Added function to reorder nodes after an edge insertion.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 pbqp_node  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         assert(pbqp);
110         node_len = pbqp->num_nodes;
111
112         #if KAPS_TIMING
113                 ir_timer_t *t_fill_buckets = ir_timer_new();
114                 ir_timer_start(t_fill_buckets);
115         #endif
116
117         for (node_index = 0; node_index < node_len; ++node_index) {
118                 unsigned   degree;
119                 pbqp_node *node = get_node(pbqp, node_index);
120
121                 if (!node) continue;
122
123                 degree = pbqp_node_get_degree(node);
124
125                 /* We have only one bucket for nodes with arity >= 3. */
126                 if (degree > 3) {
127                         degree = 3;
128                 }
129
130                 node_bucket_insert(&node_buckets[degree], node);
131         }
132
133         buckets_filled = 1;
134
135         #if KAPS_TIMING
136                 ir_timer_stop(t_fill_buckets);
137                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
138         #endif
139 }
140
141 static void normalize_towards_source(pbqp_edge *edge)
142 {
143         pbqp_matrix    *mat;
144         pbqp_node      *src_node;
145         pbqp_node      *tgt_node;
146         vector         *src_vec;
147         vector         *tgt_vec;
148         unsigned        src_len;
149         unsigned        tgt_len;
150         unsigned        src_index;
151         unsigned        new_infinity = 0;
152
153         assert(edge);
154
155         src_node = edge->src;
156         tgt_node = edge->tgt;
157         assert(src_node);
158         assert(tgt_node);
159
160         src_vec = src_node->costs;
161         tgt_vec = tgt_node->costs;
162         assert(src_vec);
163         assert(tgt_vec);
164
165         src_len = src_vec->len;
166         tgt_len = tgt_vec->len;
167         assert(src_len > 0);
168         assert(tgt_len > 0);
169
170         mat = edge->costs;
171         assert(mat);
172
173         /* Normalize towards source node. */
174         for (src_index = 0; src_index < src_len; ++src_index) {
175                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
176
177                 if (min != 0) {
178                         if (src_vec->entries[src_index].data == INF_COSTS) {
179                                 pbqp_matrix_set_row_value(mat, src_index, 0);
180                                 continue;
181                         }
182
183                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
184                         src_vec->entries[src_index].data = pbqp_add(
185                                         src_vec->entries[src_index].data, min);
186
187                         if (min == INF_COSTS) {
188                                 new_infinity = 1;
189                         }
190                 }
191         }
192
193         if (new_infinity) {
194                 unsigned edge_index;
195                 unsigned edge_len = pbqp_node_get_degree(src_node);
196
197                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
198                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
199
200                         if (edge_candidate != edge) {
201                                 insert_into_edge_bucket(edge_candidate);
202                         }
203                 }
204         }
205 }
206
207 static void normalize_towards_target(pbqp_edge *edge)
208 {
209         pbqp_matrix    *mat;
210         pbqp_node      *src_node;
211         pbqp_node      *tgt_node;
212         vector         *src_vec;
213         vector         *tgt_vec;
214         unsigned        src_len;
215         unsigned        tgt_len;
216         unsigned        tgt_index;
217         unsigned        new_infinity = 0;
218
219         assert(edge);
220
221         src_node = edge->src;
222         tgt_node = edge->tgt;
223         assert(src_node);
224         assert(tgt_node);
225
226         src_vec = src_node->costs;
227         tgt_vec = tgt_node->costs;
228         assert(src_vec);
229         assert(tgt_vec);
230
231         src_len = src_vec->len;
232         tgt_len = tgt_vec->len;
233         assert(src_len > 0);
234         assert(tgt_len > 0);
235
236         mat = edge->costs;
237         assert(mat);
238
239         /* Normalize towards target node. */
240         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
241                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
242
243                 if (min != 0) {
244                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
245                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
246                                 continue;
247                         }
248
249                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
250                         tgt_vec->entries[tgt_index].data = pbqp_add(
251                                         tgt_vec->entries[tgt_index].data, min);
252
253                         if (min == INF_COSTS) {
254                                 new_infinity = 1;
255                         }
256                 }
257         }
258
259         if (new_infinity) {
260                 unsigned edge_index;
261                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
262
263                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
264                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
265
266                         if (edge_candidate != edge) {
267                                 insert_into_edge_bucket(edge_candidate);
268                         }
269                 }
270         }
271 }
272
273 /**
274  * Tries to apply RM for the source node of the given edge.
275  *
276  * Checks whether the source node of edge can be merged into the target node of
277  * edge, and performs the merge, if possible.
278  */
279 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
280 {
281         pbqp_matrix    *mat;
282         pbqp_node      *src_node;
283         pbqp_node      *tgt_node;
284         vector         *src_vec;
285         vector         *tgt_vec;
286         unsigned       *mapping;
287         unsigned        src_len;
288         unsigned        tgt_len;
289         unsigned        src_index;
290         unsigned        tgt_index;
291         unsigned        edge_index;
292         unsigned        edge_len;
293
294         assert(pbqp);
295         assert(edge);
296
297         src_node = edge->src;
298         tgt_node = edge->tgt;
299         assert(src_node);
300         assert(tgt_node);
301
302         src_vec = src_node->costs;
303         tgt_vec = tgt_node->costs;
304         assert(src_vec);
305         assert(tgt_vec);
306
307         src_len = src_vec->len;
308         tgt_len = tgt_vec->len;
309
310         /* Matrizes are normalized. */
311         assert(src_len > 1);
312         assert(tgt_len > 1);
313
314         mat = edge->costs;
315         assert(mat);
316
317         mapping = NEW_ARR_F(unsigned, tgt_len);
318
319         /* Check that each column has at most one zero entry. */
320         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
321                 unsigned onlyOneZero = 0;
322
323                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
324                         continue;
325
326                 for (src_index = 0; src_index < src_len; ++src_index) {
327                         if (src_vec->entries[src_index].data == INF_COSTS)
328                                 continue;
329
330                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
331                                 continue;
332
333                         /* Matrix entry is finite. */
334                         if (onlyOneZero) {
335                                 DEL_ARR_F(mapping);
336                                 return;
337                         }
338
339                         onlyOneZero = 1;
340                         mapping[tgt_index] = src_index;
341                 }
342         }
343
344         /* We know that we can merge the source node into the target node. */
345         edge_len = pbqp_node_get_degree(src_node);
346
347 #if KAPS_STATISTIC
348         pbqp->num_rm++;
349 #endif
350
351         /* Reconnect the source's edges with the target node. */
352         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
353                 pbqp_edge   *old_edge = src_node->edges[edge_index];
354                 pbqp_edge   *new_edge;
355                 pbqp_matrix *old_matrix;
356                 pbqp_matrix *new_matrix;
357                 pbqp_node   *other_node;
358                 vector      *other_vec;
359                 unsigned     other_len;
360                 unsigned     other_index;
361                 unsigned     tgt_index;
362
363                 assert(old_edge);
364
365                 if (old_edge == edge)
366                         continue;
367
368                 old_matrix = old_edge->costs;
369                 assert(old_matrix);
370
371                 if (old_edge->tgt == src_node) {
372                         other_node = old_edge->src;
373                         other_len  = old_matrix->rows;
374                 }
375                 else {
376                         other_node = old_edge->tgt;
377                         other_len = old_matrix->cols;
378                 }
379                 assert(other_node);
380                 other_vec = other_node->costs;
381
382                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
383
384                 /* Source node selects the column of the old_matrix. */
385                 if (old_edge->tgt == src_node) {
386                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
387                                 unsigned src_index = mapping[tgt_index];
388
389                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
390                                         continue;
391
392                                 for (other_index = 0; other_index < other_len; ++other_index) {
393                                         if (other_vec->entries[other_index].data == INF_COSTS)
394                                                 continue;
395
396                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
397                                 }
398                         }
399                 }
400                 /* Source node selects the row of the old_matrix. */
401                 else {
402                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
403                                 unsigned src_index = mapping[tgt_index];
404
405                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
406                                         continue;
407
408                                 for (other_index = 0; other_index < other_len; ++other_index) {
409                                         if (other_vec->entries[other_index].data == INF_COSTS)
410                                                 continue;
411
412                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
413                                 }
414                         }
415                 }
416
417                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
418
419                 delete_edge(old_edge);
420
421                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
422                 insert_into_rm_bucket(new_edge);
423         }
424
425 #if KAPS_STATISTIC
426         pbqp->num_r1--;
427 #endif
428 }
429
430 /**
431  * Tries to apply RM for the target node of the given edge.
432  *
433  * Checks whether the target node of edge can be merged into the source node of
434  * edge, and performs the merge, if possible.
435  */
436 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
437 {
438         pbqp_matrix    *mat;
439         pbqp_node      *src_node;
440         pbqp_node      *tgt_node;
441         vector         *src_vec;
442         vector         *tgt_vec;
443         unsigned       *mapping;
444         unsigned        src_len;
445         unsigned        tgt_len;
446         unsigned        src_index;
447         unsigned        tgt_index;
448         unsigned        edge_index;
449         unsigned        edge_len;
450
451         assert(pbqp);
452         assert(edge);
453
454         src_node = edge->src;
455         tgt_node = edge->tgt;
456         assert(src_node);
457         assert(tgt_node);
458
459         src_vec = src_node->costs;
460         tgt_vec = tgt_node->costs;
461         assert(src_vec);
462         assert(tgt_vec);
463
464         src_len = src_vec->len;
465         tgt_len = tgt_vec->len;
466
467         /* Matrizes are normalized. */
468         assert(src_len > 1);
469         assert(tgt_len > 1);
470
471         mat = edge->costs;
472         assert(mat);
473
474         mapping = NEW_ARR_F(unsigned, src_len);
475
476         /* Check that each row has at most one zero entry. */
477         for (src_index = 0; src_index < src_len; ++src_index) {
478                 unsigned onlyOneZero = 0;
479
480                 if (src_vec->entries[src_index].data == INF_COSTS)
481                         continue;
482
483                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
484                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
485                                 continue;
486
487                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
488                                 continue;
489
490                         /* Matrix entry is finite. */
491                         if (onlyOneZero) {
492                                 DEL_ARR_F(mapping);
493                                 return;
494                         }
495
496                         onlyOneZero = 1;
497                         mapping[src_index] = tgt_index;
498                 }
499         }
500
501         /* We know that we can merge the target node into the source node. */
502         edge_len = pbqp_node_get_degree(tgt_node);
503
504 #if KAPS_STATISTIC
505         pbqp->num_rm++;
506 #endif
507
508         /* Reconnect the target's edges with the source node. */
509         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
510                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
511                 pbqp_edge   *new_edge;
512                 pbqp_matrix *old_matrix;
513                 pbqp_matrix *new_matrix;
514                 pbqp_node   *other_node;
515                 vector      *other_vec;
516                 unsigned     other_len;
517                 unsigned     other_index;
518                 unsigned     src_index;
519
520                 assert(old_edge);
521
522                 if (old_edge == edge)
523                         continue;
524
525                 old_matrix = old_edge->costs;
526                 assert(old_matrix);
527
528                 if (old_edge->tgt == tgt_node) {
529                         other_node = old_edge->src;
530                         other_len  = old_matrix->rows;
531                 }
532                 else {
533                         other_node = old_edge->tgt;
534                         other_len = old_matrix->cols;
535                 }
536                 assert(other_node);
537                 other_vec = other_node->costs;
538
539                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
540
541                 /* Target node selects the column of the old_matrix. */
542                 if (old_edge->tgt == tgt_node) {
543                         for (src_index = 0; src_index < src_len; ++src_index) {
544                                 unsigned tgt_index = mapping[src_index];
545
546                                 if (src_vec->entries[src_index].data == INF_COSTS)
547                                         continue;
548
549                                 for (other_index = 0; other_index < other_len; ++other_index) {
550                                         if (other_vec->entries[other_index].data == INF_COSTS)
551                                                 continue;
552
553                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
554                                 }
555                         }
556                 }
557                 /* Source node selects the row of the old_matrix. */
558                 else {
559                         for (src_index = 0; src_index < src_len; ++src_index) {
560                                 unsigned tgt_index = mapping[src_index];
561
562                                 if (src_vec->entries[src_index].data == INF_COSTS)
563                                         continue;
564
565                                 for (other_index = 0; other_index < other_len; ++other_index) {
566                                         if (other_vec->entries[other_index].data == INF_COSTS)
567                                                 continue;
568
569                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
570                                 }
571                         }
572                 }
573
574                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
575
576                 delete_edge(old_edge);
577
578                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
579                 insert_into_rm_bucket(new_edge);
580         }
581
582 #if KAPS_STATISTIC
583         pbqp->num_r1--;
584 #endif
585 }
586
587 /**
588  * Merge neighbors into the given node.
589  */
590 void apply_RM(pbqp *pbqp, pbqp_node *node)
591 {
592         pbqp_edge **edges;
593         unsigned    edge_index;
594         unsigned    edge_len;
595
596         assert(node);
597         assert(pbqp);
598
599         edges    = node->edges;
600         edge_len = pbqp_node_get_degree(node);
601
602         /* Check all incident edges. */
603         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
604                 pbqp_edge *edge = edges[edge_index];
605
606                 insert_into_rm_bucket(edge);
607         }
608
609         /* ALAP: Merge neighbors into given node. */
610         while(edge_bucket_get_length(rm_bucket) > 0) {
611                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
612                 assert(edge);
613
614                 if (edge->src == node)
615                         merge_target_into_source(pbqp, edge);
616                 else
617                         merge_source_into_target(pbqp, edge);
618         }
619
620         merged_node = node;
621 }
622
623 void reorder_node_after_edge_deletion(pbqp_node *node)
624 {
625         unsigned    degree     = pbqp_node_get_degree(node);
626         /* Assume node lost one incident edge. */
627         unsigned    old_degree = degree + 1;
628
629         if (!buckets_filled) return;
630
631         /* Same bucket as before */
632         if (degree > 2) return;
633
634         /* Delete node from old bucket... */
635         node_bucket_remove(&node_buckets[old_degree], node);
636
637         /* ..and add to new one. */
638         node_bucket_insert(&node_buckets[degree], node);
639 }
640
641 void reorder_node_after_edge_insertion(pbqp_node *node)
642 {
643         unsigned    degree     = pbqp_node_get_degree(node);
644         /* Assume node lost one incident edge. */
645         unsigned    old_degree = degree - 1;
646
647         if (!buckets_filled) return;
648
649         /* Same bucket as before */
650         if (old_degree > 2) return;
651
652         /* Delete node from old bucket... */
653         node_bucket_remove(&node_buckets[old_degree], node);
654
655         /* ..and add to new one. */
656         node_bucket_insert(&node_buckets[degree], node);
657 }
658
659 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
660 {
661         pbqp_matrix    *mat;
662         pbqp_node      *src_node;
663         pbqp_node      *tgt_node;
664         vector         *src_vec;
665         vector         *tgt_vec;
666         int             src_len;
667         int             tgt_len;
668
669         assert(pbqp);
670         assert(edge);
671
672         (void) pbqp;
673
674         src_node = edge->src;
675         tgt_node = edge->tgt;
676         assert(src_node);
677         assert(tgt_node);
678
679         /* If edge are already deleted, we have nothing to do. */
680         if (is_deleted(edge))
681                 return;
682
683 #if     KAPS_DUMP
684         if (pbqp->dump_file) {
685                 char txt[100];
686                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
687                 dump_section(pbqp->dump_file, 3, txt);
688         }
689 #endif
690
691         src_vec = src_node->costs;
692         tgt_vec = tgt_node->costs;
693         assert(src_vec);
694         assert(tgt_vec);
695
696         src_len = src_vec->len;
697         tgt_len = tgt_vec->len;
698         assert(src_len > 0);
699         assert(tgt_len > 0);
700
701         mat = edge->costs;
702         assert(mat);
703
704 #if     KAPS_DUMP
705         if (pbqp->dump_file) {
706                 fputs("Input:<br>\n", pbqp->dump_file);
707                 dump_simplifyedge(pbqp, edge);
708         }
709 #endif
710
711         normalize_towards_source(edge);
712         normalize_towards_target(edge);
713
714 #if     KAPS_DUMP
715         if (pbqp->dump_file) {
716                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
717                 dump_simplifyedge(pbqp, edge);
718         }
719 #endif
720
721         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
722 #if     KAPS_DUMP
723                 if (pbqp->dump_file) {
724                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
725                 }
726 #endif
727
728 #if KAPS_STATISTIC
729                 pbqp->num_edges++;
730 #endif
731
732                 delete_edge(edge);
733         }
734 }
735
736 void initial_simplify_edges(pbqp *pbqp)
737 {
738         unsigned node_index;
739         unsigned node_len;
740
741         assert(pbqp);
742
743         #if KAPS_TIMING
744                 ir_timer_t *t_int_simpl = ir_timer_new();
745                 ir_timer_start(t_int_simpl);
746         #endif
747
748 #if     KAPS_DUMP
749         if (pbqp->dump_file) {
750                 pbqp_dump_input(pbqp);
751                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
752         }
753 #endif
754
755         node_len = pbqp->num_nodes;
756
757         init_buckets();
758
759         /* First simplify all edges. */
760         for (node_index = 0; node_index < node_len; ++node_index) {
761                 unsigned    edge_index;
762                 pbqp_node  *node = get_node(pbqp, node_index);
763                 pbqp_edge **edges;
764                 unsigned    edge_len;
765
766                 if (!node) continue;
767
768                 edges = node->edges;
769                 edge_len = pbqp_node_get_degree(node);
770
771                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
772                         pbqp_edge *edge = edges[edge_index];
773
774                         /* Simplify only once per edge. */
775                         if (node != edge->src) continue;
776
777                         simplify_edge(pbqp, edge);
778                 }
779         }
780
781         #if KAPS_TIMING
782                 ir_timer_stop(t_int_simpl);
783                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
784         #endif
785 }
786
787 num determine_solution(pbqp *pbqp)
788 {
789         unsigned node_index;
790         unsigned node_len;
791         num      solution   = 0;
792
793         #if KAPS_TIMING
794                 ir_timer_t *t_det_solution = ir_timer_new();
795                 ir_timer_reset_and_start(t_det_solution);
796         #endif
797
798 #if     KAPS_DUMP
799         FILE     *file;
800 #endif
801
802         assert(pbqp);
803
804         (void) pbqp;
805
806 #if     KAPS_DUMP
807         file = pbqp->dump_file;
808
809         if (file) {
810                 dump_section(file, 1, "4. Determine Solution/Minimum");
811                 dump_section(file, 2, "4.1. Trivial Solution");
812         }
813 #endif
814
815         /* Solve trivial nodes and calculate solution. */
816         node_len = node_bucket_get_length(node_buckets[0]);
817
818 #if KAPS_STATISTIC
819         pbqp->num_r0 = node_len;
820 #endif
821
822         for (node_index = 0; node_index < node_len; ++node_index) {
823                 pbqp_node *node = node_buckets[0][node_index];
824                 assert(node);
825
826                 node->solution = vector_get_min_index(node->costs);
827                 solution       = pbqp_add(solution,
828                                 node->costs->entries[node->solution].data);
829
830 #if     KAPS_DUMP
831                 if (file) {
832                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
833                         dump_node(file, node);
834                 }
835 #endif
836         }
837
838 #if     KAPS_DUMP
839         if (file) {
840                 dump_section(file, 2, "Minimum");
841 #if KAPS_USE_UNSIGNED
842                 fprintf(file, "Minimum is equal to %u.", solution);
843 #else
844                 fprintf(file, "Minimum is equal to %lld.", solution);
845 #endif
846         }
847 #endif
848
849         #if KAPS_TIMING
850                 ir_timer_stop(t_det_solution);
851                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
852         #endif
853
854         return solution;
855 }
856
857 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
858 {
859         pbqp_edge   *edge;
860         pbqp_node   *other;
861         pbqp_matrix *mat;
862         vector      *vec;
863         int          is_src;
864
865         assert(pbqp);
866         assert(node);
867
868         (void) pbqp;
869
870         edge = node->edges[0];
871         mat = edge->costs;
872         is_src = edge->src == node;
873         vec = node->costs;
874
875         if (is_src) {
876                 other = edge->tgt;
877                 assert(other);
878
879                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
880         } else {
881                 other = edge->src;
882                 assert(other);
883
884                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
885         }
886
887 #if     KAPS_DUMP
888         if (pbqp->dump_file) {
889                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
890         }
891 #endif
892 }
893
894 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
895 {
896         pbqp_edge   *src_edge   = node->edges[0];
897         pbqp_edge   *tgt_edge   = node->edges[1];
898         int          src_is_src = src_edge->src == node;
899         int          tgt_is_src = tgt_edge->src == node;
900         pbqp_matrix *src_mat;
901         pbqp_matrix *tgt_mat;
902         pbqp_node   *src_node;
903         pbqp_node   *tgt_node;
904         vector      *vec;
905         vector      *node_vec;
906         unsigned     col_index;
907         unsigned     row_index;
908
909         assert(pbqp);
910
911         if (src_is_src) {
912                 src_node = src_edge->tgt;
913         } else {
914                 src_node = src_edge->src;
915         }
916
917         if (tgt_is_src) {
918                 tgt_node = tgt_edge->tgt;
919         } else {
920                 tgt_node = tgt_edge->src;
921         }
922
923         /* Swap nodes if necessary. */
924         if (tgt_node->index < src_node->index) {
925                 pbqp_node *tmp_node;
926                 pbqp_edge *tmp_edge;
927
928                 tmp_node = src_node;
929                 src_node = tgt_node;
930                 tgt_node = tmp_node;
931
932                 tmp_edge = src_edge;
933                 src_edge = tgt_edge;
934                 tgt_edge = tmp_edge;
935
936                 src_is_src = src_edge->src == node;
937                 tgt_is_src = tgt_edge->src == node;
938         }
939
940         src_mat = src_edge->costs;
941         tgt_mat = tgt_edge->costs;
942
943         node_vec = node->costs;
944
945         row_index = src_node->solution;
946         col_index = tgt_node->solution;
947
948         vec = vector_copy(pbqp, node_vec);
949
950         if (src_is_src) {
951                 vector_add_matrix_col(vec, src_mat, row_index);
952         } else {
953                 vector_add_matrix_row(vec, src_mat, row_index);
954         }
955
956         if (tgt_is_src) {
957                 vector_add_matrix_col(vec, tgt_mat, col_index);
958         } else {
959                 vector_add_matrix_row(vec, tgt_mat, col_index);
960         }
961
962         node->solution = vector_get_min_index(vec);
963
964 #if     KAPS_DUMP
965         if (pbqp->dump_file) {
966                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
967         }
968 #endif
969
970         obstack_free(&pbqp->obstack, vec);
971 }
972
973 void back_propagate(pbqp *pbqp)
974 {
975         unsigned node_index;
976         unsigned node_len   = node_bucket_get_length(reduced_bucket);
977
978         assert(pbqp);
979
980 #if     KAPS_DUMP
981         if (pbqp->dump_file) {
982                 dump_section(pbqp->dump_file, 2, "Back Propagation");
983         }
984 #endif
985
986         for (node_index = node_len; node_index > 0; --node_index) {
987                 pbqp_node *node = reduced_bucket[node_index - 1];
988
989                 switch (pbqp_node_get_degree(node)) {
990                         case 1:
991                                 back_propagate_RI(pbqp, node);
992                                 break;
993                         case 2:
994                                 back_propagate_RII(pbqp, node);
995                                 break;
996                         default:
997                                 panic("Only nodes with degree one or two should be in this bucket");
998                                 break;
999                 }
1000         }
1001 }
1002
1003 void apply_edge(pbqp *pbqp)
1004 {
1005         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
1006
1007         simplify_edge(pbqp, edge);
1008 }
1009
1010 void apply_RI(pbqp *pbqp)
1011 {
1012         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
1013         pbqp_edge   *edge       = node->edges[0];
1014         pbqp_matrix *mat        = edge->costs;
1015         int          is_src     = edge->src == node;
1016         pbqp_node   *other_node;
1017
1018         (void ) pbqp;
1019         assert(pbqp_node_get_degree(node) == 1);
1020
1021         if (is_src) {
1022                 other_node = edge->tgt;
1023         } else {
1024                 other_node = edge->src;
1025         }
1026
1027 #if     KAPS_DUMP
1028         if (pbqp->dump_file) {
1029                 char     txt[100];
1030                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1031                 dump_section(pbqp->dump_file, 2, txt);
1032                 pbqp_dump_graph(pbqp);
1033                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1034                 dump_node(pbqp->dump_file, node);
1035                 dump_node(pbqp->dump_file, other_node);
1036                 dump_edge(pbqp->dump_file, edge);
1037         }
1038 #endif
1039
1040         if (is_src) {
1041                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1042                 normalize_towards_target(edge);
1043         } else {
1044                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1045                 normalize_towards_source(edge);
1046         }
1047         disconnect_edge(other_node, edge);
1048
1049 #if     KAPS_DUMP
1050         if (pbqp->dump_file) {
1051                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1052                 dump_node(pbqp->dump_file, other_node);
1053         }
1054 #endif
1055
1056         reorder_node_after_edge_deletion(other_node);
1057
1058 #if KAPS_STATISTIC
1059         pbqp->num_r1++;
1060 #endif
1061
1062         /* Add node to back propagation list. */
1063         node_bucket_insert(&reduced_bucket, node);
1064 }
1065
1066 void apply_RII(pbqp *pbqp)
1067 {
1068         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1069         pbqp_edge   *src_edge   = node->edges[0];
1070         pbqp_edge   *tgt_edge   = node->edges[1];
1071         int          src_is_src = src_edge->src == node;
1072         int          tgt_is_src = tgt_edge->src == node;
1073         pbqp_matrix *src_mat;
1074         pbqp_matrix *tgt_mat;
1075         pbqp_node   *src_node;
1076         pbqp_node   *tgt_node;
1077         pbqp_matrix *mat;
1078         vector      *vec;
1079         vector      *node_vec;
1080         vector      *src_vec;
1081         vector      *tgt_vec;
1082         unsigned     col_index;
1083         unsigned     col_len;
1084         unsigned     row_index;
1085         unsigned     row_len;
1086         unsigned     node_len;
1087
1088         assert(pbqp);
1089         assert(pbqp_node_get_degree(node) == 2);
1090
1091         if (src_is_src) {
1092                 src_node = src_edge->tgt;
1093         } else {
1094                 src_node = src_edge->src;
1095         }
1096
1097         if (tgt_is_src) {
1098                 tgt_node = tgt_edge->tgt;
1099         } else {
1100                 tgt_node = tgt_edge->src;
1101         }
1102
1103         /* Swap nodes if necessary. */
1104         if (tgt_node->index < src_node->index) {
1105                 pbqp_node *tmp_node;
1106                 pbqp_edge *tmp_edge;
1107
1108                 tmp_node = src_node;
1109                 src_node = tgt_node;
1110                 tgt_node = tmp_node;
1111
1112                 tmp_edge = src_edge;
1113                 src_edge = tgt_edge;
1114                 tgt_edge = tmp_edge;
1115
1116                 src_is_src = src_edge->src == node;
1117                 tgt_is_src = tgt_edge->src == node;
1118         }
1119
1120 #if     KAPS_DUMP
1121         if (pbqp->dump_file) {
1122                 char     txt[100];
1123                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1124                 dump_section(pbqp->dump_file, 2, txt);
1125                 pbqp_dump_graph(pbqp);
1126                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1127                 dump_node(pbqp->dump_file, src_node);
1128                 dump_edge(pbqp->dump_file, src_edge);
1129                 dump_node(pbqp->dump_file, node);
1130                 dump_edge(pbqp->dump_file, tgt_edge);
1131                 dump_node(pbqp->dump_file, tgt_node);
1132         }
1133 #endif
1134
1135         src_mat = src_edge->costs;
1136         tgt_mat = tgt_edge->costs;
1137
1138         src_vec  = src_node->costs;
1139         tgt_vec  = tgt_node->costs;
1140         node_vec = node->costs;
1141
1142         row_len  = src_vec->len;
1143         col_len  = tgt_vec->len;
1144         node_len = node_vec->len;
1145
1146         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1147
1148         for (row_index = 0; row_index < row_len; ++row_index) {
1149                 for (col_index = 0; col_index < col_len; ++col_index) {
1150                         vec = vector_copy(pbqp, node_vec);
1151
1152                         if (src_is_src) {
1153                                 vector_add_matrix_col(vec, src_mat, row_index);
1154                         } else {
1155                                 vector_add_matrix_row(vec, src_mat, row_index);
1156                         }
1157
1158                         if (tgt_is_src) {
1159                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1160                         } else {
1161                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1162                         }
1163
1164                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1165
1166                         obstack_free(&pbqp->obstack, vec);
1167                 }
1168         }
1169
1170         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1171
1172         /* Disconnect node. */
1173         disconnect_edge(src_node, src_edge);
1174         disconnect_edge(tgt_node, tgt_edge);
1175
1176 #if KAPS_STATISTIC
1177         pbqp->num_r2++;
1178 #endif
1179
1180         /* Add node to back propagation list. */
1181         node_bucket_insert(&reduced_bucket, node);
1182
1183         if (edge == NULL) {
1184                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1185         } else {
1186                 // matrix
1187                 pbqp_matrix_add(edge->costs, mat);
1188
1189                 /* Free local matrix. */
1190                 obstack_free(&pbqp->obstack, mat);
1191
1192                 reorder_node_after_edge_deletion(src_node);
1193                 reorder_node_after_edge_deletion(tgt_node);
1194         }
1195
1196 #if     KAPS_DUMP
1197         if (pbqp->dump_file) {
1198                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1199                 dump_edge(pbqp->dump_file, edge);
1200         }
1201 #endif
1202
1203         /* Edge has changed so we simplify it. */
1204         simplify_edge(pbqp, edge);
1205 }
1206
1207 static void select_column(pbqp_edge *edge, unsigned col_index)
1208 {
1209         pbqp_matrix    *mat;
1210         pbqp_node      *src_node;
1211         pbqp_node      *tgt_node;
1212         vector         *src_vec;
1213         vector         *tgt_vec;
1214         unsigned        src_len;
1215         unsigned        tgt_len;
1216         unsigned        src_index;
1217         unsigned        new_infinity = 0;
1218
1219         assert(edge);
1220
1221         src_node = edge->src;
1222         tgt_node = edge->tgt;
1223         assert(src_node);
1224         assert(tgt_node);
1225
1226         src_vec = src_node->costs;
1227         tgt_vec = tgt_node->costs;
1228         assert(src_vec);
1229         assert(tgt_vec);
1230
1231         src_len = src_vec->len;
1232         tgt_len = tgt_vec->len;
1233         assert(src_len > 0);
1234         assert(tgt_len > 0);
1235
1236         mat = edge->costs;
1237         assert(mat);
1238
1239         for (src_index = 0; src_index < src_len; ++src_index) {
1240                 num elem = mat->entries[src_index * tgt_len + col_index];
1241
1242                 if (elem != 0) {
1243                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1244                                 new_infinity = 1;
1245
1246                         src_vec->entries[src_index].data = pbqp_add(
1247                                         src_vec->entries[src_index].data, elem);
1248                 }
1249         }
1250
1251         if (new_infinity) {
1252                 unsigned edge_index;
1253                 unsigned edge_len = pbqp_node_get_degree(src_node);
1254
1255                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1256                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
1257
1258                         if (edge_candidate != edge) {
1259                                 insert_into_edge_bucket(edge_candidate);
1260                         }
1261                 }
1262         }
1263
1264         delete_edge(edge);
1265 }
1266
1267 static void select_row(pbqp_edge *edge, unsigned row_index)
1268 {
1269         pbqp_matrix    *mat;
1270         pbqp_node      *src_node;
1271         pbqp_node      *tgt_node;
1272         vector         *tgt_vec;
1273         unsigned        tgt_len;
1274         unsigned        tgt_index;
1275         unsigned        new_infinity = 0;
1276
1277         assert(edge);
1278
1279         src_node = edge->src;
1280         tgt_node = edge->tgt;
1281         assert(tgt_node);
1282
1283         tgt_vec = tgt_node->costs;
1284         assert(tgt_vec);
1285
1286         tgt_len = tgt_vec->len;
1287         assert(tgt_len > 0);
1288
1289         mat = edge->costs;
1290         assert(mat);
1291
1292         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1293                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1294
1295                 if (elem != 0) {
1296                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1297                                 new_infinity = 1;
1298
1299                         tgt_vec->entries[tgt_index].data = pbqp_add(
1300                                         tgt_vec->entries[tgt_index].data, elem);
1301                 }
1302         }
1303
1304         if (new_infinity) {
1305                 unsigned edge_index;
1306                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1307
1308                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1309                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
1310
1311                         if (edge_candidate != edge) {
1312                                 insert_into_edge_bucket(edge_candidate);
1313                         }
1314                 }
1315         }
1316
1317         delete_edge(edge);
1318 }
1319
1320 void select_alternative(pbqp_node *node, unsigned selected_index)
1321 {
1322         unsigned  edge_index;
1323         unsigned  node_index;
1324         unsigned  node_len;
1325         vector   *node_vec;
1326         unsigned  max_degree = pbqp_node_get_degree(node);
1327
1328         assert(node);
1329         node->solution = selected_index;
1330         node_vec = node->costs;
1331         node_len = node_vec->len;
1332         assert(selected_index < node_len);
1333
1334         /* Set all other costs to infinity. */
1335         for (node_index = 0; node_index < node_len; ++node_index) {
1336                 if (node_index != selected_index) {
1337                         node_vec->entries[node_index].data = INF_COSTS;
1338                 }
1339         }
1340
1341         /* Select corresponding row/column for incident edges. */
1342         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1343                 pbqp_edge *edge = node->edges[edge_index];
1344
1345                 if (edge->src == node)
1346                         select_row(edge, selected_index);
1347                 else
1348                         select_column(edge, selected_index);
1349         }
1350 }
1351
1352 pbqp_node *get_node_with_max_degree(void)
1353 {
1354         pbqp_node  **bucket       = node_buckets[3];
1355         unsigned     bucket_len   = node_bucket_get_length(bucket);
1356         unsigned     bucket_index;
1357         unsigned     max_degree   = 0;
1358         pbqp_node   *result       = NULL;
1359
1360         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1361                 pbqp_node *candidate = bucket[bucket_index];
1362                 unsigned   degree    = pbqp_node_get_degree(candidate);
1363
1364                 if (degree > max_degree) {
1365                         result = candidate;
1366                         max_degree = degree;
1367                 }
1368         }
1369
1370         return result;
1371 }
1372
1373 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1374 {
1375         pbqp_edge   *edge;
1376         vector      *node_vec;
1377         vector      *vec;
1378         pbqp_matrix *mat;
1379         unsigned     edge_index;
1380         unsigned     max_degree;
1381         unsigned     node_index;
1382         unsigned     node_len;
1383         unsigned     min_index    = 0;
1384         num          min          = INF_COSTS;
1385         int          is_src;
1386
1387         assert(pbqp);
1388         assert(node);
1389         node_vec   = node->costs;
1390         node_len   = node_vec->len;
1391         max_degree = pbqp_node_get_degree(node);
1392
1393         for (node_index = 0; node_index < node_len; ++node_index) {
1394                 num value = node_vec->entries[node_index].data;
1395
1396                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1397                         edge   = node->edges[edge_index];
1398                         mat    = edge->costs;
1399                         is_src = edge->src == node;
1400
1401                         if (is_src) {
1402                                 vec = vector_copy(pbqp, edge->tgt->costs);
1403                                 vector_add_matrix_row(vec, mat, node_index);
1404                         } else {
1405                                 vec = vector_copy(pbqp, edge->src->costs);
1406                                 vector_add_matrix_col(vec, mat, node_index);
1407                         }
1408
1409                         value = pbqp_add(value, vector_get_min(vec));
1410
1411                         obstack_free(&pbqp->obstack, vec);
1412                 }
1413
1414                 if (value < min) {
1415                         min = value;
1416                         min_index = node_index;
1417                 }
1418         }
1419
1420         return min_index;
1421 }
1422
1423 int node_is_reduced(pbqp_node *node)
1424 {
1425         if (!reduced_bucket) return 0;
1426
1427         if (pbqp_node_get_degree(node) == 0) return 1;
1428
1429         return node_bucket_contains(reduced_bucket, node);
1430 }