7969b373c753afd951e0b086f3ce71a287600f28
[libfirm] / optimal.c
1 /*
2  * Copyright (C) 1995-2008 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19
20 /**
21  * @file
22  * @brief   Optimal reductions and helper functions.
23  * @date    28.12.2009
24  * @author  Sebastian Buchwald
25  * @version $Id$
26  */
27 #include "config.h"
28
29 #include "adt/array.h"
30 #include "assert.h"
31 #include "error.h"
32
33 #include "bucket.h"
34 #if     KAPS_DUMP
35 #include "html_dumper.h"
36 #endif
37 #include "kaps.h"
38 #include "matrix.h"
39 #include "optimal.h"
40 #include "pbqp_edge.h"
41 #include "pbqp_edge_t.h"
42 #include "pbqp_node.h"
43 #include "pbqp_node_t.h"
44 #include "vector.h"
45
46 #include "plist.h"
47 #include "timing.h"
48
49 pbqp_edge **edge_bucket;
50 pbqp_edge **rm_bucket;
51 pbqp_node **node_buckets[4];
52 pbqp_node **reduced_bucket = NULL;
53 static int         buckets_filled = 0;
54
55 static void insert_into_edge_bucket(pbqp_edge *edge)
56 {
57         if (edge_bucket_contains(edge_bucket, edge)) {
58                 /* Edge is already inserted. */
59                 return;
60         }
61
62         edge_bucket_insert(&edge_bucket, edge);
63 }
64
65 static void insert_into_rm_bucket(pbqp_edge *edge)
66 {
67         if (edge_bucket_contains(rm_bucket, edge)) {
68                 /* Edge is already inserted. */
69                 return;
70         }
71
72         edge_bucket_insert(&rm_bucket, edge);
73 }
74
75 static void init_buckets(void)
76 {
77         int i;
78
79         edge_bucket_init(&edge_bucket);
80         edge_bucket_init(&rm_bucket);
81         node_bucket_init(&reduced_bucket);
82
83         for (i = 0; i < 4; ++i) {
84                 node_bucket_init(&node_buckets[i]);
85         }
86 }
87
88 void free_buckets(void)
89 {
90         int i;
91
92         for (i = 0; i < 4; ++i) {
93                 node_bucket_free(&node_buckets[i]);
94         }
95
96         edge_bucket_free(&edge_bucket);
97         edge_bucket_free(&rm_bucket);
98         node_bucket_free(&reduced_bucket);
99
100         buckets_filled = 0;
101 }
102
103 void fill_node_buckets(pbqp *pbqp)
104 {
105         unsigned node_index;
106         unsigned node_len;
107
108         assert(pbqp);
109         node_len = pbqp->num_nodes;
110
111         #if KAPS_TIMING
112                 ir_timer_t *t_fill_buckets = ir_timer_register("be_pbqp_fill_buckets", "PBQP Fill Nodes into buckets");
113                 ir_timer_reset_and_start(t_fill_buckets);
114         #endif
115
116         for (node_index = 0; node_index < node_len; ++node_index) {
117                 unsigned   degree;
118                 pbqp_node *node = get_node(pbqp, node_index);
119
120                 if (!node) continue;
121
122                 degree = pbqp_node_get_degree(node);
123
124                 /* We have only one bucket for nodes with arity >= 3. */
125                 if (degree > 3) {
126                         degree = 3;
127                 }
128
129                 node_bucket_insert(&node_buckets[degree], node);
130         }
131
132         buckets_filled = 1;
133
134         #if KAPS_TIMING
135                 ir_timer_stop(t_fill_buckets);
136                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_fill_buckets), (double)ir_timer_elapsed_usec(t_fill_buckets) / 1000.0);
137         #endif
138 }
139
140 static void normalize_towards_source(pbqp_edge *edge)
141 {
142         pbqp_matrix    *mat;
143         pbqp_node      *src_node;
144         pbqp_node      *tgt_node;
145         vector         *src_vec;
146         vector         *tgt_vec;
147         int             src_len;
148         int             tgt_len;
149         int             src_index;
150
151         assert(edge);
152
153         src_node = edge->src;
154         tgt_node = edge->tgt;
155         assert(src_node);
156         assert(tgt_node);
157
158         src_vec = src_node->costs;
159         tgt_vec = tgt_node->costs;
160         assert(src_vec);
161         assert(tgt_vec);
162
163         src_len = src_vec->len;
164         tgt_len = tgt_vec->len;
165         assert(src_len > 0);
166         assert(tgt_len > 0);
167
168         mat = edge->costs;
169         assert(mat);
170
171         /* Normalize towards source node. */
172         for (src_index = 0; src_index < src_len; ++src_index) {
173                 num min = pbqp_matrix_get_row_min(mat, src_index, tgt_vec);
174
175                 if (min != 0) {
176                         if (src_vec->entries[src_index].data == INF_COSTS) {
177                                 pbqp_matrix_set_row_value(mat, src_index, 0);
178                         } else {
179                                 pbqp_matrix_sub_row_value(mat, src_index, tgt_vec, min);
180                         }
181                         src_vec->entries[src_index].data = pbqp_add(
182                                         src_vec->entries[src_index].data, min);
183
184                         if (min == INF_COSTS) {
185                                 unsigned edge_index;
186                                 unsigned edge_len = pbqp_node_get_degree(src_node);
187
188                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
189                                         pbqp_edge *edge_candidate = src_node->edges[edge_index];
190                                         if (edge_candidate != edge) {
191                                                 insert_into_edge_bucket(edge_candidate);
192                                         }
193                                 }
194                         }
195                 }
196         }
197 }
198
199 static void normalize_towards_target(pbqp_edge *edge)
200 {
201         pbqp_matrix    *mat;
202         pbqp_node      *src_node;
203         pbqp_node      *tgt_node;
204         vector         *src_vec;
205         vector         *tgt_vec;
206         int             src_len;
207         int             tgt_len;
208         int             tgt_index;
209
210         assert(edge);
211
212         src_node = edge->src;
213         tgt_node = edge->tgt;
214         assert(src_node);
215         assert(tgt_node);
216
217         src_vec = src_node->costs;
218         tgt_vec = tgt_node->costs;
219         assert(src_vec);
220         assert(tgt_vec);
221
222         src_len = src_vec->len;
223         tgt_len = tgt_vec->len;
224         assert(src_len > 0);
225         assert(tgt_len > 0);
226
227         mat = edge->costs;
228         assert(mat);
229
230         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
231                 num min = pbqp_matrix_get_col_min(mat, tgt_index, src_vec);
232
233                 if (min != 0) {
234                         if (tgt_vec->entries[tgt_index].data == INF_COSTS) {
235                                 pbqp_matrix_set_col_value(mat, tgt_index, 0);
236                         } else {
237                                 pbqp_matrix_sub_col_value(mat, tgt_index, src_vec, min);
238                         }
239                         tgt_vec->entries[tgt_index].data = pbqp_add(
240                                         tgt_vec->entries[tgt_index].data, min);
241
242                         if (min == INF_COSTS) {
243                                 unsigned edge_index;
244                                 unsigned edge_len = pbqp_node_get_degree(tgt_node);
245
246                                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
247                                         pbqp_edge *edge_candidate = tgt_node->edges[edge_index];
248                                         if (edge_candidate != edge) {
249                                                 insert_into_edge_bucket(edge_candidate);
250                                         }
251                                 }
252                         }
253                 }
254         }
255 }
256
257 /**
258  * Tries to apply RM for the source node of the given edge.
259  *
260  * Checks whether the source node of edge can be merged into the target node of
261  * edge, and performs the merge, if possible.
262  */
263 static void merge_source_into_target(pbqp *pbqp, pbqp_edge *edge)
264 {
265         pbqp_matrix    *mat;
266         pbqp_node      *src_node;
267         pbqp_node      *tgt_node;
268         vector         *src_vec;
269         vector         *tgt_vec;
270         unsigned       *mapping;
271         unsigned        src_len;
272         unsigned        tgt_len;
273         unsigned        src_index;
274         unsigned        tgt_index;
275         unsigned        edge_index;
276         unsigned        edge_len;
277
278         assert(pbqp);
279         assert(edge);
280
281         src_node = edge->src;
282         tgt_node = edge->tgt;
283         assert(src_node);
284         assert(tgt_node);
285
286         src_vec = src_node->costs;
287         tgt_vec = tgt_node->costs;
288         assert(src_vec);
289         assert(tgt_vec);
290
291         src_len = src_vec->len;
292         tgt_len = tgt_vec->len;
293
294         /* Matrizes are normalized. */
295         assert(src_len > 1);
296         assert(tgt_len > 1);
297
298         mat = edge->costs;
299         assert(mat);
300
301         mapping = NEW_ARR_F(unsigned, tgt_len);
302
303         /* Check that each column has at most one zero entry. */
304         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
305                 unsigned onlyOneZero = 0;
306
307                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
308                         continue;
309
310                 for (src_index = 0; src_index < src_len; ++src_index) {
311                         if (src_vec->entries[src_index].data == INF_COSTS)
312                                 continue;
313
314                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
315                                 continue;
316
317                         /* Matrix entry is finite. */
318                         if (onlyOneZero) {
319                                 DEL_ARR_F(mapping);
320                                 return;
321                         }
322
323                         onlyOneZero = 1;
324                         mapping[tgt_index] = src_index;
325                 }
326         }
327
328         /* We know that we can merge the source node into the target node. */
329         edge_len = pbqp_node_get_degree(src_node);
330
331 #if KAPS_STATISTIC
332         pbqp->num_rm++;
333 #endif
334
335         /* Reconnect the source's edges with the target node. */
336         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
337                 pbqp_edge   *old_edge = src_node->edges[edge_index];
338                 pbqp_edge   *new_edge;
339                 pbqp_matrix *old_matrix;
340                 pbqp_matrix *new_matrix;
341                 pbqp_node   *other_node;
342                 vector      *other_vec;
343                 unsigned     other_len;
344                 unsigned     other_index;
345                 unsigned     tgt_index;
346
347                 assert(old_edge);
348
349                 if (old_edge == edge)
350                         continue;
351
352                 old_matrix = old_edge->costs;
353                 assert(old_matrix);
354
355                 if (old_edge->tgt == src_node) {
356                         other_node = edge->src;
357                         other_len  = old_matrix->rows;
358                 }
359                 else {
360                         other_node = edge->tgt;
361                         other_len = old_matrix->cols;
362                 }
363                 assert(other_node);
364                 other_vec = other_node->costs;
365
366                 new_matrix = pbqp_matrix_alloc(pbqp, tgt_len, other_len);
367
368                 /* Source node selects the column of the old_matrix. */
369                 if (old_edge->tgt == src_node) {
370                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
371                                 unsigned src_index = mapping[tgt_index];
372
373                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
374                                         continue;
375
376                                 for (other_index = 0; other_index < other_len; ++other_index) {
377                                         if (other_vec->entries[other_index].data == INF_COSTS)
378                                                 continue;
379
380                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[other_index*src_len+src_index];
381                                 }
382                         }
383                 }
384                 /* Source node selects the row of the old_matrix. */
385                 else {
386                         for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
387                                 unsigned src_index = mapping[tgt_index];
388
389                                 if (tgt_vec->entries[tgt_index].data == INF_COSTS)
390                                         continue;
391
392                                 for (other_index = 0; other_index < other_len; ++other_index) {
393                                         if (other_vec->entries[other_index].data == INF_COSTS)
394                                                 continue;
395
396                                         new_matrix->entries[tgt_index*other_len+other_index] = old_matrix->entries[src_index*other_len+other_index];
397                                 }
398                         }
399                 }
400
401                 add_edge_costs(pbqp, tgt_node->index, other_node->index, new_matrix);
402
403                 disconnect_edge(src_node, old_edge);
404                 disconnect_edge(other_node, old_edge);
405
406                 new_edge = get_edge(pbqp, tgt_node->index, other_node->index);
407                 insert_into_rm_bucket(new_edge);
408         }
409
410         /* Reduce the remaining source node via RI. */
411         apply_RI(pbqp);
412 }
413
414 /**
415  * Tries to apply RM for the target node of the given edge.
416  *
417  * Checks whether the target node of edge can be merged into the source node of
418  * edge, and performs the merge, if possible.
419  */
420 static void merge_target_into_source(pbqp *pbqp, pbqp_edge *edge)
421 {
422         pbqp_matrix    *mat;
423         pbqp_node      *src_node;
424         pbqp_node      *tgt_node;
425         vector         *src_vec;
426         vector         *tgt_vec;
427         unsigned       *mapping;
428         unsigned        src_len;
429         unsigned        tgt_len;
430         unsigned        src_index;
431         unsigned        tgt_index;
432         unsigned        edge_index;
433         unsigned        edge_len;
434
435         assert(pbqp);
436         assert(edge);
437
438         src_node = edge->src;
439         tgt_node = edge->tgt;
440         assert(src_node);
441         assert(tgt_node);
442
443         src_vec = src_node->costs;
444         tgt_vec = tgt_node->costs;
445         assert(src_vec);
446         assert(tgt_vec);
447
448         src_len = src_vec->len;
449         tgt_len = tgt_vec->len;
450
451         /* Matrizes are normalized. */
452         assert(src_len > 1);
453         assert(tgt_len > 1);
454
455         mat = edge->costs;
456         assert(mat);
457
458         mapping = NEW_ARR_F(unsigned, src_len);
459
460         /* Check that each row has at most one zero entry. */
461         for (src_index = 0; src_index < src_len; ++src_index) {
462                 unsigned onlyOneZero = 0;
463
464                 if (src_vec->entries[src_index].data == INF_COSTS)
465                         continue;
466
467                 for (tgt_index = 0; tgt_index < tgt_len; ++tgt_index) {
468                         if (tgt_vec->entries[tgt_index].data == INF_COSTS)
469                                 continue;
470
471                         if (mat->entries[src_index * tgt_len + tgt_index] == INF_COSTS)
472                                 continue;
473
474                         /* Matrix entry is finite. */
475                         if (onlyOneZero) {
476                                 DEL_ARR_F(mapping);
477                                 return;
478                         }
479
480                         onlyOneZero = 1;
481                         mapping[src_index] = tgt_index;
482                 }
483         }
484
485         /* We know that we can merge the target node into the source node. */
486         edge_len = pbqp_node_get_degree(tgt_node);
487
488 #if KAPS_STATISTIC
489         pbqp->num_rm++;
490 #endif
491
492         /* Reconnect the target's edges with the source node. */
493         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
494                 pbqp_edge   *old_edge = tgt_node->edges[edge_index];
495                 pbqp_edge   *new_edge;
496                 pbqp_matrix *old_matrix;
497                 pbqp_matrix *new_matrix;
498                 pbqp_node   *other_node;
499                 vector      *other_vec;
500                 unsigned     other_len;
501                 unsigned     other_index;
502                 unsigned     src_index;
503
504                 assert(old_edge);
505
506                 if (old_edge == edge)
507                         continue;
508
509                 old_matrix = old_edge->costs;
510                 assert(old_matrix);
511
512                 if (old_edge->tgt == tgt_node) {
513                         other_node = edge->src;
514                         other_len  = old_matrix->rows;
515                 }
516                 else {
517                         other_node = edge->tgt;
518                         other_len = old_matrix->cols;
519                 }
520                 assert(other_node);
521                 other_vec = other_node->costs;
522
523                 new_matrix = pbqp_matrix_alloc(pbqp, src_len, other_len);
524
525                 /* Target node selects the column of the old_matrix. */
526                 if (old_edge->tgt == tgt_node) {
527                         for (src_index = 0; src_index < src_len; ++src_index) {
528                                 unsigned tgt_index = mapping[src_index];
529
530                                 if (src_vec->entries[src_index].data == INF_COSTS)
531                                         continue;
532
533                                 for (other_index = 0; other_index < other_len; ++other_index) {
534                                         if (other_vec->entries[other_index].data == INF_COSTS)
535                                                 continue;
536
537                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[other_index*tgt_len+tgt_index];
538                                 }
539                         }
540                 }
541                 /* Source node selects the row of the old_matrix. */
542                 else {
543                         for (src_index = 0; src_index < src_len; ++src_index) {
544                                 unsigned tgt_index = mapping[src_index];
545
546                                 if (src_vec->entries[src_index].data == INF_COSTS)
547                                         continue;
548
549                                 for (other_index = 0; other_index < other_len; ++other_index) {
550                                         if (other_vec->entries[other_index].data == INF_COSTS)
551                                                 continue;
552
553                                         new_matrix->entries[src_index*other_len+other_index] = old_matrix->entries[tgt_index*other_len+other_index];
554                                 }
555                         }
556                 }
557
558                 add_edge_costs(pbqp, src_node->index, other_node->index, new_matrix);
559
560                 disconnect_edge(tgt_node, old_edge);
561                 disconnect_edge(other_node, old_edge);
562
563                 new_edge = get_edge(pbqp, src_node->index, other_node->index);
564                 insert_into_rm_bucket(new_edge);
565         }
566
567         /* Reduce the remaining source node via RI. */
568         apply_RI(pbqp);
569 }
570
571 /**
572  * Merge neighbors into the given node.
573  */
574 void apply_RM(pbqp *pbqp, pbqp_node *node)
575 {
576         pbqp_edge **edges;
577         unsigned    edge_index;
578         unsigned    edge_len;
579
580         assert(node);
581         assert(pbqp);
582
583         edges    = node->edges;
584         edge_len = pbqp_node_get_degree(node);
585
586         /* Check all incident edges. */
587         for (edge_index = 0; edge_index < edge_len; ++edge_index) {
588                 pbqp_edge *edge = edges[edge_index];
589
590                 insert_into_rm_bucket(edge);
591         }
592
593         /* ALAP: Merge neighbors into given node. */
594         while(edge_bucket_get_length(rm_bucket) > 0) {
595                 pbqp_edge *edge = edge_bucket_pop(&rm_bucket);
596                 assert(edge);
597
598                 if (edge->src == node)
599                         merge_target_into_source(pbqp, edge);
600                 else
601                         merge_source_into_target(pbqp, edge);
602         }
603 }
604
605 void reorder_node(pbqp_node *node)
606 {
607         unsigned    degree     = pbqp_node_get_degree(node);
608         /* Assume node lost one incident edge. */
609         unsigned    old_degree = degree + 1;
610
611         if (!buckets_filled) return;
612
613         /* Same bucket as before */
614         if (degree > 2) return;
615
616         if (!node_bucket_contains(node_buckets[old_degree], node)) {
617                 /* Old arity is new arity, so we have nothing to do. */
618                 assert(node_bucket_contains(node_buckets[degree], node));
619                 return;
620         }
621
622         /* Delete node from old bucket... */
623         node_bucket_remove(&node_buckets[old_degree], node);
624
625         /* ..and add to new one. */
626         node_bucket_insert(&node_buckets[degree], node);
627 }
628
629 void simplify_edge(pbqp *pbqp, pbqp_edge *edge)
630 {
631         pbqp_matrix    *mat;
632         pbqp_node      *src_node;
633         pbqp_node      *tgt_node;
634         vector         *src_vec;
635         vector         *tgt_vec;
636         int             src_len;
637         int             tgt_len;
638
639         assert(pbqp);
640         assert(edge);
641
642         src_node = edge->src;
643         tgt_node = edge->tgt;
644         assert(src_node);
645         assert(tgt_node);
646
647         /* If edge are already deleted, we have nothing to do. */
648         if (!is_connected(src_node, edge) || !is_connected(tgt_node, edge))
649                 return;
650
651 #if     KAPS_DUMP
652         if (pbqp->dump_file) {
653                 char txt[100];
654                 sprintf(txt, "Simplification of Edge n%d-n%d", src_node->index, tgt_node->index);
655                 dump_section(pbqp->dump_file, 3, txt);
656         }
657 #endif
658
659         src_vec = src_node->costs;
660         tgt_vec = tgt_node->costs;
661         assert(src_vec);
662         assert(tgt_vec);
663
664         src_len = src_vec->len;
665         tgt_len = tgt_vec->len;
666         assert(src_len > 0);
667         assert(tgt_len > 0);
668
669         mat = edge->costs;
670         assert(mat);
671
672 #if     KAPS_DUMP
673         if (pbqp->dump_file) {
674                 fputs("Input:<br>\n", pbqp->dump_file);
675                 dump_simplifyedge(pbqp, edge);
676         }
677 #endif
678
679         normalize_towards_source(edge);
680         normalize_towards_target(edge);
681
682 #if     KAPS_DUMP
683         if (pbqp->dump_file) {
684                 fputs("<br>\nOutput:<br>\n", pbqp->dump_file);
685                 dump_simplifyedge(pbqp, edge);
686         }
687 #endif
688
689         if (pbqp_matrix_is_zero(mat, src_vec, tgt_vec)) {
690 #if     KAPS_DUMP
691                 if (pbqp->dump_file) {
692                         fputs("edge has been eliminated<br>\n", pbqp->dump_file);
693                 }
694 #endif
695
696 #if KAPS_STATISTIC
697                 pbqp->num_edges++;
698 #endif
699
700                 delete_edge(edge);
701                 reorder_node(src_node);
702                 reorder_node(tgt_node);
703         }
704 }
705
706 void initial_simplify_edges(pbqp *pbqp)
707 {
708         unsigned node_index;
709         unsigned node_len;
710
711         assert(pbqp);
712
713         #if KAPS_TIMING
714                 ir_timer_t *t_int_simpl = ir_timer_register("be_pbqp_init_simp", "PBQP Initial simplify edges");
715                 ir_timer_reset_and_start(t_int_simpl);
716         #endif
717
718 #if     KAPS_DUMP
719         if (pbqp->dump_file) {
720                 pbqp_dump_input(pbqp);
721                 dump_section(pbqp->dump_file, 1, "2. Simplification of Cost Matrices");
722         }
723 #endif
724
725         node_len = pbqp->num_nodes;
726
727         init_buckets();
728
729         /* First simplify all edges. */
730         for (node_index = 0; node_index < node_len; ++node_index) {
731                 unsigned    edge_index;
732                 pbqp_node  *node = get_node(pbqp, node_index);
733                 pbqp_edge **edges;
734                 unsigned    edge_len;
735
736                 if (!node) continue;
737
738                 edges = node->edges;
739                 edge_len = pbqp_node_get_degree(node);
740
741                 for (edge_index = 0; edge_index < edge_len; ++edge_index) {
742                         pbqp_edge *edge = edges[edge_index];
743
744                         /* Simplify only once per edge. */
745                         if (node != edge->src) continue;
746
747                         simplify_edge(pbqp, edge);
748                 }
749         }
750
751         #if KAPS_TIMING
752                 ir_timer_stop(t_int_simpl);
753                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_int_simpl), (double)ir_timer_elapsed_usec(t_int_simpl) / 1000.0);
754         #endif
755 }
756
757 num determine_solution(pbqp *pbqp)
758 {
759         unsigned node_index;
760         unsigned node_len;
761         num      solution   = 0;
762
763         #if KAPS_TIMING
764                 ir_timer_t *t_det_solution = ir_timer_register("be_det_solution", "PBQP Determine Solution");
765                 ir_timer_reset_and_start(t_det_solution);
766         #endif
767
768 #if     KAPS_DUMP
769         FILE     *file;
770 #endif
771
772         assert(pbqp);
773
774 #if     KAPS_DUMP
775         file = pbqp->dump_file;
776
777         if (file) {
778                 dump_section(file, 1, "4. Determine Solution/Minimum");
779                 dump_section(file, 2, "4.1. Trivial Solution");
780         }
781 #endif
782
783         /* Solve trivial nodes and calculate solution. */
784         node_len = node_bucket_get_length(node_buckets[0]);
785
786 #if KAPS_STATISTIC
787         pbqp->num_r0 = node_len;
788 #endif
789
790         for (node_index = 0; node_index < node_len; ++node_index) {
791                 pbqp_node *node = node_buckets[0][node_index];
792                 assert(node);
793
794                 node->solution = vector_get_min_index(node->costs);
795                 solution       = pbqp_add(solution,
796                                 node->costs->entries[node->solution].data);
797
798 #if     KAPS_DUMP
799                 if (file) {
800                         fprintf(file, "node n%d is set to %d<br>\n", node->index, node->solution);
801                         dump_node(file, node);
802                 }
803 #endif
804         }
805
806 #if     KAPS_DUMP
807         if (file) {
808                 dump_section(file, 2, "Minimum");
809 #if KAPS_USE_UNSIGNED
810                 fprintf(file, "Minimum is equal to %u.", solution);
811 #else
812                 fprintf(file, "Minimum is equal to %lld.", solution);
813 #endif
814         }
815 #endif
816
817         #if KAPS_TIMING
818                 ir_timer_stop(t_det_solution);
819                 printf("%-20s: %8.3lf msec\n", ir_timer_get_description(t_det_solution), (double)ir_timer_elapsed_usec(t_det_solution) / 1000.0);
820         #endif
821
822         return solution;
823 }
824
825 static void back_propagate_RI(pbqp *pbqp, pbqp_node *node)
826 {
827         pbqp_edge   *edge;
828         pbqp_node   *other;
829         pbqp_matrix *mat;
830         vector      *vec;
831         int          is_src;
832
833         assert(pbqp);
834         assert(node);
835
836         edge = node->edges[0];
837         mat = edge->costs;
838         is_src = edge->src == node;
839         vec = node->costs;
840
841         if (is_src) {
842                 other = edge->tgt;
843                 assert(other);
844
845                 node->solution = pbqp_matrix_get_col_min_index(mat, other->solution, vec);
846         } else {
847                 other = edge->src;
848                 assert(other);
849
850                 node->solution = pbqp_matrix_get_row_min_index(mat, other->solution, vec);
851         }
852
853 #if     KAPS_DUMP
854         if (pbqp->dump_file) {
855                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
856         }
857 #endif
858 }
859
860 static void back_propagate_RII(pbqp *pbqp, pbqp_node *node)
861 {
862         pbqp_edge   *src_edge   = node->edges[0];
863         pbqp_edge   *tgt_edge   = node->edges[1];
864         int          src_is_src = src_edge->src == node;
865         int          tgt_is_src = tgt_edge->src == node;
866         pbqp_matrix *src_mat;
867         pbqp_matrix *tgt_mat;
868         pbqp_node   *src_node;
869         pbqp_node   *tgt_node;
870         vector      *vec;
871         vector      *node_vec;
872         unsigned     col_index;
873         unsigned     row_index;
874
875         assert(pbqp);
876
877         if (src_is_src) {
878                 src_node = src_edge->tgt;
879         } else {
880                 src_node = src_edge->src;
881         }
882
883         if (tgt_is_src) {
884                 tgt_node = tgt_edge->tgt;
885         } else {
886                 tgt_node = tgt_edge->src;
887         }
888
889         /* Swap nodes if necessary. */
890         if (tgt_node->index < src_node->index) {
891                 pbqp_node *tmp_node;
892                 pbqp_edge *tmp_edge;
893
894                 tmp_node = src_node;
895                 src_node = tgt_node;
896                 tgt_node = tmp_node;
897
898                 tmp_edge = src_edge;
899                 src_edge = tgt_edge;
900                 tgt_edge = tmp_edge;
901
902                 src_is_src = src_edge->src == node;
903                 tgt_is_src = tgt_edge->src == node;
904         }
905
906         src_mat = src_edge->costs;
907         tgt_mat = tgt_edge->costs;
908
909         node_vec = node->costs;
910
911         row_index = src_node->solution;
912         col_index = tgt_node->solution;
913
914         vec = vector_copy(pbqp, node_vec);
915
916         if (src_is_src) {
917                 vector_add_matrix_col(vec, src_mat, row_index);
918         } else {
919                 vector_add_matrix_row(vec, src_mat, row_index);
920         }
921
922         if (tgt_is_src) {
923                 vector_add_matrix_col(vec, tgt_mat, col_index);
924         } else {
925                 vector_add_matrix_row(vec, tgt_mat, col_index);
926         }
927
928         node->solution = vector_get_min_index(vec);
929
930 #if     KAPS_DUMP
931         if (pbqp->dump_file) {
932                 fprintf(pbqp->dump_file, "node n%d is set to %d<br>\n", node->index, node->solution);
933         }
934 #endif
935
936         obstack_free(&pbqp->obstack, vec);
937 }
938
939 void back_propagate(pbqp *pbqp)
940 {
941         unsigned node_index;
942         unsigned node_len   = node_bucket_get_length(reduced_bucket);
943
944         assert(pbqp);
945
946 #if     KAPS_DUMP
947         if (pbqp->dump_file) {
948                 dump_section(pbqp->dump_file, 2, "Back Propagation");
949         }
950 #endif
951
952         for (node_index = node_len; node_index > 0; --node_index) {
953                 pbqp_node *node = reduced_bucket[node_index - 1];
954
955                 switch (pbqp_node_get_degree(node)) {
956                         case 1:
957                                 back_propagate_RI(pbqp, node);
958                                 break;
959                         case 2:
960                                 back_propagate_RII(pbqp, node);
961                                 break;
962                         default:
963                                 panic("Only nodes with degree one or two should be in this bucket");
964                                 break;
965                 }
966         }
967 }
968
969 void apply_edge(pbqp *pbqp)
970 {
971         pbqp_edge *edge = edge_bucket_pop(&edge_bucket);
972
973         simplify_edge(pbqp, edge);
974 }
975
976 void apply_RI(pbqp *pbqp)
977 {
978         pbqp_node   *node       = node_bucket_pop(&node_buckets[1]);
979         pbqp_edge   *edge       = node->edges[0];
980         pbqp_matrix *mat        = edge->costs;
981         int          is_src     = edge->src == node;
982         pbqp_node   *other_node;
983
984         (void ) pbqp;
985         assert(pbqp_node_get_degree(node) == 1);
986
987         if (is_src) {
988                 other_node = edge->tgt;
989         } else {
990                 other_node = edge->src;
991         }
992
993 #if     KAPS_DUMP
994         if (pbqp->dump_file) {
995                 char     txt[100];
996                 sprintf(txt, "RI-Reduction of Node n%d", node->index);
997                 dump_section(pbqp->dump_file, 2, txt);
998                 pbqp_dump_graph(pbqp);
999                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1000                 dump_node(pbqp->dump_file, node);
1001                 dump_node(pbqp->dump_file, other_node);
1002                 dump_edge(pbqp->dump_file, edge);
1003         }
1004 #endif
1005
1006         if (is_src) {
1007                 pbqp_matrix_add_to_all_cols(mat, node->costs);
1008                 normalize_towards_target(edge);
1009         } else {
1010                 pbqp_matrix_add_to_all_rows(mat, node->costs);
1011                 normalize_towards_source(edge);
1012         }
1013         disconnect_edge(other_node, edge);
1014
1015 #if     KAPS_DUMP
1016         if (pbqp->dump_file) {
1017                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1018                 dump_node(pbqp->dump_file, other_node);
1019         }
1020 #endif
1021
1022         reorder_node(other_node);
1023
1024 #if KAPS_STATISTIC
1025         pbqp->num_r1++;
1026 #endif
1027
1028         /* Add node to back propagation list. */
1029         node_bucket_insert(&reduced_bucket, node);
1030 }
1031
1032 void apply_RII(pbqp *pbqp)
1033 {
1034         pbqp_node   *node       = node_bucket_pop(&node_buckets[2]);
1035         pbqp_edge   *src_edge   = node->edges[0];
1036         pbqp_edge   *tgt_edge   = node->edges[1];
1037         int          src_is_src = src_edge->src == node;
1038         int          tgt_is_src = tgt_edge->src == node;
1039         pbqp_matrix *src_mat;
1040         pbqp_matrix *tgt_mat;
1041         pbqp_node   *src_node;
1042         pbqp_node   *tgt_node;
1043         pbqp_matrix *mat;
1044         vector      *vec;
1045         vector      *node_vec;
1046         vector      *src_vec;
1047         vector      *tgt_vec;
1048         unsigned     col_index;
1049         unsigned     col_len;
1050         unsigned     row_index;
1051         unsigned     row_len;
1052         unsigned     node_len;
1053
1054         assert(pbqp);
1055         assert(pbqp_node_get_degree(node) == 2);
1056
1057         if (src_is_src) {
1058                 src_node = src_edge->tgt;
1059         } else {
1060                 src_node = src_edge->src;
1061         }
1062
1063         if (tgt_is_src) {
1064                 tgt_node = tgt_edge->tgt;
1065         } else {
1066                 tgt_node = tgt_edge->src;
1067         }
1068
1069         /* Swap nodes if necessary. */
1070         if (tgt_node->index < src_node->index) {
1071                 pbqp_node *tmp_node;
1072                 pbqp_edge *tmp_edge;
1073
1074                 tmp_node = src_node;
1075                 src_node = tgt_node;
1076                 tgt_node = tmp_node;
1077
1078                 tmp_edge = src_edge;
1079                 src_edge = tgt_edge;
1080                 tgt_edge = tmp_edge;
1081
1082                 src_is_src = src_edge->src == node;
1083                 tgt_is_src = tgt_edge->src == node;
1084         }
1085
1086 #if     KAPS_DUMP
1087         if (pbqp->dump_file) {
1088                 char     txt[100];
1089                 sprintf(txt, "RII-Reduction of Node n%d", node->index);
1090                 dump_section(pbqp->dump_file, 2, txt);
1091                 pbqp_dump_graph(pbqp);
1092                 fputs("<br>\nBefore reduction:<br>\n", pbqp->dump_file);
1093                 dump_node(pbqp->dump_file, src_node);
1094                 dump_edge(pbqp->dump_file, src_edge);
1095                 dump_node(pbqp->dump_file, node);
1096                 dump_edge(pbqp->dump_file, tgt_edge);
1097                 dump_node(pbqp->dump_file, tgt_node);
1098         }
1099 #endif
1100
1101         src_mat = src_edge->costs;
1102         tgt_mat = tgt_edge->costs;
1103
1104         src_vec  = src_node->costs;
1105         tgt_vec  = tgt_node->costs;
1106         node_vec = node->costs;
1107
1108         row_len  = src_vec->len;
1109         col_len  = tgt_vec->len;
1110         node_len = node_vec->len;
1111
1112         mat = pbqp_matrix_alloc(pbqp, row_len, col_len);
1113
1114         for (row_index = 0; row_index < row_len; ++row_index) {
1115                 for (col_index = 0; col_index < col_len; ++col_index) {
1116                         vec = vector_copy(pbqp, node_vec);
1117
1118                         if (src_is_src) {
1119                                 vector_add_matrix_col(vec, src_mat, row_index);
1120                         } else {
1121                                 vector_add_matrix_row(vec, src_mat, row_index);
1122                         }
1123
1124                         if (tgt_is_src) {
1125                                 vector_add_matrix_col(vec, tgt_mat, col_index);
1126                         } else {
1127                                 vector_add_matrix_row(vec, tgt_mat, col_index);
1128                         }
1129
1130                         mat->entries[row_index * col_len + col_index] = vector_get_min(vec);
1131
1132                         obstack_free(&pbqp->obstack, vec);
1133                 }
1134         }
1135
1136         pbqp_edge *edge = get_edge(pbqp, src_node->index, tgt_node->index);
1137
1138         /* Disconnect node. */
1139         disconnect_edge(src_node, src_edge);
1140         disconnect_edge(tgt_node, tgt_edge);
1141
1142 #if KAPS_STATISTIC
1143         pbqp->num_r2++;
1144 #endif
1145
1146         /* Add node to back propagation list. */
1147         node_bucket_insert(&reduced_bucket, node);
1148
1149         if (edge == NULL) {
1150                 edge = alloc_edge(pbqp, src_node->index, tgt_node->index, mat);
1151         } else {
1152                 // matrix
1153                 pbqp_matrix_add(edge->costs, mat);
1154
1155                 /* Free local matrix. */
1156                 obstack_free(&pbqp->obstack, mat);
1157
1158                 reorder_node(src_node);
1159                 reorder_node(tgt_node);
1160         }
1161
1162 #if     KAPS_DUMP
1163         if (pbqp->dump_file) {
1164                 fputs("<br>\nAfter reduction:<br>\n", pbqp->dump_file);
1165                 dump_edge(pbqp->dump_file, edge);
1166         }
1167 #endif
1168
1169         /* Edge has changed so we simplify it. */
1170         simplify_edge(pbqp, edge);
1171 }
1172
1173 void select_alternative(pbqp_node *node, unsigned selected_index)
1174 {
1175         unsigned  edge_index;
1176         unsigned  node_index;
1177         unsigned  node_len;
1178         vector   *node_vec;
1179         unsigned  max_degree = pbqp_node_get_degree(node);
1180
1181         assert(node);
1182         node->solution = selected_index;
1183         node_vec = node->costs;
1184         node_len = node_vec->len;
1185         assert(selected_index < node_len);
1186
1187         /* Set all other costs to infinity. */
1188         for (node_index = 0; node_index < node_len; ++node_index) {
1189                 if (node_index != selected_index) {
1190                         node_vec->entries[node_index].data = INF_COSTS;
1191                 }
1192         }
1193
1194         /* Add all incident edges to edge bucket, since they are now independent. */
1195         for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1196                 insert_into_edge_bucket(node->edges[edge_index]);
1197         }
1198 }
1199
1200 pbqp_node *get_node_with_max_degree(void)
1201 {
1202         pbqp_node  **bucket       = node_buckets[3];
1203         unsigned     bucket_len   = node_bucket_get_length(bucket);
1204         unsigned     bucket_index;
1205         unsigned     max_degree   = 0;
1206         pbqp_node   *result       = NULL;
1207
1208         for (bucket_index = 0; bucket_index < bucket_len; ++bucket_index) {
1209                 pbqp_node *candidate = bucket[bucket_index];
1210                 unsigned   degree    = pbqp_node_get_degree(candidate);
1211
1212                 if (degree > max_degree) {
1213                         result = candidate;
1214                         max_degree = degree;
1215                 }
1216         }
1217
1218         return result;
1219 }
1220
1221 unsigned get_local_minimal_alternative(pbqp *pbqp, pbqp_node *node)
1222 {
1223         pbqp_edge   *edge;
1224         vector      *node_vec;
1225         vector      *vec;
1226         pbqp_matrix *mat;
1227         unsigned     edge_index;
1228         unsigned     max_degree;
1229         unsigned     node_index;
1230         unsigned     node_len;
1231         unsigned     min_index    = 0;
1232         num          min          = INF_COSTS;
1233         int          is_src;
1234
1235         assert(pbqp);
1236         assert(node);
1237         node_vec   = node->costs;
1238         node_len   = node_vec->len;
1239         max_degree = pbqp_node_get_degree(node);
1240
1241         for (node_index = 0; node_index < node_len; ++node_index) {
1242                 num value = node_vec->entries[node_index].data;
1243
1244                 for (edge_index = 0; edge_index < max_degree; ++edge_index) {
1245                         edge   = node->edges[edge_index];
1246                         mat    = edge->costs;
1247                         is_src = edge->src == node;
1248
1249                         if (is_src) {
1250                                 vec = vector_copy(pbqp, edge->tgt->costs);
1251                                 vector_add_matrix_row(vec, mat, node_index);
1252                         } else {
1253                                 vec = vector_copy(pbqp, edge->src->costs);
1254                                 vector_add_matrix_col(vec, mat, node_index);
1255                         }
1256
1257                         value = pbqp_add(value, vector_get_min(vec));
1258
1259                         obstack_free(&pbqp->obstack, vec);
1260                 }
1261
1262                 if (value < min) {
1263                         min = value;
1264                         min_index = node_index;
1265                 }
1266         }
1267
1268         return min_index;
1269 }
1270
1271 int node_is_reduced(pbqp_node *node)
1272 {
1273         if (!reduced_bucket) return 0;
1274
1275         if (pbqp_node_get_degree(node) == 0) return 1;
1276
1277         return node_bucket_contains(reduced_bucket, node);
1278 }