The other node is incident to the old edge.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 static int         buckets_filled = 0;
54
55 static void insert_into_edge_bucket(pbqp_edge *edge)
56 {
57         if (edge_bucket_contains(edge_bucket, edge)) {
58                 /* Edge is already inserted. */
59                 return;
60         }
61
62         edge_bucket_insert(&edge_bucket, edge);
63 }
64
65 static void insert_into_rm_bucket(pbqp_edge *edge)
66 {
67         if (edge_bucket_contains(rm_bucket, edge)) {
68                 /* Edge is already inserted. */
69                 return;
70         }
71
72         edge_bucket_insert(&rm_bucket, edge);
73 }
74
75 static void init_buckets(void)
76 {
77         int i;
78
79         edge_bucket_init(&edge_bucket);
80         edge_bucket_init(&rm_bucket);
81         node_bucket_init(&reduced_bucket);
82
83         for (i = 0; i < 4; ++i) {
84                 node_bucket_init(&node_buckets[i]);
85         }
86 }
87
88 void free_buckets(void)
89 {
90         int i;
91
92         for (i = 0; i < 4; ++i) {
93                 node_bucket_free(&node_buckets[i]);
94         }
95
96         edge_bucket_free(&edge_bucket);
97         edge_bucket_free(&rm_bucket);
98         node_bucket_free(&reduced_bucket);
99
100         buckets_filled = 0;
101 }
102
103 void fill_node_buckets(pbqp *pbqp)
104 {
105         unsigned node_index;
106         unsigned node_len;
107
108         assert(pbqp);
109         node_len = pbqp->num_nodes;
110
111         #if KAPS_TIMING
112                 ir_timer_t *t_fill_buckets = ir_timer_register("be_pbqp_fill_buckets", "PBQP Fill Nodes into buckets");
113                 ir_timer_reset_and_start(t_fill_buckets);
114         #endif
115
116         for (node_index = 0; node_index < node_len; ++node_index) {
117                 unsigned   degree;
118                 pbqp_node *node = get_node(pbqp, node_index);
119
120                 if (!node) continue;
121
122                 degree = pbqp_node_get_degree(node);
123
124                 /* We have only one bucket for nodes with arity >= 3. */
125                 if (degree > 3) {
126                         degree = 3;
127                 }
128
129                 node_bucket_insert(&node_buckets[degree], node);
130         }
131
132         buckets_filled = 1;
133
134         #if KAPS_TIMING
135                 ir_timer_stop(t_fill_buckets);
136                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_fill_buckets), (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
137         #endif
138 }
139
140 static void normalize_towards_source(pbqp_edge *edge)
141 {
142         pbqp_matrix    *mat;
143         pbqp_node      *src_node;
144         pbqp_node      *tgt_node;
145         vector         *src_vec;
146         vector         *tgt_vec;
147         int             src_len;
148         int             tgt_len;
149         int             src_index;
150
151         assert(edge);
152
153         src_node = edge->src;
154         tgt_node = edge->tgt;
155         assert(src_node);
156         assert(tgt_node);
157
158         src_vec = src_node->costs;
159         tgt_vec = tgt_node->costs;
160         assert(src_vec);
161         assert(tgt_vec);
162
163         src_len = src_vec->len;
164         tgt_len = tgt_vec->len;
165         assert(src_len > 0);
166         assert(tgt_len > 0);
167
168         mat = edge->costs;
169         assert(mat);
170
171         /* Normalize towards source node. */
172         for (src_index = 0; src_index < src_len; ++src_index) {
173                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
174
175                 if (min != 0) {
176                         if (src_vec->entries[src_index].data == INF_COSTS) {
177                                 pbqp_matrix_set_row_value(mat, src_index, 0);
178                         } else {
179                                 pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
180                         }
181                         src_vec->entries[src_index].data = pbqp_add(
182                                         src_vec->entries[src_index].data, min);
183
184                         if (min == INF_COSTS) {
185                                 unsigned edge_index;
186                                 unsigned edge_len = pbqp_node_get_degree(src_node);
187
188                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
189                                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
190                                         if (edge_candidate != edge) {
191                                                 insert_into_edge_bucket(edge_candidate);
192                                         }
193                                 }
194                         }
195                 }
196         }
197 }
198
199 static void normalize_towards_target(pbqp_edge *edge)
200 {
201         pbqp_matrix    *mat;
202         pbqp_node      *src_node;
203         pbqp_node      *tgt_node;
204         vector         *src_vec;
205         vector         *tgt_vec;
206         int             src_len;
207         int             tgt_len;
208         int             tgt_index;
209
210         assert(edge);
211
212         src_node = edge->src;
213         tgt_node = edge->tgt;
214         assert(src_node);
215         assert(tgt_node);
216
217         src_vec = src_node->costs;
218         tgt_vec = tgt_node->costs;
219         assert(src_vec);
220         assert(tgt_vec);
221
222         src_len = src_vec->len;
223         tgt_len = tgt_vec->len;
224         assert(src_len > 0);
225         assert(tgt_len > 0);
226
227         mat = edge->costs;
228         assert(mat);
229
230         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
231                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
232
233                 if (min != 0) {
234                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
235                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
236                         } else {
237                                 pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
238                         }
239                         tgt_vec->entries[tgt_index].data = pbqp_add(
240                                         tgt_vec->entries[tgt_index].data, min);
241
242                         if (min == INF_COSTS) {
243                                 unsigned edge_index;
244                                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
245
246                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
247                                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
248                                         if (edge_candidate != edge) {
249                                                 insert_into_edge_bucket(edge_candidate);
250                                         }
251                                 }
252                         }
253                 }
254         }
255 }
256
257 /**
258  * Tries to apply RM for the source node of the given edge.
259  *
260  * Checks whether the source node of edge can be merged into the target node of
261  * edge, and performs the merge, if possible.
262  */
263 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
264 {
265         pbqp_matrix    *mat;
266         pbqp_node      *src_node;
267         pbqp_node      *tgt_node;
268         vector         *src_vec;
269         vector         *tgt_vec;
270         unsigned       *mapping;
271         unsigned        src_len;
272         unsigned        tgt_len;
273         unsigned        src_index;
274         unsigned        tgt_index;
275         unsigned        edge_index;
276         unsigned        edge_len;
277
278         assert(pbqp);
279         assert(edge);
280
281         src_node = edge->src;
282         tgt_node = edge->tgt;
283         assert(src_node);
284         assert(tgt_node);
285
286         src_vec = src_node->costs;
287         tgt_vec = tgt_node->costs;
288         assert(src_vec);
289         assert(tgt_vec);
290
291         src_len = src_vec->len;
292         tgt_len = tgt_vec->len;
293
294         /* Matrizes are normalized. */
295         assert(src_len > 1);
296         assert(tgt_len > 1);
297
298         mat = edge->costs;
299         assert(mat);
300
301         mapping = NEW_ARR_F(unsigned, tgt_len);
302
303         /* Check that each column has at most one zero entry. */
304         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
305                 unsigned onlyOneZero = 0;
306
307                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
308                         continue;
309
310                 for (src_index = 0; src_index < src_len; ++src_index) {
311                         if (src_vec->entries[src_index].data == INF_COSTS)
312                                 continue;
313
314                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
315                                 continue;
316
317                         /* Matrix entry is finite. */
318                         if (onlyOneZero) {
319                                 DEL_ARR_F(mapping);
320                                 return;
321                         }
322
323                         onlyOneZero = 1;
324                         mapping[tgt_index] = src_index;
325                 }
326         }
327
328         /* We know that we can merge the source node into the target node. */
329         edge_len = pbqp_node_get_degree(src_node);
330
331 #if KAPS_STATISTIC
332         pbqp->num_rm++;
333 #endif
334
335         /* Reconnect the source's edges with the target node. */
336         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
337                 pbqp_edge   *old_edge = src_node->edges[edge_index];
338                 pbqp_edge   *new_edge;
339                 pbqp_matrix *old_matrix;
340                 pbqp_matrix *new_matrix;
341                 pbqp_node   *other_node;
342                 vector      *other_vec;
343                 unsigned     other_len;
344                 unsigned     other_index;
345                 unsigned     tgt_index;
346
347                 assert(old_edge);
348
349                 if (old_edge == edge)
350                         continue;
351
352                 old_matrix = old_edge->costs;
353                 assert(old_matrix);
354
355                 if (old_edge->tgt == src_node) {
356                         other_node = old_edge->src;
357                         other_len  = old_matrix->rows;
358                 }
359                 else {
360                         other_node = old_edge->tgt;
361                         other_len = old_matrix->cols;
362                 }
363                 assert(other_node);
364                 other_vec = other_node->costs;
365
366                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
367
368                 /* Source node selects the column of the old_matrix. */
369                 if (old_edge->tgt == src_node) {
370                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
371                                 unsigned src_index = mapping[tgt_index];
372
373                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
374                                         continue;
375
376                                 for (other_index = 0; other_index < other_len; ++other_index) {
377                                         if (other_vec->entries[other_index].data == INF_COSTS)
378                                                 continue;
379
380                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
381                                 }
382                         }
383                 }
384                 /* Source node selects the row of the old_matrix. */
385                 else {
386                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
387                                 unsigned src_index = mapping[tgt_index];
388
389                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
390                                         continue;
391
392                                 for (other_index = 0; other_index < other_len; ++other_index) {
393                                         if (other_vec->entries[other_index].data == INF_COSTS)
394                                                 continue;
395
396                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
397                                 }
398                         }
399                 }
400
401                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
402
403                 delete_edge(old_edge);
404                 reorder_node(src_node);
405                 reorder_node(other_node);
406
407                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
408                 insert_into_rm_bucket(new_edge);
409         }
410
411         /* Reduce the remaining source node via RI. */
412         apply_RI(pbqp);
413 }
414
415 /**
416  * Tries to apply RM for the target node of the given edge.
417  *
418  * Checks whether the target node of edge can be merged into the source node of
419  * edge, and performs the merge, if possible.
420  */
421 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
422 {
423         pbqp_matrix    *mat;
424         pbqp_node      *src_node;
425         pbqp_node      *tgt_node;
426         vector         *src_vec;
427         vector         *tgt_vec;
428         unsigned       *mapping;
429         unsigned        src_len;
430         unsigned        tgt_len;
431         unsigned        src_index;
432         unsigned        tgt_index;
433         unsigned        edge_index;
434         unsigned        edge_len;
435
436         assert(pbqp);
437         assert(edge);
438
439         src_node = edge->src;
440         tgt_node = edge->tgt;
441         assert(src_node);
442         assert(tgt_node);
443
444         src_vec = src_node->costs;
445         tgt_vec = tgt_node->costs;
446         assert(src_vec);
447         assert(tgt_vec);
448
449         src_len = src_vec->len;
450         tgt_len = tgt_vec->len;
451
452         /* Matrizes are normalized. */
453         assert(src_len > 1);
454         assert(tgt_len > 1);
455
456         mat = edge->costs;
457         assert(mat);
458
459         mapping = NEW_ARR_F(unsigned, src_len);
460
461         /* Check that each row has at most one zero entry. */
462         for (src_index = 0; src_index < src_len; ++src_index) {
463                 unsigned onlyOneZero = 0;
464
465                 if (src_vec->entries[src_index].data == INF_COSTS)
466                         continue;
467
468                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
469                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
470                                 continue;
471
472                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
473                                 continue;
474
475                         /* Matrix entry is finite. */
476                         if (onlyOneZero) {
477                                 DEL_ARR_F(mapping);
478                                 return;
479                         }
480
481                         onlyOneZero = 1;
482                         mapping[src_index] = tgt_index;
483                 }
484         }
485
486         /* We know that we can merge the target node into the source node. */
487         edge_len = pbqp_node_get_degree(tgt_node);
488
489 #if KAPS_STATISTIC
490         pbqp->num_rm++;
491 #endif
492
493         /* Reconnect the target's edges with the source node. */
494         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
495                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
496                 pbqp_edge   *new_edge;
497                 pbqp_matrix *old_matrix;
498                 pbqp_matrix *new_matrix;
499                 pbqp_node   *other_node;
500                 vector      *other_vec;
501                 unsigned     other_len;
502                 unsigned     other_index;
503                 unsigned     src_index;
504
505                 assert(old_edge);
506
507                 if (old_edge == edge)
508                         continue;
509
510                 old_matrix = old_edge->costs;
511                 assert(old_matrix);
512
513                 if (old_edge->tgt == tgt_node) {
514                         other_node = old_edge->src;
515                         other_len  = old_matrix->rows;
516                 }
517                 else {
518                         other_node = old_edge->tgt;
519                         other_len = old_matrix->cols;
520                 }
521                 assert(other_node);
522                 other_vec = other_node->costs;
523
524                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
525
526                 /* Target node selects the column of the old_matrix. */
527                 if (old_edge->tgt == tgt_node) {
528                         for (src_index = 0; src_index < src_len; ++src_index) {
529                                 unsigned tgt_index = mapping[src_index];
530
531                                 if (src_vec->entries[src_index].data == INF_COSTS)
532                                         continue;
533
534                                 for (other_index = 0; other_index < other_len; ++other_index) {
535                                         if (other_vec->entries[other_index].data == INF_COSTS)
536                                                 continue;
537
538                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
539                                 }
540                         }
541                 }
542                 /* Source node selects the row of the old_matrix. */
543                 else {
544                         for (src_index = 0; src_index < src_len; ++src_index) {
545                                 unsigned tgt_index = mapping[src_index];
546
547                                 if (src_vec->entries[src_index].data == INF_COSTS)
548                                         continue;
549
550                                 for (other_index = 0; other_index < other_len; ++other_index) {
551                                         if (other_vec->entries[other_index].data == INF_COSTS)
552                                                 continue;
553
554                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
555                                 }
556                         }
557                 }
558
559                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
560
561                 delete_edge(old_edge);
562                 reorder_node(tgt_node);
563                 reorder_node(other_node);
564
565                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
566                 insert_into_rm_bucket(new_edge);
567         }
568
569         /* Reduce the remaining source node via RI. */
570         apply_RI(pbqp);
571 }
572
573 /**
574  * Merge neighbors into the given node.
575  */
576 void apply_RM(pbqp *pbqp, pbqp_node *node)
577 {
578         pbqp_edge **edges;
579         unsigned    edge_index;
580         unsigned    edge_len;
581
582         assert(node);
583         assert(pbqp);
584
585         edges    = node->edges;
586         edge_len = pbqp_node_get_degree(node);
587
588         /* Check all incident edges. */
589         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
590                 pbqp_edge *edge = edges[edge_index];
591
592                 insert_into_rm_bucket(edge);
593         }
594
595         /* ALAP: Merge neighbors into given node. */
596         while(edge_bucket_get_length(rm_bucket) > 0) {
597                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
598                 assert(edge);
599
600                 if (edge->src == node)
601                         merge_target_into_source(pbqp, edge);
602                 else
603                         merge_source_into_target(pbqp, edge);
604         }
605 }
606
607 void reorder_node(pbqp_node *node)
608 {
609         unsigned    degree     = pbqp_node_get_degree(node);
610         /* Assume node lost one incident edge. */
611         unsigned    old_degree = degree + 1;
612
613         if (!buckets_filled) return;
614
615         /* Same bucket as before */
616         if (degree > 2) return;
617
618         if (!node_bucket_contains(node_buckets[old_degree], node)) {
619                 /* Old arity is new arity, so we have nothing to do. */
620                 assert(node_bucket_contains(node_buckets[degree], node));
621                 return;
622         }
623
624         /* Delete node from old bucket... */
625         node_bucket_remove(&node_buckets[old_degree], node);
626
627         /* ..and add to new one. */
628         node_bucket_insert(&node_buckets[degree], node);
629 }
630
631 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
632 {
633         pbqp_matrix    *mat;
634         pbqp_node      *src_node;
635         pbqp_node      *tgt_node;
636         vector         *src_vec;
637         vector         *tgt_vec;
638         int             src_len;
639         int             tgt_len;
640
641         assert(pbqp);
642         assert(edge);
643
644         src_node = edge->src;
645         tgt_node = edge->tgt;
646         assert(src_node);
647         assert(tgt_node);
648
649         /* If edge are already deleted, we have nothing to do. */
650         if (!is_connected(src_node, edge) || !is_connected(tgt_node, edge))
651                 return;
652
653 #if     KAPS_DUMP
654         if (pbqp->dump_file) {
655                 char txt[100];
656                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
657                 dump_section(pbqp->dump_file, 3, txt);
658         }
659 #endif
660
661         src_vec = src_node->costs;
662         tgt_vec = tgt_node->costs;
663         assert(src_vec);
664         assert(tgt_vec);
665
666         src_len = src_vec->len;
667         tgt_len = tgt_vec->len;
668         assert(src_len > 0);
669         assert(tgt_len > 0);
670
671         mat = edge->costs;
672         assert(mat);
673
674 #if     KAPS_DUMP
675         if (pbqp->dump_file) {
676                 fputs("Input:<br>\n", pbqp->dump_file);
677                 dump_simplifyedge(pbqp, edge);
678         }
679 #endif
680
681         normalize_towards_source(edge);
682         normalize_towards_target(edge);
683
684 #if     KAPS_DUMP
685         if (pbqp->dump_file) {
686                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
687                 dump_simplifyedge(pbqp, edge);
688         }
689 #endif
690
691         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
692 #if     KAPS_DUMP
693                 if (pbqp->dump_file) {
694                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
695                 }
696 #endif
697
698 #if KAPS_STATISTIC
699                 pbqp->num_edges++;
700 #endif
701
702                 delete_edge(edge);
703                 reorder_node(src_node);
704                 reorder_node(tgt_node);
705         }
706 }
707
708 void initial_simplify_edges(pbqp *pbqp)
709 {
710         unsigned node_index;
711         unsigned node_len;
712
713         assert(pbqp);
714
715         #if KAPS_TIMING
716                 ir_timer_t *t_int_simpl = ir_timer_register("be_pbqp_init_simp", "PBQP Initial simplify edges");
717                 ir_timer_reset_and_start(t_int_simpl);
718         #endif
719
720 #if     KAPS_DUMP
721         if (pbqp->dump_file) {
722                 pbqp_dump_input(pbqp);
723                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
724         }
725 #endif
726
727         node_len = pbqp->num_nodes;
728
729         init_buckets();
730
731         /* First simplify all edges. */
732         for (node_index = 0; node_index < node_len; ++node_index) {
733                 unsigned    edge_index;
734                 pbqp_node  *node = get_node(pbqp, node_index);
735                 pbqp_edge **edges;
736                 unsigned    edge_len;
737
738                 if (!node) continue;
739
740                 edges = node->edges;
741                 edge_len = pbqp_node_get_degree(node);
742
743                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
744                         pbqp_edge *edge = edges[edge_index];
745
746                         /* Simplify only once per edge. */
747                         if (node != edge->src) continue;
748
749                         simplify_edge(pbqp, edge);
750                 }
751         }
752
753         #if KAPS_TIMING
754                 ir_timer_stop(t_int_simpl);
755                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_int_simpl), (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
756         #endif
757 }
758
759 num determine_solution(pbqp *pbqp)
760 {
761         unsigned node_index;
762         unsigned node_len;
763         num      solution   = 0;
764
765         #if KAPS_TIMING
766                 ir_timer_t *t_det_solution = ir_timer_register("be_det_solution", "PBQP Determine Solution");
767                 ir_timer_reset_and_start(t_det_solution);
768         #endif
769
770 #if     KAPS_DUMP
771         FILE     *file;
772 #endif
773
774         assert(pbqp);
775
776 #if     KAPS_DUMP
777         file = pbqp->dump_file;
778
779         if (file) {
780                 dump_section(file, 1, "4. Determine Solution/Minimum");
781                 dump_section(file, 2, "4.1. Trivial Solution");
782         }
783 #endif
784
785         /* Solve trivial nodes and calculate solution. */
786         node_len = node_bucket_get_length(node_buckets[0]);
787
788 #if KAPS_STATISTIC
789         pbqp->num_r0 = node_len;
790 #endif
791
792         for (node_index = 0; node_index < node_len; ++node_index) {
793                 pbqp_node *node = node_buckets[0][node_index];
794                 assert(node);
795
796                 node->solution = vector_get_min_index(node->costs);
797                 solution       = pbqp_add(solution,
798                                 node->costs->entries[node->solution].data);
799
800 #if     KAPS_DUMP
801                 if (file) {
802                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
803                         dump_node(file, node);
804                 }
805 #endif
806         }
807
808 #if     KAPS_DUMP
809         if (file) {
810                 dump_section(file, 2, "Minimum");
811 #if KAPS_USE_UNSIGNED
812                 fprintf(file, "Minimum is equal to %u.", solution);
813 #else
814                 fprintf(file, "Minimum is equal to %lld.", solution);
815 #endif
816         }
817 #endif
818
819         #if KAPS_TIMING
820                 ir_timer_stop(t_det_solution);
821                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_det_solution), (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
822         #endif
823
824         return solution;
825 }
826
827 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
828 {
829         pbqp_edge   *edge;
830         pbqp_node   *other;
831         pbqp_matrix *mat;
832         vector      *vec;
833         int          is_src;
834
835         assert(pbqp);
836         assert(node);
837
838         edge = node->edges[0];
839         mat = edge->costs;
840         is_src = edge->src == node;
841         vec = node->costs;
842
843         if (is_src) {
844                 other = edge->tgt;
845                 assert(other);
846
847                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
848         } else {
849                 other = edge->src;
850                 assert(other);
851
852                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
853         }
854
855 #if     KAPS_DUMP
856         if (pbqp->dump_file) {
857                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
858         }
859 #endif
860 }
861
862 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
863 {
864         pbqp_edge   *src_edge   = node->edges[0];
865         pbqp_edge   *tgt_edge   = node->edges[1];
866         int          src_is_src = src_edge->src == node;
867         int          tgt_is_src = tgt_edge->src == node;
868         pbqp_matrix *src_mat;
869         pbqp_matrix *tgt_mat;
870         pbqp_node   *src_node;
871         pbqp_node   *tgt_node;
872         vector      *vec;
873         vector      *node_vec;
874         unsigned     col_index;
875         unsigned     row_index;
876
877         assert(pbqp);
878
879         if (src_is_src) {
880                 src_node = src_edge->tgt;
881         } else {
882                 src_node = src_edge->src;
883         }
884
885         if (tgt_is_src) {
886                 tgt_node = tgt_edge->tgt;
887         } else {
888                 tgt_node = tgt_edge->src;
889         }
890
891         /* Swap nodes if necessary. */
892         if (tgt_node->index < src_node->index) {
893                 pbqp_node *tmp_node;
894                 pbqp_edge *tmp_edge;
895
896                 tmp_node = src_node;
897                 src_node = tgt_node;
898                 tgt_node = tmp_node;
899
900                 tmp_edge = src_edge;
901                 src_edge = tgt_edge;
902                 tgt_edge = tmp_edge;
903
904                 src_is_src = src_edge->src == node;
905                 tgt_is_src = tgt_edge->src == node;
906         }
907
908         src_mat = src_edge->costs;
909         tgt_mat = tgt_edge->costs;
910
911         node_vec = node->costs;
912
913         row_index = src_node->solution;
914         col_index = tgt_node->solution;
915
916         vec = vector_copy(pbqp, node_vec);
917
918         if (src_is_src) {
919                 vector_add_matrix_col(vec, src_mat, row_index);
920         } else {
921                 vector_add_matrix_row(vec, src_mat, row_index);
922         }
923
924         if (tgt_is_src) {
925                 vector_add_matrix_col(vec, tgt_mat, col_index);
926         } else {
927                 vector_add_matrix_row(vec, tgt_mat, col_index);
928         }
929
930         node->solution = vector_get_min_index(vec);
931
932 #if     KAPS_DUMP
933         if (pbqp->dump_file) {
934                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
935         }
936 #endif
937
938         obstack_free(&pbqp->obstack, vec);
939 }
940
941 void back_propagate(pbqp *pbqp)
942 {
943         unsigned node_index;
944         unsigned node_len   = node_bucket_get_length(reduced_bucket);
945
946         assert(pbqp);
947
948 #if     KAPS_DUMP
949         if (pbqp->dump_file) {
950                 dump_section(pbqp->dump_file, 2, "Back Propagation");
951         }
952 #endif
953
954         for (node_index = node_len; node_index > 0; --node_index) {
955                 pbqp_node *node = reduced_bucket[node_index - 1];
956
957                 switch (pbqp_node_get_degree(node)) {
958                         case 1:
959                                 back_propagate_RI(pbqp, node);
960                                 break;
961                         case 2:
962                                 back_propagate_RII(pbqp, node);
963                                 break;
964                         default:
965                                 panic("Only nodes with degree one or two should be in this bucket");
966                                 break;
967                 }
968         }
969 }
970
971 void apply_edge(pbqp *pbqp)
972 {
973         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
974
975         simplify_edge(pbqp, edge);
976 }
977
978 void apply_RI(pbqp *pbqp)
979 {
980         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
981         pbqp_edge   *edge       = node->edges[0];
982         pbqp_matrix *mat        = edge->costs;
983         int          is_src     = edge->src == node;
984         pbqp_node   *other_node;
985
986         (void ) pbqp;
987         assert(pbqp_node_get_degree(node) == 1);
988
989         if (is_src) {
990                 other_node = edge->tgt;
991         } else {
992                 other_node = edge->src;
993         }
994
995 #if     KAPS_DUMP
996         if (pbqp->dump_file) {
997                 char     txt[100];
998                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
999                 dump_section(pbqp->dump_file, 2, txt);
1000                 pbqp_dump_graph(pbqp);
1001                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1002                 dump_node(pbqp->dump_file, node);
1003                 dump_node(pbqp->dump_file, other_node);
1004                 dump_edge(pbqp->dump_file, edge);
1005         }
1006 #endif
1007
1008         if (is_src) {
1009                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1010                 normalize_towards_target(edge);
1011         } else {
1012                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1013                 normalize_towards_source(edge);
1014         }
1015         disconnect_edge(other_node, edge);
1016
1017 #if     KAPS_DUMP
1018         if (pbqp->dump_file) {
1019                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1020                 dump_node(pbqp->dump_file, other_node);
1021         }
1022 #endif
1023
1024         reorder_node(other_node);
1025
1026 #if KAPS_STATISTIC
1027         pbqp->num_r1++;
1028 #endif
1029
1030         /* Add node to back propagation list. */
1031         node_bucket_insert(&reduced_bucket, node);
1032 }
1033
1034 void apply_RII(pbqp *pbqp)
1035 {
1036         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1037         pbqp_edge   *src_edge   = node->edges[0];
1038         pbqp_edge   *tgt_edge   = node->edges[1];
1039         int          src_is_src = src_edge->src == node;
1040         int          tgt_is_src = tgt_edge->src == node;
1041         pbqp_matrix *src_mat;
1042         pbqp_matrix *tgt_mat;
1043         pbqp_node   *src_node;
1044         pbqp_node   *tgt_node;
1045         pbqp_matrix *mat;
1046         vector      *vec;
1047         vector      *node_vec;
1048         vector      *src_vec;
1049         vector      *tgt_vec;
1050         unsigned     col_index;
1051         unsigned     col_len;
1052         unsigned     row_index;
1053         unsigned     row_len;
1054         unsigned     node_len;
1055
1056         assert(pbqp);
1057         assert(pbqp_node_get_degree(node) == 2);
1058
1059         if (src_is_src) {
1060                 src_node = src_edge->tgt;
1061         } else {
1062                 src_node = src_edge->src;
1063         }
1064
1065         if (tgt_is_src) {
1066                 tgt_node = tgt_edge->tgt;
1067         } else {
1068                 tgt_node = tgt_edge->src;
1069         }
1070
1071         /* Swap nodes if necessary. */
1072         if (tgt_node->index < src_node->index) {
1073                 pbqp_node *tmp_node;
1074                 pbqp_edge *tmp_edge;
1075
1076                 tmp_node = src_node;
1077                 src_node = tgt_node;
1078                 tgt_node = tmp_node;
1079
1080                 tmp_edge = src_edge;
1081                 src_edge = tgt_edge;
1082                 tgt_edge = tmp_edge;
1083
1084                 src_is_src = src_edge->src == node;
1085                 tgt_is_src = tgt_edge->src == node;
1086         }
1087
1088 #if     KAPS_DUMP
1089         if (pbqp->dump_file) {
1090                 char     txt[100];
1091                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1092                 dump_section(pbqp->dump_file, 2, txt);
1093                 pbqp_dump_graph(pbqp);
1094                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1095                 dump_node(pbqp->dump_file, src_node);
1096                 dump_edge(pbqp->dump_file, src_edge);
1097                 dump_node(pbqp->dump_file, node);
1098                 dump_edge(pbqp->dump_file, tgt_edge);
1099                 dump_node(pbqp->dump_file, tgt_node);
1100         }
1101 #endif
1102
1103         src_mat = src_edge->costs;
1104         tgt_mat = tgt_edge->costs;
1105
1106         src_vec  = src_node->costs;
1107         tgt_vec  = tgt_node->costs;
1108         node_vec = node->costs;
1109
1110         row_len  = src_vec->len;
1111         col_len  = tgt_vec->len;
1112         node_len = node_vec->len;
1113
1114         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1115
1116         for (row_index = 0; row_index < row_len; ++row_index) {
1117                 for (col_index = 0; col_index < col_len; ++col_index) {
1118                         vec = vector_copy(pbqp, node_vec);
1119
1120                         if (src_is_src) {
1121                                 vector_add_matrix_col(vec, src_mat, row_index);
1122                         } else {
1123                                 vector_add_matrix_row(vec, src_mat, row_index);
1124                         }
1125
1126                         if (tgt_is_src) {
1127                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1128                         } else {
1129                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1130                         }
1131
1132                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1133
1134                         obstack_free(&pbqp->obstack, vec);
1135                 }
1136         }
1137
1138         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1139
1140         /* Disconnect node. */
1141         disconnect_edge(src_node, src_edge);
1142         disconnect_edge(tgt_node, tgt_edge);
1143
1144 #if KAPS_STATISTIC
1145         pbqp->num_r2++;
1146 #endif
1147
1148         /* Add node to back propagation list. */
1149         node_bucket_insert(&reduced_bucket, node);
1150
1151         if (edge == NULL) {
1152                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1153         } else {
1154                 // matrix
1155                 pbqp_matrix_add(edge->costs, mat);
1156
1157                 /* Free local matrix. */
1158                 obstack_free(&pbqp->obstack, mat);
1159
1160                 reorder_node(src_node);
1161                 reorder_node(tgt_node);
1162         }
1163
1164 #if     KAPS_DUMP
1165         if (pbqp->dump_file) {
1166                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1167                 dump_edge(pbqp->dump_file, edge);
1168         }
1169 #endif
1170
1171         /* Edge has changed so we simplify it. */
1172         simplify_edge(pbqp, edge);
1173 }
1174
1175 void select_alternative(pbqp_node *node, unsigned selected_index)
1176 {
1177         unsigned  edge_index;
1178         unsigned  node_index;
1179         unsigned  node_len;
1180         vector   *node_vec;
1181         unsigned  max_degree = pbqp_node_get_degree(node);
1182
1183         assert(node);
1184         node->solution = selected_index;
1185         node_vec = node->costs;
1186         node_len = node_vec->len;
1187         assert(selected_index < node_len);
1188
1189         /* Set all other costs to infinity. */
1190         for (node_index = 0; node_index < node_len; ++node_index) {
1191                 if (node_index != selected_index) {
1192                         node_vec->entries[node_index].data = INF_COSTS;
1193                 }
1194         }
1195
1196         /* Add all incident edges to edge bucket, since they are now independent. */
1197         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1198                 insert_into_edge_bucket(node->edges[edge_index]);
1199         }
1200 }
1201
1202 pbqp_node *get_node_with_max_degree(void)
1203 {
1204         pbqp_node  **bucket       = node_buckets[3];
1205         unsigned     bucket_len   = node_bucket_get_length(bucket);
1206         unsigned     bucket_index;
1207         unsigned     max_degree   = 0;
1208         pbqp_node   *result       = NULL;
1209
1210         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1211                 pbqp_node *candidate = bucket[bucket_index];
1212                 unsigned   degree    = pbqp_node_get_degree(candidate);
1213
1214                 if (degree > max_degree) {
1215                         result = candidate;
1216                         max_degree = degree;
1217                 }
1218         }
1219
1220         return result;
1221 }
1222
1223 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1224 {
1225         pbqp_edge   *edge;
1226         vector      *node_vec;
1227         vector      *vec;
1228         pbqp_matrix *mat;
1229         unsigned     edge_index;
1230         unsigned     max_degree;
1231         unsigned     node_index;
1232         unsigned     node_len;
1233         unsigned     min_index    = 0;
1234         num          min          = INF_COSTS;
1235         int          is_src;
1236
1237         assert(pbqp);
1238         assert(node);
1239         node_vec   = node->costs;
1240         node_len   = node_vec->len;
1241         max_degree = pbqp_node_get_degree(node);
1242
1243         for (node_index = 0; node_index < node_len; ++node_index) {
1244                 num value = node_vec->entries[node_index].data;
1245
1246                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1247                         edge   = node->edges[edge_index];
1248                         mat    = edge->costs;
1249                         is_src = edge->src == node;
1250
1251                         if (is_src) {
1252                                 vec = vector_copy(pbqp, edge->tgt->costs);
1253                                 vector_add_matrix_row(vec, mat, node_index);
1254                         } else {
1255                                 vec = vector_copy(pbqp, edge->src->costs);
1256                                 vector_add_matrix_col(vec, mat, node_index);
1257                         }
1258
1259                         value = pbqp_add(value, vector_get_min(vec));
1260
1261                         obstack_free(&pbqp->obstack, vec);
1262                 }
1263
1264                 if (value < min) {
1265                         min = value;
1266                         min_index = node_index;
1267                 }
1268         }
1269
1270         return min_index;
1271 }
1272
1273 int node_is_reduced(pbqp_node *node)
1274 {
1275         if (!reduced_bucket) return 0;
1276
1277         if (pbqp_node_get_degree(node) == 0) return 1;
1278
1279         return node_bucket_contains(reduced_bucket, node);
1280 }