expression_has_effect(cond->false_expression);
8822                 }
8823
8824                 case EXPR_SELECT:                     return false;
8825                 case EXPR_ARRAY_ACCESS:               return false;
8826                 case EXPR_SIZEOF:                     return false;
8827                 case EXPR_CLASSIFY_TYPE:              return false;
8828                 case EXPR_ALIGNOF:                    return false;
8829
8830                 case EXPR_FUNCNAME:                   return false;
8831                 case EXPR_BUILTIN_CONSTANT_P:         return false;
8832                 case EXPR_BUILTIN_TYPES_COMPATIBLE_P: return false;
8833                 case EXPR_OFFSETOF:                   return false;
8834                 case EXPR_VA_START:                   return true;
8835                 case EXPR_VA_ARG:                     return true;
8836                 case EXPR_VA_COPY:                    return true;
8837                 case EXPR_STATEMENT:                  return true; // TODO
8838                 case EXPR_COMPOUND_LITERAL:           return false;
8839
8840                 case EXPR_UNARY_NEGATE:               return false;
8841                 case EXPR_UNARY_PLUS:                 return false;
8842                 case EXPR_UNARY_BITWISE_NEGATE:       return false;
8843                 case EXPR_UNARY_NOT:                  return false;
8844                 case EXPR_UNARY_DEREFERENCE:          return false;
8845                 case EXPR_UNARY_TAKE_ADDRESS:         return false;
8846                 case EXPR_UNARY_POSTFIX_INCREMENT:    return true;
8847                 case EXPR_UNARY_POSTFIX_DECREMENT:    return true;
8848                 case EXPR_UNARY_PREFIX_INCREMENT:     return true;
8849                 case EXPR_UNARY_PREFIX_DECREMENT:     return true;
8850
8851                 /* Treat void casts as if they have an effect in order to being able to
8852                  * suppress the warning */
8853                 case EXPR_UNARY_CAST: {
8854                         type_t *const type = skip_typeref(expr->base.type);
8855                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
8856                 }
8857
8858                 case EXPR_UNARY_CAST_IMPLICIT:        return true;
8859                 case EXPR_UNARY_ASSUME:               return true;
8860                 case EXPR_UNARY_DELETE:               return true;
8861                 case EXPR_UNARY_DELETE_ARRAY:         return true;
8862                 case EXPR_UNARY_THROW:                return true;
8863
8864                 case EXPR_BINARY_ADD:                 return false;
8865                 case EXPR_BINARY_SUB:                 return false;
8866                 case EXPR_BINARY_MUL:                 return false;
8867                 case EXPR_BINARY_DIV:                 return false;
8868                 case EXPR_BINARY_MOD:                 return false;
8869                 case EXPR_BINARY_EQUAL:               return false;
8870                 case EXPR_BINARY_NOTEQUAL:            return false;
8871                 case EXPR_BINARY_LESS:                return false;
8872                 case EXPR_BINARY_LESSEQUAL:           return false;
8873                 case EXPR_BINARY_GREATER:             return false;
8874                 case EXPR_BINARY_GREATEREQUAL:        return false;
8875                 case EXPR_BINARY_BITWISE_AND:         return false;
8876                 case EXPR_BINARY_BITWISE_OR:          return false;
8877                 case EXPR_BINARY_BITWISE_XOR:         return false;
8878                 case EXPR_BINARY_SHIFTLEFT:           return false;
8879                 case EXPR_BINARY_SHIFTRIGHT:          return false;
8880                 case EXPR_BINARY_ASSIGN:              return true;
8881                 case EXPR_BINARY_MUL_ASSIGN:          return true;
8882                 case EXPR_BINARY_DIV_ASSIGN:          return true;
8883                 case EXPR_BINARY_MOD_ASSIGN:          return true;
8884                 case EXPR_BINARY_ADD_ASSIGN:          return true;
8885                 case EXPR_BINARY_SUB_ASSIGN:          return true;
8886                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:    return true;
8887                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:   return true;
8888                 case EXPR_BINARY_BITWISE_AND_ASSIGN:  return true;
8889                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:  return true;
8890                 case EXPR_BINARY_BITWISE_OR_ASSIGN:   return true;
8891
8892                 /* Only examine the right hand side of && and ||, because the left hand
8893                  * side already has the effect of controlling the execution of the right
8894                  * hand side */
8895                 case EXPR_BINARY_LOGICAL_AND:
8896                 case EXPR_BINARY_LOGICAL_OR:
8897                 /* Only examine the right hand side of a comma expression, because the left
8898                  * hand side has a separate warning */
8899                 case EXPR_BINARY_COMMA:
8900                         return expression_has_effect(expr->binary.right);
8901
8902                 case EXPR_BINARY_ISGREATER:           return false;
8903                 case EXPR_BINARY_ISGREATEREQUAL:      return false;
8904                 case EXPR_BINARY_ISLESS:              return false;
8905                 case EXPR_BINARY_ISLESSEQUAL:         return false;
8906                 case EXPR_BINARY_ISLESSGREATER:       return false;
8907                 case EXPR_BINARY_ISUNORDERED:         return false;
8908         }
8909
8910         internal_errorf(HERE, "unexpected expression");
8911 }
8912
8913 static void semantic_comma(binary_expression_t *expression)
8914 {
8915         if (warning.unused_value) {
8916                 const expression_t *const left = expression->left;
8917                 if (!expression_has_effect(left)) {
8918                         warningf(&left->base.source_position,
8919                                  "left-hand operand of comma expression has no effect");
8920                 }
8921         }
8922         expression->base.type = expression->right->base.type;
8923 }
8924
8925 /**
8926  * @param prec_r precedence of the right operand
8927  */
8928 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
8929 static expression_t *parse_##binexpression_type(expression_t *left)          \
8930 {                                                                            \
8931         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
8932         binexpr->binary.left  = left;                                            \
8933         eat(token_type);                                                         \
8934                                                                              \
8935         expression_t *right = parse_sub_expression(prec_r);                      \
8936                                                                              \
8937         binexpr->binary.right = right;                                           \
8938         sfunc(&binexpr->binary);                                                 \
8939                                                                              \
8940         return binexpr;                                                          \
8941 }
8942
8943 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
8944 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
8945 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
8946 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
8947 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
8948 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
8949 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
8950 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
8951 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
8952 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
8953 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
8954 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
8955 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
8956 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
8957 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
8958 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
8959 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
8960 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
8961 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
8962 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8963 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
8964 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
8965 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8966 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
8967 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_shift_assign)
8968 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_shift_assign)
8969 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8970 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_integer_assign)
8971 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_integer_assign)
8972 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
8973
8974
8975 static expression_t *parse_sub_expression(precedence_t precedence)
8976 {
8977         if (token.type < 0) {
8978                 return expected_expression_error();
8979         }
8980
8981         expression_parser_function_t *parser
8982                 = &expression_parsers[token.type];
8983         source_position_t             source_position = token.source_position;
8984         expression_t                 *left;
8985
8986         if (parser->parser != NULL) {
8987                 left = parser->parser();
8988         } else {
8989                 left = parse_primary_expression();
8990         }
8991         assert(left != NULL);
8992         left->base.source_position = source_position;
8993
8994         while (true) {
8995                 if (token.type < 0) {
8996                         return expected_expression_error();
8997                 }
8998
8999                 parser = &expression_parsers[token.type];
9000                 if (parser->infix_parser == NULL)
9001                         break;
9002                 if (parser->infix_precedence < precedence)
9003                         break;
9004
9005                 left = parser->infix_parser(left);
9006
9007                 assert(left != NULL);
9008                 assert(left->kind != EXPR_UNKNOWN);
9009                 left->base.source_position = source_position;
9010         }
9011
9012         return left;
9013 }
9014
9015 /**
9016  * Parse an expression.
9017  */
9018 static expression_t *parse_expression(void)
9019 {
9020         return parse_sub_expression(PREC_EXPRESSION);
9021 }
9022
9023 /**
9024  * Register a parser for a prefix-like operator.
9025  *
9026  * @param parser      the parser function
9027  * @param token_type  the token type of the prefix token
9028  */
9029 static void register_expression_parser(parse_expression_function parser,
9030                                        int token_type)
9031 {
9032         expression_parser_function_t *entry = &expression_parsers[token_type];
9033
9034         if (entry->parser != NULL) {
9035                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9036                 panic("trying to register multiple expression parsers for a token");
9037         }
9038         entry->parser = parser;
9039 }
9040
9041 /**
9042  * Register a parser for an infix operator with given precedence.
9043  *
9044  * @param parser      the parser function
9045  * @param token_type  the token type of the infix operator
9046  * @param precedence  the precedence of the operator
9047  */
9048 static void register_infix_parser(parse_expression_infix_function parser,
9049                 int token_type, precedence_t precedence)
9050 {
9051         expression_parser_function_t *entry = &expression_parsers[token_type];
9052
9053         if (entry->infix_parser != NULL) {
9054                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9055                 panic("trying to register multiple infix expression parsers for a "
9056                       "token");
9057         }
9058         entry->infix_parser     = parser;
9059         entry->infix_precedence = precedence;
9060 }
9061
9062 /**
9063  * Initialize the expression parsers.
9064  */
9065 static void init_expression_parsers(void)
9066 {
9067         memset(&expression_parsers, 0, sizeof(expression_parsers));
9068
9069         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9070         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9071         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9072         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9073         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9074         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9075         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9076         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9077         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9078         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9079         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9080         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9081         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9082         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9083         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9084         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9085         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9086         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9087         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9088         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9089         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9090         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9091         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9092         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9093         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9094         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9095         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9096         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9097         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9098         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9099         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9100         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9101         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9102         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9103         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9104         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9105         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9106
9107         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9108         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9109         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9110         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9111         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9112         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9113         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9114         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9115         register_expression_parser(parse_sizeof,                      T_sizeof);
9116         register_expression_parser(parse_alignof,                     T___alignof__);
9117         register_expression_parser(parse_extension,                   T___extension__);
9118         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9119         register_expression_parser(parse_delete,                      T_delete);
9120         register_expression_parser(parse_throw,                       T_throw);
9121 }
9122
9123 /**
9124  * Parse a asm statement arguments specification.
9125  */
9126 static asm_argument_t *parse_asm_arguments(bool is_out)
9127 {
9128         asm_argument_t  *result = NULL;
9129         asm_argument_t **anchor = &result;
9130
9131         while (token.type == T_STRING_LITERAL || token.type == '[') {
9132                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9133                 memset(argument, 0, sizeof(argument[0]));
9134
9135                 if (token.type == '[') {
9136                         eat('[');
9137                         if (token.type != T_IDENTIFIER) {
9138                                 parse_error_expected("while parsing asm argument",
9139                                                      T_IDENTIFIER, NULL);
9140                                 return NULL;
9141                         }
9142                         argument->symbol = token.v.symbol;
9143
9144                         expect(']', end_error);
9145                 }
9146
9147                 argument->constraints = parse_string_literals();
9148                 expect('(', end_error);
9149                 add_anchor_token(')');
9150                 expression_t *expression = parse_expression();
9151                 rem_anchor_token(')');
9152                 if (is_out) {
9153                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9154                          * change size or type representation (e.g. int -> long is ok, but
9155                          * int -> float is not) */
9156                         if (expression->kind == EXPR_UNARY_CAST) {
9157                                 type_t      *const type = expression->base.type;
9158                                 type_kind_t  const kind = type->kind;
9159                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9160                                         unsigned flags;
9161                                         unsigned size;
9162                                         if (kind == TYPE_ATOMIC) {
9163                                                 atomic_type_kind_t const akind = type->atomic.akind;
9164                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9165                                                 size  = get_atomic_type_size(akind);
9166                                         } else {
9167                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9168                                                 size  = get_atomic_type_size(get_intptr_kind());
9169                                         }
9170
9171                                         do {
9172                                                 expression_t *const value      = expression->unary.value;
9173                                                 type_t       *const value_type = value->base.type;
9174                                                 type_kind_t   const value_kind = value_type->kind;
9175
9176                                                 unsigned value_flags;
9177                                                 unsigned value_size;
9178                                                 if (value_kind == TYPE_ATOMIC) {
9179                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9180                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9181                                                         value_size  = get_atomic_type_size(value_akind);
9182                                                 } else if (value_kind == TYPE_POINTER) {
9183                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9184                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9185                                                 } else {
9186                                                         break;
9187                                                 }
9188
9189                                                 if (value_flags != flags || value_size != size)
9190                                                         break;
9191
9192                                                 expression = value;
9193                                         } while (expression->kind == EXPR_UNARY_CAST);
9194                                 }
9195                         }
9196
9197                         if (!is_lvalue(expression)) {
9198                                 errorf(&expression->base.source_position,
9199                                        "asm output argument is not an lvalue");
9200                         }
9201
9202                         if (argument->constraints.begin[0] == '+')
9203                                 mark_vars_read(expression, NULL);
9204                 } else {
9205                         mark_vars_read(expression, NULL);
9206                 }
9207                 argument->expression = expression;
9208                 expect(')', end_error);
9209
9210                 set_address_taken(expression, true);
9211
9212                 *anchor = argument;
9213                 anchor  = &argument->next;
9214
9215                 if (token.type != ',')
9216                         break;
9217                 eat(',');
9218         }
9219
9220         return result;
9221 end_error:
9222         return NULL;
9223 }
9224
9225 /**
9226  * Parse a asm statement clobber specification.
9227  */
9228 static asm_clobber_t *parse_asm_clobbers(void)
9229 {
9230         asm_clobber_t *result = NULL;
9231         asm_clobber_t *last   = NULL;
9232
9233         while (token.type == T_STRING_LITERAL) {
9234                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9235                 clobber->clobber       = parse_string_literals();
9236
9237                 if (last != NULL) {
9238                         last->next = clobber;
9239                 } else {
9240                         result = clobber;
9241                 }
9242                 last = clobber;
9243
9244                 if (token.type != ',')
9245                         break;
9246                 eat(',');
9247         }
9248
9249         return result;
9250 }
9251
9252 /**
9253  * Parse an asm statement.
9254  */
9255 static statement_t *parse_asm_statement(void)
9256 {
9257         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9258         asm_statement_t *asm_statement = &statement->asms;
9259
9260         eat(T_asm);
9261
9262         if (token.type == T_volatile) {
9263                 next_token();
9264                 asm_statement->is_volatile = true;
9265         }
9266
9267         expect('(', end_error);
9268         add_anchor_token(')');
9269         add_anchor_token(':');
9270         asm_statement->asm_text = parse_string_literals();
9271
9272         if (token.type != ':') {
9273                 rem_anchor_token(':');
9274                 goto end_of_asm;
9275         }
9276         eat(':');
9277
9278         asm_statement->outputs = parse_asm_arguments(true);
9279         if (token.type != ':') {
9280                 rem_anchor_token(':');
9281                 goto end_of_asm;
9282         }
9283         eat(':');
9284
9285         asm_statement->inputs = parse_asm_arguments(false);
9286         if (token.type != ':') {
9287                 rem_anchor_token(':');
9288                 goto end_of_asm;
9289         }
9290         rem_anchor_token(':');
9291         eat(':');
9292
9293         asm_statement->clobbers = parse_asm_clobbers();
9294
9295 end_of_asm:
9296         rem_anchor_token(')');
9297         expect(')', end_error);
9298         expect(';', end_error);
9299
9300         if (asm_statement->outputs == NULL) {
9301                 /* GCC: An 'asm' instruction without any output operands will be treated
9302                  * identically to a volatile 'asm' instruction. */
9303                 asm_statement->is_volatile = true;
9304         }
9305
9306         return statement;
9307 end_error:
9308         return create_invalid_statement();
9309 }
9310
9311 /**
9312  * Parse a case statement.
9313  */
9314 static statement_t *parse_case_statement(void)
9315 {
9316         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9317         source_position_t *const pos       = &statement->base.source_position;
9318
9319         eat(T_case);
9320
9321         expression_t *const expression   = parse_expression();
9322         statement->case_label.expression = expression;
9323         if (!is_constant_expression(expression)) {
9324                 /* This check does not prevent the error message in all cases of an
9325                  * prior error while parsing the expression.  At least it catches the
9326                  * common case of a mistyped enum entry. */
9327                 if (is_type_valid(skip_typeref(expression->base.type))) {
9328                         errorf(pos, "case label does not reduce to an integer constant");
9329                 }
9330                 statement->case_label.is_bad = true;
9331         } else {
9332                 long const val = fold_constant_to_int(expression);
9333                 statement->case_label.first_case = val;
9334                 statement->case_label.last_case  = val;
9335         }
9336
9337         if (GNU_MODE) {
9338                 if (token.type == T_DOTDOTDOT) {
9339                         next_token();
9340                         expression_t *const end_range   = parse_expression();
9341                         statement->case_label.end_range = end_range;
9342                         if (!is_constant_expression(end_range)) {
9343                                 /* This check does not prevent the error message in all cases of an
9344                                  * prior error while parsing the expression.  At least it catches the
9345                                  * common case of a mistyped enum entry. */
9346                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9347                                         errorf(pos, "case range does not reduce to an integer constant");
9348                                 }
9349                                 statement->case_label.is_bad = true;
9350                         } else {
9351                                 long const val = fold_constant_to_int(end_range);
9352                                 statement->case_label.last_case = val;
9353
9354                                 if (warning.other && val < statement->case_label.first_case) {
9355                                         statement->case_label.is_empty_range = true;
9356                                         warningf(pos, "empty range specified");
9357                                 }
9358                         }
9359                 }
9360         }
9361
9362         PUSH_PARENT(statement);
9363
9364         expect(':', end_error);
9365 end_error:
9366
9367         if (current_switch != NULL) {
9368                 if (! statement->case_label.is_bad) {
9369                         /* Check for duplicate case values */
9370                         case_label_statement_t *c = &statement->case_label;
9371                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9372                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9373                                         continue;
9374
9375                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9376                                         continue;
9377
9378                                 errorf(pos, "duplicate case value (previously used %P)",
9379                                        &l->base.source_position);
9380                                 break;
9381                         }
9382                 }
9383                 /* link all cases into the switch statement */
9384                 if (current_switch->last_case == NULL) {
9385                         current_switch->first_case      = &statement->case_label;
9386                 } else {
9387                         current_switch->last_case->next = &statement->case_label;
9388                 }
9389                 current_switch->last_case = &statement->case_label;
9390         } else {
9391                 errorf(pos, "case label not within a switch statement");
9392         }
9393
9394         statement_t *const inner_stmt = parse_statement();
9395         statement->case_label.statement = inner_stmt;
9396         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9397                 errorf(&inner_stmt->base.source_position, "declaration after case label");
9398         }
9399
9400         POP_PARENT;
9401         return statement;
9402 }
9403
9404 /**
9405  * Parse a default statement.
9406  */
9407 static statement_t *parse_default_statement(void)
9408 {
9409         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9410
9411         eat(T_default);
9412
9413         PUSH_PARENT(statement);
9414
9415         expect(':', end_error);
9416         if (current_switch != NULL) {
9417                 const case_label_statement_t *def_label = current_switch->default_label;
9418                 if (def_label != NULL) {
9419                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9420                                &def_label->base.source_position);
9421                 } else {
9422                         current_switch->default_label = &statement->case_label;
9423
9424                         /* link all cases into the switch statement */
9425                         if (current_switch->last_case == NULL) {
9426                                 current_switch->first_case      = &statement->case_label;
9427                         } else {
9428                                 current_switch->last_case->next = &statement->case_label;
9429                         }
9430                         current_switch->last_case = &statement->case_label;
9431                 }
9432         } else {
9433                 errorf(&statement->base.source_position,
9434                         "'default' label not within a switch statement");
9435         }
9436
9437         statement_t *const inner_stmt = parse_statement();
9438         statement->case_label.statement = inner_stmt;
9439         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9440                 errorf(&inner_stmt->base.source_position, "declaration after default label");
9441         }
9442
9443         POP_PARENT;
9444         return statement;
9445 end_error:
9446         POP_PARENT;
9447         return create_invalid_statement();
9448 }
9449
9450 /**
9451  * Parse a label statement.
9452  */
9453 static statement_t *parse_label_statement(void)
9454 {
9455         assert(token.type == T_IDENTIFIER);
9456         symbol_t *symbol = token.v.symbol;
9457         label_t  *label  = get_label(symbol);
9458
9459         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9460         statement->label.label       = label;
9461
9462         next_token();
9463
9464         PUSH_PARENT(statement);
9465
9466         /* if statement is already set then the label is defined twice,
9467          * otherwise it was just mentioned in a goto/local label declaration so far
9468          */
9469         if (label->statement != NULL) {
9470                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9471                        symbol, &label->base.source_position);
9472         } else {
9473                 label->base.source_position = token.source_position;
9474                 label->statement            = statement;
9475         }
9476
9477         eat(':');
9478
9479         if (token.type == '}') {
9480                 /* TODO only warn? */
9481                 if (warning.other && false) {
9482                         warningf(HERE, "label at end of compound statement");
9483                         statement->label.statement = create_empty_statement();
9484                 } else {
9485                         errorf(HERE, "label at end of compound statement");
9486                         statement->label.statement = create_invalid_statement();
9487                 }
9488         } else if (token.type == ';') {
9489                 /* Eat an empty statement here, to avoid the warning about an empty
9490                  * statement after a label.  label:; is commonly used to have a label
9491                  * before a closing brace. */
9492                 statement->label.statement = create_empty_statement();
9493                 next_token();
9494         } else {
9495                 statement_t *const inner_stmt = parse_statement();
9496                 statement->label.statement = inner_stmt;
9497                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
9498                         errorf(&inner_stmt->base.source_position, "declaration after label");
9499                 }
9500         }
9501
9502         /* remember the labels in a list for later checking */
9503         *label_anchor = &statement->label;
9504         label_anchor  = &statement->label.next;
9505
9506         POP_PARENT;
9507         return statement;
9508 }
9509
9510 /**
9511  * Parse an if statement.
9512  */
9513 static statement_t *parse_if(void)
9514 {
9515         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9516
9517         eat(T_if);
9518
9519         PUSH_PARENT(statement);
9520
9521         add_anchor_token('{');
9522
9523         expect('(', end_error);
9524         add_anchor_token(')');
9525         expression_t *const expr = parse_expression();
9526         statement->ifs.condition = expr;
9527         /* §6.8.4.1:1  The controlling expression of an if statement shall have
9528          *             scalar type. */
9529         semantic_condition(expr, "condition of 'if'-statment");
9530         mark_vars_read(expr, NULL);
9531         rem_anchor_token(')');
9532         expect(')', end_error);
9533
9534 end_error:
9535         rem_anchor_token('{');
9536
9537         add_anchor_token(T_else);
9538         statement_t *const true_stmt = parse_statement();
9539         statement->ifs.true_statement = true_stmt;
9540         rem_anchor_token(T_else);
9541
9542         if (token.type == T_else) {
9543                 next_token();
9544                 statement->ifs.false_statement = parse_statement();
9545         } else if (warning.parentheses &&
9546                         true_stmt->kind == STATEMENT_IF &&
9547                         true_stmt->ifs.false_statement != NULL) {
9548                 warningf(&true_stmt->base.source_position,
9549                                 "suggest explicit braces to avoid ambiguous 'else'");
9550         }
9551
9552         POP_PARENT;
9553         return statement;
9554 }
9555
9556 /**
9557  * Check that all enums are handled in a switch.
9558  *
9559  * @param statement  the switch statement to check
9560  */
9561 static void check_enum_cases(const switch_statement_t *statement)
9562 {
9563         const type_t *type = skip_typeref(statement->expression->base.type);
9564         if (! is_type_enum(type))
9565                 return;
9566         const enum_type_t *enumt = &type->enumt;
9567
9568         /* if we have a default, no warnings */
9569         if (statement->default_label != NULL)
9570                 return;
9571
9572         /* FIXME: calculation of value should be done while parsing */
9573         /* TODO: quadratic algorithm here. Change to an n log n one */
9574         long            last_value = -1;
9575         const entity_t *entry      = enumt->enume->base.next;
9576         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9577              entry = entry->base.next) {
9578                 const expression_t *expression = entry->enum_value.value;
9579                 long                value      = expression != NULL ? fold_constant_to_int(expression) : last_value + 1;
9580                 bool                found      = false;
9581                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9582                         if (l->expression == NULL)
9583                                 continue;
9584                         if (l->first_case <= value && value <= l->last_case) {
9585                                 found = true;
9586                                 break;
9587                         }
9588                 }
9589                 if (! found) {
9590                         warningf(&statement->base.source_position,
9591                                  "enumeration value '%Y' not handled in switch",
9592                                  entry->base.symbol);
9593                 }
9594                 last_value = value;
9595         }
9596 }
9597
9598 /**
9599  * Parse a switch statement.
9600  */
9601 static statement_t *parse_switch(void)
9602 {
9603         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9604
9605         eat(T_switch);
9606
9607         PUSH_PARENT(statement);
9608
9609         expect('(', end_error);
9610         add_anchor_token(')');
9611         expression_t *const expr = parse_expression();
9612         mark_vars_read(expr, NULL);
9613         type_t       *      type = skip_typeref(expr->base.type);
9614         if (is_type_integer(type)) {
9615                 type = promote_integer(type);
9616                 if (warning.traditional) {
9617                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
9618                                 warningf(&expr->base.source_position,
9619                                         "'%T' switch expression not converted to '%T' in ISO C",
9620                                         type, type_int);
9621                         }
9622                 }
9623         } else if (is_type_valid(type)) {
9624                 errorf(&expr->base.source_position,
9625                        "switch quantity is not an integer, but '%T'", type);
9626                 type = type_error_type;
9627         }
9628         statement->switchs.expression = create_implicit_cast(expr, type);
9629         expect(')', end_error);
9630         rem_anchor_token(')');
9631
9632         switch_statement_t *rem = current_switch;
9633         current_switch          = &statement->switchs;
9634         statement->switchs.body = parse_statement();
9635         current_switch          = rem;
9636
9637         if (warning.switch_default &&
9638             statement->switchs.default_label == NULL) {
9639                 warningf(&statement->base.source_position, "switch has no default case");
9640         }
9641         if (warning.switch_enum)
9642                 check_enum_cases(&statement->switchs);
9643
9644         POP_PARENT;
9645         return statement;
9646 end_error:
9647         POP_PARENT;
9648         return create_invalid_statement();
9649 }
9650
9651 static statement_t *parse_loop_body(statement_t *const loop)
9652 {
9653         statement_t *const rem = current_loop;
9654         current_loop = loop;
9655
9656         statement_t *const body = parse_statement();
9657
9658         current_loop = rem;
9659         return body;
9660 }
9661
9662 /**
9663  * Parse a while statement.
9664  */
9665 static statement_t *parse_while(void)
9666 {
9667         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
9668
9669         eat(T_while);
9670
9671         PUSH_PARENT(statement);
9672
9673         expect('(', end_error);
9674         add_anchor_token(')');
9675         expression_t *const cond = parse_expression();
9676         statement->whiles.condition = cond;
9677         /* §6.8.5:2    The controlling expression of an iteration statement shall
9678          *             have scalar type. */
9679         semantic_condition(cond, "condition of 'while'-statement");
9680         mark_vars_read(cond, NULL);
9681         rem_anchor_token(')');
9682         expect(')', end_error);
9683
9684         statement->whiles.body = parse_loop_body(statement);
9685
9686         POP_PARENT;
9687         return statement;
9688 end_error:
9689         POP_PARENT;
9690         return create_invalid_statement();
9691 }
9692
9693 /**
9694  * Parse a do statement.
9695  */
9696 static statement_t *parse_do(void)
9697 {
9698         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
9699
9700         eat(T_do);
9701
9702         PUSH_PARENT(statement);
9703
9704         add_anchor_token(T_while);
9705         statement->do_while.body = parse_loop_body(statement);
9706         rem_anchor_token(T_while);
9707
9708         expect(T_while, end_error);
9709         expect('(', end_error);
9710         add_anchor_token(')');
9711         expression_t *const cond = parse_expression();
9712         statement->do_while.condition = cond;
9713         /* §6.8.5:2    The controlling expression of an iteration statement shall
9714          *             have scalar type. */
9715         semantic_condition(cond, "condition of 'do-while'-statement");
9716         mark_vars_read(cond, NULL);
9717         rem_anchor_token(')');
9718         expect(')', end_error);
9719         expect(';', end_error);
9720
9721         POP_PARENT;
9722         return statement;
9723 end_error:
9724         POP_PARENT;
9725         return create_invalid_statement();
9726 }
9727
9728 /**
9729  * Parse a for statement.
9730  */
9731 static statement_t *parse_for(void)
9732 {
9733         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
9734
9735         eat(T_for);
9736
9737         expect('(', end_error1);
9738         add_anchor_token(')');
9739
9740         PUSH_PARENT(statement);
9741
9742         size_t const  top       = environment_top();
9743         scope_t      *old_scope = scope_push(&statement->fors.scope);
9744
9745         bool old_gcc_extension = in_gcc_extension;
9746         while (token.type == T___extension__) {
9747                 next_token();
9748                 in_gcc_extension = true;
9749         }
9750
9751         if (token.type == ';') {
9752                 next_token();
9753         } else if (is_declaration_specifier(&token, false)) {
9754                 parse_declaration(record_entity, DECL_FLAGS_NONE);
9755         } else {
9756                 add_anchor_token(';');
9757                 expression_t *const init = parse_expression();
9758                 statement->fors.initialisation = init;
9759                 mark_vars_read(init, ENT_ANY);
9760                 if (warning.unused_value && !expression_has_effect(init)) {
9761                         warningf(&init->base.source_position,
9762                                         "initialisation of 'for'-statement has no effect");
9763                 }
9764                 rem_anchor_token(';');
9765                 expect(';', end_error2);
9766         }
9767         in_gcc_extension = old_gcc_extension;
9768
9769         if (token.type != ';') {
9770                 add_anchor_token(';');
9771                 expression_t *const cond = parse_expression();
9772                 statement->fors.condition = cond;
9773                 /* §6.8.5:2    The controlling expression of an iteration statement
9774                  *             shall have scalar type. */
9775                 semantic_condition(cond, "condition of 'for'-statement");
9776                 mark_vars_read(cond, NULL);
9777                 rem_anchor_token(';');
9778         }
9779         expect(';', end_error2);
9780         if (token.type != ')') {
9781                 expression_t *const step = parse_expression();
9782                 statement->fors.step = step;
9783                 mark_vars_read(step, ENT_ANY);
9784                 if (warning.unused_value && !expression_has_effect(step)) {
9785                         warningf(&step->base.source_position,
9786                                  "step of 'for'-statement has no effect");
9787                 }
9788         }
9789         expect(')', end_error2);
9790         rem_anchor_token(')');
9791         statement->fors.body = parse_loop_body(statement);
9792
9793         assert(current_scope == &statement->fors.scope);
9794         scope_pop(old_scope);
9795         environment_pop_to(top);
9796
9797         POP_PARENT;
9798         return statement;
9799
9800 end_error2:
9801         POP_PARENT;
9802         rem_anchor_token(')');
9803         assert(current_scope == &statement->fors.scope);
9804         scope_pop(old_scope);
9805         environment_pop_to(top);
9806         /* fallthrough */
9807
9808 end_error1:
9809         return create_invalid_statement();
9810 }
9811
9812 /**
9813  * Parse a goto statement.
9814  */
9815 static statement_t *parse_goto(void)
9816 {
9817         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
9818         eat(T_goto);
9819
9820         if (GNU_MODE && token.type == '*') {
9821                 next_token();
9822                 expression_t *expression = parse_expression();
9823                 mark_vars_read(expression, NULL);
9824
9825                 /* Argh: although documentation says the expression must be of type void*,
9826                  * gcc accepts anything that can be casted into void* without error */
9827                 type_t *type = expression->base.type;
9828
9829                 if (type != type_error_type) {
9830                         if (!is_type_pointer(type) && !is_type_integer(type)) {
9831                                 errorf(&expression->base.source_position,
9832                                         "cannot convert to a pointer type");
9833                         } else if (warning.other && type != type_void_ptr) {
9834                                 warningf(&expression->base.source_position,
9835                                         "type of computed goto expression should be 'void*' not '%T'", type);
9836                         }
9837                         expression = create_implicit_cast(expression, type_void_ptr);
9838                 }
9839
9840                 statement->gotos.expression = expression;
9841         } else if (token.type == T_IDENTIFIER) {
9842                 symbol_t *symbol = token.v.symbol;
9843                 next_token();
9844                 statement->gotos.label = get_label(symbol);
9845         } else {
9846                 if (GNU_MODE)
9847                         parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
9848                 else
9849                         parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
9850                 eat_until_anchor();
9851                 goto end_error;
9852         }
9853
9854         /* remember the goto's in a list for later checking */
9855         *goto_anchor = &statement->gotos;
9856         goto_anchor  = &statement->gotos.next;
9857
9858         expect(';', end_error);
9859
9860         return statement;
9861 end_error:
9862         return create_invalid_statement();
9863 }
9864
9865 /**
9866  * Parse a continue statement.
9867  */
9868 static statement_t *parse_continue(void)
9869 {
9870         if (current_loop == NULL) {
9871                 errorf(HERE, "continue statement not within loop");
9872         }
9873
9874         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
9875
9876         eat(T_continue);
9877         expect(';', end_error);
9878
9879 end_error:
9880         return statement;
9881 }
9882
9883 /**
9884  * Parse a break statement.
9885  */
9886 static statement_t *parse_break(void)
9887 {
9888         if (current_switch == NULL && current_loop == NULL) {
9889                 errorf(HERE, "break statement not within loop or switch");
9890         }
9891
9892         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
9893
9894         eat(T_break);
9895         expect(';', end_error);
9896
9897 end_error:
9898         return statement;
9899 }
9900
9901 /**
9902  * Parse a __leave statement.
9903  */
9904 static statement_t *parse_leave_statement(void)
9905 {
9906         if (current_try == NULL) {
9907                 errorf(HERE, "__leave statement not within __try");
9908         }
9909
9910         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
9911
9912         eat(T___leave);
9913         expect(';', end_error);
9914
9915 end_error:
9916         return statement;
9917 }
9918
9919 /**
9920  * Check if a given entity represents a local variable.
9921  */
9922 static bool is_local_variable(const entity_t *entity)
9923 {
9924         if (entity->kind != ENTITY_VARIABLE)
9925                 return false;
9926
9927         switch ((storage_class_tag_t) entity->declaration.storage_class) {
9928         case STORAGE_CLASS_AUTO:
9929         case STORAGE_CLASS_REGISTER: {
9930                 const type_t *type = skip_typeref(entity->declaration.type);
9931                 if (is_type_function(type)) {
9932                         return false;
9933                 } else {
9934                         return true;
9935                 }
9936         }
9937         default:
9938                 return false;
9939         }
9940 }
9941
9942 /**
9943  * Check if a given expression represents a local variable.
9944  */
9945 static bool expression_is_local_variable(const expression_t *expression)
9946 {
9947         if (expression->base.kind != EXPR_REFERENCE) {
9948                 return false;
9949         }
9950         const entity_t *entity = expression->reference.entity;
9951         return is_local_variable(entity);
9952 }
9953
9954 /**
9955  * Check if a given expression represents a local variable and
9956  * return its declaration then, else return NULL.
9957  */
9958 entity_t *expression_is_variable(const expression_t *expression)
9959 {
9960         if (expression->base.kind != EXPR_REFERENCE) {
9961                 return NULL;
9962         }
9963         entity_t *entity = expression->reference.entity;
9964         if (entity->kind != ENTITY_VARIABLE)
9965                 return NULL;
9966
9967         return entity;
9968 }
9969
9970 /**
9971  * Parse a return statement.
9972  */
9973 static statement_t *parse_return(void)
9974 {
9975         eat(T_return);
9976
9977         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
9978
9979         expression_t *return_value = NULL;
9980         if (token.type != ';') {
9981                 return_value = parse_expression();
9982                 mark_vars_read(return_value, NULL);
9983         }
9984
9985         const type_t *const func_type = skip_typeref(current_function->base.type);
9986         assert(is_type_function(func_type));
9987         type_t *const return_type = skip_typeref(func_type->function.return_type);
9988
9989         source_position_t const *const pos = &statement->base.source_position;
9990         if (return_value != NULL) {
9991                 type_t *return_value_type = skip_typeref(return_value->base.type);
9992
9993                 if (is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
9994                         if (is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
9995                                 /* ISO/IEC 14882:1998(E) §6.6.3:2 */
9996                                 /* Only warn in C mode, because GCC does the same */
9997                                 if (c_mode & _CXX || strict_mode) {
9998                                         errorf(pos,
9999                                                         "'return' with a value, in function returning 'void'");
10000                                 } else if (warning.other) {
10001                                         warningf(pos,
10002                                                         "'return' with a value, in function returning 'void'");
10003                                 }
10004                         } else if (!(c_mode & _CXX)) { /* ISO/IEC 14882:1998(E) §6.6.3:3 */
10005                                 /* Only warn in C mode, because GCC does the same */
10006                                 if (strict_mode) {
10007                                         errorf(pos,
10008                                                         "'return' with expression in function returning 'void'");
10009                                 } else if (warning.other) {
10010                                         warningf(pos,
10011                                                         "'return' with expression in function returning 'void'");
10012                                 }
10013                         }
10014                 } else {
10015                         assign_error_t error = semantic_assign(return_type, return_value);
10016                         report_assign_error(error, return_type, return_value, "'return'",
10017                                         pos);
10018                 }
10019                 return_value = create_implicit_cast(return_value, return_type);
10020                 /* check for returning address of a local var */
10021                 if (warning.other && return_value != NULL
10022                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
10023                         const expression_t *expression = return_value->unary.value;
10024                         if (expression_is_local_variable(expression)) {
10025                                 warningf(pos, "function returns address of local variable");
10026                         }
10027                 }
10028         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10029                 /* ISO/IEC 14882:1998(E) §6.6.3:3 */
10030                 if (c_mode & _CXX || strict_mode) {
10031                         errorf(pos,
10032                                         "'return' without value, in function returning non-void");
10033                 } else {
10034                         warningf(pos,
10035                                         "'return' without value, in function returning non-void");
10036                 }
10037         }
10038         statement->returns.value = return_value;
10039
10040         expect(';', end_error);
10041
10042 end_error:
10043         return statement;
10044 }
10045
10046 /**
10047  * Parse a declaration statement.
10048  */
10049 static statement_t *parse_declaration_statement(void)
10050 {
10051         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10052
10053         entity_t *before = current_scope->last_entity;
10054         if (GNU_MODE) {
10055                 parse_external_declaration();
10056         } else {
10057                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10058         }
10059
10060         declaration_statement_t *const decl  = &statement->declaration;
10061         entity_t                *const begin =
10062                 before != NULL ? before->base.next : current_scope->entities;
10063         decl->declarations_begin = begin;
10064         decl->declarations_end   = begin != NULL ? current_scope->last_entity : NULL;
10065
10066         return statement;
10067 }
10068
10069 /**
10070  * Parse an expression statement, ie. expr ';'.
10071  */
10072 static statement_t *parse_expression_statement(void)
10073 {
10074         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10075
10076         expression_t *const expr         = parse_expression();
10077         statement->expression.expression = expr;
10078         mark_vars_read(expr, ENT_ANY);
10079
10080         expect(';', end_error);
10081
10082 end_error:
10083         return statement;
10084 }
10085
10086 /**
10087  * Parse a microsoft __try { } __finally { } or
10088  * __try{ } __except() { }
10089  */
10090 static statement_t *parse_ms_try_statment(void)
10091 {
10092         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10093         eat(T___try);
10094
10095         PUSH_PARENT(statement);
10096
10097         ms_try_statement_t *rem = current_try;
10098         current_try = &statement->ms_try;
10099         statement->ms_try.try_statement = parse_compound_statement(false);
10100         current_try = rem;
10101
10102         POP_PARENT;
10103
10104         if (token.type == T___except) {
10105                 eat(T___except);
10106                 expect('(', end_error);
10107                 add_anchor_token(')');
10108                 expression_t *const expr = parse_expression();
10109                 mark_vars_read(expr, NULL);
10110                 type_t       *      type = skip_typeref(expr->base.type);
10111                 if (is_type_integer(type)) {
10112                         type = promote_integer(type);
10113                 } else if (is_type_valid(type)) {
10114                         errorf(&expr->base.source_position,
10115                                "__expect expression is not an integer, but '%T'", type);
10116                         type = type_error_type;
10117                 }
10118                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10119                 rem_anchor_token(')');
10120                 expect(')', end_error);
10121                 statement->ms_try.final_statement = parse_compound_statement(false);
10122         } else if (token.type == T__finally) {
10123                 eat(T___finally);
10124                 statement->ms_try.final_statement = parse_compound_statement(false);
10125         } else {
10126                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10127                 return create_invalid_statement();
10128         }
10129         return statement;
10130 end_error:
10131         return create_invalid_statement();
10132 }
10133
10134 static statement_t *parse_empty_statement(void)
10135 {
10136         if (warning.empty_statement) {
10137                 warningf(HERE, "statement is empty");
10138         }
10139         statement_t *const statement = create_empty_statement();
10140         eat(';');
10141         return statement;
10142 }
10143
10144 static statement_t *parse_local_label_declaration(void)
10145 {
10146         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10147
10148         eat(T___label__);
10149
10150         entity_t *begin = NULL, *end = NULL;
10151
10152         while (true) {
10153                 if (token.type != T_IDENTIFIER) {
10154                         parse_error_expected("while parsing local label declaration",
10155                                 T_IDENTIFIER, NULL);
10156                         goto end_error;
10157                 }
10158                 symbol_t *symbol = token.v.symbol;
10159                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
10160                 if (entity != NULL && entity->base.parent_scope == current_scope) {
10161                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10162                                symbol, &entity->base.source_position);
10163                 } else {
10164                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10165
10166                         entity->base.parent_scope    = current_scope;
10167                         entity->base.namespc         = NAMESPACE_LABEL;
10168                         entity->base.source_position = token.source_position;
10169                         entity->base.symbol          = symbol;
10170
10171                         if (end != NULL)
10172                                 end->base.next = entity;
10173                         end = entity;
10174                         if (begin == NULL)
10175                                 begin = entity;
10176
10177                         environment_push(entity);
10178                 }
10179                 next_token();
10180
10181                 if (token.type != ',')
10182                         break;
10183                 next_token();
10184         }
10185         eat(';');
10186 end_error:
10187         statement->declaration.declarations_begin = begin;
10188         statement->declaration.declarations_end   = end;
10189         return statement;
10190 }
10191
10192 static void parse_namespace_definition(void)
10193 {
10194         eat(T_namespace);
10195
10196         entity_t *entity = NULL;
10197         symbol_t *symbol = NULL;
10198
10199         if (token.type == T_IDENTIFIER) {
10200                 symbol = token.v.symbol;
10201                 next_token();
10202
10203                 entity = get_entity(symbol, NAMESPACE_NORMAL);
10204                 if (entity       != NULL             &&
10205                                 entity->kind != ENTITY_NAMESPACE &&
10206                                 entity->base.parent_scope == current_scope) {
10207                         if (!is_error_entity(entity)) {
10208                                 error_redefined_as_different_kind(&token.source_position,
10209                                                 entity, ENTITY_NAMESPACE);
10210                         }
10211                         entity = NULL;
10212                 }
10213         }
10214
10215         if (entity == NULL) {
10216                 entity                       = allocate_entity_zero(ENTITY_NAMESPACE);
10217                 entity->base.symbol          = symbol;
10218                 entity->base.source_position = token.source_position;
10219                 entity->base.namespc         = NAMESPACE_NORMAL;
10220                 entity->base.parent_scope    = current_scope;
10221         }
10222
10223         if (token.type == '=') {
10224                 /* TODO: parse namespace alias */
10225                 panic("namespace alias definition not supported yet");
10226         }
10227
10228         environment_push(entity);
10229         append_entity(current_scope, entity);
10230
10231         size_t const  top       = environment_top();
10232         scope_t      *old_scope = scope_push(&entity->namespacee.members);
10233
10234         expect('{', end_error);
10235         parse_externals();
10236         expect('}', end_error);
10237
10238 end_error:
10239         assert(current_scope == &entity->namespacee.members);
10240         scope_pop(old_scope);
10241         environment_pop_to(top);
10242 }
10243
10244 /**
10245  * Parse a statement.
10246  * There's also parse_statement() which additionally checks for
10247  * "statement has no effect" warnings
10248  */
10249 static statement_t *intern_parse_statement(void)
10250 {
10251         statement_t *statement = NULL;
10252
10253         /* declaration or statement */
10254         add_anchor_token(';');
10255         switch (token.type) {
10256         case T_IDENTIFIER: {
10257                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10258                 if (la1_type == ':') {
10259                         statement = parse_label_statement();
10260                 } else if (is_typedef_symbol(token.v.symbol)) {
10261                         statement = parse_declaration_statement();
10262                 } else {
10263                         /* it's an identifier, the grammar says this must be an
10264                          * expression statement. However it is common that users mistype
10265                          * declaration types, so we guess a bit here to improve robustness
10266                          * for incorrect programs */
10267                         switch (la1_type) {
10268                         case '&':
10269                         case '*':
10270                                 if (get_entity(token.v.symbol, NAMESPACE_NORMAL) != NULL)
10271                                         goto expression_statment;
10272                                 /* FALLTHROUGH */
10273
10274                         DECLARATION_START
10275                         case T_IDENTIFIER:
10276                                 statement = parse_declaration_statement();
10277                                 break;
10278
10279                         default:
10280 expression_statment:
10281                                 statement = parse_expression_statement();
10282                                 break;
10283                         }
10284                 }
10285                 break;
10286         }
10287
10288         case T___extension__:
10289                 /* This can be a prefix to a declaration or an expression statement.
10290                  * We simply eat it now and parse the rest with tail recursion. */
10291                 do {
10292                         next_token();
10293                 } while (token.type == T___extension__);
10294                 bool old_gcc_extension = in_gcc_extension;
10295                 in_gcc_extension       = true;
10296                 statement = intern_parse_statement();
10297                 in_gcc_extension = old_gcc_extension;
10298                 break;
10299
10300         DECLARATION_START
10301                 statement = parse_declaration_statement();
10302                 break;
10303
10304         case T___label__:
10305                 statement = parse_local_label_declaration();
10306                 break;
10307
10308         case ';':         statement = parse_empty_statement();         break;
10309         case '{':         statement = parse_compound_statement(false); break;
10310         case T___leave:   statement = parse_leave_statement();         break;
10311         case T___try:     statement = parse_ms_try_statment();         break;
10312         case T_asm:       statement = parse_asm_statement();           break;
10313         case T_break:     statement = parse_break();                   break;
10314         case T_case:      statement = parse_case_statement();          break;
10315         case T_continue:  statement = parse_continue();                break;
10316         case T_default:   statement = parse_default_statement();       break;
10317         case T_do:        statement = parse_do();                      break;
10318         case T_for:       statement = parse_for();                     break;
10319         case T_goto:      statement = parse_goto();                    break;
10320         case T_if:        statement = parse_if();                      break;
10321         case T_return:    statement = parse_return();                  break;
10322         case T_switch:    statement = parse_switch();                  break;
10323         case T_while:     statement = parse_while();                   break;
10324
10325         EXPRESSION_START
10326                 statement = parse_expression_statement();
10327                 break;
10328
10329         default:
10330                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10331                 statement = create_invalid_statement();
10332                 if (!at_anchor())
10333                         next_token();
10334                 break;
10335         }
10336         rem_anchor_token(';');
10337
10338         assert(statement != NULL
10339                         && statement->base.source_position.input_name != NULL);
10340
10341         return statement;
10342 }
10343
10344 /**
10345  * parse a statement and emits "statement has no effect" warning if needed
10346  * (This is really a wrapper around intern_parse_statement with check for 1
10347  *  single warning. It is needed, because for statement expressions we have
10348  *  to avoid the warning on the last statement)
10349  */
10350 static statement_t *parse_statement(void)
10351 {
10352         statement_t *statement = intern_parse_statement();
10353
10354         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10355                 expression_t *expression = statement->expression.expression;
10356                 if (!expression_has_effect(expression)) {
10357                         warningf(&expression->base.source_position,
10358                                         "statement has no effect");
10359                 }
10360         }
10361
10362         return statement;
10363 }
10364
10365 /**
10366  * Parse a compound statement.
10367  */
10368 static statement_t *parse_compound_statement(bool inside_expression_statement)
10369 {
10370         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10371
10372         PUSH_PARENT(statement);
10373
10374         eat('{');
10375         add_anchor_token('}');
10376         /* tokens, which can start a statement */
10377         /* TODO MS, __builtin_FOO */
10378         add_anchor_token('!');
10379         add_anchor_token('&');
10380         add_anchor_token('(');
10381         add_anchor_token('*');
10382         add_anchor_token('+');
10383         add_anchor_token('-');
10384         add_anchor_token('{');
10385         add_anchor_token('~');
10386         add_anchor_token(T_CHARACTER_CONSTANT);
10387         add_anchor_token(T_COLONCOLON);
10388         add_anchor_token(T_FLOATINGPOINT);
10389         add_anchor_token(T_IDENTIFIER);
10390         add_anchor_token(T_INTEGER);
10391         add_anchor_token(T_MINUSMINUS);
10392         add_anchor_token(T_PLUSPLUS);
10393         add_anchor_token(T_STRING_LITERAL);
10394         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10395         add_anchor_token(T_WIDE_STRING_LITERAL);
10396         add_anchor_token(T__Bool);
10397         add_anchor_token(T__Complex);
10398         add_anchor_token(T__Imaginary);
10399         add_anchor_token(T___FUNCTION__);
10400         add_anchor_token(T___PRETTY_FUNCTION__);
10401         add_anchor_token(T___alignof__);
10402         add_anchor_token(T___attribute__);
10403         add_anchor_token(T___builtin_va_start);
10404         add_anchor_token(T___extension__);
10405         add_anchor_token(T___func__);
10406         add_anchor_token(T___imag__);
10407         add_anchor_token(T___label__);
10408         add_anchor_token(T___real__);
10409         add_anchor_token(T___thread);
10410         add_anchor_token(T_asm);
10411         add_anchor_token(T_auto);
10412         add_anchor_token(T_bool);
10413         add_anchor_token(T_break);
10414         add_anchor_token(T_case);
10415         add_anchor_token(T_char);
10416         add_anchor_token(T_class);
10417         add_anchor_token(T_const);
10418         add_anchor_token(T_const_cast);
10419         add_anchor_token(T_continue);
10420         add_anchor_token(T_default);
10421         add_anchor_token(T_delete);
10422         add_anchor_token(T_double);
10423         add_anchor_token(T_do);
10424         add_anchor_token(T_dynamic_cast);
10425         add_anchor_token(T_enum);
10426         add_anchor_token(T_extern);
10427         add_anchor_token(T_false);
10428         add_anchor_token(T_float);
10429         add_anchor_token(T_for);
10430         add_anchor_token(T_goto);
10431         add_anchor_token(T_if);
10432         add_anchor_token(T_inline);
10433         add_anchor_token(T_int);
10434         add_anchor_token(T_long);
10435         add_anchor_token(T_new);
10436         add_anchor_token(T_operator);
10437         add_anchor_token(T_register);
10438         add_anchor_token(T_reinterpret_cast);
10439         add_anchor_token(T_restrict);
10440         add_anchor_token(T_return);
10441         add_anchor_token(T_short);
10442         add_anchor_token(T_signed);
10443         add_anchor_token(T_sizeof);
10444         add_anchor_token(T_static);
10445         add_anchor_token(T_static_cast);
10446         add_anchor_token(T_struct);
10447         add_anchor_token(T_switch);
10448         add_anchor_token(T_template);
10449         add_anchor_token(T_this);
10450         add_anchor_token(T_throw);
10451         add_anchor_token(T_true);
10452         add_anchor_token(T_try);
10453         add_anchor_token(T_typedef);
10454         add_anchor_token(T_typeid);
10455         add_anchor_token(T_typename);
10456         add_anchor_token(T_typeof);
10457         add_anchor_token(T_union);
10458         add_anchor_token(T_unsigned);
10459         add_anchor_token(T_using);
10460         add_anchor_token(T_void);
10461         add_anchor_token(T_volatile);
10462         add_anchor_token(T_wchar_t);
10463         add_anchor_token(T_while);
10464
10465         size_t const  top       = environment_top();
10466         scope_t      *old_scope = scope_push(&statement->compound.scope);
10467
10468         statement_t **anchor            = &statement->compound.statements;
10469         bool          only_decls_so_far = true;
10470         while (token.type != '}') {
10471                 if (token.type == T_EOF) {
10472                         errorf(&statement->base.source_position,
10473                                "EOF while parsing compound statement");
10474                         break;
10475                 }
10476                 statement_t *sub_statement = intern_parse_statement();
10477                 if (is_invalid_statement(sub_statement)) {
10478                         /* an error occurred. if we are at an anchor, return */
10479                         if (at_anchor())
10480                                 goto end_error;
10481                         continue;
10482                 }
10483
10484                 if (warning.declaration_after_statement) {
10485                         if (sub_statement->kind != STATEMENT_DECLARATION) {
10486                                 only_decls_so_far = false;
10487                         } else if (!only_decls_so_far) {
10488                                 warningf(&sub_statement->base.source_position,
10489                                          "ISO C90 forbids mixed declarations and code");
10490                         }
10491                 }
10492
10493                 *anchor = sub_statement;
10494
10495                 while (sub_statement->base.next != NULL)
10496                         sub_statement = sub_statement->base.next;
10497
10498                 anchor = &sub_statement->base.next;
10499         }
10500         next_token();
10501
10502         /* look over all statements again to produce no effect warnings */
10503         if (warning.unused_value) {
10504                 statement_t *sub_statement = statement->compound.statements;
10505                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10506                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10507                                 continue;
10508                         /* don't emit a warning for the last expression in an expression
10509                          * statement as it has always an effect */
10510                         if (inside_expression_statement && sub_statement->base.next == NULL)
10511                                 continue;
10512
10513                         expression_t *expression = sub_statement->expression.expression;
10514                         if (!expression_has_effect(expression)) {
10515                                 warningf(&expression->base.source_position,
10516                                          "statement has no effect");
10517                         }
10518                 }
10519         }
10520
10521 end_error:
10522         rem_anchor_token(T_while);
10523         rem_anchor_token(T_wchar_t);
10524         rem_anchor_token(T_volatile);
10525         rem_anchor_token(T_void);
10526         rem_anchor_token(T_using);
10527         rem_anchor_token(T_unsigned);
10528         rem_anchor_token(T_union);
10529         rem_anchor_token(T_typeof);
10530         rem_anchor_token(T_typename);
10531         rem_anchor_token(T_typeid);
10532         rem_anchor_token(T_typedef);
10533         rem_anchor_token(T_try);
10534         rem_anchor_token(T_true);
10535         rem_anchor_token(T_throw);
10536         rem_anchor_token(T_this);
10537         rem_anchor_token(T_template);
10538         rem_anchor_token(T_switch);
10539         rem_anchor_token(T_struct);
10540         rem_anchor_token(T_static_cast);
10541         rem_anchor_token(T_static);
10542         rem_anchor_token(T_sizeof);
10543         rem_anchor_token(T_signed);
10544         rem_anchor_token(T_short);
10545         rem_anchor_token(T_return);
10546         rem_anchor_token(T_restrict);
10547         rem_anchor_token(T_reinterpret_cast);
10548         rem_anchor_token(T_register);
10549         rem_anchor_token(T_operator);
10550         rem_anchor_token(T_new);
10551         rem_anchor_token(T_long);
10552         rem_anchor_token(T_int);
10553         rem_anchor_token(T_inline);
10554         rem_anchor_token(T_if);
10555         rem_anchor_token(T_goto);
10556         rem_anchor_token(T_for);
10557         rem_anchor_token(T_float);
10558         rem_anchor_token(T_false);
10559         rem_anchor_token(T_extern);
10560         rem_anchor_token(T_enum);
10561         rem_anchor_token(T_dynamic_cast);
10562         rem_anchor_token(T_do);
10563         rem_anchor_token(T_double);
10564         rem_anchor_token(T_delete);
10565         rem_anchor_token(T_default);
10566         rem_anchor_token(T_continue);
10567         rem_anchor_token(T_const_cast);
10568         rem_anchor_token(T_const);
10569         rem_anchor_token(T_class);
10570         rem_anchor_token(T_char);
10571         rem_anchor_token(T_case);
10572         rem_anchor_token(T_break);
10573         rem_anchor_token(T_bool);
10574         rem_anchor_token(T_auto);
10575         rem_anchor_token(T_asm);
10576         rem_anchor_token(T___thread);
10577         rem_anchor_token(T___real__);
10578         rem_anchor_token(T___label__);
10579         rem_anchor_token(T___imag__);
10580         rem_anchor_token(T___func__);
10581         rem_anchor_token(T___extension__);
10582         rem_anchor_token(T___builtin_va_start);
10583         rem_anchor_token(T___attribute__);
10584         rem_anchor_token(T___alignof__);
10585         rem_anchor_token(T___PRETTY_FUNCTION__);
10586         rem_anchor_token(T___FUNCTION__);
10587         rem_anchor_token(T__Imaginary);
10588         rem_anchor_token(T__Complex);
10589         rem_anchor_token(T__Bool);
10590         rem_anchor_token(T_WIDE_STRING_LITERAL);
10591         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10592         rem_anchor_token(T_STRING_LITERAL);
10593         rem_anchor_token(T_PLUSPLUS);
10594         rem_anchor_token(T_MINUSMINUS);
10595         rem_anchor_token(T_INTEGER);
10596         rem_anchor_token(T_IDENTIFIER);
10597         rem_anchor_token(T_FLOATINGPOINT);
10598         rem_anchor_token(T_COLONCOLON);
10599         rem_anchor_token(T_CHARACTER_CONSTANT);
10600         rem_anchor_token('~');
10601         rem_anchor_token('{');
10602         rem_anchor_token('-');
10603         rem_anchor_token('+');
10604         rem_anchor_token('*');
10605         rem_anchor_token('(');
10606         rem_anchor_token('&');
10607         rem_anchor_token('!');
10608         rem_anchor_token('}');
10609         assert(current_scope == &statement->compound.scope);
10610         scope_pop(old_scope);
10611         environment_pop_to(top);
10612
10613         POP_PARENT;
10614         return statement;
10615 }
10616
10617 /**
10618  * Check for unused global static functions and variables
10619  */
10620 static void check_unused_globals(void)
10621 {
10622         if (!warning.unused_function && !warning.unused_variable)
10623                 return;
10624
10625         for (const entity_t *entity = file_scope->entities; entity != NULL;
10626              entity = entity->base.next) {
10627                 if (!is_declaration(entity))
10628                         continue;
10629
10630                 const declaration_t *declaration = &entity->declaration;
10631                 if (declaration->used                  ||
10632                     declaration->modifiers & DM_UNUSED ||
10633                     declaration->modifiers & DM_USED   ||
10634                     declaration->storage_class != STORAGE_CLASS_STATIC)
10635                         continue;
10636
10637                 type_t *const type = declaration->type;
10638                 const char *s;
10639                 if (entity->kind == ENTITY_FUNCTION) {
10640                         /* inhibit warning for static inline functions */
10641                         if (entity->function.is_inline)
10642                                 continue;
10643
10644                         s = entity->function.statement != NULL ? "defined" : "declared";
10645                 } else {
10646                         s = "defined";
10647                 }
10648
10649                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
10650                         type, declaration->base.symbol, s);
10651         }
10652 }
10653
10654 static void parse_global_asm(void)
10655 {
10656         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
10657
10658         eat(T_asm);
10659         expect('(', end_error);
10660
10661         statement->asms.asm_text = parse_string_literals();
10662         statement->base.next     = unit->global_asm;
10663         unit->global_asm         = statement;
10664
10665         expect(')', end_error);
10666         expect(';', end_error);
10667
10668 end_error:;
10669 }
10670
10671 static void parse_linkage_specification(void)
10672 {
10673         eat(T_extern);
10674         assert(token.type == T_STRING_LITERAL);
10675
10676         const char *linkage = parse_string_literals().begin;
10677
10678         linkage_kind_t old_linkage = current_linkage;
10679         linkage_kind_t new_linkage;
10680         if (strcmp(linkage, "C") == 0) {
10681                 new_linkage = LINKAGE_C;
10682         } else if (strcmp(linkage, "C++") == 0) {
10683                 new_linkage = LINKAGE_CXX;
10684         } else {
10685                 errorf(HERE, "linkage string \"%s\" not recognized", linkage);
10686                 new_linkage = LINKAGE_INVALID;
10687         }
10688         current_linkage = new_linkage;
10689
10690         if (token.type == '{') {
10691                 next_token();
10692                 parse_externals();
10693                 expect('}', end_error);
10694         } else {
10695                 parse_external();
10696         }
10697
10698 end_error:
10699         assert(current_linkage == new_linkage);
10700         current_linkage = old_linkage;
10701 }
10702
10703 static void parse_external(void)
10704 {
10705         switch (token.type) {
10706                 DECLARATION_START_NO_EXTERN
10707                 case T_IDENTIFIER:
10708                 case T___extension__:
10709                 /* tokens below are for implicit int */
10710                 case '&': /* & x; -> int& x; (and error later, because C++ has no
10711                              implicit int) */
10712                 case '*': /* * x; -> int* x; */
10713                 case '(': /* (x); -> int (x); */
10714                         parse_external_declaration();
10715                         return;
10716
10717                 case T_extern:
10718                         if (look_ahead(1)->type == T_STRING_LITERAL) {
10719                                 parse_linkage_specification();
10720                         } else {
10721                                 parse_external_declaration();
10722                         }
10723                         return;
10724
10725                 case T_asm:
10726                         parse_global_asm();
10727                         return;
10728
10729                 case T_namespace:
10730                         parse_namespace_definition();
10731                         return;
10732
10733                 case ';':
10734                         if (!strict_mode) {
10735                                 if (warning.other)
10736                                         warningf(HERE, "stray ';' outside of function");
10737                                 next_token();
10738                                 return;
10739                         }
10740                         /* FALLTHROUGH */
10741
10742                 default:
10743                         errorf(HERE, "stray %K outside of function", &token);
10744                         if (token.type == '(' || token.type == '{' || token.type == '[')
10745                                 eat_until_matching_token(token.type);
10746                         next_token();
10747                         return;
10748         }
10749 }
10750
10751 static void parse_externals(void)
10752 {
10753         add_anchor_token('}');
10754         add_anchor_token(T_EOF);
10755
10756 #ifndef NDEBUG
10757         unsigned char token_anchor_copy[T_LAST_TOKEN];
10758         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
10759 #endif
10760
10761         while (token.type != T_EOF && token.type != '}') {
10762 #ifndef NDEBUG
10763                 bool anchor_leak = false;
10764                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
10765                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
10766                         if (count != 0) {
10767                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
10768                                 anchor_leak = true;
10769                         }
10770                 }
10771                 if (in_gcc_extension) {
10772                         errorf(HERE, "Leaked __extension__");
10773                         anchor_leak = true;
10774                 }
10775
10776                 if (anchor_leak)
10777                         abort();
10778 #endif
10779
10780                 parse_external();
10781         }
10782
10783         rem_anchor_token(T_EOF);
10784         rem_anchor_token('}');
10785 }
10786
10787 /**
10788  * Parse a translation unit.
10789  */
10790 static void parse_translation_unit(void)
10791 {
10792         add_anchor_token(T_EOF);
10793
10794         while (true) {
10795                 parse_externals();
10796
10797                 if (token.type == T_EOF)
10798                         break;
10799
10800                 errorf(HERE, "stray %K outside of function", &token);
10801                 if (token.type == '(' || token.type == '{' || token.type == '[')
10802                         eat_until_matching_token(token.type);
10803                 next_token();
10804         }
10805 }
10806
10807 /**
10808  * Parse the input.
10809  *
10810  * @return  the translation unit or NULL if errors occurred.
10811  */
10812 void start_parsing(void)
10813 {
10814         environment_stack = NEW_ARR_F(stack_entry_t, 0);
10815         label_stack       = NEW_ARR_F(stack_entry_t, 0);
10816         diagnostic_count  = 0;
10817         error_count       = 0;
10818         warning_count     = 0;
10819
10820         type_set_output(stderr);
10821         ast_set_output(stderr);
10822
10823         assert(unit == NULL);
10824         unit = allocate_ast_zero(sizeof(unit[0]));
10825
10826         assert(file_scope == NULL);
10827         file_scope = &unit->scope;
10828
10829         assert(current_scope == NULL);
10830         scope_push(&unit->scope);
10831
10832         create_gnu_builtins();
10833         if (c_mode & _MS)
10834                 create_microsoft_intrinsics();
10835 }
10836
10837 translation_unit_t *finish_parsing(void)
10838 {
10839         assert(current_scope == &unit->scope);
10840         scope_pop(NULL);
10841
10842         assert(file_scope == &unit->scope);
10843         check_unused_globals();
10844         file_scope = NULL;
10845
10846         DEL_ARR_F(environment_stack);
10847         DEL_ARR_F(label_stack);
10848
10849         translation_unit_t *result = unit;
10850         unit = NULL;
10851         return result;
10852 }
10853
10854 /* §6.9.2:2 and §6.9.2:5: At the end of the translation incomplete arrays
10855  * are given length one. */
10856 static void complete_incomplete_arrays(void)
10857 {
10858         size_t n = ARR_LEN(incomplete_arrays);
10859         for (size_t i = 0; i != n; ++i) {
10860                 declaration_t *const decl      = incomplete_arrays[i];
10861                 type_t        *const orig_type = decl->type;
10862                 type_t        *const type      = skip_typeref(orig_type);
10863
10864                 if (!is_type_incomplete(type))
10865                         continue;
10866
10867                 if (warning.other) {
10868                         warningf(&decl->base.source_position,
10869                                         "array '%#T' assumed to have one element",
10870                                         orig_type, decl->base.symbol);
10871                 }
10872
10873                 type_t *const new_type = duplicate_type(type);
10874                 new_type->array.size_constant     = true;
10875                 new_type->array.has_implicit_size = true;
10876                 new_type->array.size              = 1;
10877
10878                 type_t *const result = identify_new_type(new_type);
10879
10880                 decl->type = result;
10881         }
10882 }
10883
10884 void prepare_main_collect2(entity_t *entity)
10885 {
10886         // create call to __main
10887         symbol_t *symbol         = symbol_table_insert("__main");
10888         entity_t *subsubmain_ent
10889                 = create_implicit_function(symbol, &builtin_source_position);
10890
10891         expression_t *ref         = allocate_expression_zero(EXPR_REFERENCE);
10892         type_t       *ftype       = subsubmain_ent->declaration.type;
10893         ref->base.source_position = builtin_source_position;
10894         ref->base.type            = make_pointer_type(ftype, TYPE_QUALIFIER_NONE);
10895         ref->reference.entity     = subsubmain_ent;
10896
10897         expression_t *call = allocate_expression_zero(EXPR_CALL);
10898         call->base.source_position = builtin_source_position;
10899         call->base.type            = type_void;
10900         call->call.function        = ref;
10901
10902         statement_t *expr_statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10903         expr_statement->base.source_position  = builtin_source_position;
10904         expr_statement->expression.expression = call;
10905
10906         statement_t *statement = entity->function.statement;
10907         assert(statement->kind == STATEMENT_COMPOUND);
10908         compound_statement_t *compounds = &statement->compound;
10909
10910         expr_statement->base.next = compounds->statements;
10911         compounds->statements     = expr_statement;
10912 }
10913
10914 void parse(void)
10915 {
10916         lookahead_bufpos = 0;
10917         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
10918                 next_token();
10919         }
10920         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
10921         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
10922         parse_translation_unit();
10923         complete_incomplete_arrays();
10924         DEL_ARR_F(incomplete_arrays);
10925         incomplete_arrays = NULL;
10926 }
10927
10928 /**
10929  * create a builtin function.
10930  */
10931 static entity_t *create_builtin_function(builtin_kind_t kind, const char *name, type_t *function_type)
10932 {
10933         symbol_t *symbol = symbol_table_insert(name);
10934         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
10935         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
10936         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
10937         entity->declaration.type                   = function_type;
10938         entity->declaration.implicit               = true;
10939         entity->base.symbol                        = symbol;
10940         entity->base.source_position               = builtin_source_position;
10941
10942         entity->function.btk                       = kind;
10943
10944         record_entity(entity, /*is_definition=*/false);
10945         return entity;
10946 }
10947
10948
10949 /**
10950  * Create predefined gnu builtins.
10951  */
10952 static void create_gnu_builtins(void)
10953 {
10954 #define GNU_BUILTIN(a, b) create_builtin_function(bk_gnu_builtin_##a, "__builtin_" #a, b)
10955
10956         GNU_BUILTIN(alloca,         make_function_1_type(type_void_ptr, type_size_t));
10957         GNU_BUILTIN(huge_val,       make_function_0_type(type_double));
10958         GNU_BUILTIN(inf,            make_function_0_type(type_double));
10959         GNU_BUILTIN(inff,           make_function_0_type(type_float));
10960         GNU_BUILTIN(infl,           make_function_0_type(type_long_double));
10961         GNU_BUILTIN(nan,            make_function_1_type(type_double, type_char_ptr));
10962         GNU_BUILTIN(nanf,           make_function_1_type(type_float, type_char_ptr));
10963         GNU_BUILTIN(nanl,           make_function_1_type(type_long_double, type_char_ptr));
10964         GNU_BUILTIN(va_end,         make_function_1_type(type_void, type_valist));
10965         GNU_BUILTIN(expect,         make_function_2_type(type_long, type_long, type_long));
10966         GNU_BUILTIN(return_address, make_function_1_type(type_void_ptr, type_unsigned_int));
10967         GNU_BUILTIN(frame_address,  make_function_1_type(type_void_ptr, type_unsigned_int));
10968         GNU_BUILTIN(ffs,            make_function_1_type(type_int, type_unsigned_int));
10969         GNU_BUILTIN(clz,            make_function_1_type(type_int, type_unsigned_int));
10970         GNU_BUILTIN(ctz,            make_function_1_type(type_int, type_unsigned_int));
10971         GNU_BUILTIN(popcount,       make_function_1_type(type_int, type_unsigned_int));
10972         GNU_BUILTIN(parity,         make_function_1_type(type_int, type_unsigned_int));
10973         GNU_BUILTIN(prefetch,       make_function_1_type_variadic(type_float, type_void_ptr));
10974         GNU_BUILTIN(trap,           make_function_0_type_noreturn(type_void));
10975
10976 #undef GNU_BUILTIN
10977 }
10978
10979 /**
10980  * Create predefined MS intrinsics.
10981  */
10982 static void create_microsoft_intrinsics(void)
10983 {
10984 #define MS_BUILTIN(a, b) create_builtin_function(bk_ms##a, #a, b)
10985
10986         /* intrinsics for all architectures */
10987         MS_BUILTIN(_rotl,                  make_function_2_type(type_unsigned_int,   type_unsigned_int, type_int));
10988         MS_BUILTIN(_rotr,                  make_function_2_type(type_unsigned_int,   type_unsigned_int, type_int));
10989         MS_BUILTIN(_rotl64,                make_function_2_type(type_unsigned_int64, type_unsigned_int64, type_int));
10990         MS_BUILTIN(_rotr64,                make_function_2_type(type_unsigned_int64, type_unsigned_int64, type_int));
10991         MS_BUILTIN(_byteswap_ushort,       make_function_1_type(type_unsigned_short, type_unsigned_short));
10992         MS_BUILTIN(_byteswap_ulong,        make_function_1_type(type_unsigned_long,  type_unsigned_long));
10993         MS_BUILTIN(_byteswap_uint64,       make_function_1_type(type_unsigned_int64, type_unsigned_int64));
10994
10995         MS_BUILTIN(__debugbreak,            make_function_0_type(type_void));
10996         MS_BUILTIN(_ReturnAddress,          make_function_0_type(type_void_ptr));
10997         MS_BUILTIN(_AddressOfReturnAddress, make_function_0_type(type_void_ptr));
10998         MS_BUILTIN(__popcount,              make_function_1_type(type_unsigned_int, type_unsigned_int));
10999
11000         /* x86/x64 only */
11001         MS_BUILTIN(_enable,                make_function_0_type(type_void));
11002         MS_BUILTIN(_disable,               make_function_0_type(type_void));
11003         MS_BUILTIN(__inbyte,               make_function_1_type(type_unsigned_char, type_unsigned_short));
11004         MS_BUILTIN(__inword,               make_function_1_type(type_unsigned_short, type_unsigned_short));
11005         MS_BUILTIN(__indword,              make_function_1_type(type_unsigned_long, type_unsigned_short));
11006         MS_BUILTIN(__outbyte,              make_function_2_type(type_void, type_unsigned_short, type_unsigned_char));
11007         MS_BUILTIN(__outword,              make_function_2_type(type_void, type_unsigned_short, type_unsigned_short));
11008         MS_BUILTIN(__outdword,             make_function_2_type(type_void, type_unsigned_short, type_unsigned_long));
11009         MS_BUILTIN(__ud2,                  make_function_0_type_noreturn(type_void));
11010         MS_BUILTIN(_BitScanForward,        make_function_2_type(type_unsigned_char, type_unsigned_long_ptr, type_unsigned_long));
11011         MS_BUILTIN(_BitScanReverse,        make_function_2_type(type_unsigned_char, type_unsigned_long_ptr, type_unsigned_long));
11012         MS_BUILTIN(_InterlockedExchange,   make_function_2_type(type_long, type_long_ptr, type_long));
11013         MS_BUILTIN(_InterlockedExchange64, make_function_2_type(type_int64, type_int64_ptr, type_int64));
11014
11015         if (machine_size <= 32) {
11016                 MS_BUILTIN(__readeflags,           make_function_0_type(type_unsigned_int));
11017                 MS_BUILTIN(__writeeflags,          make_function_1_type(type_void, type_unsigned_int));
11018         } else {
11019                 MS_BUILTIN(__readeflags,           make_function_0_type(type_unsigned_int64));
11020                 MS_BUILTIN(__writeeflags,          make_function_1_type(type_void, type_unsigned_int64));
11021         }
11022
11023 #undef MS_BUILTIN
11024 }
11025
11026 /**
11027  * Initialize the parser.
11028  */
11029 void init_parser(void)
11030 {
11031         sym_anonymous = symbol_table_insert("<anonymous>");
11032
11033         memset(token_anchor_set, 0, sizeof(token_anchor_set));
11034
11035         init_expression_parsers();
11036         obstack_init(&temp_obst);
11037
11038         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
11039         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
11040 }
11041
11042 /**
11043  * Terminate the parser.
11044  */
11045 void exit_parser(void)
11046 {
11047         obstack_free(&temp_obst, NULL);
11048 }