Continued RM implementation.
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_node **node_buckets[4];
51 pbqp_node **reduced_bucket = NULL;
52 static int         buckets_filled = 0;
53
54 static void insert_into_edge_bucket(pbqp_edge *edge)
55 {
56         if (edge_bucket_contains(edge_bucket, edge)) {
57                 /* Edge is already inserted. */
58                 return;
59         }
60
61         edge_bucket_insert(&edge_bucket, edge);
62 }
63
64 static void init_buckets(void)
65 {
66         int i;
67
68         edge_bucket_init(&edge_bucket);
69         node_bucket_init(&reduced_bucket);
70
71         for (i = 0; i < 4; ++i) {
72                 node_bucket_init(&node_buckets[i]);
73         }
74 }
75
76 void free_buckets(void)
77 {
78         int i;
79
80         for (i = 0; i < 4; ++i) {
81                 node_bucket_free(&node_buckets[i]);
82         }
83
84         edge_bucket_free(&edge_bucket);
85         node_bucket_free(&reduced_bucket);
86
87         buckets_filled = 0;
88 }
89
90 void fill_node_buckets(pbqp *pbqp)
91 {
92         unsigned node_index;
93         unsigned node_len;
94
95         assert(pbqp);
96         node_len = pbqp->num_nodes;
97
98         #if KAPS_TIMING
99                 ir_timer_t *t_fill_buckets = ir_timer_register("be_pbqp_fill_buckets", "PBQP Fill Nodes into buckets");
100                 ir_timer_reset_and_start(t_fill_buckets);
101         #endif
102
103         for (node_index = 0; node_index < node_len; ++node_index) {
104                 unsigned   degree;
105                 pbqp_node *node = get_node(pbqp, node_index);
106
107                 if (!node) continue;
108
109                 degree = pbqp_node_get_degree(node);
110
111                 /* We have only one bucket for nodes with arity >= 3. */
112                 if (degree > 3) {
113                         degree = 3;
114                 }
115
116                 node_bucket_insert(&node_buckets[degree], node);
117         }
118
119         buckets_filled = 1;
120
121         #if KAPS_TIMING
122                 ir_timer_stop(t_fill_buckets);
123                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_fill_buckets), (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
124         #endif
125 }
126
127 static void normalize_towards_source(pbqp_edge *edge)
128 {
129         pbqp_matrix    *mat;
130         pbqp_node      *src_node;
131         pbqp_node      *tgt_node;
132         vector         *src_vec;
133         vector         *tgt_vec;
134         int             src_len;
135         int             tgt_len;
136         int             src_index;
137
138         assert(edge);
139
140         src_node = edge->src;
141         tgt_node = edge->tgt;
142         assert(src_node);
143         assert(tgt_node);
144
145         src_vec = src_node->costs;
146         tgt_vec = tgt_node->costs;
147         assert(src_vec);
148         assert(tgt_vec);
149
150         src_len = src_vec->len;
151         tgt_len = tgt_vec->len;
152         assert(src_len > 0);
153         assert(tgt_len > 0);
154
155         mat = edge->costs;
156         assert(mat);
157
158         /* Normalize towards source node. */
159         for (src_index = 0; src_index < src_len; ++src_index) {
160                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
161
162                 if (min != 0) {
163                         if (src_vec->entries[src_index].data == INF_COSTS) {
164                                 pbqp_matrix_set_row_value(mat, src_index, 0);
165                         } else {
166                                 pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
167                         }
168                         src_vec->entries[src_index].data = pbqp_add(
169                                         src_vec->entries[src_index].data, min);
170
171                         if (min == INF_COSTS) {
172                                 unsigned edge_index;
173                                 unsigned edge_len = pbqp_node_get_degree(src_node);
174
175                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
176                                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
177                                         if (edge_candidate != edge) {
178                                                 insert_into_edge_bucket(edge_candidate);
179                                         }
180                                 }
181                         }
182                 }
183         }
184 }
185
186 static void normalize_towards_target(pbqp_edge *edge)
187 {
188         pbqp_matrix    *mat;
189         pbqp_node      *src_node;
190         pbqp_node      *tgt_node;
191         vector         *src_vec;
192         vector         *tgt_vec;
193         int             src_len;
194         int             tgt_len;
195         int             tgt_index;
196
197         assert(edge);
198
199         src_node = edge->src;
200         tgt_node = edge->tgt;
201         assert(src_node);
202         assert(tgt_node);
203
204         src_vec = src_node->costs;
205         tgt_vec = tgt_node->costs;
206         assert(src_vec);
207         assert(tgt_vec);
208
209         src_len = src_vec->len;
210         tgt_len = tgt_vec->len;
211         assert(src_len > 0);
212         assert(tgt_len > 0);
213
214         mat = edge->costs;
215         assert(mat);
216
217         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
218                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
219
220                 if (min != 0) {
221                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
222                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
223                         } else {
224                                 pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
225                         }
226                         tgt_vec->entries[tgt_index].data = pbqp_add(
227                                         tgt_vec->entries[tgt_index].data, min);
228
229                         if (min == INF_COSTS) {
230                                 unsigned edge_index;
231                                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
232
233                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
234                                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
235                                         if (edge_candidate != edge) {
236                                                 insert_into_edge_bucket(edge_candidate);
237                                         }
238                                 }
239                         }
240                 }
241         }
242 }
243
244 /**
245  * Tries to apply RM for the source node of the given edge.
246  *
247  * Checks whether the source node of edge can be merged into the target node of
248  * edge, and performs the merge, if possible.
249  */
250 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
251 {
252         pbqp_matrix    *mat;
253         pbqp_node      *src_node;
254         pbqp_node      *tgt_node;
255         vector         *src_vec;
256         vector         *tgt_vec;
257         unsigned       *mapping;
258         unsigned        src_len;
259         unsigned        tgt_len;
260         unsigned        src_index;
261         unsigned        tgt_index;
262         unsigned        edge_index;
263         unsigned        edge_len;
264
265         assert(pbqp);
266         assert(edge);
267
268         src_node = edge->src;
269         tgt_node = edge->tgt;
270         assert(src_node);
271         assert(tgt_node);
272
273         src_vec = src_node->costs;
274         tgt_vec = tgt_node->costs;
275         assert(src_vec);
276         assert(tgt_vec);
277
278         src_len = src_vec->len;
279         tgt_len = tgt_vec->len;
280
281         /* Matrizes are normalized. */
282         assert(src_len > 1);
283         assert(tgt_len > 1);
284
285         mat = edge->costs;
286         assert(mat);
287
288         mapping = NEW_ARR_F(unsigned, tgt_len);
289
290         /* Check that each column has at most one zero entry. */
291         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
292                 unsigned onlyOneZero = 0;
293
294                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
295                         continue;
296
297                 for (src_index = 0; src_index < src_len; ++src_index) {
298                         if (src_vec->entries[src_index].data == INF_COSTS)
299                                 continue;
300
301                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
302                                 continue;
303
304                         /* Matrix entry is finite. */
305                         if (onlyOneZero) {
306                                 DEL_ARR_F(mapping);
307                                 return;
308                         }
309
310                         onlyOneZero = 1;
311                         mapping[tgt_index] = src_index;
312                 }
313         }
314
315         /* We know that we can merge the source node into the target node. */
316         edge_len = pbqp_node_get_degree(src_node);
317
318 #if KAPS_STATISTIC
319         pbqp->num_rm++;
320 #endif
321
322         /* Reconnect the source's edges with the target node. */
323         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
324                 pbqp_edge   *old_edge = src_node->edges[edge_index];
325                 pbqp_matrix *old_matrix;
326                 pbqp_matrix *new_matrix;
327                 pbqp_node   *other_node;
328                 unsigned     other_len;
329                 unsigned     other_index;
330                 unsigned     tgt_index;
331
332                 assert(old_edge);
333
334                 if (old_edge == edge)
335                         continue;
336
337                 old_matrix = old_edge->costs;
338                 assert(old_matrix);
339
340                 if (old_edge->tgt == src_node) {
341                         other_node = edge->src;
342                         other_len  = old_matrix->rows;
343                 }
344                 else {
345                         other_node = edge->tgt;
346                         other_len = old_matrix->cols;
347                 }
348                 assert(other_node);
349
350                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
351
352                 /* Source node selects the column of the old_matrix. */
353                 if (old_edge->tgt == src_node) {
354                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
355                                 unsigned src_index = mapping[tgt_index];
356
357                                 for (other_index = 0; other_index < other_len; ++other_index) {
358                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
359                                 }
360                         }
361                 }
362                 /* Source node selects the row of the old_matrix. */
363                 else {
364                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
365                                 unsigned src_index = mapping[tgt_index];
366
367                                 for (other_index = 0; other_index < other_len; ++other_index) {
368                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
369                                 }
370                         }
371                 }
372
373                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
374
375                 disconnect_edge(src_node, old_edge);
376                 disconnect_edge(other_node, old_edge);
377         }
378
379         /* Reduce the remaining source node via RI. */
380         apply_RI(pbqp);
381 }
382
383 /**
384  * Tries to apply RM for the target node of the given edge.
385  *
386  * Checks whether the target node of edge can be merged into the source node of
387  * edge, and performs the merge, if possible.
388  */
389 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
390 {
391         pbqp_matrix    *mat;
392         pbqp_node      *src_node;
393         pbqp_node      *tgt_node;
394         vector         *src_vec;
395         vector         *tgt_vec;
396         unsigned       *mapping;
397         unsigned        src_len;
398         unsigned        tgt_len;
399         unsigned        src_index;
400         unsigned        tgt_index;
401         unsigned        edge_index;
402         unsigned        edge_len;
403
404         assert(pbqp);
405         assert(edge);
406
407         src_node = edge->src;
408         tgt_node = edge->tgt;
409         assert(src_node);
410         assert(tgt_node);
411
412         src_vec = src_node->costs;
413         tgt_vec = tgt_node->costs;
414         assert(src_vec);
415         assert(tgt_vec);
416
417         src_len = src_vec->len;
418         tgt_len = tgt_vec->len;
419
420         /* Matrizes are normalized. */
421         assert(src_len > 1);
422         assert(tgt_len > 1);
423
424         mat = edge->costs;
425         assert(mat);
426
427         mapping = NEW_ARR_F(unsigned, src_len);
428
429         /* Check that each row has at most one zero entry. */
430         for (src_index = 0; src_index < src_len; ++src_index) {
431                 unsigned onlyOneZero = 0;
432
433                 if (src_vec->entries[src_index].data == INF_COSTS)
434                         continue;
435
436                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
437                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
438                                 continue;
439
440                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
441                                 continue;
442
443                         /* Matrix entry is finite. */
444                         if (onlyOneZero) {
445                                 DEL_ARR_F(mapping);
446                                 return;
447
448                         onlyOneZero = 1;
449                         mapping[src_index] = tgt_index;
450                 }
451         }
452
453         /* We know that we can merge the target node into the source node. */
454         edge_len = pbqp_node_get_degree(tgt_node);
455
456 #if KAPS_STATISTIC
457         pbqp->num_rm++;
458 #endif
459
460         /* Reconnect the target's edges with the source node. */
461         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
462                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
463                 pbqp_matrix *old_matrix;
464                 pbqp_matrix *new_matrix;
465                 pbqp_node   *other_node;
466                 unsigned     other_len;
467                 unsigned     other_index;
468                 unsigned     src_index;
469
470                 assert(old_edge);
471
472                 if (old_edge == edge)
473                         continue;
474
475                 old_matrix = old_edge->costs;
476                 assert(old_matrix);
477
478                 if (old_edge->tgt == tgt_node) {
479                         other_node = edge->src;
480                         other_len  = old_matrix->rows;
481                 }
482                 else {
483                         other_node = edge->tgt;
484                         other_len = old_matrix->cols;
485                 }
486                 assert(other_node);
487
488                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
489
490                 /* Target node selects the column of the old_matrix. */
491                 if (old_edge->tgt == tgt_node) {
492                         for (src_index = 0; src_index < src_len; ++src_index) {
493                                 unsigned tgt_index = mapping[src_index];
494
495                                 for (other_index = 0; other_index < other_len; ++other_index) {
496                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
497                                 }
498                         }
499                 }
500                 /* Source node selects the row of the old_matrix. */
501                 else {
502                         for (src_index = 0; src_index < src_len; ++src_index) {
503                                 unsigned tgt_index = mapping[src_index];
504
505                                 for (other_index = 0; other_index < other_len; ++other_index) {
506                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
507                                 }
508                         }
509                 }
510
511                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
512
513                 disconnect_edge(tgt_node, old_edge);
514                 disconnect_edge(other_node, old_edge);
515         }
516
517         /* Reduce the remaining source node via RI. */
518         apply_RI(pbqp);
519 }
520
521 void reorder_node(pbqp_node *node)
522 {
523         unsigned    degree     = pbqp_node_get_degree(node);
524         /* Assume node lost one incident edge. */
525         unsigned    old_degree = degree + 1;
526
527         if (!buckets_filled) return;
528
529         /* Same bucket as before */
530         if (degree > 2) return;
531
532         if (!node_bucket_contains(node_buckets[old_degree], node)) {
533                 /* Old arity is new arity, so we have nothing to do. */
534                 assert(node_bucket_contains(node_buckets[degree], node));
535                 return;
536         }
537
538         /* Delete node from old bucket... */
539         node_bucket_remove(&node_buckets[old_degree], node);
540
541         /* ..and add to new one. */
542         node_bucket_insert(&node_buckets[degree], node);
543 }
544
545 #if KAPS_STATISTIC
546 void check_melting_possibility(pbqp *pbqp, pbqp_edge *edge)
547 {
548         pbqp_matrix    *mat;
549         pbqp_node      *src_node;
550         pbqp_node      *tgt_node;
551         vector         *src_vec;
552         vector         *tgt_vec;
553         int             src_len;
554         int             tgt_len;
555         int             src_index;
556         int             tgt_index;
557
558         assert(pbqp);
559         assert(edge);
560
561         src_node = edge->src;
562         tgt_node = edge->tgt;
563         assert(src_node);
564         assert(tgt_node);
565
566         src_vec = src_node->costs;
567         tgt_vec = tgt_node->costs;
568         assert(src_vec);
569         assert(tgt_vec);
570
571         src_len = src_vec->len;
572         tgt_len = tgt_vec->len;
573         assert(src_len > 0);
574         assert(tgt_len > 0);
575
576         mat = edge->costs;
577         assert(mat);
578
579         if (src_len == 1 && tgt_len == 1) {
580                 //panic("Something is wrong");
581         }
582
583         int allRowsOk = 1;
584         for (src_index = 0; src_index < src_len; ++src_index) {
585                 int onlyOneZero = 0;
586                 if (src_vec->entries[src_index].data == INF_COSTS) {
587                         continue;
588                 }
589                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
590                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
591                                 continue;
592                         }
593                         if (mat->entries[src_index * tgt_len + tgt_index] == 0) {
594                                 if (onlyOneZero) {
595                                         onlyOneZero = 0;
596                                         break;
597                                 } else {
598                                         onlyOneZero = 1;
599                                         continue;
600                                 }
601                         }
602                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS) {
603                                 continue;
604                         }
605                         onlyOneZero = 0;
606                         break;
607                 }
608                 allRowsOk &= onlyOneZero;
609         }
610
611         int allColsOk = 1;
612         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
613                 int onlyOneZero = 0;
614                 if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
615                         continue;
616                 }
617                 for (src_index = 0; src_index < src_len; ++src_index) {
618                         if (src_vec->entries[src_index].data == INF_COSTS) {
619                                 continue;
620                         }
621                         if (mat->entries[src_index * tgt_len + tgt_index] == 0) {
622                                 if (onlyOneZero) {
623                                         onlyOneZero = 0;
624                                         break;
625                                 } else {
626                                         onlyOneZero = 1;
627                                         continue;
628                                 }
629                         }
630                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS) {
631                                 continue;
632                         }
633                         onlyOneZero = 0;
634                         break;
635                 }
636                 allColsOk &= onlyOneZero;
637         }
638
639         if (allRowsOk || allColsOk) {
640                 pbqp->num_rm++;
641         }
642 }
643 #endif
644
645 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
646 {
647         pbqp_matrix    *mat;
648         pbqp_node      *src_node;
649         pbqp_node      *tgt_node;
650         vector         *src_vec;
651         vector         *tgt_vec;
652         int             src_len;
653         int             tgt_len;
654
655         assert(pbqp);
656         assert(edge);
657
658         src_node = edge->src;
659         tgt_node = edge->tgt;
660         assert(src_node);
661         assert(tgt_node);
662
663         /* If edge are already deleted, we have nothing to do. */
664         if (!is_connected(src_node, edge) || !is_connected(tgt_node, edge))
665                 return;
666
667 #if     KAPS_DUMP
668         if (pbqp->dump_file) {
669                 char txt[100];
670                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
671                 dump_section(pbqp->dump_file, 3, txt);
672         }
673 #endif
674
675         src_vec = src_node->costs;
676         tgt_vec = tgt_node->costs;
677         assert(src_vec);
678         assert(tgt_vec);
679
680         src_len = src_vec->len;
681         tgt_len = tgt_vec->len;
682         assert(src_len > 0);
683         assert(tgt_len > 0);
684
685         mat = edge->costs;
686         assert(mat);
687
688 #if     KAPS_DUMP
689         if (pbqp->dump_file) {
690                 fputs("Input:<br>\n", pbqp->dump_file);
691                 dump_simplifyedge(pbqp, edge);
692         }
693 #endif
694
695         normalize_towards_source(edge);
696         normalize_towards_target(edge);
697
698 #if     KAPS_DUMP
699         if (pbqp->dump_file) {
700                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
701                 dump_simplifyedge(pbqp, edge);
702         }
703 #endif
704
705         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
706 #if     KAPS_DUMP
707                 if (pbqp->dump_file) {
708                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
709                 }
710 #endif
711
712 #if KAPS_STATISTIC
713                 pbqp->num_edges++;
714 #endif
715
716                 delete_edge(edge);
717                 reorder_node(src_node);
718                 reorder_node(tgt_node);
719         }
720 }
721
722 void initial_simplify_edges(pbqp *pbqp)
723 {
724         unsigned node_index;
725         unsigned node_len;
726
727         assert(pbqp);
728
729         #if KAPS_TIMING
730                 ir_timer_t *t_int_simpl = ir_timer_register("be_pbqp_init_simp", "PBQP Initial simplify edges");
731                 ir_timer_reset_and_start(t_int_simpl);
732         #endif
733
734 #if     KAPS_DUMP
735         if (pbqp->dump_file) {
736                 pbqp_dump_input(pbqp);
737                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
738         }
739 #endif
740
741         node_len = pbqp->num_nodes;
742
743         init_buckets();
744
745         /* First simplify all edges. */
746         for (node_index = 0; node_index < node_len; ++node_index) {
747                 unsigned    edge_index;
748                 pbqp_node  *node = get_node(pbqp, node_index);
749                 pbqp_edge **edges;
750                 unsigned    edge_len;
751
752                 if (!node) continue;
753
754                 edges = node->edges;
755                 edge_len = pbqp_node_get_degree(node);
756
757                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
758                         pbqp_edge *edge = edges[edge_index];
759
760                         /* Simplify only once per edge. */
761                         if (node != edge->src) continue;
762
763                         simplify_edge(pbqp, edge);
764                 }
765         }
766
767         #if KAPS_TIMING
768                 ir_timer_stop(t_int_simpl);
769                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_int_simpl), (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
770         #endif
771 }
772
773 num determine_solution(pbqp *pbqp)
774 {
775         unsigned node_index;
776         unsigned node_len;
777         num      solution   = 0;
778
779         #if KAPS_TIMING
780                 ir_timer_t *t_det_solution = ir_timer_register("be_det_solution", "PBQP Determine Solution");
781                 ir_timer_reset_and_start(t_det_solution);
782         #endif
783
784 #if     KAPS_DUMP
785         FILE     *file;
786 #endif
787
788         assert(pbqp);
789
790 #if     KAPS_DUMP
791         file = pbqp->dump_file;
792
793         if (file) {
794                 dump_section(file, 1, "4. Determine Solution/Minimum");
795                 dump_section(file, 2, "4.1. Trivial Solution");
796         }
797 #endif
798
799         /* Solve trivial nodes and calculate solution. */
800         node_len = node_bucket_get_length(node_buckets[0]);
801
802 #if KAPS_STATISTIC
803         pbqp->num_r0 = node_len;
804 #endif
805
806         for (node_index = 0; node_index < node_len; ++node_index) {
807                 pbqp_node *node = node_buckets[0][node_index];
808                 assert(node);
809
810                 node->solution = vector_get_min_index(node->costs);
811                 solution       = pbqp_add(solution,
812                                 node->costs->entries[node->solution].data);
813
814 #if     KAPS_DUMP
815                 if (file) {
816                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
817                         dump_node(file, node);
818                 }
819 #endif
820         }
821
822 #if     KAPS_DUMP
823         if (file) {
824                 dump_section(file, 2, "Minimum");
825 #if KAPS_USE_UNSIGNED
826                 fprintf(file, "Minimum is equal to %u.", solution);
827 #else
828                 fprintf(file, "Minimum is equal to %lld.", solution);
829 #endif
830         }
831 #endif
832
833         #if KAPS_TIMING
834                 ir_timer_stop(t_det_solution);
835                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_det_solution), (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
836         #endif
837
838         return solution;
839 }
840
841 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
842 {
843         pbqp_edge   *edge;
844         pbqp_node   *other;
845         pbqp_matrix *mat;
846         vector      *vec;
847         int          is_src;
848
849         assert(pbqp);
850         assert(node);
851
852         edge = node->edges[0];
853         mat = edge->costs;
854         is_src = edge->src == node;
855         vec = node->costs;
856
857         if (is_src) {
858                 other = edge->tgt;
859                 assert(other);
860
861                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
862         } else {
863                 other = edge->src;
864                 assert(other);
865
866                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
867         }
868
869 #if     KAPS_DUMP
870         if (pbqp->dump_file) {
871                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
872         }
873 #endif
874 }
875
876 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
877 {
878         pbqp_edge   *src_edge   = node->edges[0];
879         pbqp_edge   *tgt_edge   = node->edges[1];
880         int          src_is_src = src_edge->src == node;
881         int          tgt_is_src = tgt_edge->src == node;
882         pbqp_matrix *src_mat;
883         pbqp_matrix *tgt_mat;
884         pbqp_node   *src_node;
885         pbqp_node   *tgt_node;
886         vector      *vec;
887         vector      *node_vec;
888         unsigned     col_index;
889         unsigned     row_index;
890
891         assert(pbqp);
892
893         if (src_is_src) {
894                 src_node = src_edge->tgt;
895         } else {
896                 src_node = src_edge->src;
897         }
898
899         if (tgt_is_src) {
900                 tgt_node = tgt_edge->tgt;
901         } else {
902                 tgt_node = tgt_edge->src;
903         }
904
905         /* Swap nodes if necessary. */
906         if (tgt_node->index < src_node->index) {
907                 pbqp_node *tmp_node;
908                 pbqp_edge *tmp_edge;
909
910                 tmp_node = src_node;
911                 src_node = tgt_node;
912                 tgt_node = tmp_node;
913
914                 tmp_edge = src_edge;
915                 src_edge = tgt_edge;
916                 tgt_edge = tmp_edge;
917
918                 src_is_src = src_edge->src == node;
919                 tgt_is_src = tgt_edge->src == node;
920         }
921
922         src_mat = src_edge->costs;
923         tgt_mat = tgt_edge->costs;
924
925         node_vec = node->costs;
926
927         row_index = src_node->solution;
928         col_index = tgt_node->solution;
929
930         vec = vector_copy(pbqp, node_vec);
931
932         if (src_is_src) {
933                 vector_add_matrix_col(vec, src_mat, row_index);
934         } else {
935                 vector_add_matrix_row(vec, src_mat, row_index);
936         }
937
938         if (tgt_is_src) {
939                 vector_add_matrix_col(vec, tgt_mat, col_index);
940         } else {
941                 vector_add_matrix_row(vec, tgt_mat, col_index);
942         }
943
944         node->solution = vector_get_min_index(vec);
945
946 #if     KAPS_DUMP
947         if (pbqp->dump_file) {
948                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
949         }
950 #endif
951
952         obstack_free(&pbqp->obstack, vec);
953 }
954
955 void back_propagate(pbqp *pbqp)
956 {
957         unsigned node_index;
958         unsigned node_len   = node_bucket_get_length(reduced_bucket);
959
960         assert(pbqp);
961
962 #if     KAPS_DUMP
963         if (pbqp->dump_file) {
964                 dump_section(pbqp->dump_file, 2, "Back Propagation");
965         }
966 #endif
967
968         for (node_index = node_len; node_index > 0; --node_index) {
969                 pbqp_node *node = reduced_bucket[node_index - 1];
970
971                 switch (pbqp_node_get_degree(node)) {
972                         case 1:
973                                 back_propagate_RI(pbqp, node);
974                                 break;
975                         case 2:
976                                 back_propagate_RII(pbqp, node);
977                                 break;
978                         default:
979                                 panic("Only nodes with degree one or two should be in this bucket");
980                                 break;
981                 }
982         }
983 }
984
985 void apply_edge(pbqp *pbqp)
986 {
987         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
988
989         simplify_edge(pbqp, edge);
990 }
991
992 void apply_RI(pbqp *pbqp)
993 {
994         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
995         pbqp_edge   *edge       = node->edges[0];
996         pbqp_matrix *mat        = edge->costs;
997         int          is_src     = edge->src == node;
998         pbqp_node   *other_node;
999
1000         (void ) pbqp;
1001         assert(pbqp_node_get_degree(node) == 1);
1002
1003         if (is_src) {
1004                 other_node = edge->tgt;
1005         } else {
1006                 other_node = edge->src;
1007         }
1008
1009 #if     KAPS_DUMP
1010         if (pbqp->dump_file) {
1011                 char     txt[100];
1012                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
1013                 dump_section(pbqp->dump_file, 2, txt);
1014                 pbqp_dump_graph(pbqp);
1015                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1016                 dump_node(pbqp->dump_file, node);
1017                 dump_node(pbqp->dump_file, other_node);
1018                 dump_edge(pbqp->dump_file, edge);
1019         }
1020 #endif
1021
1022         if (is_src) {
1023                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1024                 normalize_towards_target(edge);
1025         } else {
1026                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1027                 normalize_towards_source(edge);
1028         }
1029         disconnect_edge(other_node, edge);
1030
1031 #if     KAPS_DUMP
1032         if (pbqp->dump_file) {
1033                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1034                 dump_node(pbqp->dump_file, other_node);
1035         }
1036 #endif
1037
1038         reorder_node(other_node);
1039
1040 #if KAPS_STATISTIC
1041         pbqp->num_r1++;
1042 #endif
1043
1044         /* Add node to back propagation list. */
1045         node_bucket_insert(&reduced_bucket, node);
1046 }
1047
1048 void apply_RII(pbqp *pbqp)
1049 {
1050         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1051         pbqp_edge   *src_edge   = node->edges[0];
1052         pbqp_edge   *tgt_edge   = node->edges[1];
1053         int          src_is_src = src_edge->src == node;
1054         int          tgt_is_src = tgt_edge->src == node;
1055         pbqp_matrix *src_mat;
1056         pbqp_matrix *tgt_mat;
1057         pbqp_node   *src_node;
1058         pbqp_node   *tgt_node;
1059         pbqp_matrix *mat;
1060         vector      *vec;
1061         vector      *node_vec;
1062         vector      *src_vec;
1063         vector      *tgt_vec;
1064         unsigned     col_index;
1065         unsigned     col_len;
1066         unsigned     row_index;
1067         unsigned     row_len;
1068         unsigned     node_len;
1069
1070         assert(pbqp);
1071         assert(pbqp_node_get_degree(node) == 2);
1072
1073         if (src_is_src) {
1074                 src_node = src_edge->tgt;
1075         } else {
1076                 src_node = src_edge->src;
1077         }
1078
1079         if (tgt_is_src) {
1080                 tgt_node = tgt_edge->tgt;
1081         } else {
1082                 tgt_node = tgt_edge->src;
1083         }
1084
1085         /* Swap nodes if necessary. */
1086         if (tgt_node->index < src_node->index) {
1087                 pbqp_node *tmp_node;
1088                 pbqp_edge *tmp_edge;
1089
1090                 tmp_node = src_node;
1091                 src_node = tgt_node;
1092                 tgt_node = tmp_node;
1093
1094                 tmp_edge = src_edge;
1095                 src_edge = tgt_edge;
1096                 tgt_edge = tmp_edge;
1097
1098                 src_is_src = src_edge->src == node;
1099                 tgt_is_src = tgt_edge->src == node;
1100         }
1101
1102 #if     KAPS_DUMP
1103         if (pbqp->dump_file) {
1104                 char     txt[100];
1105                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1106                 dump_section(pbqp->dump_file, 2, txt);
1107                 pbqp_dump_graph(pbqp);
1108                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1109                 dump_node(pbqp->dump_file, src_node);
1110                 dump_edge(pbqp->dump_file, src_edge);
1111                 dump_node(pbqp->dump_file, node);
1112                 dump_edge(pbqp->dump_file, tgt_edge);
1113                 dump_node(pbqp->dump_file, tgt_node);
1114         }
1115 #endif
1116
1117         src_mat = src_edge->costs;
1118         tgt_mat = tgt_edge->costs;
1119
1120         src_vec  = src_node->costs;
1121         tgt_vec  = tgt_node->costs;
1122         node_vec = node->costs;
1123
1124         row_len  = src_vec->len;
1125         col_len  = tgt_vec->len;
1126         node_len = node_vec->len;
1127
1128         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1129
1130         for (row_index = 0; row_index < row_len; ++row_index) {
1131                 for (col_index = 0; col_index < col_len; ++col_index) {
1132                         vec = vector_copy(pbqp, node_vec);
1133
1134                         if (src_is_src) {
1135                                 vector_add_matrix_col(vec, src_mat, row_index);
1136                         } else {
1137                                 vector_add_matrix_row(vec, src_mat, row_index);
1138                         }
1139
1140                         if (tgt_is_src) {
1141                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1142                         } else {
1143                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1144                         }
1145
1146                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1147
1148                         obstack_free(&pbqp->obstack, vec);
1149                 }
1150         }
1151
1152         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1153
1154         /* Disconnect node. */
1155         disconnect_edge(src_node, src_edge);
1156         disconnect_edge(tgt_node, tgt_edge);
1157
1158 #if KAPS_STATISTIC
1159         pbqp->num_r2++;
1160 #endif
1161
1162         /* Add node to back propagation list. */
1163         node_bucket_insert(&reduced_bucket, node);
1164
1165         if (edge == NULL) {
1166                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1167         } else {
1168                 // matrix
1169                 pbqp_matrix_add(edge->costs, mat);
1170
1171                 /* Free local matrix. */
1172                 obstack_free(&pbqp->obstack, mat);
1173
1174                 reorder_node(src_node);
1175                 reorder_node(tgt_node);
1176         }
1177
1178 #if     KAPS_DUMP
1179         if (pbqp->dump_file) {
1180                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1181                 dump_edge(pbqp->dump_file, edge);
1182         }
1183 #endif
1184
1185         /* Edge has changed so we simplify it. */
1186         simplify_edge(pbqp, edge);
1187 }
1188
1189 void select_alternative(pbqp_node *node, unsigned selected_index)
1190 {
1191         unsigned  edge_index;
1192         unsigned  node_index;
1193         unsigned  node_len;
1194         vector   *node_vec;
1195         unsigned  max_degree = pbqp_node_get_degree(node);
1196
1197         assert(node);
1198         node->solution = selected_index;
1199         node_vec = node->costs;
1200         node_len = node_vec->len;
1201         assert(selected_index < node_len);
1202
1203         /* Set all other costs to infinity. */
1204         for (node_index = 0; node_index < node_len; ++node_index) {
1205                 if (node_index != selected_index) {
1206                         node_vec->entries[node_index].data = INF_COSTS;
1207                 }
1208         }
1209
1210         /* Add all incident edges to edge bucket, since they are now independent. */
1211         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1212                 insert_into_edge_bucket(node->edges[edge_index]);
1213         }
1214 }
1215
1216 pbqp_node *get_node_with_max_degree(void)
1217 {
1218         pbqp_node  **bucket       = node_buckets[3];
1219         unsigned     bucket_len   = node_bucket_get_length(bucket);
1220         unsigned     bucket_index;
1221         unsigned     max_degree   = 0;
1222         pbqp_node   *result       = NULL;
1223
1224         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1225                 pbqp_node *candidate = bucket[bucket_index];
1226                 unsigned   degree    = pbqp_node_get_degree(candidate);
1227
1228                 if (degree > max_degree) {
1229                         result = candidate;
1230                         max_degree = degree;
1231                 }
1232         }
1233
1234         return result;
1235 }
1236
1237 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1238 {
1239         pbqp_edge   *edge;
1240         vector      *node_vec;
1241         vector      *vec;
1242         pbqp_matrix *mat;
1243         unsigned     edge_index;
1244         unsigned     max_degree;
1245         unsigned     node_index;
1246         unsigned     node_len;
1247         unsigned     min_index    = 0;
1248         num          min          = INF_COSTS;
1249         int          is_src;
1250
1251         assert(pbqp);
1252         assert(node);
1253         node_vec   = node->costs;
1254         node_len   = node_vec->len;
1255         max_degree = pbqp_node_get_degree(node);
1256
1257         for (node_index = 0; node_index < node_len; ++node_index) {
1258                 num value = node_vec->entries[node_index].data;
1259
1260                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1261                         edge   = node->edges[edge_index];
1262                         mat    = edge->costs;
1263                         is_src = edge->src == node;
1264
1265                         if (is_src) {
1266                                 vec = vector_copy(pbqp, edge->tgt->costs);
1267                                 vector_add_matrix_row(vec, mat, node_index);
1268                         } else {
1269                                 vec = vector_copy(pbqp, edge->src->costs);
1270                                 vector_add_matrix_col(vec, mat, node_index);
1271                         }
1272
1273                         value = pbqp_add(value, vector_get_min(vec));
1274
1275                         obstack_free(&pbqp->obstack, vec);
1276                 }
1277
1278                 if (value < min) {
1279                         min = value;
1280                         min_index = node_index;
1281                 }
1282         }
1283
1284         return min_index;
1285 }
1286
1287 int node_is_reduced(pbqp_node *node)
1288 {
1289         if (!reduced_bucket) return 0;
1290
1291         if (pbqp_node_get_degree(node) == 0) return 1;
1292
1293         return node_bucket_contains(reduced_bucket, node);
1294 }