Using a node bucket wasn't a good idea.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 pbqp_node  *merged_node = NULL;
54 static int  buckets_filled = 0;
55
56 static void insert_into_edge_bucket(pbqp_edge *edge)
57 {
58         if (edge_bucket_contains(edge_bucket, edge)) {
59                 /* Edge is already inserted. */
60                 return;
61         }
62
63         edge_bucket_insert(&edge_bucket, edge);
64 }
65
66 static void insert_into_rm_bucket(pbqp_edge *edge)
67 {
68         if (edge_bucket_contains(rm_bucket, edge)) {
69                 /* Edge is already inserted. */
70                 return;
71         }
72
73         edge_bucket_insert(&rm_bucket, edge);
74 }
75
76 static void init_buckets(void)
77 {
78         int i;
79
80         edge_bucket_init(&edge_bucket);
81         edge_bucket_init(&rm_bucket);
82         node_bucket_init(&reduced_bucket);
83
84         for (i = 0; i < 4; ++i) {
85                 node_bucket_init(&node_buckets[i]);
86         }
87 }
88
89 void free_buckets(void)
90 {
91         int i;
92
93         for (i = 0; i < 4; ++i) {
94                 node_bucket_free(&node_buckets[i]);
95         }
96
97         edge_bucket_free(&edge_bucket);
98         edge_bucket_free(&rm_bucket);
99         node_bucket_free(&reduced_bucket);
100
101         buckets_filled = 0;
102 }
103
104 void fill_node_buckets(pbqp *pbqp)
105 {
106         unsigned node_index;
107         unsigned node_len;
108
109         assert(pbqp);
110         node_len = pbqp->num_nodes;
111
112         #if KAPS_TIMING
113                 ir_timer_t *t_fill_buckets = ir_timer_new();
114                 ir_timer_start(t_fill_buckets);
115         #endif
116
117         for (node_index = 0; node_index < node_len; ++node_index) {
118                 unsigned   degree;
119                 pbqp_node *node = get_node(pbqp, node_index);
120
121                 if (!node) continue;
122
123                 degree = pbqp_node_get_degree(node);
124
125                 /* We have only one bucket for nodes with arity >= 3. */
126                 if (degree > 3) {
127                         degree = 3;
128                 }
129
130                 node_bucket_insert(&node_buckets[degree], node);
131         }
132
133         buckets_filled = 1;
134
135         #if KAPS_TIMING
136                 ir_timer_stop(t_fill_buckets);
137                 printf("PBQP Fill Nodes into buckets: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
138         #endif
139 }
140
141 static void normalize_towards_source(pbqp_edge *edge)
142 {
143         pbqp_matrix    *mat;
144         pbqp_node      *src_node;
145         pbqp_node      *tgt_node;
146         vector         *src_vec;
147         vector         *tgt_vec;
148         unsigned        src_len;
149         unsigned        tgt_len;
150         unsigned        src_index;
151         unsigned        new_infinity = 0;
152
153         assert(edge);
154
155         src_node = edge->src;
156         tgt_node = edge->tgt;
157         assert(src_node);
158         assert(tgt_node);
159
160         src_vec = src_node->costs;
161         tgt_vec = tgt_node->costs;
162         assert(src_vec);
163         assert(tgt_vec);
164
165         src_len = src_vec->len;
166         tgt_len = tgt_vec->len;
167         assert(src_len > 0);
168         assert(tgt_len > 0);
169
170         mat = edge->costs;
171         assert(mat);
172
173         /* Normalize towards source node. */
174         for (src_index = 0; src_index < src_len; ++src_index) {
175                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
176
177                 if (min != 0) {
178                         if (src_vec->entries[src_index].data == INF_COSTS) {
179                                 pbqp_matrix_set_row_value(mat, src_index, 0);
180                                 continue;
181                         }
182
183                         pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
184                         src_vec->entries[src_index].data = pbqp_add(
185                                         src_vec->entries[src_index].data, min);
186
187                         if (min == INF_COSTS) {
188                                 new_infinity = 1;
189                         }
190                 }
191         }
192
193         if (new_infinity) {
194                 unsigned edge_index;
195                 unsigned edge_len = pbqp_node_get_degree(src_node);
196
197                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
198                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
199
200                         if (edge_candidate != edge) {
201                                 insert_into_edge_bucket(edge_candidate);
202                         }
203                 }
204         }
205 }
206
207 static void normalize_towards_target(pbqp_edge *edge)
208 {
209         pbqp_matrix    *mat;
210         pbqp_node      *src_node;
211         pbqp_node      *tgt_node;
212         vector         *src_vec;
213         vector         *tgt_vec;
214         unsigned        src_len;
215         unsigned        tgt_len;
216         unsigned        tgt_index;
217         unsigned        new_infinity = 0;
218
219         assert(edge);
220
221         src_node = edge->src;
222         tgt_node = edge->tgt;
223         assert(src_node);
224         assert(tgt_node);
225
226         src_vec = src_node->costs;
227         tgt_vec = tgt_node->costs;
228         assert(src_vec);
229         assert(tgt_vec);
230
231         src_len = src_vec->len;
232         tgt_len = tgt_vec->len;
233         assert(src_len > 0);
234         assert(tgt_len > 0);
235
236         mat = edge->costs;
237         assert(mat);
238
239         /* Normalize towards target node. */
240         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
241                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
242
243                 if (min != 0) {
244                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
245                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
246                                 continue;
247                         }
248
249                         pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
250                         tgt_vec->entries[tgt_index].data = pbqp_add(
251                                         tgt_vec->entries[tgt_index].data, min);
252
253                         if (min == INF_COSTS) {
254                                 new_infinity = 1;
255                         }
256                 }
257         }
258
259         if (new_infinity) {
260                 unsigned edge_index;
261                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
262
263                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
264                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
265
266                         if (edge_candidate != edge) {
267                                 insert_into_edge_bucket(edge_candidate);
268                         }
269                 }
270         }
271 }
272
273 /**
274  * Tries to apply RM for the source node of the given edge.
275  *
276  * Checks whether the source node of edge can be merged into the target node of
277  * edge, and performs the merge, if possible.
278  */
279 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
280 {
281         pbqp_matrix    *mat;
282         pbqp_node      *src_node;
283         pbqp_node      *tgt_node;
284         vector         *src_vec;
285         vector         *tgt_vec;
286         unsigned       *mapping;
287         unsigned        src_len;
288         unsigned        tgt_len;
289         unsigned        src_index;
290         unsigned        tgt_index;
291         unsigned        edge_index;
292         unsigned        edge_len;
293
294         assert(pbqp);
295         assert(edge);
296
297         src_node = edge->src;
298         tgt_node = edge->tgt;
299         assert(src_node);
300         assert(tgt_node);
301
302         src_vec = src_node->costs;
303         tgt_vec = tgt_node->costs;
304         assert(src_vec);
305         assert(tgt_vec);
306
307         src_len = src_vec->len;
308         tgt_len = tgt_vec->len;
309
310         /* Matrizes are normalized. */
311         assert(src_len > 1);
312         assert(tgt_len > 1);
313
314         mat = edge->costs;
315         assert(mat);
316
317         mapping = NEW_ARR_F(unsigned, tgt_len);
318
319         /* Check that each column has at most one zero entry. */
320         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
321                 unsigned onlyOneZero = 0;
322
323                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
324                         continue;
325
326                 for (src_index = 0; src_index < src_len; ++src_index) {
327                         if (src_vec->entries[src_index].data == INF_COSTS)
328                                 continue;
329
330                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
331                                 continue;
332
333                         /* Matrix entry is finite. */
334                         if (onlyOneZero) {
335                                 DEL_ARR_F(mapping);
336                                 return;
337                         }
338
339                         onlyOneZero = 1;
340                         mapping[tgt_index] = src_index;
341                 }
342         }
343
344         /* We know that we can merge the source node into the target node. */
345         edge_len = pbqp_node_get_degree(src_node);
346
347 #if KAPS_STATISTIC
348         pbqp->num_rm++;
349 #endif
350
351         /* Reconnect the source's edges with the target node. */
352         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
353                 pbqp_edge   *old_edge = src_node->edges[edge_index];
354                 pbqp_edge   *new_edge;
355                 pbqp_matrix *old_matrix;
356                 pbqp_matrix *new_matrix;
357                 pbqp_node   *other_node;
358                 vector      *other_vec;
359                 unsigned     other_len;
360                 unsigned     other_index;
361                 unsigned     tgt_index;
362
363                 assert(old_edge);
364
365                 if (old_edge == edge)
366                         continue;
367
368                 old_matrix = old_edge->costs;
369                 assert(old_matrix);
370
371                 if (old_edge->tgt == src_node) {
372                         other_node = old_edge->src;
373                         other_len  = old_matrix->rows;
374                 }
375                 else {
376                         other_node = old_edge->tgt;
377                         other_len = old_matrix->cols;
378                 }
379                 assert(other_node);
380                 other_vec = other_node->costs;
381
382                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
383
384                 /* Source node selects the column of the old_matrix. */
385                 if (old_edge->tgt == src_node) {
386                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
387                                 unsigned src_index = mapping[tgt_index];
388
389                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
390                                         continue;
391
392                                 for (other_index = 0; other_index < other_len; ++other_index) {
393                                         if (other_vec->entries[other_index].data == INF_COSTS)
394                                                 continue;
395
396                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
397                                 }
398                         }
399                 }
400                 /* Source node selects the row of the old_matrix. */
401                 else {
402                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
403                                 unsigned src_index = mapping[tgt_index];
404
405                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
406                                         continue;
407
408                                 for (other_index = 0; other_index < other_len; ++other_index) {
409                                         if (other_vec->entries[other_index].data == INF_COSTS)
410                                                 continue;
411
412                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
413                                 }
414                         }
415                 }
416
417                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
418
419                 delete_edge(old_edge);
420                 reorder_node(src_node);
421                 reorder_node(other_node);
422
423                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
424                 insert_into_rm_bucket(new_edge);
425         }
426
427 #if KAPS_STATISTIC
428         pbqp->num_r1--;
429 #endif
430 }
431
432 /**
433  * Tries to apply RM for the target node of the given edge.
434  *
435  * Checks whether the target node of edge can be merged into the source node of
436  * edge, and performs the merge, if possible.
437  */
438 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
439 {
440         pbqp_matrix    *mat;
441         pbqp_node      *src_node;
442         pbqp_node      *tgt_node;
443         vector         *src_vec;
444         vector         *tgt_vec;
445         unsigned       *mapping;
446         unsigned        src_len;
447         unsigned        tgt_len;
448         unsigned        src_index;
449         unsigned        tgt_index;
450         unsigned        edge_index;
451         unsigned        edge_len;
452
453         assert(pbqp);
454         assert(edge);
455
456         src_node = edge->src;
457         tgt_node = edge->tgt;
458         assert(src_node);
459         assert(tgt_node);
460
461         src_vec = src_node->costs;
462         tgt_vec = tgt_node->costs;
463         assert(src_vec);
464         assert(tgt_vec);
465
466         src_len = src_vec->len;
467         tgt_len = tgt_vec->len;
468
469         /* Matrizes are normalized. */
470         assert(src_len > 1);
471         assert(tgt_len > 1);
472
473         mat = edge->costs;
474         assert(mat);
475
476         mapping = NEW_ARR_F(unsigned, src_len);
477
478         /* Check that each row has at most one zero entry. */
479         for (src_index = 0; src_index < src_len; ++src_index) {
480                 unsigned onlyOneZero = 0;
481
482                 if (src_vec->entries[src_index].data == INF_COSTS)
483                         continue;
484
485                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
486                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
487                                 continue;
488
489                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
490                                 continue;
491
492                         /* Matrix entry is finite. */
493                         if (onlyOneZero) {
494                                 DEL_ARR_F(mapping);
495                                 return;
496                         }
497
498                         onlyOneZero = 1;
499                         mapping[src_index] = tgt_index;
500                 }
501         }
502
503         /* We know that we can merge the target node into the source node. */
504         edge_len = pbqp_node_get_degree(tgt_node);
505
506 #if KAPS_STATISTIC
507         pbqp->num_rm++;
508 #endif
509
510         /* Reconnect the target's edges with the source node. */
511         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
512                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
513                 pbqp_edge   *new_edge;
514                 pbqp_matrix *old_matrix;
515                 pbqp_matrix *new_matrix;
516                 pbqp_node   *other_node;
517                 vector      *other_vec;
518                 unsigned     other_len;
519                 unsigned     other_index;
520                 unsigned     src_index;
521
522                 assert(old_edge);
523
524                 if (old_edge == edge)
525                         continue;
526
527                 old_matrix = old_edge->costs;
528                 assert(old_matrix);
529
530                 if (old_edge->tgt == tgt_node) {
531                         other_node = old_edge->src;
532                         other_len  = old_matrix->rows;
533                 }
534                 else {
535                         other_node = old_edge->tgt;
536                         other_len = old_matrix->cols;
537                 }
538                 assert(other_node);
539                 other_vec = other_node->costs;
540
541                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
542
543                 /* Target node selects the column of the old_matrix. */
544                 if (old_edge->tgt == tgt_node) {
545                         for (src_index = 0; src_index < src_len; ++src_index) {
546                                 unsigned tgt_index = mapping[src_index];
547
548                                 if (src_vec->entries[src_index].data == INF_COSTS)
549                                         continue;
550
551                                 for (other_index = 0; other_index < other_len; ++other_index) {
552                                         if (other_vec->entries[other_index].data == INF_COSTS)
553                                                 continue;
554
555                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
556                                 }
557                         }
558                 }
559                 /* Source node selects the row of the old_matrix. */
560                 else {
561                         for (src_index = 0; src_index < src_len; ++src_index) {
562                                 unsigned tgt_index = mapping[src_index];
563
564                                 if (src_vec->entries[src_index].data == INF_COSTS)
565                                         continue;
566
567                                 for (other_index = 0; other_index < other_len; ++other_index) {
568                                         if (other_vec->entries[other_index].data == INF_COSTS)
569                                                 continue;
570
571                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
572                                 }
573                         }
574                 }
575
576                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
577
578                 delete_edge(old_edge);
579                 reorder_node(tgt_node);
580                 reorder_node(other_node);
581
582                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
583                 insert_into_rm_bucket(new_edge);
584         }
585
586 #if KAPS_STATISTIC
587         pbqp->num_r1--;
588 #endif
589 }
590
591 /**
592  * Merge neighbors into the given node.
593  */
594 void apply_RM(pbqp *pbqp, pbqp_node *node)
595 {
596         pbqp_edge **edges;
597         unsigned    edge_index;
598         unsigned    edge_len;
599
600         assert(node);
601         assert(pbqp);
602
603         edges    = node->edges;
604         edge_len = pbqp_node_get_degree(node);
605
606         /* Check all incident edges. */
607         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
608                 pbqp_edge *edge = edges[edge_index];
609
610                 insert_into_rm_bucket(edge);
611         }
612
613         /* ALAP: Merge neighbors into given node. */
614         while(edge_bucket_get_length(rm_bucket) > 0) {
615                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
616                 assert(edge);
617
618                 if (edge->src == node)
619                         merge_target_into_source(pbqp, edge);
620                 else
621                         merge_source_into_target(pbqp, edge);
622         }
623
624         merged_node = node;
625 }
626
627 void reorder_node(pbqp_node *node)
628 {
629         unsigned    degree     = pbqp_node_get_degree(node);
630         /* Assume node lost one incident edge. */
631         unsigned    old_degree = degree + 1;
632
633         if (!buckets_filled) return;
634
635         /* Same bucket as before */
636         if (degree > 2) return;
637
638         if (!node_bucket_contains(node_buckets[old_degree], node)) {
639                 /* Old arity is new arity, so we have nothing to do. */
640                 assert(node_bucket_contains(node_buckets[degree], node));
641                 return;
642         }
643
644         /* Delete node from old bucket... */
645         node_bucket_remove(&node_buckets[old_degree], node);
646
647         /* ..and add to new one. */
648         node_bucket_insert(&node_buckets[degree], node);
649 }
650
651 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
652 {
653         pbqp_matrix    *mat;
654         pbqp_node      *src_node;
655         pbqp_node      *tgt_node;
656         vector         *src_vec;
657         vector         *tgt_vec;
658         int             src_len;
659         int             tgt_len;
660
661         assert(pbqp);
662         assert(edge);
663
664         (void) pbqp;
665
666         src_node = edge->src;
667         tgt_node = edge->tgt;
668         assert(src_node);
669         assert(tgt_node);
670
671         /* If edge are already deleted, we have nothing to do. */
672         if (!is_connected(src_node, edge) || !is_connected(tgt_node, edge))
673                 return;
674
675 #if     KAPS_DUMP
676         if (pbqp->dump_file) {
677                 char txt[100];
678                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
679                 dump_section(pbqp->dump_file, 3, txt);
680         }
681 #endif
682
683         src_vec = src_node->costs;
684         tgt_vec = tgt_node->costs;
685         assert(src_vec);
686         assert(tgt_vec);
687
688         src_len = src_vec->len;
689         tgt_len = tgt_vec->len;
690         assert(src_len > 0);
691         assert(tgt_len > 0);
692
693         mat = edge->costs;
694         assert(mat);
695
696 #if     KAPS_DUMP
697         if (pbqp->dump_file) {
698                 fputs("Input:<br>\n", pbqp->dump_file);
699                 dump_simplifyedge(pbqp, edge);
700         }
701 #endif
702
703         normalize_towards_source(edge);
704         normalize_towards_target(edge);
705
706 #if     KAPS_DUMP
707         if (pbqp->dump_file) {
708                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
709                 dump_simplifyedge(pbqp, edge);
710         }
711 #endif
712
713         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
714 #if     KAPS_DUMP
715                 if (pbqp->dump_file) {
716                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
717                 }
718 #endif
719
720 #if KAPS_STATISTIC
721                 pbqp->num_edges++;
722 #endif
723
724                 delete_edge(edge);
725                 reorder_node(src_node);
726                 reorder_node(tgt_node);
727         }
728 }
729
730 void initial_simplify_edges(pbqp *pbqp)
731 {
732         unsigned node_index;
733         unsigned node_len;
734
735         assert(pbqp);
736
737         #if KAPS_TIMING
738                 ir_timer_t *t_int_simpl = ir_timer_new();
739                 ir_timer_start(t_int_simpl);
740         #endif
741
742 #if     KAPS_DUMP
743         if (pbqp->dump_file) {
744                 pbqp_dump_input(pbqp);
745                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
746         }
747 #endif
748
749         node_len = pbqp->num_nodes;
750
751         init_buckets();
752
753         /* First simplify all edges. */
754         for (node_index = 0; node_index < node_len; ++node_index) {
755                 unsigned    edge_index;
756                 pbqp_node  *node = get_node(pbqp, node_index);
757                 pbqp_edge **edges;
758                 unsigned    edge_len;
759
760                 if (!node) continue;
761
762                 edges = node->edges;
763                 edge_len = pbqp_node_get_degree(node);
764
765                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
766                         pbqp_edge *edge = edges[edge_index];
767
768                         /* Simplify only once per edge. */
769                         if (node != edge->src) continue;
770
771                         simplify_edge(pbqp, edge);
772                 }
773         }
774
775         #if KAPS_TIMING
776                 ir_timer_stop(t_int_simpl);
777                 printf("PBQP Initial simplify edges:  %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
778         #endif
779 }
780
781 num determine_solution(pbqp *pbqp)
782 {
783         unsigned node_index;
784         unsigned node_len;
785         num      solution   = 0;
786
787         #if KAPS_TIMING
788                 ir_timer_t *t_det_solution = ir_timer_new();
789                 ir_timer_reset_and_start(t_det_solution);
790         #endif
791
792 #if     KAPS_DUMP
793         FILE     *file;
794 #endif
795
796         assert(pbqp);
797
798         (void) pbqp;
799
800 #if     KAPS_DUMP
801         file = pbqp->dump_file;
802
803         if (file) {
804                 dump_section(file, 1, "4. Determine Solution/Minimum");
805                 dump_section(file, 2, "4.1. Trivial Solution");
806         }
807 #endif
808
809         /* Solve trivial nodes and calculate solution. */
810         node_len = node_bucket_get_length(node_buckets[0]);
811
812 #if KAPS_STATISTIC
813         pbqp->num_r0 = node_len;
814 #endif
815
816         for (node_index = 0; node_index < node_len; ++node_index) {
817                 pbqp_node *node = node_buckets[0][node_index];
818                 assert(node);
819
820                 node->solution = vector_get_min_index(node->costs);
821                 solution       = pbqp_add(solution,
822                                 node->costs->entries[node->solution].data);
823
824 #if     KAPS_DUMP
825                 if (file) {
826                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
827                         dump_node(file, node);
828                 }
829 #endif
830         }
831
832 #if     KAPS_DUMP
833         if (file) {
834                 dump_section(file, 2, "Minimum");
835 #if KAPS_USE_UNSIGNED
836                 fprintf(file, "Minimum is equal to %u.", solution);
837 #else
838                 fprintf(file, "Minimum is equal to %lld.", solution);
839 #endif
840         }
841 #endif
842
843         #if KAPS_TIMING
844                 ir_timer_stop(t_det_solution);
845                 printf("PBQP Determine Solution:      %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
846         #endif
847
848         return solution;
849 }
850
851 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
852 {
853         pbqp_edge   *edge;
854         pbqp_node   *other;
855         pbqp_matrix *mat;
856         vector      *vec;
857         int          is_src;
858
859         assert(pbqp);
860         assert(node);
861
862         (void) pbqp;
863
864         edge = node->edges[0];
865         mat = edge->costs;
866         is_src = edge->src == node;
867         vec = node->costs;
868
869         if (is_src) {
870                 other = edge->tgt;
871                 assert(other);
872
873                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
874         } else {
875                 other = edge->src;
876                 assert(other);
877
878                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
879         }
880
881 #if     KAPS_DUMP
882         if (pbqp->dump_file) {
883                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
884         }
885 #endif
886 }
887
888 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
889 {
890         pbqp_edge   *src_edge   = node->edges[0];
891         pbqp_edge   *tgt_edge   = node->edges[1];
892         int          src_is_src = src_edge->src == node;
893         int          tgt_is_src = tgt_edge->src == node;
894         pbqp_matrix *src_mat;
895         pbqp_matrix *tgt_mat;
896         pbqp_node   *src_node;
897         pbqp_node   *tgt_node;
898         vector      *vec;
899         vector      *node_vec;
900         unsigned     col_index;
901         unsigned     row_index;
902
903         assert(pbqp);
904
905         if (src_is_src) {
906                 src_node = src_edge->tgt;
907         } else {
908                 src_node = src_edge->src;
909         }
910
911         if (tgt_is_src) {
912                 tgt_node = tgt_edge->tgt;
913         } else {
914                 tgt_node = tgt_edge->src;
915         }
916
917         /* Swap nodes if necessary. */
918         if (tgt_node->index < src_node->index) {
919                 pbqp_node *tmp_node;
920                 pbqp_edge *tmp_edge;
921
922                 tmp_node = src_node;
923                 src_node = tgt_node;
924                 tgt_node = tmp_node;
925
926                 tmp_edge = src_edge;
927                 src_edge = tgt_edge;
928                 tgt_edge = tmp_edge;
929
930                 src_is_src = src_edge->src == node;
931                 tgt_is_src = tgt_edge->src == node;
932         }
933
934         src_mat = src_edge->costs;
935         tgt_mat = tgt_edge->costs;
936
937         node_vec = node->costs;
938
939         row_index = src_node->solution;
940         col_index = tgt_node->solution;
941
942         vec = vector_copy(pbqp, node_vec);
943
944         if (src_is_src) {
945                 vector_add_matrix_col(vec, src_mat, row_index);
946         } else {
947                 vector_add_matrix_row(vec, src_mat, row_index);
948         }
949
950         if (tgt_is_src) {
951                 vector_add_matrix_col(vec, tgt_mat, col_index);
952         } else {
953                 vector_add_matrix_row(vec, tgt_mat, col_index);
954         }
955
956         node->solution = vector_get_min_index(vec);
957
958 #if     KAPS_DUMP
959         if (pbqp->dump_file) {
960                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
961         }
962 #endif
963
964         obstack_free(&pbqp->obstack, vec);
965 }
966
967 void back_propagate(pbqp *pbqp)
968 {
969         unsigned node_index;
970         unsigned node_len   = node_bucket_get_length(reduced_bucket);
971
972         assert(pbqp);
973
974 #if     KAPS_DUMP
975         if (pbqp->dump_file) {
976                 dump_section(pbqp->dump_file, 2, "Back Propagation");
977         }
978 #endif
979
980         for (node_index = node_len; node_index > 0; --node_index) {
981                 pbqp_node *node = reduced_bucket[node_index - 1];
982
983                 switch (pbqp_node_get_degree(node)) {
984                         case 1:
985                                 back_propagate_RI(pbqp, node);
986                                 break;
987                         case 2:
988                                 back_propagate_RII(pbqp, node);
989                                 break;
990                         default:
991                                 panic("Only nodes with degree one or two should be in this bucket");
992                                 break;
993                 }
994         }
995 }
996
997 void apply_edge(pbqp *pbqp)
998 {
999         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
1000
1001         simplify_edge(pbqp, edge);
1002 }
1003
1004 void apply_RI(pbqp *pbqp)
1005 {
1006         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
1007         pbqp_edge   *edge       = node->edges[0];
1008         pbqp_matrix *mat        = edge->costs;
1009         int          is_src     = edge->src == node;
1010         pbqp_node   *other_node;
1011
1012         (void ) pbqp;
1013         assert(pbqp_node_get_degree(node) == 1);
1014
1015         if (is_src) {
1016                 other_node = edge->tgt;
1017         } else {
1018                 other_node = edge->src;
1019         }
1020
1021 #if     KAPS_DUMP
1022         if (pbqp->dump_file) {
1023                 char     txt[100];
1024                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1025                 dump_section(pbqp->dump_file, 2, txt);
1026                 pbqp_dump_graph(pbqp);
1027                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1028                 dump_node(pbqp->dump_file, node);
1029                 dump_node(pbqp->dump_file, other_node);
1030                 dump_edge(pbqp->dump_file, edge);
1031         }
1032 #endif
1033
1034         if (is_src) {
1035                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1036                 normalize_towards_target(edge);
1037         } else {
1038                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1039                 normalize_towards_source(edge);
1040         }
1041         disconnect_edge(other_node, edge);
1042
1043 #if     KAPS_DUMP
1044         if (pbqp->dump_file) {
1045                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1046                 dump_node(pbqp->dump_file, other_node);
1047         }
1048 #endif
1049
1050         reorder_node(other_node);
1051
1052 #if KAPS_STATISTIC
1053         pbqp->num_r1++;
1054 #endif
1055
1056         /* Add node to back propagation list. */
1057         node_bucket_insert(&reduced_bucket, node);
1058 }
1059
1060 void apply_RII(pbqp *pbqp)
1061 {
1062         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1063         pbqp_edge   *src_edge   = node->edges[0];
1064         pbqp_edge   *tgt_edge   = node->edges[1];
1065         int          src_is_src = src_edge->src == node;
1066         int          tgt_is_src = tgt_edge->src == node;
1067         pbqp_matrix *src_mat;
1068         pbqp_matrix *tgt_mat;
1069         pbqp_node   *src_node;
1070         pbqp_node   *tgt_node;
1071         pbqp_matrix *mat;
1072         vector      *vec;
1073         vector      *node_vec;
1074         vector      *src_vec;
1075         vector      *tgt_vec;
1076         unsigned     col_index;
1077         unsigned     col_len;
1078         unsigned     row_index;
1079         unsigned     row_len;
1080         unsigned     node_len;
1081
1082         assert(pbqp);
1083         assert(pbqp_node_get_degree(node) == 2);
1084
1085         if (src_is_src) {
1086                 src_node = src_edge->tgt;
1087         } else {
1088                 src_node = src_edge->src;
1089         }
1090
1091         if (tgt_is_src) {
1092                 tgt_node = tgt_edge->tgt;
1093         } else {
1094                 tgt_node = tgt_edge->src;
1095         }
1096
1097         /* Swap nodes if necessary. */
1098         if (tgt_node->index < src_node->index) {
1099                 pbqp_node *tmp_node;
1100                 pbqp_edge *tmp_edge;
1101
1102                 tmp_node = src_node;
1103                 src_node = tgt_node;
1104                 tgt_node = tmp_node;
1105
1106                 tmp_edge = src_edge;
1107                 src_edge = tgt_edge;
1108                 tgt_edge = tmp_edge;
1109
1110                 src_is_src = src_edge->src == node;
1111                 tgt_is_src = tgt_edge->src == node;
1112         }
1113
1114 #if     KAPS_DUMP
1115         if (pbqp->dump_file) {
1116                 char     txt[100];
1117                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1118                 dump_section(pbqp->dump_file, 2, txt);
1119                 pbqp_dump_graph(pbqp);
1120                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1121                 dump_node(pbqp->dump_file, src_node);
1122                 dump_edge(pbqp->dump_file, src_edge);
1123                 dump_node(pbqp->dump_file, node);
1124                 dump_edge(pbqp->dump_file, tgt_edge);
1125                 dump_node(pbqp->dump_file, tgt_node);
1126         }
1127 #endif
1128
1129         src_mat = src_edge->costs;
1130         tgt_mat = tgt_edge->costs;
1131
1132         src_vec  = src_node->costs;
1133         tgt_vec  = tgt_node->costs;
1134         node_vec = node->costs;
1135
1136         row_len  = src_vec->len;
1137         col_len  = tgt_vec->len;
1138         node_len = node_vec->len;
1139
1140         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1141
1142         for (row_index = 0; row_index < row_len; ++row_index) {
1143                 for (col_index = 0; col_index < col_len; ++col_index) {
1144                         vec = vector_copy(pbqp, node_vec);
1145
1146                         if (src_is_src) {
1147                                 vector_add_matrix_col(vec, src_mat, row_index);
1148                         } else {
1149                                 vector_add_matrix_row(vec, src_mat, row_index);
1150                         }
1151
1152                         if (tgt_is_src) {
1153                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1154                         } else {
1155                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1156                         }
1157
1158                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1159
1160                         obstack_free(&pbqp->obstack, vec);
1161                 }
1162         }
1163
1164         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1165
1166         /* Disconnect node. */
1167         disconnect_edge(src_node, src_edge);
1168         disconnect_edge(tgt_node, tgt_edge);
1169
1170 #if KAPS_STATISTIC
1171         pbqp->num_r2++;
1172 #endif
1173
1174         /* Add node to back propagation list. */
1175         node_bucket_insert(&reduced_bucket, node);
1176
1177         if (edge == NULL) {
1178                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1179         } else {
1180                 // matrix
1181                 pbqp_matrix_add(edge->costs, mat);
1182
1183                 /* Free local matrix. */
1184                 obstack_free(&pbqp->obstack, mat);
1185
1186                 reorder_node(src_node);
1187                 reorder_node(tgt_node);
1188         }
1189
1190 #if     KAPS_DUMP
1191         if (pbqp->dump_file) {
1192                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1193                 dump_edge(pbqp->dump_file, edge);
1194         }
1195 #endif
1196
1197         /* Edge has changed so we simplify it. */
1198         simplify_edge(pbqp, edge);
1199 }
1200
1201 static void select_column(pbqp_edge *edge, unsigned col_index)
1202 {
1203         pbqp_matrix    *mat;
1204         pbqp_node      *src_node;
1205         pbqp_node      *tgt_node;
1206         vector         *src_vec;
1207         vector         *tgt_vec;
1208         unsigned        src_len;
1209         unsigned        tgt_len;
1210         unsigned        src_index;
1211         unsigned        new_infinity = 0;
1212
1213         assert(edge);
1214
1215         src_node = edge->src;
1216         tgt_node = edge->tgt;
1217         assert(src_node);
1218         assert(tgt_node);
1219
1220         src_vec = src_node->costs;
1221         tgt_vec = tgt_node->costs;
1222         assert(src_vec);
1223         assert(tgt_vec);
1224
1225         src_len = src_vec->len;
1226         tgt_len = tgt_vec->len;
1227         assert(src_len > 0);
1228         assert(tgt_len > 0);
1229
1230         mat = edge->costs;
1231         assert(mat);
1232
1233         for (src_index = 0; src_index < src_len; ++src_index) {
1234                 num elem = mat->entries[src_index * tgt_len + col_index];
1235
1236                 if (elem != 0) {
1237                         if (elem == INF_COSTS && src_vec->entries[src_index].data != INF_COSTS)
1238                                 new_infinity = 1;
1239
1240                         src_vec->entries[src_index].data = pbqp_add(
1241                                         src_vec->entries[src_index].data, elem);
1242                 }
1243         }
1244
1245         if (new_infinity) {
1246                 unsigned edge_index;
1247                 unsigned edge_len = pbqp_node_get_degree(src_node);
1248
1249                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1250                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
1251
1252                         if (edge_candidate != edge) {
1253                                 insert_into_edge_bucket(edge_candidate);
1254                         }
1255                 }
1256         }
1257
1258         delete_edge(edge);
1259         reorder_node(src_node);
1260         reorder_node(tgt_node);
1261 }
1262
1263 static void select_row(pbqp_edge *edge, unsigned row_index)
1264 {
1265         pbqp_matrix    *mat;
1266         pbqp_node      *src_node;
1267         pbqp_node      *tgt_node;
1268         vector         *tgt_vec;
1269         unsigned        tgt_len;
1270         unsigned        tgt_index;
1271         unsigned        new_infinity = 0;
1272
1273         assert(edge);
1274
1275         src_node = edge->src;
1276         tgt_node = edge->tgt;
1277         assert(tgt_node);
1278
1279         tgt_vec = tgt_node->costs;
1280         assert(tgt_vec);
1281
1282         tgt_len = tgt_vec->len;
1283         assert(tgt_len > 0);
1284
1285         mat = edge->costs;
1286         assert(mat);
1287
1288         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
1289                 num elem = mat->entries[row_index * tgt_len + tgt_index];
1290
1291                 if (elem != 0) {
1292                         if (elem == INF_COSTS && tgt_vec->entries[tgt_index].data != INF_COSTS)
1293                                 new_infinity = 1;
1294
1295                         tgt_vec->entries[tgt_index].data = pbqp_add(
1296                                         tgt_vec->entries[tgt_index].data, elem);
1297                 }
1298         }
1299
1300         if (new_infinity) {
1301                 unsigned edge_index;
1302                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
1303
1304                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
1305                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
1306
1307                         if (edge_candidate != edge) {
1308                                 insert_into_edge_bucket(edge_candidate);
1309                         }
1310                 }
1311         }
1312
1313         delete_edge(edge);
1314         reorder_node(src_node);
1315         reorder_node(tgt_node);
1316 }
1317
1318 void select_alternative(pbqp_node *node, unsigned selected_index)
1319 {
1320         unsigned  edge_index;
1321         unsigned  node_index;
1322         unsigned  node_len;
1323         vector   *node_vec;
1324         unsigned  max_degree = pbqp_node_get_degree(node);
1325
1326         assert(node);
1327         node->solution = selected_index;
1328         node_vec = node->costs;
1329         node_len = node_vec->len;
1330         assert(selected_index < node_len);
1331
1332         /* Set all other costs to infinity. */
1333         for (node_index = 0; node_index < node_len; ++node_index) {
1334                 if (node_index != selected_index) {
1335                         node_vec->entries[node_index].data = INF_COSTS;
1336                 }
1337         }
1338
1339         /* Select corresponding row/column for incident edges. */
1340         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1341                 pbqp_edge *edge = node->edges[edge_index];
1342
1343                 if (edge->src == node)
1344                         select_row(edge, selected_index);
1345                 else
1346                         select_column(edge, selected_index);
1347         }
1348 }
1349
1350 pbqp_node *get_node_with_max_degree(void)
1351 {
1352         pbqp_node  **bucket       = node_buckets[3];
1353         unsigned     bucket_len   = node_bucket_get_length(bucket);
1354         unsigned     bucket_index;
1355         unsigned     max_degree   = 0;
1356         pbqp_node   *result       = NULL;
1357
1358         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1359                 pbqp_node *candidate = bucket[bucket_index];
1360                 unsigned   degree    = pbqp_node_get_degree(candidate);
1361
1362                 if (degree > max_degree) {
1363                         result = candidate;
1364                         max_degree = degree;
1365                 }
1366         }
1367
1368         return result;
1369 }
1370
1371 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1372 {
1373         pbqp_edge   *edge;
1374         vector      *node_vec;
1375         vector      *vec;
1376         pbqp_matrix *mat;
1377         unsigned     edge_index;
1378         unsigned     max_degree;
1379         unsigned     node_index;
1380         unsigned     node_len;
1381         unsigned     min_index    = 0;
1382         num          min          = INF_COSTS;
1383         int          is_src;
1384
1385         assert(pbqp);
1386         assert(node);
1387         node_vec   = node->costs;
1388         node_len   = node_vec->len;
1389         max_degree = pbqp_node_get_degree(node);
1390
1391         for (node_index = 0; node_index < node_len; ++node_index) {
1392                 num value = node_vec->entries[node_index].data;
1393
1394                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1395                         edge   = node->edges[edge_index];
1396                         mat    = edge->costs;
1397                         is_src = edge->src == node;
1398
1399                         if (is_src) {
1400                                 vec = vector_copy(pbqp, edge->tgt->costs);
1401                                 vector_add_matrix_row(vec, mat, node_index);
1402                         } else {
1403                                 vec = vector_copy(pbqp, edge->src->costs);
1404                                 vector_add_matrix_col(vec, mat, node_index);
1405                         }
1406
1407                         value = pbqp_add(value, vector_get_min(vec));
1408
1409                         obstack_free(&pbqp->obstack, vec);
1410                 }
1411
1412                 if (value < min) {
1413                         min = value;
1414                         min_index = node_index;
1415                 }
1416         }
1417
1418         return min_index;
1419 }
1420
1421 int node_is_reduced(pbqp_node *node)
1422 {
1423         if (!reduced_bucket) return 0;
1424
1425         if (pbqp_node_get_degree(node) == 0) return 1;
1426
1427         return node_bucket_contains(reduced_bucket, node);
1428 }