27451bed710798822a957e40529b806951347885
[cparser] / parser.c
1 /*
2  * This file is part of cparser.
3  * Copyright (C) 2007-2008 Matthias Braun <matze@braunis.de>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
18  * 02111-1307, USA.
19  */
20 #include <config.h>
21
22 #include <assert.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25
26 #include "parser.h"
27 #include "diagnostic.h"
28 #include "format_check.h"
29 #include "lexer.h"
30 #include "symbol_t.h"
31 #include "token_t.h"
32 #include "types.h"
33 #include "type_t.h"
34 #include "type_hash.h"
35 #include "ast_t.h"
36 #include "entity_t.h"
37 #include "lang_features.h"
38 #include "walk_statements.h"
39 #include "warning.h"
40 #include "adt/bitfiddle.h"
41 #include "adt/error.h"
42 #include "adt/array.h"
43
44 //#define PRINT_TOKENS
45 #define MAX_LOOKAHEAD 2
46
47 typedef struct {
48         entity_t           *old_entity;
49         symbol_t           *symbol;
50         entity_namespace_t  namespc;
51 } stack_entry_t;
52
53 typedef struct argument_list_t argument_list_t;
54 struct argument_list_t {
55         long              argument;
56         argument_list_t  *next;
57 };
58
59 typedef struct gnu_attribute_t gnu_attribute_t;
60 struct gnu_attribute_t {
61         gnu_attribute_kind_t kind;           /**< The kind of the GNU attribute. */
62         gnu_attribute_t     *next;
63         bool                 invalid;        /**< Set if this attribute had argument errors, */
64         bool                 have_arguments; /**< True, if this attribute has arguments. */
65         union {
66                 size_t              value;
67                 string_t            string;
68                 atomic_type_kind_t  akind;
69                 long                argument;  /**< Single argument. */
70                 argument_list_t    *arguments; /**< List of argument expressions. */
71         } u;
72 };
73
74 typedef struct declaration_specifiers_t  declaration_specifiers_t;
75 struct declaration_specifiers_t {
76         source_position_t  source_position;
77         storage_class_t    storage_class;
78         unsigned char      alignment;         /**< Alignment, 0 if not set. */
79         bool               is_inline    : 1;
80         bool               thread_local : 1;  /**< GCC __thread */
81         bool               deprecated   : 1;
82         decl_modifiers_t   modifiers;         /**< declaration modifiers */
83         gnu_attribute_t   *gnu_attributes;    /**< list of GNU attributes */
84         const char        *deprecated_string; /**< can be set if declaration was marked deprecated. */
85         symbol_t          *get_property_sym;  /**< the name of the get property if set. */
86         symbol_t          *put_property_sym;  /**< the name of the put property if set. */
87         type_t            *type;
88 };
89
90 /**
91  * An environment for parsing initializers (and compound literals).
92  */
93 typedef struct parse_initializer_env_t {
94         type_t     *type;   /**< the type of the initializer. In case of an
95                                  array type with unspecified size this gets
96                                  adjusted to the actual size. */
97         entity_t   *entity; /**< the variable that is initialized if any */
98         bool        must_be_constant;
99 } parse_initializer_env_t;
100
101 /**
102  * Capture a MS __base extension.
103  */
104 typedef struct based_spec_t {
105         source_position_t  source_position;
106         variable_t        *base_variable;
107 } based_spec_t;
108
109 typedef entity_t* (*parsed_declaration_func) (entity_t *declaration, bool is_definition);
110
111 /** The current token. */
112 static token_t              token;
113 /** The lookahead ring-buffer. */
114 static token_t              lookahead_buffer[MAX_LOOKAHEAD];
115 /** Position of the next token in the lookahead buffer. */
116 static int                  lookahead_bufpos;
117 static stack_entry_t       *environment_stack = NULL;
118 static stack_entry_t       *label_stack       = NULL;
119 static scope_t             *file_scope        = NULL;
120 static scope_t             *current_scope     = NULL;
121 /** Point to the current function declaration if inside a function. */
122 static function_t          *current_function  = NULL;
123 static entity_t            *current_init_decl = NULL;
124 static switch_statement_t  *current_switch    = NULL;
125 static statement_t         *current_loop      = NULL;
126 static statement_t         *current_parent    = NULL;
127 static ms_try_statement_t  *current_try       = NULL;
128 static linkage_kind_t       current_linkage   = LINKAGE_INVALID;
129 static goto_statement_t    *goto_first        = NULL;
130 static goto_statement_t   **goto_anchor       = NULL;
131 static label_statement_t   *label_first       = NULL;
132 static label_statement_t  **label_anchor      = NULL;
133 /** current translation unit. */
134 static translation_unit_t  *unit              = NULL;
135 /** true if we are in a type property context (evaluation only for type. */
136 static bool                 in_type_prop      = false;
137 /** true in we are in a __extension__ context. */
138 static bool                 in_gcc_extension  = false;
139 static struct obstack       temp_obst;
140 static entity_t            *anonymous_entity;
141 static declaration_t      **incomplete_arrays;
142
143
144 #define PUSH_PARENT(stmt)                          \
145         statement_t *const prev_parent = current_parent; \
146         ((void)(current_parent = (stmt)))
147 #define POP_PARENT ((void)(current_parent = prev_parent))
148
149 /** special symbol used for anonymous entities. */
150 static const symbol_t *sym_anonymous = NULL;
151
152 /* symbols for Microsoft extended-decl-modifier */
153 static const symbol_t *sym_align      = NULL;
154 static const symbol_t *sym_allocate   = NULL;
155 static const symbol_t *sym_dllimport  = NULL;
156 static const symbol_t *sym_dllexport  = NULL;
157 static const symbol_t *sym_naked      = NULL;
158 static const symbol_t *sym_noinline   = NULL;
159 static const symbol_t *sym_noreturn   = NULL;
160 static const symbol_t *sym_nothrow    = NULL;
161 static const symbol_t *sym_novtable   = NULL;
162 static const symbol_t *sym_property   = NULL;
163 static const symbol_t *sym_get        = NULL;
164 static const symbol_t *sym_put        = NULL;
165 static const symbol_t *sym_selectany  = NULL;
166 static const symbol_t *sym_thread     = NULL;
167 static const symbol_t *sym_uuid       = NULL;
168 static const symbol_t *sym_deprecated = NULL;
169 static const symbol_t *sym_restrict   = NULL;
170 static const symbol_t *sym_noalias    = NULL;
171
172 /** The token anchor set */
173 static unsigned char token_anchor_set[T_LAST_TOKEN];
174
175 /** The current source position. */
176 #define HERE (&token.source_position)
177
178 /** true if we are in GCC mode. */
179 #define GNU_MODE ((c_mode & _GNUC) || in_gcc_extension)
180
181 static type_t *type_valist;
182
183 static statement_t *parse_compound_statement(bool inside_expression_statement);
184 static statement_t *parse_statement(void);
185
186 static expression_t *parse_sub_expression(precedence_t);
187 static expression_t *parse_expression(void);
188 static type_t       *parse_typename(void);
189 static void          parse_externals(void);
190 static void          parse_external(void);
191
192 static void parse_compound_type_entries(compound_t *compound_declaration);
193
194 typedef enum declarator_flags_t {
195         DECL_FLAGS_NONE             = 0,
196         DECL_MAY_BE_ABSTRACT        = 1U << 0,
197         DECL_CREATE_COMPOUND_MEMBER = 1U << 1,
198         DECL_IS_PARAMETER           = 1U << 2
199 } declarator_flags_t;
200
201 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
202                                   declarator_flags_t flags);
203
204 static entity_t *record_entity(entity_t *entity, bool is_definition);
205
206 static void semantic_comparison(binary_expression_t *expression);
207
208 #define STORAGE_CLASSES       \
209         STORAGE_CLASSES_NO_EXTERN \
210         case T_extern:
211
212 #define STORAGE_CLASSES_NO_EXTERN \
213         case T_typedef:         \
214         case T_static:          \
215         case T_auto:            \
216         case T_register:        \
217         case T___thread:
218
219 #define TYPE_QUALIFIERS     \
220         case T_const:           \
221         case T_restrict:        \
222         case T_volatile:        \
223         case T_inline:          \
224         case T__forceinline:    \
225         case T___attribute__:
226
227 #define COMPLEX_SPECIFIERS  \
228         case T__Complex:
229 #define IMAGINARY_SPECIFIERS \
230         case T__Imaginary:
231
232 #define TYPE_SPECIFIERS       \
233         case T__Bool:             \
234         case T___builtin_va_list: \
235         case T___typeof__:        \
236         case T__declspec:         \
237         case T_bool:              \
238         case T_char:              \
239         case T_double:            \
240         case T_enum:              \
241         case T_float:             \
242         case T_int:               \
243         case T_long:              \
244         case T_short:             \
245         case T_signed:            \
246         case T_struct:            \
247         case T_union:             \
248         case T_unsigned:          \
249         case T_void:              \
250         COMPLEX_SPECIFIERS        \
251         IMAGINARY_SPECIFIERS
252
253 #define DECLARATION_START   \
254         STORAGE_CLASSES         \
255         TYPE_QUALIFIERS         \
256         TYPE_SPECIFIERS
257
258 #define DECLARATION_START_NO_EXTERN \
259         STORAGE_CLASSES_NO_EXTERN       \
260         TYPE_QUALIFIERS                 \
261         TYPE_SPECIFIERS
262
263 #define TYPENAME_START      \
264         TYPE_QUALIFIERS         \
265         TYPE_SPECIFIERS
266
267 #define EXPRESSION_START           \
268         case '!':                        \
269         case '&':                        \
270         case '(':                        \
271         case '*':                        \
272         case '+':                        \
273         case '-':                        \
274         case '~':                        \
275         case T_ANDAND:                   \
276         case T_CHARACTER_CONSTANT:       \
277         case T_FLOATINGPOINT:            \
278         case T_INTEGER:                  \
279         case T_MINUSMINUS:               \
280         case T_PLUSPLUS:                 \
281         case T_STRING_LITERAL:           \
282         case T_WIDE_CHARACTER_CONSTANT:  \
283         case T_WIDE_STRING_LITERAL:      \
284         case T___FUNCDNAME__:            \
285         case T___FUNCSIG__:              \
286         case T___FUNCTION__:             \
287         case T___PRETTY_FUNCTION__:      \
288         case T___alignof__:              \
289         case T___builtin_alloca:         \
290         case T___builtin_classify_type:  \
291         case T___builtin_constant_p:     \
292         case T___builtin_expect:         \
293         case T___builtin_huge_val:       \
294         case T___builtin_inf:            \
295         case T___builtin_inff:           \
296         case T___builtin_infl:           \
297         case T___builtin_isgreater:      \
298         case T___builtin_isgreaterequal: \
299         case T___builtin_isless:         \
300         case T___builtin_islessequal:    \
301         case T___builtin_islessgreater:  \
302         case T___builtin_isunordered:    \
303         case T___builtin_nan:            \
304         case T___builtin_nanf:           \
305         case T___builtin_nanl:           \
306         case T___builtin_offsetof:       \
307         case T___builtin_prefetch:       \
308         case T___builtin_va_arg:         \
309         case T___builtin_va_end:         \
310         case T___builtin_va_start:       \
311         case T___func__:                 \
312         case T___noop:                   \
313         case T__assume:                  \
314         case T_delete:                   \
315         case T_false:                    \
316         case T_sizeof:                   \
317         case T_throw:                    \
318         case T_true:
319
320 /**
321  * Allocate an AST node with given size and
322  * initialize all fields with zero.
323  */
324 static void *allocate_ast_zero(size_t size)
325 {
326         void *res = allocate_ast(size);
327         memset(res, 0, size);
328         return res;
329 }
330
331 /**
332  * Returns the size of an entity node.
333  *
334  * @param kind  the entity kind
335  */
336 static size_t get_entity_struct_size(entity_kind_t kind)
337 {
338         static const size_t sizes[] = {
339                 [ENTITY_VARIABLE]        = sizeof(variable_t),
340                 [ENTITY_PARAMETER]       = sizeof(parameter_t),
341                 [ENTITY_COMPOUND_MEMBER] = sizeof(compound_member_t),
342                 [ENTITY_FUNCTION]        = sizeof(function_t),
343                 [ENTITY_TYPEDEF]         = sizeof(typedef_t),
344                 [ENTITY_STRUCT]          = sizeof(compound_t),
345                 [ENTITY_UNION]           = sizeof(compound_t),
346                 [ENTITY_ENUM]            = sizeof(enum_t),
347                 [ENTITY_ENUM_VALUE]      = sizeof(enum_value_t),
348                 [ENTITY_LABEL]           = sizeof(label_t),
349                 [ENTITY_LOCAL_LABEL]     = sizeof(label_t),
350                 [ENTITY_NAMESPACE]       = sizeof(namespace_t)
351         };
352         assert(kind < sizeof(sizes) / sizeof(sizes[0]));
353         assert(sizes[kind] != 0);
354         return sizes[kind];
355 }
356
357 /**
358  * Allocate an entity of given kind and initialize all
359  * fields with zero.
360  */
361 static entity_t *allocate_entity_zero(entity_kind_t kind)
362 {
363         size_t    size   = get_entity_struct_size(kind);
364         entity_t *entity = allocate_ast_zero(size);
365         entity->kind     = kind;
366         return entity;
367 }
368
369 /**
370  * Returns the size of a statement node.
371  *
372  * @param kind  the statement kind
373  */
374 static size_t get_statement_struct_size(statement_kind_t kind)
375 {
376         static const size_t sizes[] = {
377                 [STATEMENT_INVALID]     = sizeof(invalid_statement_t),
378                 [STATEMENT_EMPTY]       = sizeof(empty_statement_t),
379                 [STATEMENT_COMPOUND]    = sizeof(compound_statement_t),
380                 [STATEMENT_RETURN]      = sizeof(return_statement_t),
381                 [STATEMENT_DECLARATION] = sizeof(declaration_statement_t),
382                 [STATEMENT_LOCAL_LABEL] = sizeof(local_label_statement_t),
383                 [STATEMENT_IF]          = sizeof(if_statement_t),
384                 [STATEMENT_SWITCH]      = sizeof(switch_statement_t),
385                 [STATEMENT_EXPRESSION]  = sizeof(expression_statement_t),
386                 [STATEMENT_CONTINUE]    = sizeof(statement_base_t),
387                 [STATEMENT_BREAK]       = sizeof(statement_base_t),
388                 [STATEMENT_GOTO]        = sizeof(goto_statement_t),
389                 [STATEMENT_LABEL]       = sizeof(label_statement_t),
390                 [STATEMENT_CASE_LABEL]  = sizeof(case_label_statement_t),
391                 [STATEMENT_WHILE]       = sizeof(while_statement_t),
392                 [STATEMENT_DO_WHILE]    = sizeof(do_while_statement_t),
393                 [STATEMENT_FOR]         = sizeof(for_statement_t),
394                 [STATEMENT_ASM]         = sizeof(asm_statement_t),
395                 [STATEMENT_MS_TRY]      = sizeof(ms_try_statement_t),
396                 [STATEMENT_LEAVE]       = sizeof(leave_statement_t)
397         };
398         assert(kind < sizeof(sizes) / sizeof(sizes[0]));
399         assert(sizes[kind] != 0);
400         return sizes[kind];
401 }
402
403 /**
404  * Returns the size of an expression node.
405  *
406  * @param kind  the expression kind
407  */
408 static size_t get_expression_struct_size(expression_kind_t kind)
409 {
410         static const size_t sizes[] = {
411                 [EXPR_INVALID]                 = sizeof(expression_base_t),
412                 [EXPR_REFERENCE]               = sizeof(reference_expression_t),
413                 [EXPR_REFERENCE_ENUM_VALUE]    = sizeof(reference_expression_t),
414                 [EXPR_CONST]                   = sizeof(const_expression_t),
415                 [EXPR_CHARACTER_CONSTANT]      = sizeof(const_expression_t),
416                 [EXPR_WIDE_CHARACTER_CONSTANT] = sizeof(const_expression_t),
417                 [EXPR_STRING_LITERAL]          = sizeof(string_literal_expression_t),
418                 [EXPR_WIDE_STRING_LITERAL]     = sizeof(wide_string_literal_expression_t),
419                 [EXPR_COMPOUND_LITERAL]        = sizeof(compound_literal_expression_t),
420                 [EXPR_CALL]                    = sizeof(call_expression_t),
421                 [EXPR_UNARY_FIRST]             = sizeof(unary_expression_t),
422                 [EXPR_BINARY_FIRST]            = sizeof(binary_expression_t),
423                 [EXPR_CONDITIONAL]             = sizeof(conditional_expression_t),
424                 [EXPR_SELECT]                  = sizeof(select_expression_t),
425                 [EXPR_ARRAY_ACCESS]            = sizeof(array_access_expression_t),
426                 [EXPR_SIZEOF]                  = sizeof(typeprop_expression_t),
427                 [EXPR_ALIGNOF]                 = sizeof(typeprop_expression_t),
428                 [EXPR_CLASSIFY_TYPE]           = sizeof(classify_type_expression_t),
429                 [EXPR_FUNCNAME]                = sizeof(funcname_expression_t),
430                 [EXPR_BUILTIN_SYMBOL]          = sizeof(builtin_symbol_expression_t),
431                 [EXPR_BUILTIN_CONSTANT_P]      = sizeof(builtin_constant_expression_t),
432                 [EXPR_BUILTIN_PREFETCH]        = sizeof(builtin_prefetch_expression_t),
433                 [EXPR_OFFSETOF]                = sizeof(offsetof_expression_t),
434                 [EXPR_VA_START]                = sizeof(va_start_expression_t),
435                 [EXPR_VA_ARG]                  = sizeof(va_arg_expression_t),
436                 [EXPR_STATEMENT]               = sizeof(statement_expression_t),
437                 [EXPR_LABEL_ADDRESS]           = sizeof(label_address_expression_t),
438         };
439         if (kind >= EXPR_UNARY_FIRST && kind <= EXPR_UNARY_LAST) {
440                 return sizes[EXPR_UNARY_FIRST];
441         }
442         if (kind >= EXPR_BINARY_FIRST && kind <= EXPR_BINARY_LAST) {
443                 return sizes[EXPR_BINARY_FIRST];
444         }
445         assert(kind < sizeof(sizes) / sizeof(sizes[0]));
446         assert(sizes[kind] != 0);
447         return sizes[kind];
448 }
449
450 /**
451  * Allocate a statement node of given kind and initialize all
452  * fields with zero. Sets its source position to the position
453  * of the current token.
454  */
455 static statement_t *allocate_statement_zero(statement_kind_t kind)
456 {
457         size_t       size = get_statement_struct_size(kind);
458         statement_t *res  = allocate_ast_zero(size);
459
460         res->base.kind            = kind;
461         res->base.parent          = current_parent;
462         res->base.source_position = token.source_position;
463         return res;
464 }
465
466 /**
467  * Allocate an expression node of given kind and initialize all
468  * fields with zero.
469  */
470 static expression_t *allocate_expression_zero(expression_kind_t kind)
471 {
472         size_t        size = get_expression_struct_size(kind);
473         expression_t *res  = allocate_ast_zero(size);
474
475         res->base.kind            = kind;
476         res->base.type            = type_error_type;
477         res->base.source_position = token.source_position;
478         return res;
479 }
480
481 /**
482  * Creates a new invalid expression at the source position
483  * of the current token.
484  */
485 static expression_t *create_invalid_expression(void)
486 {
487         return allocate_expression_zero(EXPR_INVALID);
488 }
489
490 /**
491  * Creates a new invalid statement.
492  */
493 static statement_t *create_invalid_statement(void)
494 {
495         return allocate_statement_zero(STATEMENT_INVALID);
496 }
497
498 /**
499  * Allocate a new empty statement.
500  */
501 static statement_t *create_empty_statement(void)
502 {
503         return allocate_statement_zero(STATEMENT_EMPTY);
504 }
505
506 /**
507  * Returns the size of a type node.
508  *
509  * @param kind  the type kind
510  */
511 static size_t get_type_struct_size(type_kind_t kind)
512 {
513         static const size_t sizes[] = {
514                 [TYPE_ATOMIC]          = sizeof(atomic_type_t),
515                 [TYPE_COMPLEX]         = sizeof(complex_type_t),
516                 [TYPE_IMAGINARY]       = sizeof(imaginary_type_t),
517                 [TYPE_BITFIELD]        = sizeof(bitfield_type_t),
518                 [TYPE_COMPOUND_STRUCT] = sizeof(compound_type_t),
519                 [TYPE_COMPOUND_UNION]  = sizeof(compound_type_t),
520                 [TYPE_ENUM]            = sizeof(enum_type_t),
521                 [TYPE_FUNCTION]        = sizeof(function_type_t),
522                 [TYPE_POINTER]         = sizeof(pointer_type_t),
523                 [TYPE_ARRAY]           = sizeof(array_type_t),
524                 [TYPE_BUILTIN]         = sizeof(builtin_type_t),
525                 [TYPE_TYPEDEF]         = sizeof(typedef_type_t),
526                 [TYPE_TYPEOF]          = sizeof(typeof_type_t),
527         };
528         assert(sizeof(sizes) / sizeof(sizes[0]) == (int) TYPE_TYPEOF + 1);
529         assert(kind <= TYPE_TYPEOF);
530         assert(sizes[kind] != 0);
531         return sizes[kind];
532 }
533
534 /**
535  * Allocate a type node of given kind and initialize all
536  * fields with zero.
537  *
538  * @param kind             type kind to allocate
539  */
540 static type_t *allocate_type_zero(type_kind_t kind)
541 {
542         size_t  size = get_type_struct_size(kind);
543         type_t *res  = obstack_alloc(type_obst, size);
544         memset(res, 0, size);
545         res->base.kind = kind;
546
547         return res;
548 }
549
550 /**
551  * Returns the size of an initializer node.
552  *
553  * @param kind  the initializer kind
554  */
555 static size_t get_initializer_size(initializer_kind_t kind)
556 {
557         static const size_t sizes[] = {
558                 [INITIALIZER_VALUE]       = sizeof(initializer_value_t),
559                 [INITIALIZER_STRING]      = sizeof(initializer_string_t),
560                 [INITIALIZER_WIDE_STRING] = sizeof(initializer_wide_string_t),
561                 [INITIALIZER_LIST]        = sizeof(initializer_list_t),
562                 [INITIALIZER_DESIGNATOR]  = sizeof(initializer_designator_t)
563         };
564         assert(kind < sizeof(sizes) / sizeof(*sizes));
565         assert(sizes[kind] != 0);
566         return sizes[kind];
567 }
568
569 /**
570  * Allocate an initializer node of given kind and initialize all
571  * fields with zero.
572  */
573 static initializer_t *allocate_initializer_zero(initializer_kind_t kind)
574 {
575         initializer_t *result = allocate_ast_zero(get_initializer_size(kind));
576         result->kind          = kind;
577
578         return result;
579 }
580
581 /**
582  * Free a type from the type obstack.
583  */
584 static void free_type(void *type)
585 {
586         obstack_free(type_obst, type);
587 }
588
589 /**
590  * Returns the index of the top element of the environment stack.
591  */
592 static size_t environment_top(void)
593 {
594         return ARR_LEN(environment_stack);
595 }
596
597 /**
598  * Returns the index of the top element of the global label stack.
599  */
600 static size_t label_top(void)
601 {
602         return ARR_LEN(label_stack);
603 }
604
605 /**
606  * Return the next token.
607  */
608 static inline void next_token(void)
609 {
610         token                              = lookahead_buffer[lookahead_bufpos];
611         lookahead_buffer[lookahead_bufpos] = lexer_token;
612         lexer_next_token();
613
614         lookahead_bufpos = (lookahead_bufpos+1) % MAX_LOOKAHEAD;
615
616 #ifdef PRINT_TOKENS
617         print_token(stderr, &token);
618         fprintf(stderr, "\n");
619 #endif
620 }
621
622 /**
623  * Return the next token with a given lookahead.
624  */
625 static inline const token_t *look_ahead(int num)
626 {
627         assert(num > 0 && num <= MAX_LOOKAHEAD);
628         int pos = (lookahead_bufpos+num-1) % MAX_LOOKAHEAD;
629         return &lookahead_buffer[pos];
630 }
631
632 /**
633  * Adds a token type to the token type anchor set (a multi-set).
634  */
635 static void add_anchor_token(int token_type)
636 {
637         assert(0 <= token_type && token_type < T_LAST_TOKEN);
638         ++token_anchor_set[token_type];
639 }
640
641 /**
642  * Set the number of tokens types of the given type
643  * to zero and return the old count.
644  */
645 static int save_and_reset_anchor_state(int token_type)
646 {
647         assert(0 <= token_type && token_type < T_LAST_TOKEN);
648         int count = token_anchor_set[token_type];
649         token_anchor_set[token_type] = 0;
650         return count;
651 }
652
653 /**
654  * Restore the number of token types to the given count.
655  */
656 static void restore_anchor_state(int token_type, int count)
657 {
658         assert(0 <= token_type && token_type < T_LAST_TOKEN);
659         token_anchor_set[token_type] = count;
660 }
661
662 /**
663  * Remove a token type from the token type anchor set (a multi-set).
664  */
665 static void rem_anchor_token(int token_type)
666 {
667         assert(0 <= token_type && token_type < T_LAST_TOKEN);
668         assert(token_anchor_set[token_type] != 0);
669         --token_anchor_set[token_type];
670 }
671
672 /**
673  * Return true if the token type of the current token is
674  * in the anchor set.
675  */
676 static bool at_anchor(void)
677 {
678         if (token.type < 0)
679                 return false;
680         return token_anchor_set[token.type];
681 }
682
683 /**
684  * Eat tokens until a matching token type is found.
685  */
686 static void eat_until_matching_token(int type)
687 {
688         int end_token;
689         switch (type) {
690                 case '(': end_token = ')';  break;
691                 case '{': end_token = '}';  break;
692                 case '[': end_token = ']';  break;
693                 default:  end_token = type; break;
694         }
695
696         unsigned parenthesis_count = 0;
697         unsigned brace_count       = 0;
698         unsigned bracket_count     = 0;
699         while (token.type        != end_token ||
700                parenthesis_count != 0         ||
701                brace_count       != 0         ||
702                bracket_count     != 0) {
703                 switch (token.type) {
704                 case T_EOF: return;
705                 case '(': ++parenthesis_count; break;
706                 case '{': ++brace_count;       break;
707                 case '[': ++bracket_count;     break;
708
709                 case ')':
710                         if (parenthesis_count > 0)
711                                 --parenthesis_count;
712                         goto check_stop;
713
714                 case '}':
715                         if (brace_count > 0)
716                                 --brace_count;
717                         goto check_stop;
718
719                 case ']':
720                         if (bracket_count > 0)
721                                 --bracket_count;
722 check_stop:
723                         if (token.type        == end_token &&
724                             parenthesis_count == 0         &&
725                             brace_count       == 0         &&
726                             bracket_count     == 0)
727                                 return;
728                         break;
729
730                 default:
731                         break;
732                 }
733                 next_token();
734         }
735 }
736
737 /**
738  * Eat input tokens until an anchor is found.
739  */
740 static void eat_until_anchor(void)
741 {
742         while (token_anchor_set[token.type] == 0) {
743                 if (token.type == '(' || token.type == '{' || token.type == '[')
744                         eat_until_matching_token(token.type);
745                 next_token();
746         }
747 }
748
749 /**
750  * Eat a whole block from input tokens.
751  */
752 static void eat_block(void)
753 {
754         eat_until_matching_token('{');
755         if (token.type == '}')
756                 next_token();
757 }
758
759 #define eat(token_type)  do { assert(token.type == (token_type)); next_token(); } while (0)
760
761 /**
762  * Report a parse error because an expected token was not found.
763  */
764 static
765 #if defined __GNUC__ && __GNUC__ >= 4
766 __attribute__((sentinel))
767 #endif
768 void parse_error_expected(const char *message, ...)
769 {
770         if (message != NULL) {
771                 errorf(HERE, "%s", message);
772         }
773         va_list ap;
774         va_start(ap, message);
775         errorf(HERE, "got %K, expected %#k", &token, &ap, ", ");
776         va_end(ap);
777 }
778
779 /**
780  * Report an incompatible type.
781  */
782 static void type_error_incompatible(const char *msg,
783                 const source_position_t *source_position, type_t *type1, type_t *type2)
784 {
785         errorf(source_position, "%s, incompatible types: '%T' - '%T'",
786                msg, type1, type2);
787 }
788
789 /**
790  * Expect the current token is the expected token.
791  * If not, generate an error, eat the current statement,
792  * and goto the end_error label.
793  */
794 #define expect(expected)                                  \
795         do {                                                  \
796                 if (UNLIKELY(token.type != (expected))) {         \
797                         parse_error_expected(NULL, (expected), NULL); \
798                         add_anchor_token(expected);                   \
799                         eat_until_anchor();                           \
800                         if (token.type == expected)                   \
801                                 next_token();                             \
802                         rem_anchor_token(expected);                   \
803                         goto end_error;                               \
804                 }                                                 \
805                 next_token();                                     \
806         } while (0)
807
808 /**
809  * Push a given scope on the scope stack and make it the
810  * current scope
811  */
812 static scope_t *scope_push(scope_t *new_scope)
813 {
814         if (current_scope != NULL) {
815                 new_scope->depth = current_scope->depth + 1;
816         }
817
818         scope_t *old_scope = current_scope;
819         current_scope      = new_scope;
820         return old_scope;
821 }
822
823 /**
824  * Pop the current scope from the scope stack.
825  */
826 static void scope_pop(scope_t *old_scope)
827 {
828         current_scope = old_scope;
829 }
830
831 /**
832  * Search an entity by its symbol in a given namespace.
833  */
834 static entity_t *get_entity(const symbol_t *const symbol,
835                             namespace_tag_t namespc)
836 {
837         entity_t *entity = symbol->entity;
838         for (; entity != NULL; entity = entity->base.symbol_next) {
839                 if (entity->base.namespc == namespc)
840                         return entity;
841         }
842
843         return NULL;
844 }
845
846 /**
847  * pushs an entity on the environment stack and links the corresponding symbol
848  * it.
849  */
850 static void stack_push(stack_entry_t **stack_ptr, entity_t *entity)
851 {
852         symbol_t           *symbol  = entity->base.symbol;
853         entity_namespace_t  namespc = entity->base.namespc;
854         assert(namespc != NAMESPACE_INVALID);
855
856         /* replace/add entity into entity list of the symbol */
857         entity_t **anchor;
858         entity_t  *iter;
859         for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
860                 iter = *anchor;
861                 if (iter == NULL)
862                         break;
863
864                 /* replace an entry? */
865                 if (iter->base.namespc == namespc) {
866                         entity->base.symbol_next = iter->base.symbol_next;
867                         break;
868                 }
869         }
870         *anchor = entity;
871
872         /* remember old declaration */
873         stack_entry_t entry;
874         entry.symbol     = symbol;
875         entry.old_entity = iter;
876         entry.namespc    = namespc;
877         ARR_APP1(stack_entry_t, *stack_ptr, entry);
878 }
879
880 /**
881  * Push an entity on the environment stack.
882  */
883 static void environment_push(entity_t *entity)
884 {
885         assert(entity->base.source_position.input_name != NULL);
886         assert(entity->base.parent_scope != NULL);
887         stack_push(&environment_stack, entity);
888 }
889
890 /**
891  * Push a declaration on the global label stack.
892  *
893  * @param declaration  the declaration
894  */
895 static void label_push(entity_t *label)
896 {
897         /* we abuse the parameters scope as parent for the labels */
898         label->base.parent_scope = &current_function->parameters;
899         stack_push(&label_stack, label);
900 }
901
902 /**
903  * pops symbols from the environment stack until @p new_top is the top element
904  */
905 static void stack_pop_to(stack_entry_t **stack_ptr, size_t new_top)
906 {
907         stack_entry_t *stack = *stack_ptr;
908         size_t         top   = ARR_LEN(stack);
909         size_t         i;
910
911         assert(new_top <= top);
912         if (new_top == top)
913                 return;
914
915         for (i = top; i > new_top; --i) {
916                 stack_entry_t *entry = &stack[i - 1];
917
918                 entity_t           *old_entity = entry->old_entity;
919                 symbol_t           *symbol     = entry->symbol;
920                 entity_namespace_t  namespc    = entry->namespc;
921
922                 /* replace with old_entity/remove */
923                 entity_t **anchor;
924                 entity_t  *iter;
925                 for (anchor = &symbol->entity; ; anchor = &iter->base.symbol_next) {
926                         iter = *anchor;
927                         assert(iter != NULL);
928                         /* replace an entry? */
929                         if (iter->base.namespc == namespc)
930                                 break;
931                 }
932
933                 /* restore definition from outer scopes (if there was one) */
934                 if (old_entity != NULL) {
935                         old_entity->base.symbol_next = iter->base.symbol_next;
936                         *anchor                      = old_entity;
937                 } else {
938                         /* remove entry from list */
939                         *anchor = iter->base.symbol_next;
940                 }
941         }
942
943         ARR_SHRINKLEN(*stack_ptr, (int) new_top);
944 }
945
946 /**
947  * Pop all entries from the environment stack until the new_top
948  * is reached.
949  *
950  * @param new_top  the new stack top
951  */
952 static void environment_pop_to(size_t new_top)
953 {
954         stack_pop_to(&environment_stack, new_top);
955 }
956
957 /**
958  * Pop all entries from the global label stack until the new_top
959  * is reached.
960  *
961  * @param new_top  the new stack top
962  */
963 static void label_pop_to(size_t new_top)
964 {
965         stack_pop_to(&label_stack, new_top);
966 }
967
968 static int get_akind_rank(atomic_type_kind_t akind)
969 {
970         return (int) akind;
971 }
972
973 /**
974  * Return the type rank for an atomic type.
975  */
976 static int get_rank(const type_t *type)
977 {
978         assert(!is_typeref(type));
979         /* The C-standard allows promoting enums to int or unsigned int (see Â§ 7.2.2
980          * and esp. footnote 108). However we can't fold constants (yet), so we
981          * can't decide whether unsigned int is possible, while int always works.
982          * (unsigned int would be preferable when possible... for stuff like
983          *  struct { enum { ... } bla : 4; } ) */
984         if (type->kind == TYPE_ENUM)
985                 return get_akind_rank(ATOMIC_TYPE_INT);
986
987         assert(type->kind == TYPE_ATOMIC);
988         return get_akind_rank(type->atomic.akind);
989 }
990
991 /**
992  * Do integer promotion for a given type.
993  *
994  * @param type  the type to promote
995  * @return the promoted type
996  */
997 static type_t *promote_integer(type_t *type)
998 {
999         if (type->kind == TYPE_BITFIELD)
1000                 type = type->bitfield.base_type;
1001
1002         if (get_rank(type) < get_akind_rank(ATOMIC_TYPE_INT))
1003                 type = type_int;
1004
1005         return type;
1006 }
1007
1008 /**
1009  * Create a cast expression.
1010  *
1011  * @param expression  the expression to cast
1012  * @param dest_type   the destination type
1013  */
1014 static expression_t *create_cast_expression(expression_t *expression,
1015                                             type_t *dest_type)
1016 {
1017         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST_IMPLICIT);
1018
1019         cast->unary.value = expression;
1020         cast->base.type   = dest_type;
1021
1022         return cast;
1023 }
1024
1025 /**
1026  * Check if a given expression represents a null pointer constant.
1027  *
1028  * @param expression  the expression to check
1029  */
1030 static bool is_null_pointer_constant(const expression_t *expression)
1031 {
1032         /* skip void* cast */
1033         if (expression->kind == EXPR_UNARY_CAST
1034                         || expression->kind == EXPR_UNARY_CAST_IMPLICIT) {
1035                 expression = expression->unary.value;
1036         }
1037
1038         /* TODO: not correct yet, should be any constant integer expression
1039          * which evaluates to 0 */
1040         if (expression->kind != EXPR_CONST)
1041                 return false;
1042
1043         type_t *const type = skip_typeref(expression->base.type);
1044         if (!is_type_integer(type))
1045                 return false;
1046
1047         return expression->conste.v.int_value == 0;
1048 }
1049
1050 /**
1051  * Create an implicit cast expression.
1052  *
1053  * @param expression  the expression to cast
1054  * @param dest_type   the destination type
1055  */
1056 static expression_t *create_implicit_cast(expression_t *expression,
1057                                           type_t *dest_type)
1058 {
1059         type_t *const source_type = expression->base.type;
1060
1061         if (source_type == dest_type)
1062                 return expression;
1063
1064         return create_cast_expression(expression, dest_type);
1065 }
1066
1067 typedef enum assign_error_t {
1068         ASSIGN_SUCCESS,
1069         ASSIGN_ERROR_INCOMPATIBLE,
1070         ASSIGN_ERROR_POINTER_QUALIFIER_MISSING,
1071         ASSIGN_WARNING_POINTER_INCOMPATIBLE,
1072         ASSIGN_WARNING_POINTER_FROM_INT,
1073         ASSIGN_WARNING_INT_FROM_POINTER
1074 } assign_error_t;
1075
1076 static void report_assign_error(assign_error_t error, type_t *orig_type_left,
1077                                 const expression_t *const right,
1078                                 const char *context,
1079                                 const source_position_t *source_position)
1080 {
1081         type_t *const orig_type_right = right->base.type;
1082         type_t *const type_left       = skip_typeref(orig_type_left);
1083         type_t *const type_right      = skip_typeref(orig_type_right);
1084
1085         switch (error) {
1086         case ASSIGN_SUCCESS:
1087                 return;
1088         case ASSIGN_ERROR_INCOMPATIBLE:
1089                 errorf(source_position,
1090                        "destination type '%T' in %s is incompatible with type '%T'",
1091                        orig_type_left, context, orig_type_right);
1092                 return;
1093
1094         case ASSIGN_ERROR_POINTER_QUALIFIER_MISSING: {
1095                 if (warning.other) {
1096                         type_t *points_to_left  = skip_typeref(type_left->pointer.points_to);
1097                         type_t *points_to_right = skip_typeref(type_right->pointer.points_to);
1098
1099                         /* the left type has all qualifiers from the right type */
1100                         unsigned missing_qualifiers
1101                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1102                         warningf(source_position,
1103                                         "destination type '%T' in %s from type '%T' lacks qualifiers '%Q' in pointer target type",
1104                                         orig_type_left, context, orig_type_right, missing_qualifiers);
1105                 }
1106                 return;
1107         }
1108
1109         case ASSIGN_WARNING_POINTER_INCOMPATIBLE:
1110                 if (warning.other) {
1111                         warningf(source_position,
1112                                         "destination type '%T' in %s is incompatible with '%E' of type '%T'",
1113                                         orig_type_left, context, right, orig_type_right);
1114                 }
1115                 return;
1116
1117         case ASSIGN_WARNING_POINTER_FROM_INT:
1118                 if (warning.other) {
1119                         warningf(source_position,
1120                                         "%s makes pointer '%T' from integer '%T' without a cast",
1121                                         context, orig_type_left, orig_type_right);
1122                 }
1123                 return;
1124
1125         case ASSIGN_WARNING_INT_FROM_POINTER:
1126                 if (warning.other) {
1127                         warningf(source_position,
1128                                         "%s makes integer '%T' from pointer '%T' without a cast",
1129                                         context, orig_type_left, orig_type_right);
1130                 }
1131                 return;
1132
1133         default:
1134                 panic("invalid error value");
1135         }
1136 }
1137
1138 /** Implements the rules from Â§ 6.5.16.1 */
1139 static assign_error_t semantic_assign(type_t *orig_type_left,
1140                                       const expression_t *const right)
1141 {
1142         type_t *const orig_type_right = right->base.type;
1143         type_t *const type_left       = skip_typeref(orig_type_left);
1144         type_t *const type_right      = skip_typeref(orig_type_right);
1145
1146         if (is_type_pointer(type_left)) {
1147                 if (is_null_pointer_constant(right)) {
1148                         return ASSIGN_SUCCESS;
1149                 } else if (is_type_pointer(type_right)) {
1150                         type_t *points_to_left
1151                                 = skip_typeref(type_left->pointer.points_to);
1152                         type_t *points_to_right
1153                                 = skip_typeref(type_right->pointer.points_to);
1154                         assign_error_t res = ASSIGN_SUCCESS;
1155
1156                         /* the left type has all qualifiers from the right type */
1157                         unsigned missing_qualifiers
1158                                 = points_to_right->base.qualifiers & ~points_to_left->base.qualifiers;
1159                         if (missing_qualifiers != 0) {
1160                                 res = ASSIGN_ERROR_POINTER_QUALIFIER_MISSING;
1161                         }
1162
1163                         points_to_left  = get_unqualified_type(points_to_left);
1164                         points_to_right = get_unqualified_type(points_to_right);
1165
1166                         if (is_type_atomic(points_to_left, ATOMIC_TYPE_VOID))
1167                                 return res;
1168
1169                         if (is_type_atomic(points_to_right, ATOMIC_TYPE_VOID)) {
1170                                 /* ISO/IEC 14882:1998(E) Â§C.1.2:6 */
1171                                 return c_mode & _CXX ? ASSIGN_ERROR_INCOMPATIBLE : res;
1172                         }
1173
1174                         if (!types_compatible(points_to_left, points_to_right)) {
1175                                 return ASSIGN_WARNING_POINTER_INCOMPATIBLE;
1176                         }
1177
1178                         return res;
1179                 } else if (is_type_integer(type_right)) {
1180                         return ASSIGN_WARNING_POINTER_FROM_INT;
1181                 }
1182         } else if ((is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) ||
1183             (is_type_atomic(type_left, ATOMIC_TYPE_BOOL)
1184                 && is_type_pointer(type_right))) {
1185                 return ASSIGN_SUCCESS;
1186         } else if ((is_type_compound(type_left)  && is_type_compound(type_right))
1187                         || (is_type_builtin(type_left) && is_type_builtin(type_right))) {
1188                 type_t *const unqual_type_left  = get_unqualified_type(type_left);
1189                 type_t *const unqual_type_right = get_unqualified_type(type_right);
1190                 if (types_compatible(unqual_type_left, unqual_type_right)) {
1191                         return ASSIGN_SUCCESS;
1192                 }
1193         } else if (is_type_integer(type_left) && is_type_pointer(type_right)) {
1194                 return ASSIGN_WARNING_INT_FROM_POINTER;
1195         }
1196
1197         if (!is_type_valid(type_left) || !is_type_valid(type_right))
1198                 return ASSIGN_SUCCESS;
1199
1200         return ASSIGN_ERROR_INCOMPATIBLE;
1201 }
1202
1203 static expression_t *parse_constant_expression(void)
1204 {
1205         expression_t *result = parse_sub_expression(PREC_CONDITIONAL);
1206
1207         if (!is_constant_expression(result)) {
1208                 errorf(&result->base.source_position,
1209                        "expression '%E' is not constant", result);
1210         }
1211
1212         return result;
1213 }
1214
1215 static expression_t *parse_assignment_expression(void)
1216 {
1217         return parse_sub_expression(PREC_ASSIGNMENT);
1218 }
1219
1220 static string_t parse_string_literals(void)
1221 {
1222         assert(token.type == T_STRING_LITERAL);
1223         string_t result = token.v.string;
1224
1225         next_token();
1226
1227         while (token.type == T_STRING_LITERAL) {
1228                 result = concat_strings(&result, &token.v.string);
1229                 next_token();
1230         }
1231
1232         return result;
1233 }
1234
1235 static const char *const gnu_attribute_names[GNU_AK_LAST] = {
1236         [GNU_AK_CONST]                  = "const",
1237         [GNU_AK_VOLATILE]               = "volatile",
1238         [GNU_AK_CDECL]                  = "cdecl",
1239         [GNU_AK_STDCALL]                = "stdcall",
1240         [GNU_AK_FASTCALL]               = "fastcall",
1241         [GNU_AK_DEPRECATED]             = "deprecated",
1242         [GNU_AK_NOINLINE]               = "noinline",
1243         [GNU_AK_NORETURN]               = "noreturn",
1244         [GNU_AK_NAKED]                  = "naked",
1245         [GNU_AK_PURE]                   = "pure",
1246         [GNU_AK_ALWAYS_INLINE]          = "always_inline",
1247         [GNU_AK_MALLOC]                 = "malloc",
1248         [GNU_AK_WEAK]                   = "weak",
1249         [GNU_AK_CONSTRUCTOR]            = "constructor",
1250         [GNU_AK_DESTRUCTOR]             = "destructor",
1251         [GNU_AK_NOTHROW]                = "nothrow",
1252         [GNU_AK_TRANSPARENT_UNION]      = "transparent_union",
1253         [GNU_AK_COMMON]                 = "common",
1254         [GNU_AK_NOCOMMON]               = "nocommon",
1255         [GNU_AK_PACKED]                 = "packed",
1256         [GNU_AK_SHARED]                 = "shared",
1257         [GNU_AK_NOTSHARED]              = "notshared",
1258         [GNU_AK_USED]                   = "used",
1259         [GNU_AK_UNUSED]                 = "unused",
1260         [GNU_AK_NO_INSTRUMENT_FUNCTION] = "no_instrument_function",
1261         [GNU_AK_WARN_UNUSED_RESULT]     = "warn_unused_result",
1262         [GNU_AK_LONGCALL]               = "longcall",
1263         [GNU_AK_SHORTCALL]              = "shortcall",
1264         [GNU_AK_LONG_CALL]              = "long_call",
1265         [GNU_AK_SHORT_CALL]             = "short_call",
1266         [GNU_AK_FUNCTION_VECTOR]        = "function_vector",
1267         [GNU_AK_INTERRUPT]              = "interrupt",
1268         [GNU_AK_INTERRUPT_HANDLER]      = "interrupt_handler",
1269         [GNU_AK_NMI_HANDLER]            = "nmi_handler",
1270         [GNU_AK_NESTING]                = "nesting",
1271         [GNU_AK_NEAR]                   = "near",
1272         [GNU_AK_FAR]                    = "far",
1273         [GNU_AK_SIGNAL]                 = "signal",
1274         [GNU_AK_EIGTHBIT_DATA]          = "eightbit_data",
1275         [GNU_AK_TINY_DATA]              = "tiny_data",
1276         [GNU_AK_SAVEALL]                = "saveall",
1277         [GNU_AK_FLATTEN]                = "flatten",
1278         [GNU_AK_SSEREGPARM]             = "sseregparm",
1279         [GNU_AK_EXTERNALLY_VISIBLE]     = "externally_visible",
1280         [GNU_AK_RETURN_TWICE]           = "return_twice",
1281         [GNU_AK_MAY_ALIAS]              = "may_alias",
1282         [GNU_AK_MS_STRUCT]              = "ms_struct",
1283         [GNU_AK_GCC_STRUCT]             = "gcc_struct",
1284         [GNU_AK_DLLIMPORT]              = "dllimport",
1285         [GNU_AK_DLLEXPORT]              = "dllexport",
1286         [GNU_AK_ALIGNED]                = "aligned",
1287         [GNU_AK_ALIAS]                  = "alias",
1288         [GNU_AK_SECTION]                = "section",
1289         [GNU_AK_FORMAT]                 = "format",
1290         [GNU_AK_FORMAT_ARG]             = "format_arg",
1291         [GNU_AK_WEAKREF]                = "weakref",
1292         [GNU_AK_NONNULL]                = "nonnull",
1293         [GNU_AK_TLS_MODEL]              = "tls_model",
1294         [GNU_AK_VISIBILITY]             = "visibility",
1295         [GNU_AK_REGPARM]                = "regparm",
1296         [GNU_AK_MODE]                   = "mode",
1297         [GNU_AK_MODEL]                  = "model",
1298         [GNU_AK_TRAP_EXIT]              = "trap_exit",
1299         [GNU_AK_SP_SWITCH]              = "sp_switch",
1300         [GNU_AK_SENTINEL]               = "sentinel"
1301 };
1302
1303 /**
1304  * compare two string, ignoring double underscores on the second.
1305  */
1306 static int strcmp_underscore(const char *s1, const char *s2)
1307 {
1308         if (s2[0] == '_' && s2[1] == '_') {
1309                 size_t len2 = strlen(s2);
1310                 size_t len1 = strlen(s1);
1311                 if (len1 == len2-4 && s2[len2-2] == '_' && s2[len2-1] == '_') {
1312                         return strncmp(s1, s2+2, len2-4);
1313                 }
1314         }
1315
1316         return strcmp(s1, s2);
1317 }
1318
1319 /**
1320  * Allocate a new gnu temporal attribute of given kind.
1321  */
1322 static gnu_attribute_t *allocate_gnu_attribute(gnu_attribute_kind_t kind)
1323 {
1324         gnu_attribute_t *attribute = obstack_alloc(&temp_obst, sizeof(*attribute));
1325         attribute->kind            = kind;
1326         attribute->next            = NULL;
1327         attribute->invalid         = false;
1328         attribute->have_arguments  = false;
1329
1330         return attribute;
1331 }
1332
1333 /**
1334  * Parse one constant expression argument of the given attribute.
1335  */
1336 static void parse_gnu_attribute_const_arg(gnu_attribute_t *attribute)
1337 {
1338         expression_t *expression;
1339         add_anchor_token(')');
1340         expression = parse_constant_expression();
1341         rem_anchor_token(')');
1342         expect(')');
1343         attribute->u.argument = fold_constant(expression);
1344         return;
1345 end_error:
1346         attribute->invalid = true;
1347 }
1348
1349 /**
1350  * Parse a list of constant expressions arguments of the given attribute.
1351  */
1352 static void parse_gnu_attribute_const_arg_list(gnu_attribute_t *attribute)
1353 {
1354         argument_list_t **list = &attribute->u.arguments;
1355         argument_list_t  *entry;
1356         expression_t     *expression;
1357         add_anchor_token(')');
1358         add_anchor_token(',');
1359         while (true) {
1360                 expression = parse_constant_expression();
1361                 entry = obstack_alloc(&temp_obst, sizeof(entry));
1362                 entry->argument = fold_constant(expression);
1363                 entry->next     = NULL;
1364                 *list = entry;
1365                 list = &entry->next;
1366                 if (token.type != ',')
1367                         break;
1368                 next_token();
1369         }
1370         rem_anchor_token(',');
1371         rem_anchor_token(')');
1372         expect(')');
1373         return;
1374 end_error:
1375         attribute->invalid = true;
1376 }
1377
1378 /**
1379  * Parse one string literal argument of the given attribute.
1380  */
1381 static void parse_gnu_attribute_string_arg(gnu_attribute_t *attribute,
1382                                            string_t *string)
1383 {
1384         add_anchor_token('(');
1385         if (token.type != T_STRING_LITERAL) {
1386                 parse_error_expected("while parsing attribute directive",
1387                                      T_STRING_LITERAL, NULL);
1388                 goto end_error;
1389         }
1390         *string = parse_string_literals();
1391         rem_anchor_token('(');
1392         expect(')');
1393         return;
1394 end_error:
1395         attribute->invalid = true;
1396 }
1397
1398 /**
1399  * Parse one tls model of the given attribute.
1400  */
1401 static void parse_gnu_attribute_tls_model_arg(gnu_attribute_t *attribute)
1402 {
1403         static const char *const tls_models[] = {
1404                 "global-dynamic",
1405                 "local-dynamic",
1406                 "initial-exec",
1407                 "local-exec"
1408         };
1409         string_t string = { NULL, 0 };
1410         parse_gnu_attribute_string_arg(attribute, &string);
1411         if (string.begin != NULL) {
1412                 for (size_t i = 0; i < 4; ++i) {
1413                         if (strcmp(tls_models[i], string.begin) == 0) {
1414                                 attribute->u.value = i;
1415                                 return;
1416                         }
1417                 }
1418                 errorf(HERE, "'%s' is an unrecognized tls model", string.begin);
1419         }
1420         attribute->invalid = true;
1421 }
1422
1423 /**
1424  * Parse one tls model of the given attribute.
1425  */
1426 static void parse_gnu_attribute_visibility_arg(gnu_attribute_t *attribute)
1427 {
1428         static const char *const visibilities[] = {
1429                 "default",
1430                 "protected",
1431                 "hidden",
1432                 "internal"
1433         };
1434         string_t string = { NULL, 0 };
1435         parse_gnu_attribute_string_arg(attribute, &string);
1436         if (string.begin != NULL) {
1437                 for (size_t i = 0; i < 4; ++i) {
1438                         if (strcmp(visibilities[i], string.begin) == 0) {
1439                                 attribute->u.value = i;
1440                                 return;
1441                         }
1442                 }
1443                 errorf(HERE, "'%s' is an unrecognized visibility", string.begin);
1444         }
1445         attribute->invalid = true;
1446 }
1447
1448 /**
1449  * Parse one (code) model of the given attribute.
1450  */
1451 static void parse_gnu_attribute_model_arg(gnu_attribute_t *attribute)
1452 {
1453         static const char *const visibilities[] = {
1454                 "small",
1455                 "medium",
1456                 "large"
1457         };
1458         string_t string = { NULL, 0 };
1459         parse_gnu_attribute_string_arg(attribute, &string);
1460         if (string.begin != NULL) {
1461                 for (int i = 0; i < 3; ++i) {
1462                         if (strcmp(visibilities[i], string.begin) == 0) {
1463                                 attribute->u.value = i;
1464                                 return;
1465                         }
1466                 }
1467                 errorf(HERE, "'%s' is an unrecognized model", string.begin);
1468         }
1469         attribute->invalid = true;
1470 }
1471
1472 /**
1473  * Parse one mode of the given attribute.
1474  */
1475 static void parse_gnu_attribute_mode_arg(gnu_attribute_t *attribute)
1476 {
1477         /* TODO: find out what is allowed here... */
1478
1479         /* at least: byte, word, pointer, list of machine modes
1480          * __XXX___ is interpreted as XXX */
1481         add_anchor_token(')');
1482
1483         if (token.type != T_IDENTIFIER) {
1484                 expect(T_IDENTIFIER);
1485         }
1486
1487         /* This isn't really correct, the backend should provide a list of machine
1488          * specific modes (according to gcc philosophy that is...) */
1489         const char *symbol_str = token.v.symbol->string;
1490         if (strcmp_underscore("QI",   symbol_str) == 0 ||
1491             strcmp_underscore("byte", symbol_str) == 0) {
1492                 attribute->u.akind = ATOMIC_TYPE_CHAR;
1493         } else if (strcmp_underscore("HI", symbol_str) == 0) {
1494                 attribute->u.akind = ATOMIC_TYPE_SHORT;
1495         } else if (strcmp_underscore("SI",      symbol_str) == 0
1496                 || strcmp_underscore("word",    symbol_str) == 0
1497                 || strcmp_underscore("pointer", symbol_str) == 0) {
1498                 attribute->u.akind = ATOMIC_TYPE_INT;
1499         } else if (strcmp_underscore("DI", symbol_str) == 0) {
1500                 attribute->u.akind = ATOMIC_TYPE_LONGLONG;
1501         } else {
1502                 if (warning.other)
1503                         warningf(HERE, "ignoring unknown mode '%s'", symbol_str);
1504                 attribute->invalid = true;
1505         }
1506         next_token();
1507
1508         rem_anchor_token(')');
1509         expect(')');
1510         return;
1511 end_error:
1512         attribute->invalid = true;
1513 }
1514
1515 /**
1516  * Parse one interrupt argument of the given attribute.
1517  */
1518 static void parse_gnu_attribute_interrupt_arg(gnu_attribute_t *attribute)
1519 {
1520         static const char *const interrupts[] = {
1521                 "IRQ",
1522                 "FIQ",
1523                 "SWI",
1524                 "ABORT",
1525                 "UNDEF"
1526         };
1527         string_t string = { NULL, 0 };
1528         parse_gnu_attribute_string_arg(attribute, &string);
1529         if (string.begin != NULL) {
1530                 for (size_t i = 0; i < 5; ++i) {
1531                         if (strcmp(interrupts[i], string.begin) == 0) {
1532                                 attribute->u.value = i;
1533                                 return;
1534                         }
1535                 }
1536                 errorf(HERE, "'%s' is not an interrupt", string.begin);
1537         }
1538         attribute->invalid = true;
1539 }
1540
1541 /**
1542  * Parse ( identifier, const expression, const expression )
1543  */
1544 static void parse_gnu_attribute_format_args(gnu_attribute_t *attribute)
1545 {
1546         static const char *const format_names[] = {
1547                 "printf",
1548                 "scanf",
1549                 "strftime",
1550                 "strfmon"
1551         };
1552         int i;
1553
1554         if (token.type != T_IDENTIFIER) {
1555                 parse_error_expected("while parsing format attribute directive", T_IDENTIFIER, NULL);
1556                 goto end_error;
1557         }
1558         const char *name = token.v.symbol->string;
1559         for (i = 0; i < 4; ++i) {
1560                 if (strcmp_underscore(format_names[i], name) == 0)
1561                         break;
1562         }
1563         if (i >= 4) {
1564                 if (warning.attribute)
1565                         warningf(HERE, "'%s' is an unrecognized format function type", name);
1566         }
1567         next_token();
1568
1569         expect(',');
1570         add_anchor_token(')');
1571         add_anchor_token(',');
1572         parse_constant_expression();
1573         rem_anchor_token(',');
1574         rem_anchor_token(')');
1575
1576         expect(',');
1577         add_anchor_token(')');
1578         parse_constant_expression();
1579         rem_anchor_token(')');
1580         expect(')');
1581         return;
1582 end_error:
1583         attribute->u.value = true;
1584 }
1585
1586 /**
1587  * Check that a given GNU attribute has no arguments.
1588  */
1589 static void check_no_argument(gnu_attribute_t *attribute, const char *name)
1590 {
1591         if (!attribute->have_arguments)
1592                 return;
1593
1594         /* should have no arguments */
1595         errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1596         eat_until_matching_token('(');
1597         /* we have already consumed '(', so we stop before ')', eat it */
1598         eat(')');
1599         attribute->invalid = true;
1600 }
1601
1602 /**
1603  * Parse one GNU attribute.
1604  *
1605  * Note that attribute names can be specified WITH or WITHOUT
1606  * double underscores, ie const or __const__.
1607  *
1608  * The following attributes are parsed without arguments
1609  *  const
1610  *  volatile
1611  *  cdecl
1612  *  stdcall
1613  *  fastcall
1614  *  deprecated
1615  *  noinline
1616  *  noreturn
1617  *  naked
1618  *  pure
1619  *  always_inline
1620  *  malloc
1621  *  weak
1622  *  constructor
1623  *  destructor
1624  *  nothrow
1625  *  transparent_union
1626  *  common
1627  *  nocommon
1628  *  packed
1629  *  shared
1630  *  notshared
1631  *  used
1632  *  unused
1633  *  no_instrument_function
1634  *  warn_unused_result
1635  *  longcall
1636  *  shortcall
1637  *  long_call
1638  *  short_call
1639  *  function_vector
1640  *  interrupt_handler
1641  *  nmi_handler
1642  *  nesting
1643  *  near
1644  *  far
1645  *  signal
1646  *  eightbit_data
1647  *  tiny_data
1648  *  saveall
1649  *  flatten
1650  *  sseregparm
1651  *  externally_visible
1652  *  return_twice
1653  *  may_alias
1654  *  ms_struct
1655  *  gcc_struct
1656  *  dllimport
1657  *  dllexport
1658  *
1659  * The following attributes are parsed with arguments
1660  *  aligned( const expression )
1661  *  alias( string literal )
1662  *  section( string literal )
1663  *  format( identifier, const expression, const expression )
1664  *  format_arg( const expression )
1665  *  tls_model( string literal )
1666  *  visibility( string literal )
1667  *  regparm( const expression )
1668  *  model( string leteral )
1669  *  trap_exit( const expression )
1670  *  sp_switch( string literal )
1671  *
1672  * The following attributes might have arguments
1673  *  weak_ref( string literal )
1674  *  non_null( const expression // ',' )
1675  *  interrupt( string literal )
1676  *  sentinel( constant expression )
1677  */
1678 static decl_modifiers_t parse_gnu_attribute(gnu_attribute_t **attributes)
1679 {
1680         gnu_attribute_t *head      = *attributes;
1681         gnu_attribute_t *last      = *attributes;
1682         decl_modifiers_t modifiers = 0;
1683         gnu_attribute_t *attribute;
1684
1685         eat(T___attribute__);
1686         expect('(');
1687         expect('(');
1688
1689         if (token.type != ')') {
1690                 /* find the end of the list */
1691                 if (last != NULL) {
1692                         while (last->next != NULL)
1693                                 last = last->next;
1694                 }
1695
1696                 /* non-empty attribute list */
1697                 while (true) {
1698                         const char *name;
1699                         if (token.type == T_const) {
1700                                 name = "const";
1701                         } else if (token.type == T_volatile) {
1702                                 name = "volatile";
1703                         } else if (token.type == T_cdecl) {
1704                                 /* __attribute__((cdecl)), WITH ms mode */
1705                                 name = "cdecl";
1706                         } else if (token.type == T_IDENTIFIER) {
1707                                 const symbol_t *sym = token.v.symbol;
1708                                 name = sym->string;
1709                         } else {
1710                                 parse_error_expected("while parsing GNU attribute", T_IDENTIFIER, NULL);
1711                                 break;
1712                         }
1713
1714                         next_token();
1715
1716                         int i;
1717                         for (i = 0; i < GNU_AK_LAST; ++i) {
1718                                 if (strcmp_underscore(gnu_attribute_names[i], name) == 0)
1719                                         break;
1720                         }
1721                         gnu_attribute_kind_t kind = (gnu_attribute_kind_t)i;
1722
1723                         attribute = NULL;
1724                         if (kind == GNU_AK_LAST) {
1725                                 if (warning.attribute)
1726                                         warningf(HERE, "'%s' attribute directive ignored", name);
1727
1728                                 /* skip possible arguments */
1729                                 if (token.type == '(') {
1730                                         eat_until_matching_token(')');
1731                                 }
1732                         } else {
1733                                 /* check for arguments */
1734                                 attribute = allocate_gnu_attribute(kind);
1735                                 if (token.type == '(') {
1736                                         next_token();
1737                                         if (token.type == ')') {
1738                                                 /* empty args are allowed */
1739                                                 next_token();
1740                                         } else
1741                                                 attribute->have_arguments = true;
1742                                 }
1743
1744                                 switch (kind) {
1745                                 case GNU_AK_VOLATILE:
1746                                 case GNU_AK_NAKED:
1747                                 case GNU_AK_MALLOC:
1748                                 case GNU_AK_WEAK:
1749                                 case GNU_AK_COMMON:
1750                                 case GNU_AK_NOCOMMON:
1751                                 case GNU_AK_SHARED:
1752                                 case GNU_AK_NOTSHARED:
1753                                 case GNU_AK_NO_INSTRUMENT_FUNCTION:
1754                                 case GNU_AK_WARN_UNUSED_RESULT:
1755                                 case GNU_AK_LONGCALL:
1756                                 case GNU_AK_SHORTCALL:
1757                                 case GNU_AK_LONG_CALL:
1758                                 case GNU_AK_SHORT_CALL:
1759                                 case GNU_AK_FUNCTION_VECTOR:
1760                                 case GNU_AK_INTERRUPT_HANDLER:
1761                                 case GNU_AK_NMI_HANDLER:
1762                                 case GNU_AK_NESTING:
1763                                 case GNU_AK_NEAR:
1764                                 case GNU_AK_FAR:
1765                                 case GNU_AK_SIGNAL:
1766                                 case GNU_AK_EIGTHBIT_DATA:
1767                                 case GNU_AK_TINY_DATA:
1768                                 case GNU_AK_SAVEALL:
1769                                 case GNU_AK_FLATTEN:
1770                                 case GNU_AK_SSEREGPARM:
1771                                 case GNU_AK_EXTERNALLY_VISIBLE:
1772                                 case GNU_AK_RETURN_TWICE:
1773                                 case GNU_AK_MAY_ALIAS:
1774                                 case GNU_AK_MS_STRUCT:
1775                                 case GNU_AK_GCC_STRUCT:
1776                                         goto no_arg;
1777
1778                                 case GNU_AK_CDECL:             modifiers |= DM_CDECL;             goto no_arg;
1779                                 case GNU_AK_FASTCALL:          modifiers |= DM_FASTCALL;          goto no_arg;
1780                                 case GNU_AK_STDCALL:           modifiers |= DM_STDCALL;           goto no_arg;
1781                                 case GNU_AK_UNUSED:            modifiers |= DM_UNUSED;            goto no_arg;
1782                                 case GNU_AK_USED:              modifiers |= DM_USED;              goto no_arg;
1783                                 case GNU_AK_PURE:              modifiers |= DM_PURE;              goto no_arg;
1784                                 case GNU_AK_CONST:             modifiers |= DM_CONST;             goto no_arg;
1785                                 case GNU_AK_ALWAYS_INLINE:     modifiers |= DM_FORCEINLINE;       goto no_arg;
1786                                 case GNU_AK_DLLIMPORT:         modifiers |= DM_DLLIMPORT;         goto no_arg;
1787                                 case GNU_AK_DLLEXPORT:         modifiers |= DM_DLLEXPORT;         goto no_arg;
1788                                 case GNU_AK_PACKED:            modifiers |= DM_PACKED;            goto no_arg;
1789                                 case GNU_AK_NOINLINE:          modifiers |= DM_NOINLINE;          goto no_arg;
1790                                 case GNU_AK_NORETURN:          modifiers |= DM_NORETURN;          goto no_arg;
1791                                 case GNU_AK_NOTHROW:           modifiers |= DM_NOTHROW;           goto no_arg;
1792                                 case GNU_AK_TRANSPARENT_UNION: modifiers |= DM_TRANSPARENT_UNION; goto no_arg;
1793                                 case GNU_AK_CONSTRUCTOR:       modifiers |= DM_CONSTRUCTOR;       goto no_arg;
1794                                 case GNU_AK_DESTRUCTOR:        modifiers |= DM_DESTRUCTOR;        goto no_arg;
1795                                 case GNU_AK_DEPRECATED:        modifiers |= DM_DEPRECATED;        goto no_arg;
1796
1797                                 case GNU_AK_ALIGNED:
1798                                         /* __align__ may be used without an argument */
1799                                         if (attribute->have_arguments) {
1800                                                 parse_gnu_attribute_const_arg(attribute);
1801                                         }
1802                                         break;
1803
1804                                 case GNU_AK_FORMAT_ARG:
1805                                 case GNU_AK_REGPARM:
1806                                 case GNU_AK_TRAP_EXIT:
1807                                         if (!attribute->have_arguments) {
1808                                                 /* should have arguments */
1809                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1810                                                 attribute->invalid = true;
1811                                         } else
1812                                                 parse_gnu_attribute_const_arg(attribute);
1813                                         break;
1814                                 case GNU_AK_ALIAS:
1815                                 case GNU_AK_SECTION:
1816                                 case GNU_AK_SP_SWITCH:
1817                                         if (!attribute->have_arguments) {
1818                                                 /* should have arguments */
1819                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1820                                                 attribute->invalid = true;
1821                                         } else
1822                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1823                                         break;
1824                                 case GNU_AK_FORMAT:
1825                                         if (!attribute->have_arguments) {
1826                                                 /* should have arguments */
1827                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1828                                                 attribute->invalid = true;
1829                                         } else
1830                                                 parse_gnu_attribute_format_args(attribute);
1831                                         break;
1832                                 case GNU_AK_WEAKREF:
1833                                         /* may have one string argument */
1834                                         if (attribute->have_arguments)
1835                                                 parse_gnu_attribute_string_arg(attribute, &attribute->u.string);
1836                                         break;
1837                                 case GNU_AK_NONNULL:
1838                                         if (attribute->have_arguments)
1839                                                 parse_gnu_attribute_const_arg_list(attribute);
1840                                         break;
1841                                 case GNU_AK_TLS_MODEL:
1842                                         if (!attribute->have_arguments) {
1843                                                 /* should have arguments */
1844                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1845                                         } else
1846                                                 parse_gnu_attribute_tls_model_arg(attribute);
1847                                         break;
1848                                 case GNU_AK_VISIBILITY:
1849                                         if (!attribute->have_arguments) {
1850                                                 /* should have arguments */
1851                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1852                                         } else
1853                                                 parse_gnu_attribute_visibility_arg(attribute);
1854                                         break;
1855                                 case GNU_AK_MODEL:
1856                                         if (!attribute->have_arguments) {
1857                                                 /* should have arguments */
1858                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1859                                         } else {
1860                                                 parse_gnu_attribute_model_arg(attribute);
1861                                         }
1862                                         break;
1863                                 case GNU_AK_MODE:
1864                                         if (!attribute->have_arguments) {
1865                                                 /* should have arguments */
1866                                                 errorf(HERE, "wrong number of arguments specified for '%s' attribute", name);
1867                                         } else {
1868                                                 parse_gnu_attribute_mode_arg(attribute);
1869                                         }
1870                                         break;
1871                                 case GNU_AK_INTERRUPT:
1872                                         /* may have one string argument */
1873                                         if (attribute->have_arguments)
1874                                                 parse_gnu_attribute_interrupt_arg(attribute);
1875                                         break;
1876                                 case GNU_AK_SENTINEL:
1877                                         /* may have one string argument */
1878                                         if (attribute->have_arguments)
1879                                                 parse_gnu_attribute_const_arg(attribute);
1880                                         break;
1881                                 case GNU_AK_LAST:
1882                                         /* already handled */
1883                                         break;
1884
1885 no_arg:
1886                                         check_no_argument(attribute, name);
1887                                 }
1888                         }
1889                         if (attribute != NULL) {
1890                                 if (last != NULL) {
1891                                         last->next = attribute;
1892                                         last       = attribute;
1893                                 } else {
1894                                         head = last = attribute;
1895                                 }
1896                         }
1897
1898                         if (token.type != ',')
1899                                 break;
1900                         next_token();
1901                 }
1902         }
1903         expect(')');
1904         expect(')');
1905 end_error:
1906         *attributes = head;
1907
1908         return modifiers;
1909 }
1910
1911 /**
1912  * Parse GNU attributes.
1913  */
1914 static decl_modifiers_t parse_attributes(gnu_attribute_t **attributes)
1915 {
1916         decl_modifiers_t modifiers = 0;
1917
1918         while (true) {
1919                 switch (token.type) {
1920                 case T___attribute__:
1921                         modifiers |= parse_gnu_attribute(attributes);
1922                         continue;
1923
1924                 case T_asm:
1925                         next_token();
1926                         expect('(');
1927                         if (token.type != T_STRING_LITERAL) {
1928                                 parse_error_expected("while parsing assembler attribute",
1929                                                      T_STRING_LITERAL, NULL);
1930                                 eat_until_matching_token('(');
1931                                 break;
1932                         } else {
1933                                 parse_string_literals();
1934                         }
1935                         expect(')');
1936                         continue;
1937
1938                 case T_cdecl:     modifiers |= DM_CDECL;    break;
1939                 case T__fastcall: modifiers |= DM_FASTCALL; break;
1940                 case T__stdcall:  modifiers |= DM_STDCALL;  break;
1941
1942                 case T___thiscall:
1943                         /* TODO record modifier */
1944                         if (warning.other)
1945                                 warningf(HERE, "Ignoring declaration modifier %K", &token);
1946                         break;
1947
1948 end_error:
1949                 default: return modifiers;
1950                 }
1951
1952                 next_token();
1953         }
1954 }
1955
1956 static void mark_vars_read(expression_t *expr, entity_t *lhs_ent);
1957
1958 static entity_t *determine_lhs_ent(expression_t *const expr,
1959                                    entity_t *lhs_ent)
1960 {
1961         switch (expr->kind) {
1962                 case EXPR_REFERENCE: {
1963                         entity_t *const entity = expr->reference.entity;
1964                         /* we should only find variables as lvalues... */
1965                         if (entity->base.kind != ENTITY_VARIABLE
1966                                         && entity->base.kind != ENTITY_PARAMETER)
1967                                 return NULL;
1968
1969                         return entity;
1970                 }
1971
1972                 case EXPR_ARRAY_ACCESS: {
1973                         expression_t *const ref = expr->array_access.array_ref;
1974                         entity_t     *      ent = NULL;
1975                         if (is_type_array(skip_typeref(revert_automatic_type_conversion(ref)))) {
1976                                 ent     = determine_lhs_ent(ref, lhs_ent);
1977                                 lhs_ent = ent;
1978                         } else {
1979                                 mark_vars_read(expr->select.compound, lhs_ent);
1980                         }
1981                         mark_vars_read(expr->array_access.index, lhs_ent);
1982                         return ent;
1983                 }
1984
1985                 case EXPR_SELECT: {
1986                         if (is_type_compound(skip_typeref(expr->base.type))) {
1987                                 return determine_lhs_ent(expr->select.compound, lhs_ent);
1988                         } else {
1989                                 mark_vars_read(expr->select.compound, lhs_ent);
1990                                 return NULL;
1991                         }
1992                 }
1993
1994                 case EXPR_UNARY_DEREFERENCE: {
1995                         expression_t *const val = expr->unary.value;
1996                         if (val->kind == EXPR_UNARY_TAKE_ADDRESS) {
1997                                 /* *&x is a NOP */
1998                                 return determine_lhs_ent(val->unary.value, lhs_ent);
1999                         } else {
2000                                 mark_vars_read(val, NULL);
2001                                 return NULL;
2002                         }
2003                 }
2004
2005                 default:
2006                         mark_vars_read(expr, NULL);
2007                         return NULL;
2008         }
2009 }
2010
2011 #define ENT_ANY ((entity_t*)-1)
2012
2013 /**
2014  * Mark declarations, which are read.  This is used to detect variables, which
2015  * are never read.
2016  * Example:
2017  * x = x + 1;
2018  *   x is not marked as "read", because it is only read to calculate its own new
2019  *   value.
2020  *
2021  * x += y; y += x;
2022  *   x and y are not detected as "not read", because multiple variables are
2023  *   involved.
2024  */
2025 static void mark_vars_read(expression_t *const expr, entity_t *lhs_ent)
2026 {
2027         switch (expr->kind) {
2028                 case EXPR_REFERENCE: {
2029                         entity_t *const entity = expr->reference.entity;
2030                         if (entity->kind != ENTITY_VARIABLE
2031                                         && entity->kind != ENTITY_PARAMETER)
2032                                 return;
2033
2034                         if (lhs_ent != entity && lhs_ent != ENT_ANY) {
2035                                 if (entity->kind == ENTITY_VARIABLE) {
2036                                         entity->variable.read = true;
2037                                 } else {
2038                                         entity->parameter.read = true;
2039                                 }
2040                         }
2041                         return;
2042                 }
2043
2044                 case EXPR_CALL:
2045                         // TODO respect pure/const
2046                         mark_vars_read(expr->call.function, NULL);
2047                         for (call_argument_t *arg = expr->call.arguments; arg != NULL; arg = arg->next) {
2048                                 mark_vars_read(arg->expression, NULL);
2049                         }
2050                         return;
2051
2052                 case EXPR_CONDITIONAL:
2053                         // TODO lhs_decl should depend on whether true/false have an effect
2054                         mark_vars_read(expr->conditional.condition, NULL);
2055                         if (expr->conditional.true_expression != NULL)
2056                                 mark_vars_read(expr->conditional.true_expression, lhs_ent);
2057                         mark_vars_read(expr->conditional.false_expression, lhs_ent);
2058                         return;
2059
2060                 case EXPR_SELECT:
2061                         if (lhs_ent == ENT_ANY
2062                                         && !is_type_compound(skip_typeref(expr->base.type)))
2063                                 lhs_ent = NULL;
2064                         mark_vars_read(expr->select.compound, lhs_ent);
2065                         return;
2066
2067                 case EXPR_ARRAY_ACCESS: {
2068                         expression_t *const ref = expr->array_access.array_ref;
2069                         mark_vars_read(ref, lhs_ent);
2070                         lhs_ent = determine_lhs_ent(ref, lhs_ent);
2071                         mark_vars_read(expr->array_access.index, lhs_ent);
2072                         return;
2073                 }
2074
2075                 case EXPR_VA_ARG:
2076                         mark_vars_read(expr->va_arge.ap, lhs_ent);
2077                         return;
2078
2079                 case EXPR_UNARY_CAST:
2080                         /* Special case: Use void cast to mark a variable as "read" */
2081                         if (is_type_atomic(skip_typeref(expr->base.type), ATOMIC_TYPE_VOID))
2082                                 lhs_ent = NULL;
2083                         goto unary;
2084
2085
2086                 case EXPR_UNARY_THROW:
2087                         if (expr->unary.value == NULL)
2088                                 return;
2089                         /* FALLTHROUGH */
2090                 case EXPR_UNARY_DEREFERENCE:
2091                 case EXPR_UNARY_DELETE:
2092                 case EXPR_UNARY_DELETE_ARRAY:
2093                         if (lhs_ent == ENT_ANY)
2094                                 lhs_ent = NULL;
2095                         goto unary;
2096
2097                 case EXPR_UNARY_NEGATE:
2098                 case EXPR_UNARY_PLUS:
2099                 case EXPR_UNARY_BITWISE_NEGATE:
2100                 case EXPR_UNARY_NOT:
2101                 case EXPR_UNARY_TAKE_ADDRESS:
2102                 case EXPR_UNARY_POSTFIX_INCREMENT:
2103                 case EXPR_UNARY_POSTFIX_DECREMENT:
2104                 case EXPR_UNARY_PREFIX_INCREMENT:
2105                 case EXPR_UNARY_PREFIX_DECREMENT:
2106                 case EXPR_UNARY_CAST_IMPLICIT:
2107                 case EXPR_UNARY_ASSUME:
2108 unary:
2109                         mark_vars_read(expr->unary.value, lhs_ent);
2110                         return;
2111
2112                 case EXPR_BINARY_ADD:
2113                 case EXPR_BINARY_SUB:
2114                 case EXPR_BINARY_MUL:
2115                 case EXPR_BINARY_DIV:
2116                 case EXPR_BINARY_MOD:
2117                 case EXPR_BINARY_EQUAL:
2118                 case EXPR_BINARY_NOTEQUAL:
2119                 case EXPR_BINARY_LESS:
2120                 case EXPR_BINARY_LESSEQUAL:
2121                 case EXPR_BINARY_GREATER:
2122                 case EXPR_BINARY_GREATEREQUAL:
2123                 case EXPR_BINARY_BITWISE_AND:
2124                 case EXPR_BINARY_BITWISE_OR:
2125                 case EXPR_BINARY_BITWISE_XOR:
2126                 case EXPR_BINARY_LOGICAL_AND:
2127                 case EXPR_BINARY_LOGICAL_OR:
2128                 case EXPR_BINARY_SHIFTLEFT:
2129                 case EXPR_BINARY_SHIFTRIGHT:
2130                 case EXPR_BINARY_COMMA:
2131                 case EXPR_BINARY_ISGREATER:
2132                 case EXPR_BINARY_ISGREATEREQUAL:
2133                 case EXPR_BINARY_ISLESS:
2134                 case EXPR_BINARY_ISLESSEQUAL:
2135                 case EXPR_BINARY_ISLESSGREATER:
2136                 case EXPR_BINARY_ISUNORDERED:
2137                         mark_vars_read(expr->binary.left,  lhs_ent);
2138                         mark_vars_read(expr->binary.right, lhs_ent);
2139                         return;
2140
2141                 case EXPR_BINARY_ASSIGN:
2142                 case EXPR_BINARY_MUL_ASSIGN:
2143                 case EXPR_BINARY_DIV_ASSIGN:
2144                 case EXPR_BINARY_MOD_ASSIGN:
2145                 case EXPR_BINARY_ADD_ASSIGN:
2146                 case EXPR_BINARY_SUB_ASSIGN:
2147                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:
2148                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:
2149                 case EXPR_BINARY_BITWISE_AND_ASSIGN:
2150                 case EXPR_BINARY_BITWISE_XOR_ASSIGN:
2151                 case EXPR_BINARY_BITWISE_OR_ASSIGN: {
2152                         if (lhs_ent == ENT_ANY)
2153                                 lhs_ent = NULL;
2154                         lhs_ent = determine_lhs_ent(expr->binary.left, lhs_ent);
2155                         mark_vars_read(expr->binary.right, lhs_ent);
2156                         return;
2157                 }
2158
2159                 case EXPR_VA_START:
2160                         determine_lhs_ent(expr->va_starte.ap, lhs_ent);
2161                         return;
2162
2163                 case EXPR_UNKNOWN:
2164                 case EXPR_INVALID:
2165                 case EXPR_CONST:
2166                 case EXPR_CHARACTER_CONSTANT:
2167                 case EXPR_WIDE_CHARACTER_CONSTANT:
2168                 case EXPR_STRING_LITERAL:
2169                 case EXPR_WIDE_STRING_LITERAL:
2170                 case EXPR_COMPOUND_LITERAL: // TODO init?
2171                 case EXPR_SIZEOF:
2172                 case EXPR_CLASSIFY_TYPE:
2173                 case EXPR_ALIGNOF:
2174                 case EXPR_FUNCNAME:
2175                 case EXPR_BUILTIN_SYMBOL:
2176                 case EXPR_BUILTIN_CONSTANT_P:
2177                 case EXPR_BUILTIN_PREFETCH:
2178                 case EXPR_OFFSETOF:
2179                 case EXPR_STATEMENT: // TODO
2180                 case EXPR_LABEL_ADDRESS:
2181                 case EXPR_REFERENCE_ENUM_VALUE:
2182                         return;
2183         }
2184
2185         panic("unhandled expression");
2186 }
2187
2188 static designator_t *parse_designation(void)
2189 {
2190         designator_t *result = NULL;
2191         designator_t *last   = NULL;
2192
2193         while (true) {
2194                 designator_t *designator;
2195                 switch (token.type) {
2196                 case '[':
2197                         designator = allocate_ast_zero(sizeof(designator[0]));
2198                         designator->source_position = token.source_position;
2199                         next_token();
2200                         add_anchor_token(']');
2201                         designator->array_index = parse_constant_expression();
2202                         rem_anchor_token(']');
2203                         expect(']');
2204                         break;
2205                 case '.':
2206                         designator = allocate_ast_zero(sizeof(designator[0]));
2207                         designator->source_position = token.source_position;
2208                         next_token();
2209                         if (token.type != T_IDENTIFIER) {
2210                                 parse_error_expected("while parsing designator",
2211                                                      T_IDENTIFIER, NULL);
2212                                 return NULL;
2213                         }
2214                         designator->symbol = token.v.symbol;
2215                         next_token();
2216                         break;
2217                 default:
2218                         expect('=');
2219                         return result;
2220                 }
2221
2222                 assert(designator != NULL);
2223                 if (last != NULL) {
2224                         last->next = designator;
2225                 } else {
2226                         result = designator;
2227                 }
2228                 last = designator;
2229         }
2230 end_error:
2231         return NULL;
2232 }
2233
2234 static initializer_t *initializer_from_string(array_type_t *type,
2235                                               const string_t *const string)
2236 {
2237         /* TODO: check len vs. size of array type */
2238         (void) type;
2239
2240         initializer_t *initializer = allocate_initializer_zero(INITIALIZER_STRING);
2241         initializer->string.string = *string;
2242
2243         return initializer;
2244 }
2245
2246 static initializer_t *initializer_from_wide_string(array_type_t *const type,
2247                                                    wide_string_t *const string)
2248 {
2249         /* TODO: check len vs. size of array type */
2250         (void) type;
2251
2252         initializer_t *const initializer =
2253                 allocate_initializer_zero(INITIALIZER_WIDE_STRING);
2254         initializer->wide_string.string = *string;
2255
2256         return initializer;
2257 }
2258
2259 /**
2260  * Build an initializer from a given expression.
2261  */
2262 static initializer_t *initializer_from_expression(type_t *orig_type,
2263                                                   expression_t *expression)
2264 {
2265         /* TODO check that expression is a constant expression */
2266
2267         /* Â§ 6.7.8.14/15 char array may be initialized by string literals */
2268         type_t *type           = skip_typeref(orig_type);
2269         type_t *expr_type_orig = expression->base.type;
2270         type_t *expr_type      = skip_typeref(expr_type_orig);
2271         if (is_type_array(type) && expr_type->kind == TYPE_POINTER) {
2272                 array_type_t *const array_type   = &type->array;
2273                 type_t       *const element_type = skip_typeref(array_type->element_type);
2274
2275                 if (element_type->kind == TYPE_ATOMIC) {
2276                         atomic_type_kind_t akind = element_type->atomic.akind;
2277                         switch (expression->kind) {
2278                                 case EXPR_STRING_LITERAL:
2279                                         if (akind == ATOMIC_TYPE_CHAR
2280                                                         || akind == ATOMIC_TYPE_SCHAR
2281                                                         || akind == ATOMIC_TYPE_UCHAR) {
2282                                                 return initializer_from_string(array_type,
2283                                                         &expression->string.value);
2284                                         }
2285
2286                                 case EXPR_WIDE_STRING_LITERAL: {
2287                                         type_t *bare_wchar_type = skip_typeref(type_wchar_t);
2288                                         if (get_unqualified_type(element_type) == bare_wchar_type) {
2289                                                 return initializer_from_wide_string(array_type,
2290                                                         &expression->wide_string.value);
2291                                         }
2292                                 }
2293
2294                                 default:
2295                                         break;
2296                         }
2297                 }
2298         }
2299
2300         assign_error_t error = semantic_assign(type, expression);
2301         if (error == ASSIGN_ERROR_INCOMPATIBLE)
2302                 return NULL;
2303         report_assign_error(error, type, expression, "initializer",
2304                             &expression->base.source_position);
2305
2306         initializer_t *const result = allocate_initializer_zero(INITIALIZER_VALUE);
2307 #if 0
2308         if (type->kind == TYPE_BITFIELD) {
2309                 type = type->bitfield.base_type;
2310         }
2311 #endif
2312         result->value.value = create_implicit_cast(expression, type);
2313
2314         return result;
2315 }
2316
2317 /**
2318  * Checks if a given expression can be used as an constant initializer.
2319  */
2320 static bool is_initializer_constant(const expression_t *expression)
2321 {
2322         return is_constant_expression(expression)
2323                 || is_address_constant(expression);
2324 }
2325
2326 /**
2327  * Parses an scalar initializer.
2328  *
2329  * Â§ 6.7.8.11; eat {} without warning
2330  */
2331 static initializer_t *parse_scalar_initializer(type_t *type,
2332                                                bool must_be_constant)
2333 {
2334         /* there might be extra {} hierarchies */
2335         int braces = 0;
2336         if (token.type == '{') {
2337                 if (warning.other)
2338                         warningf(HERE, "extra curly braces around scalar initializer");
2339                 do {
2340                         ++braces;
2341                         next_token();
2342                 } while (token.type == '{');
2343         }
2344
2345         expression_t *expression = parse_assignment_expression();
2346         mark_vars_read(expression, NULL);
2347         if (must_be_constant && !is_initializer_constant(expression)) {
2348                 errorf(&expression->base.source_position,
2349                        "Initialisation expression '%E' is not constant",
2350                        expression);
2351         }
2352
2353         initializer_t *initializer = initializer_from_expression(type, expression);
2354
2355         if (initializer == NULL) {
2356                 errorf(&expression->base.source_position,
2357                        "expression '%E' (type '%T') doesn't match expected type '%T'",
2358                        expression, expression->base.type, type);
2359                 /* TODO */
2360                 return NULL;
2361         }
2362
2363         bool additional_warning_displayed = false;
2364         while (braces > 0) {
2365                 if (token.type == ',') {
2366                         next_token();
2367                 }
2368                 if (token.type != '}') {
2369                         if (!additional_warning_displayed && warning.other) {
2370                                 warningf(HERE, "additional elements in scalar initializer");
2371                                 additional_warning_displayed = true;
2372                         }
2373                 }
2374                 eat_block();
2375                 braces--;
2376         }
2377
2378         return initializer;
2379 }
2380
2381 /**
2382  * An entry in the type path.
2383  */
2384 typedef struct type_path_entry_t type_path_entry_t;
2385 struct type_path_entry_t {
2386         type_t *type;       /**< the upper top type. restored to path->top_tye if this entry is popped. */
2387         union {
2388                 size_t         index;          /**< For array types: the current index. */
2389                 declaration_t *compound_entry; /**< For compound types: the current declaration. */
2390         } v;
2391 };
2392
2393 /**
2394  * A type path expression a position inside compound or array types.
2395  */
2396 typedef struct type_path_t type_path_t;
2397 struct type_path_t {
2398         type_path_entry_t *path;         /**< An flexible array containing the current path. */
2399         type_t            *top_type;     /**< type of the element the path points */
2400         size_t             max_index;    /**< largest index in outermost array */
2401 };
2402
2403 /**
2404  * Prints a type path for debugging.
2405  */
2406 static __attribute__((unused)) void debug_print_type_path(
2407                 const type_path_t *path)
2408 {
2409         size_t len = ARR_LEN(path->path);
2410
2411         for (size_t i = 0; i < len; ++i) {
2412                 const type_path_entry_t *entry = & path->path[i];
2413
2414                 type_t *type = skip_typeref(entry->type);
2415                 if (is_type_compound(type)) {
2416                         /* in gcc mode structs can have no members */
2417                         if (entry->v.compound_entry == NULL) {
2418                                 assert(i == len-1);
2419                                 continue;
2420                         }
2421                         fprintf(stderr, ".%s",
2422                                 entry->v.compound_entry->base.symbol->string);
2423                 } else if (is_type_array(type)) {
2424                         fprintf(stderr, "[%u]", (unsigned) entry->v.index);
2425                 } else {
2426                         fprintf(stderr, "-INVALID-");
2427                 }
2428         }
2429         if (path->top_type != NULL) {
2430                 fprintf(stderr, "  (");
2431                 print_type(path->top_type);
2432                 fprintf(stderr, ")");
2433         }
2434 }
2435
2436 /**
2437  * Return the top type path entry, ie. in a path
2438  * (type).a.b returns the b.
2439  */
2440 static type_path_entry_t *get_type_path_top(const type_path_t *path)
2441 {
2442         size_t len = ARR_LEN(path->path);
2443         assert(len > 0);
2444         return &path->path[len-1];
2445 }
2446
2447 /**
2448  * Enlarge the type path by an (empty) element.
2449  */
2450 static type_path_entry_t *append_to_type_path(type_path_t *path)
2451 {
2452         size_t len = ARR_LEN(path->path);
2453         ARR_RESIZE(type_path_entry_t, path->path, len+1);
2454
2455         type_path_entry_t *result = & path->path[len];
2456         memset(result, 0, sizeof(result[0]));
2457         return result;
2458 }
2459
2460 /**
2461  * Descending into a sub-type. Enter the scope of the current top_type.
2462  */
2463 static void descend_into_subtype(type_path_t *path)
2464 {
2465         type_t *orig_top_type = path->top_type;
2466         type_t *top_type      = skip_typeref(orig_top_type);
2467
2468         type_path_entry_t *top = append_to_type_path(path);
2469         top->type              = top_type;
2470
2471         if (is_type_compound(top_type)) {
2472                 compound_t *compound  = top_type->compound.compound;
2473                 entity_t   *entry     = compound->members.entities;
2474
2475                 if (entry != NULL) {
2476                         assert(entry->kind == ENTITY_COMPOUND_MEMBER);
2477                         top->v.compound_entry = &entry->declaration;
2478                         path->top_type = entry->declaration.type;
2479                 } else {
2480                         path->top_type = NULL;
2481                 }
2482         } else if (is_type_array(top_type)) {
2483                 top->v.index   = 0;
2484                 path->top_type = top_type->array.element_type;
2485         } else {
2486                 assert(!is_type_valid(top_type));
2487         }
2488 }
2489
2490 /**
2491  * Pop an entry from the given type path, ie. returning from
2492  * (type).a.b to (type).a
2493  */
2494 static void ascend_from_subtype(type_path_t *path)
2495 {
2496         type_path_entry_t *top = get_type_path_top(path);
2497
2498         path->top_type = top->type;
2499
2500         size_t len = ARR_LEN(path->path);
2501         ARR_RESIZE(type_path_entry_t, path->path, len-1);
2502 }
2503
2504 /**
2505  * Pop entries from the given type path until the given
2506  * path level is reached.
2507  */
2508 static void ascend_to(type_path_t *path, size_t top_path_level)
2509 {
2510         size_t len = ARR_LEN(path->path);
2511
2512         while (len > top_path_level) {
2513                 ascend_from_subtype(path);
2514                 len = ARR_LEN(path->path);
2515         }
2516 }
2517
2518 static bool walk_designator(type_path_t *path, const designator_t *designator,
2519                             bool used_in_offsetof)
2520 {
2521         for (; designator != NULL; designator = designator->next) {
2522                 type_path_entry_t *top       = get_type_path_top(path);
2523                 type_t            *orig_type = top->type;
2524
2525                 type_t *type = skip_typeref(orig_type);
2526
2527                 if (designator->symbol != NULL) {
2528                         symbol_t *symbol = designator->symbol;
2529                         if (!is_type_compound(type)) {
2530                                 if (is_type_valid(type)) {
2531                                         errorf(&designator->source_position,
2532                                                "'.%Y' designator used for non-compound type '%T'",
2533                                                symbol, orig_type);
2534                                 }
2535
2536                                 top->type             = type_error_type;
2537                                 top->v.compound_entry = NULL;
2538                                 orig_type             = type_error_type;
2539                         } else {
2540                                 compound_t *compound = type->compound.compound;
2541                                 entity_t   *iter     = compound->members.entities;
2542                                 for (; iter != NULL; iter = iter->base.next) {
2543                                         if (iter->base.symbol == symbol) {
2544                                                 break;
2545                                         }
2546                                 }
2547                                 if (iter == NULL) {
2548                                         errorf(&designator->source_position,
2549                                                "'%T' has no member named '%Y'", orig_type, symbol);
2550                                         goto failed;
2551                                 }
2552                                 assert(iter->kind == ENTITY_COMPOUND_MEMBER);
2553                                 if (used_in_offsetof) {
2554                                         type_t *real_type = skip_typeref(iter->declaration.type);
2555                                         if (real_type->kind == TYPE_BITFIELD) {
2556                                                 errorf(&designator->source_position,
2557                                                        "offsetof designator '%Y' may not specify bitfield",
2558                                                        symbol);
2559                                                 goto failed;
2560                                         }
2561                                 }
2562
2563                                 top->type             = orig_type;
2564                                 top->v.compound_entry = &iter->declaration;
2565                                 orig_type             = iter->declaration.type;
2566                         }
2567                 } else {
2568                         expression_t *array_index = designator->array_index;
2569                         assert(designator->array_index != NULL);
2570
2571                         if (!is_type_array(type)) {
2572                                 if (is_type_valid(type)) {
2573                                         errorf(&designator->source_position,
2574                                                "[%E] designator used for non-array type '%T'",
2575                                                array_index, orig_type);
2576                                 }
2577                                 goto failed;
2578                         }
2579
2580                         long index = fold_constant(array_index);
2581                         if (!used_in_offsetof) {
2582                                 if (index < 0) {
2583                                         errorf(&designator->source_position,
2584                                                "array index [%E] must be positive", array_index);
2585                                 } else if (type->array.size_constant) {
2586                                         long array_size = type->array.size;
2587                                         if (index >= array_size) {
2588                                                 errorf(&designator->source_position,
2589                                                        "designator [%E] (%d) exceeds array size %d",
2590                                                        array_index, index, array_size);
2591                                         }
2592                                 }
2593                         }
2594
2595                         top->type    = orig_type;
2596                         top->v.index = (size_t) index;
2597                         orig_type    = type->array.element_type;
2598                 }
2599                 path->top_type = orig_type;
2600
2601                 if (designator->next != NULL) {
2602                         descend_into_subtype(path);
2603                 }
2604         }
2605         return true;
2606
2607 failed:
2608         return false;
2609 }
2610
2611 static void advance_current_object(type_path_t *path, size_t top_path_level)
2612 {
2613         type_path_entry_t *top = get_type_path_top(path);
2614
2615         type_t *type = skip_typeref(top->type);
2616         if (is_type_union(type)) {
2617                 /* in unions only the first element is initialized */
2618                 top->v.compound_entry = NULL;
2619         } else if (is_type_struct(type)) {
2620                 declaration_t *entry = top->v.compound_entry;
2621
2622                 entity_t *next_entity = entry->base.next;
2623                 if (next_entity != NULL) {
2624                         assert(is_declaration(next_entity));
2625                         entry = &next_entity->declaration;
2626                 } else {
2627                         entry = NULL;
2628                 }
2629
2630                 top->v.compound_entry = entry;
2631                 if (entry != NULL) {
2632                         path->top_type = entry->type;
2633                         return;
2634                 }
2635         } else if (is_type_array(type)) {
2636                 assert(is_type_array(type));
2637
2638                 top->v.index++;
2639
2640                 if (!type->array.size_constant || top->v.index < type->array.size) {
2641                         return;
2642                 }
2643         } else {
2644                 assert(!is_type_valid(type));
2645                 return;
2646         }
2647
2648         /* we're past the last member of the current sub-aggregate, try if we
2649          * can ascend in the type hierarchy and continue with another subobject */
2650         size_t len = ARR_LEN(path->path);
2651
2652         if (len > top_path_level) {
2653                 ascend_from_subtype(path);
2654                 advance_current_object(path, top_path_level);
2655         } else {
2656                 path->top_type = NULL;
2657         }
2658 }
2659
2660 /**
2661  * skip until token is found.
2662  */
2663 static void skip_until(int type)
2664 {
2665         while (token.type != type) {
2666                 if (token.type == T_EOF)
2667                         return;
2668                 next_token();
2669         }
2670 }
2671
2672 /**
2673  * skip any {...} blocks until a closing bracket is reached.
2674  */
2675 static void skip_initializers(void)
2676 {
2677         if (token.type == '{')
2678                 next_token();
2679
2680         while (token.type != '}') {
2681                 if (token.type == T_EOF)
2682                         return;
2683                 if (token.type == '{') {
2684                         eat_block();
2685                         continue;
2686                 }
2687                 next_token();
2688         }
2689 }
2690
2691 static initializer_t *create_empty_initializer(void)
2692 {
2693         static initializer_t empty_initializer
2694                 = { .list = { { INITIALIZER_LIST }, 0 } };
2695         return &empty_initializer;
2696 }
2697
2698 /**
2699  * Parse a part of an initialiser for a struct or union,
2700  */
2701 static initializer_t *parse_sub_initializer(type_path_t *path,
2702                 type_t *outer_type, size_t top_path_level,
2703                 parse_initializer_env_t *env)
2704 {
2705         if (token.type == '}') {
2706                 /* empty initializer */
2707                 return create_empty_initializer();
2708         }
2709
2710         type_t *orig_type = path->top_type;
2711         type_t *type      = NULL;
2712
2713         if (orig_type == NULL) {
2714                 /* We are initializing an empty compound. */
2715         } else {
2716                 type = skip_typeref(orig_type);
2717         }
2718
2719         initializer_t **initializers = NEW_ARR_F(initializer_t*, 0);
2720
2721         while (true) {
2722                 designator_t *designator = NULL;
2723                 if (token.type == '.' || token.type == '[') {
2724                         designator = parse_designation();
2725                         goto finish_designator;
2726                 } else if (token.type == T_IDENTIFIER && look_ahead(1)->type == ':') {
2727                         /* GNU-style designator ("identifier: value") */
2728                         designator = allocate_ast_zero(sizeof(designator[0]));
2729                         designator->source_position = token.source_position;
2730                         designator->symbol          = token.v.symbol;
2731                         eat(T_IDENTIFIER);
2732                         eat(':');
2733
2734 finish_designator:
2735                         /* reset path to toplevel, evaluate designator from there */
2736                         ascend_to(path, top_path_level);
2737                         if (!walk_designator(path, designator, false)) {
2738                                 /* can't continue after designation error */
2739                                 goto end_error;
2740                         }
2741
2742                         initializer_t *designator_initializer
2743                                 = allocate_initializer_zero(INITIALIZER_DESIGNATOR);
2744                         designator_initializer->designator.designator = designator;
2745                         ARR_APP1(initializer_t*, initializers, designator_initializer);
2746
2747                         orig_type = path->top_type;
2748                         type      = orig_type != NULL ? skip_typeref(orig_type) : NULL;
2749                 }
2750
2751                 initializer_t *sub;
2752
2753                 if (token.type == '{') {
2754                         if (type != NULL && is_type_scalar(type)) {
2755                                 sub = parse_scalar_initializer(type, env->must_be_constant);
2756                         } else {
2757                                 eat('{');
2758                                 if (type == NULL) {
2759                                         if (env->entity != NULL) {
2760                                                 errorf(HERE,
2761                                                      "extra brace group at end of initializer for '%Y'",
2762                                                      env->entity->base.symbol);
2763                                         } else {
2764                                                 errorf(HERE, "extra brace group at end of initializer");
2765                                         }
2766                                 } else
2767                                         descend_into_subtype(path);
2768
2769                                 add_anchor_token('}');
2770                                 sub = parse_sub_initializer(path, orig_type, top_path_level+1,
2771                                                             env);
2772                                 rem_anchor_token('}');
2773
2774                                 if (type != NULL) {
2775                                         ascend_from_subtype(path);
2776                                         expect('}');
2777                                 } else {
2778                                         expect('}');
2779                                         goto error_parse_next;
2780                                 }
2781                         }
2782                 } else {
2783                         /* must be an expression */
2784                         expression_t *expression = parse_assignment_expression();
2785
2786                         if (env->must_be_constant && !is_initializer_constant(expression)) {
2787                                 errorf(&expression->base.source_position,
2788                                        "Initialisation expression '%E' is not constant",
2789                                        expression);
2790                         }
2791
2792                         if (type == NULL) {
2793                                 /* we are already outside, ... */
2794                                 type_t *const outer_type_skip = skip_typeref(outer_type);
2795                                 if (is_type_compound(outer_type_skip) &&
2796                                     !outer_type_skip->compound.compound->complete) {
2797                                         goto error_parse_next;
2798                                 }
2799                                 goto error_excess;
2800                         }
2801
2802                         /* handle { "string" } special case */
2803                         if ((expression->kind == EXPR_STRING_LITERAL
2804                                         || expression->kind == EXPR_WIDE_STRING_LITERAL)
2805                                         && outer_type != NULL) {
2806                                 sub = initializer_from_expression(outer_type, expression);
2807                                 if (sub != NULL) {
2808                                         if (token.type == ',') {
2809                                                 next_token();
2810                                         }
2811                                         if (token.type != '}' && warning.other) {
2812                                                 warningf(HERE, "excessive elements in initializer for type '%T'",
2813                                                                  orig_type);
2814                                         }
2815                                         /* TODO: eat , ... */
2816                                         return sub;
2817                                 }
2818                         }
2819
2820                         /* descend into subtypes until expression matches type */
2821                         while (true) {
2822                                 orig_type = path->top_type;
2823                                 type      = skip_typeref(orig_type);
2824
2825                                 sub = initializer_from_expression(orig_type, expression);
2826                                 if (sub != NULL) {
2827                                         break;
2828                                 }
2829                                 if (!is_type_valid(type)) {
2830                                         goto end_error;
2831                                 }
2832                                 if (is_type_scalar(type)) {
2833                                         errorf(&expression->base.source_position,
2834                                                         "expression '%E' doesn't match expected type '%T'",
2835                                                         expression, orig_type);
2836                                         goto end_error;
2837                                 }
2838
2839                                 descend_into_subtype(path);
2840                         }
2841                 }
2842
2843                 /* update largest index of top array */
2844                 const type_path_entry_t *first      = &path->path[0];
2845                 type_t                  *first_type = first->type;
2846                 first_type                          = skip_typeref(first_type);
2847                 if (is_type_array(first_type)) {
2848                         size_t index = first->v.index;
2849                         if (index > path->max_index)
2850                                 path->max_index = index;
2851                 }
2852
2853                 if (type != NULL) {
2854                         /* append to initializers list */
2855                         ARR_APP1(initializer_t*, initializers, sub);
2856                 } else {
2857 error_excess:
2858                         if (warning.other) {
2859                                 if (env->entity != NULL) {
2860                                         warningf(HERE, "excess elements in struct initializer for '%Y'",
2861                                            env->entity->base.symbol);
2862                                 } else {
2863                                         warningf(HERE, "excess elements in struct initializer");
2864                                 }
2865                         }
2866                 }
2867
2868 error_parse_next:
2869                 if (token.type == '}') {
2870                         break;
2871                 }
2872                 expect(',');
2873                 if (token.type == '}') {
2874                         break;
2875                 }
2876
2877                 if (type != NULL) {
2878                         /* advance to the next declaration if we are not at the end */
2879                         advance_current_object(path, top_path_level);
2880                         orig_type = path->top_type;
2881                         if (orig_type != NULL)
2882                                 type = skip_typeref(orig_type);
2883                         else
2884                                 type = NULL;
2885                 }
2886         }
2887
2888         size_t len  = ARR_LEN(initializers);
2889         size_t size = sizeof(initializer_list_t) + len * sizeof(initializers[0]);
2890         initializer_t *result = allocate_ast_zero(size);
2891         result->kind          = INITIALIZER_LIST;
2892         result->list.len      = len;
2893         memcpy(&result->list.initializers, initializers,
2894                len * sizeof(initializers[0]));
2895
2896         DEL_ARR_F(initializers);
2897         ascend_to(path, top_path_level+1);
2898
2899         return result;
2900
2901 end_error:
2902         skip_initializers();
2903         DEL_ARR_F(initializers);
2904         ascend_to(path, top_path_level+1);
2905         return NULL;
2906 }
2907
2908 /**
2909  * Parses an initializer. Parsers either a compound literal
2910  * (env->declaration == NULL) or an initializer of a declaration.
2911  */
2912 static initializer_t *parse_initializer(parse_initializer_env_t *env)
2913 {
2914         type_t        *type   = skip_typeref(env->type);
2915         initializer_t *result = NULL;
2916         size_t         max_index;
2917
2918         if (is_type_scalar(type)) {
2919                 result = parse_scalar_initializer(type, env->must_be_constant);
2920         } else if (token.type == '{') {
2921                 eat('{');
2922
2923                 type_path_t path;
2924                 memset(&path, 0, sizeof(path));
2925                 path.top_type = env->type;
2926                 path.path     = NEW_ARR_F(type_path_entry_t, 0);
2927
2928                 descend_into_subtype(&path);
2929
2930                 add_anchor_token('}');
2931                 result = parse_sub_initializer(&path, env->type, 1, env);
2932                 rem_anchor_token('}');
2933
2934                 max_index = path.max_index;
2935                 DEL_ARR_F(path.path);
2936
2937                 expect('}');
2938         } else {
2939                 /* parse_scalar_initializer() also works in this case: we simply
2940                  * have an expression without {} around it */
2941                 result = parse_scalar_initializer(type, env->must_be_constant);
2942         }
2943
2944         /* Â§ 6.7.8 (22) array initializers for arrays with unknown size determine
2945          * the array type size */
2946         if (is_type_array(type) && type->array.size_expression == NULL
2947                         && result != NULL) {
2948                 size_t size;
2949                 switch (result->kind) {
2950                 case INITIALIZER_LIST:
2951                         size = max_index + 1;
2952                         break;
2953
2954                 case INITIALIZER_STRING:
2955                         size = result->string.string.size;
2956                         break;
2957
2958                 case INITIALIZER_WIDE_STRING:
2959                         size = result->wide_string.string.size;
2960                         break;
2961
2962                 case INITIALIZER_DESIGNATOR:
2963                 case INITIALIZER_VALUE:
2964                         /* can happen for parse errors */
2965                         size = 0;
2966                         break;
2967
2968                 default:
2969                         internal_errorf(HERE, "invalid initializer type");
2970                 }
2971
2972                 expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
2973                 cnst->base.type          = type_size_t;
2974                 cnst->conste.v.int_value = size;
2975
2976                 type_t *new_type = duplicate_type(type);
2977
2978                 new_type->array.size_expression   = cnst;
2979                 new_type->array.size_constant     = true;
2980                 new_type->array.has_implicit_size = true;
2981                 new_type->array.size              = size;
2982                 env->type = new_type;
2983         }
2984
2985         return result;
2986 end_error:
2987         return NULL;
2988 }
2989
2990 static void append_entity(scope_t *scope, entity_t *entity)
2991 {
2992         if (scope->last_entity != NULL) {
2993                 scope->last_entity->base.next = entity;
2994         } else {
2995                 scope->entities = entity;
2996         }
2997         scope->last_entity = entity;
2998 }
2999
3000
3001 static compound_t *parse_compound_type_specifier(bool is_struct)
3002 {
3003         gnu_attribute_t  *attributes = NULL;
3004         decl_modifiers_t  modifiers  = 0;
3005         if (is_struct) {
3006                 eat(T_struct);
3007         } else {
3008                 eat(T_union);
3009         }
3010
3011         symbol_t   *symbol   = NULL;
3012         compound_t *compound = NULL;
3013
3014         if (token.type == T___attribute__) {
3015                 modifiers |= parse_attributes(&attributes);
3016         }
3017
3018         if (token.type == T_IDENTIFIER) {
3019                 symbol = token.v.symbol;
3020                 next_token();
3021
3022                 namespace_tag_t const namespc =
3023                         is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION;
3024                 entity_t *entity = get_entity(symbol, namespc);
3025                 if (entity != NULL) {
3026                         assert(entity->kind == (is_struct ? ENTITY_STRUCT : ENTITY_UNION));
3027                         compound = &entity->compound;
3028                         if (compound->base.parent_scope != current_scope &&
3029                             (token.type == '{' || token.type == ';')) {
3030                                 /* we're in an inner scope and have a definition. Override
3031                                    existing definition in outer scope */
3032                                 compound = NULL;
3033                         } else if (compound->complete && token.type == '{') {
3034                                 assert(symbol != NULL);
3035                                 errorf(HERE, "multiple definitions of '%s %Y' (previous definition %P)",
3036                                        is_struct ? "struct" : "union", symbol,
3037                                        &compound->base.source_position);
3038                                 /* clear members in the hope to avoid further errors */
3039                                 compound->members.entities = NULL;
3040                         }
3041                 }
3042         } else if (token.type != '{') {
3043                 if (is_struct) {
3044                         parse_error_expected("while parsing struct type specifier",
3045                                              T_IDENTIFIER, '{', NULL);
3046                 } else {
3047                         parse_error_expected("while parsing union type specifier",
3048                                              T_IDENTIFIER, '{', NULL);
3049                 }
3050
3051                 return NULL;
3052         }
3053
3054         if (compound == NULL) {
3055                 entity_kind_t  kind   = is_struct ? ENTITY_STRUCT : ENTITY_UNION;
3056                 entity_t      *entity = allocate_entity_zero(kind);
3057                 compound              = &entity->compound;
3058
3059                 compound->base.namespc =
3060                         (is_struct ? NAMESPACE_STRUCT : NAMESPACE_UNION);
3061                 compound->base.source_position = token.source_position;
3062                 compound->base.symbol          = symbol;
3063                 compound->base.parent_scope    = current_scope;
3064                 if (symbol != NULL) {
3065                         environment_push(entity);
3066                 }
3067                 append_entity(current_scope, entity);
3068         }
3069
3070         if (token.type == '{') {
3071                 parse_compound_type_entries(compound);
3072                 modifiers |= parse_attributes(&attributes);
3073
3074                 if (symbol == NULL) {
3075                         assert(anonymous_entity == NULL);
3076                         anonymous_entity = (entity_t*)compound;
3077                 }
3078         }
3079
3080         compound->modifiers |= modifiers;
3081         return compound;
3082 }
3083
3084 static void parse_enum_entries(type_t *const enum_type)
3085 {
3086         eat('{');
3087
3088         if (token.type == '}') {
3089                 errorf(HERE, "empty enum not allowed");
3090                 next_token();
3091                 return;
3092         }
3093
3094         add_anchor_token('}');
3095         do {
3096                 if (token.type != T_IDENTIFIER) {
3097                         parse_error_expected("while parsing enum entry", T_IDENTIFIER, NULL);
3098                         eat_block();
3099                         rem_anchor_token('}');
3100                         return;
3101                 }
3102
3103                 entity_t *entity             = allocate_entity_zero(ENTITY_ENUM_VALUE);
3104                 entity->enum_value.enum_type = enum_type;
3105                 entity->base.symbol          = token.v.symbol;
3106                 entity->base.source_position = token.source_position;
3107                 next_token();
3108
3109                 if (token.type == '=') {
3110                         next_token();
3111                         expression_t *value = parse_constant_expression();
3112
3113                         value = create_implicit_cast(value, enum_type);
3114                         entity->enum_value.value = value;
3115
3116                         /* TODO semantic */
3117                 }
3118
3119                 record_entity(entity, false);
3120
3121                 if (token.type != ',')
3122                         break;
3123                 next_token();
3124         } while (token.type != '}');
3125         rem_anchor_token('}');
3126
3127         expect('}');
3128
3129 end_error:
3130         ;
3131 }
3132
3133 static type_t *parse_enum_specifier(void)
3134 {
3135         gnu_attribute_t *attributes = NULL;
3136         entity_t        *entity;
3137         symbol_t        *symbol;
3138
3139         eat(T_enum);
3140         if (token.type == T_IDENTIFIER) {
3141                 symbol = token.v.symbol;
3142                 next_token();
3143
3144                 entity = get_entity(symbol, NAMESPACE_ENUM);
3145                 assert(entity == NULL || entity->kind == ENTITY_ENUM);
3146         } else if (token.type != '{') {
3147                 parse_error_expected("while parsing enum type specifier",
3148                                      T_IDENTIFIER, '{', NULL);
3149                 return NULL;
3150         } else {
3151                 entity  = NULL;
3152                 symbol  = NULL;
3153         }
3154
3155         if (entity == NULL) {
3156                 entity                       = allocate_entity_zero(ENTITY_ENUM);
3157                 entity->base.namespc         = NAMESPACE_ENUM;
3158                 entity->base.source_position = token.source_position;
3159                 entity->base.symbol          = symbol;
3160                 entity->base.parent_scope    = current_scope;
3161         }
3162
3163         type_t *const type = allocate_type_zero(TYPE_ENUM);
3164         type->enumt.enume  = &entity->enume;
3165
3166         if (token.type == '{') {
3167                 if (entity->enume.complete) {
3168                         errorf(HERE, "multiple definitions of 'enum %Y' (previous definition %P)",
3169                                symbol, &entity->base.source_position);
3170                 }
3171                 if (symbol != NULL) {
3172                         environment_push(entity);
3173                 }
3174                 append_entity(current_scope, entity);
3175                 entity->enume.complete = true;
3176
3177                 parse_enum_entries(type);
3178                 parse_attributes(&attributes);
3179
3180                 if (symbol == NULL) {
3181                         assert(anonymous_entity == NULL);
3182                         anonymous_entity = entity;
3183                 }
3184         } else if (!entity->enume.complete && !(c_mode & _GNUC)) {
3185                 errorf(HERE, "'enum %Y' used before definition (incomplete enums are a GNU extension)",
3186                        symbol);
3187         }
3188
3189         return type;
3190 }
3191
3192 /**
3193  * if a symbol is a typedef to another type, return true
3194  */
3195 static bool is_typedef_symbol(symbol_t *symbol)
3196 {
3197         const entity_t *const entity = get_entity(symbol, NAMESPACE_NORMAL);
3198         return entity != NULL && entity->kind == ENTITY_TYPEDEF;
3199 }
3200
3201 static type_t *parse_typeof(void)
3202 {
3203         eat(T___typeof__);
3204
3205         type_t *type;
3206
3207         expect('(');
3208         add_anchor_token(')');
3209
3210         expression_t *expression  = NULL;
3211
3212         bool old_type_prop     = in_type_prop;
3213         bool old_gcc_extension = in_gcc_extension;
3214         in_type_prop           = true;
3215
3216         while (token.type == T___extension__) {
3217                 /* This can be a prefix to a typename or an expression. */
3218                 next_token();
3219                 in_gcc_extension = true;
3220         }
3221         switch (token.type) {
3222         case T_IDENTIFIER:
3223                 if (is_typedef_symbol(token.v.symbol)) {
3224                         type = parse_typename();
3225                 } else {
3226                         expression = parse_expression();
3227                         type       = expression->base.type;
3228                 }
3229                 break;
3230
3231         TYPENAME_START
3232                 type = parse_typename();
3233                 break;
3234
3235         default:
3236                 expression = parse_expression();
3237                 type       = expression->base.type;
3238                 break;
3239         }
3240         in_type_prop     = old_type_prop;
3241         in_gcc_extension = old_gcc_extension;
3242
3243         rem_anchor_token(')');
3244         expect(')');
3245
3246         type_t *typeof_type              = allocate_type_zero(TYPE_TYPEOF);
3247         typeof_type->typeoft.expression  = expression;
3248         typeof_type->typeoft.typeof_type = type;
3249
3250         return typeof_type;
3251 end_error:
3252         return NULL;
3253 }
3254
3255 typedef enum specifiers_t {
3256         SPECIFIER_SIGNED    = 1 << 0,
3257         SPECIFIER_UNSIGNED  = 1 << 1,
3258         SPECIFIER_LONG      = 1 << 2,
3259         SPECIFIER_INT       = 1 << 3,
3260         SPECIFIER_DOUBLE    = 1 << 4,
3261         SPECIFIER_CHAR      = 1 << 5,
3262         SPECIFIER_SHORT     = 1 << 6,
3263         SPECIFIER_LONG_LONG = 1 << 7,
3264         SPECIFIER_FLOAT     = 1 << 8,
3265         SPECIFIER_BOOL      = 1 << 9,
3266         SPECIFIER_VOID      = 1 << 10,
3267         SPECIFIER_INT8      = 1 << 11,
3268         SPECIFIER_INT16     = 1 << 12,
3269         SPECIFIER_INT32     = 1 << 13,
3270         SPECIFIER_INT64     = 1 << 14,
3271         SPECIFIER_INT128    = 1 << 15,
3272         SPECIFIER_COMPLEX   = 1 << 16,
3273         SPECIFIER_IMAGINARY = 1 << 17,
3274 } specifiers_t;
3275
3276 static type_t *create_builtin_type(symbol_t *const symbol,
3277                                    type_t *const real_type)
3278 {
3279         type_t *type            = allocate_type_zero(TYPE_BUILTIN);
3280         type->builtin.symbol    = symbol;
3281         type->builtin.real_type = real_type;
3282
3283         type_t *result = typehash_insert(type);
3284         if (type != result) {
3285                 free_type(type);
3286         }
3287
3288         return result;
3289 }
3290
3291 static type_t *get_typedef_type(symbol_t *symbol)
3292 {
3293         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3294         if (entity == NULL || entity->kind != ENTITY_TYPEDEF)
3295                 return NULL;
3296
3297         type_t *type            = allocate_type_zero(TYPE_TYPEDEF);
3298         type->typedeft.typedefe = &entity->typedefe;
3299
3300         return type;
3301 }
3302
3303 /**
3304  * check for the allowed MS alignment values.
3305  */
3306 static bool check_alignment_value(long long intvalue)
3307 {
3308         if (intvalue < 1 || intvalue > 8192) {
3309                 errorf(HERE, "illegal alignment value");
3310                 return false;
3311         }
3312         unsigned v = (unsigned)intvalue;
3313         for (unsigned i = 1; i <= 8192; i += i) {
3314                 if (i == v)
3315                         return true;
3316         }
3317         errorf(HERE, "alignment must be power of two");
3318         return false;
3319 }
3320
3321 #define DET_MOD(name, tag) do { \
3322         if (*modifiers & tag && warning.other) warningf(HERE, #name " used more than once"); \
3323         *modifiers |= tag; \
3324 } while (0)
3325
3326 static void parse_microsoft_extended_decl_modifier(declaration_specifiers_t *specifiers)
3327 {
3328         decl_modifiers_t *modifiers = &specifiers->modifiers;
3329
3330         while (true) {
3331                 if (token.type == T_restrict) {
3332                         next_token();
3333                         DET_MOD(restrict, DM_RESTRICT);
3334                         goto end_loop;
3335                 } else if (token.type != T_IDENTIFIER)
3336                         break;
3337                 symbol_t *symbol = token.v.symbol;
3338                 if (symbol == sym_align) {
3339                         next_token();
3340                         expect('(');
3341                         if (token.type != T_INTEGER)
3342                                 goto end_error;
3343                         if (check_alignment_value(token.v.intvalue)) {
3344                                 if (specifiers->alignment != 0 && warning.other)
3345                                         warningf(HERE, "align used more than once");
3346                                 specifiers->alignment = (unsigned char)token.v.intvalue;
3347                         }
3348                         next_token();
3349                         expect(')');
3350                 } else if (symbol == sym_allocate) {
3351                         next_token();
3352                         expect('(');
3353                         if (token.type != T_IDENTIFIER)
3354                                 goto end_error;
3355                         (void)token.v.symbol;
3356                         expect(')');
3357                 } else if (symbol == sym_dllimport) {
3358                         next_token();
3359                         DET_MOD(dllimport, DM_DLLIMPORT);
3360                 } else if (symbol == sym_dllexport) {
3361                         next_token();
3362                         DET_MOD(dllexport, DM_DLLEXPORT);
3363                 } else if (symbol == sym_thread) {
3364                         next_token();
3365                         DET_MOD(thread, DM_THREAD);
3366                 } else if (symbol == sym_naked) {
3367                         next_token();
3368                         DET_MOD(naked, DM_NAKED);
3369                 } else if (symbol == sym_noinline) {
3370                         next_token();
3371                         DET_MOD(noinline, DM_NOINLINE);
3372                 } else if (symbol == sym_noreturn) {
3373                         next_token();
3374                         DET_MOD(noreturn, DM_NORETURN);
3375                 } else if (symbol == sym_nothrow) {
3376                         next_token();
3377                         DET_MOD(nothrow, DM_NOTHROW);
3378                 } else if (symbol == sym_novtable) {
3379                         next_token();
3380                         DET_MOD(novtable, DM_NOVTABLE);
3381                 } else if (symbol == sym_property) {
3382                         next_token();
3383                         expect('(');
3384                         for (;;) {
3385                                 bool is_get = false;
3386                                 if (token.type != T_IDENTIFIER)
3387                                         goto end_error;
3388                                 if (token.v.symbol == sym_get) {
3389                                         is_get = true;
3390                                 } else if (token.v.symbol == sym_put) {
3391                                 } else {
3392                                         errorf(HERE, "Bad property name '%Y'", token.v.symbol);
3393                                         goto end_error;
3394                                 }
3395                                 next_token();
3396                                 expect('=');
3397                                 if (token.type != T_IDENTIFIER)
3398                                         goto end_error;
3399                                 if (is_get) {
3400                                         if (specifiers->get_property_sym != NULL) {
3401                                                 errorf(HERE, "get property name already specified");
3402                                         } else {
3403                                                 specifiers->get_property_sym = token.v.symbol;
3404                                         }
3405                                 } else {
3406                                         if (specifiers->put_property_sym != NULL) {
3407                                                 errorf(HERE, "put property name already specified");
3408                                         } else {
3409                                                 specifiers->put_property_sym = token.v.symbol;
3410                                         }
3411                                 }
3412                                 next_token();
3413                                 if (token.type == ',') {
3414                                         next_token();
3415                                         continue;
3416                                 }
3417                                 break;
3418                         }
3419                         expect(')');
3420                 } else if (symbol == sym_selectany) {
3421                         next_token();
3422                         DET_MOD(selectany, DM_SELECTANY);
3423                 } else if (symbol == sym_uuid) {
3424                         next_token();
3425                         expect('(');
3426                         if (token.type != T_STRING_LITERAL)
3427                                 goto end_error;
3428                         next_token();
3429                         expect(')');
3430                 } else if (symbol == sym_deprecated) {
3431                         next_token();
3432                         if (specifiers->deprecated != 0 && warning.other)
3433                                 warningf(HERE, "deprecated used more than once");
3434                         specifiers->deprecated = true;
3435                         if (token.type == '(') {
3436                                 next_token();
3437                                 if (token.type == T_STRING_LITERAL) {
3438                                         specifiers->deprecated_string = token.v.string.begin;
3439                                         next_token();
3440                                 } else {
3441                                         errorf(HERE, "string literal expected");
3442                                 }
3443                                 expect(')');
3444                         }
3445                 } else if (symbol == sym_noalias) {
3446                         next_token();
3447                         DET_MOD(noalias, DM_NOALIAS);
3448                 } else {
3449                         if (warning.other)
3450                                 warningf(HERE, "Unknown modifier '%Y' ignored", token.v.symbol);
3451                         next_token();
3452                         if (token.type == '(')
3453                                 skip_until(')');
3454                 }
3455 end_loop:
3456                 if (token.type == ',')
3457                         next_token();
3458         }
3459 end_error:
3460         return;
3461 }
3462
3463 static entity_t *create_error_entity(symbol_t *symbol, entity_kind_tag_t kind)
3464 {
3465         entity_t *entity             = allocate_entity_zero(kind);
3466         entity->base.source_position = *HERE;
3467         entity->base.symbol          = symbol;
3468         if (is_declaration(entity)) {
3469                 entity->declaration.type     = type_error_type;
3470                 entity->declaration.implicit = true;
3471         } else if (kind == ENTITY_TYPEDEF) {
3472                 entity->typedefe.type    = type_error_type;
3473                 entity->typedefe.builtin = true;
3474         }
3475         record_entity(entity, false);
3476         return entity;
3477 }
3478
3479 static void parse_microsoft_based(based_spec_t *based_spec)
3480 {
3481         if (token.type != T_IDENTIFIER) {
3482                 parse_error_expected("while parsing __based", T_IDENTIFIER, NULL);
3483                 return;
3484         }
3485         symbol_t *symbol = token.v.symbol;
3486         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
3487
3488         if (entity == NULL || entity->base.kind != ENTITY_VARIABLE) {
3489                 errorf(HERE, "'%Y' is not a variable name.", symbol);
3490                 entity = create_error_entity(symbol, ENTITY_VARIABLE);
3491         } else {
3492                 variable_t *variable = &entity->variable;
3493
3494                 if (based_spec->base_variable != NULL) {
3495                         errorf(HERE, "__based type qualifier specified more than once");
3496                 }
3497                 based_spec->source_position = token.source_position;
3498                 based_spec->base_variable   = variable;
3499
3500                 type_t *const type = variable->base.type;
3501
3502                 if (is_type_valid(type)) {
3503                         if (! is_type_pointer(skip_typeref(type))) {
3504                                 errorf(HERE, "variable in __based modifier must have pointer type instead of '%T'", type);
3505                         }
3506                         if (variable->base.base.parent_scope != file_scope) {
3507                                 errorf(HERE, "a nonstatic local variable may not be used in a __based specification");
3508                         }
3509                 }
3510         }
3511         next_token();
3512 }
3513
3514 /**
3515  * Finish the construction of a struct type by calculating
3516  * its size, offsets, alignment.
3517  */
3518 static void finish_struct_type(compound_type_t *type)
3519 {
3520         assert(type->compound != NULL);
3521
3522         compound_t *compound = type->compound;
3523         if (!compound->complete)
3524                 return;
3525
3526         il_size_t      size           = 0;
3527         il_size_t      offset;
3528         il_alignment_t alignment      = 1;
3529         bool           need_pad       = false;
3530
3531         entity_t *entry = compound->members.entities;
3532         for (; entry != NULL; entry = entry->base.next) {
3533                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3534                         continue;
3535
3536                 type_t *m_type = skip_typeref(entry->declaration.type);
3537                 if (! is_type_valid(m_type)) {
3538                         /* simply ignore errors here */
3539                         continue;
3540                 }
3541                 il_alignment_t m_alignment = m_type->base.alignment;
3542                 if (m_alignment > alignment)
3543                         alignment = m_alignment;
3544
3545                 offset = (size + m_alignment - 1) & -m_alignment;
3546
3547                 if (offset > size)
3548                         need_pad = true;
3549                 entry->compound_member.offset = offset;
3550                 size = offset + m_type->base.size;
3551         }
3552         if (type->base.alignment != 0) {
3553                 alignment = type->base.alignment;
3554         }
3555
3556         offset = (size + alignment - 1) & -alignment;
3557         if (offset > size)
3558                 need_pad = true;
3559
3560         if (need_pad) {
3561                 if (warning.padded) {
3562                         warningf(&compound->base.source_position, "'%T' needs padding", type);
3563                 }
3564         } else {
3565                 if (compound->modifiers & DM_PACKED && warning.packed) {
3566                         warningf(&compound->base.source_position,
3567                                         "superfluous packed attribute on '%T'", type);
3568                 }
3569         }
3570
3571         type->base.size      = offset;
3572         type->base.alignment = alignment;
3573 }
3574
3575 /**
3576  * Finish the construction of an union type by calculating
3577  * its size and alignment.
3578  */
3579 static void finish_union_type(compound_type_t *type)
3580 {
3581         assert(type->compound != NULL);
3582
3583         compound_t *compound = type->compound;
3584         if (! compound->complete)
3585                 return;
3586
3587         il_size_t      size      = 0;
3588         il_alignment_t alignment = 1;
3589
3590         entity_t *entry = compound->members.entities;
3591         for (; entry != NULL; entry = entry->base.next) {
3592                 if (entry->kind != ENTITY_COMPOUND_MEMBER)
3593                         continue;
3594
3595                 type_t *m_type = skip_typeref(entry->declaration.type);
3596                 if (! is_type_valid(m_type))
3597                         continue;
3598
3599                 entry->compound_member.offset = 0;
3600                 if (m_type->base.size > size)
3601                         size = m_type->base.size;
3602                 if (m_type->base.alignment > alignment)
3603                         alignment = m_type->base.alignment;
3604         }
3605         if (type->base.alignment != 0) {
3606                 alignment = type->base.alignment;
3607         }
3608         size = (size + alignment - 1) & -alignment;
3609         type->base.size      = size;
3610         type->base.alignment = alignment;
3611 }
3612
3613 static void parse_declaration_specifiers(declaration_specifiers_t *specifiers)
3614 {
3615         type_t            *type              = NULL;
3616         type_qualifiers_t  qualifiers        = TYPE_QUALIFIER_NONE;
3617         type_modifiers_t   modifiers         = TYPE_MODIFIER_NONE;
3618         unsigned           type_specifiers   = 0;
3619         bool               newtype           = false;
3620         bool               saw_error         = false;
3621         bool               old_gcc_extension = in_gcc_extension;
3622
3623         specifiers->source_position = token.source_position;
3624
3625         while (true) {
3626                 specifiers->modifiers
3627                         |= parse_attributes(&specifiers->gnu_attributes);
3628                 if (specifiers->modifiers & DM_TRANSPARENT_UNION)
3629                         modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3630
3631                 switch (token.type) {
3632                 /* storage class */
3633 #define MATCH_STORAGE_CLASS(token, class)                                  \
3634                 case token:                                                        \
3635                         if (specifiers->storage_class != STORAGE_CLASS_NONE) {         \
3636                                 errorf(HERE, "multiple storage classes in declaration specifiers"); \
3637                         }                                                              \
3638                         specifiers->storage_class = class;                             \
3639                         if (specifiers->thread_local)                                  \
3640                                 goto check_thread_storage_class;                           \
3641                         next_token();                                                  \
3642                         break;
3643
3644                 MATCH_STORAGE_CLASS(T_typedef,  STORAGE_CLASS_TYPEDEF)
3645                 MATCH_STORAGE_CLASS(T_extern,   STORAGE_CLASS_EXTERN)
3646                 MATCH_STORAGE_CLASS(T_static,   STORAGE_CLASS_STATIC)
3647                 MATCH_STORAGE_CLASS(T_auto,     STORAGE_CLASS_AUTO)
3648                 MATCH_STORAGE_CLASS(T_register, STORAGE_CLASS_REGISTER)
3649
3650                 case T__declspec:
3651                         next_token();
3652                         expect('(');
3653                         add_anchor_token(')');
3654                         parse_microsoft_extended_decl_modifier(specifiers);
3655                         rem_anchor_token(')');
3656                         expect(')');
3657                         break;
3658
3659                 case T___thread:
3660                         if (specifiers->thread_local) {
3661                                 errorf(HERE, "duplicate '__thread'");
3662                         } else {
3663                                 specifiers->thread_local = true;
3664 check_thread_storage_class:
3665                                 switch (specifiers->storage_class) {
3666                                         case STORAGE_CLASS_EXTERN:
3667                                         case STORAGE_CLASS_NONE:
3668                                         case STORAGE_CLASS_STATIC:
3669                                                 break;
3670
3671                                                 char const* wrong;
3672                                         case STORAGE_CLASS_AUTO:     wrong = "auto";     goto wrong_thread_stoarge_class;
3673                                         case STORAGE_CLASS_REGISTER: wrong = "register"; goto wrong_thread_stoarge_class;
3674                                         case STORAGE_CLASS_TYPEDEF:  wrong = "typedef";  goto wrong_thread_stoarge_class;
3675 wrong_thread_stoarge_class:
3676                                                 errorf(HERE, "'__thread' used with '%s'", wrong);
3677                                                 break;
3678                                 }
3679                         }
3680                         next_token();
3681                         break;
3682
3683                 /* type qualifiers */
3684 #define MATCH_TYPE_QUALIFIER(token, qualifier)                          \
3685                 case token:                                                     \
3686                         qualifiers |= qualifier;                                    \
3687                         next_token();                                               \
3688                         break
3689
3690                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
3691                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
3692                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
3693                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
3694                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
3695                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
3696                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
3697                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
3698
3699                 case T___extension__:
3700                         next_token();
3701                         in_gcc_extension = true;
3702                         break;
3703
3704                 /* type specifiers */
3705 #define MATCH_SPECIFIER(token, specifier, name)                         \
3706                 case token:                                                     \
3707                         if (type_specifiers & specifier) {                           \
3708                                 errorf(HERE, "multiple " name " type specifiers given"); \
3709                         } else {                                                    \
3710                                 type_specifiers |= specifier;                           \
3711                         }                                                           \
3712                         next_token();                                               \
3713                         break
3714
3715                 MATCH_SPECIFIER(T__Bool,      SPECIFIER_BOOL,      "_Bool");
3716                 MATCH_SPECIFIER(T__Complex,   SPECIFIER_COMPLEX,   "_Complex");
3717                 MATCH_SPECIFIER(T__Imaginary, SPECIFIER_IMAGINARY, "_Imaginary");
3718                 MATCH_SPECIFIER(T__int128,    SPECIFIER_INT128,    "_int128");
3719                 MATCH_SPECIFIER(T__int16,     SPECIFIER_INT16,     "_int16");
3720                 MATCH_SPECIFIER(T__int32,     SPECIFIER_INT32,     "_int32");
3721                 MATCH_SPECIFIER(T__int64,     SPECIFIER_INT64,     "_int64");
3722                 MATCH_SPECIFIER(T__int8,      SPECIFIER_INT8,      "_int8");
3723                 MATCH_SPECIFIER(T_bool,       SPECIFIER_BOOL,      "bool");
3724                 MATCH_SPECIFIER(T_char,       SPECIFIER_CHAR,      "char");
3725                 MATCH_SPECIFIER(T_double,     SPECIFIER_DOUBLE,    "double");
3726                 MATCH_SPECIFIER(T_float,      SPECIFIER_FLOAT,     "float");
3727                 MATCH_SPECIFIER(T_int,        SPECIFIER_INT,       "int");
3728                 MATCH_SPECIFIER(T_short,      SPECIFIER_SHORT,     "short");
3729                 MATCH_SPECIFIER(T_signed,     SPECIFIER_SIGNED,    "signed");
3730                 MATCH_SPECIFIER(T_unsigned,   SPECIFIER_UNSIGNED,  "unsigned");
3731                 MATCH_SPECIFIER(T_void,       SPECIFIER_VOID,      "void");
3732
3733                 case T__forceinline:
3734                         /* only in microsoft mode */
3735                         specifiers->modifiers |= DM_FORCEINLINE;
3736                         /* FALLTHROUGH */
3737
3738                 case T_inline:
3739                         next_token();
3740                         specifiers->is_inline = true;
3741                         break;
3742
3743                 case T_long:
3744                         if (type_specifiers & SPECIFIER_LONG_LONG) {
3745                                 errorf(HERE, "multiple type specifiers given");
3746                         } else if (type_specifiers & SPECIFIER_LONG) {
3747                                 type_specifiers |= SPECIFIER_LONG_LONG;
3748                         } else {
3749                                 type_specifiers |= SPECIFIER_LONG;
3750                         }
3751                         next_token();
3752                         break;
3753
3754                 case T_struct: {
3755                         type = allocate_type_zero(TYPE_COMPOUND_STRUCT);
3756
3757                         type->compound.compound = parse_compound_type_specifier(true);
3758                         finish_struct_type(&type->compound);
3759                         break;
3760                 }
3761                 case T_union: {
3762                         type = allocate_type_zero(TYPE_COMPOUND_UNION);
3763                         type->compound.compound = parse_compound_type_specifier(false);
3764                         if (type->compound.compound->modifiers & DM_TRANSPARENT_UNION)
3765                                 modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
3766                         finish_union_type(&type->compound);
3767                         break;
3768                 }
3769                 case T_enum:
3770                         type = parse_enum_specifier();
3771                         break;
3772                 case T___typeof__:
3773                         type = parse_typeof();
3774                         break;
3775                 case T___builtin_va_list:
3776                         type = duplicate_type(type_valist);
3777                         next_token();
3778                         break;
3779
3780                 case T_IDENTIFIER: {
3781                         /* only parse identifier if we haven't found a type yet */
3782                         if (type != NULL || type_specifiers != 0) {
3783                                 /* Be somewhat resilient to typos like 'unsigned lng* f()' in a
3784                                  * declaration, so it doesn't generate errors about expecting '(' or
3785                                  * '{' later on. */
3786                                 switch (look_ahead(1)->type) {
3787                                         STORAGE_CLASSES
3788                                         TYPE_SPECIFIERS
3789                                         case T_const:
3790                                         case T_restrict:
3791                                         case T_volatile:
3792                                         case T_inline:
3793                                         case T__forceinline: /* ^ DECLARATION_START except for __attribute__ */
3794                                         case T_IDENTIFIER:
3795                                         case '&':
3796                                         case '*':
3797                                                 errorf(HERE, "discarding stray %K in declaration specifier", &token);
3798                                                 next_token();
3799                                                 continue;
3800
3801                                         default:
3802                                                 goto finish_specifiers;
3803                                 }
3804                         }
3805
3806                         type_t *const typedef_type = get_typedef_type(token.v.symbol);
3807                         if (typedef_type == NULL) {
3808                                 /* Be somewhat resilient to typos like 'vodi f()' at the beginning of a
3809                                  * declaration, so it doesn't generate 'implicit int' followed by more
3810                                  * errors later on. */
3811                                 token_type_t const la1_type = (token_type_t)look_ahead(1)->type;
3812                                 switch (la1_type) {
3813                                         DECLARATION_START
3814                                         case T_IDENTIFIER:
3815                                         case '&':
3816                                         case '*': {
3817                                                 errorf(HERE, "%K does not name a type", &token);
3818
3819                                                 entity_t *entity =
3820                                                         create_error_entity(token.v.symbol, ENTITY_TYPEDEF);
3821
3822                                                 type = allocate_type_zero(TYPE_TYPEDEF);
3823                                                 type->typedeft.typedefe = &entity->typedefe;
3824
3825                                                 next_token();
3826                                                 saw_error = true;
3827                                                 if (la1_type == '&' || la1_type == '*')
3828                                                         goto finish_specifiers;
3829                                                 continue;
3830                                         }
3831
3832                                         default:
3833                                                 goto finish_specifiers;
3834                                 }
3835                         }
3836
3837                         next_token();
3838                         type = typedef_type;
3839                         break;
3840                 }
3841
3842                 /* function specifier */
3843                 default:
3844                         goto finish_specifiers;
3845                 }
3846         }
3847
3848 finish_specifiers:
3849         in_gcc_extension = old_gcc_extension;
3850
3851         if (type == NULL || (saw_error && type_specifiers != 0)) {
3852                 atomic_type_kind_t atomic_type;
3853
3854                 /* match valid basic types */
3855                 switch (type_specifiers) {
3856                 case SPECIFIER_VOID:
3857                         atomic_type = ATOMIC_TYPE_VOID;
3858                         break;
3859                 case SPECIFIER_CHAR:
3860                         atomic_type = ATOMIC_TYPE_CHAR;
3861                         break;
3862                 case SPECIFIER_SIGNED | SPECIFIER_CHAR:
3863                         atomic_type = ATOMIC_TYPE_SCHAR;
3864                         break;
3865                 case SPECIFIER_UNSIGNED | SPECIFIER_CHAR:
3866                         atomic_type = ATOMIC_TYPE_UCHAR;
3867                         break;
3868                 case SPECIFIER_SHORT:
3869                 case SPECIFIER_SIGNED | SPECIFIER_SHORT:
3870                 case SPECIFIER_SHORT | SPECIFIER_INT:
3871                 case SPECIFIER_SIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3872                         atomic_type = ATOMIC_TYPE_SHORT;
3873                         break;
3874                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT:
3875                 case SPECIFIER_UNSIGNED | SPECIFIER_SHORT | SPECIFIER_INT:
3876                         atomic_type = ATOMIC_TYPE_USHORT;
3877                         break;
3878                 case SPECIFIER_INT:
3879                 case SPECIFIER_SIGNED:
3880                 case SPECIFIER_SIGNED | SPECIFIER_INT:
3881                         atomic_type = ATOMIC_TYPE_INT;
3882                         break;
3883                 case SPECIFIER_UNSIGNED:
3884                 case SPECIFIER_UNSIGNED | SPECIFIER_INT:
3885                         atomic_type = ATOMIC_TYPE_UINT;
3886                         break;
3887                 case SPECIFIER_LONG:
3888                 case SPECIFIER_SIGNED | SPECIFIER_LONG:
3889                 case SPECIFIER_LONG | SPECIFIER_INT:
3890                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3891                         atomic_type = ATOMIC_TYPE_LONG;
3892                         break;
3893                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG:
3894                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_INT:
3895                         atomic_type = ATOMIC_TYPE_ULONG;
3896                         break;
3897
3898                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3899                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3900                 case SPECIFIER_LONG | SPECIFIER_LONG_LONG | SPECIFIER_INT:
3901                 case SPECIFIER_SIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3902                         | SPECIFIER_INT:
3903                         atomic_type = ATOMIC_TYPE_LONGLONG;
3904                         goto warn_about_long_long;
3905
3906                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG:
3907                 case SPECIFIER_UNSIGNED | SPECIFIER_LONG | SPECIFIER_LONG_LONG
3908                         | SPECIFIER_INT:
3909                         atomic_type = ATOMIC_TYPE_ULONGLONG;
3910 warn_about_long_long:
3911                         if (warning.long_long) {
3912                                 warningf(&specifiers->source_position,
3913                                          "ISO C90 does not support 'long long'");
3914                         }
3915                         break;
3916
3917                 case SPECIFIER_UNSIGNED | SPECIFIER_INT8:
3918                         atomic_type = unsigned_int8_type_kind;
3919                         break;
3920
3921                 case SPECIFIER_UNSIGNED | SPECIFIER_INT16:
3922                         atomic_type = unsigned_int16_type_kind;
3923                         break;
3924
3925                 case SPECIFIER_UNSIGNED | SPECIFIER_INT32:
3926                         atomic_type = unsigned_int32_type_kind;
3927                         break;
3928
3929                 case SPECIFIER_UNSIGNED | SPECIFIER_INT64:
3930                         atomic_type = unsigned_int64_type_kind;
3931                         break;
3932
3933                 case SPECIFIER_UNSIGNED | SPECIFIER_INT128:
3934                         atomic_type = unsigned_int128_type_kind;
3935                         break;
3936
3937                 case SPECIFIER_INT8:
3938                 case SPECIFIER_SIGNED | SPECIFIER_INT8:
3939                         atomic_type = int8_type_kind;
3940                         break;
3941
3942                 case SPECIFIER_INT16:
3943                 case SPECIFIER_SIGNED | SPECIFIER_INT16:
3944                         atomic_type = int16_type_kind;
3945                         break;
3946
3947                 case SPECIFIER_INT32:
3948                 case SPECIFIER_SIGNED | SPECIFIER_INT32:
3949                         atomic_type = int32_type_kind;
3950                         break;
3951
3952                 case SPECIFIER_INT64:
3953                 case SPECIFIER_SIGNED | SPECIFIER_INT64:
3954                         atomic_type = int64_type_kind;
3955                         break;
3956
3957                 case SPECIFIER_INT128:
3958                 case SPECIFIER_SIGNED | SPECIFIER_INT128:
3959                         atomic_type = int128_type_kind;
3960                         break;
3961
3962                 case SPECIFIER_FLOAT:
3963                         atomic_type = ATOMIC_TYPE_FLOAT;
3964                         break;
3965                 case SPECIFIER_DOUBLE:
3966                         atomic_type = ATOMIC_TYPE_DOUBLE;
3967                         break;
3968                 case SPECIFIER_LONG | SPECIFIER_DOUBLE:
3969                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3970                         break;
3971                 case SPECIFIER_BOOL:
3972                         atomic_type = ATOMIC_TYPE_BOOL;
3973                         break;
3974                 case SPECIFIER_FLOAT | SPECIFIER_COMPLEX:
3975                 case SPECIFIER_FLOAT | SPECIFIER_IMAGINARY:
3976                         atomic_type = ATOMIC_TYPE_FLOAT;
3977                         break;
3978                 case SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3979                 case SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3980                         atomic_type = ATOMIC_TYPE_DOUBLE;
3981                         break;
3982                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_COMPLEX:
3983                 case SPECIFIER_LONG | SPECIFIER_DOUBLE | SPECIFIER_IMAGINARY:
3984                         atomic_type = ATOMIC_TYPE_LONG_DOUBLE;
3985                         break;
3986                 default:
3987                         /* invalid specifier combination, give an error message */
3988                         if (type_specifiers == 0) {
3989                                 if (saw_error)
3990                                         goto end_error;
3991
3992                                 /* ISO/IEC 14882:1998(E) Â§C.1.5:4 */
3993                                 if (!(c_mode & _CXX) && !strict_mode) {
3994                                         if (warning.implicit_int) {
3995                                                 warningf(HERE, "no type specifiers in declaration, using 'int'");
3996                                         }
3997                                         atomic_type = ATOMIC_TYPE_INT;
3998                                         break;
3999                                 } else {
4000                                         errorf(HERE, "no type specifiers given in declaration");
4001                                 }
4002                         } else if ((type_specifiers & SPECIFIER_SIGNED) &&
4003                                   (type_specifiers & SPECIFIER_UNSIGNED)) {
4004                                 errorf(HERE, "signed and unsigned specifiers given");
4005                         } else if (type_specifiers & (SPECIFIER_SIGNED | SPECIFIER_UNSIGNED)) {
4006                                 errorf(HERE, "only integer types can be signed or unsigned");
4007                         } else {
4008                                 errorf(HERE, "multiple datatypes in declaration");
4009                         }
4010                         goto end_error;
4011                 }
4012
4013                 if (type_specifiers & SPECIFIER_COMPLEX) {
4014                         type                = allocate_type_zero(TYPE_COMPLEX);
4015                         type->complex.akind = atomic_type;
4016                 } else if (type_specifiers & SPECIFIER_IMAGINARY) {
4017                         type                  = allocate_type_zero(TYPE_IMAGINARY);
4018                         type->imaginary.akind = atomic_type;
4019                 } else {
4020                         type               = allocate_type_zero(TYPE_ATOMIC);
4021                         type->atomic.akind = atomic_type;
4022                 }
4023                 newtype = true;
4024         } else if (type_specifiers != 0) {
4025                 errorf(HERE, "multiple datatypes in declaration");
4026         }
4027
4028         /* FIXME: check type qualifiers here */
4029
4030         type->base.qualifiers = qualifiers;
4031         type->base.modifiers  = modifiers;
4032
4033         type_t *result = typehash_insert(type);
4034         if (newtype && result != type) {
4035                 free_type(type);
4036         }
4037
4038         specifiers->type = result;
4039         return;
4040
4041 end_error:
4042         specifiers->type = type_error_type;
4043         return;
4044 }
4045
4046 static type_qualifiers_t parse_type_qualifiers(void)
4047 {
4048         type_qualifiers_t qualifiers = TYPE_QUALIFIER_NONE;
4049
4050         while (true) {
4051                 switch (token.type) {
4052                 /* type qualifiers */
4053                 MATCH_TYPE_QUALIFIER(T_const,    TYPE_QUALIFIER_CONST);
4054                 MATCH_TYPE_QUALIFIER(T_restrict, TYPE_QUALIFIER_RESTRICT);
4055                 MATCH_TYPE_QUALIFIER(T_volatile, TYPE_QUALIFIER_VOLATILE);
4056                 /* microsoft extended type modifiers */
4057                 MATCH_TYPE_QUALIFIER(T__w64,     TYPE_QUALIFIER_W64);
4058                 MATCH_TYPE_QUALIFIER(T___ptr32,  TYPE_QUALIFIER_PTR32);
4059                 MATCH_TYPE_QUALIFIER(T___ptr64,  TYPE_QUALIFIER_PTR64);
4060                 MATCH_TYPE_QUALIFIER(T___uptr,   TYPE_QUALIFIER_UPTR);
4061                 MATCH_TYPE_QUALIFIER(T___sptr,   TYPE_QUALIFIER_SPTR);
4062
4063                 default:
4064                         return qualifiers;
4065                 }
4066         }
4067 }
4068
4069 /**
4070  * Parses an K&R identifier list
4071  */
4072 static void parse_identifier_list(scope_t *scope)
4073 {
4074         do {
4075                 entity_t *entity = allocate_entity_zero(ENTITY_PARAMETER);
4076                 entity->base.source_position = token.source_position;
4077                 entity->base.namespc         = NAMESPACE_NORMAL;
4078                 entity->base.symbol          = token.v.symbol;
4079                 /* a K&R parameter has no type, yet */
4080                 next_token();
4081
4082                 append_entity(scope, entity);
4083
4084                 if (token.type != ',') {
4085                         break;
4086                 }
4087                 next_token();
4088         } while (token.type == T_IDENTIFIER);
4089 }
4090
4091 static entity_t *parse_parameter(void)
4092 {
4093         declaration_specifiers_t specifiers;
4094         memset(&specifiers, 0, sizeof(specifiers));
4095
4096         parse_declaration_specifiers(&specifiers);
4097
4098         entity_t *entity = parse_declarator(&specifiers,
4099                         DECL_MAY_BE_ABSTRACT | DECL_IS_PARAMETER);
4100         anonymous_entity = NULL;
4101         return entity;
4102 }
4103
4104 static void semantic_parameter_incomplete(const entity_t *entity)
4105 {
4106         assert(entity->kind == ENTITY_PARAMETER);
4107
4108         /* Â§6.7.5.3:4  After adjustment, the parameters in a parameter type
4109          *             list in a function declarator that is part of a
4110          *             definition of that function shall not have
4111          *             incomplete type. */
4112         type_t *type = skip_typeref(entity->declaration.type);
4113         if (is_type_incomplete(type)) {
4114                 errorf(&entity->base.source_position,
4115                        "parameter '%Y' has incomplete type '%T'", entity->base.symbol,
4116                        entity->declaration.type);
4117         }
4118 }
4119
4120 /**
4121  * Parses function type parameters (and optionally creates variable_t entities
4122  * for them in a scope)
4123  */
4124 static void parse_parameters(function_type_t *type, scope_t *scope)
4125 {
4126         eat('(');
4127         add_anchor_token(')');
4128         int saved_comma_state = save_and_reset_anchor_state(',');
4129
4130         if (token.type == T_IDENTIFIER &&
4131             !is_typedef_symbol(token.v.symbol)) {
4132                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
4133                 if (la1_type == ',' || la1_type == ')') {
4134                         type->kr_style_parameters = true;
4135                         parse_identifier_list(scope);
4136                         goto parameters_finished;
4137                 }
4138         }
4139
4140         if (token.type == ')') {
4141                 /* ISO/IEC 14882:1998(E) Â§C.1.6:1 */
4142                 if (!(c_mode & _CXX))
4143                         type->unspecified_parameters = true;
4144                 goto parameters_finished;
4145         }
4146
4147         function_parameter_t *parameter;
4148         function_parameter_t *last_parameter = NULL;
4149
4150         while (true) {
4151                 switch (token.type) {
4152                 case T_DOTDOTDOT:
4153                         next_token();
4154                         type->variadic = true;
4155                         goto parameters_finished;
4156
4157                 case T_IDENTIFIER:
4158                 case T___extension__:
4159                 DECLARATION_START
4160                 {
4161                         entity_t *entity = parse_parameter();
4162                         if (entity->kind == ENTITY_TYPEDEF) {
4163                                 errorf(&entity->base.source_position,
4164                                        "typedef not allowed as function parameter");
4165                                 break;
4166                         }
4167                         assert(is_declaration(entity));
4168
4169                         /* func(void) is not a parameter */
4170                         if (last_parameter == NULL
4171                                         && token.type == ')'
4172                                         && entity->base.symbol == NULL
4173                                         && skip_typeref(entity->declaration.type) == type_void) {
4174                                 goto parameters_finished;
4175                         }
4176                         semantic_parameter_incomplete(entity);
4177
4178                         parameter = obstack_alloc(type_obst, sizeof(parameter[0]));
4179                         memset(parameter, 0, sizeof(parameter[0]));
4180                         parameter->type = entity->declaration.type;
4181
4182                         if (scope != NULL) {
4183                                 append_entity(scope, entity);
4184                         }
4185
4186                         if (last_parameter != NULL) {
4187                                 last_parameter->next = parameter;
4188                         } else {
4189                                 type->parameters = parameter;
4190                         }
4191                         last_parameter   = parameter;
4192                         break;
4193                 }
4194
4195                 default:
4196                         goto parameters_finished;
4197                 }
4198                 if (token.type != ',') {
4199                         goto parameters_finished;
4200                 }
4201                 next_token();
4202         }
4203
4204
4205 parameters_finished:
4206         rem_anchor_token(')');
4207         expect(')');
4208
4209 end_error:
4210         restore_anchor_state(',', saved_comma_state);
4211 }
4212
4213 typedef enum construct_type_kind_t {
4214         CONSTRUCT_INVALID,
4215         CONSTRUCT_POINTER,
4216         CONSTRUCT_REFERENCE,
4217         CONSTRUCT_FUNCTION,
4218         CONSTRUCT_ARRAY
4219 } construct_type_kind_t;
4220
4221 typedef struct construct_type_t construct_type_t;
4222 struct construct_type_t {
4223         construct_type_kind_t  kind;
4224         construct_type_t      *next;
4225 };
4226
4227 typedef struct parsed_pointer_t parsed_pointer_t;
4228 struct parsed_pointer_t {
4229         construct_type_t  construct_type;
4230         type_qualifiers_t type_qualifiers;
4231         variable_t        *base_variable;  /**< MS __based extension. */
4232 };
4233
4234 typedef struct parsed_reference_t parsed_reference_t;
4235 struct parsed_reference_t {
4236         construct_type_t construct_type;
4237 };
4238
4239 typedef struct construct_function_type_t construct_function_type_t;
4240 struct construct_function_type_t {
4241         construct_type_t  construct_type;
4242         type_t           *function_type;
4243 };
4244
4245 typedef struct parsed_array_t parsed_array_t;
4246 struct parsed_array_t {
4247         construct_type_t  construct_type;
4248         type_qualifiers_t type_qualifiers;
4249         bool              is_static;
4250         bool              is_variable;
4251         expression_t     *size;
4252 };
4253
4254 typedef struct construct_base_type_t construct_base_type_t;
4255 struct construct_base_type_t {
4256         construct_type_t  construct_type;
4257         type_t           *type;
4258 };
4259
4260 static construct_type_t *parse_pointer_declarator(variable_t *base_variable)
4261 {
4262         eat('*');
4263
4264         parsed_pointer_t *pointer = obstack_alloc(&temp_obst, sizeof(pointer[0]));
4265         memset(pointer, 0, sizeof(pointer[0]));
4266         pointer->construct_type.kind = CONSTRUCT_POINTER;
4267         pointer->type_qualifiers     = parse_type_qualifiers();
4268         pointer->base_variable       = base_variable;
4269
4270         return &pointer->construct_type;
4271 }
4272
4273 static construct_type_t *parse_reference_declarator(void)
4274 {
4275         eat('&');
4276
4277         parsed_reference_t *reference = obstack_alloc(&temp_obst, sizeof(reference[0]));
4278         memset(reference, 0, sizeof(reference[0]));
4279         reference->construct_type.kind = CONSTRUCT_REFERENCE;
4280
4281         return (construct_type_t*)reference;
4282 }
4283
4284 static construct_type_t *parse_array_declarator(void)
4285 {
4286         eat('[');
4287         add_anchor_token(']');
4288
4289         parsed_array_t *array = obstack_alloc(&temp_obst, sizeof(array[0]));
4290         memset(array, 0, sizeof(array[0]));
4291         array->construct_type.kind = CONSTRUCT_ARRAY;
4292
4293         if (token.type == T_static) {
4294                 array->is_static = true;
4295                 next_token();
4296         }
4297
4298         type_qualifiers_t type_qualifiers = parse_type_qualifiers();
4299         if (type_qualifiers != 0) {
4300                 if (token.type == T_static) {
4301                         array->is_static = true;
4302                         next_token();
4303                 }
4304         }
4305         array->type_qualifiers = type_qualifiers;
4306
4307         if (token.type == '*' && look_ahead(1)->type == ']') {
4308                 array->is_variable = true;
4309                 next_token();
4310         } else if (token.type != ']') {
4311                 array->size = parse_assignment_expression();
4312         }
4313
4314         rem_anchor_token(']');
4315         expect(']');
4316
4317 end_error:
4318         return &array->construct_type;
4319 }
4320
4321 static construct_type_t *parse_function_declarator(scope_t *scope,
4322                                                    decl_modifiers_t modifiers)
4323 {
4324         type_t          *type  = allocate_type_zero(TYPE_FUNCTION);
4325         function_type_t *ftype = &type->function;
4326
4327         ftype->linkage = current_linkage;
4328
4329         switch (modifiers & (DM_CDECL | DM_STDCALL | DM_FASTCALL | DM_THISCALL)) {
4330                 case DM_NONE:     break;
4331                 case DM_CDECL:    ftype->calling_convention = CC_CDECL;    break;
4332                 case DM_STDCALL:  ftype->calling_convention = CC_STDCALL;  break;
4333                 case DM_FASTCALL: ftype->calling_convention = CC_FASTCALL; break;
4334                 case DM_THISCALL: ftype->calling_convention = CC_THISCALL; break;
4335
4336                 default:
4337                         errorf(HERE, "multiple calling conventions in declaration");
4338                         break;
4339         }
4340
4341         parse_parameters(ftype, scope);
4342
4343         construct_function_type_t *construct_function_type =
4344                 obstack_alloc(&temp_obst, sizeof(construct_function_type[0]));
4345         memset(construct_function_type, 0, sizeof(construct_function_type[0]));
4346         construct_function_type->construct_type.kind = CONSTRUCT_FUNCTION;
4347         construct_function_type->function_type       = type;
4348
4349         return &construct_function_type->construct_type;
4350 }
4351
4352 typedef struct parse_declarator_env_t {
4353         decl_modifiers_t   modifiers;
4354         symbol_t          *symbol;
4355         source_position_t  source_position;
4356         scope_t            parameters;
4357 } parse_declarator_env_t;
4358
4359 static construct_type_t *parse_inner_declarator(parse_declarator_env_t *env,
4360                 bool may_be_abstract)
4361 {
4362         /* construct a single linked list of construct_type_t's which describe
4363          * how to construct the final declarator type */
4364         construct_type_t *first      = NULL;
4365         construct_type_t *last       = NULL;
4366         gnu_attribute_t  *attributes = NULL;
4367
4368         decl_modifiers_t modifiers = parse_attributes(&attributes);
4369
4370         /* MS __based extension */
4371         based_spec_t base_spec;
4372         base_spec.base_variable = NULL;
4373
4374         for (;;) {
4375                 construct_type_t *type;
4376                 switch (token.type) {
4377                         case '&':
4378                                 if (!(c_mode & _CXX))
4379                                         errorf(HERE, "references are only available for C++");
4380                                 if (base_spec.base_variable != NULL && warning.other) {
4381                                         warningf(&base_spec.source_position,
4382                                                  "__based does not precede a pointer operator, ignored");
4383                                 }
4384                                 type = parse_reference_declarator();
4385                                 /* consumed */
4386                                 base_spec.base_variable = NULL;
4387                                 break;
4388
4389                         case '*':
4390                                 type = parse_pointer_declarator(base_spec.base_variable);
4391                                 /* consumed */
4392                                 base_spec.base_variable = NULL;
4393                                 break;
4394
4395                         case T__based:
4396                                 next_token();
4397                                 expect('(');
4398                                 add_anchor_token(')');
4399                                 parse_microsoft_based(&base_spec);
4400                                 rem_anchor_token(')');
4401                                 expect(')');
4402                                 continue;
4403
4404                         default:
4405                                 goto ptr_operator_end;
4406                 }
4407
4408                 if (last == NULL) {
4409                         first = type;
4410                         last  = type;
4411                 } else {
4412                         last->next = type;
4413                         last       = type;
4414                 }
4415
4416                 /* TODO: find out if this is correct */
4417                 modifiers |= parse_attributes(&attributes);
4418         }
4419 ptr_operator_end:
4420         if (base_spec.base_variable != NULL && warning.other) {
4421                 warningf(&base_spec.source_position,
4422                          "__based does not precede a pointer operator, ignored");
4423         }
4424
4425         if (env != NULL) {
4426                 modifiers      |= env->modifiers;
4427                 env->modifiers  = modifiers;
4428         }
4429
4430         construct_type_t *inner_types = NULL;
4431
4432         switch (token.type) {
4433         case T_IDENTIFIER:
4434                 if (env == NULL) {
4435                         errorf(HERE, "no identifier expected in typename");
4436                 } else {
4437                         env->symbol          = token.v.symbol;
4438                         env->source_position = token.source_position;
4439                 }
4440                 next_token();
4441                 break;
4442         case '(':
4443                 next_token();
4444                 add_anchor_token(')');
4445                 inner_types = parse_inner_declarator(env, may_be_abstract);
4446                 if (inner_types != NULL) {
4447                         /* All later declarators only modify the return type */
4448                         env = NULL;
4449                 }
4450                 rem_anchor_token(')');
4451                 expect(')');
4452                 break;
4453         default:
4454                 if (may_be_abstract)
4455                         break;
4456                 parse_error_expected("while parsing declarator", T_IDENTIFIER, '(', NULL);
4457                 eat_until_anchor();
4458                 return NULL;
4459         }
4460
4461         construct_type_t *p = last;
4462
4463         while (true) {
4464                 construct_type_t *type;
4465                 switch (token.type) {
4466                 case '(': {
4467                         scope_t *scope = NULL;
4468                         if (env != NULL)
4469                                 scope = &env->parameters;
4470
4471                         type = parse_function_declarator(scope, modifiers);
4472                         break;
4473                 }
4474                 case '[':
4475                         type = parse_array_declarator();
4476                         break;
4477                 default:
4478                         goto declarator_finished;
4479                 }
4480
4481                 /* insert in the middle of the list (behind p) */
4482                 if (p != NULL) {
4483                         type->next = p->next;
4484                         p->next    = type;
4485                 } else {
4486                         type->next = first;
4487                         first      = type;
4488                 }
4489                 if (last == p) {
4490                         last = type;
4491                 }
4492         }
4493
4494 declarator_finished:
4495         /* append inner_types at the end of the list, we don't to set last anymore
4496          * as it's not needed anymore */
4497         if (last == NULL) {
4498                 assert(first == NULL);
4499                 first = inner_types;
4500         } else {
4501                 last->next = inner_types;
4502         }
4503
4504         return first;
4505 end_error:
4506         return NULL;
4507 }
4508
4509 static void parse_declaration_attributes(entity_t *entity)
4510 {
4511         gnu_attribute_t  *attributes = NULL;
4512         decl_modifiers_t  modifiers  = parse_attributes(&attributes);
4513
4514         if (entity == NULL)
4515                 return;
4516
4517         type_t *type;
4518         if (entity->kind == ENTITY_TYPEDEF) {
4519                 modifiers |= entity->typedefe.modifiers;
4520                 type       = entity->typedefe.type;
4521         } else {
4522                 assert(is_declaration(entity));
4523                 modifiers |= entity->declaration.modifiers;
4524                 type       = entity->declaration.type;
4525         }
4526         if (type == NULL)
4527                 return;
4528
4529         /* handle these strange/stupid mode attributes */
4530         gnu_attribute_t *attribute = attributes;
4531         for ( ; attribute != NULL; attribute = attribute->next) {
4532                 if (attribute->kind != GNU_AK_MODE || attribute->invalid)
4533                         continue;
4534
4535                 atomic_type_kind_t  akind = attribute->u.akind;
4536                 if (!is_type_signed(type)) {
4537                         switch (akind) {
4538                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_UCHAR; break;
4539                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_USHORT; break;
4540                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_UINT; break;
4541                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_ULONGLONG; break;
4542                         default:
4543                                 panic("invalid akind in mode attribute");
4544                         }
4545                 } else {
4546                         switch (akind) {
4547                         case ATOMIC_TYPE_CHAR: akind = ATOMIC_TYPE_SCHAR; break;
4548                         case ATOMIC_TYPE_SHORT: akind = ATOMIC_TYPE_SHORT; break;
4549                         case ATOMIC_TYPE_INT: akind = ATOMIC_TYPE_INT; break;
4550                         case ATOMIC_TYPE_LONGLONG: akind = ATOMIC_TYPE_LONGLONG; break;
4551                         default:
4552                                 panic("invalid akind in mode attribute");
4553                         }
4554                 }
4555
4556                 type = make_atomic_type(akind, type->base.qualifiers);
4557         }
4558
4559         type_modifiers_t type_modifiers = type->base.modifiers;
4560         if (modifiers & DM_TRANSPARENT_UNION)
4561                 type_modifiers |= TYPE_MODIFIER_TRANSPARENT_UNION;
4562
4563         if (type->base.modifiers != type_modifiers) {
4564                 type_t *copy = duplicate_type(type);
4565                 copy->base.modifiers = type_modifiers;
4566
4567                 type = typehash_insert(copy);
4568                 if (type != copy) {
4569                         obstack_free(type_obst, copy);
4570                 }
4571         }
4572
4573         if (entity->kind == ENTITY_TYPEDEF) {
4574                 entity->typedefe.type      = type;
4575                 entity->typedefe.modifiers = modifiers;
4576         } else {
4577                 entity->declaration.type      = type;
4578                 entity->declaration.modifiers = modifiers;
4579         }
4580 }
4581
4582 static type_t *construct_declarator_type(construct_type_t *construct_list, type_t *type)
4583 {
4584         construct_type_t *iter = construct_list;
4585         for (; iter != NULL; iter = iter->next) {
4586                 switch (iter->kind) {
4587                 case CONSTRUCT_INVALID:
4588                         internal_errorf(HERE, "invalid type construction found");
4589                 case CONSTRUCT_FUNCTION: {
4590                         construct_function_type_t *construct_function_type
4591                                 = (construct_function_type_t*) iter;
4592
4593                         type_t *function_type = construct_function_type->function_type;
4594
4595                         function_type->function.return_type = type;
4596
4597                         type_t *skipped_return_type = skip_typeref(type);
4598                         /* Â§6.7.5.3(1) */
4599                         if (is_type_function(skipped_return_type)) {
4600                                 errorf(HERE, "function returning function is not allowed");
4601                         } else if (is_type_array(skipped_return_type)) {
4602                                 errorf(HERE, "function returning array is not allowed");
4603                         } else {
4604                                 if (skipped_return_type->base.qualifiers != 0 && warning.other) {
4605                                         warningf(HERE,
4606                                                 "type qualifiers in return type of function type are meaningless");
4607                                 }
4608                         }
4609
4610                         type = function_type;
4611                         break;
4612                 }
4613
4614                 case CONSTRUCT_POINTER: {
4615                         if (is_type_reference(skip_typeref(type)))
4616                                 errorf(HERE, "cannot declare a pointer to reference");
4617
4618                         parsed_pointer_t *parsed_pointer = (parsed_pointer_t*) iter;
4619                         type = make_based_pointer_type(type, parsed_pointer->type_qualifiers, parsed_pointer->base_variable);
4620                         continue;
4621                 }
4622
4623                 case CONSTRUCT_REFERENCE:
4624                         if (is_type_reference(skip_typeref(type)))
4625                                 errorf(HERE, "cannot declare a reference to reference");
4626
4627                         type = make_reference_type(type);
4628                         continue;
4629
4630                 case CONSTRUCT_ARRAY: {
4631                         if (is_type_reference(skip_typeref(type)))
4632                                 errorf(HERE, "cannot declare an array of references");
4633
4634                         parsed_array_t *parsed_array  = (parsed_array_t*) iter;
4635                         type_t         *array_type    = allocate_type_zero(TYPE_ARRAY);
4636
4637                         expression_t *size_expression = parsed_array->size;
4638                         if (size_expression != NULL) {
4639                                 size_expression
4640                                         = create_implicit_cast(size_expression, type_size_t);
4641                         }
4642
4643                         array_type->base.qualifiers       = parsed_array->type_qualifiers;
4644                         array_type->array.element_type    = type;
4645                         array_type->array.is_static       = parsed_array->is_static;
4646                         array_type->array.is_variable     = parsed_array->is_variable;
4647                         array_type->array.size_expression = size_expression;
4648
4649                         if (size_expression != NULL) {
4650                                 if (is_constant_expression(size_expression)) {
4651                                         array_type->array.size_constant = true;
4652                                         array_type->array.size
4653                                                 = fold_constant(size_expression);
4654                                 } else {
4655                                         array_type->array.is_vla = true;
4656                                 }
4657                         }
4658
4659                         type_t *skipped_type = skip_typeref(type);
4660                         /* Â§6.7.5.2(1) */
4661                         if (is_type_incomplete(skipped_type)) {
4662                                 errorf(HERE, "array of incomplete type '%T' is not allowed", type);
4663                         } else if (is_type_function(skipped_type)) {
4664                                 errorf(HERE, "array of functions is not allowed");
4665                         }
4666                         type = array_type;
4667                         break;
4668                 }
4669                 }
4670
4671                 type_t *hashed_type = typehash_insert(type);
4672                 if (hashed_type != type) {
4673                         /* the function type was constructed earlier freeing it here will
4674                          * destroy other types... */
4675                         if (iter->kind != CONSTRUCT_FUNCTION) {
4676                                 free_type(type);
4677                         }
4678                         type = hashed_type;
4679                 }
4680         }
4681
4682         return type;
4683 }
4684
4685 static type_t *automatic_type_conversion(type_t *orig_type);
4686
4687 static type_t *semantic_parameter(const source_position_t *pos,
4688                                   type_t *type,
4689                                   const declaration_specifiers_t *specifiers,
4690                                   symbol_t *symbol)
4691 {
4692         /* Â§6.7.5.3:7  A declaration of a parameter as ``array of type''
4693          *             shall be adjusted to ``qualified pointer to type'',
4694          *             [...]
4695          * Â§6.7.5.3:8  A declaration of a parameter as ``function returning
4696          *             type'' shall be adjusted to ``pointer to function
4697          *             returning type'', as in 6.3.2.1. */
4698         type = automatic_type_conversion(type);
4699
4700         if (specifiers->is_inline && is_type_valid(type)) {
4701                 errorf(pos, "parameter '%Y' declared 'inline'", symbol);
4702         }
4703
4704         /* Â§6.9.1:6  The declarations in the declaration list shall contain
4705          *           no storage-class specifier other than register and no
4706          *           initializations. */
4707         if (specifiers->thread_local || (
4708                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4709                         specifiers->storage_class != STORAGE_CLASS_REGISTER)
4710            ) {
4711                 errorf(pos, "invalid storage class for parameter '%Y'", symbol);
4712         }
4713
4714         /* delay test for incomplete type, because we might have (void)
4715          * which is legal but incomplete... */
4716
4717         return type;
4718 }
4719
4720 static entity_t *parse_declarator(const declaration_specifiers_t *specifiers,
4721                                   declarator_flags_t flags)
4722 {
4723         parse_declarator_env_t env;
4724         memset(&env, 0, sizeof(env));
4725         env.modifiers = specifiers->modifiers;
4726
4727         construct_type_t *construct_type =
4728                 parse_inner_declarator(&env, (flags & DECL_MAY_BE_ABSTRACT) != 0);
4729         type_t           *orig_type      =
4730                 construct_declarator_type(construct_type, specifiers->type);
4731         type_t           *type           = skip_typeref(orig_type);
4732
4733         if (construct_type != NULL) {
4734                 obstack_free(&temp_obst, construct_type);
4735         }
4736
4737         entity_t *entity;
4738         if (specifiers->storage_class == STORAGE_CLASS_TYPEDEF) {
4739                 entity                       = allocate_entity_zero(ENTITY_TYPEDEF);
4740                 entity->base.symbol          = env.symbol;
4741                 entity->base.source_position = env.source_position;
4742                 entity->typedefe.type        = orig_type;
4743
4744                 if (anonymous_entity != NULL) {
4745                         if (is_type_compound(type)) {
4746                                 assert(anonymous_entity->compound.alias == NULL);
4747                                 assert(anonymous_entity->kind == ENTITY_STRUCT ||
4748                                        anonymous_entity->kind == ENTITY_UNION);
4749                                 anonymous_entity->compound.alias = entity;
4750                                 anonymous_entity = NULL;
4751                         } else if (is_type_enum(type)) {
4752                                 assert(anonymous_entity->enume.alias == NULL);
4753                                 assert(anonymous_entity->kind == ENTITY_ENUM);
4754                                 anonymous_entity->enume.alias = entity;
4755                                 anonymous_entity = NULL;
4756                         }
4757                 }
4758         } else {
4759                 /* create a declaration type entity */
4760                 if (flags & DECL_CREATE_COMPOUND_MEMBER) {
4761                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
4762
4763                         if (specifiers->is_inline && is_type_valid(type)) {
4764                                 errorf(&env.source_position,
4765                                                 "compound member '%Y' declared 'inline'", env.symbol);
4766                         }
4767
4768                         if (specifiers->thread_local ||
4769                                 specifiers->storage_class != STORAGE_CLASS_NONE) {
4770                                 errorf(&env.source_position,
4771                                            "compound member '%Y' must have no storage class",
4772                                            env.symbol);
4773                         }
4774                 } else if (flags & DECL_IS_PARAMETER) {
4775                         orig_type = semantic_parameter(&env.source_position, orig_type,
4776                                                        specifiers, env.symbol);
4777
4778                         entity = allocate_entity_zero(ENTITY_PARAMETER);
4779                 } else if (is_type_function(type)) {
4780                         entity = allocate_entity_zero(ENTITY_FUNCTION);
4781
4782                         entity->function.is_inline  = specifiers->is_inline;
4783                         entity->function.parameters = env.parameters;
4784
4785                         if (specifiers->thread_local || (
4786                                         specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4787                                         specifiers->storage_class != STORAGE_CLASS_NONE   &&
4788                                         specifiers->storage_class != STORAGE_CLASS_STATIC)
4789                            ) {
4790                                 errorf(&env.source_position,
4791                                            "invalid storage class for function '%Y'", env.symbol);
4792                         }
4793                 } else {
4794                         entity = allocate_entity_zero(ENTITY_VARIABLE);
4795
4796                         entity->variable.get_property_sym = specifiers->get_property_sym;
4797                         entity->variable.put_property_sym = specifiers->put_property_sym;
4798                         if (specifiers->alignment != 0) {
4799                                 /* TODO: add checks here */
4800                                 entity->variable.alignment = specifiers->alignment;
4801                         }
4802
4803                         if (specifiers->is_inline && is_type_valid(type)) {
4804                                 errorf(&env.source_position,
4805                                            "variable '%Y' declared 'inline'", env.symbol);
4806                         }
4807
4808                         entity->variable.thread_local = specifiers->thread_local;
4809
4810                         bool invalid_storage_class = false;
4811                         if (current_scope == file_scope) {
4812                                 if (specifiers->storage_class != STORAGE_CLASS_EXTERN &&
4813                                                 specifiers->storage_class != STORAGE_CLASS_NONE   &&
4814                                                 specifiers->storage_class != STORAGE_CLASS_STATIC) {
4815                                         invalid_storage_class = true;
4816                                 }
4817                         } else {
4818                                 if (specifiers->thread_local &&
4819                                                 specifiers->storage_class == STORAGE_CLASS_NONE) {
4820                                         invalid_storage_class = true;
4821                                 }
4822                         }
4823                         if (invalid_storage_class) {
4824                                 errorf(&env.source_position,
4825                                                 "invalid storage class for variable '%Y'", env.symbol);
4826                         }
4827                 }
4828
4829                 entity->base.source_position          = env.source_position;
4830                 entity->base.symbol                   = env.symbol;
4831                 entity->base.namespc                  = NAMESPACE_NORMAL;
4832                 entity->declaration.type              = orig_type;
4833                 entity->declaration.modifiers         = env.modifiers;
4834                 entity->declaration.deprecated_string = specifiers->deprecated_string;
4835
4836                 storage_class_t storage_class = specifiers->storage_class;
4837                 entity->declaration.declared_storage_class = storage_class;
4838
4839                 if (storage_class == STORAGE_CLASS_NONE && current_scope != file_scope)
4840                         storage_class = STORAGE_CLASS_AUTO;
4841                 entity->declaration.storage_class = storage_class;
4842         }
4843
4844         parse_declaration_attributes(entity);
4845
4846         return entity;
4847 }
4848
4849 static type_t *parse_abstract_declarator(type_t *base_type)
4850 {
4851         construct_type_t *construct_type = parse_inner_declarator(NULL, 1);
4852
4853         type_t *result = construct_declarator_type(construct_type, base_type);
4854         if (construct_type != NULL) {
4855                 obstack_free(&temp_obst, construct_type);
4856         }
4857
4858         return result;
4859 }
4860
4861 /**
4862  * Check if the declaration of main is suspicious.  main should be a
4863  * function with external linkage, returning int, taking either zero
4864  * arguments, two, or three arguments of appropriate types, ie.
4865  *
4866  * int main([ int argc, char **argv [, char **env ] ]).
4867  *
4868  * @param decl    the declaration to check
4869  * @param type    the function type of the declaration
4870  */
4871 static void check_type_of_main(const entity_t *entity)
4872 {
4873         const source_position_t *pos = &entity->base.source_position;
4874         if (entity->kind != ENTITY_FUNCTION) {
4875                 warningf(pos, "'main' is not a function");
4876                 return;
4877         }
4878
4879         if (entity->declaration.storage_class == STORAGE_CLASS_STATIC) {
4880                 warningf(pos, "'main' is normally a non-static function");
4881         }
4882
4883         type_t *type = skip_typeref(entity->declaration.type);
4884         assert(is_type_function(type));
4885
4886         function_type_t *func_type = &type->function;
4887         if (!types_compatible(skip_typeref(func_type->return_type), type_int)) {
4888                 warningf(pos, "return type of 'main' should be 'int', but is '%T'",
4889                          func_type->return_type);
4890         }
4891         const function_parameter_t *parm = func_type->parameters;
4892         if (parm != NULL) {
4893                 type_t *const first_type = parm->type;
4894                 if (!types_compatible(skip_typeref(first_type), type_int)) {
4895                         warningf(pos,
4896                                  "first argument of 'main' should be 'int', but is '%T'",
4897                                  first_type);
4898                 }
4899                 parm = parm->next;
4900                 if (parm != NULL) {
4901                         type_t *const second_type = parm->type;
4902                         if (!types_compatible(skip_typeref(second_type), type_char_ptr_ptr)) {
4903                                 warningf(pos, "second argument of 'main' should be 'char**', but is '%T'", second_type);
4904                         }
4905                         parm = parm->next;
4906                         if (parm != NULL) {
4907                                 type_t *const third_type = parm->type;
4908                                 if (!types_compatible(skip_typeref(third_type), type_char_ptr_ptr)) {
4909                                         warningf(pos, "third argument of 'main' should be 'char**', but is '%T'", third_type);
4910                                 }
4911                                 parm = parm->next;
4912                                 if (parm != NULL)
4913                                         goto warn_arg_count;
4914                         }
4915                 } else {
4916 warn_arg_count:
4917                         warningf(pos, "'main' takes only zero, two or three arguments");
4918                 }
4919         }
4920 }
4921
4922 /**
4923  * Check if a symbol is the equal to "main".
4924  */
4925 static bool is_sym_main(const symbol_t *const sym)
4926 {
4927         return strcmp(sym->string, "main") == 0;
4928 }
4929
4930 static void error_redefined_as_different_kind(const source_position_t *pos,
4931                 const entity_t *old, entity_kind_t new_kind)
4932 {
4933         errorf(pos, "redeclaration of %s '%Y' as %s (declared %P)",
4934                get_entity_kind_name(old->kind), old->base.symbol,
4935                get_entity_kind_name(new_kind), &old->base.source_position);
4936 }
4937
4938 /**
4939  * record entities for the NAMESPACE_NORMAL, and produce error messages/warnings
4940  * for various problems that occur for multiple definitions
4941  */
4942 static entity_t *record_entity(entity_t *entity, const bool is_definition)
4943 {
4944         const symbol_t *const    symbol  = entity->base.symbol;
4945         const namespace_tag_t    namespc = (namespace_tag_t)entity->base.namespc;
4946         const source_position_t *pos     = &entity->base.source_position;
4947
4948         /* can happen in error cases */
4949         if (symbol == NULL)
4950                 return entity;
4951
4952         entity_t *previous_entity = get_entity(symbol, namespc);
4953         /* pushing the same entity twice will break the stack structure */
4954         assert(previous_entity != entity);
4955
4956         if (entity->kind == ENTITY_FUNCTION) {
4957                 type_t *const orig_type = entity->declaration.type;
4958                 type_t *const type      = skip_typeref(orig_type);
4959
4960                 assert(is_type_function(type));
4961                 if (type->function.unspecified_parameters &&
4962                                 warning.strict_prototypes &&
4963                                 previous_entity == NULL) {
4964                         warningf(pos, "function declaration '%#T' is not a prototype",
4965                                          orig_type, symbol);
4966                 }
4967
4968                 if (warning.main && current_scope == file_scope
4969                                 && is_sym_main(symbol)) {
4970                         check_type_of_main(entity);
4971                 }
4972         }
4973
4974         if (is_declaration(entity) &&
4975                         warning.nested_externs &&
4976                         entity->declaration.storage_class == STORAGE_CLASS_EXTERN &&
4977                         current_scope != file_scope) {
4978                 warningf(pos, "nested extern declaration of '%#T'",
4979                          entity->declaration.type, symbol);
4980         }
4981
4982         if (previous_entity != NULL &&
4983                         previous_entity->base.parent_scope == &current_function->parameters &&
4984                         previous_entity->base.parent_scope->depth + 1 == current_scope->depth) {
4985                 assert(previous_entity->kind == ENTITY_PARAMETER);
4986                 errorf(pos,
4987                        "declaration '%#T' redeclares the parameter '%#T' (declared %P)",
4988                                          entity->declaration.type, symbol,
4989                                          previous_entity->declaration.type, symbol,
4990                                          &previous_entity->base.source_position);
4991                 goto finish;
4992         }
4993
4994         if (previous_entity != NULL &&
4995                         previous_entity->base.parent_scope == current_scope) {
4996                 if (previous_entity->kind != entity->kind) {
4997                         error_redefined_as_different_kind(pos, previous_entity,
4998                                                           entity->kind);
4999                         goto finish;
5000                 }
5001                 if (previous_entity->kind == ENTITY_ENUM_VALUE) {
5002                         errorf(pos, "redeclaration of enum entry '%Y' (declared %P)",
5003                                    symbol, &previous_entity->base.source_position);
5004                         goto finish;
5005                 }
5006                 if (previous_entity->kind == ENTITY_TYPEDEF) {
5007                         /* TODO: C++ allows this for exactly the same type */
5008                         errorf(pos, "redefinition of typedef '%Y' (declared %P)",
5009                                symbol, &previous_entity->base.source_position);
5010                         goto finish;
5011                 }
5012
5013                 /* at this point we should have only VARIABLES or FUNCTIONS */
5014                 assert(is_declaration(previous_entity) && is_declaration(entity));
5015
5016                 declaration_t *const prev_decl = &previous_entity->declaration;
5017                 declaration_t *const decl      = &entity->declaration;
5018
5019                 /* can happen for K&R style declarations */
5020                 if (prev_decl->type       == NULL             &&
5021                                 previous_entity->kind == ENTITY_PARAMETER &&
5022                                 entity->kind          == ENTITY_PARAMETER) {
5023                         prev_decl->type                   = decl->type;
5024                         prev_decl->storage_class          = decl->storage_class;
5025                         prev_decl->declared_storage_class = decl->declared_storage_class;
5026                         prev_decl->modifiers              = decl->modifiers;
5027                         prev_decl->deprecated_string      = decl->deprecated_string;
5028                         return previous_entity;
5029                 }
5030
5031                 type_t *const orig_type = decl->type;
5032                 assert(orig_type != NULL);
5033                 type_t *const type      = skip_typeref(orig_type);
5034                 type_t *      prev_type = skip_typeref(prev_decl->type);
5035
5036                 if (!types_compatible(type, prev_type)) {
5037                         errorf(pos,
5038                                    "declaration '%#T' is incompatible with '%#T' (declared %P)",
5039                                    orig_type, symbol, prev_decl->type, symbol,
5040                                    &previous_entity->base.source_position);
5041                 } else {
5042                         unsigned old_storage_class = prev_decl->storage_class;
5043                         if (warning.redundant_decls               &&
5044                                         is_definition                     &&
5045                                         !prev_decl->used                  &&
5046                                         !(prev_decl->modifiers & DM_USED) &&
5047                                         prev_decl->storage_class == STORAGE_CLASS_STATIC) {
5048                                 warningf(&previous_entity->base.source_position,
5049                                          "unnecessary static forward declaration for '%#T'",
5050                                          prev_decl->type, symbol);
5051                         }
5052
5053                         unsigned new_storage_class = decl->storage_class;
5054                         if (is_type_incomplete(prev_type)) {
5055                                 prev_decl->type = type;
5056                                 prev_type       = type;
5057                         }
5058
5059                         /* pretend no storage class means extern for function
5060                          * declarations (except if the previous declaration is neither
5061                          * none nor extern) */
5062                         if (entity->kind == ENTITY_FUNCTION) {
5063                                 if (prev_type->function.unspecified_parameters) {
5064                                         prev_decl->type = type;
5065                                         prev_type       = type;
5066                                 }
5067
5068                                 switch (old_storage_class) {
5069                                 case STORAGE_CLASS_NONE:
5070                                         old_storage_class = STORAGE_CLASS_EXTERN;
5071                                         /* FALLTHROUGH */
5072
5073                                 case STORAGE_CLASS_EXTERN:
5074                                         if (is_definition) {
5075                                                 if (warning.missing_prototypes &&
5076                                                     prev_type->function.unspecified_parameters &&
5077                                                     !is_sym_main(symbol)) {
5078                                                         warningf(pos, "no previous prototype for '%#T'",
5079                                                                          orig_type, symbol);
5080                                                 }
5081                                         } else if (new_storage_class == STORAGE_CLASS_NONE) {
5082                                                 new_storage_class = STORAGE_CLASS_EXTERN;
5083                                         }
5084                                         break;
5085
5086                                 default:
5087                                         break;
5088                                 }
5089                         }
5090
5091                         if (old_storage_class == STORAGE_CLASS_EXTERN &&
5092                                         new_storage_class == STORAGE_CLASS_EXTERN) {
5093 warn_redundant_declaration:
5094                                 if (!is_definition           &&
5095                                     warning.redundant_decls  &&
5096                                     is_type_valid(prev_type) &&
5097                                     strcmp(previous_entity->base.source_position.input_name,
5098                                            "<builtin>") != 0) {
5099                                         warningf(pos,
5100                                                  "redundant declaration for '%Y' (declared %P)",
5101                                                  symbol, &previous_entity->base.source_position);
5102                                 }
5103                         } else if (current_function == NULL) {
5104                                 if (old_storage_class != STORAGE_CLASS_STATIC &&
5105                                     new_storage_class == STORAGE_CLASS_STATIC) {
5106                                         errorf(pos,
5107                                                "static declaration of '%Y' follows non-static declaration (declared %P)",
5108                                                symbol, &previous_entity->base.source_position);
5109                                 } else if (old_storage_class == STORAGE_CLASS_EXTERN) {
5110                                         prev_decl->storage_class          = STORAGE_CLASS_NONE;
5111                                         prev_decl->declared_storage_class = STORAGE_CLASS_NONE;
5112                                 } else {
5113                                         /* ISO/IEC 14882:1998(E) Â§C.1.2:1 */
5114                                         if (c_mode & _CXX)
5115                                                 goto error_redeclaration;
5116                                         goto warn_redundant_declaration;
5117                                 }
5118                         } else if (is_type_valid(prev_type)) {
5119                                 if (old_storage_class == new_storage_class) {
5120 error_redeclaration:
5121                                         errorf(pos, "redeclaration of '%Y' (declared %P)",
5122                                                symbol, &previous_entity->base.source_position);
5123                                 } else {
5124                                         errorf(pos,
5125                                                "redeclaration of '%Y' with different linkage (declared %P)",
5126                                                symbol, &previous_entity->base.source_position);
5127                                 }
5128                         }
5129                 }
5130
5131                 prev_decl->modifiers |= decl->modifiers;
5132                 if (entity->kind == ENTITY_FUNCTION) {
5133                         previous_entity->function.is_inline |= entity->function.is_inline;
5134                 }
5135                 return previous_entity;
5136         }
5137
5138         if (entity->kind == ENTITY_FUNCTION) {
5139                 if (is_definition &&
5140                                 entity->declaration.storage_class != STORAGE_CLASS_STATIC) {
5141                         if (warning.missing_prototypes && !is_sym_main(symbol)) {
5142                                 warningf(pos, "no previous prototype for '%#T'",
5143                                          entity->declaration.type, symbol);
5144                         } else if (warning.missing_declarations && !is_sym_main(symbol)) {
5145                                 warningf(pos, "no previous declaration for '%#T'",
5146                                          entity->declaration.type, symbol);
5147                         }
5148                 }
5149         } else if (warning.missing_declarations &&
5150                         entity->kind == ENTITY_VARIABLE &&
5151                         current_scope == file_scope) {
5152                 declaration_t *declaration = &entity->declaration;
5153                 if (declaration->storage_class == STORAGE_CLASS_NONE) {
5154                         warningf(pos, "no previous declaration for '%#T'",
5155                                  declaration->type, symbol);
5156                 }
5157         }
5158
5159 finish:
5160         assert(entity->base.parent_scope == NULL);
5161         assert(current_scope != NULL);
5162
5163         entity->base.parent_scope = current_scope;
5164         entity->base.namespc      = NAMESPACE_NORMAL;
5165         environment_push(entity);
5166         append_entity(current_scope, entity);
5167
5168         return entity;
5169 }
5170
5171 static void parser_error_multiple_definition(entity_t *entity,
5172                 const source_position_t *source_position)
5173 {
5174         errorf(source_position, "multiple definition of '%Y' (declared %P)",
5175                entity->base.symbol, &entity->base.source_position);
5176 }
5177
5178 static bool is_declaration_specifier(const token_t *token,
5179                                      bool only_specifiers_qualifiers)
5180 {
5181         switch (token->type) {
5182                 TYPE_SPECIFIERS
5183                 TYPE_QUALIFIERS
5184                         return true;
5185                 case T_IDENTIFIER:
5186                         return is_typedef_symbol(token->v.symbol);
5187
5188                 case T___extension__:
5189                 STORAGE_CLASSES
5190                         return !only_specifiers_qualifiers;
5191
5192                 default:
5193                         return false;
5194         }
5195 }
5196
5197 static void parse_init_declarator_rest(entity_t *entity)
5198 {
5199         assert(is_declaration(entity));
5200         declaration_t *const declaration = &entity->declaration;
5201
5202         eat('=');
5203
5204         type_t *orig_type = declaration->type;
5205         type_t *type      = skip_typeref(orig_type);
5206
5207         if (entity->kind == ENTITY_VARIABLE
5208                         && entity->variable.initializer != NULL) {
5209                 parser_error_multiple_definition(entity, HERE);
5210         }
5211
5212         bool must_be_constant = false;
5213         if (declaration->storage_class == STORAGE_CLASS_STATIC ||
5214             entity->base.parent_scope  == file_scope) {
5215                 must_be_constant = true;
5216         }
5217
5218         if (is_type_function(type)) {
5219                 errorf(&entity->base.source_position,
5220                        "function '%#T' is initialized like a variable",
5221                        orig_type, entity->base.symbol);
5222                 orig_type = type_error_type;
5223         }
5224
5225         parse_initializer_env_t env;
5226         env.type             = orig_type;
5227         env.must_be_constant = must_be_constant;
5228         env.entity           = entity;
5229         current_init_decl    = entity;
5230
5231         initializer_t *initializer = parse_initializer(&env);
5232         current_init_decl = NULL;
5233
5234         if (entity->kind == ENTITY_VARIABLE) {
5235                 /* Â§ 6.7.5 (22)  array initializers for arrays with unknown size
5236                  * determine the array type size */
5237                 declaration->type            = env.type;
5238                 entity->variable.initializer = initializer;
5239         }
5240 }
5241
5242 /* parse rest of a declaration without any declarator */
5243 static void parse_anonymous_declaration_rest(
5244                 const declaration_specifiers_t *specifiers)
5245 {
5246         eat(';');
5247         anonymous_entity = NULL;
5248
5249         if (warning.other) {
5250                 if (specifiers->storage_class != STORAGE_CLASS_NONE ||
5251                                 specifiers->thread_local) {
5252                         warningf(&specifiers->source_position,
5253                                  "useless storage class in empty declaration");
5254                 }
5255
5256                 type_t *type = specifiers->type;
5257                 switch (type->kind) {
5258                         case TYPE_COMPOUND_STRUCT:
5259                         case TYPE_COMPOUND_UNION: {
5260                                 if (type->compound.compound->base.symbol == NULL) {
5261                                         warningf(&specifiers->source_position,
5262                                                  "unnamed struct/union that defines no instances");
5263                                 }
5264                                 break;
5265                         }
5266
5267                         case TYPE_ENUM:
5268                                 break;
5269
5270                         default:
5271                                 warningf(&specifiers->source_position, "empty declaration");
5272                                 break;
5273                 }
5274         }
5275 }
5276
5277 static void check_variable_type_complete(entity_t *ent)
5278 {
5279         if (ent->kind != ENTITY_VARIABLE)
5280                 return;
5281
5282         /* Â§6.7:7  If an identifier for an object is declared with no linkage, the
5283          *         type for the object shall be complete [...] */
5284         declaration_t *decl = &ent->declaration;
5285         if (decl->storage_class != STORAGE_CLASS_NONE)
5286                 return;
5287
5288         type_t *const orig_type = decl->type;
5289         type_t *const type      = skip_typeref(orig_type);
5290         if (!is_type_incomplete(type))
5291                 return;
5292
5293         /* GCC allows global arrays without size and assigns them a length of one,
5294          * if no different declaration follows */
5295         if (is_type_array(type) &&
5296                         c_mode & _GNUC      &&
5297                         ent->base.parent_scope == file_scope) {
5298                 ARR_APP1(declaration_t*, incomplete_arrays, decl);
5299                 return;
5300         }
5301
5302         errorf(&ent->base.source_position, "variable '%#T' has incomplete type",
5303                         orig_type, ent->base.symbol);
5304 }
5305
5306
5307 static void parse_declaration_rest(entity_t *ndeclaration,
5308                 const declaration_specifiers_t *specifiers,
5309                 parsed_declaration_func         finished_declaration,
5310                 declarator_flags_t              flags)
5311 {
5312         add_anchor_token(';');
5313         add_anchor_token(',');
5314         while (true) {
5315                 entity_t *entity = finished_declaration(ndeclaration, token.type == '=');
5316
5317                 if (token.type == '=') {
5318                         parse_init_declarator_rest(entity);
5319                 } else if (entity->kind == ENTITY_VARIABLE) {
5320                         /* ISO/IEC 14882:1998(E) Â§8.5.3:3  The initializer can be omitted
5321                          * [...] where the extern specifier is explicitly used. */
5322                         declaration_t *decl = &entity->declaration;
5323                         if (decl->storage_class != STORAGE_CLASS_EXTERN) {
5324                                 type_t *type = decl->type;
5325                                 if (is_type_reference(skip_typeref(type))) {
5326                                         errorf(&entity->base.source_position,
5327                                                         "reference '%#T' must be initialized",
5328                                                         type, entity->base.symbol);
5329                                 }
5330                         }
5331                 }
5332
5333                 check_variable_type_complete(entity);
5334
5335                 if (token.type != ',')
5336                         break;
5337                 eat(',');
5338
5339                 add_anchor_token('=');
5340                 ndeclaration = parse_declarator(specifiers, flags);
5341                 rem_anchor_token('=');
5342         }
5343         expect(';');
5344
5345 end_error:
5346         anonymous_entity = NULL;
5347         rem_anchor_token(';');
5348         rem_anchor_token(',');
5349 }
5350
5351 static entity_t *finished_kr_declaration(entity_t *entity, bool is_definition)
5352 {
5353         symbol_t *symbol = entity->base.symbol;
5354         if (symbol == NULL) {
5355                 errorf(HERE, "anonymous declaration not valid as function parameter");
5356                 return entity;
5357         }
5358
5359         assert(entity->base.namespc == NAMESPACE_NORMAL);
5360         entity_t *previous_entity = get_entity(symbol, NAMESPACE_NORMAL);
5361         if (previous_entity == NULL
5362                         || previous_entity->base.parent_scope != current_scope) {
5363                 errorf(HERE, "expected declaration of a function parameter, found '%Y'",
5364                        symbol);
5365                 return entity;
5366         }
5367
5368         if (is_definition) {
5369                 errorf(HERE, "parameter '%Y' is initialised", entity->base.symbol);
5370         }
5371
5372         return record_entity(entity, false);
5373 }
5374
5375 static void parse_declaration(parsed_declaration_func finished_declaration,
5376                               declarator_flags_t      flags)
5377 {
5378         declaration_specifiers_t specifiers;
5379         memset(&specifiers, 0, sizeof(specifiers));
5380
5381         add_anchor_token(';');
5382         parse_declaration_specifiers(&specifiers);
5383         rem_anchor_token(';');
5384
5385         if (token.type == ';') {
5386                 parse_anonymous_declaration_rest(&specifiers);
5387         } else {
5388                 entity_t *entity = parse_declarator(&specifiers, flags);
5389                 parse_declaration_rest(entity, &specifiers, finished_declaration, flags);
5390         }
5391 }
5392
5393 static type_t *get_default_promoted_type(type_t *orig_type)
5394 {
5395         type_t *result = orig_type;
5396
5397         type_t *type = skip_typeref(orig_type);
5398         if (is_type_integer(type)) {
5399                 result = promote_integer(type);
5400         } else if (type == type_float) {
5401                 result = type_double;
5402         }
5403
5404         return result;
5405 }
5406
5407 static void parse_kr_declaration_list(entity_t *entity)
5408 {
5409         if (entity->kind != ENTITY_FUNCTION)
5410                 return;
5411
5412         type_t *type = skip_typeref(entity->declaration.type);
5413         assert(is_type_function(type));
5414         if (!type->function.kr_style_parameters)
5415                 return;
5416
5417
5418         add_anchor_token('{');
5419
5420         /* push function parameters */
5421         size_t const  top       = environment_top();
5422         scope_t      *old_scope = scope_push(&entity->function.parameters);
5423
5424         entity_t *parameter = entity->function.parameters.entities;
5425         for ( ; parameter != NULL; parameter = parameter->base.next) {
5426                 assert(parameter->base.parent_scope == NULL);
5427                 parameter->base.parent_scope = current_scope;
5428                 environment_push(parameter);
5429         }
5430
5431         /* parse declaration list */
5432         for (;;) {
5433                 switch (token.type) {
5434                         DECLARATION_START
5435                         case T___extension__:
5436                         /* This covers symbols, which are no type, too, and results in
5437                          * better error messages.  The typical cases are misspelled type
5438                          * names and missing includes. */
5439                         case T_IDENTIFIER:
5440                                 parse_declaration(finished_kr_declaration, DECL_IS_PARAMETER);
5441                                 break;
5442                         default:
5443                                 goto decl_list_end;
5444                 }
5445         }
5446 decl_list_end:
5447
5448         /* pop function parameters */
5449         assert(current_scope == &entity->function.parameters);
5450         scope_pop(old_scope);
5451         environment_pop_to(top);
5452
5453         /* update function type */
5454         type_t *new_type = duplicate_type(type);
5455
5456         function_parameter_t *parameters     = NULL;
5457         function_parameter_t *last_parameter = NULL;
5458
5459         parameter = entity->function.parameters.entities;
5460         for (; parameter != NULL; parameter = parameter->base.next) {
5461                 type_t *parameter_type = parameter->declaration.type;
5462                 if (parameter_type == NULL) {
5463                         if (strict_mode) {
5464                                 errorf(HERE, "no type specified for function parameter '%Y'",
5465                                        parameter->base.symbol);
5466                         } else {
5467                                 if (warning.implicit_int) {
5468                                         warningf(HERE, "no type specified for function parameter '%Y', using 'int'",
5469                                                  parameter->base.symbol);
5470                                 }
5471                                 parameter_type              = type_int;
5472                                 parameter->declaration.type = parameter_type;
5473                         }
5474                 }
5475
5476                 semantic_parameter_incomplete(parameter);
5477                 parameter_type = parameter->declaration.type;
5478
5479                 /*
5480                  * we need the default promoted types for the function type
5481                  */
5482                 parameter_type = get_default_promoted_type(parameter_type);
5483
5484                 function_parameter_t *function_parameter
5485                         = obstack_alloc(type_obst, sizeof(function_parameter[0]));
5486                 memset(function_parameter, 0, sizeof(function_parameter[0]));
5487
5488                 function_parameter->type = parameter_type;
5489                 if (last_parameter != NULL) {
5490                         last_parameter->next = function_parameter;
5491                 } else {
5492                         parameters = function_parameter;
5493                 }
5494                 last_parameter = function_parameter;
5495         }
5496
5497         /* Â§ 6.9.1.7: A K&R style parameter list does NOT act as a function
5498          * prototype */
5499         new_type->function.parameters             = parameters;
5500         new_type->function.unspecified_parameters = true;
5501
5502         type = typehash_insert(new_type);
5503         if (type != new_type) {
5504                 obstack_free(type_obst, new_type);
5505         }
5506
5507         entity->declaration.type = type;
5508
5509         rem_anchor_token('{');
5510 }
5511
5512 static bool first_err = true;
5513
5514 /**
5515  * When called with first_err set, prints the name of the current function,
5516  * else does noting.
5517  */
5518 static void print_in_function(void)
5519 {
5520         if (first_err) {
5521                 first_err = false;
5522                 diagnosticf("%s: In function '%Y':\n",
5523                             current_function->base.base.source_position.input_name,
5524                             current_function->base.base.symbol);
5525         }
5526 }
5527
5528 /**
5529  * Check if all labels are defined in the current function.
5530  * Check if all labels are used in the current function.
5531  */
5532 static void check_labels(void)
5533 {
5534         for (const goto_statement_t *goto_statement = goto_first;
5535             goto_statement != NULL;
5536             goto_statement = goto_statement->next) {
5537                 /* skip computed gotos */
5538                 if (goto_statement->expression != NULL)
5539                         continue;
5540
5541                 label_t *label = goto_statement->label;
5542
5543                 label->used = true;
5544                 if (label->base.source_position.input_name == NULL) {
5545                         print_in_function();
5546                         errorf(&goto_statement->base.source_position,
5547                                "label '%Y' used but not defined", label->base.symbol);
5548                  }
5549         }
5550
5551         if (warning.unused_label) {
5552                 for (const label_statement_t *label_statement = label_first;
5553                          label_statement != NULL;
5554                          label_statement = label_statement->next) {
5555                         label_t *label = label_statement->label;
5556
5557                         if (! label->used) {
5558                                 print_in_function();
5559                                 warningf(&label_statement->base.source_position,
5560                                          "label '%Y' defined but not used", label->base.symbol);
5561                         }
5562                 }
5563         }
5564 }
5565
5566 static void warn_unused_entity(entity_t *entity, entity_t *end)
5567 {
5568         for (; entity != NULL; entity = entity->base.next) {
5569                 if (!is_declaration(entity))
5570                         continue;
5571
5572                 declaration_t *declaration = &entity->declaration;
5573                 if (declaration->implicit)
5574                         continue;
5575
5576                 if (!declaration->used) {
5577                         print_in_function();
5578                         const char *what = get_entity_kind_name(entity->kind);
5579                         warningf(&entity->base.source_position, "%s '%Y' is unused",
5580                                  what, entity->base.symbol);
5581                 } else if (entity->kind == ENTITY_VARIABLE && !entity->variable.read) {
5582                         print_in_function();
5583                         const char *what = get_entity_kind_name(entity->kind);
5584                         warningf(&entity->base.source_position, "%s '%Y' is never read",
5585                                  what, entity->base.symbol);
5586                 }
5587
5588                 if (entity == end)
5589                         break;
5590         }
5591 }
5592
5593 static void check_unused_variables(statement_t *const stmt, void *const env)
5594 {
5595         (void)env;
5596
5597         switch (stmt->kind) {
5598                 case STATEMENT_DECLARATION: {
5599                         declaration_statement_t const *const decls = &stmt->declaration;
5600                         warn_unused_entity(decls->declarations_begin,
5601                                            decls->declarations_end);
5602                         return;
5603                 }
5604
5605                 case STATEMENT_FOR:
5606                         warn_unused_entity(stmt->fors.scope.entities, NULL);
5607                         return;
5608
5609                 default:
5610                         return;
5611         }
5612 }
5613
5614 /**
5615  * Check declarations of current_function for unused entities.
5616  */
5617 static void check_declarations(void)
5618 {
5619         if (warning.unused_parameter) {
5620                 const scope_t *scope = &current_function->parameters;
5621
5622                 /* do not issue unused warnings for main */
5623                 if (!is_sym_main(current_function->base.base.symbol)) {
5624                         warn_unused_entity(scope->entities, NULL);
5625                 }
5626         }
5627         if (warning.unused_variable) {
5628                 walk_statements(current_function->statement, check_unused_variables,
5629                                 NULL);
5630         }
5631 }
5632
5633 static int determine_truth(expression_t const* const cond)
5634 {
5635         return
5636                 !is_constant_expression(cond) ? 0 :
5637                 fold_constant(cond) != 0      ? 1 :
5638                 -1;
5639 }
5640
5641 static void check_reachable(statement_t *);
5642
5643 static bool expression_returns(expression_t const *const expr)
5644 {
5645         switch (expr->kind) {
5646                 case EXPR_CALL: {
5647                         expression_t const *const func = expr->call.function;
5648                         if (func->kind == EXPR_REFERENCE) {
5649                                 entity_t *entity = func->reference.entity;
5650                                 if (entity->kind == ENTITY_FUNCTION
5651                                                 && entity->declaration.modifiers & DM_NORETURN)
5652                                         return false;
5653                         }
5654
5655                         if (!expression_returns(func))
5656                                 return false;
5657
5658                         for (call_argument_t const* arg = expr->call.arguments; arg != NULL; arg = arg->next) {
5659                                 if (!expression_returns(arg->expression))
5660                                         return false;
5661                         }
5662
5663                         return true;
5664                 }
5665
5666                 case EXPR_REFERENCE:
5667                 case EXPR_REFERENCE_ENUM_VALUE:
5668                 case EXPR_CONST:
5669                 case EXPR_CHARACTER_CONSTANT:
5670                 case EXPR_WIDE_CHARACTER_CONSTANT:
5671                 case EXPR_STRING_LITERAL:
5672                 case EXPR_WIDE_STRING_LITERAL:
5673                 case EXPR_COMPOUND_LITERAL: // TODO descend into initialisers
5674                 case EXPR_LABEL_ADDRESS:
5675                 case EXPR_CLASSIFY_TYPE:
5676                 case EXPR_SIZEOF: // TODO handle obscure VLA case
5677                 case EXPR_ALIGNOF:
5678                 case EXPR_FUNCNAME:
5679                 case EXPR_BUILTIN_SYMBOL:
5680                 case EXPR_BUILTIN_CONSTANT_P:
5681                 case EXPR_BUILTIN_PREFETCH:
5682                 case EXPR_OFFSETOF:
5683                 case EXPR_INVALID:
5684                         return true;
5685
5686                 case EXPR_STATEMENT:
5687                         check_reachable(expr->statement.statement);
5688                         // TODO check if statement can be left
5689                         return true;
5690
5691                 case EXPR_CONDITIONAL:
5692                         // TODO handle constant expression
5693
5694                         if (!expression_returns(expr->conditional.condition))
5695                                 return false;
5696
5697                         if (expr->conditional.true_expression != NULL
5698                                         && expression_returns(expr->conditional.true_expression))
5699                                 return true;
5700
5701                         return expression_returns(expr->conditional.false_expression);
5702
5703                 case EXPR_SELECT:
5704                         return expression_returns(expr->select.compound);
5705
5706                 case EXPR_ARRAY_ACCESS:
5707                         return
5708                                 expression_returns(expr->array_access.array_ref) &&
5709                                 expression_returns(expr->array_access.index);
5710
5711                 case EXPR_VA_START:
5712                         return expression_returns(expr->va_starte.ap);
5713
5714                 case EXPR_VA_ARG:
5715                         return expression_returns(expr->va_arge.ap);
5716
5717                 EXPR_UNARY_CASES_MANDATORY
5718                         return expression_returns(expr->unary.value);
5719
5720                 case EXPR_UNARY_THROW:
5721                         return false;
5722
5723                 EXPR_BINARY_CASES
5724                         // TODO handle constant lhs of && and ||
5725                         return
5726                                 expression_returns(expr->binary.left) &&
5727                                 expression_returns(expr->binary.right);
5728
5729                 case EXPR_UNKNOWN:
5730                         break;
5731         }
5732
5733         panic("unhandled expression");
5734 }
5735
5736 static bool initializer_returns(initializer_t const *const init)
5737 {
5738         switch (init->kind) {
5739                 case INITIALIZER_VALUE:
5740                         return expression_returns(init->value.value);
5741
5742                 case INITIALIZER_LIST: {
5743                         initializer_t * const*       i       = init->list.initializers;
5744                         initializer_t * const* const end     = i + init->list.len;
5745                         bool                         returns = true;
5746                         for (; i != end; ++i) {
5747                                 if (!initializer_returns(*i))
5748                                         returns = false;
5749                         }
5750                         return returns;
5751                 }
5752
5753                 case INITIALIZER_STRING:
5754                 case INITIALIZER_WIDE_STRING:
5755                 case INITIALIZER_DESIGNATOR: // designators have no payload
5756                         return true;
5757         }
5758         panic("unhandled initializer");
5759 }
5760
5761 static bool noreturn_candidate;
5762
5763 static void check_reachable(statement_t *const stmt)
5764 {
5765         if (stmt->base.reachable)
5766                 return;
5767         if (stmt->kind != STATEMENT_DO_WHILE)
5768                 stmt->base.reachable = true;
5769
5770         statement_t *last = stmt;
5771         statement_t *next;
5772         switch (stmt->kind) {
5773                 case STATEMENT_INVALID:
5774                 case STATEMENT_EMPTY:
5775                 case STATEMENT_LOCAL_LABEL:
5776                 case STATEMENT_ASM:
5777                         next = stmt->base.next;
5778                         break;
5779
5780                 case STATEMENT_DECLARATION: {
5781                         declaration_statement_t const *const decl = &stmt->declaration;
5782                         entity_t                const *      ent  = decl->declarations_begin;
5783                         entity_t                const *const last = decl->declarations_end;
5784                         if (ent != NULL) {
5785                                 for (;; ent = ent->base.next) {
5786                                         if (ent->kind                 == ENTITY_VARIABLE &&
5787                                                         ent->variable.initializer != NULL            &&
5788                                                         !initializer_returns(ent->variable.initializer)) {
5789                                                 return;
5790                                         }
5791                                         if (ent == last)
5792                                                 break;
5793                                 }
5794                         }
5795                         next = stmt->base.next;
5796                         break;
5797                 }
5798
5799                 case STATEMENT_COMPOUND:
5800                         next = stmt->compound.statements;
5801                         break;
5802
5803                 case STATEMENT_RETURN: {
5804                         expression_t const *const val = stmt->returns.value;
5805                         if (val == NULL || expression_returns(val))
5806                                 noreturn_candidate = false;
5807                         return;
5808                 }
5809
5810                 case STATEMENT_IF: {
5811                         if_statement_t const *const ifs  = &stmt->ifs;
5812                         expression_t   const *const cond = ifs->condition;
5813
5814                         if (!expression_returns(cond))
5815                                 return;
5816
5817                         int const val = determine_truth(cond);
5818
5819                         if (val >= 0)
5820                                 check_reachable(ifs->true_statement);
5821
5822                         if (val > 0)
5823                                 return;
5824
5825                         if (ifs->false_statement != NULL) {
5826                                 check_reachable(ifs->false_statement);
5827                                 return;
5828                         }
5829
5830                         next = stmt->base.next;
5831                         break;
5832                 }
5833
5834                 case STATEMENT_SWITCH: {
5835                         switch_statement_t const *const switchs = &stmt->switchs;
5836                         expression_t       const *const expr    = switchs->expression;
5837
5838                         if (!expression_returns(expr))
5839                                 return;
5840
5841                         if (is_constant_expression(expr)) {
5842                                 long                    const val      = fold_constant(expr);
5843                                 case_label_statement_t *      defaults = NULL;
5844                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5845                                         if (i->expression == NULL) {
5846                                                 defaults = i;
5847                                                 continue;
5848                                         }
5849
5850                                         if (i->first_case <= val && val <= i->last_case) {
5851                                                 check_reachable((statement_t*)i);
5852                                                 return;
5853                                         }
5854                                 }
5855
5856                                 if (defaults != NULL) {
5857                                         check_reachable((statement_t*)defaults);
5858                                         return;
5859                                 }
5860                         } else {
5861                                 bool has_default = false;
5862                                 for (case_label_statement_t *i = switchs->first_case; i != NULL; i = i->next) {
5863                                         if (i->expression == NULL)
5864                                                 has_default = true;
5865
5866                                         check_reachable((statement_t*)i);
5867                                 }
5868
5869                                 if (has_default)
5870                                         return;
5871                         }
5872
5873                         next = stmt->base.next;
5874                         break;
5875                 }
5876
5877                 case STATEMENT_EXPRESSION: {
5878                         /* Check for noreturn function call */
5879                         expression_t const *const expr = stmt->expression.expression;
5880                         if (!expression_returns(expr))
5881                                 return;
5882
5883                         next = stmt->base.next;
5884                         break;
5885                 }
5886
5887                 case STATEMENT_CONTINUE: {
5888                         statement_t *parent = stmt;
5889                         for (;;) {
5890                                 parent = parent->base.parent;
5891                                 if (parent == NULL) /* continue not within loop */
5892                                         return;
5893
5894                                 next = parent;
5895                                 switch (parent->kind) {
5896                                         case STATEMENT_WHILE:    goto continue_while;
5897                                         case STATEMENT_DO_WHILE: goto continue_do_while;
5898                                         case STATEMENT_FOR:      goto continue_for;
5899
5900                                         default: break;
5901                                 }
5902                         }
5903                 }
5904
5905                 case STATEMENT_BREAK: {
5906                         statement_t *parent = stmt;
5907                         for (;;) {
5908                                 parent = parent->base.parent;
5909                                 if (parent == NULL) /* break not within loop/switch */
5910                                         return;
5911
5912                                 switch (parent->kind) {
5913                                         case STATEMENT_SWITCH:
5914                                         case STATEMENT_WHILE:
5915                                         case STATEMENT_DO_WHILE:
5916                                         case STATEMENT_FOR:
5917                                                 last = parent;
5918                                                 next = parent->base.next;
5919                                                 goto found_break_parent;
5920
5921                                         default: break;
5922                                 }
5923                         }
5924 found_break_parent:
5925                         break;
5926                 }
5927
5928                 case STATEMENT_GOTO:
5929                         if (stmt->gotos.expression) {
5930                                 if (!expression_returns(stmt->gotos.expression))
5931                                         return;
5932
5933                                 statement_t *parent = stmt->base.parent;
5934                                 if (parent == NULL) /* top level goto */
5935                                         return;
5936                                 next = parent;
5937                         } else {
5938                                 next = stmt->gotos.label->statement;
5939                                 if (next == NULL) /* missing label */
5940                                         return;
5941                         }
5942                         break;
5943
5944                 case STATEMENT_LABEL:
5945                         next = stmt->label.statement;
5946                         break;
5947
5948                 case STATEMENT_CASE_LABEL:
5949                         next = stmt->case_label.statement;
5950                         break;
5951
5952                 case STATEMENT_WHILE: {
5953                         while_statement_t const *const whiles = &stmt->whiles;
5954                         expression_t      const *const cond   = whiles->condition;
5955
5956                         if (!expression_returns(cond))
5957                                 return;
5958
5959                         int const val = determine_truth(cond);
5960
5961                         if (val >= 0)
5962                                 check_reachable(whiles->body);
5963
5964                         if (val > 0)
5965                                 return;
5966
5967                         next = stmt->base.next;
5968                         break;
5969                 }
5970
5971                 case STATEMENT_DO_WHILE:
5972                         next = stmt->do_while.body;
5973                         break;
5974
5975                 case STATEMENT_FOR: {
5976                         for_statement_t *const fors = &stmt->fors;
5977
5978                         if (fors->condition_reachable)
5979                                 return;
5980                         fors->condition_reachable = true;
5981
5982                         expression_t const *const cond = fors->condition;
5983
5984                         int val;
5985                         if (cond == NULL) {
5986                                 val = 1;
5987                         } else if (expression_returns(cond)) {
5988                                 val = determine_truth(cond);
5989                         } else {
5990                                 return;
5991                         }
5992
5993                         if (val >= 0)
5994                                 check_reachable(fors->body);
5995
5996                         if (val > 0)
5997                                 return;
5998
5999                         next = stmt->base.next;
6000                         break;
6001                 }
6002
6003                 case STATEMENT_MS_TRY: {
6004                         ms_try_statement_t const *const ms_try = &stmt->ms_try;
6005                         check_reachable(ms_try->try_statement);
6006                         next = ms_try->final_statement;
6007                         break;
6008                 }
6009
6010                 case STATEMENT_LEAVE: {
6011                         statement_t *parent = stmt;
6012                         for (;;) {
6013                                 parent = parent->base.parent;
6014                                 if (parent == NULL) /* __leave not within __try */
6015                                         return;
6016
6017                                 if (parent->kind == STATEMENT_MS_TRY) {
6018                                         last = parent;
6019                                         next = parent->ms_try.final_statement;
6020                                         break;
6021                                 }
6022                         }
6023                         break;
6024                 }
6025         }
6026
6027         while (next == NULL) {
6028                 next = last->base.parent;
6029                 if (next == NULL) {
6030                         noreturn_candidate = false;
6031
6032                         type_t *const type = current_function->base.type;
6033                         assert(is_type_function(type));
6034                         type_t *const ret  = skip_typeref(type->function.return_type);
6035                         if (warning.return_type                    &&
6036                             !is_type_atomic(ret, ATOMIC_TYPE_VOID) &&
6037                             is_type_valid(ret)                     &&
6038                             !is_sym_main(current_function->base.base.symbol)) {
6039                                 warningf(&stmt->base.source_position,
6040                                          "control reaches end of non-void function");
6041                         }
6042                         return;
6043                 }
6044
6045                 switch (next->kind) {
6046                         case STATEMENT_INVALID:
6047                         case STATEMENT_EMPTY:
6048                         case STATEMENT_DECLARATION:
6049                         case STATEMENT_LOCAL_LABEL:
6050                         case STATEMENT_EXPRESSION:
6051                         case STATEMENT_ASM:
6052                         case STATEMENT_RETURN:
6053                         case STATEMENT_CONTINUE:
6054                         case STATEMENT_BREAK:
6055                         case STATEMENT_GOTO:
6056                         case STATEMENT_LEAVE:
6057                                 panic("invalid control flow in function");
6058
6059                         case STATEMENT_COMPOUND:
6060                         case STATEMENT_IF:
6061                         case STATEMENT_SWITCH:
6062                         case STATEMENT_LABEL:
6063                         case STATEMENT_CASE_LABEL:
6064                                 last = next;
6065                                 next = next->base.next;
6066                                 break;
6067
6068                         case STATEMENT_WHILE: {
6069 continue_while:
6070                                 if (next->base.reachable)
6071                                         return;
6072                                 next->base.reachable = true;
6073
6074                                 while_statement_t const *const whiles = &next->whiles;
6075                                 expression_t      const *const cond   = whiles->condition;
6076
6077                                 if (!expression_returns(cond))
6078                                         return;
6079
6080                                 int const val = determine_truth(cond);
6081
6082                                 if (val >= 0)
6083                                         check_reachable(whiles->body);
6084
6085                                 if (val > 0)
6086                                         return;
6087
6088                                 last = next;
6089                                 next = next->base.next;
6090                                 break;
6091                         }
6092
6093                         case STATEMENT_DO_WHILE: {
6094 continue_do_while:
6095                                 if (next->base.reachable)
6096                                         return;
6097                                 next->base.reachable = true;
6098
6099                                 do_while_statement_t const *const dw   = &next->do_while;
6100                                 expression_t         const *const cond = dw->condition;
6101
6102                                 if (!expression_returns(cond))
6103                                         return;
6104
6105                                 int const val = determine_truth(cond);
6106
6107                                 if (val >= 0)
6108                                         check_reachable(dw->body);
6109
6110                                 if (val > 0)
6111                                         return;
6112
6113                                 last = next;
6114                                 next = next->base.next;
6115                                 break;
6116                         }
6117
6118                         case STATEMENT_FOR: {
6119 continue_for:;
6120                                 for_statement_t *const fors = &next->fors;
6121
6122                                 fors->step_reachable = true;
6123
6124                                 if (fors->condition_reachable)
6125                                         return;
6126                                 fors->condition_reachable = true;
6127
6128                                 expression_t const *const cond = fors->condition;
6129
6130                                 int val;
6131                                 if (cond == NULL) {
6132                                         val = 1;
6133                                 } else if (expression_returns(cond)) {
6134                                         val = determine_truth(cond);
6135                                 } else {
6136                                         return;
6137                                 }
6138
6139                                 if (val >= 0)
6140                                         check_reachable(fors->body);
6141
6142                                 if (val > 0)
6143                                         return;
6144
6145                                 last = next;
6146                                 next = next->base.next;
6147                                 break;
6148                         }
6149
6150                         case STATEMENT_MS_TRY:
6151                                 last = next;
6152                                 next = next->ms_try.final_statement;
6153                                 break;
6154                 }
6155         }
6156
6157         check_reachable(next);
6158 }
6159
6160 static void check_unreachable(statement_t* const stmt, void *const env)
6161 {
6162         (void)env;
6163
6164         switch (stmt->kind) {
6165                 case STATEMENT_DO_WHILE:
6166                         if (!stmt->base.reachable) {
6167                                 expression_t const *const cond = stmt->do_while.condition;
6168                                 if (determine_truth(cond) >= 0) {
6169                                         warningf(&cond->base.source_position,
6170                                                  "condition of do-while-loop is unreachable");
6171                                 }
6172                         }
6173                         return;
6174
6175                 case STATEMENT_FOR: {
6176                         for_statement_t const* const fors = &stmt->fors;
6177
6178                         // if init and step are unreachable, cond is unreachable, too
6179                         if (!stmt->base.reachable && !fors->step_reachable) {
6180                                 warningf(&stmt->base.source_position, "statement is unreachable");
6181                         } else {
6182                                 if (!stmt->base.reachable && fors->initialisation != NULL) {
6183                                         warningf(&fors->initialisation->base.source_position,
6184                                                  "initialisation of for-statement is unreachable");
6185                                 }
6186
6187                                 if (!fors->condition_reachable && fors->condition != NULL) {
6188                                         warningf(&fors->condition->base.source_position,
6189                                                  "condition of for-statement is unreachable");
6190                                 }
6191
6192                                 if (!fors->step_reachable && fors->step != NULL) {
6193                                         warningf(&fors->step->base.source_position,
6194                                                  "step of for-statement is unreachable");
6195                                 }
6196                         }
6197                         return;
6198                 }
6199
6200                 case STATEMENT_COMPOUND:
6201                         if (stmt->compound.statements != NULL)
6202                                 return;
6203                         goto warn_unreachable;
6204
6205                 case STATEMENT_DECLARATION: {
6206                         /* Only warn if there is at least one declarator with an initializer.
6207                          * This typically occurs in switch statements. */
6208                         declaration_statement_t const *const decl = &stmt->declaration;
6209                         entity_t                const *      ent  = decl->declarations_begin;
6210                         entity_t                const *const last = decl->declarations_end;
6211                         for (;; ent = ent->base.next) {
6212                                 if (ent->kind                 == ENTITY_VARIABLE &&
6213                                                 ent->variable.initializer != NULL) {
6214                                         goto warn_unreachable;
6215                                 }
6216                                 if (ent == last)
6217                                         return;
6218                         }
6219                 }
6220
6221                 default:
6222 warn_unreachable:
6223                         if (!stmt->base.reachable)
6224                                 warningf(&stmt->base.source_position, "statement is unreachable");
6225                         return;
6226         }
6227 }
6228
6229 static void parse_external_declaration(void)
6230 {
6231         /* function-definitions and declarations both start with declaration
6232          * specifiers */
6233         declaration_specifiers_t specifiers;
6234         memset(&specifiers, 0, sizeof(specifiers));
6235
6236         add_anchor_token(';');
6237         parse_declaration_specifiers(&specifiers);
6238         rem_anchor_token(';');
6239
6240         /* must be a declaration */
6241         if (token.type == ';') {
6242                 parse_anonymous_declaration_rest(&specifiers);
6243                 return;
6244         }
6245
6246         add_anchor_token(',');
6247         add_anchor_token('=');
6248         add_anchor_token(';');
6249         add_anchor_token('{');
6250
6251         /* declarator is common to both function-definitions and declarations */
6252         entity_t *ndeclaration = parse_declarator(&specifiers, DECL_FLAGS_NONE);
6253
6254         rem_anchor_token('{');
6255         rem_anchor_token(';');
6256         rem_anchor_token('=');
6257         rem_anchor_token(',');
6258
6259         /* must be a declaration */
6260         switch (token.type) {
6261                 case ',':
6262                 case ';':
6263                 case '=':
6264                         parse_declaration_rest(ndeclaration, &specifiers, record_entity,
6265                                         DECL_FLAGS_NONE);
6266                         return;
6267         }
6268
6269         /* must be a function definition */
6270         parse_kr_declaration_list(ndeclaration);
6271
6272         if (token.type != '{') {
6273                 parse_error_expected("while parsing function definition", '{', NULL);
6274                 eat_until_matching_token(';');
6275                 return;
6276         }
6277
6278         assert(is_declaration(ndeclaration));
6279         type_t *type = skip_typeref(ndeclaration->declaration.type);
6280
6281         if (!is_type_function(type)) {
6282                 if (is_type_valid(type)) {
6283                         errorf(HERE, "declarator '%#T' has a body but is not a function type",
6284                                type, ndeclaration->base.symbol);
6285                 }
6286                 eat_block();
6287                 return;
6288         }
6289
6290         if (warning.aggregate_return &&
6291             is_type_compound(skip_typeref(type->function.return_type))) {
6292                 warningf(HERE, "function '%Y' returns an aggregate",
6293                          ndeclaration->base.symbol);
6294         }
6295         if (warning.traditional && !type->function.unspecified_parameters) {
6296                 warningf(HERE, "traditional C rejects ISO C style function definition of function '%Y'",
6297                         ndeclaration->base.symbol);
6298         }
6299         if (warning.old_style_definition && type->function.unspecified_parameters) {
6300                 warningf(HERE, "old-style function definition '%Y'",
6301                         ndeclaration->base.symbol);
6302         }
6303
6304         /* Â§ 6.7.5.3 (14) a function definition with () means no
6305          * parameters (and not unspecified parameters) */
6306         if (type->function.unspecified_parameters
6307                         && type->function.parameters == NULL
6308                         && !type->function.kr_style_parameters) {
6309                 type_t *duplicate = duplicate_type(type);
6310                 duplicate->function.unspecified_parameters = false;
6311
6312                 type = typehash_insert(duplicate);
6313                 if (type != duplicate) {
6314                         obstack_free(type_obst, duplicate);
6315                 }
6316                 ndeclaration->declaration.type = type;
6317         }
6318
6319         entity_t *const entity = record_entity(ndeclaration, true);
6320         assert(entity->kind == ENTITY_FUNCTION);
6321         assert(ndeclaration->kind == ENTITY_FUNCTION);
6322
6323         function_t *function = &entity->function;
6324         if (ndeclaration != entity) {
6325                 function->parameters = ndeclaration->function.parameters;
6326         }
6327         assert(is_declaration(entity));
6328         type = skip_typeref(entity->declaration.type);
6329
6330         /* push function parameters and switch scope */
6331         size_t const  top       = environment_top();
6332         scope_t      *old_scope = scope_push(&function->parameters);
6333
6334         entity_t *parameter = function->parameters.entities;
6335         for (; parameter != NULL; parameter = parameter->base.next) {
6336                 if (parameter->base.parent_scope == &ndeclaration->function.parameters) {
6337                         parameter->base.parent_scope = current_scope;
6338                 }
6339                 assert(parameter->base.parent_scope == NULL
6340                                 || parameter->base.parent_scope == current_scope);
6341                 parameter->base.parent_scope = current_scope;
6342                 if (parameter->base.symbol == NULL) {
6343                         errorf(&parameter->base.source_position, "parameter name omitted");
6344                         continue;
6345                 }
6346                 environment_push(parameter);
6347         }
6348
6349         if (function->statement != NULL) {
6350                 parser_error_multiple_definition(entity, HERE);
6351                 eat_block();
6352         } else {
6353                 /* parse function body */
6354                 int         label_stack_top      = label_top();
6355                 function_t *old_current_function = current_function;
6356                 current_function                 = function;
6357                 current_parent                   = NULL;
6358
6359                 goto_first   = NULL;
6360                 goto_anchor  = &goto_first;
6361                 label_first  = NULL;
6362                 label_anchor = &label_first;
6363
6364                 statement_t *const body = parse_compound_statement(false);
6365                 function->statement = body;
6366                 first_err = true;
6367                 check_labels();
6368                 check_declarations();
6369                 if (warning.return_type      ||
6370                     warning.unreachable_code ||
6371                     (warning.missing_noreturn
6372                      && !(function->base.modifiers & DM_NORETURN))) {
6373                         noreturn_candidate = true;
6374                         check_reachable(body);
6375                         if (warning.unreachable_code)
6376                                 walk_statements(body, check_unreachable, NULL);
6377                         if (warning.missing_noreturn &&
6378                             noreturn_candidate       &&
6379                             !(function->base.modifiers & DM_NORETURN)) {
6380                                 warningf(&body->base.source_position,
6381                                          "function '%#T' is candidate for attribute 'noreturn'",
6382                                          type, entity->base.symbol);
6383                         }
6384                 }
6385
6386                 assert(current_parent   == NULL);
6387                 assert(current_function == function);
6388                 current_function = old_current_function;
6389                 label_pop_to(label_stack_top);
6390         }
6391
6392         assert(current_scope == &function->parameters);
6393         scope_pop(old_scope);
6394         environment_pop_to(top);
6395 }
6396
6397 static type_t *make_bitfield_type(type_t *base_type, expression_t *size,
6398                                   source_position_t *source_position,
6399                                   const symbol_t *symbol)
6400 {
6401         type_t *type = allocate_type_zero(TYPE_BITFIELD);
6402
6403         type->bitfield.base_type       = base_type;
6404         type->bitfield.size_expression = size;
6405
6406         il_size_t bit_size;
6407         type_t *skipped_type = skip_typeref(base_type);
6408         if (!is_type_integer(skipped_type)) {
6409                 errorf(HERE, "bitfield base type '%T' is not an integer type",
6410                         base_type);
6411                 bit_size = 0;
6412         } else {
6413                 bit_size = skipped_type->base.size * 8;
6414         }
6415
6416         if (is_constant_expression(size)) {
6417                 long v = fold_constant(size);
6418
6419                 if (v < 0) {
6420                         errorf(source_position, "negative width in bit-field '%Y'", symbol);
6421                 } else if (v == 0) {
6422                         errorf(source_position, "zero width for bit-field '%Y'", symbol);
6423                 } else if (bit_size > 0 && (il_size_t)v > bit_size) {
6424                         errorf(source_position, "width of '%Y' exceeds its type", symbol);
6425                 } else {
6426                         type->bitfield.bit_size = v;
6427                 }
6428         }
6429
6430         return type;
6431 }
6432
6433 static entity_t *find_compound_entry(compound_t *compound, symbol_t *symbol)
6434 {
6435         entity_t *iter = compound->members.entities;
6436         for (; iter != NULL; iter = iter->base.next) {
6437                 if (iter->kind != ENTITY_COMPOUND_MEMBER)
6438                         continue;
6439
6440                 if (iter->base.symbol == symbol) {
6441                         return iter;
6442                 } else if (iter->base.symbol == NULL) {
6443                         type_t *type = skip_typeref(iter->declaration.type);
6444                         if (is_type_compound(type)) {
6445                                 entity_t *result
6446                                         = find_compound_entry(type->compound.compound, symbol);
6447                                 if (result != NULL)
6448                                         return result;
6449                         }
6450                         continue;
6451                 }
6452         }
6453
6454         return NULL;
6455 }
6456
6457 static void parse_compound_declarators(compound_t *compound,
6458                 const declaration_specifiers_t *specifiers)
6459 {
6460         while (true) {
6461                 entity_t *entity;
6462
6463                 if (token.type == ':') {
6464                         source_position_t source_position = *HERE;
6465                         next_token();
6466
6467                         type_t *base_type = specifiers->type;
6468                         expression_t *size = parse_constant_expression();
6469
6470                         type_t *type = make_bitfield_type(base_type, size,
6471                                         &source_position, sym_anonymous);
6472
6473                         entity = allocate_entity_zero(ENTITY_COMPOUND_MEMBER);
6474                         entity->base.namespc                       = NAMESPACE_NORMAL;
6475                         entity->base.source_position               = source_position;
6476                         entity->declaration.declared_storage_class = STORAGE_CLASS_NONE;
6477                         entity->declaration.storage_class          = STORAGE_CLASS_NONE;
6478                         entity->declaration.modifiers              = specifiers->modifiers;
6479                         entity->declaration.type                   = type;
6480                 } else {
6481                         entity = parse_declarator(specifiers,
6482                                         DECL_MAY_BE_ABSTRACT | DECL_CREATE_COMPOUND_MEMBER);
6483                         assert(entity->kind == ENTITY_COMPOUND_MEMBER);
6484
6485                         if (token.type == ':') {
6486                                 source_position_t source_position = *HERE;
6487                                 next_token();
6488                                 expression_t *size = parse_constant_expression();
6489
6490                                 type_t *type = entity->declaration.type;
6491                                 type_t *bitfield_type = make_bitfield_type(type, size,
6492                                                 &source_position, entity->base.symbol);
6493                                 entity->declaration.type = bitfield_type;
6494                         }
6495                 }
6496
6497                 /* make sure we don't define a symbol multiple times */
6498                 symbol_t *symbol = entity->base.symbol;
6499                 if (symbol != NULL) {
6500                         entity_t *prev = find_compound_entry(compound, symbol);
6501
6502                         if (prev != NULL) {
6503                                 errorf(&entity->base.source_position,
6504                                        "multiple declarations of symbol '%Y' (declared %P)",
6505                                        symbol, &prev->base.source_position);
6506                         }
6507                 }
6508
6509                 append_entity(&compound->members, entity);
6510
6511                 type_t *orig_type = entity->declaration.type;
6512                 type_t *type      = skip_typeref(orig_type);
6513                 if (is_type_function(type)) {
6514                         errorf(&entity->base.source_position,
6515                                         "compound member '%Y' must not have function type '%T'",
6516                                         entity->base.symbol, orig_type);
6517                 } else if (is_type_incomplete(type)) {
6518                         /* Â§6.7.2.1:16 flexible array member */
6519                         if (is_type_array(type) &&
6520                                         token.type == ';'   &&
6521                                         look_ahead(1)->type == '}') {
6522                                 compound->has_flexible_member = true;
6523                         } else {
6524                                 errorf(&entity->base.source_position,
6525                                                 "compound member '%Y' has incomplete type '%T'",
6526                                                 entity->base.symbol, orig_type);
6527                         }
6528                 }
6529
6530                 if (token.type != ',')
6531                         break;
6532                 next_token();
6533         }
6534         expect(';');
6535
6536 end_error:
6537         anonymous_entity = NULL;
6538 }
6539
6540 static void parse_compound_type_entries(compound_t *compound)
6541 {
6542         eat('{');
6543         add_anchor_token('}');
6544
6545         while (token.type != '}') {
6546                 if (token.type == T_EOF) {
6547                         errorf(HERE, "EOF while parsing struct");
6548                         break;
6549                 }
6550                 declaration_specifiers_t specifiers;
6551                 memset(&specifiers, 0, sizeof(specifiers));
6552                 parse_declaration_specifiers(&specifiers);
6553
6554                 parse_compound_declarators(compound, &specifiers);
6555         }
6556         rem_anchor_token('}');
6557         next_token();
6558
6559         /* Â§6.7.2.1:7 */
6560         compound->complete = true;
6561 }
6562
6563 static type_t *parse_typename(void)
6564 {
6565         declaration_specifiers_t specifiers;
6566         memset(&specifiers, 0, sizeof(specifiers));
6567         parse_declaration_specifiers(&specifiers);
6568         if (specifiers.storage_class != STORAGE_CLASS_NONE ||
6569                         specifiers.thread_local) {
6570                 /* TODO: improve error message, user does probably not know what a
6571                  * storage class is...
6572                  */
6573                 errorf(HERE, "typename may not have a storage class");
6574         }
6575
6576         type_t *result = parse_abstract_declarator(specifiers.type);
6577
6578         return result;
6579 }
6580
6581
6582
6583
6584 typedef expression_t* (*parse_expression_function)(void);
6585 typedef expression_t* (*parse_expression_infix_function)(expression_t *left);
6586
6587 typedef struct expression_parser_function_t expression_parser_function_t;
6588 struct expression_parser_function_t {
6589         parse_expression_function        parser;
6590         unsigned                         infix_precedence;
6591         parse_expression_infix_function  infix_parser;
6592 };
6593
6594 expression_parser_function_t expression_parsers[T_LAST_TOKEN];
6595
6596 /**
6597  * Prints an error message if an expression was expected but not read
6598  */
6599 static expression_t *expected_expression_error(void)
6600 {
6601         /* skip the error message if the error token was read */
6602         if (token.type != T_ERROR) {
6603                 errorf(HERE, "expected expression, got token %K", &token);
6604         }
6605         next_token();
6606
6607         return create_invalid_expression();
6608 }
6609
6610 /**
6611  * Parse a string constant.
6612  */
6613 static expression_t *parse_string_const(void)
6614 {
6615         wide_string_t wres;
6616         if (token.type == T_STRING_LITERAL) {
6617                 string_t res = token.v.string;
6618                 next_token();
6619                 while (token.type == T_STRING_LITERAL) {
6620                         res = concat_strings(&res, &token.v.string);
6621                         next_token();
6622                 }
6623                 if (token.type != T_WIDE_STRING_LITERAL) {
6624                         expression_t *const cnst = allocate_expression_zero(EXPR_STRING_LITERAL);
6625                         /* note: that we use type_char_ptr here, which is already the
6626                          * automatic converted type. revert_automatic_type_conversion
6627                          * will construct the array type */
6628                         cnst->base.type    = warning.write_strings ? type_const_char_ptr : type_char_ptr;
6629                         cnst->string.value = res;
6630                         return cnst;
6631                 }
6632
6633                 wres = concat_string_wide_string(&res, &token.v.wide_string);
6634         } else {
6635                 wres = token.v.wide_string;
6636         }
6637         next_token();
6638
6639         for (;;) {
6640                 switch (token.type) {
6641                         case T_WIDE_STRING_LITERAL:
6642                                 wres = concat_wide_strings(&wres, &token.v.wide_string);
6643                                 break;
6644
6645                         case T_STRING_LITERAL:
6646                                 wres = concat_wide_string_string(&wres, &token.v.string);
6647                                 break;
6648
6649                         default: {
6650                                 expression_t *const cnst = allocate_expression_zero(EXPR_WIDE_STRING_LITERAL);
6651                                 cnst->base.type         = warning.write_strings ? type_const_wchar_t_ptr : type_wchar_t_ptr;
6652                                 cnst->wide_string.value = wres;
6653                                 return cnst;
6654                         }
6655                 }
6656                 next_token();
6657         }
6658 }
6659
6660 /**
6661  * Parse a boolean constant.
6662  */
6663 static expression_t *parse_bool_const(bool value)
6664 {
6665         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6666         cnst->base.type          = type_bool;
6667         cnst->conste.v.int_value = value;
6668
6669         next_token();
6670
6671         return cnst;
6672 }
6673
6674 /**
6675  * Parse an integer constant.
6676  */
6677 static expression_t *parse_int_const(void)
6678 {
6679         expression_t *cnst       = allocate_expression_zero(EXPR_CONST);
6680         cnst->base.type          = token.datatype;
6681         cnst->conste.v.int_value = token.v.intvalue;
6682
6683         next_token();
6684
6685         return cnst;
6686 }
6687
6688 /**
6689  * Parse a character constant.
6690  */
6691 static expression_t *parse_character_constant(void)
6692 {
6693         expression_t *cnst = allocate_expression_zero(EXPR_CHARACTER_CONSTANT);
6694         cnst->base.type          = token.datatype;
6695         cnst->conste.v.character = token.v.string;
6696
6697         if (cnst->conste.v.character.size != 1) {
6698                 if (!GNU_MODE) {
6699                         errorf(HERE, "more than 1 character in character constant");
6700                 } else if (warning.multichar) {
6701                         warningf(HERE, "multi-character character constant");
6702                 }
6703         }
6704         next_token();
6705
6706         return cnst;
6707 }
6708
6709 /**
6710  * Parse a wide character constant.
6711  */
6712 static expression_t *parse_wide_character_constant(void)
6713 {
6714         expression_t *cnst = allocate_expression_zero(EXPR_WIDE_CHARACTER_CONSTANT);
6715         cnst->base.type               = token.datatype;
6716         cnst->conste.v.wide_character = token.v.wide_string;
6717
6718         if (cnst->conste.v.wide_character.size != 1) {
6719                 if (!GNU_MODE) {
6720                         errorf(HERE, "more than 1 character in character constant");
6721                 } else if (warning.multichar) {
6722                         warningf(HERE, "multi-character character constant");
6723                 }
6724         }
6725         next_token();
6726
6727         return cnst;
6728 }
6729
6730 /**
6731  * Parse a float constant.
6732  */
6733 static expression_t *parse_float_const(void)
6734 {
6735         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
6736         cnst->base.type            = token.datatype;
6737         cnst->conste.v.float_value = token.v.floatvalue;
6738
6739         next_token();
6740
6741         return cnst;
6742 }
6743
6744 static entity_t *create_implicit_function(symbol_t *symbol,
6745                 const source_position_t *source_position)
6746 {
6747         type_t *ntype                          = allocate_type_zero(TYPE_FUNCTION);
6748         ntype->function.return_type            = type_int;
6749         ntype->function.unspecified_parameters = true;
6750
6751         type_t *type = typehash_insert(ntype);
6752         if (type != ntype) {
6753                 free_type(ntype);
6754         }
6755
6756         entity_t *entity = allocate_entity_zero(ENTITY_FUNCTION);
6757         entity->declaration.storage_class          = STORAGE_CLASS_EXTERN;
6758         entity->declaration.declared_storage_class = STORAGE_CLASS_EXTERN;
6759         entity->declaration.type                   = type;
6760         entity->declaration.implicit               = true;
6761         entity->base.symbol                        = symbol;
6762         entity->base.source_position               = *source_position;
6763
6764         bool strict_prototypes_old = warning.strict_prototypes;
6765         warning.strict_prototypes  = false;
6766         record_entity(entity, false);
6767         warning.strict_prototypes = strict_prototypes_old;
6768
6769         return entity;
6770 }
6771
6772 /**
6773  * Creates a return_type (func)(argument_type) function type if not
6774  * already exists.
6775  */
6776 static type_t *make_function_2_type(type_t *return_type, type_t *argument_type1,
6777                                     type_t *argument_type2)
6778 {
6779         function_parameter_t *parameter2
6780                 = obstack_alloc(type_obst, sizeof(parameter2[0]));
6781         memset(parameter2, 0, sizeof(parameter2[0]));
6782         parameter2->type = argument_type2;
6783
6784         function_parameter_t *parameter1
6785                 = obstack_alloc(type_obst, sizeof(parameter1[0]));
6786         memset(parameter1, 0, sizeof(parameter1[0]));
6787         parameter1->type = argument_type1;
6788         parameter1->next = parameter2;
6789
6790         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6791         type->function.return_type = return_type;
6792         type->function.parameters  = parameter1;
6793
6794         type_t *result = typehash_insert(type);
6795         if (result != type) {
6796                 free_type(type);
6797         }
6798
6799         return result;
6800 }
6801
6802 /**
6803  * Creates a return_type (func)(argument_type) function type if not
6804  * already exists.
6805  *
6806  * @param return_type    the return type
6807  * @param argument_type  the argument type
6808  */
6809 static type_t *make_function_1_type(type_t *return_type, type_t *argument_type)
6810 {
6811         function_parameter_t *parameter
6812                 = obstack_alloc(type_obst, sizeof(parameter[0]));
6813         memset(parameter, 0, sizeof(parameter[0]));
6814         parameter->type = argument_type;
6815
6816         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6817         type->function.return_type = return_type;
6818         type->function.parameters  = parameter;
6819
6820         type_t *result = typehash_insert(type);
6821         if (result != type) {
6822                 free_type(type);
6823         }
6824
6825         return result;
6826 }
6827
6828 static type_t *make_function_0_type(type_t *return_type)
6829 {
6830         type_t *type               = allocate_type_zero(TYPE_FUNCTION);
6831         type->function.return_type = return_type;
6832         type->function.parameters  = NULL;
6833
6834         type_t *result = typehash_insert(type);
6835         if (result != type) {
6836                 free_type(type);
6837         }
6838
6839         return result;
6840 }
6841
6842 /**
6843  * Creates a function type for some function like builtins.
6844  *
6845  * @param symbol   the symbol describing the builtin
6846  */
6847 static type_t *get_builtin_symbol_type(symbol_t *symbol)
6848 {
6849         switch (symbol->ID) {
6850         case T___builtin_alloca:
6851                 return make_function_1_type(type_void_ptr, type_size_t);
6852         case T___builtin_huge_val:
6853                 return make_function_0_type(type_double);
6854         case T___builtin_inf:
6855                 return make_function_0_type(type_double);
6856         case T___builtin_inff:
6857                 return make_function_0_type(type_float);
6858         case T___builtin_infl:
6859                 return make_function_0_type(type_long_double);
6860         case T___builtin_nan:
6861                 return make_function_1_type(type_double, type_char_ptr);
6862         case T___builtin_nanf:
6863                 return make_function_1_type(type_float, type_char_ptr);
6864         case T___builtin_nanl:
6865                 return make_function_1_type(type_long_double, type_char_ptr);
6866         case T___builtin_va_end:
6867                 return make_function_1_type(type_void, type_valist);
6868         case T___builtin_expect:
6869                 return make_function_2_type(type_long, type_long, type_long);
6870         default:
6871                 internal_errorf(HERE, "not implemented builtin identifier found");
6872         }
6873 }
6874
6875 /**
6876  * Performs automatic type cast as described in Â§ 6.3.2.1.
6877  *
6878  * @param orig_type  the original type
6879  */
6880 static type_t *automatic_type_conversion(type_t *orig_type)
6881 {
6882         type_t *type = skip_typeref(orig_type);
6883         if (is_type_array(type)) {
6884                 array_type_t *array_type   = &type->array;
6885                 type_t       *element_type = array_type->element_type;
6886                 unsigned      qualifiers   = array_type->base.qualifiers;
6887
6888                 return make_pointer_type(element_type, qualifiers);
6889         }
6890
6891         if (is_type_function(type)) {
6892                 return make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
6893         }
6894
6895         return orig_type;
6896 }
6897
6898 /**
6899  * reverts the automatic casts of array to pointer types and function
6900  * to function-pointer types as defined Â§ 6.3.2.1
6901  */
6902 type_t *revert_automatic_type_conversion(const expression_t *expression)
6903 {
6904         switch (expression->kind) {
6905                 case EXPR_REFERENCE: {
6906                         entity_t *entity = expression->reference.entity;
6907                         if (is_declaration(entity)) {
6908                                 return entity->declaration.type;
6909                         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6910                                 return entity->enum_value.enum_type;
6911                         } else {
6912                                 panic("no declaration or enum in reference");
6913                         }
6914                 }
6915
6916                 case EXPR_SELECT: {
6917                         entity_t *entity = expression->select.compound_entry;
6918                         assert(is_declaration(entity));
6919                         type_t   *type   = entity->declaration.type;
6920                         return get_qualified_type(type,
6921                                                   expression->base.type->base.qualifiers);
6922                 }
6923
6924                 case EXPR_UNARY_DEREFERENCE: {
6925                         const expression_t *const value = expression->unary.value;
6926                         type_t             *const type  = skip_typeref(value->base.type);
6927                         assert(is_type_pointer(type));
6928                         return type->pointer.points_to;
6929                 }
6930
6931                 case EXPR_BUILTIN_SYMBOL:
6932                         return get_builtin_symbol_type(expression->builtin_symbol.symbol);
6933
6934                 case EXPR_ARRAY_ACCESS: {
6935                         const expression_t *array_ref = expression->array_access.array_ref;
6936                         type_t             *type_left = skip_typeref(array_ref->base.type);
6937                         if (!is_type_valid(type_left))
6938                                 return type_left;
6939                         assert(is_type_pointer(type_left));
6940                         return type_left->pointer.points_to;
6941                 }
6942
6943                 case EXPR_STRING_LITERAL: {
6944                         size_t size = expression->string.value.size;
6945                         return make_array_type(type_char, size, TYPE_QUALIFIER_NONE);
6946                 }
6947
6948                 case EXPR_WIDE_STRING_LITERAL: {
6949                         size_t size = expression->wide_string.value.size;
6950                         return make_array_type(type_wchar_t, size, TYPE_QUALIFIER_NONE);
6951                 }
6952
6953                 case EXPR_COMPOUND_LITERAL:
6954                         return expression->compound_literal.type;
6955
6956                 default: break;
6957         }
6958
6959         return expression->base.type;
6960 }
6961
6962 static expression_t *parse_reference(void)
6963 {
6964         symbol_t *const symbol = token.v.symbol;
6965
6966         entity_t *entity = get_entity(symbol, NAMESPACE_NORMAL);
6967
6968         if (entity == NULL) {
6969                 if (!strict_mode && look_ahead(1)->type == '(') {
6970                         /* an implicitly declared function */
6971                         if (warning.error_implicit_function_declaration) {
6972                                 errorf(HERE, "implicit declaration of function '%Y'", symbol);
6973                         } else if (warning.implicit_function_declaration) {
6974                                 warningf(HERE, "implicit declaration of function '%Y'", symbol);
6975                         }
6976
6977                         entity = create_implicit_function(symbol, HERE);
6978                 } else {
6979                         errorf(HERE, "unknown identifier '%Y' found.", symbol);
6980                         entity = create_error_entity(symbol, ENTITY_VARIABLE);
6981                 }
6982         }
6983
6984         type_t *orig_type;
6985
6986         if (is_declaration(entity)) {
6987                 orig_type = entity->declaration.type;
6988         } else if (entity->kind == ENTITY_ENUM_VALUE) {
6989                 orig_type = entity->enum_value.enum_type;
6990         } else if (entity->kind == ENTITY_TYPEDEF) {
6991                 errorf(HERE, "encountered typedef name '%Y' while parsing expression",
6992                         symbol);
6993                 next_token();
6994                 return create_invalid_expression();
6995         } else {
6996                 panic("expected declaration or enum value in reference");
6997         }
6998
6999         /* we always do the auto-type conversions; the & and sizeof parser contains
7000          * code to revert this! */
7001         type_t *type = automatic_type_conversion(orig_type);
7002
7003         expression_kind_t kind = EXPR_REFERENCE;
7004         if (entity->kind == ENTITY_ENUM_VALUE)
7005                 kind = EXPR_REFERENCE_ENUM_VALUE;
7006
7007         expression_t *expression     = allocate_expression_zero(kind);
7008         expression->reference.entity = entity;
7009         expression->base.type        = type;
7010
7011         /* this declaration is used */
7012         if (is_declaration(entity)) {
7013                 entity->declaration.used = true;
7014         }
7015
7016         if (entity->base.parent_scope != file_scope
7017                 && entity->base.parent_scope->depth < current_function->parameters.depth
7018                 && is_type_valid(orig_type) && !is_type_function(orig_type)) {
7019                 if (entity->kind == ENTITY_VARIABLE) {
7020                         /* access of a variable from an outer function */
7021                         entity->variable.address_taken = true;
7022                 } else if (entity->kind == ENTITY_PARAMETER) {
7023                         entity->parameter.address_taken = true;
7024                 }
7025                 current_function->need_closure = true;
7026         }
7027
7028         /* check for deprecated functions */
7029         if (warning.deprecated_declarations
7030                 && is_declaration(entity)
7031                 && entity->declaration.modifiers & DM_DEPRECATED) {
7032                 declaration_t *declaration = &entity->declaration;
7033
7034                 char const *const prefix = entity->kind == ENTITY_FUNCTION ?
7035                         "function" : "variable";
7036
7037                 if (declaration->deprecated_string != NULL) {
7038                         warningf(HERE, "%s '%Y' is deprecated (declared %P): \"%s\"",
7039                                  prefix, entity->base.symbol, &entity->base.source_position,
7040                                  declaration->deprecated_string);
7041                 } else {
7042                         warningf(HERE, "%s '%Y' is deprecated (declared %P)", prefix,
7043                                  entity->base.symbol, &entity->base.source_position);
7044                 }
7045         }
7046
7047         if (warning.init_self && entity == current_init_decl && !in_type_prop
7048             && entity->kind == ENTITY_VARIABLE) {
7049                 current_init_decl = NULL;
7050                 warningf(HERE, "variable '%#T' is initialized by itself",
7051                          entity->declaration.type, entity->base.symbol);
7052         }
7053
7054         next_token();
7055         return expression;
7056 }
7057
7058 static bool semantic_cast(expression_t *cast)
7059 {
7060         expression_t            *expression      = cast->unary.value;
7061         type_t                  *orig_dest_type  = cast->base.type;
7062         type_t                  *orig_type_right = expression->base.type;
7063         type_t            const *dst_type        = skip_typeref(orig_dest_type);
7064         type_t            const *src_type        = skip_typeref(orig_type_right);
7065         source_position_t const *pos             = &cast->base.source_position;
7066
7067         /* Â§6.5.4 A (void) cast is explicitly permitted, more for documentation than for utility. */
7068         if (dst_type == type_void)
7069                 return true;
7070
7071         /* only integer and pointer can be casted to pointer */
7072         if (is_type_pointer(dst_type)  &&
7073             !is_type_pointer(src_type) &&
7074             !is_type_integer(src_type) &&
7075             is_type_valid(src_type)) {
7076                 errorf(pos, "cannot convert type '%T' to a pointer type", orig_type_right);
7077                 return false;
7078         }
7079
7080         if (!is_type_scalar(dst_type) && is_type_valid(dst_type)) {
7081                 errorf(pos, "conversion to non-scalar type '%T' requested", orig_dest_type);
7082                 return false;
7083         }
7084
7085         if (!is_type_scalar(src_type) && is_type_valid(src_type)) {
7086                 errorf(pos, "conversion from non-scalar type '%T' requested", orig_type_right);
7087                 return false;
7088         }
7089
7090         if (warning.cast_qual &&
7091             is_type_pointer(src_type) &&
7092             is_type_pointer(dst_type)) {
7093                 type_t *src = skip_typeref(src_type->pointer.points_to);
7094                 type_t *dst = skip_typeref(dst_type->pointer.points_to);
7095                 unsigned missing_qualifiers =
7096                         src->base.qualifiers & ~dst->base.qualifiers;
7097                 if (missing_qualifiers != 0) {
7098                         warningf(pos,
7099                                  "cast discards qualifiers '%Q' in pointer target type of '%T'",
7100                                  missing_qualifiers, orig_type_right);
7101                 }
7102         }
7103         return true;
7104 }
7105
7106 static expression_t *parse_compound_literal(type_t *type)
7107 {
7108         expression_t *expression = allocate_expression_zero(EXPR_COMPOUND_LITERAL);
7109
7110         parse_initializer_env_t env;
7111         env.type             = type;
7112         env.entity           = NULL;
7113         env.must_be_constant = false;
7114         initializer_t *initializer = parse_initializer(&env);
7115         type = env.type;
7116
7117         expression->compound_literal.initializer = initializer;
7118         expression->compound_literal.type        = type;
7119         expression->base.type                    = automatic_type_conversion(type);
7120
7121         return expression;
7122 }
7123
7124 /**
7125  * Parse a cast expression.
7126  */
7127 static expression_t *parse_cast(void)
7128 {
7129         add_anchor_token(')');
7130
7131         source_position_t source_position = token.source_position;
7132
7133         type_t *type = parse_typename();
7134
7135         rem_anchor_token(')');
7136         expect(')');
7137
7138         if (token.type == '{') {
7139                 return parse_compound_literal(type);
7140         }
7141
7142         expression_t *cast = allocate_expression_zero(EXPR_UNARY_CAST);
7143         cast->base.source_position = source_position;
7144
7145         expression_t *value = parse_sub_expression(PREC_CAST);
7146         cast->base.type   = type;
7147         cast->unary.value = value;
7148
7149         if (! semantic_cast(cast)) {
7150                 /* TODO: record the error in the AST. else it is impossible to detect it */
7151         }
7152
7153         return cast;
7154 end_error:
7155         return create_invalid_expression();
7156 }
7157
7158 /**
7159  * Parse a statement expression.
7160  */
7161 static expression_t *parse_statement_expression(void)
7162 {
7163         add_anchor_token(')');
7164
7165         expression_t *expression = allocate_expression_zero(EXPR_STATEMENT);
7166
7167         statement_t *statement          = parse_compound_statement(true);
7168         expression->statement.statement = statement;
7169
7170         /* find last statement and use its type */
7171         type_t *type = type_void;
7172         const statement_t *stmt = statement->compound.statements;
7173         if (stmt != NULL) {
7174                 while (stmt->base.next != NULL)
7175                         stmt = stmt->base.next;
7176
7177                 if (stmt->kind == STATEMENT_EXPRESSION) {
7178                         type = stmt->expression.expression->base.type;
7179                 }
7180         } else if (warning.other) {
7181                 warningf(&expression->base.source_position, "empty statement expression ({})");
7182         }
7183         expression->base.type = type;
7184
7185         rem_anchor_token(')');
7186         expect(')');
7187
7188 end_error:
7189         return expression;
7190 }
7191
7192 /**
7193  * Parse a parenthesized expression.
7194  */
7195 static expression_t *parse_parenthesized_expression(void)
7196 {
7197         eat('(');
7198
7199         switch (token.type) {
7200         case '{':
7201                 /* gcc extension: a statement expression */
7202                 return parse_statement_expression();
7203
7204         TYPE_QUALIFIERS
7205         TYPE_SPECIFIERS
7206                 return parse_cast();
7207         case T_IDENTIFIER:
7208                 if (is_typedef_symbol(token.v.symbol)) {
7209                         return parse_cast();
7210                 }
7211         }
7212
7213         add_anchor_token(')');
7214         expression_t *result = parse_expression();
7215         rem_anchor_token(')');
7216         expect(')');
7217
7218 end_error:
7219         return result;
7220 }
7221
7222 static expression_t *parse_function_keyword(void)
7223 {
7224         /* TODO */
7225
7226         if (current_function == NULL) {
7227                 errorf(HERE, "'__func__' used outside of a function");
7228         }
7229
7230         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7231         expression->base.type     = type_char_ptr;
7232         expression->funcname.kind = FUNCNAME_FUNCTION;
7233
7234         next_token();
7235
7236         return expression;
7237 }
7238
7239 static expression_t *parse_pretty_function_keyword(void)
7240 {
7241         if (current_function == NULL) {
7242                 errorf(HERE, "'__PRETTY_FUNCTION__' used outside of a function");
7243         }
7244
7245         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7246         expression->base.type     = type_char_ptr;
7247         expression->funcname.kind = FUNCNAME_PRETTY_FUNCTION;
7248
7249         eat(T___PRETTY_FUNCTION__);
7250
7251         return expression;
7252 }
7253
7254 static expression_t *parse_funcsig_keyword(void)
7255 {
7256         if (current_function == NULL) {
7257                 errorf(HERE, "'__FUNCSIG__' used outside of a function");
7258         }
7259
7260         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7261         expression->base.type     = type_char_ptr;
7262         expression->funcname.kind = FUNCNAME_FUNCSIG;
7263
7264         eat(T___FUNCSIG__);
7265
7266         return expression;
7267 }
7268
7269 static expression_t *parse_funcdname_keyword(void)
7270 {
7271         if (current_function == NULL) {
7272                 errorf(HERE, "'__FUNCDNAME__' used outside of a function");
7273         }
7274
7275         expression_t *expression  = allocate_expression_zero(EXPR_FUNCNAME);
7276         expression->base.type     = type_char_ptr;
7277         expression->funcname.kind = FUNCNAME_FUNCDNAME;
7278
7279         eat(T___FUNCDNAME__);
7280
7281         return expression;
7282 }
7283
7284 static designator_t *parse_designator(void)
7285 {
7286         designator_t *result    = allocate_ast_zero(sizeof(result[0]));
7287         result->source_position = *HERE;
7288
7289         if (token.type != T_IDENTIFIER) {
7290                 parse_error_expected("while parsing member designator",
7291                                      T_IDENTIFIER, NULL);
7292                 return NULL;
7293         }
7294         result->symbol = token.v.symbol;
7295         next_token();
7296
7297         designator_t *last_designator = result;
7298         while (true) {
7299                 if (token.type == '.') {
7300                         next_token();
7301                         if (token.type != T_IDENTIFIER) {
7302                                 parse_error_expected("while parsing member designator",
7303                                                      T_IDENTIFIER, NULL);
7304                                 return NULL;
7305                         }
7306                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
7307                         designator->source_position = *HERE;
7308                         designator->symbol          = token.v.symbol;
7309                         next_token();
7310
7311                         last_designator->next = designator;
7312                         last_designator       = designator;
7313                         continue;
7314                 }
7315                 if (token.type == '[') {
7316                         next_token();
7317                         add_anchor_token(']');
7318                         designator_t *designator    = allocate_ast_zero(sizeof(result[0]));
7319                         designator->source_position = *HERE;
7320                         designator->array_index     = parse_expression();
7321                         rem_anchor_token(']');
7322                         expect(']');
7323                         if (designator->array_index == NULL) {
7324                                 return NULL;
7325                         }
7326
7327                         last_designator->next = designator;
7328                         last_designator       = designator;
7329                         continue;
7330                 }
7331                 break;
7332         }
7333
7334         return result;
7335 end_error:
7336         return NULL;
7337 }
7338
7339 /**
7340  * Parse the __builtin_offsetof() expression.
7341  */
7342 static expression_t *parse_offsetof(void)
7343 {
7344         expression_t *expression = allocate_expression_zero(EXPR_OFFSETOF);
7345         expression->base.type    = type_size_t;
7346
7347         eat(T___builtin_offsetof);
7348
7349         expect('(');
7350         add_anchor_token(',');
7351         type_t *type = parse_typename();
7352         rem_anchor_token(',');
7353         expect(',');
7354         add_anchor_token(')');
7355         designator_t *designator = parse_designator();
7356         rem_anchor_token(')');
7357         expect(')');
7358
7359         expression->offsetofe.type       = type;
7360         expression->offsetofe.designator = designator;
7361
7362         type_path_t path;
7363         memset(&path, 0, sizeof(path));
7364         path.top_type = type;
7365         path.path     = NEW_ARR_F(type_path_entry_t, 0);
7366
7367         descend_into_subtype(&path);
7368
7369         if (!walk_designator(&path, designator, true)) {
7370                 return create_invalid_expression();
7371         }
7372
7373         DEL_ARR_F(path.path);
7374
7375         return expression;
7376 end_error:
7377         return create_invalid_expression();
7378 }
7379
7380 /**
7381  * Parses a _builtin_va_start() expression.
7382  */
7383 static expression_t *parse_va_start(void)
7384 {
7385         expression_t *expression = allocate_expression_zero(EXPR_VA_START);
7386
7387         eat(T___builtin_va_start);
7388
7389         expect('(');
7390         add_anchor_token(',');
7391         expression->va_starte.ap = parse_assignment_expression();
7392         rem_anchor_token(',');
7393         expect(',');
7394         expression_t *const expr = parse_assignment_expression();
7395         if (expr->kind == EXPR_REFERENCE) {
7396                 entity_t *const entity = expr->reference.entity;
7397                 if (entity->base.parent_scope != &current_function->parameters
7398                                 || entity->base.next != NULL
7399                                 || entity->kind != ENTITY_PARAMETER) {
7400                         errorf(&expr->base.source_position,
7401                                "second argument of 'va_start' must be last parameter of the current function");
7402                 } else {
7403                         expression->va_starte.parameter = &entity->variable;
7404                 }
7405                 expect(')');
7406                 return expression;
7407         }
7408         expect(')');
7409 end_error:
7410         return create_invalid_expression();
7411 }
7412
7413 /**
7414  * Parses a _builtin_va_arg() expression.
7415  */
7416 static expression_t *parse_va_arg(void)
7417 {
7418         expression_t *expression = allocate_expression_zero(EXPR_VA_ARG);
7419
7420         eat(T___builtin_va_arg);
7421
7422         expect('(');
7423         expression->va_arge.ap = parse_assignment_expression();
7424         expect(',');
7425         expression->base.type = parse_typename();
7426         expect(')');
7427
7428         return expression;
7429 end_error:
7430         return create_invalid_expression();
7431 }
7432
7433 static expression_t *parse_builtin_symbol(void)
7434 {
7435         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_SYMBOL);
7436
7437         symbol_t *symbol = token.v.symbol;
7438
7439         expression->builtin_symbol.symbol = symbol;
7440         next_token();
7441
7442         type_t *type = get_builtin_symbol_type(symbol);
7443         type = automatic_type_conversion(type);
7444
7445         expression->base.type = type;
7446         return expression;
7447 }
7448
7449 /**
7450  * Parses a __builtin_constant() expression.
7451  */
7452 static expression_t *parse_builtin_constant(void)
7453 {
7454         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_CONSTANT_P);
7455
7456         eat(T___builtin_constant_p);
7457
7458         expect('(');
7459         add_anchor_token(')');
7460         expression->builtin_constant.value = parse_assignment_expression();
7461         rem_anchor_token(')');
7462         expect(')');
7463         expression->base.type = type_int;
7464
7465         return expression;
7466 end_error:
7467         return create_invalid_expression();
7468 }
7469
7470 /**
7471  * Parses a __builtin_prefetch() expression.
7472  */
7473 static expression_t *parse_builtin_prefetch(void)
7474 {
7475         expression_t *expression = allocate_expression_zero(EXPR_BUILTIN_PREFETCH);
7476
7477         eat(T___builtin_prefetch);
7478
7479         expect('(');
7480         add_anchor_token(')');
7481         expression->builtin_prefetch.adr = parse_assignment_expression();
7482         if (token.type == ',') {
7483                 next_token();
7484                 expression->builtin_prefetch.rw = parse_assignment_expression();
7485         }
7486         if (token.type == ',') {
7487                 next_token();
7488                 expression->builtin_prefetch.locality = parse_assignment_expression();
7489         }
7490         rem_anchor_token(')');
7491         expect(')');
7492         expression->base.type = type_void;
7493
7494         return expression;
7495 end_error:
7496         return create_invalid_expression();
7497 }
7498
7499 /**
7500  * Parses a __builtin_is_*() compare expression.
7501  */
7502 static expression_t *parse_compare_builtin(void)
7503 {
7504         expression_t *expression;
7505
7506         switch (token.type) {
7507         case T___builtin_isgreater:
7508                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATER);
7509                 break;
7510         case T___builtin_isgreaterequal:
7511                 expression = allocate_expression_zero(EXPR_BINARY_ISGREATEREQUAL);
7512                 break;
7513         case T___builtin_isless:
7514                 expression = allocate_expression_zero(EXPR_BINARY_ISLESS);
7515                 break;
7516         case T___builtin_islessequal:
7517                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSEQUAL);
7518                 break;
7519         case T___builtin_islessgreater:
7520                 expression = allocate_expression_zero(EXPR_BINARY_ISLESSGREATER);
7521                 break;
7522         case T___builtin_isunordered:
7523                 expression = allocate_expression_zero(EXPR_BINARY_ISUNORDERED);
7524                 break;
7525         default:
7526                 internal_errorf(HERE, "invalid compare builtin found");
7527         }
7528         expression->base.source_position = *HERE;
7529         next_token();
7530
7531         expect('(');
7532         expression->binary.left = parse_assignment_expression();
7533         expect(',');
7534         expression->binary.right = parse_assignment_expression();
7535         expect(')');
7536
7537         type_t *const orig_type_left  = expression->binary.left->base.type;
7538         type_t *const orig_type_right = expression->binary.right->base.type;
7539
7540         type_t *const type_left  = skip_typeref(orig_type_left);
7541         type_t *const type_right = skip_typeref(orig_type_right);
7542         if (!is_type_float(type_left) && !is_type_float(type_right)) {
7543                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
7544                         type_error_incompatible("invalid operands in comparison",
7545                                 &expression->base.source_position, orig_type_left, orig_type_right);
7546                 }
7547         } else {
7548                 semantic_comparison(&expression->binary);
7549         }
7550
7551         return expression;
7552 end_error:
7553         return create_invalid_expression();
7554 }
7555
7556 #if 0
7557 /**
7558  * Parses a __builtin_expect() expression.
7559  */
7560 static expression_t *parse_builtin_expect(void)
7561 {
7562         expression_t *expression
7563                 = allocate_expression_zero(EXPR_BINARY_BUILTIN_EXPECT);
7564
7565         eat(T___builtin_expect);
7566
7567         expect('(');
7568         expression->binary.left = parse_assignment_expression();
7569         expect(',');
7570         expression->binary.right = parse_constant_expression();
7571         expect(')');
7572
7573         expression->base.type = expression->binary.left->base.type;
7574
7575         return expression;
7576 end_error:
7577         return create_invalid_expression();
7578 }
7579 #endif
7580
7581 /**
7582  * Parses a MS assume() expression.
7583  */
7584 static expression_t *parse_assume(void)
7585 {
7586         expression_t *expression = allocate_expression_zero(EXPR_UNARY_ASSUME);
7587
7588         eat(T__assume);
7589
7590         expect('(');
7591         add_anchor_token(')');
7592         expression->unary.value = parse_assignment_expression();
7593         rem_anchor_token(')');
7594         expect(')');
7595
7596         expression->base.type = type_void;
7597         return expression;
7598 end_error:
7599         return create_invalid_expression();
7600 }
7601
7602 /**
7603  * Return the declaration for a given label symbol or create a new one.
7604  *
7605  * @param symbol  the symbol of the label
7606  */
7607 static label_t *get_label(symbol_t *symbol)
7608 {
7609         entity_t *label;
7610         assert(current_function != NULL);
7611
7612         label = get_entity(symbol, NAMESPACE_LABEL);
7613         /* if we found a local label, we already created the declaration */
7614         if (label != NULL && label->kind == ENTITY_LOCAL_LABEL) {
7615                 if (label->base.parent_scope != current_scope) {
7616                         assert(label->base.parent_scope->depth < current_scope->depth);
7617                         current_function->goto_to_outer = true;
7618                 }
7619                 return &label->label;
7620         }
7621
7622         label = get_entity(symbol, NAMESPACE_LABEL);
7623         /* if we found a label in the same function, then we already created the
7624          * declaration */
7625         if (label != NULL
7626                         && label->base.parent_scope == &current_function->parameters) {
7627                 return &label->label;
7628         }
7629
7630         /* otherwise we need to create a new one */
7631         label               = allocate_entity_zero(ENTITY_LABEL);
7632         label->base.namespc = NAMESPACE_LABEL;
7633         label->base.symbol  = symbol;
7634
7635         label_push(label);
7636
7637         return &label->label;
7638 }
7639
7640 /**
7641  * Parses a GNU && label address expression.
7642  */
7643 static expression_t *parse_label_address(void)
7644 {
7645         source_position_t source_position = token.source_position;
7646         eat(T_ANDAND);
7647         if (token.type != T_IDENTIFIER) {
7648                 parse_error_expected("while parsing label address", T_IDENTIFIER, NULL);
7649                 goto end_error;
7650         }
7651         symbol_t *symbol = token.v.symbol;
7652         next_token();
7653
7654         label_t *label       = get_label(symbol);
7655         label->used          = true;
7656         label->address_taken = true;
7657
7658         expression_t *expression = allocate_expression_zero(EXPR_LABEL_ADDRESS);
7659         expression->base.source_position = source_position;
7660
7661         /* label address is threaten as a void pointer */
7662         expression->base.type           = type_void_ptr;
7663         expression->label_address.label = label;
7664         return expression;
7665 end_error:
7666         return create_invalid_expression();
7667 }
7668
7669 /**
7670  * Parse a microsoft __noop expression.
7671  */
7672 static expression_t *parse_noop_expression(void)
7673 {
7674         /* the result is a (int)0 */
7675         expression_t *cnst         = allocate_expression_zero(EXPR_CONST);
7676         cnst->base.type            = type_int;
7677         cnst->conste.v.int_value   = 0;
7678         cnst->conste.is_ms_noop    = true;
7679
7680         eat(T___noop);
7681
7682         if (token.type == '(') {
7683                 /* parse arguments */
7684                 eat('(');
7685                 add_anchor_token(')');
7686                 add_anchor_token(',');
7687
7688                 if (token.type != ')') {
7689                         while (true) {
7690                                 (void)parse_assignment_expression();
7691                                 if (token.type != ',')
7692                                         break;
7693                                 next_token();
7694                         }
7695                 }
7696         }
7697         rem_anchor_token(',');
7698         rem_anchor_token(')');
7699         expect(')');
7700
7701 end_error:
7702         return cnst;
7703 }
7704
7705 /**
7706  * Parses a primary expression.
7707  */
7708 static expression_t *parse_primary_expression(void)
7709 {
7710         switch (token.type) {
7711                 case T_false:                    return parse_bool_const(false);
7712                 case T_true:                     return parse_bool_const(true);
7713                 case T_INTEGER:                  return parse_int_const();
7714                 case T_CHARACTER_CONSTANT:       return parse_character_constant();
7715                 case T_WIDE_CHARACTER_CONSTANT:  return parse_wide_character_constant();
7716                 case T_FLOATINGPOINT:            return parse_float_const();
7717                 case T_STRING_LITERAL:
7718                 case T_WIDE_STRING_LITERAL:      return parse_string_const();
7719                 case T_IDENTIFIER:               return parse_reference();
7720                 case T___FUNCTION__:
7721                 case T___func__:                 return parse_function_keyword();
7722                 case T___PRETTY_FUNCTION__:      return parse_pretty_function_keyword();
7723                 case T___FUNCSIG__:              return parse_funcsig_keyword();
7724                 case T___FUNCDNAME__:            return parse_funcdname_keyword();
7725                 case T___builtin_offsetof:       return parse_offsetof();
7726                 case T___builtin_va_start:       return parse_va_start();
7727                 case T___builtin_va_arg:         return parse_va_arg();
7728                 case T___builtin_expect:
7729                 case T___builtin_alloca:
7730                 case T___builtin_inf:
7731                 case T___builtin_inff:
7732                 case T___builtin_infl:
7733                 case T___builtin_nan:
7734                 case T___builtin_nanf:
7735                 case T___builtin_nanl:
7736                 case T___builtin_huge_val:
7737                 case T___builtin_va_end:         return parse_builtin_symbol();
7738                 case T___builtin_isgreater:
7739                 case T___builtin_isgreaterequal:
7740                 case T___builtin_isless:
7741                 case T___builtin_islessequal:
7742                 case T___builtin_islessgreater:
7743                 case T___builtin_isunordered:    return parse_compare_builtin();
7744                 case T___builtin_constant_p:     return parse_builtin_constant();
7745                 case T___builtin_prefetch:       return parse_builtin_prefetch();
7746                 case T__assume:                  return parse_assume();
7747                 case T_ANDAND:
7748                         if (GNU_MODE)
7749                                 return parse_label_address();
7750                         break;
7751
7752                 case '(':                        return parse_parenthesized_expression();
7753                 case T___noop:                   return parse_noop_expression();
7754         }
7755
7756         errorf(HERE, "unexpected token %K, expected an expression", &token);
7757         return create_invalid_expression();
7758 }
7759
7760 /**
7761  * Check if the expression has the character type and issue a warning then.
7762  */
7763 static void check_for_char_index_type(const expression_t *expression)
7764 {
7765         type_t       *const type      = expression->base.type;
7766         const type_t *const base_type = skip_typeref(type);
7767
7768         if (is_type_atomic(base_type, ATOMIC_TYPE_CHAR) &&
7769                         warning.char_subscripts) {
7770                 warningf(&expression->base.source_position,
7771                          "array subscript has type '%T'", type);
7772         }
7773 }
7774
7775 static expression_t *parse_array_expression(expression_t *left)
7776 {
7777         expression_t *expression = allocate_expression_zero(EXPR_ARRAY_ACCESS);
7778
7779         eat('[');
7780         add_anchor_token(']');
7781
7782         expression_t *inside = parse_expression();
7783
7784         type_t *const orig_type_left   = left->base.type;
7785         type_t *const orig_type_inside = inside->base.type;
7786
7787         type_t *const type_left   = skip_typeref(orig_type_left);
7788         type_t *const type_inside = skip_typeref(orig_type_inside);
7789
7790         type_t                    *return_type;
7791         array_access_expression_t *array_access = &expression->array_access;
7792         if (is_type_pointer(type_left)) {
7793                 return_type             = type_left->pointer.points_to;
7794                 array_access->array_ref = left;
7795                 array_access->index     = inside;
7796                 check_for_char_index_type(inside);
7797         } else if (is_type_pointer(type_inside)) {
7798                 return_type             = type_inside->pointer.points_to;
7799                 array_access->array_ref = inside;
7800                 array_access->index     = left;
7801                 array_access->flipped   = true;
7802                 check_for_char_index_type(left);
7803         } else {
7804                 if (is_type_valid(type_left) && is_type_valid(type_inside)) {
7805                         errorf(HERE,
7806                                 "array access on object with non-pointer types '%T', '%T'",
7807                                 orig_type_left, orig_type_inside);
7808                 }
7809                 return_type             = type_error_type;
7810                 array_access->array_ref = left;
7811                 array_access->index     = inside;
7812         }
7813
7814         expression->base.type = automatic_type_conversion(return_type);
7815
7816         rem_anchor_token(']');
7817         expect(']');
7818 end_error:
7819         return expression;
7820 }
7821
7822 static expression_t *parse_typeprop(expression_kind_t const kind)
7823 {
7824         expression_t  *tp_expression = allocate_expression_zero(kind);
7825         tp_expression->base.type     = type_size_t;
7826
7827         eat(kind == EXPR_SIZEOF ? T_sizeof : T___alignof__);
7828
7829         /* we only refer to a type property, mark this case */
7830         bool old     = in_type_prop;
7831         in_type_prop = true;
7832
7833         type_t       *orig_type;
7834         expression_t *expression;
7835         if (token.type == '(' && is_declaration_specifier(look_ahead(1), true)) {
7836                 next_token();
7837                 add_anchor_token(')');
7838                 orig_type = parse_typename();
7839                 rem_anchor_token(')');
7840                 expect(')');
7841
7842                 if (token.type == '{') {
7843                         /* It was not sizeof(type) after all.  It is sizeof of an expression
7844                          * starting with a compound literal */
7845                         expression = parse_compound_literal(orig_type);
7846                         goto typeprop_expression;
7847                 }
7848         } else {
7849                 expression = parse_sub_expression(PREC_UNARY);
7850
7851 typeprop_expression:
7852                 tp_expression->typeprop.tp_expression = expression;
7853
7854                 orig_type = revert_automatic_type_conversion(expression);
7855                 expression->base.type = orig_type;
7856         }
7857
7858         tp_expression->typeprop.type   = orig_type;
7859         type_t const* const type       = skip_typeref(orig_type);
7860         char   const* const wrong_type =
7861                 is_type_incomplete(type)    ? "incomplete"          :
7862                 type->kind == TYPE_FUNCTION ? "function designator" :
7863                 type->kind == TYPE_BITFIELD ? "bitfield"            :
7864                 NULL;
7865         if (wrong_type != NULL) {
7866                 char const* const what = kind == EXPR_SIZEOF ? "sizeof" : "alignof";
7867                 errorf(&tp_expression->base.source_position,
7868                                 "operand of %s expression must not be of %s type '%T'",
7869                                 what, wrong_type, orig_type);
7870         }
7871
7872 end_error:
7873         in_type_prop = old;
7874         return tp_expression;
7875 }
7876
7877 static expression_t *parse_sizeof(void)
7878 {
7879         return parse_typeprop(EXPR_SIZEOF);
7880 }
7881
7882 static expression_t *parse_alignof(void)
7883 {
7884         return parse_typeprop(EXPR_ALIGNOF);
7885 }
7886
7887 static expression_t *parse_select_expression(expression_t *compound)
7888 {
7889         expression_t *select    = allocate_expression_zero(EXPR_SELECT);
7890         select->select.compound = compound;
7891
7892         assert(token.type == '.' || token.type == T_MINUSGREATER);
7893         bool is_pointer = (token.type == T_MINUSGREATER);
7894         next_token();
7895
7896         if (token.type != T_IDENTIFIER) {
7897                 parse_error_expected("while parsing select", T_IDENTIFIER, NULL);
7898                 return select;
7899         }
7900         symbol_t *symbol = token.v.symbol;
7901         next_token();
7902
7903         type_t *const orig_type = compound->base.type;
7904         type_t *const type      = skip_typeref(orig_type);
7905
7906         type_t *type_left;
7907         bool    saw_error = false;
7908         if (is_type_pointer(type)) {
7909                 if (!is_pointer) {
7910                         errorf(HERE,
7911                                "request for member '%Y' in something not a struct or union, but '%T'",
7912                                symbol, orig_type);
7913                         saw_error = true;
7914                 }
7915                 type_left = skip_typeref(type->pointer.points_to);
7916         } else {
7917                 if (is_pointer && is_type_valid(type)) {
7918                         errorf(HERE, "left hand side of '->' is not a pointer, but '%T'", orig_type);
7919                         saw_error = true;
7920                 }
7921                 type_left = type;
7922         }
7923
7924         entity_t *entry;
7925         if (type_left->kind == TYPE_COMPOUND_STRUCT ||
7926             type_left->kind == TYPE_COMPOUND_UNION) {
7927                 compound_t *compound = type_left->compound.compound;
7928
7929                 if (!compound->complete) {
7930                         errorf(HERE, "request for member '%Y' of incomplete type '%T'",
7931                                symbol, type_left);
7932                         goto create_error_entry;
7933                 }
7934
7935                 entry = find_compound_entry(compound, symbol);
7936                 if (entry == NULL) {
7937                         errorf(HERE, "'%T' has no member named '%Y'", orig_type, symbol);
7938                         goto create_error_entry;
7939                 }
7940         } else {
7941                 if (is_type_valid(type_left) && !saw_error) {
7942                         errorf(HERE,
7943                                "request for member '%Y' in something not a struct or union, but '%T'",
7944                                symbol, type_left);
7945                 }
7946 create_error_entry:
7947                 entry = create_error_entity(symbol, ENTITY_COMPOUND_MEMBER);
7948         }
7949
7950         assert(is_declaration(entry));
7951         select->select.compound_entry = entry;
7952
7953         type_t *entry_type = entry->declaration.type;
7954         type_t *res_type
7955                 = get_qualified_type(entry_type, type_left->base.qualifiers);
7956
7957         /* we always do the auto-type conversions; the & and sizeof parser contains
7958          * code to revert this! */
7959         select->base.type = automatic_type_conversion(res_type);
7960
7961         type_t *skipped = skip_typeref(res_type);
7962         if (skipped->kind == TYPE_BITFIELD) {
7963                 select->base.type = skipped->bitfield.base_type;
7964         }
7965
7966         return select;
7967 }
7968
7969 static void check_call_argument(const function_parameter_t *parameter,
7970                                 call_argument_t *argument, unsigned pos)
7971 {
7972         type_t         *expected_type      = parameter->type;
7973         type_t         *expected_type_skip = skip_typeref(expected_type);
7974         assign_error_t  error              = ASSIGN_ERROR_INCOMPATIBLE;
7975         expression_t   *arg_expr           = argument->expression;
7976         type_t         *arg_type           = skip_typeref(arg_expr->base.type);
7977
7978         /* handle transparent union gnu extension */
7979         if (is_type_union(expected_type_skip)
7980                         && (expected_type_skip->base.modifiers
7981                                 & TYPE_MODIFIER_TRANSPARENT_UNION)) {
7982                 compound_t *union_decl  = expected_type_skip->compound.compound;
7983                 type_t     *best_type   = NULL;
7984                 entity_t   *entry       = union_decl->members.entities;
7985                 for ( ; entry != NULL; entry = entry->base.next) {
7986                         assert(is_declaration(entry));
7987                         type_t *decl_type = entry->declaration.type;
7988                         error = semantic_assign(decl_type, arg_expr);
7989                         if (error == ASSIGN_ERROR_INCOMPATIBLE
7990                                 || error == ASSIGN_ERROR_POINTER_QUALIFIER_MISSING)
7991                                 continue;
7992
7993                         if (error == ASSIGN_SUCCESS) {
7994                                 best_type = decl_type;
7995                         } else if (best_type == NULL) {
7996                                 best_type = decl_type;
7997                         }
7998                 }
7999
8000                 if (best_type != NULL) {
8001                         expected_type = best_type;
8002                 }
8003         }
8004
8005         error                = semantic_assign(expected_type, arg_expr);
8006         argument->expression = create_implicit_cast(argument->expression,
8007                                                     expected_type);
8008
8009         if (error != ASSIGN_SUCCESS) {
8010                 /* report exact scope in error messages (like "in argument 3") */
8011                 char buf[64];
8012                 snprintf(buf, sizeof(buf), "call argument %u", pos);
8013                 report_assign_error(error, expected_type, arg_expr,     buf,
8014                                                         &arg_expr->base.source_position);
8015         } else if (warning.traditional || warning.conversion) {
8016                 type_t *const promoted_type = get_default_promoted_type(arg_type);
8017                 if (!types_compatible(expected_type_skip, promoted_type) &&
8018                     !types_compatible(expected_type_skip, type_void_ptr) &&
8019                     !types_compatible(type_void_ptr,      promoted_type)) {
8020                         /* Deliberately show the skipped types in this warning */
8021                         warningf(&arg_expr->base.source_position,
8022                                 "passing call argument %u as '%T' rather than '%T' due to prototype",
8023                                 pos, expected_type_skip, promoted_type);
8024                 }
8025         }
8026 }
8027
8028 /**
8029  * Parse a call expression, ie. expression '( ... )'.
8030  *
8031  * @param expression  the function address
8032  */
8033 static expression_t *parse_call_expression(expression_t *expression)
8034 {
8035         expression_t      *result = allocate_expression_zero(EXPR_CALL);
8036         call_expression_t *call   = &result->call;
8037         call->function            = expression;
8038
8039         type_t *const orig_type = expression->base.type;
8040         type_t *const type      = skip_typeref(orig_type);
8041
8042         function_type_t *function_type = NULL;
8043         if (is_type_pointer(type)) {
8044                 type_t *const to_type = skip_typeref(type->pointer.points_to);
8045
8046                 if (is_type_function(to_type)) {
8047                         function_type   = &to_type->function;
8048                         call->base.type = function_type->return_type;
8049                 }
8050         }
8051
8052         if (function_type == NULL && is_type_valid(type)) {
8053                 errorf(HERE, "called object '%E' (type '%T') is not a pointer to a function", expression, orig_type);
8054         }
8055
8056         /* parse arguments */
8057         eat('(');
8058         add_anchor_token(')');
8059         add_anchor_token(',');
8060
8061         if (token.type != ')') {
8062                 call_argument_t *last_argument = NULL;
8063
8064                 while (true) {
8065                         call_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
8066
8067                         argument->expression = parse_assignment_expression();
8068                         if (last_argument == NULL) {
8069                                 call->arguments = argument;
8070                         } else {
8071                                 last_argument->next = argument;
8072                         }
8073                         last_argument = argument;
8074
8075                         if (token.type != ',')
8076                                 break;
8077                         next_token();
8078                 }
8079         }
8080         rem_anchor_token(',');
8081         rem_anchor_token(')');
8082         expect(')');
8083
8084         if (function_type == NULL)
8085                 return result;
8086
8087         function_parameter_t *parameter = function_type->parameters;
8088         call_argument_t      *argument  = call->arguments;
8089         if (!function_type->unspecified_parameters) {
8090                 for (unsigned pos = 0; parameter != NULL && argument != NULL;
8091                                 parameter = parameter->next, argument = argument->next) {
8092                         check_call_argument(parameter, argument, ++pos);
8093                 }
8094
8095                 if (parameter != NULL) {
8096                         errorf(HERE, "too few arguments to function '%E'", expression);
8097                 } else if (argument != NULL && !function_type->variadic) {
8098                         errorf(HERE, "too many arguments to function '%E'", expression);
8099                 }
8100         }
8101
8102         /* do default promotion */
8103         for (; argument != NULL; argument = argument->next) {
8104                 type_t *type = argument->expression->base.type;
8105
8106                 type = get_default_promoted_type(type);
8107
8108                 argument->expression
8109                         = create_implicit_cast(argument->expression, type);
8110         }
8111
8112         check_format(&result->call);
8113
8114         if (warning.aggregate_return &&
8115             is_type_compound(skip_typeref(function_type->return_type))) {
8116                 warningf(&result->base.source_position,
8117                          "function call has aggregate value");
8118         }
8119
8120 end_error:
8121         return result;
8122 }
8123
8124 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right);
8125
8126 static bool same_compound_type(const type_t *type1, const type_t *type2)
8127 {
8128         return
8129                 is_type_compound(type1) &&
8130                 type1->kind == type2->kind &&
8131                 type1->compound.compound == type2->compound.compound;
8132 }
8133
8134 static expression_t const *get_reference_address(expression_t const *expr)
8135 {
8136         bool regular_take_address = true;
8137         for (;;) {
8138                 if (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8139                         expr = expr->unary.value;
8140                 } else {
8141                         regular_take_address = false;
8142                 }
8143
8144                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8145                         break;
8146
8147                 expr = expr->unary.value;
8148         }
8149
8150         if (expr->kind != EXPR_REFERENCE)
8151                 return NULL;
8152
8153         /* special case for functions which are automatically converted to a
8154          * pointer to function without an extra TAKE_ADDRESS operation */
8155         if (!regular_take_address &&
8156                         expr->reference.entity->kind != ENTITY_FUNCTION) {
8157                 return NULL;
8158         }
8159
8160         return expr;
8161 }
8162
8163 static void warn_reference_address_as_bool(expression_t const* expr)
8164 {
8165         if (!warning.address)
8166                 return;
8167
8168         expr = get_reference_address(expr);
8169         if (expr != NULL) {
8170                 warningf(&expr->base.source_position,
8171                          "the address of '%Y' will always evaluate as 'true'",
8172                          expr->reference.entity->base.symbol);
8173         }
8174 }
8175
8176 static void semantic_condition(expression_t const *const expr,
8177                                char const *const context)
8178 {
8179         type_t *const type = skip_typeref(expr->base.type);
8180         if (is_type_scalar(type)) {
8181                 warn_reference_address_as_bool(expr);
8182         } else if (is_type_valid(type)) {
8183                 errorf(&expr->base.source_position,
8184                                 "%s must have scalar type", context);
8185         }
8186 }
8187
8188 /**
8189  * Parse a conditional expression, ie. 'expression ? ... : ...'.
8190  *
8191  * @param expression  the conditional expression
8192  */
8193 static expression_t *parse_conditional_expression(expression_t *expression)
8194 {
8195         expression_t *result = allocate_expression_zero(EXPR_CONDITIONAL);
8196
8197         conditional_expression_t *conditional = &result->conditional;
8198         conditional->condition                = expression;
8199
8200         eat('?');
8201         add_anchor_token(':');
8202
8203         /* Â§6.5.15:2  The first operand shall have scalar type. */
8204         semantic_condition(expression, "condition of conditional operator");
8205
8206         expression_t *true_expression = expression;
8207         bool          gnu_cond = false;
8208         if (GNU_MODE && token.type == ':') {
8209                 gnu_cond = true;
8210         } else {
8211                 true_expression = parse_expression();
8212         }
8213         rem_anchor_token(':');
8214         expect(':');
8215         expression_t *false_expression =
8216                 parse_sub_expression(c_mode & _CXX ? PREC_ASSIGNMENT : PREC_CONDITIONAL);
8217
8218         type_t *const orig_true_type  = true_expression->base.type;
8219         type_t *const orig_false_type = false_expression->base.type;
8220         type_t *const true_type       = skip_typeref(orig_true_type);
8221         type_t *const false_type      = skip_typeref(orig_false_type);
8222
8223         /* 6.5.15.3 */
8224         type_t *result_type;
8225         if (is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
8226                         is_type_atomic(false_type, ATOMIC_TYPE_VOID)) {
8227                 /* ISO/IEC 14882:1998(E) Â§5.16:2 */
8228                 if (true_expression->kind == EXPR_UNARY_THROW) {
8229                         result_type = false_type;
8230                 } else if (false_expression->kind == EXPR_UNARY_THROW) {
8231                         result_type = true_type;
8232                 } else {
8233                         if (warning.other && (
8234                                                 !is_type_atomic(true_type,  ATOMIC_TYPE_VOID) ||
8235                                                 !is_type_atomic(false_type, ATOMIC_TYPE_VOID)
8236                                         )) {
8237                                 warningf(&conditional->base.source_position,
8238                                                 "ISO C forbids conditional expression with only one void side");
8239                         }
8240                         result_type = type_void;
8241                 }
8242         } else if (is_type_arithmetic(true_type)
8243                    && is_type_arithmetic(false_type)) {
8244                 result_type = semantic_arithmetic(true_type, false_type);
8245
8246                 true_expression  = create_implicit_cast(true_expression, result_type);
8247                 false_expression = create_implicit_cast(false_expression, result_type);
8248
8249                 conditional->true_expression  = true_expression;
8250                 conditional->false_expression = false_expression;
8251                 conditional->base.type        = result_type;
8252         } else if (same_compound_type(true_type, false_type)) {
8253                 /* just take 1 of the 2 types */
8254                 result_type = true_type;
8255         } else if (is_type_pointer(true_type) || is_type_pointer(false_type)) {
8256                 type_t *pointer_type;
8257                 type_t *other_type;
8258                 expression_t *other_expression;
8259                 if (is_type_pointer(true_type) &&
8260                                 (!is_type_pointer(false_type) || is_null_pointer_constant(false_expression))) {
8261                         pointer_type     = true_type;
8262                         other_type       = false_type;
8263                         other_expression = false_expression;
8264                 } else {
8265                         pointer_type     = false_type;
8266                         other_type       = true_type;
8267                         other_expression = true_expression;
8268                 }
8269
8270                 if (is_null_pointer_constant(other_expression)) {
8271                         result_type = pointer_type;
8272                 } else if (is_type_pointer(other_type)) {
8273                         type_t *to1 = skip_typeref(pointer_type->pointer.points_to);
8274                         type_t *to2 = skip_typeref(other_type->pointer.points_to);
8275
8276                         type_t *to;
8277                         if (is_type_atomic(to1, ATOMIC_TYPE_VOID) ||
8278                             is_type_atomic(to2, ATOMIC_TYPE_VOID)) {
8279                                 to = type_void;
8280                         } else if (types_compatible(get_unqualified_type(to1),
8281                                                     get_unqualified_type(to2))) {
8282                                 to = to1;
8283                         } else {
8284                                 if (warning.other) {
8285                                         warningf(&conditional->base.source_position,
8286                                                         "pointer types '%T' and '%T' in conditional expression are incompatible",
8287                                                         true_type, false_type);
8288                                 }
8289                                 to = type_void;
8290                         }
8291
8292                         type_t *const type =
8293                                 get_qualified_type(to, to1->base.qualifiers | to2->base.qualifiers);
8294                         result_type = make_pointer_type(type, TYPE_QUALIFIER_NONE);
8295                 } else if (is_type_integer(other_type)) {
8296                         if (warning.other) {
8297                                 warningf(&conditional->base.source_position,
8298                                                 "pointer/integer type mismatch in conditional expression ('%T' and '%T')", true_type, false_type);
8299                         }
8300                         result_type = pointer_type;
8301                 } else {
8302                         if (is_type_valid(other_type)) {
8303                                 type_error_incompatible("while parsing conditional",
8304                                                 &expression->base.source_position, true_type, false_type);
8305                         }
8306                         result_type = type_error_type;
8307                 }
8308         } else {
8309                 if (is_type_valid(true_type) && is_type_valid(false_type)) {
8310                         type_error_incompatible("while parsing conditional",
8311                                                 &conditional->base.source_position, true_type,
8312                                                 false_type);
8313                 }
8314                 result_type = type_error_type;
8315         }
8316
8317         conditional->true_expression
8318                 = gnu_cond ? NULL : create_implicit_cast(true_expression, result_type);
8319         conditional->false_expression
8320                 = create_implicit_cast(false_expression, result_type);
8321         conditional->base.type = result_type;
8322         return result;
8323 end_error:
8324         return create_invalid_expression();
8325 }
8326
8327 /**
8328  * Parse an extension expression.
8329  */
8330 static expression_t *parse_extension(void)
8331 {
8332         eat(T___extension__);
8333
8334         bool old_gcc_extension   = in_gcc_extension;
8335         in_gcc_extension         = true;
8336         expression_t *expression = parse_sub_expression(PREC_UNARY);
8337         in_gcc_extension         = old_gcc_extension;
8338         return expression;
8339 }
8340
8341 /**
8342  * Parse a __builtin_classify_type() expression.
8343  */
8344 static expression_t *parse_builtin_classify_type(void)
8345 {
8346         expression_t *result = allocate_expression_zero(EXPR_CLASSIFY_TYPE);
8347         result->base.type    = type_int;
8348
8349         eat(T___builtin_classify_type);
8350
8351         expect('(');
8352         add_anchor_token(')');
8353         expression_t *expression = parse_expression();
8354         rem_anchor_token(')');
8355         expect(')');
8356         result->classify_type.type_expression = expression;
8357
8358         return result;
8359 end_error:
8360         return create_invalid_expression();
8361 }
8362
8363 /**
8364  * Parse a delete expression
8365  * ISO/IEC 14882:1998(E) Â§5.3.5
8366  */
8367 static expression_t *parse_delete(void)
8368 {
8369         expression_t *const result = allocate_expression_zero(EXPR_UNARY_DELETE);
8370         result->base.type          = type_void;
8371
8372         eat(T_delete);
8373
8374         if (token.type == '[') {
8375                 next_token();
8376                 result->kind = EXPR_UNARY_DELETE_ARRAY;
8377                 expect(']');
8378 end_error:;
8379         }
8380
8381         expression_t *const value = parse_sub_expression(PREC_CAST);
8382         result->unary.value = value;
8383
8384         type_t *const type = skip_typeref(value->base.type);
8385         if (!is_type_pointer(type)) {
8386                 errorf(&value->base.source_position,
8387                                 "operand of delete must have pointer type");
8388         } else if (warning.other &&
8389                         is_type_atomic(skip_typeref(type->pointer.points_to), ATOMIC_TYPE_VOID)) {
8390                 warningf(&value->base.source_position,
8391                                 "deleting 'void*' is undefined");
8392         }
8393
8394         return result;
8395 }
8396
8397 /**
8398  * Parse a throw expression
8399  * ISO/IEC 14882:1998(E) Â§15:1
8400  */
8401 static expression_t *parse_throw(void)
8402 {
8403         expression_t *const result = allocate_expression_zero(EXPR_UNARY_THROW);
8404         result->base.type          = type_void;
8405
8406         eat(T_throw);
8407
8408         expression_t *value = NULL;
8409         switch (token.type) {
8410                 EXPRESSION_START {
8411                         value = parse_assignment_expression();
8412                         /* ISO/IEC 14882:1998(E) Â§15.1:3 */
8413                         type_t *const orig_type = value->base.type;
8414                         type_t *const type      = skip_typeref(orig_type);
8415                         if (is_type_incomplete(type)) {
8416                                 errorf(&value->base.source_position,
8417                                                 "cannot throw object of incomplete type '%T'", orig_type);
8418                         } else if (is_type_pointer(type)) {
8419                                 type_t *const points_to = skip_typeref(type->pointer.points_to);
8420                                 if (is_type_incomplete(points_to) &&
8421                                                 !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8422                                         errorf(&value->base.source_position,
8423                                                         "cannot throw pointer to incomplete type '%T'", orig_type);
8424                                 }
8425                         }
8426                 }
8427
8428                 default:
8429                         break;
8430         }
8431         result->unary.value = value;
8432
8433         return result;
8434 }
8435
8436 static bool check_pointer_arithmetic(const source_position_t *source_position,
8437                                      type_t *pointer_type,
8438                                      type_t *orig_pointer_type)
8439 {
8440         type_t *points_to = pointer_type->pointer.points_to;
8441         points_to = skip_typeref(points_to);
8442
8443         if (is_type_incomplete(points_to)) {
8444                 if (!GNU_MODE || !is_type_atomic(points_to, ATOMIC_TYPE_VOID)) {
8445                         errorf(source_position,
8446                                "arithmetic with pointer to incomplete type '%T' not allowed",
8447                                orig_pointer_type);
8448                         return false;
8449                 } else if (warning.pointer_arith) {
8450                         warningf(source_position,
8451                                  "pointer of type '%T' used in arithmetic",
8452                                  orig_pointer_type);
8453                 }
8454         } else if (is_type_function(points_to)) {
8455                 if (!GNU_MODE) {
8456                         errorf(source_position,
8457                                "arithmetic with pointer to function type '%T' not allowed",
8458                                orig_pointer_type);
8459                         return false;
8460                 } else if (warning.pointer_arith) {
8461                         warningf(source_position,
8462                                  "pointer to a function '%T' used in arithmetic",
8463                                  orig_pointer_type);
8464                 }
8465         }
8466         return true;
8467 }
8468
8469 static bool is_lvalue(const expression_t *expression)
8470 {
8471         /* TODO: doesn't seem to be consistent with Â§6.3.2.1 (1) */
8472         switch (expression->kind) {
8473         case EXPR_REFERENCE:
8474         case EXPR_ARRAY_ACCESS:
8475         case EXPR_SELECT:
8476         case EXPR_UNARY_DEREFERENCE:
8477                 return true;
8478
8479         default: {
8480           type_t *type = skip_typeref(expression->base.type);
8481           return
8482                 /* ISO/IEC 14882:1998(E) Â§3.10:3 */
8483                 is_type_reference(type) ||
8484                 /* Claim it is an lvalue, if the type is invalid.  There was a parse
8485                  * error before, which maybe prevented properly recognizing it as
8486                  * lvalue. */
8487                 !is_type_valid(type);
8488         }
8489         }
8490 }
8491
8492 static void semantic_incdec(unary_expression_t *expression)
8493 {
8494         type_t *const orig_type = expression->value->base.type;
8495         type_t *const type      = skip_typeref(orig_type);
8496         if (is_type_pointer(type)) {
8497                 if (!check_pointer_arithmetic(&expression->base.source_position,
8498                                               type, orig_type)) {
8499                         return;
8500                 }
8501         } else if (!is_type_real(type) && is_type_valid(type)) {
8502                 /* TODO: improve error message */
8503                 errorf(&expression->base.source_position,
8504                        "operation needs an arithmetic or pointer type");
8505                 return;
8506         }
8507         if (!is_lvalue(expression->value)) {
8508                 /* TODO: improve error message */
8509                 errorf(&expression->base.source_position, "lvalue required as operand");
8510         }
8511         expression->base.type = orig_type;
8512 }
8513
8514 static void semantic_unexpr_arithmetic(unary_expression_t *expression)
8515 {
8516         type_t *const orig_type = expression->value->base.type;
8517         type_t *const type      = skip_typeref(orig_type);
8518         if (!is_type_arithmetic(type)) {
8519                 if (is_type_valid(type)) {
8520                         /* TODO: improve error message */
8521                         errorf(&expression->base.source_position,
8522                                 "operation needs an arithmetic type");
8523                 }
8524                 return;
8525         }
8526
8527         expression->base.type = orig_type;
8528 }
8529
8530 static void semantic_unexpr_plus(unary_expression_t *expression)
8531 {
8532         semantic_unexpr_arithmetic(expression);
8533         if (warning.traditional)
8534                 warningf(&expression->base.source_position,
8535                         "traditional C rejects the unary plus operator");
8536 }
8537
8538 static void semantic_not(unary_expression_t *expression)
8539 {
8540         /* Â§6.5.3.3:1  The operand [...] of the ! operator, scalar type. */
8541         semantic_condition(expression->value, "operand of !");
8542         expression->base.type = c_mode & _CXX ? type_bool : type_int;
8543 }
8544
8545 static void semantic_unexpr_integer(unary_expression_t *expression)
8546 {
8547         type_t *const orig_type = expression->value->base.type;
8548         type_t *const type      = skip_typeref(orig_type);
8549         if (!is_type_integer(type)) {
8550                 if (is_type_valid(type)) {
8551                         errorf(&expression->base.source_position,
8552                                "operand of ~ must be of integer type");
8553                 }
8554                 return;
8555         }
8556
8557         expression->base.type = orig_type;
8558 }
8559
8560 static void semantic_dereference(unary_expression_t *expression)
8561 {
8562         type_t *const orig_type = expression->value->base.type;
8563         type_t *const type      = skip_typeref(orig_type);
8564         if (!is_type_pointer(type)) {
8565                 if (is_type_valid(type)) {
8566                         errorf(&expression->base.source_position,
8567                                "Unary '*' needs pointer or array type, but type '%T' given", orig_type);
8568                 }
8569                 return;
8570         }
8571
8572         type_t *result_type   = type->pointer.points_to;
8573         result_type           = automatic_type_conversion(result_type);
8574         expression->base.type = result_type;
8575 }
8576
8577 /**
8578  * Record that an address is taken (expression represents an lvalue).
8579  *
8580  * @param expression       the expression
8581  * @param may_be_register  if true, the expression might be an register
8582  */
8583 static void set_address_taken(expression_t *expression, bool may_be_register)
8584 {
8585         if (expression->kind != EXPR_REFERENCE)
8586                 return;
8587
8588         entity_t *const entity = expression->reference.entity;
8589
8590         if (entity->kind != ENTITY_VARIABLE && entity->kind != ENTITY_PARAMETER)
8591                 return;
8592
8593         if (entity->declaration.storage_class == STORAGE_CLASS_REGISTER
8594                         && !may_be_register) {
8595                 errorf(&expression->base.source_position,
8596                                 "address of register %s '%Y' requested",
8597                                 get_entity_kind_name(entity->kind),     entity->base.symbol);
8598         }
8599
8600         if (entity->kind == ENTITY_VARIABLE) {
8601                 entity->variable.address_taken = true;
8602         } else {
8603                 assert(entity->kind == ENTITY_PARAMETER);
8604                 entity->parameter.address_taken = true;
8605         }
8606 }
8607
8608 /**
8609  * Check the semantic of the address taken expression.
8610  */
8611 static void semantic_take_addr(unary_expression_t *expression)
8612 {
8613         expression_t *value = expression->value;
8614         value->base.type    = revert_automatic_type_conversion(value);
8615
8616         type_t *orig_type = value->base.type;
8617         type_t *type      = skip_typeref(orig_type);
8618         if (!is_type_valid(type))
8619                 return;
8620
8621         /* Â§6.5.3.2 */
8622         if (!is_lvalue(value)) {
8623                 errorf(&expression->base.source_position, "'&' requires an lvalue");
8624         }
8625         if (type->kind == TYPE_BITFIELD) {
8626                 errorf(&expression->base.source_position,
8627                        "'&' not allowed on object with bitfield type '%T'",
8628                        type);
8629         }
8630
8631         set_address_taken(value, false);
8632
8633         expression->base.type = make_pointer_type(orig_type, TYPE_QUALIFIER_NONE);
8634 }
8635
8636 #define CREATE_UNARY_EXPRESSION_PARSER(token_type, unexpression_type, sfunc) \
8637 static expression_t *parse_##unexpression_type(void)                         \
8638 {                                                                            \
8639         expression_t *unary_expression                                           \
8640                 = allocate_expression_zero(unexpression_type);                       \
8641         eat(token_type);                                                         \
8642         unary_expression->unary.value = parse_sub_expression(PREC_UNARY);        \
8643                                                                                  \
8644         sfunc(&unary_expression->unary);                                         \
8645                                                                                  \
8646         return unary_expression;                                                 \
8647 }
8648
8649 CREATE_UNARY_EXPRESSION_PARSER('-', EXPR_UNARY_NEGATE,
8650                                semantic_unexpr_arithmetic)
8651 CREATE_UNARY_EXPRESSION_PARSER('+', EXPR_UNARY_PLUS,
8652                                semantic_unexpr_plus)
8653 CREATE_UNARY_EXPRESSION_PARSER('!', EXPR_UNARY_NOT,
8654                                semantic_not)
8655 CREATE_UNARY_EXPRESSION_PARSER('*', EXPR_UNARY_DEREFERENCE,
8656                                semantic_dereference)
8657 CREATE_UNARY_EXPRESSION_PARSER('&', EXPR_UNARY_TAKE_ADDRESS,
8658                                semantic_take_addr)
8659 CREATE_UNARY_EXPRESSION_PARSER('~', EXPR_UNARY_BITWISE_NEGATE,
8660                                semantic_unexpr_integer)
8661 CREATE_UNARY_EXPRESSION_PARSER(T_PLUSPLUS,   EXPR_UNARY_PREFIX_INCREMENT,
8662                                semantic_incdec)
8663 CREATE_UNARY_EXPRESSION_PARSER(T_MINUSMINUS, EXPR_UNARY_PREFIX_DECREMENT,
8664                                semantic_incdec)
8665
8666 #define CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(token_type, unexpression_type, \
8667                                                sfunc)                         \
8668 static expression_t *parse_##unexpression_type(expression_t *left)            \
8669 {                                                                             \
8670         expression_t *unary_expression                                            \
8671                 = allocate_expression_zero(unexpression_type);                        \
8672         eat(token_type);                                                          \
8673         unary_expression->unary.value = left;                                     \
8674                                                                                   \
8675         sfunc(&unary_expression->unary);                                          \
8676                                                                               \
8677         return unary_expression;                                                  \
8678 }
8679
8680 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_PLUSPLUS,
8681                                        EXPR_UNARY_POSTFIX_INCREMENT,
8682                                        semantic_incdec)
8683 CREATE_UNARY_POSTFIX_EXPRESSION_PARSER(T_MINUSMINUS,
8684                                        EXPR_UNARY_POSTFIX_DECREMENT,
8685                                        semantic_incdec)
8686
8687 static type_t *semantic_arithmetic(type_t *type_left, type_t *type_right)
8688 {
8689         /* TODO: handle complex + imaginary types */
8690
8691         type_left  = get_unqualified_type(type_left);
8692         type_right = get_unqualified_type(type_right);
8693
8694         /* Â§ 6.3.1.8 Usual arithmetic conversions */
8695         if (type_left == type_long_double || type_right == type_long_double) {
8696                 return type_long_double;
8697         } else if (type_left == type_double || type_right == type_double) {
8698                 return type_double;
8699         } else if (type_left == type_float || type_right == type_float) {
8700                 return type_float;
8701         }
8702
8703         type_left  = promote_integer(type_left);
8704         type_right = promote_integer(type_right);
8705
8706         if (type_left == type_right)
8707                 return type_left;
8708
8709         bool const signed_left  = is_type_signed(type_left);
8710         bool const signed_right = is_type_signed(type_right);
8711         int const  rank_left    = get_rank(type_left);
8712         int const  rank_right   = get_rank(type_right);
8713
8714         if (signed_left == signed_right)
8715                 return rank_left >= rank_right ? type_left : type_right;
8716
8717         int     s_rank;
8718         int     u_rank;
8719         type_t *s_type;
8720         type_t *u_type;
8721         if (signed_left) {
8722                 s_rank = rank_left;
8723                 s_type = type_left;
8724                 u_rank = rank_right;
8725                 u_type = type_right;
8726         } else {
8727                 s_rank = rank_right;
8728                 s_type = type_right;
8729                 u_rank = rank_left;
8730                 u_type = type_left;
8731         }
8732
8733         if (u_rank >= s_rank)
8734                 return u_type;
8735
8736         /* casting rank to atomic_type_kind is a bit hacky, but makes things
8737          * easier here... */
8738         if (get_atomic_type_size((atomic_type_kind_t) s_rank)
8739                         > get_atomic_type_size((atomic_type_kind_t) u_rank))
8740                 return s_type;
8741
8742         switch (s_rank) {
8743                 case ATOMIC_TYPE_INT:      return type_unsigned_int;
8744                 case ATOMIC_TYPE_LONG:     return type_unsigned_long;
8745                 case ATOMIC_TYPE_LONGLONG: return type_unsigned_long_long;
8746
8747                 default: panic("invalid atomic type");
8748         }
8749 }
8750
8751 /**
8752  * Check the semantic restrictions for a binary expression.
8753  */
8754 static void semantic_binexpr_arithmetic(binary_expression_t *expression)
8755 {
8756         expression_t *const left            = expression->left;
8757         expression_t *const right           = expression->right;
8758         type_t       *const orig_type_left  = left->base.type;
8759         type_t       *const orig_type_right = right->base.type;
8760         type_t       *const type_left       = skip_typeref(orig_type_left);
8761         type_t       *const type_right      = skip_typeref(orig_type_right);
8762
8763         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
8764                 /* TODO: improve error message */
8765                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8766                         errorf(&expression->base.source_position,
8767                                "operation needs arithmetic types");
8768                 }
8769                 return;
8770         }
8771
8772         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8773         expression->left      = create_implicit_cast(left, arithmetic_type);
8774         expression->right     = create_implicit_cast(right, arithmetic_type);
8775         expression->base.type = arithmetic_type;
8776 }
8777
8778 static void warn_div_by_zero(binary_expression_t const *const expression)
8779 {
8780         if (!warning.div_by_zero ||
8781             !is_type_integer(expression->base.type))
8782                 return;
8783
8784         expression_t const *const right = expression->right;
8785         /* The type of the right operand can be different for /= */
8786         if (is_type_integer(right->base.type) &&
8787             is_constant_expression(right)     &&
8788             fold_constant(right) == 0) {
8789                 warningf(&expression->base.source_position, "division by zero");
8790         }
8791 }
8792
8793 /**
8794  * Check the semantic restrictions for a div/mod expression.
8795  */
8796 static void semantic_divmod_arithmetic(binary_expression_t *expression) {
8797         semantic_binexpr_arithmetic(expression);
8798         warn_div_by_zero(expression);
8799 }
8800
8801 static void semantic_shift_op(binary_expression_t *expression)
8802 {
8803         expression_t *const left            = expression->left;
8804         expression_t *const right           = expression->right;
8805         type_t       *const orig_type_left  = left->base.type;
8806         type_t       *const orig_type_right = right->base.type;
8807         type_t       *      type_left       = skip_typeref(orig_type_left);
8808         type_t       *      type_right      = skip_typeref(orig_type_right);
8809
8810         if (!is_type_integer(type_left) || !is_type_integer(type_right)) {
8811                 /* TODO: improve error message */
8812                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
8813                         errorf(&expression->base.source_position,
8814                                "operands of shift operation must have integer types");
8815                 }
8816                 return;
8817         }
8818
8819         type_left  = promote_integer(type_left);
8820         type_right = promote_integer(type_right);
8821
8822         expression->left      = create_implicit_cast(left, type_left);
8823         expression->right     = create_implicit_cast(right, type_right);
8824         expression->base.type = type_left;
8825 }
8826
8827 static void semantic_add(binary_expression_t *expression)
8828 {
8829         expression_t *const left            = expression->left;
8830         expression_t *const right           = expression->right;
8831         type_t       *const orig_type_left  = left->base.type;
8832         type_t       *const orig_type_right = right->base.type;
8833         type_t       *const type_left       = skip_typeref(orig_type_left);
8834         type_t       *const type_right      = skip_typeref(orig_type_right);
8835
8836         /* Â§ 6.5.6 */
8837         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8838                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8839                 expression->left  = create_implicit_cast(left, arithmetic_type);
8840                 expression->right = create_implicit_cast(right, arithmetic_type);
8841                 expression->base.type = arithmetic_type;
8842                 return;
8843         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8844                 check_pointer_arithmetic(&expression->base.source_position,
8845                                          type_left, orig_type_left);
8846                 expression->base.type = type_left;
8847         } else if (is_type_pointer(type_right) && is_type_integer(type_left)) {
8848                 check_pointer_arithmetic(&expression->base.source_position,
8849                                          type_right, orig_type_right);
8850                 expression->base.type = type_right;
8851         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8852                 errorf(&expression->base.source_position,
8853                        "invalid operands to binary + ('%T', '%T')",
8854                        orig_type_left, orig_type_right);
8855         }
8856 }
8857
8858 static void semantic_sub(binary_expression_t *expression)
8859 {
8860         expression_t            *const left            = expression->left;
8861         expression_t            *const right           = expression->right;
8862         type_t                  *const orig_type_left  = left->base.type;
8863         type_t                  *const orig_type_right = right->base.type;
8864         type_t                  *const type_left       = skip_typeref(orig_type_left);
8865         type_t                  *const type_right      = skip_typeref(orig_type_right);
8866         source_position_t const *const pos             = &expression->base.source_position;
8867
8868         /* Â§ 5.6.5 */
8869         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8870                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8871                 expression->left        = create_implicit_cast(left, arithmetic_type);
8872                 expression->right       = create_implicit_cast(right, arithmetic_type);
8873                 expression->base.type =  arithmetic_type;
8874                 return;
8875         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
8876                 check_pointer_arithmetic(&expression->base.source_position,
8877                                          type_left, orig_type_left);
8878                 expression->base.type = type_left;
8879         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8880                 type_t *const unqual_left  = get_unqualified_type(skip_typeref(type_left->pointer.points_to));
8881                 type_t *const unqual_right = get_unqualified_type(skip_typeref(type_right->pointer.points_to));
8882                 if (!types_compatible(unqual_left, unqual_right)) {
8883                         errorf(pos,
8884                                "subtracting pointers to incompatible types '%T' and '%T'",
8885                                orig_type_left, orig_type_right);
8886                 } else if (!is_type_object(unqual_left)) {
8887                         if (!is_type_atomic(unqual_left, ATOMIC_TYPE_VOID)) {
8888                                 errorf(pos, "subtracting pointers to non-object types '%T'",
8889                                        orig_type_left);
8890                         } else if (warning.other) {
8891                                 warningf(pos, "subtracting pointers to void");
8892                         }
8893                 }
8894                 expression->base.type = type_ptrdiff_t;
8895         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
8896                 errorf(pos, "invalid operands of types '%T' and '%T' to binary '-'",
8897                        orig_type_left, orig_type_right);
8898         }
8899 }
8900
8901 static void warn_string_literal_address(expression_t const* expr)
8902 {
8903         while (expr->kind == EXPR_UNARY_TAKE_ADDRESS) {
8904                 expr = expr->unary.value;
8905                 if (expr->kind != EXPR_UNARY_DEREFERENCE)
8906                         return;
8907                 expr = expr->unary.value;
8908         }
8909
8910         if (expr->kind == EXPR_STRING_LITERAL ||
8911             expr->kind == EXPR_WIDE_STRING_LITERAL) {
8912                 warningf(&expr->base.source_position,
8913                         "comparison with string literal results in unspecified behaviour");
8914         }
8915 }
8916
8917 /**
8918  * Check the semantics of comparison expressions.
8919  *
8920  * @param expression   The expression to check.
8921  */
8922 static void semantic_comparison(binary_expression_t *expression)
8923 {
8924         expression_t *left  = expression->left;
8925         expression_t *right = expression->right;
8926
8927         if (warning.address) {
8928                 warn_string_literal_address(left);
8929                 warn_string_literal_address(right);
8930
8931                 expression_t const* const func_left = get_reference_address(left);
8932                 if (func_left != NULL && is_null_pointer_constant(right)) {
8933                         warningf(&expression->base.source_position,
8934                                  "the address of '%Y' will never be NULL",
8935                                  func_left->reference.entity->base.symbol);
8936                 }
8937
8938                 expression_t const* const func_right = get_reference_address(right);
8939                 if (func_right != NULL && is_null_pointer_constant(right)) {
8940                         warningf(&expression->base.source_position,
8941                                  "the address of '%Y' will never be NULL",
8942                                  func_right->reference.entity->base.symbol);
8943                 }
8944         }
8945
8946         type_t *orig_type_left  = left->base.type;
8947         type_t *orig_type_right = right->base.type;
8948         type_t *type_left       = skip_typeref(orig_type_left);
8949         type_t *type_right      = skip_typeref(orig_type_right);
8950
8951         /* TODO non-arithmetic types */
8952         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
8953                 /* test for signed vs unsigned compares */
8954                 if (warning.sign_compare &&
8955                     (expression->base.kind != EXPR_BINARY_EQUAL &&
8956                      expression->base.kind != EXPR_BINARY_NOTEQUAL) &&
8957                     (is_type_signed(type_left) != is_type_signed(type_right))) {
8958
8959                         /* check if 1 of the operands is a constant, in this case we just
8960                          * check wether we can safely represent the resulting constant in
8961                          * the type of the other operand. */
8962                         expression_t *const_expr = NULL;
8963                         expression_t *other_expr = NULL;
8964
8965                         if (is_constant_expression(left)) {
8966                                 const_expr = left;
8967                                 other_expr = right;
8968                         } else if (is_constant_expression(right)) {
8969                                 const_expr = right;
8970                                 other_expr = left;
8971                         }
8972
8973                         if (const_expr != NULL) {
8974                                 type_t *other_type = skip_typeref(other_expr->base.type);
8975                                 long    val        = fold_constant(const_expr);
8976                                 /* TODO: check if val can be represented by other_type */
8977                                 (void) other_type;
8978                                 (void) val;
8979                         }
8980                         warningf(&expression->base.source_position,
8981                                  "comparison between signed and unsigned");
8982                 }
8983                 type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
8984                 expression->left        = create_implicit_cast(left, arithmetic_type);
8985                 expression->right       = create_implicit_cast(right, arithmetic_type);
8986                 expression->base.type   = arithmetic_type;
8987                 if (warning.float_equal &&
8988                     (expression->base.kind == EXPR_BINARY_EQUAL ||
8989                      expression->base.kind == EXPR_BINARY_NOTEQUAL) &&
8990                     is_type_float(arithmetic_type)) {
8991                         warningf(&expression->base.source_position,
8992                                  "comparing floating point with == or != is unsafe");
8993                 }
8994         } else if (is_type_pointer(type_left) && is_type_pointer(type_right)) {
8995                 /* TODO check compatibility */
8996         } else if (is_type_pointer(type_left)) {
8997                 expression->right = create_implicit_cast(right, type_left);
8998         } else if (is_type_pointer(type_right)) {
8999                 expression->left = create_implicit_cast(left, type_right);
9000         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9001                 type_error_incompatible("invalid operands in comparison",
9002                                         &expression->base.source_position,
9003                                         type_left, type_right);
9004         }
9005         expression->base.type = c_mode & _CXX ? type_bool : type_int;
9006 }
9007
9008 /**
9009  * Checks if a compound type has constant fields.
9010  */
9011 static bool has_const_fields(const compound_type_t *type)
9012 {
9013         compound_t *compound = type->compound;
9014         entity_t   *entry    = compound->members.entities;
9015
9016         for (; entry != NULL; entry = entry->base.next) {
9017                 if (!is_declaration(entry))
9018                         continue;
9019
9020                 const type_t *decl_type = skip_typeref(entry->declaration.type);
9021                 if (decl_type->base.qualifiers & TYPE_QUALIFIER_CONST)
9022                         return true;
9023         }
9024
9025         return false;
9026 }
9027
9028 static bool is_valid_assignment_lhs(expression_t const* const left)
9029 {
9030         type_t *const orig_type_left = revert_automatic_type_conversion(left);
9031         type_t *const type_left      = skip_typeref(orig_type_left);
9032
9033         if (!is_lvalue(left)) {
9034                 errorf(HERE, "left hand side '%E' of assignment is not an lvalue",
9035                        left);
9036                 return false;
9037         }
9038
9039         if (left->kind == EXPR_REFERENCE
9040                         && left->reference.entity->kind == ENTITY_FUNCTION) {
9041                 errorf(HERE, "cannot assign to function '%E'", left);
9042                 return false;
9043         }
9044
9045         if (is_type_array(type_left)) {
9046                 errorf(HERE, "cannot assign to array '%E'", left);
9047                 return false;
9048         }
9049         if (type_left->base.qualifiers & TYPE_QUALIFIER_CONST) {
9050                 errorf(HERE, "assignment to readonly location '%E' (type '%T')", left,
9051                        orig_type_left);
9052                 return false;
9053         }
9054         if (is_type_incomplete(type_left)) {
9055                 errorf(HERE, "left-hand side '%E' of assignment has incomplete type '%T'",
9056                        left, orig_type_left);
9057                 return false;
9058         }
9059         if (is_type_compound(type_left) && has_const_fields(&type_left->compound)) {
9060                 errorf(HERE, "cannot assign to '%E' because compound type '%T' has readonly fields",
9061                        left, orig_type_left);
9062                 return false;
9063         }
9064
9065         return true;
9066 }
9067
9068 static void semantic_arithmetic_assign(binary_expression_t *expression)
9069 {
9070         expression_t *left            = expression->left;
9071         expression_t *right           = expression->right;
9072         type_t       *orig_type_left  = left->base.type;
9073         type_t       *orig_type_right = right->base.type;
9074
9075         if (!is_valid_assignment_lhs(left))
9076                 return;
9077
9078         type_t *type_left  = skip_typeref(orig_type_left);
9079         type_t *type_right = skip_typeref(orig_type_right);
9080
9081         if (!is_type_arithmetic(type_left) || !is_type_arithmetic(type_right)) {
9082                 /* TODO: improve error message */
9083                 if (is_type_valid(type_left) && is_type_valid(type_right)) {
9084                         errorf(&expression->base.source_position,
9085                                "operation needs arithmetic types");
9086                 }
9087                 return;
9088         }
9089
9090         /* combined instructions are tricky. We can't create an implicit cast on
9091          * the left side, because we need the uncasted form for the store.
9092          * The ast2firm pass has to know that left_type must be right_type
9093          * for the arithmetic operation and create a cast by itself */
9094         type_t *arithmetic_type = semantic_arithmetic(type_left, type_right);
9095         expression->right       = create_implicit_cast(right, arithmetic_type);
9096         expression->base.type   = type_left;
9097 }
9098
9099 static void semantic_divmod_assign(binary_expression_t *expression)
9100 {
9101         semantic_arithmetic_assign(expression);
9102         warn_div_by_zero(expression);
9103 }
9104
9105 static void semantic_arithmetic_addsubb_assign(binary_expression_t *expression)
9106 {
9107         expression_t *const left            = expression->left;
9108         expression_t *const right           = expression->right;
9109         type_t       *const orig_type_left  = left->base.type;
9110         type_t       *const orig_type_right = right->base.type;
9111         type_t       *const type_left       = skip_typeref(orig_type_left);
9112         type_t       *const type_right      = skip_typeref(orig_type_right);
9113
9114         if (!is_valid_assignment_lhs(left))
9115                 return;
9116
9117         if (is_type_arithmetic(type_left) && is_type_arithmetic(type_right)) {
9118                 /* combined instructions are tricky. We can't create an implicit cast on
9119                  * the left side, because we need the uncasted form for the store.
9120                  * The ast2firm pass has to know that left_type must be right_type
9121                  * for the arithmetic operation and create a cast by itself */
9122                 type_t *const arithmetic_type = semantic_arithmetic(type_left, type_right);
9123                 expression->right     = create_implicit_cast(right, arithmetic_type);
9124                 expression->base.type = type_left;
9125         } else if (is_type_pointer(type_left) && is_type_integer(type_right)) {
9126                 check_pointer_arithmetic(&expression->base.source_position,
9127                                          type_left, orig_type_left);
9128                 expression->base.type = type_left;
9129         } else if (is_type_valid(type_left) && is_type_valid(type_right)) {
9130                 errorf(&expression->base.source_position,
9131                        "incompatible types '%T' and '%T' in assignment",
9132                        orig_type_left, orig_type_right);
9133         }
9134 }
9135
9136 /**
9137  * Check the semantic restrictions of a logical expression.
9138  */
9139 static void semantic_logical_op(binary_expression_t *expression)
9140 {
9141         /* Â§6.5.13:2  Each of the operands shall have scalar type.
9142          * Â§6.5.14:2  Each of the operands shall have scalar type. */
9143         semantic_condition(expression->left,   "left operand of logical operator");
9144         semantic_condition(expression->right, "right operand of logical operator");
9145         expression->base.type = c_mode & _CXX ? type_bool : type_int;
9146 }
9147
9148 /**
9149  * Check the semantic restrictions of a binary assign expression.
9150  */
9151 static void semantic_binexpr_assign(binary_expression_t *expression)
9152 {
9153         expression_t *left           = expression->left;
9154         type_t       *orig_type_left = left->base.type;
9155
9156         if (!is_valid_assignment_lhs(left))
9157                 return;
9158
9159         assign_error_t error = semantic_assign(orig_type_left, expression->right);
9160         report_assign_error(error, orig_type_left, expression->right,
9161                         "assignment", &left->base.source_position);
9162         expression->right = create_implicit_cast(expression->right, orig_type_left);
9163         expression->base.type = orig_type_left;
9164 }
9165
9166 /**
9167  * Determine if the outermost operation (or parts thereof) of the given
9168  * expression has no effect in order to generate a warning about this fact.
9169  * Therefore in some cases this only examines some of the operands of the
9170  * expression (see comments in the function and examples below).
9171  * Examples:
9172  *   f() + 23;    // warning, because + has no effect
9173  *   x || f();    // no warning, because x controls execution of f()
9174  *   x ? y : f(); // warning, because y has no effect
9175  *   (void)x;     // no warning to be able to suppress the warning
9176  * This function can NOT be used for an "expression has definitely no effect"-
9177  * analysis. */
9178 static bool expression_has_effect(const expression_t *const expr)
9179 {
9180         switch (expr->kind) {
9181                 case EXPR_UNKNOWN:                   break;
9182                 case EXPR_INVALID:                   return true; /* do NOT warn */
9183                 case EXPR_REFERENCE:                 return false;
9184                 case EXPR_REFERENCE_ENUM_VALUE:      return false;
9185                 /* suppress the warning for microsoft __noop operations */
9186                 case EXPR_CONST:                     return expr->conste.is_ms_noop;
9187                 case EXPR_CHARACTER_CONSTANT:        return false;
9188                 case EXPR_WIDE_CHARACTER_CONSTANT:   return false;
9189                 case EXPR_STRING_LITERAL:            return false;
9190                 case EXPR_WIDE_STRING_LITERAL:       return false;
9191                 case EXPR_LABEL_ADDRESS:             return false;
9192
9193                 case EXPR_CALL: {
9194                         const call_expression_t *const call = &expr->call;
9195                         if (call->function->kind != EXPR_BUILTIN_SYMBOL)
9196                                 return true;
9197
9198                         switch (call->function->builtin_symbol.symbol->ID) {
9199                                 case T___builtin_va_end: return true;
9200                                 default:                 return false;
9201                         }
9202                 }
9203
9204                 /* Generate the warning if either the left or right hand side of a
9205                  * conditional expression has no effect */
9206                 case EXPR_CONDITIONAL: {
9207                         const conditional_expression_t *const cond = &expr->conditional;
9208                         return
9209                                 expression_has_effect(cond->true_expression) &&
9210                                 expression_has_effect(cond->false_expression);
9211                 }
9212
9213                 case EXPR_SELECT:                    return false;
9214                 case EXPR_ARRAY_ACCESS:              return false;
9215                 case EXPR_SIZEOF:                    return false;
9216                 case EXPR_CLASSIFY_TYPE:             return false;
9217                 case EXPR_ALIGNOF:                   return false;
9218
9219                 case EXPR_FUNCNAME:                  return false;
9220                 case EXPR_BUILTIN_SYMBOL:            break; /* handled in EXPR_CALL */
9221                 case EXPR_BUILTIN_CONSTANT_P:        return false;
9222                 case EXPR_BUILTIN_PREFETCH:          return true;
9223                 case EXPR_OFFSETOF:                  return false;
9224                 case EXPR_VA_START:                  return true;
9225                 case EXPR_VA_ARG:                    return true;
9226                 case EXPR_STATEMENT:                 return true; // TODO
9227                 case EXPR_COMPOUND_LITERAL:          return false;
9228
9229                 case EXPR_UNARY_NEGATE:              return false;
9230                 case EXPR_UNARY_PLUS:                return false;
9231                 case EXPR_UNARY_BITWISE_NEGATE:      return false;
9232                 case EXPR_UNARY_NOT:                 return false;
9233                 case EXPR_UNARY_DEREFERENCE:         return false;
9234                 case EXPR_UNARY_TAKE_ADDRESS:        return false;
9235                 case EXPR_UNARY_POSTFIX_INCREMENT:   return true;
9236                 case EXPR_UNARY_POSTFIX_DECREMENT:   return true;
9237                 case EXPR_UNARY_PREFIX_INCREMENT:    return true;
9238                 case EXPR_UNARY_PREFIX_DECREMENT:    return true;
9239
9240                 /* Treat void casts as if they have an effect in order to being able to
9241                  * suppress the warning */
9242                 case EXPR_UNARY_CAST: {
9243                         type_t *const type = skip_typeref(expr->base.type);
9244                         return is_type_atomic(type, ATOMIC_TYPE_VOID);
9245                 }
9246
9247                 case EXPR_UNARY_CAST_IMPLICIT:       return true;
9248                 case EXPR_UNARY_ASSUME:              return true;
9249                 case EXPR_UNARY_DELETE:              return true;
9250                 case EXPR_UNARY_DELETE_ARRAY:        return true;
9251                 case EXPR_UNARY_THROW:               return true;
9252
9253                 case EXPR_BINARY_ADD:                return false;
9254                 case EXPR_BINARY_SUB:                return false;
9255                 case EXPR_BINARY_MUL:                return false;
9256                 case EXPR_BINARY_DIV:                return false;
9257                 case EXPR_BINARY_MOD:                return false;
9258                 case EXPR_BINARY_EQUAL:              return false;
9259                 case EXPR_BINARY_NOTEQUAL:           return false;
9260                 case EXPR_BINARY_LESS:               return false;
9261                 case EXPR_BINARY_LESSEQUAL:          return false;
9262                 case EXPR_BINARY_GREATER:            return false;
9263                 case EXPR_BINARY_GREATEREQUAL:       return false;
9264                 case EXPR_BINARY_BITWISE_AND:        return false;
9265                 case EXPR_BINARY_BITWISE_OR:         return false;
9266                 case EXPR_BINARY_BITWISE_XOR:        return false;
9267                 case EXPR_BINARY_SHIFTLEFT:          return false;
9268                 case EXPR_BINARY_SHIFTRIGHT:         return false;
9269                 case EXPR_BINARY_ASSIGN:             return true;
9270                 case EXPR_BINARY_MUL_ASSIGN:         return true;
9271                 case EXPR_BINARY_DIV_ASSIGN:         return true;
9272                 case EXPR_BINARY_MOD_ASSIGN:         return true;
9273                 case EXPR_BINARY_ADD_ASSIGN:         return true;
9274                 case EXPR_BINARY_SUB_ASSIGN:         return true;
9275                 case EXPR_BINARY_SHIFTLEFT_ASSIGN:   return true;
9276                 case EXPR_BINARY_SHIFTRIGHT_ASSIGN:  return true;
9277                 case EXPR_BINARY_BITWISE_AND_ASSIGN: return true;
9278                 case EXPR_BINARY_BITWISE_XOR_ASSIGN: return true;
9279                 case EXPR_BINARY_BITWISE_OR_ASSIGN:  return true;
9280
9281                 /* Only examine the right hand side of && and ||, because the left hand
9282                  * side already has the effect of controlling the execution of the right
9283                  * hand side */
9284                 case EXPR_BINARY_LOGICAL_AND:
9285                 case EXPR_BINARY_LOGICAL_OR:
9286                 /* Only examine the right hand side of a comma expression, because the left
9287                  * hand side has a separate warning */
9288                 case EXPR_BINARY_COMMA:
9289                         return expression_has_effect(expr->binary.right);
9290
9291                 case EXPR_BINARY_ISGREATER:          return false;
9292                 case EXPR_BINARY_ISGREATEREQUAL:     return false;
9293                 case EXPR_BINARY_ISLESS:             return false;
9294                 case EXPR_BINARY_ISLESSEQUAL:        return false;
9295                 case EXPR_BINARY_ISLESSGREATER:      return false;
9296                 case EXPR_BINARY_ISUNORDERED:        return false;
9297         }
9298
9299         internal_errorf(HERE, "unexpected expression");
9300 }
9301
9302 static void semantic_comma(binary_expression_t *expression)
9303 {
9304         if (warning.unused_value) {
9305                 const expression_t *const left = expression->left;
9306                 if (!expression_has_effect(left)) {
9307                         warningf(&left->base.source_position,
9308                                  "left-hand operand of comma expression has no effect");
9309                 }
9310         }
9311         expression->base.type = expression->right->base.type;
9312 }
9313
9314 /**
9315  * @param prec_r precedence of the right operand
9316  */
9317 #define CREATE_BINEXPR_PARSER(token_type, binexpression_type, prec_r, sfunc) \
9318 static expression_t *parse_##binexpression_type(expression_t *left)          \
9319 {                                                                            \
9320         expression_t *binexpr = allocate_expression_zero(binexpression_type);    \
9321         binexpr->binary.left  = left;                                            \
9322         eat(token_type);                                                         \
9323                                                                              \
9324         expression_t *right = parse_sub_expression(prec_r);                      \
9325                                                                              \
9326         binexpr->binary.right = right;                                           \
9327         sfunc(&binexpr->binary);                                                 \
9328                                                                              \
9329         return binexpr;                                                          \
9330 }
9331
9332 CREATE_BINEXPR_PARSER('*',                    EXPR_BINARY_MUL,                PREC_CAST,           semantic_binexpr_arithmetic)
9333 CREATE_BINEXPR_PARSER('/',                    EXPR_BINARY_DIV,                PREC_CAST,           semantic_divmod_arithmetic)
9334 CREATE_BINEXPR_PARSER('%',                    EXPR_BINARY_MOD,                PREC_CAST,           semantic_divmod_arithmetic)
9335 CREATE_BINEXPR_PARSER('+',                    EXPR_BINARY_ADD,                PREC_MULTIPLICATIVE, semantic_add)
9336 CREATE_BINEXPR_PARSER('-',                    EXPR_BINARY_SUB,                PREC_MULTIPLICATIVE, semantic_sub)
9337 CREATE_BINEXPR_PARSER(T_LESSLESS,             EXPR_BINARY_SHIFTLEFT,          PREC_ADDITIVE,       semantic_shift_op)
9338 CREATE_BINEXPR_PARSER(T_GREATERGREATER,       EXPR_BINARY_SHIFTRIGHT,         PREC_ADDITIVE,       semantic_shift_op)
9339 CREATE_BINEXPR_PARSER('<',                    EXPR_BINARY_LESS,               PREC_SHIFT,          semantic_comparison)
9340 CREATE_BINEXPR_PARSER('>',                    EXPR_BINARY_GREATER,            PREC_SHIFT,          semantic_comparison)
9341 CREATE_BINEXPR_PARSER(T_LESSEQUAL,            EXPR_BINARY_LESSEQUAL,          PREC_SHIFT,          semantic_comparison)
9342 CREATE_BINEXPR_PARSER(T_GREATEREQUAL,         EXPR_BINARY_GREATEREQUAL,       PREC_SHIFT,          semantic_comparison)
9343 CREATE_BINEXPR_PARSER(T_EXCLAMATIONMARKEQUAL, EXPR_BINARY_NOTEQUAL,           PREC_RELATIONAL,     semantic_comparison)
9344 CREATE_BINEXPR_PARSER(T_EQUALEQUAL,           EXPR_BINARY_EQUAL,              PREC_RELATIONAL,     semantic_comparison)
9345 CREATE_BINEXPR_PARSER('&',                    EXPR_BINARY_BITWISE_AND,        PREC_EQUALITY,       semantic_binexpr_arithmetic)
9346 CREATE_BINEXPR_PARSER('^',                    EXPR_BINARY_BITWISE_XOR,        PREC_AND,            semantic_binexpr_arithmetic)
9347 CREATE_BINEXPR_PARSER('|',                    EXPR_BINARY_BITWISE_OR,         PREC_XOR,            semantic_binexpr_arithmetic)
9348 CREATE_BINEXPR_PARSER(T_ANDAND,               EXPR_BINARY_LOGICAL_AND,        PREC_OR,             semantic_logical_op)
9349 CREATE_BINEXPR_PARSER(T_PIPEPIPE,             EXPR_BINARY_LOGICAL_OR,         PREC_LOGICAL_AND,    semantic_logical_op)
9350 CREATE_BINEXPR_PARSER('=',                    EXPR_BINARY_ASSIGN,             PREC_ASSIGNMENT,     semantic_binexpr_assign)
9351 CREATE_BINEXPR_PARSER(T_PLUSEQUAL,            EXPR_BINARY_ADD_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
9352 CREATE_BINEXPR_PARSER(T_MINUSEQUAL,           EXPR_BINARY_SUB_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_addsubb_assign)
9353 CREATE_BINEXPR_PARSER(T_ASTERISKEQUAL,        EXPR_BINARY_MUL_ASSIGN,         PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9354 CREATE_BINEXPR_PARSER(T_SLASHEQUAL,           EXPR_BINARY_DIV_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
9355 CREATE_BINEXPR_PARSER(T_PERCENTEQUAL,         EXPR_BINARY_MOD_ASSIGN,         PREC_ASSIGNMENT,     semantic_divmod_assign)
9356 CREATE_BINEXPR_PARSER(T_LESSLESSEQUAL,        EXPR_BINARY_SHIFTLEFT_ASSIGN,   PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9357 CREATE_BINEXPR_PARSER(T_GREATERGREATEREQUAL,  EXPR_BINARY_SHIFTRIGHT_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9358 CREATE_BINEXPR_PARSER(T_ANDEQUAL,             EXPR_BINARY_BITWISE_AND_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9359 CREATE_BINEXPR_PARSER(T_PIPEEQUAL,            EXPR_BINARY_BITWISE_OR_ASSIGN,  PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9360 CREATE_BINEXPR_PARSER(T_CARETEQUAL,           EXPR_BINARY_BITWISE_XOR_ASSIGN, PREC_ASSIGNMENT,     semantic_arithmetic_assign)
9361 CREATE_BINEXPR_PARSER(',',                    EXPR_BINARY_COMMA,              PREC_ASSIGNMENT,     semantic_comma)
9362
9363
9364 static expression_t *parse_sub_expression(precedence_t precedence)
9365 {
9366         if (token.type < 0) {
9367                 return expected_expression_error();
9368         }
9369
9370         expression_parser_function_t *parser
9371                 = &expression_parsers[token.type];
9372         source_position_t             source_position = token.source_position;
9373         expression_t                 *left;
9374
9375         if (parser->parser != NULL) {
9376                 left = parser->parser();
9377         } else {
9378                 left = parse_primary_expression();
9379         }
9380         assert(left != NULL);
9381         left->base.source_position = source_position;
9382
9383         while (true) {
9384                 if (token.type < 0) {
9385                         return expected_expression_error();
9386                 }
9387
9388                 parser = &expression_parsers[token.type];
9389                 if (parser->infix_parser == NULL)
9390                         break;
9391                 if (parser->infix_precedence < precedence)
9392                         break;
9393
9394                 left = parser->infix_parser(left);
9395
9396                 assert(left != NULL);
9397                 assert(left->kind != EXPR_UNKNOWN);
9398                 left->base.source_position = source_position;
9399         }
9400
9401         return left;
9402 }
9403
9404 /**
9405  * Parse an expression.
9406  */
9407 static expression_t *parse_expression(void)
9408 {
9409         return parse_sub_expression(PREC_EXPRESSION);
9410 }
9411
9412 /**
9413  * Register a parser for a prefix-like operator.
9414  *
9415  * @param parser      the parser function
9416  * @param token_type  the token type of the prefix token
9417  */
9418 static void register_expression_parser(parse_expression_function parser,
9419                                        int token_type)
9420 {
9421         expression_parser_function_t *entry = &expression_parsers[token_type];
9422
9423         if (entry->parser != NULL) {
9424                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9425                 panic("trying to register multiple expression parsers for a token");
9426         }
9427         entry->parser = parser;
9428 }
9429
9430 /**
9431  * Register a parser for an infix operator with given precedence.
9432  *
9433  * @param parser      the parser function
9434  * @param token_type  the token type of the infix operator
9435  * @param precedence  the precedence of the operator
9436  */
9437 static void register_infix_parser(parse_expression_infix_function parser,
9438                 int token_type, unsigned precedence)
9439 {
9440         expression_parser_function_t *entry = &expression_parsers[token_type];
9441
9442         if (entry->infix_parser != NULL) {
9443                 diagnosticf("for token '%k'\n", (token_type_t)token_type);
9444                 panic("trying to register multiple infix expression parsers for a "
9445                       "token");
9446         }
9447         entry->infix_parser     = parser;
9448         entry->infix_precedence = precedence;
9449 }
9450
9451 /**
9452  * Initialize the expression parsers.
9453  */
9454 static void init_expression_parsers(void)
9455 {
9456         memset(&expression_parsers, 0, sizeof(expression_parsers));
9457
9458         register_infix_parser(parse_array_expression,               '[',                    PREC_POSTFIX);
9459         register_infix_parser(parse_call_expression,                '(',                    PREC_POSTFIX);
9460         register_infix_parser(parse_select_expression,              '.',                    PREC_POSTFIX);
9461         register_infix_parser(parse_select_expression,              T_MINUSGREATER,         PREC_POSTFIX);
9462         register_infix_parser(parse_EXPR_UNARY_POSTFIX_INCREMENT,   T_PLUSPLUS,             PREC_POSTFIX);
9463         register_infix_parser(parse_EXPR_UNARY_POSTFIX_DECREMENT,   T_MINUSMINUS,           PREC_POSTFIX);
9464         register_infix_parser(parse_EXPR_BINARY_MUL,                '*',                    PREC_MULTIPLICATIVE);
9465         register_infix_parser(parse_EXPR_BINARY_DIV,                '/',                    PREC_MULTIPLICATIVE);
9466         register_infix_parser(parse_EXPR_BINARY_MOD,                '%',                    PREC_MULTIPLICATIVE);
9467         register_infix_parser(parse_EXPR_BINARY_ADD,                '+',                    PREC_ADDITIVE);
9468         register_infix_parser(parse_EXPR_BINARY_SUB,                '-',                    PREC_ADDITIVE);
9469         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT,          T_LESSLESS,             PREC_SHIFT);
9470         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT,         T_GREATERGREATER,       PREC_SHIFT);
9471         register_infix_parser(parse_EXPR_BINARY_LESS,               '<',                    PREC_RELATIONAL);
9472         register_infix_parser(parse_EXPR_BINARY_GREATER,            '>',                    PREC_RELATIONAL);
9473         register_infix_parser(parse_EXPR_BINARY_LESSEQUAL,          T_LESSEQUAL,            PREC_RELATIONAL);
9474         register_infix_parser(parse_EXPR_BINARY_GREATEREQUAL,       T_GREATEREQUAL,         PREC_RELATIONAL);
9475         register_infix_parser(parse_EXPR_BINARY_EQUAL,              T_EQUALEQUAL,           PREC_EQUALITY);
9476         register_infix_parser(parse_EXPR_BINARY_NOTEQUAL,           T_EXCLAMATIONMARKEQUAL, PREC_EQUALITY);
9477         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND,        '&',                    PREC_AND);
9478         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR,        '^',                    PREC_XOR);
9479         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR,         '|',                    PREC_OR);
9480         register_infix_parser(parse_EXPR_BINARY_LOGICAL_AND,        T_ANDAND,               PREC_LOGICAL_AND);
9481         register_infix_parser(parse_EXPR_BINARY_LOGICAL_OR,         T_PIPEPIPE,             PREC_LOGICAL_OR);
9482         register_infix_parser(parse_conditional_expression,         '?',                    PREC_CONDITIONAL);
9483         register_infix_parser(parse_EXPR_BINARY_ASSIGN,             '=',                    PREC_ASSIGNMENT);
9484         register_infix_parser(parse_EXPR_BINARY_ADD_ASSIGN,         T_PLUSEQUAL,            PREC_ASSIGNMENT);
9485         register_infix_parser(parse_EXPR_BINARY_SUB_ASSIGN,         T_MINUSEQUAL,           PREC_ASSIGNMENT);
9486         register_infix_parser(parse_EXPR_BINARY_MUL_ASSIGN,         T_ASTERISKEQUAL,        PREC_ASSIGNMENT);
9487         register_infix_parser(parse_EXPR_BINARY_DIV_ASSIGN,         T_SLASHEQUAL,           PREC_ASSIGNMENT);
9488         register_infix_parser(parse_EXPR_BINARY_MOD_ASSIGN,         T_PERCENTEQUAL,         PREC_ASSIGNMENT);
9489         register_infix_parser(parse_EXPR_BINARY_SHIFTLEFT_ASSIGN,   T_LESSLESSEQUAL,        PREC_ASSIGNMENT);
9490         register_infix_parser(parse_EXPR_BINARY_SHIFTRIGHT_ASSIGN,  T_GREATERGREATEREQUAL,  PREC_ASSIGNMENT);
9491         register_infix_parser(parse_EXPR_BINARY_BITWISE_AND_ASSIGN, T_ANDEQUAL,             PREC_ASSIGNMENT);
9492         register_infix_parser(parse_EXPR_BINARY_BITWISE_OR_ASSIGN,  T_PIPEEQUAL,            PREC_ASSIGNMENT);
9493         register_infix_parser(parse_EXPR_BINARY_BITWISE_XOR_ASSIGN, T_CARETEQUAL,           PREC_ASSIGNMENT);
9494         register_infix_parser(parse_EXPR_BINARY_COMMA,              ',',                    PREC_EXPRESSION);
9495
9496         register_expression_parser(parse_EXPR_UNARY_NEGATE,           '-');
9497         register_expression_parser(parse_EXPR_UNARY_PLUS,             '+');
9498         register_expression_parser(parse_EXPR_UNARY_NOT,              '!');
9499         register_expression_parser(parse_EXPR_UNARY_BITWISE_NEGATE,   '~');
9500         register_expression_parser(parse_EXPR_UNARY_DEREFERENCE,      '*');
9501         register_expression_parser(parse_EXPR_UNARY_TAKE_ADDRESS,     '&');
9502         register_expression_parser(parse_EXPR_UNARY_PREFIX_INCREMENT, T_PLUSPLUS);
9503         register_expression_parser(parse_EXPR_UNARY_PREFIX_DECREMENT, T_MINUSMINUS);
9504         register_expression_parser(parse_sizeof,                      T_sizeof);
9505         register_expression_parser(parse_alignof,                     T___alignof__);
9506         register_expression_parser(parse_extension,                   T___extension__);
9507         register_expression_parser(parse_builtin_classify_type,       T___builtin_classify_type);
9508         register_expression_parser(parse_delete,                      T_delete);
9509         register_expression_parser(parse_throw,                       T_throw);
9510 }
9511
9512 /**
9513  * Parse a asm statement arguments specification.
9514  */
9515 static asm_argument_t *parse_asm_arguments(bool is_out)
9516 {
9517         asm_argument_t  *result = NULL;
9518         asm_argument_t **anchor = &result;
9519
9520         while (token.type == T_STRING_LITERAL || token.type == '[') {
9521                 asm_argument_t *argument = allocate_ast_zero(sizeof(argument[0]));
9522                 memset(argument, 0, sizeof(argument[0]));
9523
9524                 if (token.type == '[') {
9525                         eat('[');
9526                         if (token.type != T_IDENTIFIER) {
9527                                 parse_error_expected("while parsing asm argument",
9528                                                      T_IDENTIFIER, NULL);
9529                                 return NULL;
9530                         }
9531                         argument->symbol = token.v.symbol;
9532
9533                         expect(']');
9534                 }
9535
9536                 argument->constraints = parse_string_literals();
9537                 expect('(');
9538                 add_anchor_token(')');
9539                 expression_t *expression = parse_expression();
9540                 rem_anchor_token(')');
9541                 if (is_out) {
9542                         /* Ugly GCC stuff: Allow lvalue casts.  Skip casts, when they do not
9543                          * change size or type representation (e.g. int -> long is ok, but
9544                          * int -> float is not) */
9545                         if (expression->kind == EXPR_UNARY_CAST) {
9546                                 type_t      *const type = expression->base.type;
9547                                 type_kind_t  const kind = type->kind;
9548                                 if (kind == TYPE_ATOMIC || kind == TYPE_POINTER) {
9549                                         unsigned flags;
9550                                         unsigned size;
9551                                         if (kind == TYPE_ATOMIC) {
9552                                                 atomic_type_kind_t const akind = type->atomic.akind;
9553                                                 flags = get_atomic_type_flags(akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9554                                                 size  = get_atomic_type_size(akind);
9555                                         } else {
9556                                                 flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9557                                                 size  = get_atomic_type_size(get_intptr_kind());
9558                                         }
9559
9560                                         do {
9561                                                 expression_t *const value      = expression->unary.value;
9562                                                 type_t       *const value_type = value->base.type;
9563                                                 type_kind_t   const value_kind = value_type->kind;
9564
9565                                                 unsigned value_flags;
9566                                                 unsigned value_size;
9567                                                 if (value_kind == TYPE_ATOMIC) {
9568                                                         atomic_type_kind_t const value_akind = value_type->atomic.akind;
9569                                                         value_flags = get_atomic_type_flags(value_akind) & ~ATOMIC_TYPE_FLAG_SIGNED;
9570                                                         value_size  = get_atomic_type_size(value_akind);
9571                                                 } else if (value_kind == TYPE_POINTER) {
9572                                                         value_flags = ATOMIC_TYPE_FLAG_INTEGER | ATOMIC_TYPE_FLAG_ARITHMETIC;
9573                                                         value_size  = get_atomic_type_size(get_intptr_kind());
9574                                                 } else {
9575                                                         break;
9576                                                 }
9577
9578                                                 if (value_flags != flags || value_size != size)
9579                                                         break;
9580
9581                                                 expression = value;
9582                                         } while (expression->kind == EXPR_UNARY_CAST);
9583                                 }
9584                         }
9585
9586                         if (!is_lvalue(expression)) {
9587                                 errorf(&expression->base.source_position,
9588                                        "asm output argument is not an lvalue");
9589                         }
9590
9591                         if (argument->constraints.begin[0] == '+')
9592                                 mark_vars_read(expression, NULL);
9593                 } else {
9594                         mark_vars_read(expression, NULL);
9595                 }
9596                 argument->expression = expression;
9597                 expect(')');
9598
9599                 set_address_taken(expression, true);
9600
9601                 *anchor = argument;
9602                 anchor  = &argument->next;
9603
9604                 if (token.type != ',')
9605                         break;
9606                 eat(',');
9607         }
9608
9609         return result;
9610 end_error:
9611         return NULL;
9612 }
9613
9614 /**
9615  * Parse a asm statement clobber specification.
9616  */
9617 static asm_clobber_t *parse_asm_clobbers(void)
9618 {
9619         asm_clobber_t *result = NULL;
9620         asm_clobber_t *last   = NULL;
9621
9622         while (token.type == T_STRING_LITERAL) {
9623                 asm_clobber_t *clobber = allocate_ast_zero(sizeof(clobber[0]));
9624                 clobber->clobber       = parse_string_literals();
9625
9626                 if (last != NULL) {
9627                         last->next = clobber;
9628                 } else {
9629                         result = clobber;
9630                 }
9631                 last = clobber;
9632
9633                 if (token.type != ',')
9634                         break;
9635                 eat(',');
9636         }
9637
9638         return result;
9639 }
9640
9641 /**
9642  * Parse an asm statement.
9643  */
9644 static statement_t *parse_asm_statement(void)
9645 {
9646         statement_t     *statement     = allocate_statement_zero(STATEMENT_ASM);
9647         asm_statement_t *asm_statement = &statement->asms;
9648
9649         eat(T_asm);
9650
9651         if (token.type == T_volatile) {
9652                 next_token();
9653                 asm_statement->is_volatile = true;
9654         }
9655
9656         expect('(');
9657         add_anchor_token(')');
9658         add_anchor_token(':');
9659         asm_statement->asm_text = parse_string_literals();
9660
9661         if (token.type != ':') {
9662                 rem_anchor_token(':');
9663                 goto end_of_asm;
9664         }
9665         eat(':');
9666
9667         asm_statement->outputs = parse_asm_arguments(true);
9668         if (token.type != ':') {
9669                 rem_anchor_token(':');
9670                 goto end_of_asm;
9671         }
9672         eat(':');
9673
9674         asm_statement->inputs = parse_asm_arguments(false);
9675         if (token.type != ':') {
9676                 rem_anchor_token(':');
9677                 goto end_of_asm;
9678         }
9679         rem_anchor_token(':');
9680         eat(':');
9681
9682         asm_statement->clobbers = parse_asm_clobbers();
9683
9684 end_of_asm:
9685         rem_anchor_token(')');
9686         expect(')');
9687         expect(';');
9688
9689         if (asm_statement->outputs == NULL) {
9690                 /* GCC: An 'asm' instruction without any output operands will be treated
9691                  * identically to a volatile 'asm' instruction. */
9692                 asm_statement->is_volatile = true;
9693         }
9694
9695         return statement;
9696 end_error:
9697         return create_invalid_statement();
9698 }
9699
9700 /**
9701  * Parse a case statement.
9702  */
9703 static statement_t *parse_case_statement(void)
9704 {
9705         statement_t       *const statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9706         source_position_t *const pos       = &statement->base.source_position;
9707
9708         eat(T_case);
9709
9710         expression_t *const expression   = parse_expression();
9711         statement->case_label.expression = expression;
9712         if (!is_constant_expression(expression)) {
9713                 /* This check does not prevent the error message in all cases of an
9714                  * prior error while parsing the expression.  At least it catches the
9715                  * common case of a mistyped enum entry. */
9716                 if (is_type_valid(skip_typeref(expression->base.type))) {
9717                         errorf(pos, "case label does not reduce to an integer constant");
9718                 }
9719                 statement->case_label.is_bad = true;
9720         } else {
9721                 long const val = fold_constant(expression);
9722                 statement->case_label.first_case = val;
9723                 statement->case_label.last_case  = val;
9724         }
9725
9726         if (GNU_MODE) {
9727                 if (token.type == T_DOTDOTDOT) {
9728                         next_token();
9729                         expression_t *const end_range   = parse_expression();
9730                         statement->case_label.end_range = end_range;
9731                         if (!is_constant_expression(end_range)) {
9732                                 /* This check does not prevent the error message in all cases of an
9733                                  * prior error while parsing the expression.  At least it catches the
9734                                  * common case of a mistyped enum entry. */
9735                                 if (is_type_valid(skip_typeref(end_range->base.type))) {
9736                                         errorf(pos, "case range does not reduce to an integer constant");
9737                                 }
9738                                 statement->case_label.is_bad = true;
9739                         } else {
9740                                 long const val = fold_constant(end_range);
9741                                 statement->case_label.last_case = val;
9742
9743                                 if (warning.other && val < statement->case_label.first_case) {
9744                                         statement->case_label.is_empty_range = true;
9745                                         warningf(pos, "empty range specified");
9746                                 }
9747                         }
9748                 }
9749         }
9750
9751         PUSH_PARENT(statement);
9752
9753         expect(':');
9754 end_error:
9755
9756         if (current_switch != NULL) {
9757                 if (! statement->case_label.is_bad) {
9758                         /* Check for duplicate case values */
9759                         case_label_statement_t *c = &statement->case_label;
9760                         for (case_label_statement_t *l = current_switch->first_case; l != NULL; l = l->next) {
9761                                 if (l->is_bad || l->is_empty_range || l->expression == NULL)
9762                                         continue;
9763
9764                                 if (c->last_case < l->first_case || c->first_case > l->last_case)
9765                                         continue;
9766
9767                                 errorf(pos, "duplicate case value (previously used %P)",
9768                                        &l->base.source_position);
9769                                 break;
9770                         }
9771                 }
9772                 /* link all cases into the switch statement */
9773                 if (current_switch->last_case == NULL) {
9774                         current_switch->first_case      = &statement->case_label;
9775                 } else {
9776                         current_switch->last_case->next = &statement->case_label;
9777                 }
9778                 current_switch->last_case = &statement->case_label;
9779         } else {
9780                 errorf(pos, "case label not within a switch statement");
9781         }
9782
9783         statement_t *const inner_stmt = parse_statement();
9784         statement->case_label.statement = inner_stmt;
9785         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9786                 errorf(&inner_stmt->base.source_position, "declaration after case label");
9787         }
9788
9789         POP_PARENT;
9790         return statement;
9791 }
9792
9793 /**
9794  * Parse a default statement.
9795  */
9796 static statement_t *parse_default_statement(void)
9797 {
9798         statement_t *statement = allocate_statement_zero(STATEMENT_CASE_LABEL);
9799
9800         eat(T_default);
9801
9802         PUSH_PARENT(statement);
9803
9804         expect(':');
9805         if (current_switch != NULL) {
9806                 const case_label_statement_t *def_label = current_switch->default_label;
9807                 if (def_label != NULL) {
9808                         errorf(HERE, "multiple default labels in one switch (previous declared %P)",
9809                                &def_label->base.source_position);
9810                 } else {
9811                         current_switch->default_label = &statement->case_label;
9812
9813                         /* link all cases into the switch statement */
9814                         if (current_switch->last_case == NULL) {
9815                                 current_switch->first_case      = &statement->case_label;
9816                         } else {
9817                                 current_switch->last_case->next = &statement->case_label;
9818                         }
9819                         current_switch->last_case = &statement->case_label;
9820                 }
9821         } else {
9822                 errorf(&statement->base.source_position,
9823                         "'default' label not within a switch statement");
9824         }
9825
9826         statement_t *const inner_stmt = parse_statement();
9827         statement->case_label.statement = inner_stmt;
9828         if (inner_stmt->kind == STATEMENT_DECLARATION) {
9829                 errorf(&inner_stmt->base.source_position, "declaration after default label");
9830         }
9831
9832         POP_PARENT;
9833         return statement;
9834 end_error:
9835         POP_PARENT;
9836         return create_invalid_statement();
9837 }
9838
9839 /**
9840  * Parse a label statement.
9841  */
9842 static statement_t *parse_label_statement(void)
9843 {
9844         assert(token.type == T_IDENTIFIER);
9845         symbol_t *symbol = token.v.symbol;
9846         label_t  *label  = get_label(symbol);
9847
9848         statement_t *const statement = allocate_statement_zero(STATEMENT_LABEL);
9849         statement->label.label       = label;
9850
9851         next_token();
9852
9853         PUSH_PARENT(statement);
9854
9855         /* if statement is already set then the label is defined twice,
9856          * otherwise it was just mentioned in a goto/local label declaration so far
9857          */
9858         if (label->statement != NULL) {
9859                 errorf(HERE, "duplicate label '%Y' (declared %P)",
9860                        symbol, &label->base.source_position);
9861         } else {
9862                 label->base.source_position = token.source_position;
9863                 label->statement            = statement;
9864         }
9865
9866         eat(':');
9867
9868         if (token.type == '}') {
9869                 /* TODO only warn? */
9870                 if (warning.other && false) {
9871                         warningf(HERE, "label at end of compound statement");
9872                         statement->label.statement = create_empty_statement();
9873                 } else {
9874                         errorf(HERE, "label at end of compound statement");
9875                         statement->label.statement = create_invalid_statement();
9876                 }
9877         } else if (token.type == ';') {
9878                 /* Eat an empty statement here, to avoid the warning about an empty
9879                  * statement after a label.  label:; is commonly used to have a label
9880                  * before a closing brace. */
9881                 statement->label.statement = create_empty_statement();
9882                 next_token();
9883         } else {
9884                 statement_t *const inner_stmt = parse_statement();
9885                 statement->label.statement = inner_stmt;
9886                 if (inner_stmt->kind == STATEMENT_DECLARATION) {
9887                         errorf(&inner_stmt->base.source_position, "declaration after label");
9888                 }
9889         }
9890
9891         /* remember the labels in a list for later checking */
9892         *label_anchor = &statement->label;
9893         label_anchor  = &statement->label.next;
9894
9895         POP_PARENT;
9896         return statement;
9897 }
9898
9899 /**
9900  * Parse an if statement.
9901  */
9902 static statement_t *parse_if(void)
9903 {
9904         statement_t *statement = allocate_statement_zero(STATEMENT_IF);
9905
9906         eat(T_if);
9907
9908         PUSH_PARENT(statement);
9909
9910         add_anchor_token('{');
9911
9912         expect('(');
9913         add_anchor_token(')');
9914         expression_t *const expr = parse_expression();
9915         statement->ifs.condition = expr;
9916         /* Â§6.8.4.1:1  The controlling expression of an if statement shall have
9917          *             scalar type. */
9918         semantic_condition(expr, "condition of 'if'-statment");
9919         mark_vars_read(expr, NULL);
9920         rem_anchor_token(')');
9921         expect(')');
9922
9923 end_error:
9924         rem_anchor_token('{');
9925
9926         add_anchor_token(T_else);
9927         statement->ifs.true_statement = parse_statement();
9928         rem_anchor_token(T_else);
9929
9930         if (token.type == T_else) {
9931                 next_token();
9932                 statement->ifs.false_statement = parse_statement();
9933         }
9934
9935         POP_PARENT;
9936         return statement;
9937 }
9938
9939 /**
9940  * Check that all enums are handled in a switch.
9941  *
9942  * @param statement  the switch statement to check
9943  */
9944 static void check_enum_cases(const switch_statement_t *statement) {
9945         const type_t *type = skip_typeref(statement->expression->base.type);
9946         if (! is_type_enum(type))
9947                 return;
9948         const enum_type_t *enumt = &type->enumt;
9949
9950         /* if we have a default, no warnings */
9951         if (statement->default_label != NULL)
9952                 return;
9953
9954         /* FIXME: calculation of value should be done while parsing */
9955         /* TODO: quadratic algorithm here. Change to an n log n one */
9956         long            last_value = -1;
9957         const entity_t *entry      = enumt->enume->base.next;
9958         for (; entry != NULL && entry->kind == ENTITY_ENUM_VALUE;
9959              entry = entry->base.next) {
9960                 const expression_t *expression = entry->enum_value.value;
9961                 long                value      = expression != NULL ? fold_constant(expression) : last_value + 1;
9962                 bool                found      = false;
9963                 for (const case_label_statement_t *l = statement->first_case; l != NULL; l = l->next) {
9964                         if (l->expression == NULL)
9965                                 continue;
9966                         if (l->first_case <= value && value <= l->last_case) {
9967                                 found = true;
9968                                 break;
9969                         }
9970                 }
9971                 if (! found) {
9972                         warningf(&statement->base.source_position,
9973                                  "enumeration value '%Y' not handled in switch",
9974                                  entry->base.symbol);
9975                 }
9976                 last_value = value;
9977         }
9978 }
9979
9980 /**
9981  * Parse a switch statement.
9982  */
9983 static statement_t *parse_switch(void)
9984 {
9985         statement_t *statement = allocate_statement_zero(STATEMENT_SWITCH);
9986
9987         eat(T_switch);
9988
9989         PUSH_PARENT(statement);
9990
9991         expect('(');
9992         add_anchor_token(')');
9993         expression_t *const expr = parse_expression();
9994         mark_vars_read(expr, NULL);
9995         type_t       *      type = skip_typeref(expr->base.type);
9996         if (is_type_integer(type)) {
9997                 type = promote_integer(type);
9998                 if (warning.traditional) {
9999                         if (get_rank(type) >= get_akind_rank(ATOMIC_TYPE_LONG)) {
10000                                 warningf(&expr->base.source_position,
10001                                         "'%T' switch expression not converted to '%T' in ISO C",
10002                                         type, type_int);
10003                         }
10004                 }
10005         } else if (is_type_valid(type)) {
10006                 errorf(&expr->base.source_position,
10007                        "switch quantity is not an integer, but '%T'", type);
10008                 type = type_error_type;
10009         }
10010         statement->switchs.expression = create_implicit_cast(expr, type);
10011         expect(')');
10012         rem_anchor_token(')');
10013
10014         switch_statement_t *rem = current_switch;
10015         current_switch          = &statement->switchs;
10016         statement->switchs.body = parse_statement();
10017         current_switch          = rem;
10018
10019         if (warning.switch_default &&
10020             statement->switchs.default_label == NULL) {
10021                 warningf(&statement->base.source_position, "switch has no default case");
10022         }
10023         if (warning.switch_enum)
10024                 check_enum_cases(&statement->switchs);
10025
10026         POP_PARENT;
10027         return statement;
10028 end_error:
10029         POP_PARENT;
10030         return create_invalid_statement();
10031 }
10032
10033 static statement_t *parse_loop_body(statement_t *const loop)
10034 {
10035         statement_t *const rem = current_loop;
10036         current_loop = loop;
10037
10038         statement_t *const body = parse_statement();
10039
10040         current_loop = rem;
10041         return body;
10042 }
10043
10044 /**
10045  * Parse a while statement.
10046  */
10047 static statement_t *parse_while(void)
10048 {
10049         statement_t *statement = allocate_statement_zero(STATEMENT_WHILE);
10050
10051         eat(T_while);
10052
10053         PUSH_PARENT(statement);
10054
10055         expect('(');
10056         add_anchor_token(')');
10057         expression_t *const cond = parse_expression();
10058         statement->whiles.condition = cond;
10059         /* Â§6.8.5:2    The controlling expression of an iteration statement shall
10060          *             have scalar type. */
10061         semantic_condition(cond, "condition of 'while'-statement");
10062         mark_vars_read(cond, NULL);
10063         rem_anchor_token(')');
10064         expect(')');
10065
10066         statement->whiles.body = parse_loop_body(statement);
10067
10068         POP_PARENT;
10069         return statement;
10070 end_error:
10071         POP_PARENT;
10072         return create_invalid_statement();
10073 }
10074
10075 /**
10076  * Parse a do statement.
10077  */
10078 static statement_t *parse_do(void)
10079 {
10080         statement_t *statement = allocate_statement_zero(STATEMENT_DO_WHILE);
10081
10082         eat(T_do);
10083
10084         PUSH_PARENT(statement);
10085
10086         add_anchor_token(T_while);
10087         statement->do_while.body = parse_loop_body(statement);
10088         rem_anchor_token(T_while);
10089
10090         expect(T_while);
10091         expect('(');
10092         add_anchor_token(')');
10093         expression_t *const cond = parse_expression();
10094         statement->do_while.condition = cond;
10095         /* Â§6.8.5:2    The controlling expression of an iteration statement shall
10096          *             have scalar type. */
10097         semantic_condition(cond, "condition of 'do-while'-statement");
10098         mark_vars_read(cond, NULL);
10099         rem_anchor_token(')');
10100         expect(')');
10101         expect(';');
10102
10103         POP_PARENT;
10104         return statement;
10105 end_error:
10106         POP_PARENT;
10107         return create_invalid_statement();
10108 }
10109
10110 /**
10111  * Parse a for statement.
10112  */
10113 static statement_t *parse_for(void)
10114 {
10115         statement_t *statement = allocate_statement_zero(STATEMENT_FOR);
10116
10117         eat(T_for);
10118
10119         PUSH_PARENT(statement);
10120
10121         size_t const  top       = environment_top();
10122         scope_t      *old_scope = scope_push(&statement->fors.scope);
10123
10124         expect('(');
10125         add_anchor_token(')');
10126
10127         if (token.type == ';') {
10128                 next_token();
10129         } else if (is_declaration_specifier(&token, false)) {
10130                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10131         } else {
10132                 add_anchor_token(';');
10133                 expression_t *const init = parse_expression();
10134                 statement->fors.initialisation = init;
10135                 mark_vars_read(init, ENT_ANY);
10136                 if (warning.unused_value && !expression_has_effect(init)) {
10137                         warningf(&init->base.source_position,
10138                                         "initialisation of 'for'-statement has no effect");
10139                 }
10140                 rem_anchor_token(';');
10141                 expect(';');
10142         }
10143
10144         if (token.type != ';') {
10145                 add_anchor_token(';');
10146                 expression_t *const cond = parse_expression();
10147                 statement->fors.condition = cond;
10148                 /* Â§6.8.5:2    The controlling expression of an iteration statement
10149                  *             shall have scalar type. */
10150                 semantic_condition(cond, "condition of 'for'-statement");
10151                 mark_vars_read(cond, NULL);
10152                 rem_anchor_token(';');
10153         }
10154         expect(';');
10155         if (token.type != ')') {
10156                 expression_t *const step = parse_expression();
10157                 statement->fors.step = step;
10158                 mark_vars_read(step, ENT_ANY);
10159                 if (warning.unused_value && !expression_has_effect(step)) {
10160                         warningf(&step->base.source_position,
10161                                  "step of 'for'-statement has no effect");
10162                 }
10163         }
10164         expect(')');
10165         rem_anchor_token(')');
10166         statement->fors.body = parse_loop_body(statement);
10167
10168         assert(current_scope == &statement->fors.scope);
10169         scope_pop(old_scope);
10170         environment_pop_to(top);
10171
10172         POP_PARENT;
10173         return statement;
10174
10175 end_error:
10176         POP_PARENT;
10177         rem_anchor_token(')');
10178         assert(current_scope == &statement->fors.scope);
10179         scope_pop(old_scope);
10180         environment_pop_to(top);
10181
10182         return create_invalid_statement();
10183 }
10184
10185 /**
10186  * Parse a goto statement.
10187  */
10188 static statement_t *parse_goto(void)
10189 {
10190         statement_t *statement = allocate_statement_zero(STATEMENT_GOTO);
10191         eat(T_goto);
10192
10193         if (GNU_MODE && token.type == '*') {
10194                 next_token();
10195                 expression_t *expression = parse_expression();
10196                 mark_vars_read(expression, NULL);
10197
10198                 /* Argh: although documentation says the expression must be of type void*,
10199                  * gcc accepts anything that can be casted into void* without error */
10200                 type_t *type = expression->base.type;
10201
10202                 if (type != type_error_type) {
10203                         if (!is_type_pointer(type) && !is_type_integer(type)) {
10204                                 errorf(&expression->base.source_position,
10205                                         "cannot convert to a pointer type");
10206                         } else if (warning.other && type != type_void_ptr) {
10207                                 warningf(&expression->base.source_position,
10208                                         "type of computed goto expression should be 'void*' not '%T'", type);
10209                         }
10210                         expression = create_implicit_cast(expression, type_void_ptr);
10211                 }
10212
10213                 statement->gotos.expression = expression;
10214         } else {
10215                 if (token.type != T_IDENTIFIER) {
10216                         if (GNU_MODE)
10217                                 parse_error_expected("while parsing goto", T_IDENTIFIER, '*', NULL);
10218                         else
10219                                 parse_error_expected("while parsing goto", T_IDENTIFIER, NULL);
10220                         eat_until_anchor();
10221                         goto end_error;
10222                 }
10223                 symbol_t *symbol = token.v.symbol;
10224                 next_token();
10225
10226                 statement->gotos.label = get_label(symbol);
10227         }
10228
10229         /* remember the goto's in a list for later checking */
10230         *goto_anchor = &statement->gotos;
10231         goto_anchor  = &statement->gotos.next;
10232
10233         expect(';');
10234
10235         return statement;
10236 end_error:
10237         return create_invalid_statement();
10238 }
10239
10240 /**
10241  * Parse a continue statement.
10242  */
10243 static statement_t *parse_continue(void)
10244 {
10245         if (current_loop == NULL) {
10246                 errorf(HERE, "continue statement not within loop");
10247         }
10248
10249         statement_t *statement = allocate_statement_zero(STATEMENT_CONTINUE);
10250
10251         eat(T_continue);
10252         expect(';');
10253
10254 end_error:
10255         return statement;
10256 }
10257
10258 /**
10259  * Parse a break statement.
10260  */
10261 static statement_t *parse_break(void)
10262 {
10263         if (current_switch == NULL && current_loop == NULL) {
10264                 errorf(HERE, "break statement not within loop or switch");
10265         }
10266
10267         statement_t *statement = allocate_statement_zero(STATEMENT_BREAK);
10268
10269         eat(T_break);
10270         expect(';');
10271
10272 end_error:
10273         return statement;
10274 }
10275
10276 /**
10277  * Parse a __leave statement.
10278  */
10279 static statement_t *parse_leave_statement(void)
10280 {
10281         if (current_try == NULL) {
10282                 errorf(HERE, "__leave statement not within __try");
10283         }
10284
10285         statement_t *statement = allocate_statement_zero(STATEMENT_LEAVE);
10286
10287         eat(T___leave);
10288         expect(';');
10289
10290 end_error:
10291         return statement;
10292 }
10293
10294 /**
10295  * Check if a given entity represents a local variable.
10296  */
10297 static bool is_local_variable(const entity_t *entity)
10298 {
10299         if (entity->kind != ENTITY_VARIABLE)
10300                 return false;
10301
10302         switch ((storage_class_tag_t) entity->declaration.storage_class) {
10303         case STORAGE_CLASS_AUTO:
10304         case STORAGE_CLASS_REGISTER: {
10305                 const type_t *type = skip_typeref(entity->declaration.type);
10306                 if (is_type_function(type)) {
10307                         return false;
10308                 } else {
10309                         return true;
10310                 }
10311         }
10312         default:
10313                 return false;
10314         }
10315 }
10316
10317 /**
10318  * Check if a given expression represents a local variable.
10319  */
10320 static bool expression_is_local_variable(const expression_t *expression)
10321 {
10322         if (expression->base.kind != EXPR_REFERENCE) {
10323                 return false;
10324         }
10325         const entity_t *entity = expression->reference.entity;
10326         return is_local_variable(entity);
10327 }
10328
10329 /**
10330  * Check if a given expression represents a local variable and
10331  * return its declaration then, else return NULL.
10332  */
10333 entity_t *expression_is_variable(const expression_t *expression)
10334 {
10335         if (expression->base.kind != EXPR_REFERENCE) {
10336                 return NULL;
10337         }
10338         entity_t *entity = expression->reference.entity;
10339         if (entity->kind != ENTITY_VARIABLE)
10340                 return NULL;
10341
10342         return entity;
10343 }
10344
10345 /**
10346  * Parse a return statement.
10347  */
10348 static statement_t *parse_return(void)
10349 {
10350         eat(T_return);
10351
10352         statement_t *statement = allocate_statement_zero(STATEMENT_RETURN);
10353
10354         expression_t *return_value = NULL;
10355         if (token.type != ';') {
10356                 return_value = parse_expression();
10357                 mark_vars_read(return_value, NULL);
10358         }
10359
10360         const type_t *const func_type = skip_typeref(current_function->base.type);
10361         assert(is_type_function(func_type));
10362         type_t *const return_type = skip_typeref(func_type->function.return_type);
10363
10364         if (return_value != NULL) {
10365                 type_t *return_value_type = skip_typeref(return_value->base.type);
10366
10367                 if (is_type_atomic(return_type,        ATOMIC_TYPE_VOID) &&
10368                                 !is_type_atomic(return_value_type, ATOMIC_TYPE_VOID)) {
10369                         if (warning.other) {
10370                                 warningf(&statement->base.source_position,
10371                                                 "'return' with a value, in function returning void");
10372                         }
10373                         return_value = NULL;
10374                 } else {
10375                         assign_error_t error = semantic_assign(return_type, return_value);
10376                         report_assign_error(error, return_type, return_value, "'return'",
10377                                             &statement->base.source_position);
10378                         return_value = create_implicit_cast(return_value, return_type);
10379                 }
10380                 /* check for returning address of a local var */
10381                 if (warning.other && return_value != NULL
10382                                 && return_value->base.kind == EXPR_UNARY_TAKE_ADDRESS) {
10383                         const expression_t *expression = return_value->unary.value;
10384                         if (expression_is_local_variable(expression)) {
10385                                 warningf(&statement->base.source_position,
10386                                          "function returns address of local variable");
10387                         }
10388                 }
10389         } else if (warning.other && !is_type_atomic(return_type, ATOMIC_TYPE_VOID)) {
10390                 warningf(&statement->base.source_position,
10391                                 "'return' without value, in function returning non-void");
10392         }
10393         statement->returns.value = return_value;
10394
10395         expect(';');
10396
10397 end_error:
10398         return statement;
10399 }
10400
10401 /**
10402  * Parse a declaration statement.
10403  */
10404 static statement_t *parse_declaration_statement(void)
10405 {
10406         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10407
10408         entity_t *before = current_scope->last_entity;
10409         if (GNU_MODE) {
10410                 parse_external_declaration();
10411         } else {
10412                 parse_declaration(record_entity, DECL_FLAGS_NONE);
10413         }
10414
10415         if (before == NULL) {
10416                 statement->declaration.declarations_begin = current_scope->entities;
10417         } else {
10418                 statement->declaration.declarations_begin = before->base.next;
10419         }
10420         statement->declaration.declarations_end = current_scope->last_entity;
10421
10422         return statement;
10423 }
10424
10425 /**
10426  * Parse an expression statement, ie. expr ';'.
10427  */
10428 static statement_t *parse_expression_statement(void)
10429 {
10430         statement_t *statement = allocate_statement_zero(STATEMENT_EXPRESSION);
10431
10432         expression_t *const expr         = parse_expression();
10433         statement->expression.expression = expr;
10434         mark_vars_read(expr, ENT_ANY);
10435
10436         expect(';');
10437
10438 end_error:
10439         return statement;
10440 }
10441
10442 /**
10443  * Parse a microsoft __try { } __finally { } or
10444  * __try{ } __except() { }
10445  */
10446 static statement_t *parse_ms_try_statment(void)
10447 {
10448         statement_t *statement = allocate_statement_zero(STATEMENT_MS_TRY);
10449         eat(T___try);
10450
10451         PUSH_PARENT(statement);
10452
10453         ms_try_statement_t *rem = current_try;
10454         current_try = &statement->ms_try;
10455         statement->ms_try.try_statement = parse_compound_statement(false);
10456         current_try = rem;
10457
10458         POP_PARENT;
10459
10460         if (token.type == T___except) {
10461                 eat(T___except);
10462                 expect('(');
10463                 add_anchor_token(')');
10464                 expression_t *const expr = parse_expression();
10465                 mark_vars_read(expr, NULL);
10466                 type_t       *      type = skip_typeref(expr->base.type);
10467                 if (is_type_integer(type)) {
10468                         type = promote_integer(type);
10469                 } else if (is_type_valid(type)) {
10470                         errorf(&expr->base.source_position,
10471                                "__expect expression is not an integer, but '%T'", type);
10472                         type = type_error_type;
10473                 }
10474                 statement->ms_try.except_expression = create_implicit_cast(expr, type);
10475                 rem_anchor_token(')');
10476                 expect(')');
10477                 statement->ms_try.final_statement = parse_compound_statement(false);
10478         } else if (token.type == T__finally) {
10479                 eat(T___finally);
10480                 statement->ms_try.final_statement = parse_compound_statement(false);
10481         } else {
10482                 parse_error_expected("while parsing __try statement", T___except, T___finally, NULL);
10483                 return create_invalid_statement();
10484         }
10485         return statement;
10486 end_error:
10487         return create_invalid_statement();
10488 }
10489
10490 static statement_t *parse_empty_statement(void)
10491 {
10492         if (warning.empty_statement) {
10493                 warningf(HERE, "statement is empty");
10494         }
10495         statement_t *const statement = create_empty_statement();
10496         eat(';');
10497         return statement;
10498 }
10499
10500 static statement_t *parse_local_label_declaration(void)
10501 {
10502         statement_t *statement = allocate_statement_zero(STATEMENT_DECLARATION);
10503
10504         eat(T___label__);
10505
10506         entity_t *begin = NULL, *end = NULL;
10507
10508         while (true) {
10509                 if (token.type != T_IDENTIFIER) {
10510                         parse_error_expected("while parsing local label declaration",
10511                                 T_IDENTIFIER, NULL);
10512                         goto end_error;
10513                 }
10514                 symbol_t *symbol = token.v.symbol;
10515                 entity_t *entity = get_entity(symbol, NAMESPACE_LABEL);
10516                 if (entity != NULL && entity->base.parent_scope == current_scope) {
10517                         errorf(HERE, "multiple definitions of '__label__ %Y' (previous definition %P)",
10518                                symbol, &entity->base.source_position);
10519                 } else {
10520                         entity = allocate_entity_zero(ENTITY_LOCAL_LABEL);
10521
10522                         entity->base.parent_scope    = current_scope;
10523                         entity->base.namespc         = NAMESPACE_LABEL;
10524                         entity->base.source_position = token.source_position;
10525                         entity->base.symbol          = symbol;
10526
10527                         if (end != NULL)
10528                                 end->base.next = entity;
10529                         end = entity;
10530                         if (begin == NULL)
10531                                 begin = entity;
10532
10533                         environment_push(entity);
10534                 }
10535                 next_token();
10536
10537                 if (token.type != ',')
10538                         break;
10539                 next_token();
10540         }
10541         eat(';');
10542 end_error:
10543         statement->declaration.declarations_begin = begin;
10544         statement->declaration.declarations_end   = end;
10545         return statement;
10546 }
10547
10548 static void parse_namespace_definition(void)
10549 {
10550         eat(T_namespace);
10551
10552         entity_t *entity = NULL;
10553         symbol_t *symbol = NULL;
10554
10555         if (token.type == T_IDENTIFIER) {
10556                 symbol = token.v.symbol;
10557                 next_token();
10558
10559                 entity = get_entity(symbol, NAMESPACE_NORMAL);
10560                 if (entity != NULL && entity->kind != ENTITY_NAMESPACE
10561                                 && entity->base.parent_scope == current_scope) {
10562                         error_redefined_as_different_kind(&token.source_position,
10563                                                           entity, ENTITY_NAMESPACE);
10564                         entity = NULL;
10565                 }
10566         }
10567
10568         if (entity == NULL) {
10569                 entity                       = allocate_entity_zero(ENTITY_NAMESPACE);
10570                 entity->base.symbol          = symbol;
10571                 entity->base.source_position = token.source_position;
10572                 entity->base.namespc         = NAMESPACE_NORMAL;
10573                 entity->base.parent_scope    = current_scope;
10574         }
10575
10576         if (token.type == '=') {
10577                 /* TODO: parse namespace alias */
10578                 panic("namespace alias definition not supported yet");
10579         }
10580
10581         environment_push(entity);
10582         append_entity(current_scope, entity);
10583
10584         size_t const  top       = environment_top();
10585         scope_t      *old_scope = scope_push(&entity->namespacee.members);
10586
10587         expect('{');
10588         parse_externals();
10589         expect('}');
10590
10591 end_error:
10592         assert(current_scope == &entity->namespacee.members);
10593         scope_pop(old_scope);
10594         environment_pop_to(top);
10595 }
10596
10597 /**
10598  * Parse a statement.
10599  * There's also parse_statement() which additionally checks for
10600  * "statement has no effect" warnings
10601  */
10602 static statement_t *intern_parse_statement(void)
10603 {
10604         statement_t *statement = NULL;
10605
10606         /* declaration or statement */
10607         add_anchor_token(';');
10608         switch (token.type) {
10609         case T_IDENTIFIER: {
10610                 token_type_t la1_type = (token_type_t)look_ahead(1)->type;
10611                 if (la1_type == ':') {
10612                         statement = parse_label_statement();
10613                 } else if (is_typedef_symbol(token.v.symbol)) {
10614                         statement = parse_declaration_statement();
10615                 } else {
10616                         /* it's an identifier, the grammar says this must be an
10617                          * expression statement. However it is common that users mistype
10618                          * declaration types, so we guess a bit here to improve robustness
10619                          * for incorrect programs */
10620                         switch (la1_type) {
10621                         case '&':
10622                         case '*':
10623                                 if (get_entity(token.v.symbol, NAMESPACE_NORMAL) != NULL)
10624                                         goto expression_statment;
10625                                 /* FALLTHROUGH */
10626
10627                         DECLARATION_START
10628                         case T_IDENTIFIER:
10629                                 statement = parse_declaration_statement();
10630                                 break;
10631
10632                         default:
10633 expression_statment:
10634                                 statement = parse_expression_statement();
10635                                 break;
10636                         }
10637                 }
10638                 break;
10639         }
10640
10641         case T___extension__:
10642                 /* This can be a prefix to a declaration or an expression statement.
10643                  * We simply eat it now and parse the rest with tail recursion. */
10644                 do {
10645                         next_token();
10646                 } while (token.type == T___extension__);
10647                 bool old_gcc_extension = in_gcc_extension;
10648                 in_gcc_extension       = true;
10649                 statement = intern_parse_statement();
10650                 in_gcc_extension = old_gcc_extension;
10651                 break;
10652
10653         DECLARATION_START
10654                 statement = parse_declaration_statement();
10655                 break;
10656
10657         case T___label__:
10658                 statement = parse_local_label_declaration();
10659                 break;
10660
10661         case ';':         statement = parse_empty_statement();         break;
10662         case '{':         statement = parse_compound_statement(false); break;
10663         case T___leave:   statement = parse_leave_statement();         break;
10664         case T___try:     statement = parse_ms_try_statment();         break;
10665         case T_asm:       statement = parse_asm_statement();           break;
10666         case T_break:     statement = parse_break();                   break;
10667         case T_case:      statement = parse_case_statement();          break;
10668         case T_continue:  statement = parse_continue();                break;
10669         case T_default:   statement = parse_default_statement();       break;
10670         case T_do:        statement = parse_do();                      break;
10671         case T_for:       statement = parse_for();                     break;
10672         case T_goto:      statement = parse_goto();                    break;
10673         case T_if:        statement = parse_if();                      break;
10674         case T_return:    statement = parse_return();                  break;
10675         case T_switch:    statement = parse_switch();                  break;
10676         case T_while:     statement = parse_while();                   break;
10677
10678         EXPRESSION_START
10679                 statement = parse_expression_statement();
10680                 break;
10681
10682         default:
10683                 errorf(HERE, "unexpected token %K while parsing statement", &token);
10684                 statement = create_invalid_statement();
10685                 if (!at_anchor())
10686                         next_token();
10687                 break;
10688         }
10689         rem_anchor_token(';');
10690
10691         assert(statement != NULL
10692                         && statement->base.source_position.input_name != NULL);
10693
10694         return statement;
10695 }
10696
10697 /**
10698  * parse a statement and emits "statement has no effect" warning if needed
10699  * (This is really a wrapper around intern_parse_statement with check for 1
10700  *  single warning. It is needed, because for statement expressions we have
10701  *  to avoid the warning on the last statement)
10702  */
10703 static statement_t *parse_statement(void)
10704 {
10705         statement_t *statement = intern_parse_statement();
10706
10707         if (statement->kind == STATEMENT_EXPRESSION && warning.unused_value) {
10708                 expression_t *expression = statement->expression.expression;
10709                 if (!expression_has_effect(expression)) {
10710                         warningf(&expression->base.source_position,
10711                                         "statement has no effect");
10712                 }
10713         }
10714
10715         return statement;
10716 }
10717
10718 /**
10719  * Parse a compound statement.
10720  */
10721 static statement_t *parse_compound_statement(bool inside_expression_statement)
10722 {
10723         statement_t *statement = allocate_statement_zero(STATEMENT_COMPOUND);
10724
10725         PUSH_PARENT(statement);
10726
10727         eat('{');
10728         add_anchor_token('}');
10729         /* tokens, which can start a statement */
10730         /* TODO C++, MS, __builtin_FOO */
10731         add_anchor_token('!');
10732         add_anchor_token('&');
10733         add_anchor_token('(');
10734         add_anchor_token('*');
10735         add_anchor_token('+');
10736         add_anchor_token('-');
10737         add_anchor_token('{');
10738         add_anchor_token('~');
10739         add_anchor_token(T_CHARACTER_CONSTANT);
10740         add_anchor_token(T_COLONCOLON);
10741         add_anchor_token(T_FLOATINGPOINT);
10742         add_anchor_token(T_IDENTIFIER);
10743         add_anchor_token(T_INTEGER);
10744         add_anchor_token(T_MINUSMINUS);
10745         add_anchor_token(T_PLUSPLUS);
10746         add_anchor_token(T_STRING_LITERAL);
10747         add_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10748         add_anchor_token(T_WIDE_STRING_LITERAL);
10749         add_anchor_token(T__Bool);
10750         add_anchor_token(T__Complex);
10751         add_anchor_token(T__Imaginary);
10752         add_anchor_token(T___FUNCTION__);
10753         add_anchor_token(T___PRETTY_FUNCTION__);
10754         add_anchor_token(T___alignof__);
10755         add_anchor_token(T___attribute__);
10756         add_anchor_token(T___builtin_va_start);
10757         add_anchor_token(T___extension__);
10758         add_anchor_token(T___func__);
10759         add_anchor_token(T___imag__);
10760         add_anchor_token(T___label__);
10761         add_anchor_token(T___real__);
10762         add_anchor_token(T___thread);
10763         add_anchor_token(T_asm);
10764         add_anchor_token(T_auto);
10765         add_anchor_token(T_bool);
10766         add_anchor_token(T_break);
10767         add_anchor_token(T_case);
10768         add_anchor_token(T_char);
10769         add_anchor_token(T_class);
10770         add_anchor_token(T_const);
10771         add_anchor_token(T_const_cast);
10772         add_anchor_token(T_continue);
10773         add_anchor_token(T_default);
10774         add_anchor_token(T_delete);
10775         add_anchor_token(T_double);
10776         add_anchor_token(T_do);
10777         add_anchor_token(T_dynamic_cast);
10778         add_anchor_token(T_enum);
10779         add_anchor_token(T_extern);
10780         add_anchor_token(T_false);
10781         add_anchor_token(T_float);
10782         add_anchor_token(T_for);
10783         add_anchor_token(T_goto);
10784         add_anchor_token(T_if);
10785         add_anchor_token(T_inline);
10786         add_anchor_token(T_int);
10787         add_anchor_token(T_long);
10788         add_anchor_token(T_new);
10789         add_anchor_token(T_register);
10790         add_anchor_token(T_reinterpret_cast);
10791         add_anchor_token(T_restrict);
10792         add_anchor_token(T_return);
10793         add_anchor_token(T_short);
10794         add_anchor_token(T_signed);
10795         add_anchor_token(T_sizeof);
10796         add_anchor_token(T_static);
10797         add_anchor_token(T_static_cast);
10798         add_anchor_token(T_struct);
10799         add_anchor_token(T_switch);
10800         add_anchor_token(T_template);
10801         add_anchor_token(T_this);
10802         add_anchor_token(T_throw);
10803         add_anchor_token(T_true);
10804         add_anchor_token(T_try);
10805         add_anchor_token(T_typedef);
10806         add_anchor_token(T_typeid);
10807         add_anchor_token(T_typename);
10808         add_anchor_token(T_typeof);
10809         add_anchor_token(T_union);
10810         add_anchor_token(T_unsigned);
10811         add_anchor_token(T_using);
10812         add_anchor_token(T_void);
10813         add_anchor_token(T_volatile);
10814         add_anchor_token(T_wchar_t);
10815         add_anchor_token(T_while);
10816
10817         size_t const  top       = environment_top();
10818         scope_t      *old_scope = scope_push(&statement->compound.scope);
10819
10820         statement_t **anchor            = &statement->compound.statements;
10821         bool          only_decls_so_far = true;
10822         while (token.type != '}') {
10823                 if (token.type == T_EOF) {
10824                         errorf(&statement->base.source_position,
10825                                "EOF while parsing compound statement");
10826                         break;
10827                 }
10828                 statement_t *sub_statement = intern_parse_statement();
10829                 if (is_invalid_statement(sub_statement)) {
10830                         /* an error occurred. if we are at an anchor, return */
10831                         if (at_anchor())
10832                                 goto end_error;
10833                         continue;
10834                 }
10835
10836                 if (warning.declaration_after_statement) {
10837                         if (sub_statement->kind != STATEMENT_DECLARATION) {
10838                                 only_decls_so_far = false;
10839                         } else if (!only_decls_so_far) {
10840                                 warningf(&sub_statement->base.source_position,
10841                                          "ISO C90 forbids mixed declarations and code");
10842                         }
10843                 }
10844
10845                 *anchor = sub_statement;
10846
10847                 while (sub_statement->base.next != NULL)
10848                         sub_statement = sub_statement->base.next;
10849
10850                 anchor = &sub_statement->base.next;
10851         }
10852         next_token();
10853
10854         /* look over all statements again to produce no effect warnings */
10855         if (warning.unused_value) {
10856                 statement_t *sub_statement = statement->compound.statements;
10857                 for (; sub_statement != NULL; sub_statement = sub_statement->base.next) {
10858                         if (sub_statement->kind != STATEMENT_EXPRESSION)
10859                                 continue;
10860                         /* don't emit a warning for the last expression in an expression
10861                          * statement as it has always an effect */
10862                         if (inside_expression_statement && sub_statement->base.next == NULL)
10863                                 continue;
10864
10865                         expression_t *expression = sub_statement->expression.expression;
10866                         if (!expression_has_effect(expression)) {
10867                                 warningf(&expression->base.source_position,
10868                                          "statement has no effect");
10869                         }
10870                 }
10871         }
10872
10873 end_error:
10874         rem_anchor_token(T_while);
10875         rem_anchor_token(T_wchar_t);
10876         rem_anchor_token(T_volatile);
10877         rem_anchor_token(T_void);
10878         rem_anchor_token(T_using);
10879         rem_anchor_token(T_unsigned);
10880         rem_anchor_token(T_union);
10881         rem_anchor_token(T_typeof);
10882         rem_anchor_token(T_typename);
10883         rem_anchor_token(T_typeid);
10884         rem_anchor_token(T_typedef);
10885         rem_anchor_token(T_try);
10886         rem_anchor_token(T_true);
10887         rem_anchor_token(T_throw);
10888         rem_anchor_token(T_this);
10889         rem_anchor_token(T_template);
10890         rem_anchor_token(T_switch);
10891         rem_anchor_token(T_struct);
10892         rem_anchor_token(T_static_cast);
10893         rem_anchor_token(T_static);
10894         rem_anchor_token(T_sizeof);
10895         rem_anchor_token(T_signed);
10896         rem_anchor_token(T_short);
10897         rem_anchor_token(T_return);
10898         rem_anchor_token(T_restrict);
10899         rem_anchor_token(T_reinterpret_cast);
10900         rem_anchor_token(T_register);
10901         rem_anchor_token(T_new);
10902         rem_anchor_token(T_long);
10903         rem_anchor_token(T_int);
10904         rem_anchor_token(T_inline);
10905         rem_anchor_token(T_if);
10906         rem_anchor_token(T_goto);
10907         rem_anchor_token(T_for);
10908         rem_anchor_token(T_float);
10909         rem_anchor_token(T_false);
10910         rem_anchor_token(T_extern);
10911         rem_anchor_token(T_enum);
10912         rem_anchor_token(T_dynamic_cast);
10913         rem_anchor_token(T_do);
10914         rem_anchor_token(T_double);
10915         rem_anchor_token(T_delete);
10916         rem_anchor_token(T_default);
10917         rem_anchor_token(T_continue);
10918         rem_anchor_token(T_const_cast);
10919         rem_anchor_token(T_const);
10920         rem_anchor_token(T_class);
10921         rem_anchor_token(T_char);
10922         rem_anchor_token(T_case);
10923         rem_anchor_token(T_break);
10924         rem_anchor_token(T_bool);
10925         rem_anchor_token(T_auto);
10926         rem_anchor_token(T_asm);
10927         rem_anchor_token(T___thread);
10928         rem_anchor_token(T___real__);
10929         rem_anchor_token(T___label__);
10930         rem_anchor_token(T___imag__);
10931         rem_anchor_token(T___func__);
10932         rem_anchor_token(T___extension__);
10933         rem_anchor_token(T___builtin_va_start);
10934         rem_anchor_token(T___attribute__);
10935         rem_anchor_token(T___alignof__);
10936         rem_anchor_token(T___PRETTY_FUNCTION__);
10937         rem_anchor_token(T___FUNCTION__);
10938         rem_anchor_token(T__Imaginary);
10939         rem_anchor_token(T__Complex);
10940         rem_anchor_token(T__Bool);
10941         rem_anchor_token(T_WIDE_STRING_LITERAL);
10942         rem_anchor_token(T_WIDE_CHARACTER_CONSTANT);
10943         rem_anchor_token(T_STRING_LITERAL);
10944         rem_anchor_token(T_PLUSPLUS);
10945         rem_anchor_token(T_MINUSMINUS);
10946         rem_anchor_token(T_INTEGER);
10947         rem_anchor_token(T_IDENTIFIER);
10948         rem_anchor_token(T_FLOATINGPOINT);
10949         rem_anchor_token(T_COLONCOLON);
10950         rem_anchor_token(T_CHARACTER_CONSTANT);
10951         rem_anchor_token('~');
10952         rem_anchor_token('{');
10953         rem_anchor_token('-');
10954         rem_anchor_token('+');
10955         rem_anchor_token('*');
10956         rem_anchor_token('(');
10957         rem_anchor_token('&');
10958         rem_anchor_token('!');
10959         rem_anchor_token('}');
10960         assert(current_scope == &statement->compound.scope);
10961         scope_pop(old_scope);
10962         environment_pop_to(top);
10963
10964         POP_PARENT;
10965         return statement;
10966 }
10967
10968 /**
10969  * Check for unused global static functions and variables
10970  */
10971 static void check_unused_globals(void)
10972 {
10973         if (!warning.unused_function && !warning.unused_variable)
10974                 return;
10975
10976         for (const entity_t *entity = file_scope->entities; entity != NULL;
10977              entity = entity->base.next) {
10978                 if (!is_declaration(entity))
10979                         continue;
10980
10981                 const declaration_t *declaration = &entity->declaration;
10982                 if (declaration->used                  ||
10983                     declaration->modifiers & DM_UNUSED ||
10984                     declaration->modifiers & DM_USED   ||
10985                     declaration->storage_class != STORAGE_CLASS_STATIC)
10986                         continue;
10987
10988                 type_t *const type = declaration->type;
10989                 const char *s;
10990                 if (entity->kind == ENTITY_FUNCTION) {
10991                         /* inhibit warning for static inline functions */
10992                         if (entity->function.is_inline)
10993                                 continue;
10994
10995                         s = entity->function.statement != NULL ? "defined" : "declared";
10996                 } else {
10997                         s = "defined";
10998                 }
10999
11000                 warningf(&declaration->base.source_position, "'%#T' %s but not used",
11001                         type, declaration->base.symbol, s);
11002         }
11003 }
11004
11005 static void parse_global_asm(void)
11006 {
11007         statement_t *statement = allocate_statement_zero(STATEMENT_ASM);
11008
11009         eat(T_asm);
11010         expect('(');
11011
11012         statement->asms.asm_text = parse_string_literals();
11013         statement->base.next     = unit->global_asm;
11014         unit->global_asm         = statement;
11015
11016         expect(')');
11017         expect(';');
11018
11019 end_error:;
11020 }
11021
11022 static void parse_linkage_specification(void)
11023 {
11024         eat(T_extern);
11025         assert(token.type == T_STRING_LITERAL);
11026
11027         const char *linkage = parse_string_literals().begin;
11028
11029         linkage_kind_t old_linkage = current_linkage;
11030         linkage_kind_t new_linkage;
11031         if (strcmp(linkage, "C") == 0) {
11032                 new_linkage = LINKAGE_C;
11033         } else if (strcmp(linkage, "C++") == 0) {
11034                 new_linkage = LINKAGE_CXX;
11035         } else {
11036                 errorf(HERE, "linkage string \"%s\" not recognized", linkage);
11037                 new_linkage = LINKAGE_INVALID;
11038         }
11039         current_linkage = new_linkage;
11040
11041         if (token.type == '{') {
11042                 next_token();
11043                 parse_externals();
11044                 expect('}');
11045         } else {
11046                 parse_external();
11047         }
11048
11049 end_error:
11050         assert(current_linkage == new_linkage);
11051         current_linkage = old_linkage;
11052 }
11053
11054 static void parse_external(void)
11055 {
11056         switch (token.type) {
11057                 DECLARATION_START_NO_EXTERN
11058                 case T_IDENTIFIER:
11059                 case T___extension__:
11060                 /* tokens below are for implicit int */
11061                 case '&': /* & x; -> int& x; (and error later, because C++ has no
11062                              implicit int) */
11063                 case '*': /* * x; -> int* x; */
11064                 case '(': /* (x); -> int (x); */
11065                         parse_external_declaration();
11066                         return;
11067
11068                 case T_extern:
11069                         if (look_ahead(1)->type == T_STRING_LITERAL) {
11070                                 parse_linkage_specification();
11071                         } else {
11072                                 parse_external_declaration();
11073                         }
11074                         return;
11075
11076                 case T_asm:
11077                         parse_global_asm();
11078                         return;
11079
11080                 case T_namespace:
11081                         parse_namespace_definition();
11082                         return;
11083
11084                 case ';':
11085                         if (!strict_mode) {
11086                                 if (warning.other)
11087                                         warningf(HERE, "stray ';' outside of function");
11088                                 next_token();
11089                                 return;
11090                         }
11091                         /* FALLTHROUGH */
11092
11093                 default:
11094                         errorf(HERE, "stray %K outside of function", &token);
11095                         if (token.type == '(' || token.type == '{' || token.type == '[')
11096                                 eat_until_matching_token(token.type);
11097                         next_token();
11098                         return;
11099         }
11100 }
11101
11102 static void parse_externals(void)
11103 {
11104         add_anchor_token('}');
11105         add_anchor_token(T_EOF);
11106
11107 #ifndef NDEBUG
11108         unsigned char token_anchor_copy[T_LAST_TOKEN];
11109         memcpy(token_anchor_copy, token_anchor_set, sizeof(token_anchor_copy));
11110 #endif
11111
11112         while (token.type != T_EOF && token.type != '}') {
11113 #ifndef NDEBUG
11114                 bool anchor_leak = false;
11115                 for (int i = 0; i != T_LAST_TOKEN; ++i) {
11116                         unsigned char count = token_anchor_set[i] - token_anchor_copy[i];
11117                         if (count != 0) {
11118                                 errorf(HERE, "Leaked anchor token %k %d times", i, count);
11119                                 anchor_leak = true;
11120                         }
11121                 }
11122                 if (in_gcc_extension) {
11123                         errorf(HERE, "Leaked __extension__");
11124                         anchor_leak = true;
11125                 }
11126
11127                 if (anchor_leak)
11128                         abort();
11129 #endif
11130
11131                 parse_external();
11132         }
11133
11134         rem_anchor_token(T_EOF);
11135         rem_anchor_token('}');
11136 }
11137
11138 /**
11139  * Parse a translation unit.
11140  */
11141 static void parse_translation_unit(void)
11142 {
11143         add_anchor_token(T_EOF);
11144
11145         while (true) {
11146                 parse_externals();
11147
11148                 if (token.type == T_EOF)
11149                         break;
11150
11151                 errorf(HERE, "stray %K outside of function", &token);
11152                 if (token.type == '(' || token.type == '{' || token.type == '[')
11153                         eat_until_matching_token(token.type);
11154                 next_token();
11155         }
11156 }
11157
11158 /**
11159  * Parse the input.
11160  *
11161  * @return  the translation unit or NULL if errors occurred.
11162  */
11163 void start_parsing(void)
11164 {
11165         environment_stack = NEW_ARR_F(stack_entry_t, 0);
11166         label_stack       = NEW_ARR_F(stack_entry_t, 0);
11167         diagnostic_count  = 0;
11168         error_count       = 0;
11169         warning_count     = 0;
11170
11171         type_set_output(stderr);
11172         ast_set_output(stderr);
11173
11174         assert(unit == NULL);
11175         unit = allocate_ast_zero(sizeof(unit[0]));
11176
11177         assert(file_scope == NULL);
11178         file_scope = &unit->scope;
11179
11180         assert(current_scope == NULL);
11181         scope_push(&unit->scope);
11182 }
11183
11184 translation_unit_t *finish_parsing(void)
11185 {
11186         assert(current_scope == &unit->scope);
11187         scope_pop(NULL);
11188
11189         assert(file_scope == &unit->scope);
11190         check_unused_globals();
11191         file_scope = NULL;
11192
11193         DEL_ARR_F(environment_stack);
11194         DEL_ARR_F(label_stack);
11195
11196         translation_unit_t *result = unit;
11197         unit = NULL;
11198         return result;
11199 }
11200
11201 /* GCC allows global arrays without size and assigns them a length of one,
11202  * if no different declaration follows */
11203 static void complete_incomplete_arrays(void)
11204 {
11205         size_t n = ARR_LEN(incomplete_arrays);
11206         for (size_t i = 0; i != n; ++i) {
11207                 declaration_t *const decl      = incomplete_arrays[i];
11208                 type_t        *const orig_type = decl->type;
11209                 type_t        *const type      = skip_typeref(orig_type);
11210
11211                 if (!is_type_incomplete(type))
11212                         continue;
11213
11214                 if (warning.other) {
11215                         warningf(&decl->base.source_position,
11216                                         "array '%#T' assumed to have one element",
11217                                         orig_type, decl->base.symbol);
11218                 }
11219
11220                 type_t *const new_type = duplicate_type(type);
11221                 new_type->array.size_constant     = true;
11222                 new_type->array.has_implicit_size = true;
11223                 new_type->array.size              = 1;
11224
11225                 type_t *const result = typehash_insert(new_type);
11226                 if (type != result)
11227                         free_type(type);
11228
11229                 decl->type = result;
11230         }
11231 }
11232
11233 void parse(void)
11234 {
11235         lookahead_bufpos = 0;
11236         for (int i = 0; i < MAX_LOOKAHEAD + 2; ++i) {
11237                 next_token();
11238         }
11239         current_linkage   = c_mode & _CXX ? LINKAGE_CXX : LINKAGE_C;
11240         incomplete_arrays = NEW_ARR_F(declaration_t*, 0);
11241         parse_translation_unit();
11242         complete_incomplete_arrays();
11243         DEL_ARR_F(incomplete_arrays);
11244         incomplete_arrays = NULL;
11245 }
11246
11247 /**
11248  * Initialize the parser.
11249  */
11250 void init_parser(void)
11251 {
11252         sym_anonymous = symbol_table_insert("<anonymous>");
11253
11254         if (c_mode & _MS) {
11255                 /* add predefined symbols for extended-decl-modifier */
11256                 sym_align      = symbol_table_insert("align");
11257                 sym_allocate   = symbol_table_insert("allocate");
11258                 sym_dllimport  = symbol_table_insert("dllimport");
11259                 sym_dllexport  = symbol_table_insert("dllexport");
11260                 sym_naked      = symbol_table_insert("naked");
11261                 sym_noinline   = symbol_table_insert("noinline");
11262                 sym_noreturn   = symbol_table_insert("noreturn");
11263                 sym_nothrow    = symbol_table_insert("nothrow");
11264                 sym_novtable   = symbol_table_insert("novtable");
11265                 sym_property   = symbol_table_insert("property");
11266                 sym_get        = symbol_table_insert("get");
11267                 sym_put        = symbol_table_insert("put");
11268                 sym_selectany  = symbol_table_insert("selectany");
11269                 sym_thread     = symbol_table_insert("thread");
11270                 sym_uuid       = symbol_table_insert("uuid");
11271                 sym_deprecated = symbol_table_insert("deprecated");
11272                 sym_restrict   = symbol_table_insert("restrict");
11273                 sym_noalias    = symbol_table_insert("noalias");
11274         }
11275         memset(token_anchor_set, 0, sizeof(token_anchor_set));
11276
11277         init_expression_parsers();
11278         obstack_init(&temp_obst);
11279
11280         symbol_t *const va_list_sym = symbol_table_insert("__builtin_va_list");
11281         type_valist = create_builtin_type(va_list_sym, type_void_ptr);
11282 }
11283
11284 /**
11285  * Terminate the parser.
11286  */
11287 void exit_parser(void)
11288 {
11289         obstack_free(&temp_obst, NULL);
11290 }