Improved dump for RM.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 pbqp_node  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         assert(pbqp);
110         node_len = pbqp->num_nodes;
111
112         #if KAPS_TIMING
113                 ir_timer_t *t_fill_buckets = ir_timer_new();
114                 ir_timer_start(t_fill_buckets);
115         #endif
116
117         for (node_index = 0; node_index < node_len; ++node_index) {
118                 unsigned   degree;
119                 pbqp_node *node = get_node(pbqp, node_index);
120
121                 if (!node) continue;
122
123                 degree = pbqp_node_get_degree(node);
124
125                 /* We have only one bucket for nodes with arity >= 3. */
126                 if (degree > 3) {
127                         degree = 3;
128                 }
129
130                 node_bucket_insert(&node_buckets[degree], node);
131         }
132
133         buckets_filled = 1;
134
135         #if KAPS_TIMING
136                 ir_timer_stop(t_fill_buckets);
137                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
138         #endif
139 }
140
141 static void normalize_towards_source(pbqp_edge *edge)
142 {
143         pbqp_matrix    *mat;
144         pbqp_node      *src_node;
145         pbqp_node      *tgt_node;
146         vector         *src_vec;
147         vector         *tgt_vec;
148         unsigned        src_len;
149         unsigned        tgt_len;
150         unsigned        src_index;
151         unsigned        new_infinity = 0;
152
153         assert(edge);
154
155         src_node = edge->src;
156         tgt_node = edge->tgt;
157         assert(src_node);
158         assert(tgt_node);
159
160         src_vec = src_node->costs;
161         tgt_vec = tgt_node->costs;
162         assert(src_vec);
163         assert(tgt_vec);
164
165         src_len = src_vec->len;
166         tgt_len = tgt_vec->len;
167         assert(src_len > 0);
168         assert(tgt_len > 0);
169
170         mat = edge->costs;
171         assert(mat);
172
173         /* Normalize towards source node. */
174         for (src_index = 0; src_index < src_len; ++src_index) {
175                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
176
177                 if (min != 0) {
178                         if (src_vec->entries[src_index].data == INF_COSTS) {
179                                 pbqp_matrix_set_row_value(mat, src_index, 0);
180                                 continue;
181                         }
182
183                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
184                         src_vec->entries[src_index].data = pbqp_add(
185                                         src_vec->entries[src_index].data, min);
186
187                         if (min == INF_COSTS) {
188                                 new_infinity = 1;
189                         }
190                 }
191         }
192
193         if (new_infinity) {
194                 unsigned edge_index;
195                 unsigned edge_len = pbqp_node_get_degree(src_node);
196
197                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
198                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
199
200                         if (edge_candidate != edge) {
201                                 insert_into_edge_bucket(edge_candidate);
202                         }
203                 }
204         }
205 }
206
207 static void normalize_towards_target(pbqp_edge *edge)
208 {
209         pbqp_matrix    *mat;
210         pbqp_node      *src_node;
211         pbqp_node      *tgt_node;
212         vector         *src_vec;
213         vector         *tgt_vec;
214         unsigned        src_len;
215         unsigned        tgt_len;
216         unsigned        tgt_index;
217         unsigned        new_infinity = 0;
218
219         assert(edge);
220
221         src_node = edge->src;
222         tgt_node = edge->tgt;
223         assert(src_node);
224         assert(tgt_node);
225
226         src_vec = src_node->costs;
227         tgt_vec = tgt_node->costs;
228         assert(src_vec);
229         assert(tgt_vec);
230
231         src_len = src_vec->len;
232         tgt_len = tgt_vec->len;
233         assert(src_len > 0);
234         assert(tgt_len > 0);
235
236         mat = edge->costs;
237         assert(mat);
238
239         /* Normalize towards target node. */
240         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
241                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
242
243                 if (min != 0) {
244                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
245                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
246                                 continue;
247                         }
248
249                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
250                         tgt_vec->entries[tgt_index].data = pbqp_add(
251                                         tgt_vec->entries[tgt_index].data, min);
252
253                         if (min == INF_COSTS) {
254                                 new_infinity = 1;
255                         }
256                 }
257         }
258
259         if (new_infinity) {
260                 unsigned edge_index;
261                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
262
263                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
264                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
265
266                         if (edge_candidate != edge) {
267                                 insert_into_edge_bucket(edge_candidate);
268                         }
269                 }
270         }
271 }
272
273 /**
274  * Tries to apply RM for the source node of the given edge.
275  *
276  * Checks whether the source node of edge can be merged into the target node of
277  * edge, and performs the merge, if possible.
278  */
279 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
280 {
281         pbqp_matrix    *mat;
282         pbqp_node      *src_node;
283         pbqp_node      *tgt_node;
284         vector         *src_vec;
285         vector         *tgt_vec;
286         unsigned       *mapping;
287         unsigned        src_len;
288         unsigned        tgt_len;
289         unsigned        src_index;
290         unsigned        tgt_index;
291         unsigned        edge_index;
292         unsigned        edge_len;
293
294         assert(pbqp);
295         assert(edge);
296
297         src_node = edge->src;
298         tgt_node = edge->tgt;
299         assert(src_node);
300         assert(tgt_node);
301
302         src_vec = src_node->costs;
303         tgt_vec = tgt_node->costs;
304         assert(src_vec);
305         assert(tgt_vec);
306
307         src_len = src_vec->len;
308         tgt_len = tgt_vec->len;
309
310         /* Matrizes are normalized. */
311         assert(src_len > 1);
312         assert(tgt_len > 1);
313
314         mat = edge->costs;
315         assert(mat);
316
317         mapping = NEW_ARR_F(unsigned, tgt_len);
318
319         /* Check that each column has at most one zero entry. */
320         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
321                 unsigned onlyOneZero = 0;
322
323                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
324                         continue;
325
326                 for (src_index = 0; src_index < src_len; ++src_index) {
327                         if (src_vec->entries[src_index].data == INF_COSTS)
328                                 continue;
329
330                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
331                                 continue;
332
333                         /* Matrix entry is finite. */
334                         if (onlyOneZero) {
335                                 DEL_ARR_F(mapping);
336                                 return;
337                         }
338
339                         onlyOneZero = 1;
340                         mapping[tgt_index] = src_index;
341                 }
342         }
343
344         /* We know that we can merge the source node into the target node. */
345         edge_len = pbqp_node_get_degree(src_node);
346
347 #if KAPS_STATISTIC
348         pbqp->num_rm++;
349 #endif
350
351 #if     KAPS_DUMP
352         if (pbqp->dump_file) {
353                 char txt[100];
354                 sprintf(txt, "Merging n%d into n%d", src_node->index, tgt_node->index);
355                 dump_section(pbqp->dump_file, 3, txt);
356         }
357 #endif
358
359         /* Reconnect the source's edges with the target node. */
360         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
361                 pbqp_edge   *old_edge = src_node->edges[edge_index];
362                 pbqp_edge   *new_edge;
363                 pbqp_matrix *old_matrix;
364                 pbqp_matrix *new_matrix;
365                 pbqp_node   *other_node;
366                 vector      *other_vec;
367                 unsigned     other_len;
368                 unsigned     other_index;
369                 unsigned     tgt_index;
370
371                 assert(old_edge);
372
373                 if (old_edge == edge)
374                         continue;
375
376                 old_matrix = old_edge->costs;
377                 assert(old_matrix);
378
379                 if (old_edge->tgt == src_node) {
380                         other_node = old_edge->src;
381                         other_len  = old_matrix->rows;
382                 }
383                 else {
384                         other_node = old_edge->tgt;
385                         other_len = old_matrix->cols;
386                 }
387                 assert(other_node);
388                 other_vec = other_node->costs;
389
390                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
391
392                 /* Source node selects the column of the old_matrix. */
393                 if (old_edge->tgt == src_node) {
394                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
395                                 unsigned src_index = mapping[tgt_index];
396
397                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
398                                         continue;
399
400                                 for (other_index = 0; other_index < other_len; ++other_index) {
401                                         if (other_vec->entries[other_index].data == INF_COSTS)
402                                                 continue;
403
404                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
405                                 }
406                         }
407                 }
408                 /* Source node selects the row of the old_matrix. */
409                 else {
410                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
411                                 unsigned src_index = mapping[tgt_index];
412
413                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
414                                         continue;
415
416                                 for (other_index = 0; other_index < other_len; ++other_index) {
417                                         if (other_vec->entries[other_index].data == INF_COSTS)
418                                                 continue;
419
420                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
421                                 }
422                         }
423                 }
424
425                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
426
427                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
428
429                 if (new_edge == NULL) {
430                         reorder_node_after_edge_insertion(tgt_node);
431                         reorder_node_after_edge_insertion(other_node);
432                 }
433
434                 delete_edge(old_edge);
435
436                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
437                 simplify_edge(pbqp, new_edge);
438
439                 insert_into_rm_bucket(new_edge);
440         }
441
442 #if KAPS_STATISTIC
443         pbqp->num_r1--;
444 #endif
445 }
446
447 /**
448  * Tries to apply RM for the target node of the given edge.
449  *
450  * Checks whether the target node of edge can be merged into the source node of
451  * edge, and performs the merge, if possible.
452  */
453 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
454 {
455         pbqp_matrix    *mat;
456         pbqp_node      *src_node;
457         pbqp_node      *tgt_node;
458         vector         *src_vec;
459         vector         *tgt_vec;
460         unsigned       *mapping;
461         unsigned        src_len;
462         unsigned        tgt_len;
463         unsigned        src_index;
464         unsigned        tgt_index;
465         unsigned        edge_index;
466         unsigned        edge_len;
467
468         assert(pbqp);
469         assert(edge);
470
471         src_node = edge->src;
472         tgt_node = edge->tgt;
473         assert(src_node);
474         assert(tgt_node);
475
476         src_vec = src_node->costs;
477         tgt_vec = tgt_node->costs;
478         assert(src_vec);
479         assert(tgt_vec);
480
481         src_len = src_vec->len;
482         tgt_len = tgt_vec->len;
483
484         /* Matrizes are normalized. */
485         assert(src_len > 1);
486         assert(tgt_len > 1);
487
488         mat = edge->costs;
489         assert(mat);
490
491         mapping = NEW_ARR_F(unsigned, src_len);
492
493         /* Check that each row has at most one zero entry. */
494         for (src_index = 0; src_index < src_len; ++src_index) {
495                 unsigned onlyOneZero = 0;
496
497                 if (src_vec->entries[src_index].data == INF_COSTS)
498                         continue;
499
500                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
501                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
502                                 continue;
503
504                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
505                                 continue;
506
507                         /* Matrix entry is finite. */
508                         if (onlyOneZero) {
509                                 DEL_ARR_F(mapping);
510                                 return;
511                         }
512
513                         onlyOneZero = 1;
514                         mapping[src_index] = tgt_index;
515                 }
516         }
517
518         /* We know that we can merge the target node into the source node. */
519         edge_len = pbqp_node_get_degree(tgt_node);
520
521 #if KAPS_STATISTIC
522         pbqp->num_rm++;
523 #endif
524
525 #if     KAPS_DUMP
526         if (pbqp->dump_file) {
527                 char txt[100];
528                 sprintf(txt, "Merging n%d into n%d", tgt_node->index, src_node->index);
529                 dump_section(pbqp->dump_file, 3, txt);
530         }
531 #endif
532
533         /* Reconnect the target's edges with the source node. */
534         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
535                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
536                 pbqp_edge   *new_edge;
537                 pbqp_matrix *old_matrix;
538                 pbqp_matrix *new_matrix;
539                 pbqp_node   *other_node;
540                 vector      *other_vec;
541                 unsigned     other_len;
542                 unsigned     other_index;
543                 unsigned     src_index;
544
545                 assert(old_edge);
546
547                 if (old_edge == edge)
548                         continue;
549
550                 old_matrix = old_edge->costs;
551                 assert(old_matrix);
552
553                 if (old_edge->tgt == tgt_node) {
554                         other_node = old_edge->src;
555                         other_len  = old_matrix->rows;
556                 }
557                 else {
558                         other_node = old_edge->tgt;
559                         other_len = old_matrix->cols;
560                 }
561                 assert(other_node);
562                 other_vec = other_node->costs;
563
564                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
565
566                 /* Target node selects the column of the old_matrix. */
567                 if (old_edge->tgt == tgt_node) {
568                         for (src_index = 0; src_index < src_len; ++src_index) {
569                                 unsigned tgt_index = mapping[src_index];
570
571                                 if (src_vec->entries[src_index].data == INF_COSTS)
572                                         continue;
573
574                                 for (other_index = 0; other_index < other_len; ++other_index) {
575                                         if (other_vec->entries[other_index].data == INF_COSTS)
576                                                 continue;
577
578                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
579                                 }
580                         }
581                 }
582                 /* Source node selects the row of the old_matrix. */
583                 else {
584                         for (src_index = 0; src_index < src_len; ++src_index) {
585                                 unsigned tgt_index = mapping[src_index];
586
587                                 if (src_vec->entries[src_index].data == INF_COSTS)
588                                         continue;
589
590                                 for (other_index = 0; other_index < other_len; ++other_index) {
591                                         if (other_vec->entries[other_index].data == INF_COSTS)
592                                                 continue;
593
594                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
595                                 }
596                         }
597                 }
598
599                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
600
601                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
602
603                 if (new_edge == NULL) {
604                         reorder_node_after_edge_insertion(src_node);
605                         reorder_node_after_edge_insertion(other_node);
606                 }
607
608                 delete_edge(old_edge);
609
610                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
611                 simplify_edge(pbqp, new_edge);
612
613                 insert_into_rm_bucket(new_edge);
614         }
615
616 #if KAPS_STATISTIC
617         pbqp->num_r1--;
618 #endif
619 }
620
621 /**
622  * Merge neighbors into the given node.
623  */
624 void apply_RM(pbqp *pbqp, pbqp_node *node)
625 {
626         pbqp_edge **edges;
627         unsigned    edge_index;
628         unsigned    edge_len;
629
630         assert(node);
631         assert(pbqp);
632
633         edges    = node->edges;
634         edge_len = pbqp_node_get_degree(node);
635
636         /* Check all incident edges. */
637         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
638                 pbqp_edge *edge = edges[edge_index];
639
640                 insert_into_rm_bucket(edge);
641         }
642
643         /* ALAP: Merge neighbors into given node. */
644         while(edge_bucket_get_length(rm_bucket) > 0) {
645                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
646                 assert(edge);
647
648                 /* If the edge is not deleted: Try a merge. */
649                 if (edge->src == node)
650                         merge_target_into_source(pbqp, edge);
651                 else if (edge->tgt == node)
652                         merge_source_into_target(pbqp, edge);
653         }
654
655         merged_node = node;
656 }
657
658 void reorder_node_after_edge_deletion(pbqp_node *node)
659 {
660         unsigned    degree     = pbqp_node_get_degree(node);
661         /* Assume node lost one incident edge. */
662         unsigned    old_degree = degree + 1;
663
664         if (!buckets_filled) return;
665
666         /* Same bucket as before */
667         if (degree > 2) return;
668
669         /* Delete node from old bucket... */
670         node_bucket_remove(&node_buckets[old_degree], node);
671
672         /* ..and add to new one. */
673         node_bucket_insert(&node_buckets[degree], node);
674 }
675
676 void reorder_node_after_edge_insertion(pbqp_node *node)
677 {
678         unsigned    degree     = pbqp_node_get_degree(node);
679         /* Assume node lost one incident edge. */
680         unsigned    old_degree = degree - 1;
681
682         if (!buckets_filled) return;
683
684         /* Same bucket as before */
685         if (old_degree > 2) return;
686
687         /* Delete node from old bucket... */
688         node_bucket_remove(&node_buckets[old_degree], node);
689
690         /* ..and add to new one. */
691         node_bucket_insert(&node_buckets[degree], node);
692 }
693
694 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
695 {
696         pbqp_matrix    *mat;
697         pbqp_node      *src_node;
698         pbqp_node      *tgt_node;
699         vector         *src_vec;
700         vector         *tgt_vec;
701         int             src_len;
702         int             tgt_len;
703
704         assert(pbqp);
705         assert(edge);
706
707         (void) pbqp;
708
709         src_node = edge->src;
710         tgt_node = edge->tgt;
711         assert(src_node);
712         assert(tgt_node);
713
714         /* If edge are already deleted, we have nothing to do. */
715         if (is_deleted(edge))
716                 return;
717
718 #if     KAPS_DUMP
719         if (pbqp->dump_file) {
720                 char txt[100];
721                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
722                 dump_section(pbqp->dump_file, 3, txt);
723         }
724 #endif
725
726         src_vec = src_node->costs;
727         tgt_vec = tgt_node->costs;
728         assert(src_vec);
729         assert(tgt_vec);
730
731         src_len = src_vec->len;
732         tgt_len = tgt_vec->len;
733         assert(src_len > 0);
734         assert(tgt_len > 0);
735
736         mat = edge->costs;
737         assert(mat);
738
739 #if     KAPS_DUMP
740         if (pbqp->dump_file) {
741                 fputs("Input:<br>\n", pbqp->dump_file);
742                 dump_simplifyedge(pbqp, edge);
743         }
744 #endif
745
746         normalize_towards_source(edge);
747         normalize_towards_target(edge);
748
749 #if     KAPS_DUMP
750         if (pbqp->dump_file) {
751                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
752                 dump_simplifyedge(pbqp, edge);
753         }
754 #endif
755
756         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
757 #if     KAPS_DUMP
758                 if (pbqp->dump_file) {
759                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
760                 }
761 #endif
762
763 #if KAPS_STATISTIC
764                 pbqp->num_edges++;
765 #endif
766
767                 delete_edge(edge);
768         }
769 }
770
771 void initial_simplify_edges(pbqp *pbqp)
772 {
773         unsigned node_index;
774         unsigned node_len;
775
776         assert(pbqp);
777
778         #if KAPS_TIMING
779                 ir_timer_t *t_int_simpl = ir_timer_new();
780                 ir_timer_start(t_int_simpl);
781         #endif
782
783 #if     KAPS_DUMP
784         if (pbqp->dump_file) {
785                 pbqp_dump_input(pbqp);
786                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
787         }
788 #endif
789
790         node_len = pbqp->num_nodes;
791
792         init_buckets();
793
794         /* First simplify all edges. */
795         for (node_index = 0; node_index < node_len; ++node_index) {
796                 unsigned    edge_index;
797                 pbqp_node  *node = get_node(pbqp, node_index);
798                 pbqp_edge **edges;
799                 unsigned    edge_len;
800
801                 if (!node) continue;
802
803                 edges = node->edges;
804                 edge_len = pbqp_node_get_degree(node);
805
806                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
807                         pbqp_edge *edge = edges[edge_index];
808
809                         /* Simplify only once per edge. */
810                         if (node != edge->src) continue;
811
812                         simplify_edge(pbqp, edge);
813                 }
814         }
815
816         #if KAPS_TIMING
817                 ir_timer_stop(t_int_simpl);
818                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
819         #endif
820 }
821
822 num determine_solution(pbqp *pbqp)
823 {
824         unsigned node_index;
825         unsigned node_len;
826         num      solution   = 0;
827
828         #if KAPS_TIMING
829                 ir_timer_t *t_det_solution = ir_timer_new();
830                 ir_timer_reset_and_start(t_det_solution);
831         #endif
832
833 #if     KAPS_DUMP
834         FILE     *file;
835 #endif
836
837         assert(pbqp);
838
839         (void) pbqp;
840
841 #if     KAPS_DUMP
842         file = pbqp->dump_file;
843
844         if (file) {
845                 dump_section(file, 1, "4. Determine Solution/Minimum");
846                 dump_section(file, 2, "4.1. Trivial Solution");
847         }
848 #endif
849
850         /* Solve trivial nodes and calculate solution. */
851         node_len = node_bucket_get_length(node_buckets[0]);
852
853 #if KAPS_STATISTIC
854         pbqp->num_r0 = node_len;
855 #endif
856
857         for (node_index = 0; node_index < node_len; ++node_index) {
858                 pbqp_node *node = node_buckets[0][node_index];
859                 assert(node);
860
861                 node->solution = vector_get_min_index(node->costs);
862                 solution       = pbqp_add(solution,
863                                 node->costs->entries[node->solution].data);
864
865 #if     KAPS_DUMP
866                 if (file) {
867                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
868                         dump_node(file, node);
869                 }
870 #endif
871         }
872
873 #if     KAPS_DUMP
874         if (file) {
875                 dump_section(file, 2, "Minimum");
876 #if KAPS_USE_UNSIGNED
877                 fprintf(file, "Minimum is equal to %u.", solution);
878 #else
879                 fprintf(file, "Minimum is equal to %lld.", solution);
880 #endif
881         }
882 #endif
883
884         #if KAPS_TIMING
885                 ir_timer_stop(t_det_solution);
886                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
887         #endif
888
889         return solution;
890 }
891
892 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
893 {
894         pbqp_edge   *edge;
895         pbqp_node   *other;
896         pbqp_matrix *mat;
897         vector      *vec;
898         int          is_src;
899
900         assert(pbqp);
901         assert(node);
902
903         (void) pbqp;
904
905         edge = node->edges[0];
906         mat = edge->costs;
907         is_src = edge->src == node;
908         vec = node->costs;
909
910         if (is_src) {
911                 other = edge->tgt;
912                 assert(other);
913
914                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
915         } else {
916                 other = edge->src;
917                 assert(other);
918
919                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
920         }
921
922 #if     KAPS_DUMP
923         if (pbqp->dump_file) {
924                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
925         }
926 #endif
927 }
928
929 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
930 {
931         pbqp_edge   *src_edge   = node->edges[0];
932         pbqp_edge   *tgt_edge   = node->edges[1];
933         int          src_is_src = src_edge->src == node;
934         int          tgt_is_src = tgt_edge->src == node;
935         pbqp_matrix *src_mat;
936         pbqp_matrix *tgt_mat;
937         pbqp_node   *src_node;
938         pbqp_node   *tgt_node;
939         vector      *vec;
940         vector      *node_vec;
941         unsigned     col_index;
942         unsigned     row_index;
943
944         assert(pbqp);
945
946         if (src_is_src) {
947                 src_node = src_edge->tgt;
948         } else {
949                 src_node = src_edge->src;
950         }
951
952         if (tgt_is_src) {
953                 tgt_node = tgt_edge->tgt;
954         } else {
955                 tgt_node = tgt_edge->src;
956         }
957
958         /* Swap nodes if necessary. */
959         if (tgt_node->index < src_node->index) {
960                 pbqp_node *tmp_node;
961                 pbqp_edge *tmp_edge;
962
963                 tmp_node = src_node;
964                 src_node = tgt_node;
965                 tgt_node = tmp_node;
966
967                 tmp_edge = src_edge;
968                 src_edge = tgt_edge;
969                 tgt_edge = tmp_edge;
970
971                 src_is_src = src_edge->src == node;
972                 tgt_is_src = tgt_edge->src == node;
973         }
974
975         src_mat = src_edge->costs;
976         tgt_mat = tgt_edge->costs;
977
978         node_vec = node->costs;
979
980         row_index = src_node->solution;
981         col_index = tgt_node->solution;
982
983         vec = vector_copy(pbqp, node_vec);
984
985         if (src_is_src) {
986                 vector_add_matrix_col(vec, src_mat, row_index);
987         } else {
988                 vector_add_matrix_row(vec, src_mat, row_index);
989         }
990
991         if (tgt_is_src) {
992                 vector_add_matrix_col(vec, tgt_mat, col_index);
993         } else {
994                 vector_add_matrix_row(vec, tgt_mat, col_index);
995         }
996
997         node->solution = vector_get_min_index(vec);
998
999 #if     KAPS_DUMP
1000         if (pbqp->dump_file) {
1001                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
1002         }
1003 #endif
1004
1005         obstack_free(&pbqp->obstack, vec);
1006 }
1007
1008 void back_propagate(pbqp *pbqp)
1009 {
1010         unsigned node_index;
1011         unsigned node_len   = node_bucket_get_length(reduced_bucket);
1012
1013         assert(pbqp);
1014
1015 #if     KAPS_DUMP
1016         if (pbqp->dump_file) {
1017                 dump_section(pbqp->dump_file, 2, "Back Propagation");
1018         }
1019 #endif
1020
1021         for (node_index = node_len; node_index > 0; --node_index) {
1022                 pbqp_node *node = reduced_bucket[node_index - 1];
1023
1024                 switch (pbqp_node_get_degree(node)) {
1025                         case 1:
1026                                 back_propagate_RI(pbqp, node);
1027                                 break;
1028                         case 2:
1029                                 back_propagate_RII(pbqp, node);
1030                                 break;
1031                         default:
1032                                 panic("Only nodes with degree one or two should be in this bucket");
1033                                 break;
1034                 }
1035         }
1036 }
1037
1038 void apply_edge(pbqp *pbqp)
1039 {
1040         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
1041
1042         simplify_edge(pbqp, edge);
1043 }
1044
1045 void apply_RI(pbqp *pbqp)
1046 {
1047         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
1048         pbqp_edge   *edge       = node->edges[0];
1049         pbqp_matrix *mat        = edge->costs;
1050         int          is_src     = edge->src == node;
1051         pbqp_node   *other_node;
1052
1053         (void ) pbqp;
1054         assert(pbqp_node_get_degree(node) == 1);
1055
1056         if (is_src) {
1057                 other_node = edge->tgt;
1058         } else {
1059                 other_node = edge->src;
1060         }
1061
1062 #if     KAPS_DUMP
1063         if (pbqp->dump_file) {
1064                 char     txt[100];
1065                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1066                 dump_section(pbqp->dump_file, 2, txt);
1067                 pbqp_dump_graph(pbqp);
1068                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1069                 dump_node(pbqp->dump_file, node);
1070                 dump_node(pbqp->dump_file, other_node);
1071                 dump_edge(pbqp->dump_file, edge);
1072         }
1073 #endif
1074
1075         if (is_src) {
1076                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1077                 normalize_towards_target(edge);
1078         } else {
1079                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1080                 normalize_towards_source(edge);
1081         }
1082         disconnect_edge(other_node, edge);
1083
1084 #if     KAPS_DUMP
1085         if (pbqp->dump_file) {
1086                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1087                 dump_node(pbqp->dump_file, other_node);
1088         }
1089 #endif
1090
1091         reorder_node_after_edge_deletion(other_node);
1092
1093 #if KAPS_STATISTIC
1094         pbqp->num_r1++;
1095 #endif
1096
1097         /* Add node to back propagation list. */
1098         node_bucket_insert(&reduced_bucket, node);
1099 }
1100
1101 void apply_RII(pbqp *pbqp)
1102 {
1103         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1104         pbqp_edge   *src_edge   = node->edges[0];
1105         pbqp_edge   *tgt_edge   = node->edges[1];
1106         int          src_is_src = src_edge->src == node;
1107         int          tgt_is_src = tgt_edge->src == node;
1108         pbqp_matrix *src_mat;
1109         pbqp_matrix *tgt_mat;
1110         pbqp_node   *src_node;
1111         pbqp_node   *tgt_node;
1112         pbqp_matrix *mat;
1113         vector      *vec;
1114         vector      *node_vec;
1115         vector      *src_vec;
1116         vector      *tgt_vec;
1117         unsigned     col_index;
1118         unsigned     col_len;
1119         unsigned     row_index;
1120         unsigned     row_len;
1121         unsigned     node_len;
1122
1123         assert(pbqp);
1124         assert(pbqp_node_get_degree(node) == 2);
1125
1126         if (src_is_src) {
1127                 src_node = src_edge->tgt;
1128         } else {
1129                 src_node = src_edge->src;
1130         }
1131
1132         if (tgt_is_src) {
1133                 tgt_node = tgt_edge->tgt;
1134         } else {
1135                 tgt_node = tgt_edge->src;
1136         }
1137
1138         /* Swap nodes if necessary. */
1139         if (tgt_node->index < src_node->index) {
1140                 pbqp_node *tmp_node;
1141                 pbqp_edge *tmp_edge;
1142
1143                 tmp_node = src_node;
1144                 src_node = tgt_node;
1145                 tgt_node = tmp_node;
1146
1147                 tmp_edge = src_edge;
1148                 src_edge = tgt_edge;
1149                 tgt_edge = tmp_edge;
1150
1151                 src_is_src = src_edge->src == node;
1152                 tgt_is_src = tgt_edge->src == node;
1153         }
1154
1155 #if     KAPS_DUMP
1156         if (pbqp->dump_file) {
1157                 char     txt[100];
1158                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1159                 dump_section(pbqp->dump_file, 2, txt);
1160                 pbqp_dump_graph(pbqp);
1161                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1162                 dump_node(pbqp->dump_file, src_node);
1163                 dump_edge(pbqp->dump_file, src_edge);
1164                 dump_node(pbqp->dump_file, node);
1165                 dump_edge(pbqp->dump_file, tgt_edge);
1166                 dump_node(pbqp->dump_file, tgt_node);
1167         }
1168 #endif
1169
1170         src_mat = src_edge->costs;
1171         tgt_mat = tgt_edge->costs;
1172
1173         src_vec  = src_node->costs;
1174         tgt_vec  = tgt_node->costs;
1175         node_vec = node->costs;
1176
1177         row_len  = src_vec->len;
1178         col_len  = tgt_vec->len;
1179         node_len = node_vec->len;
1180
1181         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1182
1183         for (row_index = 0; row_index < row_len; ++row_index) {
1184                 for (col_index = 0; col_index < col_len; ++col_index) {
1185                         vec = vector_copy(pbqp, node_vec);
1186
1187                         if (src_is_src) {
1188                                 vector_add_matrix_col(vec, src_mat, row_index);
1189                         } else {
1190                                 vector_add_matrix_row(vec, src_mat, row_index);
1191                         }
1192
1193                         if (tgt_is_src) {
1194                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1195                         } else {
1196                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1197                         }
1198
1199                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1200
1201                         obstack_free(&pbqp->obstack, vec);
1202                 }
1203         }
1204
1205         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1206
1207         /* Disconnect node. */
1208         disconnect_edge(src_node, src_edge);
1209         disconnect_edge(tgt_node, tgt_edge);
1210
1211 #if KAPS_STATISTIC
1212         pbqp->num_r2++;
1213 #endif
1214
1215         /* Add node to back propagation list. */
1216         node_bucket_insert(&reduced_bucket, node);
1217
1218         if (edge == NULL) {
1219                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1220         } else {
1221                 // matrix
1222                 pbqp_matrix_add(edge->costs, mat);
1223
1224                 /* Free local matrix. */
1225                 obstack_free(&pbqp->obstack, mat);
1226
1227                 reorder_node_after_edge_deletion(src_node);
1228                 reorder_node_after_edge_deletion(tgt_node);
1229         }
1230
1231 #if     KAPS_DUMP
1232         if (pbqp->dump_file) {
1233                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1234                 dump_edge(pbqp->dump_file, edge);
1235         }
1236 #endif
1237
1238         /* Edge has changed so we simplify it. */
1239         simplify_edge(pbqp, edge);
1240 }
1241
1242 static void select_column(pbqp_edge *edge, unsigned col_index)
1243 {
1244         pbqp_matrix    *mat;
1245         pbqp_node      *src_node;
1246         pbqp_node      *tgt_node;
1247         vector         *src_vec;
1248         vector         *tgt_vec;
1249         unsigned        src_len;
1250         unsigned        tgt_len;
1251         unsigned        src_index;
1252         unsigned        new_infinity = 0;
1253
1254         assert(edge);
1255
1256         src_node = edge->src;
1257         tgt_node = edge->tgt;
1258         assert(src_node);
1259         assert(tgt_node);
1260
1261         src_vec = src_node->costs;
1262         tgt_vec = tgt_node->costs;
1263         assert(src_vec);
1264         assert(tgt_vec);
1265
1266         src_len = src_vec->len;
1267         tgt_len = tgt_vec->len;
1268         assert(src_len > 0);
1269         assert(tgt_len > 0);
1270
1271         mat = edge->costs;
1272         assert(mat);
1273
1274         for (src_index = 0; src_index < src_len; ++src_index) {
1275                 num elem = mat->entries[src_index * tgt_len + col_index];
1276
1277                 if (elem != 0) {
1278                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1279                                 new_infinity = 1;
1280
1281                         src_vec->entries[src_index].data = pbqp_add(
1282                                         src_vec->entries[src_index].data, elem);
1283                 }
1284         }
1285
1286         if (new_infinity) {
1287                 unsigned edge_index;
1288                 unsigned edge_len = pbqp_node_get_degree(src_node);
1289
1290                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1291                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
1292
1293                         if (edge_candidate != edge) {
1294                                 insert_into_edge_bucket(edge_candidate);
1295                         }
1296                 }
1297         }
1298
1299         delete_edge(edge);
1300 }
1301
1302 static void select_row(pbqp_edge *edge, unsigned row_index)
1303 {
1304         pbqp_matrix    *mat;
1305         pbqp_node      *src_node;
1306         pbqp_node      *tgt_node;
1307         vector         *tgt_vec;
1308         unsigned        tgt_len;
1309         unsigned        tgt_index;
1310         unsigned        new_infinity = 0;
1311
1312         assert(edge);
1313
1314         src_node = edge->src;
1315         tgt_node = edge->tgt;
1316         assert(tgt_node);
1317
1318         tgt_vec = tgt_node->costs;
1319         assert(tgt_vec);
1320
1321         tgt_len = tgt_vec->len;
1322         assert(tgt_len > 0);
1323
1324         mat = edge->costs;
1325         assert(mat);
1326
1327         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1328                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1329
1330                 if (elem != 0) {
1331                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1332                                 new_infinity = 1;
1333
1334                         tgt_vec->entries[tgt_index].data = pbqp_add(
1335                                         tgt_vec->entries[tgt_index].data, elem);
1336                 }
1337         }
1338
1339         if (new_infinity) {
1340                 unsigned edge_index;
1341                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1342
1343                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1344                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
1345
1346                         if (edge_candidate != edge) {
1347                                 insert_into_edge_bucket(edge_candidate);
1348                         }
1349                 }
1350         }
1351
1352         delete_edge(edge);
1353 }
1354
1355 void select_alternative(pbqp_node *node, unsigned selected_index)
1356 {
1357         unsigned  edge_index;
1358         unsigned  node_index;
1359         unsigned  node_len;
1360         vector   *node_vec;
1361         unsigned  max_degree = pbqp_node_get_degree(node);
1362
1363         assert(node);
1364         node->solution = selected_index;
1365         node_vec = node->costs;
1366         node_len = node_vec->len;
1367         assert(selected_index < node_len);
1368
1369         /* Set all other costs to infinity. */
1370         for (node_index = 0; node_index < node_len; ++node_index) {
1371                 if (node_index != selected_index) {
1372                         node_vec->entries[node_index].data = INF_COSTS;
1373                 }
1374         }
1375
1376         /* Select corresponding row/column for incident edges. */
1377         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1378                 pbqp_edge *edge = node->edges[edge_index];
1379
1380                 if (edge->src == node)
1381                         select_row(edge, selected_index);
1382                 else
1383                         select_column(edge, selected_index);
1384         }
1385 }
1386
1387 pbqp_node *get_node_with_max_degree(void)
1388 {
1389         pbqp_node  **bucket       = node_buckets[3];
1390         unsigned     bucket_len   = node_bucket_get_length(bucket);
1391         unsigned     bucket_index;
1392         unsigned     max_degree   = 0;
1393         pbqp_node   *result       = NULL;
1394
1395         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1396                 pbqp_node *candidate = bucket[bucket_index];
1397                 unsigned   degree    = pbqp_node_get_degree(candidate);
1398
1399                 if (degree > max_degree) {
1400                         result = candidate;
1401                         max_degree = degree;
1402                 }
1403         }
1404
1405         return result;
1406 }
1407
1408 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1409 {
1410         pbqp_edge   *edge;
1411         vector      *node_vec;
1412         vector      *vec;
1413         pbqp_matrix *mat;
1414         unsigned     edge_index;
1415         unsigned     max_degree;
1416         unsigned     node_index;
1417         unsigned     node_len;
1418         unsigned     min_index    = 0;
1419         num          min          = INF_COSTS;
1420         int          is_src;
1421
1422         assert(pbqp);
1423         assert(node);
1424         node_vec   = node->costs;
1425         node_len   = node_vec->len;
1426         max_degree = pbqp_node_get_degree(node);
1427
1428         for (node_index = 0; node_index < node_len; ++node_index) {
1429                 num value = node_vec->entries[node_index].data;
1430
1431                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1432                         edge   = node->edges[edge_index];
1433                         mat    = edge->costs;
1434                         is_src = edge->src == node;
1435
1436                         if (is_src) {
1437                                 vec = vector_copy(pbqp, edge->tgt->costs);
1438                                 vector_add_matrix_row(vec, mat, node_index);
1439                         } else {
1440                                 vec = vector_copy(pbqp, edge->src->costs);
1441                                 vector_add_matrix_col(vec, mat, node_index);
1442                         }
1443
1444                         value = pbqp_add(value, vector_get_min(vec));
1445
1446                         obstack_free(&pbqp->obstack, vec);
1447                 }
1448
1449                 if (value < min) {
1450                         min = value;
1451                         min_index = node_index;
1452                 }
1453         }
1454
1455         return min_index;
1456 }
1457
1458 int node_is_reduced(pbqp_node *node)
1459 {
1460         if (!reduced_bucket) return 0;
1461
1462         if (pbqp_node_get_degree(node) == 0) return 1;
1463
1464         return node_bucket_contains(reduced_bucket, node);
1465 }