a1a97f4a68881f945d3b37ae5080018ad74c92ad
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_node **node_buckets[4];
51 pbqp_node **reduced_bucket = NULL;
52 static int         buckets_filled = 0;
53
54 static void insert_into_edge_bucket(pbqp_edge *edge)
55 {
56         if (edge_bucket_contains(edge_bucket, edge)) {
57                 /* Edge is already inserted. */
58                 return;
59         }
60
61         edge_bucket_insert(&edge_bucket, edge);
62 }
63
64 static void init_buckets(void)
65 {
66         int i;
67
68         edge_bucket_init(&edge_bucket);
69         node_bucket_init(&reduced_bucket);
70
71         for (i = 0; i < 4; ++i) {
72                 node_bucket_init(&node_buckets[i]);
73         }
74 }
75
76 void free_buckets(void)
77 {
78         int i;
79
80         for (i = 0; i < 4; ++i) {
81                 node_bucket_free(&node_buckets[i]);
82         }
83
84         edge_bucket_free(&edge_bucket);
85         node_bucket_free(&reduced_bucket);
86
87         buckets_filled = 0;
88 }
89
90 void fill_node_buckets(pbqp *pbqp)
91 {
92         unsigned node_index;
93         unsigned node_len;
94
95         assert(pbqp);
96         node_len = pbqp->num_nodes;
97
98         #if KAPS_TIMING
99                 ir_timer_t *t_fill_buckets = ir_timer_register("be_pbqp_fill_buckets", "PBQP Fill Nodes into buckets");
100                 ir_timer_reset_and_start(t_fill_buckets);
101         #endif
102
103         for (node_index = 0; node_index < node_len; ++node_index) {
104                 unsigned   degree;
105                 pbqp_node *node = get_node(pbqp, node_index);
106
107                 if (!node) continue;
108
109                 degree = pbqp_node_get_degree(node);
110
111                 /* We have only one bucket for nodes with arity >= 3. */
112                 if (degree > 3) {
113                         degree = 3;
114                 }
115
116                 node_bucket_insert(&node_buckets[degree], node);
117         }
118
119         buckets_filled = 1;
120
121         #if KAPS_TIMING
122                 ir_timer_stop(t_fill_buckets);
123                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_fill_buckets), (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
124         #endif
125 }
126
127 static void normalize_towards_source(pbqp_edge *edge)
128 {
129         pbqp_matrix    *mat;
130         pbqp_node      *src_node;
131         pbqp_node      *tgt_node;
132         vector         *src_vec;
133         vector         *tgt_vec;
134         int             src_len;
135         int             tgt_len;
136         int             src_index;
137
138         assert(edge);
139
140         src_node = edge->src;
141         tgt_node = edge->tgt;
142         assert(src_node);
143         assert(tgt_node);
144
145         src_vec = src_node->costs;
146         tgt_vec = tgt_node->costs;
147         assert(src_vec);
148         assert(tgt_vec);
149
150         src_len = src_vec->len;
151         tgt_len = tgt_vec->len;
152         assert(src_len > 0);
153         assert(tgt_len > 0);
154
155         mat = edge->costs;
156         assert(mat);
157
158         /* Normalize towards source node. */
159         for (src_index = 0; src_index < src_len; ++src_index) {
160                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
161
162                 if (min != 0) {
163                         if (src_vec->entries[src_index].data == INF_COSTS) {
164                                 pbqp_matrix_set_row_value(mat, src_index, 0);
165                         } else {
166                                 pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
167                         }
168                         src_vec->entries[src_index].data = pbqp_add(
169                                         src_vec->entries[src_index].data, min);
170
171                         if (min == INF_COSTS) {
172                                 unsigned edge_index;
173                                 unsigned edge_len = pbqp_node_get_degree(src_node);
174
175                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
176                                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
177                                         if (edge_candidate != edge) {
178                                                 insert_into_edge_bucket(edge_candidate);
179                                         }
180                                 }
181                         }
182                 }
183         }
184 }
185
186 static void normalize_towards_target(pbqp_edge *edge)
187 {
188         pbqp_matrix    *mat;
189         pbqp_node      *src_node;
190         pbqp_node      *tgt_node;
191         vector         *src_vec;
192         vector         *tgt_vec;
193         int             src_len;
194         int             tgt_len;
195         int             tgt_index;
196
197         assert(edge);
198
199         src_node = edge->src;
200         tgt_node = edge->tgt;
201         assert(src_node);
202         assert(tgt_node);
203
204         src_vec = src_node->costs;
205         tgt_vec = tgt_node->costs;
206         assert(src_vec);
207         assert(tgt_vec);
208
209         src_len = src_vec->len;
210         tgt_len = tgt_vec->len;
211         assert(src_len > 0);
212         assert(tgt_len > 0);
213
214         mat = edge->costs;
215         assert(mat);
216
217         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
218                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
219
220                 if (min != 0) {
221                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
222                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
223                         } else {
224                                 pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
225                         }
226                         tgt_vec->entries[tgt_index].data = pbqp_add(
227                                         tgt_vec->entries[tgt_index].data, min);
228
229                         if (min == INF_COSTS) {
230                                 unsigned edge_index;
231                                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
232
233                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
234                                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
235                                         if (edge_candidate != edge) {
236                                                 insert_into_edge_bucket(edge_candidate);
237                                         }
238                                 }
239                         }
240                 }
241         }
242 }
243
244 /**
245  * Tries to apply RM for the source node of the given edge.
246  *
247  * Checks whether the source node of edge can be merged into the target node of
248  * edge, and performs the merge, if possible.
249  */
250 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
251 {
252         pbqp_matrix    *mat;
253         pbqp_node      *src_node;
254         pbqp_node      *tgt_node;
255         vector         *src_vec;
256         vector         *tgt_vec;
257         unsigned       *mapping;
258         unsigned        src_len;
259         unsigned        tgt_len;
260         unsigned        src_index;
261         unsigned        tgt_index;
262         unsigned        edge_index;
263         unsigned        edge_len;
264
265         assert(pbqp);
266         assert(edge);
267
268         src_node = edge->src;
269         tgt_node = edge->tgt;
270         assert(src_node);
271         assert(tgt_node);
272
273         src_vec = src_node->costs;
274         tgt_vec = tgt_node->costs;
275         assert(src_vec);
276         assert(tgt_vec);
277
278         src_len = src_vec->len;
279         tgt_len = tgt_vec->len;
280
281         /* Matrizes are normalized. */
282         assert(src_len > 1);
283         assert(tgt_len > 1);
284
285         mat = edge->costs;
286         assert(mat);
287
288         mapping = NEW_ARR_F(unsigned, src_len);
289
290         /* Check that each column has at most one zero entry. */
291         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
292                 unsigned onlyOneZero = 0;
293                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
294                         continue;
295
296                 for (src_index = 0; src_index < src_len; ++src_index) {
297                         if (src_vec->entries[src_index].data == INF_COSTS)
298                                 continue;
299
300                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
301                                 continue;
302
303                         /* Matrix entry is finite. */
304                         if (onlyOneZero) {
305                                 DEL_ARR_F(mapping);
306                                 return;
307                         }
308
309                         onlyOneZero = 1;
310                         mapping[tgt_index] = src_index;
311                 }
312         }
313
314         /* We know that we can merge the source node into the target node. */
315         edge_len = pbqp_node_get_degree(src_node);
316
317 #if KAPS_STATISTIC
318         pbqp->num_rm++;
319 #endif
320
321         /* Reconnect the source's edges with the target node. */
322         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
323                 pbqp_edge   *old_edge = src_node->edges[edge_index];
324                 pbqp_matrix *old_matrix;
325                 pbqp_matrix *new_matrix;
326                 pbqp_node   *other_node;
327                 unsigned     other_len;
328                 unsigned     other_index;
329                 unsigned     tgt_index;
330
331                 assert(old_edge);
332
333                 if (old_edge == edge)
334                         continue;
335
336                 old_matrix = old_edge->costs;
337                 assert(old_matrix);
338
339                 if (old_edge->tgt == src_node) {
340                         other_node = edge->src;
341                         other_len  = old_matrix->rows;
342                 }
343                 else {
344                         other_node = edge->tgt;
345                         other_len = old_matrix->cols;
346                 }
347                 assert(other_node);
348
349                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
350
351                 /* Source node selects the column of the old_matrix. */
352                 if (old_edge->tgt == src_node) {
353                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
354                                 unsigned old_index = mapping[tgt_index];
355                                 for (other_index = 0; other_index < other_len; ++other_index) {
356                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+old_index];
357                                 }
358                         }
359                 }
360                 /* Source node selects the row of the old_matrix. */
361                 else {
362                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
363                                 unsigned old_index = mapping[tgt_index];
364                                 for (other_index = 0; other_index < other_len; ++other_index) {
365                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[old_index*other_len+other_index];
366                                 }
367                         }
368                 }
369
370                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
371
372                 disconnect_edge(src_node, old_edge);
373                 disconnect_edge(other_node, old_edge);
374         }
375
376         /* Reduce the remaining source node via RI. */
377         apply_RI(pbqp);
378 }
379
380
381 void reorder_node(pbqp_node *node)
382 {
383         unsigned    degree     = pbqp_node_get_degree(node);
384         /* Assume node lost one incident edge. */
385         unsigned    old_degree = degree + 1;
386
387         if (!buckets_filled) return;
388
389         /* Same bucket as before */
390         if (degree > 2) return;
391
392         if (!node_bucket_contains(node_buckets[old_degree], node)) {
393                 /* Old arity is new arity, so we have nothing to do. */
394                 assert(node_bucket_contains(node_buckets[degree], node));
395                 return;
396         }
397
398         /* Delete node from old bucket... */
399         node_bucket_remove(&node_buckets[old_degree], node);
400
401         /* ..and add to new one. */
402         node_bucket_insert(&node_buckets[degree], node);
403 }
404
405 #if KAPS_STATISTIC
406 void check_melting_possibility(pbqp *pbqp, pbqp_edge *edge)
407 {
408         pbqp_matrix    *mat;
409         pbqp_node      *src_node;
410         pbqp_node      *tgt_node;
411         vector         *src_vec;
412         vector         *tgt_vec;
413         int             src_len;
414         int             tgt_len;
415         int             src_index;
416         int             tgt_index;
417
418         assert(pbqp);
419         assert(edge);
420
421         src_node = edge->src;
422         tgt_node = edge->tgt;
423         assert(src_node);
424         assert(tgt_node);
425
426         src_vec = src_node->costs;
427         tgt_vec = tgt_node->costs;
428         assert(src_vec);
429         assert(tgt_vec);
430
431         src_len = src_vec->len;
432         tgt_len = tgt_vec->len;
433         assert(src_len > 0);
434         assert(tgt_len > 0);
435
436         mat = edge->costs;
437         assert(mat);
438
439         if (src_len == 1 && tgt_len == 1) {
440                 //panic("Something is wrong");
441         }
442
443         int allRowsOk = 1;
444         for (src_index = 0; src_index < src_len; ++src_index) {
445                 int onlyOneZero = 0;
446                 if (src_vec->entries[src_index].data == INF_COSTS) {
447                         continue;
448                 }
449                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
450                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
451                                 continue;
452                         }
453                         if (mat->entries[src_index * tgt_len + tgt_index] == 0) {
454                                 if (onlyOneZero) {
455                                         onlyOneZero = 0;
456                                         break;
457                                 } else {
458                                         onlyOneZero = 1;
459                                         continue;
460                                 }
461                         }
462                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS) {
463                                 continue;
464                         }
465                         onlyOneZero = 0;
466                         break;
467                 }
468                 allRowsOk &= onlyOneZero;
469         }
470
471         int allColsOk = 1;
472         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
473                 int onlyOneZero = 0;
474                 if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
475                         continue;
476                 }
477                 for (src_index = 0; src_index < src_len; ++src_index) {
478                         if (src_vec->entries[src_index].data == INF_COSTS) {
479                                 continue;
480                         }
481                         if (mat->entries[src_index * tgt_len + tgt_index] == 0) {
482                                 if (onlyOneZero) {
483                                         onlyOneZero = 0;
484                                         break;
485                                 } else {
486                                         onlyOneZero = 1;
487                                         continue;
488                                 }
489                         }
490                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS) {
491                                 continue;
492                         }
493                         onlyOneZero = 0;
494                         break;
495                 }
496                 allColsOk &= onlyOneZero;
497         }
498
499         if (allRowsOk || allColsOk) {
500                 pbqp->num_rm++;
501         }
502 }
503 #endif
504
505 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
506 {
507         pbqp_matrix    *mat;
508         pbqp_node      *src_node;
509         pbqp_node      *tgt_node;
510         vector         *src_vec;
511         vector         *tgt_vec;
512         int             src_len;
513         int             tgt_len;
514
515         assert(pbqp);
516         assert(edge);
517
518         src_node = edge->src;
519         tgt_node = edge->tgt;
520         assert(src_node);
521         assert(tgt_node);
522
523         /* If edge are already deleted, we have nothing to do. */
524         if (!is_connected(src_node, edge) || !is_connected(tgt_node, edge))
525                 return;
526
527 #if     KAPS_DUMP
528         if (pbqp->dump_file) {
529                 char txt[100];
530                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
531                 dump_section(pbqp->dump_file, 3, txt);
532         }
533 #endif
534
535         src_vec = src_node->costs;
536         tgt_vec = tgt_node->costs;
537         assert(src_vec);
538         assert(tgt_vec);
539
540         src_len = src_vec->len;
541         tgt_len = tgt_vec->len;
542         assert(src_len > 0);
543         assert(tgt_len > 0);
544
545         mat = edge->costs;
546         assert(mat);
547
548 #if     KAPS_DUMP
549         if (pbqp->dump_file) {
550                 fputs("Input:<br>\n", pbqp->dump_file);
551                 dump_simplifyedge(pbqp, edge);
552         }
553 #endif
554
555         normalize_towards_source(edge);
556         normalize_towards_target(edge);
557
558 #if     KAPS_DUMP
559         if (pbqp->dump_file) {
560                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
561                 dump_simplifyedge(pbqp, edge);
562         }
563 #endif
564
565         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
566 #if     KAPS_DUMP
567                 if (pbqp->dump_file) {
568                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
569                 }
570 #endif
571
572 #if KAPS_STATISTIC
573                 pbqp->num_edges++;
574 #endif
575
576                 delete_edge(edge);
577                 reorder_node(src_node);
578                 reorder_node(tgt_node);
579         }
580 }
581
582 void initial_simplify_edges(pbqp *pbqp)
583 {
584         unsigned node_index;
585         unsigned node_len;
586
587         assert(pbqp);
588
589         #if KAPS_TIMING
590                 ir_timer_t *t_int_simpl = ir_timer_register("be_pbqp_init_simp", "PBQP Initial simplify edges");
591                 ir_timer_reset_and_start(t_int_simpl);
592         #endif
593
594 #if     KAPS_DUMP
595         if (pbqp->dump_file) {
596                 pbqp_dump_input(pbqp);
597                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
598         }
599 #endif
600
601         node_len = pbqp->num_nodes;
602
603         init_buckets();
604
605         /* First simplify all edges. */
606         for (node_index = 0; node_index < node_len; ++node_index) {
607                 unsigned    edge_index;
608                 pbqp_node  *node = get_node(pbqp, node_index);
609                 pbqp_edge **edges;
610                 unsigned    edge_len;
611
612                 if (!node) continue;
613
614                 edges = node->edges;
615                 edge_len = pbqp_node_get_degree(node);
616
617                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
618                         pbqp_edge *edge = edges[edge_index];
619
620                         /* Simplify only once per edge. */
621                         if (node != edge->src) continue;
622
623                         simplify_edge(pbqp, edge);
624                 }
625         }
626
627         #if KAPS_TIMING
628                 ir_timer_stop(t_int_simpl);
629                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_int_simpl), (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
630         #endif
631 }
632
633 num determine_solution(pbqp *pbqp)
634 {
635         unsigned node_index;
636         unsigned node_len;
637         num      solution   = 0;
638
639         #if KAPS_TIMING
640                 ir_timer_t *t_det_solution = ir_timer_register("be_det_solution", "PBQP Determine Solution");
641                 ir_timer_reset_and_start(t_det_solution);
642         #endif
643
644 #if     KAPS_DUMP
645         FILE     *file;
646 #endif
647
648         assert(pbqp);
649
650 #if     KAPS_DUMP
651         file = pbqp->dump_file;
652
653         if (file) {
654                 dump_section(file, 1, "4. Determine Solution/Minimum");
655                 dump_section(file, 2, "4.1. Trivial Solution");
656         }
657 #endif
658
659         /* Solve trivial nodes and calculate solution. */
660         node_len = node_bucket_get_length(node_buckets[0]);
661
662 #if KAPS_STATISTIC
663         pbqp->num_r0 = node_len;
664 #endif
665
666         for (node_index = 0; node_index < node_len; ++node_index) {
667                 pbqp_node *node = node_buckets[0][node_index];
668                 assert(node);
669
670                 node->solution = vector_get_min_index(node->costs);
671                 solution       = pbqp_add(solution,
672                                 node->costs->entries[node->solution].data);
673
674 #if     KAPS_DUMP
675                 if (file) {
676                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
677                         dump_node(file, node);
678                 }
679 #endif
680         }
681
682 #if     KAPS_DUMP
683         if (file) {
684                 dump_section(file, 2, "Minimum");
685 #if KAPS_USE_UNSIGNED
686                 fprintf(file, "Minimum is equal to %u.", solution);
687 #else
688                 fprintf(file, "Minimum is equal to %lld.", solution);
689 #endif
690         }
691 #endif
692
693         #if KAPS_TIMING
694                 ir_timer_stop(t_det_solution);
695                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_det_solution), (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
696         #endif
697
698         return solution;
699 }
700
701 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
702 {
703         pbqp_edge   *edge;
704         pbqp_node   *other;
705         pbqp_matrix *mat;
706         vector      *vec;
707         int          is_src;
708
709         assert(pbqp);
710         assert(node);
711
712         edge = node->edges[0];
713         mat = edge->costs;
714         is_src = edge->src == node;
715         vec = node->costs;
716
717         if (is_src) {
718                 other = edge->tgt;
719                 assert(other);
720
721                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
722         } else {
723                 other = edge->src;
724                 assert(other);
725
726                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
727         }
728
729 #if     KAPS_DUMP
730         if (pbqp->dump_file) {
731                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
732         }
733 #endif
734 }
735
736 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
737 {
738         pbqp_edge   *src_edge   = node->edges[0];
739         pbqp_edge   *tgt_edge   = node->edges[1];
740         int          src_is_src = src_edge->src == node;
741         int          tgt_is_src = tgt_edge->src == node;
742         pbqp_matrix *src_mat;
743         pbqp_matrix *tgt_mat;
744         pbqp_node   *src_node;
745         pbqp_node   *tgt_node;
746         vector      *vec;
747         vector      *node_vec;
748         unsigned     col_index;
749         unsigned     row_index;
750
751         assert(pbqp);
752
753         if (src_is_src) {
754                 src_node = src_edge->tgt;
755         } else {
756                 src_node = src_edge->src;
757         }
758
759         if (tgt_is_src) {
760                 tgt_node = tgt_edge->tgt;
761         } else {
762                 tgt_node = tgt_edge->src;
763         }
764
765         /* Swap nodes if necessary. */
766         if (tgt_node->index < src_node->index) {
767                 pbqp_node *tmp_node;
768                 pbqp_edge *tmp_edge;
769
770                 tmp_node = src_node;
771                 src_node = tgt_node;
772                 tgt_node = tmp_node;
773
774                 tmp_edge = src_edge;
775                 src_edge = tgt_edge;
776                 tgt_edge = tmp_edge;
777
778                 src_is_src = src_edge->src == node;
779                 tgt_is_src = tgt_edge->src == node;
780         }
781
782         src_mat = src_edge->costs;
783         tgt_mat = tgt_edge->costs;
784
785         node_vec = node->costs;
786
787         row_index = src_node->solution;
788         col_index = tgt_node->solution;
789
790         vec = vector_copy(pbqp, node_vec);
791
792         if (src_is_src) {
793                 vector_add_matrix_col(vec, src_mat, row_index);
794         } else {
795                 vector_add_matrix_row(vec, src_mat, row_index);
796         }
797
798         if (tgt_is_src) {
799                 vector_add_matrix_col(vec, tgt_mat, col_index);
800         } else {
801                 vector_add_matrix_row(vec, tgt_mat, col_index);
802         }
803
804         node->solution = vector_get_min_index(vec);
805
806 #if     KAPS_DUMP
807         if (pbqp->dump_file) {
808                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
809         }
810 #endif
811
812         obstack_free(&pbqp->obstack, vec);
813 }
814
815 void back_propagate(pbqp *pbqp)
816 {
817         unsigned node_index;
818         unsigned node_len   = node_bucket_get_length(reduced_bucket);
819
820         assert(pbqp);
821
822 #if     KAPS_DUMP
823         if (pbqp->dump_file) {
824                 dump_section(pbqp->dump_file, 2, "Back Propagation");
825         }
826 #endif
827
828         for (node_index = node_len; node_index > 0; --node_index) {
829                 pbqp_node *node = reduced_bucket[node_index - 1];
830
831                 switch (pbqp_node_get_degree(node)) {
832                         case 1:
833                                 back_propagate_RI(pbqp, node);
834                                 break;
835                         case 2:
836                                 back_propagate_RII(pbqp, node);
837                                 break;
838                         default:
839                                 panic("Only nodes with degree one or two should be in this bucket");
840                                 break;
841                 }
842         }
843 }
844
845 void apply_edge(pbqp *pbqp)
846 {
847         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
848
849         simplify_edge(pbqp, edge);
850 }
851
852 void apply_RI(pbqp *pbqp)
853 {
854         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
855         pbqp_edge   *edge       = node->edges[0];
856         pbqp_matrix *mat        = edge->costs;
857         int          is_src     = edge->src == node;
858         pbqp_node   *other_node;
859
860         (void ) pbqp;
861         assert(pbqp_node_get_degree(node) == 1);
862
863         if (is_src) {
864                 other_node = edge->tgt;
865         } else {
866                 other_node = edge->src;
867         }
868
869 #if     KAPS_DUMP
870         if (pbqp->dump_file) {
871                 char     txt[100];
872                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
873                 dump_section(pbqp->dump_file, 2, txt);
874                 pbqp_dump_graph(pbqp);
875                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
876                 dump_node(pbqp->dump_file, node);
877                 dump_node(pbqp->dump_file, other_node);
878                 dump_edge(pbqp->dump_file, edge);
879         }
880 #endif
881
882         if (is_src) {
883                 pbqp_matrix_add_to_all_cols(mat, node->costs);
884                 normalize_towards_target(edge);
885         } else {
886                 pbqp_matrix_add_to_all_rows(mat, node->costs);
887                 normalize_towards_source(edge);
888         }
889         disconnect_edge(other_node, edge);
890
891 #if     KAPS_DUMP
892         if (pbqp->dump_file) {
893                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
894                 dump_node(pbqp->dump_file, other_node);
895         }
896 #endif
897
898         reorder_node(other_node);
899
900 #if KAPS_STATISTIC
901         pbqp->num_r1++;
902 #endif
903
904         /* Add node to back propagation list. */
905         node_bucket_insert(&reduced_bucket, node);
906 }
907
908 void apply_RII(pbqp *pbqp)
909 {
910         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
911         pbqp_edge   *src_edge   = node->edges[0];
912         pbqp_edge   *tgt_edge   = node->edges[1];
913         int          src_is_src = src_edge->src == node;
914         int          tgt_is_src = tgt_edge->src == node;
915         pbqp_matrix *src_mat;
916         pbqp_matrix *tgt_mat;
917         pbqp_node   *src_node;
918         pbqp_node   *tgt_node;
919         pbqp_matrix *mat;
920         vector      *vec;
921         vector      *node_vec;
922         vector      *src_vec;
923         vector      *tgt_vec;
924         unsigned     col_index;
925         unsigned     col_len;
926         unsigned     row_index;
927         unsigned     row_len;
928         unsigned     node_len;
929
930         assert(pbqp);
931         assert(pbqp_node_get_degree(node) == 2);
932
933         if (src_is_src) {
934                 src_node = src_edge->tgt;
935         } else {
936                 src_node = src_edge->src;
937         }
938
939         if (tgt_is_src) {
940                 tgt_node = tgt_edge->tgt;
941         } else {
942                 tgt_node = tgt_edge->src;
943         }
944
945         /* Swap nodes if necessary. */
946         if (tgt_node->index < src_node->index) {
947                 pbqp_node *tmp_node;
948                 pbqp_edge *tmp_edge;
949
950                 tmp_node = src_node;
951                 src_node = tgt_node;
952                 tgt_node = tmp_node;
953
954                 tmp_edge = src_edge;
955                 src_edge = tgt_edge;
956                 tgt_edge = tmp_edge;
957
958                 src_is_src = src_edge->src == node;
959                 tgt_is_src = tgt_edge->src == node;
960         }
961
962 #if     KAPS_DUMP
963         if (pbqp->dump_file) {
964                 char     txt[100];
965                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
966                 dump_section(pbqp->dump_file, 2, txt);
967                 pbqp_dump_graph(pbqp);
968                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
969                 dump_node(pbqp->dump_file, src_node);
970                 dump_edge(pbqp->dump_file, src_edge);
971                 dump_node(pbqp->dump_file, node);
972                 dump_edge(pbqp->dump_file, tgt_edge);
973                 dump_node(pbqp->dump_file, tgt_node);
974         }
975 #endif
976
977         src_mat = src_edge->costs;
978         tgt_mat = tgt_edge->costs;
979
980         src_vec  = src_node->costs;
981         tgt_vec  = tgt_node->costs;
982         node_vec = node->costs;
983
984         row_len  = src_vec->len;
985         col_len  = tgt_vec->len;
986         node_len = node_vec->len;
987
988         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
989
990         for (row_index = 0; row_index < row_len; ++row_index) {
991                 for (col_index = 0; col_index < col_len; ++col_index) {
992                         vec = vector_copy(pbqp, node_vec);
993
994                         if (src_is_src) {
995                                 vector_add_matrix_col(vec, src_mat, row_index);
996                         } else {
997                                 vector_add_matrix_row(vec, src_mat, row_index);
998                         }
999
1000                         if (tgt_is_src) {
1001                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1002                         } else {
1003                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1004                         }
1005
1006                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1007
1008                         obstack_free(&pbqp->obstack, vec);
1009                 }
1010         }
1011
1012         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1013
1014         /* Disconnect node. */
1015         disconnect_edge(src_node, src_edge);
1016         disconnect_edge(tgt_node, tgt_edge);
1017
1018 #if KAPS_STATISTIC
1019         pbqp->num_r2++;
1020 #endif
1021
1022         /* Add node to back propagation list. */
1023         node_bucket_insert(&reduced_bucket, node);
1024
1025         if (edge == NULL) {
1026                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1027         } else {
1028                 // matrix
1029                 pbqp_matrix_add(edge->costs, mat);
1030
1031                 /* Free local matrix. */
1032                 obstack_free(&pbqp->obstack, mat);
1033
1034                 reorder_node(src_node);
1035                 reorder_node(tgt_node);
1036         }
1037
1038 #if     KAPS_DUMP
1039         if (pbqp->dump_file) {
1040                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1041                 dump_edge(pbqp->dump_file, edge);
1042         }
1043 #endif
1044
1045         /* Edge has changed so we simplify it. */
1046         simplify_edge(pbqp, edge);
1047 }
1048
1049 void select_alternative(pbqp_node *node, unsigned selected_index)
1050 {
1051         unsigned  edge_index;
1052         unsigned  node_index;
1053         unsigned  node_len;
1054         vector   *node_vec;
1055         unsigned  max_degree = pbqp_node_get_degree(node);
1056
1057         assert(node);
1058         node->solution = selected_index;
1059         node_vec = node->costs;
1060         node_len = node_vec->len;
1061         assert(selected_index < node_len);
1062
1063         /* Set all other costs to infinity. */
1064         for (node_index = 0; node_index < node_len; ++node_index) {
1065                 if (node_index != selected_index) {
1066                         node_vec->entries[node_index].data = INF_COSTS;
1067                 }
1068         }
1069
1070         /* Add all incident edges to edge bucket, since they are now independent. */
1071         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1072                 insert_into_edge_bucket(node->edges[edge_index]);
1073         }
1074 }
1075
1076 pbqp_node *get_node_with_max_degree(void)
1077 {
1078         pbqp_node  **bucket       = node_buckets[3];
1079         unsigned     bucket_len   = node_bucket_get_length(bucket);
1080         unsigned     bucket_index;
1081         unsigned     max_degree   = 0;
1082         pbqp_node   *result       = NULL;
1083
1084         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1085                 pbqp_node *candidate = bucket[bucket_index];
1086                 unsigned   degree    = pbqp_node_get_degree(candidate);
1087
1088                 if (degree > max_degree) {
1089                         result = candidate;
1090                         max_degree = degree;
1091                 }
1092         }
1093
1094         return result;
1095 }
1096
1097 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1098 {
1099         pbqp_edge   *edge;
1100         vector      *node_vec;
1101         vector      *vec;
1102         pbqp_matrix *mat;
1103         unsigned     edge_index;
1104         unsigned     max_degree;
1105         unsigned     node_index;
1106         unsigned     node_len;
1107         unsigned     min_index    = 0;
1108         num          min          = INF_COSTS;
1109         int          is_src;
1110
1111         assert(pbqp);
1112         assert(node);
1113         node_vec   = node->costs;
1114         node_len   = node_vec->len;
1115         max_degree = pbqp_node_get_degree(node);
1116
1117         for (node_index = 0; node_index < node_len; ++node_index) {
1118                 num value = node_vec->entries[node_index].data;
1119
1120                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1121                         edge   = node->edges[edge_index];
1122                         mat    = edge->costs;
1123                         is_src = edge->src == node;
1124
1125                         if (is_src) {
1126                                 vec = vector_copy(pbqp, edge->tgt->costs);
1127                                 vector_add_matrix_row(vec, mat, node_index);
1128                         } else {
1129                                 vec = vector_copy(pbqp, edge->src->costs);
1130                                 vector_add_matrix_col(vec, mat, node_index);
1131                         }
1132
1133                         value = pbqp_add(value, vector_get_min(vec));
1134
1135                         obstack_free(&pbqp->obstack, vec);
1136                 }
1137
1138                 if (value < min) {
1139                         min = value;
1140                         min_index = node_index;
1141                 }
1142         }
1143
1144         return min_index;
1145 }
1146
1147 int node_is_reduced(pbqp_node *node)
1148 {
1149         if (!reduced_bucket) return 0;
1150
1151         if (pbqp_node_get_degree(node) == 0) return 1;
1152
1153         return node_bucket_contains(reduced_bucket, node);
1154 }